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SUMMARY 

 

Nano-epitaxy is widely used in nanotechnologies and semiconductor fabrications. 

Nowadays III-nitride materials (GaN, AlN, InGaN, etc.) are widely investigated for the 

next generation semiconductors due to their wide bandgap and the potential to deliver 

high quality illumination with high efficiency. However, defects, especially dislocations, 

may lead the device to poor properties (mechanical, electrical and optical), so it becomes 

critical and inevitable to minimize such defects. This work aims at a systematic 

investigation about the dislocation dissipation mechanism in nanostructures by 

combining the surface effect at atomistic level and the mechanical model at macroscopic 

level. It is intended to provide some feasible and reliable design tools or routines for 

growing high quality nanostructures. It will contribute to providing guidance for the 

fabrication of next-generation dislocation-free nano-devices. 

The dissertation starts from the understanding of dislocation dissipation 

mechanism due to the image force acting on the dislocation. This work implements a 

screw dislocation in solids with free surfaces by a novel finite element model, and then 

image forces of dislocations embedded in various shaped GaN nanorods are calculated. 

By comparing with critical force to overcome the lattice resistance, it will demonstrate 

the mechanism of dislocation dissipation in GaN nanorods. As surface stress could 

dramatically influence the behavior of nanostructures, this work has developed a novel 

analytical framework to solve the stress field of solids with dislocations and surface 

stress. The core idea of this framework is to combine the general eigenstrain problem 

solution from micromechanics and the surface elasticity model from atomistic studies. 
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The surface elasticity tensors are obtained through Molecular Dynamic (MD) 

simulations, and especially a complete dataset of GaN surface property tensors will be 

calculated and it could be used to study the surface effect of GaN nanostructures in the 

future. In principle, the analytical framework could be applied to general anisotropic 3D 

materials which are unable to be handled by other literature works (mostly based on 

complex potential method and its variants). Furthermore, it is successfully implemented 

in this framework for the case of isotropic circular nanowires (2D) and the analytical 

result of the image force has been derived afterwards. With the very few results available 

in literatures, this work could contribute to the pioneering work regarding the interaction 

between dislocations and surface stress.  

Based on the finite element analysis and the analytical framework, this work has 

proposed the combination of these two approaches and come up with a semi-analytical 

solution to the image force of isotropic nanorods (3D) with surface stress. The influences 

of the geometrical parameter and surface stress are illustrated and compared with the 

original finite element result. In continuation, this work has extended the semi-analytical 

approach to the case of anisotropic GaN nanorods. It is used to analyze image forces on 

different dislocations in GaN nanorods oriented along polar (c-axis) and non-polar (a, m-

axis) directions. The result shows the dislocation dissipation could be more effective in a-

GaN but less in m-GaN by comparing with the standard growth of c-GaN. The approach 

developed in this work is applicable to other material systems, such as GaAs, InGaN etc. 

Therefore, it could contribute to a wide range of nanostructure design and fabrication for 

dislocation-free devices. 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

 This chapter provides an introduction to the research conducted in the PhD work. 

First, the motivations to do nano-epitaxy modeling and design will be discussed. Second, 

we will make a broad and comprehensive literature review on this topic, which could also 

be the foundation for our work. Finally, we will present the objectives and goals of the 

PhD research. This could be seen as a brief guideline to the current dissertation. 

Motivations 

 For decades, epitaxy is used in nanotechnologies and semiconductor fabrications. 

So far, it‘s the only affordable method of high quality crystal growth for many 

semiconductor materials. Heterostructures developed from these make it possible to solve 

the considerably more general problem of controlling the fundamental parameters inside 

the semiconductor crystals and devices [1]: band gaps, effective masses of the charge 

carriers and the mobilities, refractive indices, electron energy spectrum, etc. As one 

newly arising study and application branch of epitaxy, Nano Selective Area Growth 

(SAG) is widely used to fabricate materials of different thicknesses and composition on 

different regions of a single wafer. All of these new and promising fields have caught the 

interests and attentions of all the researchers around the world.  

Practically, GaN bulk material has been prepared by Metal Organic Vapor Phase 

Epitaxy (MOVPE) [2-4]. Due to the high lattice mismatch between the substrate and GaN 

epilayer, strain energy will accumulate in the material and eventually generate 

dislocations inside. In this work, Nano Selective Area Growth (NSAG) of GaN-based 

materials is performed in the MOVPE T-shape reactor. First, a SiO2 dielectric mask with 

a thickness of 140 nm is deposited on a <0001>-oriented GaN/Al2O3 template using 
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chemical vapour deposition. Electron-beam lithography and reactive ion etching are then 

used to pattern the SiO2 mask on the template.  

Figure 1 shows a scanning electron microscopy (SEM) micrograph of the porous 

mask prepared in this work. The nano-openings are 80 nm in diameter. The nano-

openings act as the nucleation sites for the subsequent growth of the GaN nanorod.  

 

 

 

Figure 1. Porous mask for growing GaN nanorods 

 

The MOVPE growth conditions are as follows: 

 

• Temperature: 1000°C  

• Pressure: 1.33 kPa (100 Torr) 

• V/III ratio: 4500 

• Growth rate: <1 µm/h 
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• Carrier gas: Nitrogen 

• Precursor: TMGa and NH3 

 

The growth rate is kept relatively low in order to obtain a high crystal quality and 

a perfect selectivity. The growth starts with NSAG of GaN at 1000°C until the faceted 

pyramids are obtained. The surface morphology of the faceted nanostructures is first 

characterized by scanning electron microscopy (Figure 2). It can be seen that perfectly 

selective growth is obtained and the nanorods are completely confined in the opening of 

the mask.  

 

 

 

Figure 2. SEM image of a hexagonal GaN nano-pyramid grown by NSAG 
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Atomic force microscopy (AFM) is also performed as shown in Figure 3. 

Nanorods are with very smooth surface morphology and homogeneous in both width and 

height dimensions. Several patterns have been characterized, and the heights of the 

nanorods measured are between 70 to 100 nm. It can be seen again that the growth is 

perfectly selective, which confirms the result in the SEM image. 

 

 

Figure 3. AFM image of GaN nanorods 

 

To study the internal structural properties, GaN nanorods are cut on the (1-100) 

plane by focused ion beam and then characterized by the transmission electron 

microscopy (TEM). In Figure 4, threading dislocations have been observed in the base 

part of some GaN nanorods but the top cap region is dislocation-free. 
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Figure 4. Cross-sectional TEM image of GaN nanorod 

 

Dislocations in solids play an important role in determining the mechanical and 

electronic properties of materials [5-11], due to the fact that the atoms of the dislocations 

have different bonding and environment from the other atoms buried in the bulk. This 

PhD work will investigate the mechanism of dislocation dissipation with anisotropic 

material properties in GaN nanorods, with the consideration of length scale effect which 
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is due to the surface effect at nano-scale. The objective is to find out the optimized ranges 

of geometrical parameters of GaN nanorods with no dislocations. This could be adapted 

in nanostructure design and provide guidance for the fabrication of dislocation-free 

nanostructures. 

Literature Reviews 

During the epitaxy process, the epilayer will be strained due to the lattice 

mismatch between the substrate and the epilayer itself. As the epilayer grows, elastic 

strain energy is accumulating in the material and the atoms of the structure will 

accommodate to decrease the strain energy. The accommodation of atoms is more 

effective where the atoms encounter any free surfaces because the surfaces provide more 

degrees of freedom for the relaxation of atoms. In case that the elastic strain energy 

becomes too large and the accommodation of atoms is insufficient, the nanostructures 

will undergo a plastic deformation and then defects, such as dislocations, will be 

introduced into the material.  

S. Luryi and E. Suhir [6] pioneered quantitatively to analyze the lattice-

mismatched system and determined the threshold strain energy of generating dislocations 

by approximating the lateral stress with an exponential distribution. Based on their work, 

D. Zubia and S. D. Hersee [12] refined the analysis by considering the compliance of the 

substrate. However, these publications obtained the analytical results basing on their 

approximations of the stress or strain fields. Kröner [13] mathematically described the 

elastic field with defects in solids, which led to solving the stress field by taking the 

dislocation induced strain as eigenstrain. Z. Liang et al. [14, 15] numerically 

implemented this eigenstrain method by finite element framework and calculated the 

image force on GaN dislocations of nanorods for free surfaces although.   

When the dislocation is embedded in nanostructures with dimensions on the order 

of tens of nanometers, the behavior of the dislocation becomes highly sensitive to the 
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surrounding environment because the atoms near the dislocation will interact more 

actively in such extremely small domain. Generally, external loads, grain boundaries, 

inclusions and surfaces/interfaces, etc. will affect the behavior of the dislocation. This 

influence might be crucial in determining the way that the dislocation behaves in 

nanostructures, thus it should be taken into consideration in comprehensive studies. 

Relationship of the deformation-dependent surface energy with the surface stress 

was first described by the Shuttleworth‘s equation [16]. Gurtin et al. [17, 18] linked the 

surface stress to the bulk stress at the vicinity of the surface by regarding the surface as a 

negligibly thin object adhering to the underlying material without slipping. Fang et al. 

[19-22] combined the surface stress model with complex variable method to solve the 

stress fields for a screw or edge dislocation located in materials of a circular nanowire 

embedded in an infinite matrix. Luo and Xiao [23] extended this analysis to the case of 

an elliptical nanowire embedded in an infinite matrix with conformal mappings. 

Recently, Ahmadzadeh-Bakhshayesh et al. [24] adopted the same method to analyze the 

surface/interface effect on elastic behavior of a screw dislocation in an eccentric core–

shell nanowire. However, these results based on the complex variable method provide the 

stress fields as infinite power series, which are difficult to manipulate in further 

situations. The influences of the size parameter and surface elasticity are also hard to 

interpret clearly. Beside this limitation, their solutions by using the complex variable 

method are limited to Airy‘s stress functions which are only capable to deal with 2D 

elastic plane stress or strain problems and mainly used for isotropic materials. 

 

Dissertation Objectives and Goals 

This work starts from the understandings of the mechanism of dislocation 

dissipation in solids. In classical continuum mechanics, J. P. Hirth and J. Lothe [25] 

shows that for a dislocation embedded in a semi-infinite solid, a fictitious image 
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dislocation has to be imposed in the mirror position to maintain the stress-free surface 

boundary condition, which leads to the ―image force‖ exerted on the dislocation. The 

image force on the dislocation is the driving force to move the dislocation. When its 

magnitude is large enough to overcome the lattice resistance, the dislocation will be 

driven towards the free surfaces. According to the kinetic rule of dislocation dynamics 

[26], this driving force will increase itself as the dislocation moves until it‘s dissipated 

out of the solid. Therefore, this work implements a screw dislocation in solids with free 

surfaces by a novel finite element model, and then image forces of dislocations embedded 

in various shaped GaN nanorods are calculated. By comparing with critical force to 

overcome the lattice resistance, it will demonstrate the mechanism of dislocation 

dissipation in GaN nanorods.  

The analysis through finite element modeling provides a straightforward 

illustration of the dislocation dissipation by the image force, but it is limited to numerical 

results that are not flexible to handle for various applications. Moreover, to understand 

deeply the interaction between the dislocation and surfaces in a physical and mechanical 

sense, systematic studies are needed in an analytical way. This work will follow the 

concept of eigenstrain for the dislocation and use Green‘s function to formulate the strain 

or stress field. It will also take into account the surface effect to complete an analytical 

framework for a general 3D domain of defected material with elastic anisotropy.  

As a start point, this work has obtained the close-form solutions to the stress fields 

of an infinite isotropic nanowire. It helps to consolidate the current analytical framework. 

The work will be followed by extending isotropic materials to anisotropic materials (e.g., 

wurzite GaN). This can be implemented by plugging the corresponding anisotropic 

tensors into the formulation.  On the other hand, the proposed analytical framework 

should have the flexibility to take 3D structures of solids, which could be adjusted to fit 

into various situations (finite cylinders, nanodots with a cap, etc). The ultimate target is to 

provide a promising solution to the analysis and design of general anisotropic materials 
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with 3D shapes. In this way, the framework of this work could be applied to multi-scale 

studies of materials and bridge up other models developed for different dimensional 

scales of solids. 
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CHAPTER 2 

INVESTIGATION OF DISLOCATION DISSIPATION MECHANISM 

 

 This chapter presents the theory of dislocation dissipation mechanism. It basically 

focuses on the concept of ―Image Force‖ to provide an explanation of how the dislocation 

is driven towards surfaces. In this chapter, we will also summarize the two main methods 

used to calculate the image force, and by comparing their pros and cons, we can decide 

which approach should be used in our work. 

Definition of Image Force 

 The concept of ―Image Force‖ originates from the requirement of enforcing the 

stress-free surface boundary condition when a dislocation is embedded in a semi-infinite 

solid[25, 26]. In this case, a fictitious image dislocation needs to be imposed with the 

same magnitude but opposite direction of the Burgers vector (Figure 5). The image 

dislocation is not real but there is indeed a force acted on the dislocation. Generally 

speaking, the dislocation is prone to be attracted to a compliant (―soft‖) surface and 

repelled from a rigid one conversely.  
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Figure 5. A screw dislocation and its "image" in the space 

 

For a simple case in Figure 5, the image force could be easily determined from the 

stress field. First, it is already known that the stress field of a screw dislocation at the 

coordinate origin of an infinite media is: 
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where is the shear modulus of the solid and b is the magnitude of the screw dislocation. 

Now the media becomes semi-infinite, which introduces a free surface to the 

space at 0x  . It is obvious that the stress field in Eqs. (1) and (2) violates the free 
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surface boundary condition, and it must be modified by adding the stress contribution 

from the image dislocation: 
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where L is the distance of the dislocation away from the free surface. 

The two parallel dislocations, i.e., the real screw dislocation and its image, will 

interact with each other, and thus the image force (per unit length) acted on the screw 

dislocation is calculated as[26]:  

 

 .yzf b  (5) 

 

From Eqs. (4) and (5), the image force per unit length on the screw dislocation by 

the free surface is evaluated at , 0x L y  : 

 

 
2

.
4

b
f

L




   (6) 

 

Interestingly, this image force is incidentally the same with the solo force due to 

the image dislocation located at x L  . This might be the reason that the force is called 

―Image Force‖ thereafter. 
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Calculation of Image Force 

The calculation of image force in Figure 5 is easy and straightforward because of 

the simple geometry of the solid and the configuration of the dislocation. For finite 

systems, the shape of the solid could be arbitrary and even a general curved dislocation 

needs to be taken into consideration. All these factors could complicate the analysis of 

the image force a lot. However, there are mainly two approaches that could handle such 

general problems: the nonlocal method and energy method.  

Nonlocal method 

In nonlocal method, one can calculate the image force along the dislocation line 

using the Peach-Koehler equation [25]: 

 

 ( ) ,NLf b  
  

  (7) 

 

where f


 is the image force density vector along the dislocation line, NL is the nonlocal 

stress exerted on the dislocation, and 


 is the unit vector along the direction of the 

dislocation line. 

The nonlocal stress requires a volumetric integration of the stress tensor over the 

whole crystal space [27]: 

 

 ( ) ( ') ( ') 'NL

V
x x x x dV   
   

 (8) 

 

where ( ')x x 
 

 is a correlation kernel that links the local point ( x


) on the dislocation 

line to the nonlocal point ( 'x


) in the rest crystal space. 
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The nonlocal stress NL  should be the sum of the contribution from all other 

portions of the crystal to the dislocation, which accounts for the long range effects from 

the free surfaces. Usually a volumetric integration over the whole crystal space should be 

calculated for NL . 

In the case of Figure 5, since the image dislocation could be easily determined for 

such simple configurations, the nonlocal stress is naturally the only contribution from this 

image dislocation. In fact, the nonlocal stress field can be also viewed as the equivalent 

part of the difference of the total stress field minus the original stress field of the same 

dislocation in the infinite media without the surface. Therefore, the nonlocal stress field 

can be determined from Eqs. (3) and (4) as: 

 

 
2 2

,
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NL b y

x L y







 
 (9) 

 
2 2

,
2 ( )yz

NL b x L

x L y







 

 
 (10) 

 

The image force can be derived from Eq. (7) directly and it is the same with Eq. 

(5), which gives the final result of the image force in Eq. (6). As we can see in Eq. (5), 

the image force only consists fx part, and fy part happens to be zero in this case. 

Energy method 

The energy method is based on the virtual work principle. In mechanics, a general 

force is defined as the change of the total energy relative to a general configuration 

coordinate change: 

 

 ,
W

f
a


 


 (11) 
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where a can be seen as the change of the dislocation position in this case, and the total 

energy W should be the total energy stored in the solid.  

A more general definition is given in thermodynamics, with the free energy taking 

place of the mechanical energy here, and with parameters such as composition put on 

equal footing with the coordinate change. The coordinates of a system tend to change 

spontaneously to lower its total free energy. In this sense, forces on dislocations are 

virtual forces representing the change in the free energy of the system with displacement 

of the dislocation. Physically, the elastic force is in fact distributed throughout the 

elastically strained material rather than acting directly on the dislocation line. 

For the present, we only discuss about purely elastic and mechanical effects, and 

we also exclude the influence of any potential energy due to external forces, such as the 

gravity or electro-magnetic field, etc. The total energy per unit length of a screw 

dislocation parallel to a free surface with an offset of L from the surface (Figure 5) can be 

determined from the classical elasticity theory[25]:  

 

 
2

0

ln( )
4

b L
W

r




  (12) 

 

where r0 is the core radius of the dislocation. 

Note here that the energy will diverge as the core radius of the dislocation tends to 

zero, which arises from the inadequacy of linear elasticity theory to deal with the severe 

lattice distortion near the core of the dislocation. To be accurate, the total energy should 

also cover the dislocation core energy as an extra term in Eq. (12). However, according to 

atomistic simulations[28], the dislocation core energy could be considered as a constant 

and restricted to a rather small region of the size of r0 ~ b. Furthermore, by combining 

Eqs. (11) and (12), we can see the image force has no relation to the dislocation core 
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energy and the parameter of r0 has also disappeared. In the end, we can obtain again the 

same result of the image force in Eq. (6). 
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CHAPTER 3 

DISLOCATION DISSIPATION BY FREE SURFACES 

 

 This chapter introduces a finite element model of implementing a screw 

dislocation in solids with only free surfaces, which facilitate the specification of the 

surface boundary condition. The stress field obtained from finite element analysis is then 

used to calculate the image force of the dislocation. Through this numerical model, image 

forces of a screw dislocation embedded in various shaped GaN nanorods are calculated. 

By comparing with critical force to overcome the lattice resistance, this work will 

demonstrate the mechanism of dislocation dissipation in GaN nanorods. 

Finite Element Modeling of Dislocations in Solids 

In a 3D Cartesian coordinate system, a single screw dislocation is embedded in a 

finite solid along  


[0, 0, 1] direction with Burgers vector b 


[0, 0, b]. The dislocation 

induces two nonzero plastic strain components, which can be considered as eigenstrains 

[29]:  

 

 * * 1
( ) ( ),

2
yz zy b y H x     (13) 

 

where δ(y) is the Dirac‘s delta function and H(x) is the Heaviside function. 

The constitutive relationship between the stress tensor, σij and the total strain 

tensor T

kl  is described as [30]: 

 

 
*( ),T

ij ijkl kl klC     (14) 
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where Cijkl is the stiffness tensor of the material. 

From the classical continuum mechanics theory, the mechanical equilibrium of 

the solid is achieved by [31]: 

 

 
, 0.ij j   (15) 

 

From Eqs. (13) - (15), the general stress field of the solid can be obtained as [30]: 

 

 
* *

, ,( ) ( ( ') ( ') ) ',ij ijkl pqmn kp qn ml kp ql mnr C C G r r G r r dr  



   

     
 (16) 

 

where r


 is the space vector measured from the origin to the point of interest, and 

( ')G r r
 

 is the Green‘s function and the integration factor is 'r


. 

In addition to these equations, the boundary conditions need to be included. A 

simple classical formulation of free surface condition is described as [31]: 

 

 0,ij jn   (17) 

 

where n


 is the unit vector normal to the surface. 

Eq. (17) is used in the work of Z. Liang et al. [14] and they have calculated the 

image forces of dislocations for nanostructures which have the lowest length dimension 

below 10 nm. However, when the size of the structure drops down to several nanometers, 

the traditional continuum mechanical definition of free surface in Eq. (17) is unable to 

capture the subtle behavior of the surface. The atoms from the surface have good 

flexibility to accommodate themselves and the relaxation is more effective than the atoms 

from the bulk of the structure. This important property of solid surface is the surface 
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stress [32] and it is proven to change the elastic behavior of the surface dramatically 

when the dimensions of structure features are below 10 nm [33-38]. A proper formulation 

of the surface stress in relation to the deformation dependent surface energy is described 

by the Shuttleworth‘s equation [16]:  

 

 ,S

S 




 




 


 (18) 

 

where S

  is the surface stress tensor, 
S

 is the surface strain tensor and γ is the surface 

energy density which can be obtained from atomistic simulations.  

Theoretical and numerical studies of the surface stress indicate that the surface 

stress can significantly alter the nature of interaction forms in nanostructures and the 

stress profile deviates largely from conventional result of Eq. (17) below 10 nm. 

As a start point, the simple free surface boundary condition in Eq. (17) is 

implemented in the following finite element analysis. To obtain the stress field 

numerically, Eq. (14) has to be implemented for the material property but the Dirac‘s 

delta function is involved with an infinite value. To avoid the infinity of the Dirac‘s delta 

function, Z. Liang et al. [14] have mapped this dislocation eigenstrain into Hooke‘s Law 

and the mechanical equilibrium systems to obtain a similar form of Eq. (16), but it 

remains quite a difficult task to code such equations in finite element software like 

ABAQUS or ANSYS to incorporate the eigenstrain.  

This work introduces an alternative method to model the screw dislocation to 

avoid the coding work. It is very easy to implement and quite fast for computation. In 

Figure 6, the screw dislocation introduces a slip plane with two adjacent moving surfaces. 

To mimic the same eigenstrain components in Eq.(13), the two adjacent surfaces are 

displaced +b/2 and –b/2 along opposite directions respectively. In the finite element 
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analysis, the displacements are applied as boundary conditions and they introduce a non-

elastic strain that is the same as the eigenstrain in Eq.  (13).  

 

+b/2

X Y

Z-b/2

 

Figure 6. A screw dislocation embedded in the solid 

 

To validate the stress result of this method, a simple cubic and isotropic solid is 

analyzed in ABAQUS with the material Lamé constants: λ = 141.2 GPa, µ = 116.5 GPa. 

The length of the cube is set to L = 200 nm and the magnitude of the Burgers vector is b 

= 0.1 nm to mimic a sufficiently large solid. The analytical stress field of an infinite solid 

has only two nonzero components as given in Eq. (1) and (2). 

The shear stress component along a path centered in the cube has been plotted in 

Figure 7. The path starts from [0, -L/2, 0] and ends at [0, L/2, 0]. The stress profile from 

this finite element model agrees very well with the analytical solution.  
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Figure 7. Shear stress along the path centered in the solid 

 

The model of implementing the dislocation in this work is easy to implement 

since it requires no implementation of Eq. (14) or (16) through coding user material 

property in ABAQUS or ANSYS. In addition to that, when surface stress is required to 

be incorporated to refine the analysis of nanostructures, this model provides the good 

extending flexibility to deal with surface stress formulation like Eq. (18) alone. This work 

will apply this model to the analysis of the image forces on a screw dislocation and 

illustrate the dislocation dissipation mechanism of GaN nanostructures. 

Application to GaN nanorods 

This work considers four shapes of GaN nanorods: (i) cylinder; (ii) cylindrical 

base and conical cap; (iii) cylindrical base and pyramid cap; (iv) cylindrical base and top 

chopped pyramid cap (Figure 8). GaN nanorods of shape (iv) have not been investigated 
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so far in other literatures.  Cylindrical nanorods of shape (i) are obtained when the growth 

of the MOVPE process is limited within the holes of the masks [39, 40]. After the growth 

fills the holes in the masks, overgrowth of GaN takes place on top of the cylindrical base. 

Nanorods of shape (iii) are obtained when the growth is finally terminated while some 

nanorods of shape (iv) can be obtained when the growth is terminated before the final 

stage [41-43]. In this work, nanorods of shape (ii) are also studied although it is not 

feasible to obtain from experiments, but it can be used to compare the stress profile with 

that of shape (iii). These two shapes have different surface features in the cap region and 

the comparison will illustrate the effect of surface stress on the nanostructures. 

 

 

 

Figure 8. Four shapes of GaN nanorods studied in this work 

 

The screw dislocation is set to be oriented along <0001> direction with a (11-20) 

slip plane according to the experimental data[15]. It is located off-center with an offset 

(δ) equal to one half of the radius of the cylindrical base (Figure 9).  
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 (a)    (b)    (c) 

Figure 9. Schematic top view of the nanorods 

(a) nanorod of shape (i) or (ii); (b) nanorod of shape (iii); (c) nanorod of shape (iv) 

 

The geometrical parameters, the anisotropic material property of GaN and 

Burgers vector [44] are listed in Table 1 for shape (i-iii) in Figure 8. As for the shape (iv) 

with top chopped cap, the cap region height will vary from 0 nm to 60 nm.  

 

Table 1. Parameters used in the finite element analysis of this work 

 

Parameter Value 

Cylindrical base radius, r 40 nm 

Cylindrical base height, h 100 nm 

Full cap region height, d 60 nm 

Dislocation offset, δ 20 nm 

Elastic constant, C11 390 GPa 

Elastic constant, C12 145 GPa 

Elastic constant, C13 106 GPa 

Elastic constant, C33 398 GPa 

Elastic constant, C44 105 GPa 

Burgers vector‘s magnitude, b 0.518 nm 
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The simulation domain has been meshed non-uniformly with denser elements 

near the dislocation line (Figure 10). A typical simulation in this case contains the 

number of linear tetrahedral elements on the order of 10
5
, and it only takes around 5 

minutes for one simulation on a computer with 2.0 GHz Intel CPU and 2.0 GB RAM. 

 

 

 

Figure 10. Cut view of the meshed elements of nanorod with a conical/pyramid cap 

 

The complete stress field has been computed in ABAQUS, and the image force 

along the dislocation line can be obtained in Eq. (7). The nonlocal stress NL  should be 

the sum of the contribution from all other portions of the crystal to the dislocation, which 

accounts for the long range effects from the free surfaces. Usually a volumetric 

integration over the whole crystal space should be calculated for NL . However, for a 

screw dislocation oriented in <0001> direction and wurzite anisotropic GaN, the stress 

field is symmetric with respect to y-z plane, so it can be reduced to a linear integration 

[14]: 
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where ymin and ymax are the minimum and maximum of the y-coordinates in the domain. 

The calculation of this nonlocal stress by Z. Liang et al. [14] requires two 

equivalent simulations for two complementary integrating paths. This work only needs 

one simulation and the integration form is a little different from equation (10) in their 

work [14]: 
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Note that for <0001>-oriented screw dislocation, Eq. (7) can be further simplified 

as: 

 

 2 2

13 23( ) ( ) ,NL NLf b     (21) 

 

where
13

NL  and 
23

NL  are the shear components of the nonlocal stress, which can be 

calculated from Eq. (20). 

When the calculated image force is larger than the critical force, which is 0.5N/m 

estimated for <0001>-oriented screw dislocation embedded in GaN crystal [14], it will 

drive the dislocation toward the free surface, which in turn increases the image force 

itself and finally dissipates the dislocation out of the crystal according to dislocation 

dynamics [25, 26]. 
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Results  

Figure 11 shows the image force exerted on the dislocation for GaN cylindrical 

nanorod and the critical force as a dashed horizontal line. This result agrees well with the 

solution of Z. Liang et al. [14] who obtained the result by implementing the dislocation 

through coding user material property. The image force starts from zero and increases 

along the height of the cylindrical nanorod. The magnitude stays at approximately 

0.4N/m for the most part of the cylinder between 20nm and 80nm along the height. Since 

this region is far from the bottom and top surfaces, the lateral free surface can be 

considered as the only contribution to the image force for this region, while the region at 

two ends can be affected by both the lateral surface and the bottom or top surfaces. The 

image force decreases after the height of 80nm and it is symmetric with the result before 

20nm because the two ends of the cylinder are symmetric. For GaN cylindrical nanorod 

with the geometry provided in Table 1, the magnitude of image force is less than the 

critical force, so the dislocation can‘t be driven out and is confined inside the cylinder.  
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Figure 11. Image force exerted on the dislocation for GaN cylindrical nanorod 

 

Figure 12 shows the image force of GaN nanorod with a cylindrical base and a 

pyramid cap. Note that the height of the pyramid cap in the work of Z. Liang et al. [14] is 

a little different from this work because they specified the pyramid shape by the six 

faceted planes but didn‘t show the value of height explicitly in their plots. The overall 

tendencies of the two results are similar and both demonstrate the dissipation of the 

dislocation in the cap region. In the lower cylindrical region the image force behaves 

similarly as the case of GaN cylindrical nanorod. It starts pinned at the bottom, increases 

along the height, and keeps on the same magnitude of approximately 0.4N/m in the whole 

cylindrical base. When the dislocation enters the cap region from 100nm along the 

height, the magnitude of the image force increases largely because the dislocation gets 

closer to the surrounding free surfaces of the six slanted pyramid facets. However, the 
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magnitude of the image force exceeds the critical force only when the dislocation enters 

the deeper region of the cap, which is about 110nm measured from the bottom face of the 

nanorod. The image force keeps increasing dramatically along the height of the cap until 

the dislocation ends at the facet of the pyramid. Comparing its magnitude with the critical 

force, the dislocation experiences a force large enough to dissipate itself toward the free 

surfaces after the height of 110nm. From Figure 12, the magnitude of the image force in 

the region of the pyramid cap is much greater than that of the cylindrical base. This 

indicates that the contribution from the free surfaces affects the behavior of the 

dislocation significantly, and dislocation-free material can be obtained in the cap domain 

of the nanorod.   
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Figure 12. Image force exerted on the dislocation for GaN nanorod with a cylindrical 

base and a pyramid cap 
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This work also investigates the dislocation behavior of top chopped GaN 

nanorods, which have not been investigated for dislocation dissipations so far in other 

literatures. The cap is chopped incrementally along the height for different nanorods. In 

Figure 13, the chop position is measured from the top of the cylindrical base and the cap 

region height is respectively set as 0 nm (same as cylindrical nanorod of shape (i) in 

Figure 8); 15nm; 30 nm; 45 nm and 60 nm (same as shape (iii) in Figure 8).The rest 

parameters of the simulation are the same as those in Table 1. 

 

0 nm15 nm30 nm45 nm60 nm
dislocation

chop position

 

 

Figure 13. Different chop positions of GaN nanorod with a pyramid cap 

 

Figure 14 shows the image forces exerted on the dislocation for GaN nanorods 

with a cylindrical base and different top chopped pyramid caps. Because the cylindrical 

base part is the same for all the nanorods, the image forces almost overlap from 0 nm to 

80 nm along the height. The nanorod with chop position of 15 nm has the image force 

increasing a little when the dislocation enters the cap region, but the force drops down 

quickly as the dislocation approaches the chopped surface. Since the dislocation is 
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exposed to the free surface on the end of the chopped cap region, it is enclosed by the 

lateral and top free surfaces of a chopped flat plateau. This surface surrounding 

environment is similar to the end of a cylindrical nanorod (chop position of 0 nm), so the 

image force with chop position of 15 nm is similar with that of the cylindrical nanorod. 

However, due to the size shrinking of the cap region, the image force of the nanorod with 

chop position of 15 nm ends with a higher magnitude than that of the cylindrical nanorod.  

The image force profile of the nanorod with chop position of 30 nm is similar to 

that in Figure 12 as its magnitude increases largely after the dislocation enters the cap 

region. This nanorod is quite special because the dislocation ends exactly at the chop 

position, which means the dislocation intercepts with the intersection of the top surface 

and the pyramid lateral surface. In this situation, the final magnitude of the image force at 

the chop position should be infinite as it can be seen from the nonlocal stress calculation 

in Eq. (20), where the denominator of the second term becomes zero at the point of the 

chop position. The overall image forces of nanorods with chop position of 30nm, 45 nm 

and 60 nm (full cap shape) are similar since their dislocations are all fully buried inside 

the structures, and the image forces are only computed on the dislocation line. The 

difference is seen from the final magnitude of the image force at the end of the 

dislocation line. The force of the nanorod with chop position of 30 nm should be the 

largest although it is not plotted as the magnitude is infinite, while the force of the 

nanorod with chop position of 45 nm is larger than that with chop position of 60 nm. This 

is determined by the surrounding surface environment at the end of the dislocation line, 

as the chopped cap has an extra flat top surface that gets the end of the dislocation closer 

to the free surface. 
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Figure 14. Image force exerted on the dislocation for GaN nanorod with a cylindrical 

base and different top chopped pyramid caps 

 

Discussions  

In addition to the nanorod with a pyramid cap, the nanorod with a conical cap is 

also studied in this work to illustrate the effect of surface stress to the image force in the 

cap region. Both nanorods have the same cylindrical base and their cap region heights are 

also the same (see Table 1). Figure 15 shows that both of them are expected to dissipate 

the dislocation towards the free surfaces after 110nm of the height where the image 

forces exceed the critical force.  
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Figure 15. Image force exerted on the dislocation for GaN nanorod with a cylindrical 

base and a conical/pyramid cap 

 

However, the image forces in these two nanorods have almost the same 

magnitude in the cap region. This means the contribution from the smooth lateral surface 

of the conical cap to the image force has no apparent difference from the six planar 

surfaces of the pyramid cap. Controversially, these two kinds of surfaces have quite 

different curvatures and especially, the pyramid cap has sharp edges where two planar 

facets intersect each other, so the image forces in these two kinds of caps should be 

expected to be different. In Eq. (21), the magnitude of the image force is demonstrated to 

be determined by the stress component σ13 and σ23. These two stress components of GaN 

nanorods with cylindrical base and pyramid/conical cap are shown in Figure 16. In both 

geometries, the stress near the vicinity of the surface is almost the same as that of a rather 
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thick region away from the surface. This indicates the surface effect formulation in Eq. 

(17) used by this work and Z. Liang et al. [14] fails to capture the geometrical differences 

of the GaN nanorods. This formulation is used for classical surface macroscopically but it 

is inappropriate in the analysis of such nanostructures. 

 

 

 

Figure 16. Stress component of GaN nanorods (cut view) with cylindrical base and 

pyramid/conical cap ((a) σ13 for pyramid cap; (b) σ23 for pyramid cap; (c) σ13 for conical 

cap; (d) σ23 for conical cap) 
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In typical nanostructures such as nanorods, nanowires or nanofilms, the size is 

usually on the level of tens of nanometers, which leads to a high sensitivity of the surface 

effect on stress distributions. In this case, a refined surface effect formulation should be 

used. Eq. (18) demonstrates that the surface stress is related to the deformation dependent 

surface energy, which means the surface stress could be a linear or nonlinear strain-

dependent quantity. This formulation of surface effect as the surface stress could be 

adopted in the future work to refine the calculation of the stress field. G. Wei et al. [45] 

implemented a finite element framework which accounts for surface elasticity from the 

potential energy functional to describe the size dependence of the mechanical properties 

in nanosystems. Its validity has been verified from the stress concentration at a nanovoid 

and has then been applied to the investigation of surface effects in the interaction between 

nanovoids and the effective moduli in nanoporous materials. L. Tian and R. Rajapakse 

[34] also adopted a surface stress model to analyze nanoscale inhomogeneities in elastic 

matrix materials and found that the elastic field is size-dependent when the hole or 

inhomogeneity length parameter is less than 15 nm.  

As for the GaN nanorods studied in this work, when the nanoscale surface effect 

is incorporated in a better way, the image force behavior should be expected to be 

distinct, and the dislocation dissipation could be investigated more accurately. Based on 

the methodology introduced in this work, it provides a feasible approach to incorporate 

the surface stress into the current dislocation model without great effort. This 

improvement might be crucial to the design and fabrication of nanostructures, especially 

when their dimensions are below 10 nm.   
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CHAPTER 4 

NANOSTRUCTURE PROPERTIES BY ATOMISTIC SIMULATIONS 

 

 This chapter provides a brief introduction to atomistic simulations and focus on 

the use of Molecular Dynamic (MD) simulations to obtain bulk and surface properties of 

crystals. The concept of surface excess energy will also be illustrated in this chapter, 

which brings about the definition of elastic surface property tensors. Finally, a complete 

dataset of GaN surface property tensors will be obtained and it could be used to study the 

surface effect of GaN nanostructures in the future. 

Description of Molecular Dynamic Simulation 

Nowadays, simulation models can cover quite a broad area of research interests 

and also involves different scales of length and time step[46].
 

Basically, in any 

simulation, a hierarchy of length and time scales is first established within the physical 

ensemble. Second, the elementary objects (atoms, clusters, grains, etc.) handled on the 

various scales of interest are defined. Third, those physical processes which are 

irreducible and independent at a given length scale are identified. The processes and 

objects handled at a given scale usually represent ‗averages‘ calculated at the 

immediately lower scale. 
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Figure 17. Simulation models in Materials Science and related length and time scale 

 

In Figure 17 [46], it shows the characteristic length and time scales accessible to 

the main types of simulation models used in Materials Science. Ab initio methods such as 

density functional theory (DFT) or Carr–Parrinello (CP) Molecular Dynamics[47] are 

capable of describing electronic interactions between a few hundreds of atoms, in static 

(DFT) or over extremely short time scales (10
-13 

s for CP). They are generally used to 

calculate transition state structures, surface reaction pathways, etc. Electronic interactions 

are represented by empirical potentials in classical Molecular Dynamics models[48], thus 

enabling the simulation of the real atomic motions in systems of typically 10
5
 atoms over 

10
-9

 s. Classical Monte Carlo models [49] can also be used to determine the equilibrium 

state of molecular systems of this size, but they do not provide accurate information on 

dynamics. Conversely, Kinetic Monte Carlo (KMC) models[50], which are generally 

lattice-based, are capable of simulating atomic motions in systems consisting of more 

than 10
6
 atoms over typically 10

3
s. KMC models do not provide a description of atomic 

interactions as accurate as MD models, but they have a unique potential of bridging 

atomic scale and microscopic scale in dynamic simulations. Finally, continuum models 
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based on finite elements or finite volume methods are generally used to simulate 

transport phenomena inside the preparation chamber[51]. 

In MD simulations or any other atomistic simulations, the interatomic potentials 

are at the heart of the simulations. In classical atomistic simulations, the atoms are 

represented by mass-points in space interacting through many-body interactions potential. 

The complex description of electrons dynamics is abandoned and an effective depiction is 

taken. In this picture, the interatomic interaction and internal degrees of freedom are 

completely defined by a set of parameters and functions which depend on the positions of 

the atoms in the system.  

As for the simulation tool, we adopt the freely−available open−source code: 

LAMMPS[49]. It is a classical molecular dynamics code that models an ensemble of 

particles in a liquid, solid, or gaseous state. It can model atomic, polymeric, biological, 

metallic, granular, and coarse−grained systems using a variety of force fields and 

boundary conditions. It can model systems with only a few particles up to millions or 

billions. LAMMPS runs efficiently on single−processor desktop or laptop machines, but 

is designed for parallel computers. It will run on any parallel machine that compiles C++ 

and supports the MPI message−passing library. 

Bulk Properties of Nanostructures 

In continuum mechanics, the elastic constants of crystal material are well defined. 

To keep consistent with the ideas of atomistic simulations later, here we introduce the 

elastic constants through the Taylor‘s expansion of the total strain energy density at the 

state of zero stress and strain: 

 

 
1 1

2 6
ijkl ij kl ijklmn ij kl mnE C C       (22) 
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where
ij is the Lagrangian strain measured from the perfect lattice of an undeformed 

crystal of infinite extent, 
ijklC is a fourth order stiffness tensor consists of second order 

elastic constants, and
ijklmnC is a sixth order tensor consisting of the third order elastic 

constants of the solid. 

 All are defined in the reference configuration, or the initial stress-free 

configuration. In our case, we will neglect the sixth order and higher order items. The 

symmetric Piola-Kirchhoff stress is the gradient of the strain energy with respect to the 

strain: 
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In crystals, because of the symmetry of the structure systems, some components 

in the stiffness tensor will be null, and the most general anisotropic elastic solids require 

only 21 elastic constants. We can write the stiffness tensor in the following way. 
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The indices of the notation above are quite cumbersome, so it‘s often in a 

simplified or contracted form: 
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13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

C C C C C C

C C C C C C

C C C C C C
C

C C C C C C

C C C C C C

C C C C C C

 
 
 
 

  
 
 
 
  

 (25) 

 

where  ijC is no longer the component of a second order tensor. 

Considering some special materials, such as monoclinic, orthotropic or isotropic 

materials, they have planar or axial symmetry in their structure themselves, so the form 

can be even simplified more. In the next chapter, we will see the calculation of elastic 

constants for pure metals, for example, copper has FCC cubic lattice structure, and its 

stiffness tensor can be written as the following: 

 

 

11 12 12

12 11 12

12 12 11

44

44

44

0

0 0

0 0 0

0 0

C C C

C C C

C C C
C

C

C

C

 
 
 
 

  
 
 
 
  

 (26) 

 

The calculation procedures of the three elastic constants are quite similar. The 

principle is based on curve-fitting the parabola function between the total strain energy 

density and the strain. To simulate an infinite crystal, we constructed a rectangular cell 

and used periodic boundary conditions in all directions to mimic a crystal of infinite 

extend. A typical calculation cell contains 500 atoms. A bigger calculation sample is not 

necessary since the dimension of the calculation box are chosen to be at least twice as big 

as the cut-off distance of the interatomic potential. 
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For calculations, we have performed a strain meshing of the calculation cell with 

strains in the three directions ranging from -1% to 1% and incremented by ±0.01% strain 

steps. The calculation cell is stretched by independently varying the lattice constants 

along the three directions. This state corresponds to the energy state of the cell in the 

strain space. The procedure yields to a strain mesh of the total strain energy of the sample 

with respect to the reference configuration. The general steps of the calculation can be 

outlined as follows: 

 

(a) Create the initial assembly using the given material properties (atomic weight, 

lattice spacing, EAM potential, crystallographic orientation, etc…). 

(b) Apply a small strain field to the assembly. 

(c) Compute the energy density corresponding to this given strain field. 

(d) Increase the magnitude of strain and repeat steps (b) and (c). 

 

After repeating steps (b) – (d) a sufficient number of times, we obtain a mesh 

strain energy density of as a function of the strain. A numerical interpolation of the 

energy density was performed to evaluate the elastic constants. 

In our work, we compute pairwise interactions for FCC metals using 

embedded−atom method (EAM) potentials[52]. In the EAM framework, the total energy 

of an atom is expressed as the sum of the contribution from the energy of two-body 

interactions and the embedding energy incorporating the complex nature of metallic 

cohesion. Among all of the interatomic potentials, the EAM method is a very efficient 

technique for modeling realistic descriptions of metallic cohesion. It is a semi-empirical 

approach that uses multi-atom potential for modeling the interatomic forces. In this 

scheme all atoms are treated in a unified way. The method is so called ―embedded‖ 

because it views each atom individually as if it was embedded in a host lattice comprising 

all other atoms. It has the important benefit of keeping the computational scaling on the 
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order of magnitude of N (if N is the number of particle composing the system) whereas 

more complex and thorough many-body potential scale on the order of magnitude N
3
 (for 

instance, Density Functional Theory). 

Let us take FCC Cu for example. For elastic constant 11C , by applying strain 

as 11  and other strain components as zero (see Figure 18), The total strain energy 

density is simply as 2

11

1

2
E C  . 

 

Figure 18. Deformation applied to the crystal Cu for calculation of C11 

 

The interpolation result of the energy density vs. strain is shown in Figure 19, and 

the value obtained is C11 = 173.2 GPa. 
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Figure 19. Interpolation result of C11 of Cu 

 

For elastic constant 12C , by applying strain as 11 22      and other strain 

components as zero (see Figure 20), the total strain energy density is simply 

as 2

11 12( )E C C   . 

 

Figure 20. Deformation applied to the crystal Cu for calculation of C12 
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The interpolation result of the energy density vs. strain is shown in Figure 21, and 

the value obtained is C12 = 129.2 GPa. 
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Figure 21. Interpolation result of C12 of Cu 

 

 

This methodology for calculation of elastic constants is quite efficient and 

satisfactory. As long as a proper interatomic potential of the material is provided, its 

elastic constants can just be obtained by following this standard procedure. In our work, 

we also test this with other materials and compare our results to those literatures. The 

final results are listed in Table 2 (see more details in [53]). 
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Table 2. Results of elastic constants by MD simulations (unit: GPa) 

 

 

Cu Au Pd Pt 

C11 

167.1[54] 

166.1[55] 

173.2 

183.1[54] 

192.9[55] 

189.1 

198.3[54] 

224.9 

331.7[54] 

313.0 

C12 

124.0[54] 

119.9[55] 

129.2 

158.7[54] 

163.8[55] 

164.8 

170.4[54] 

191.9 

294.2[54] 

283.1 

 

Surface Properties of Nanostructures 

The initial idea of ―surface energy‖ can date back to the year of 1928 when 

Gibbs[56] first formulated the thermodynamics of a fluid interface through the use of 

interfacial free energy, which is a single dividing surface used to separate two 

homogeneous phases, and the interface contribution to the thermodynamic properties is 

defined as the excess over the values that would be obtained if the bulk phases retained 

their properties constant up to an imaginary surface (of zero thickness) separating the two 

phases. Gibbs showed that various combinations of the interfacial excess quantities can 

yield physically meaningful and experimentally measurable variables which are 

independent of the dividing surface position. By following Gibbs‘ work, Shuttleworth 

and many other researchers [16, 57, 58] extended this Gibbsian description of fluid-fluid 

interfaces to solid-solid interfaces and to associate a ―surface stress‖ with the change of in 

interfacial energy upon deformation. From then on, instead of considering the surface 

excess energy as a constant quantity in all situations, researchers began to take the 

surface excess energy as a function of the surface strain, which is only due to the in-plane 
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deformation. For example, Shama[59] has used the Shuttleworth equation for solid-solid 

interfaces such as grain boundaries. On the other hand, although there are many 

similarities between a free surface and an interface in elastic solid, in the early 80s, 

Andreev and Kosevich[60]1 already noticed that there is one key difference between 

them, namely, in addition to in-plane deformation, an interface may be subjected to 

transverse (normal to the interface) stress. Such transverse stress and the corresponding 

transverse deformation also contribute to the interfacial excess, but they did not give an 

expression of the contribution from the transverse stress. Recently, Dingreville[54] 

provided a comprehensive way of determining the interfacial excess energy by taking 

consideration of both in-plane deformation and the effects of transverse stress. Later, 

Dingreville and Qu[61] successfully applied this approach to estimate interface elastic 

properties with a semi-analytical method of calculation. 

 The surface free (excess) energy of a near surface atom, En is defined by the 

difference between its total energy and that of an atom deep in the interior of a large 

crystal. Clearly, En depends on the location of the atom. If there are N atoms surrounding 

an area A in the deformed configuration, the Gibbs surface excess energy density is 

defined as the following: 

 

 
1

1
Γ

N

i

i

E
A 

   (27) 

 

From the work of Dingreville[54], this surface excess energy is linked to the 

surface stress and surface strain by introducing some surface property tensors. It then 

follows that the interfacial excess energy can be re-rewritten as: 

 

 (1) (2)

0

1
Γ Γ Γ : ε :Γ :

2

s s s     (28) 
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where   is the surface excess energy, s is the surface strain and (1) (2)

0 , ,   are the 

surface property tensors. 

It is obvious that if no stress or strain is applied, the surface excess energy form is 

reduced to only the first item 0 which becomes a constant quantity, and this is consistent 

to the definition originally introduced to fluid surfaces. However, when stress or strain is 

applied, the surface excess energy is no longer an intrinsic material property, but also 

depends on the surface strain. The second term (1)  is a two-dimensional second order 

tensor representing the internal excess stress of the surface. It is the part of residual stress 

that exists when the surface strain is absent. The third term (2)  is related to the two-

dimensional fourth order tensor that represents the surface's in-plane elasticity. 

The surface property tensors are intrinsic properties of the ―elastic‖ surface. They 

can be calculated for a given material with known interatomic potentials by Molecular 

Dynamic (MD) simulations. Once these tensors are known, the elastic behavior of the 

surface is fully characterized. 

The calculation procedures of the surface property tensors are quite similar to 

those of bulk elastic constants. In our calculations, we have performed a strain meshing 

of the calculation cell with strains in the two planar directions ranging from -1% to 1% 

and incremented by ±0.01% strain steps. Periodic boundary conditions are used in the 

two planar directions with free surfaces in the vertical direction to mimic an infinite 

plane. By varying the number of layers of atoms in the vertical direction we can represent 

thin films of different thicknesses. The slab thickness must be chosen to be thick enough 

to avoid interaction between the two surfaces. The film is stretched by independently 

varying the lattice constants along the two planar directions, while atoms in the third 

direction can fully relax. Prior to any deformation, the first step of the calculation is to 

determine the self equilibrium state of the films. This state corresponds to the lowest 
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energy state of the film in the strain space. The self equilibrium state serves as a reference 

configuration for the crystal. The procedure yields to a mesh of the total strain energy of 

the sample with respect to the reference configuration. The surface free energy of a near 

surface atom is obtained by taking the difference between its total energy and that of an 

atom deep in the interior of a large crystal. The procedure described above can be 

outlined in the following steps: 

 

(a) Create the initial assembly using the given material properties (atomic weight, 

lattice spacing, atomic potential, crystallographic orientation, etc.). 

(b) Equilibrate the assembly to find the self equilibrium state. 

(c) Apply a small strain field to the assembly and re-equilibrate. 

(d) Compute the surface energy density corresponding to this given strain field. 

(e) Increase the magnitude of strain and repeat steps (c) and (d). 

 

After repeating steps (c) – (d) a sufficient number of times, we obtain a mesh of 

surface energy density as a function of surface strains. Through curve fitting of Eq. (28), 

the coefficients of the surface property tensors can be determined. 

By applying strain as 11   and other strain components as zero, the total surface 

strain energy density is simply as: 

 

 (1) (2) 2

0 11 1111

1
Γ Γ Γ Γ

2
     (29) 

 

By applying strain as 11 22    and other strain components as zero, the total 

surface strain energy density is simply as: 
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       1 1 2 2 2

0 11 22 1111 1122Γ Γ (Γ Γ ) (Γ Γ )       (30) 

 

In both interpolations 0Γ  will be calculated. In this case, we also checked that the 

twice obtained values of 0Γ here are the same. Table 3 shows the result of all the nonzero 

surface property tensors for Cu (100) surface and Table 4 shows the result of all the 

nonzero surface property tensors for Cu (110) surface. 

 

Table 3. Results of surface tensors by MD simulations for Cu (100) surface (unit: J/m
2
) 

 

 

   

1.288[54] 

1.28[52]
 

1.3584 

1.396[54] 

1.38[62]
 

0.1118 

-0.712[54]
 

-0.8328 

5.914[54]
 

5.3020 

  

 

Table 4. Results of surface tensors by MD simulations for Cu (110) surface (unit: J/m
2
) 

 

 

 

 
 

 
 

1.413[54] 

1.40[52]
 

1.4896 

-1.126[54] 

0.957[63]
 

0.2889 

-0.993[54] 

0.957[63]
 

0.4436 

-7.798[54] 

-11.8204 

-2.263[54] 

-3.0120 

 

-3.600[54] 

-0.2657 
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Through the same approach, the surface elastic tensors of wurtzite GaN are also 

calculated in this work. The interatomic potential of GaN is taken from a three-body 

Tersoff potential [28]. The basic idea is to use a bond-order potential form, where the 

total potential energy is written as a sum over individual bond energies: 

 

 ( )[ ( ) ( )],
2

ij jiR A

ij ij ij ij ij ij

i j

B B
E f r V r V r




   (31) 

 

where the pair-like repulsive and attractive energies are given as Morse-like terms: 

 

 02 ( )0( ) ,
1

S r rR D
V r e

S

 



 (32) 

 02/ ( )0( ) ,
1

S r rA SD
V r e

S

 



 (33) 

 

where D0 is the dimer bond energy; r0 is the dimer bond distance; S is the adjustable 

variable and β is the parameter to be determined by the ground state oscillation frequency 

of the dimer.  

The interaction is restricted to the next-neighbour sphere by a cut-off function that 

is given as: 

 

 

1, ,

( ) 1/ 2 sin{ ( ) / (2 )} / 2, ,

0,

r R D

f r r R D R r D

r R D



 


    
  

 (34) 

 

where D and R are adjustable variables. 
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The bond-order parameter Bij includes angular dependencies, which are necessary 

to accurately model the deformation of covalent bond: 

 

 
1

,
1

ij

ij

B





 (35) 

 

where
ij consists of a cut-off function:  

 

 
2 ( )

,

( ) ( ) .ik ij ikr r

ij ik ik ik ijk

k i j

f r g e


 




   (36) 

 

The indices monitor the type-dependent parameters of the bonds, which are 

important to describe the compound. The angular function is given as: 

 

 
2 2

2 2 2
( ) [1 ],

( cos( ))
ijk

ijk

c c
g

d d h
 


  

 
 (37) 

  

where c, d, h and γ are all adjustable variables. 

The GaN Tersoff potential is presented to describe a wide range of structural 

properties of GaN as well as bonding and structure of the pure constituents. Although 

long-range interactions are not explicitly included in the potential, it provides a good fit 

to different structural geometries including defects and high-pressure phases of GaN[28]. 

The GaN Tersoff potential is also pre-packaged with LAMMPS. Following the similar 

procedures for copper crystals, the result of different surfaces is shown in Table 5. 
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Table 5. Surface property tensors for wurtzite GaN (unit: N/m) 

 

 
(11-20) (10-10) (0001) 

0  2.4420/1.9707[64] 2.1045/1.8906[64] 1.9671/2.0027[65] 

(1) (1)

11 22,   -1.1608 -1.4226 -1.5871 

(2) (2)

1111 2222,   -26.8376 2.0299 2.0299 

(2) (2)

1122 2211,   -11.0793 -4.5780 -2.1985 

 

Unfortunately, there are very few research reports about the surface property 

tensors for GaN in literatures. Here we only found the references on the constant surface 

excess energy values and they are obtained by first principle calculations[64, 65]. Our 

results agree well with those of the first principle calculations.  

The results of GaN surface property tensors will be fed into the continuum work 

in the following part. This work will combine the outcome of the atomistic simulations 

with the continuum models to investigate the nano-epitaxy process. However, the GaN 

dataset in Table 5 is not only limited to use in this work, but also can be applied to other 

studies if necessary. 
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CHAPTER 5 

DISLOCATION DISSIPATION BY ELASTIC SURFACES 

 

 This chapter aims at developing an analytical solution to the elastic field of solids 

with dislocations and surface stress. First, a complete analytical framework of 

stress/strain solution for general 3D anisotropic materials will be established based on the 

concept of eigenstrain. Second, we will study the 2D case of infinite isotropic circular 

nanowire to validate our solution by comparing with the classical one and complex 

variable method. Finally, the analytical formulation of image force for the nanowire will 

also be derived. This will be the foundation of further investigation of the image force in 

3D anisotropic materials. 

Analytical Framework of Stress/Strain Solutions 

The knowledge of the stress and strain fields in solids is of great importance to 

determine the properties of the materials and thus predict their behaviors. Defects like 

dislocations, cracks, lattice mismatches and etc., could have crucial influence on the 

stress and strain fields. Within the scope of elastic deformations, Eshelby‘s pioneering 

work [66-68] led to a general framework to formulate the elastic fields in solids by 

introducing the concept of eigenstrain. Dundurs et al. [69, 70] studied the elastic fields 

with the consideration of the interaction between an edge dislocation and a circular 

inclusion.  Lubarda [71] obtained the stress fields for screw and edge dislocations emitted 

from a cylindrical void and provided analytical formulations for image forces on 

dislocations. Shodja et al. [72-74] proposed a different scheme to analyze the 

displacement and strain fields of a screw dislocation in a nanowire using gradient 

elasticity theory. In such formulations and many more, there is no intrinsic length scale 
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associated in these constitutive relationships. Therefore, these results should be 

considered only in macroscopic cases. 

Nanostructures have at least one of its dimensions below tens of nanometers. Due 

to the large surface to volume ratio, the surface stress begins to play an important role in 

changing the constitutive laws seen in the classical elastic theory. In this case, 

nanostructures usually demonstrate some size-dependent properties that could not be seen 

in conventional materials. This significant difference could be critical in fabrications and 

designs, so great efforts have been devoted to investigating the effect of surface stress. 

Relationship of the deformation-dependent surface energy with the surface stress was 

first described by the Shuttleworth‘s equation[16]. Gurtin et al. [17, 18] linked the surface 

stress to the bulk stress at the vicinity of the surface by regarding the surface as a 

negligibly thin object adhering to the underlying material without slipping. Fang et al. 

[19-22, 75] combined the surface stress model with complex variable method to solve the 

stress fields for a screw or edge dislocation located in materials of a circular nanowire 

embedded in an infinite matrix. Luo and Xiao [23] extended this analysis to the case of 

an elliptical nanowire embedded in an infinite matrix with conformal mappings. 

Recently, Ahmadzadeh-Bakhshayesh et al. [24] adopted the same method to analyze the 

surface/interface effect on elastic behavior of a screw dislocation in an eccentric core–

shell nanowire. However, these results based on the complex variable method provide the 

stress fields as infinite power series, which are difficult to manipulate in further 

situations. The influences of the size parameter and surface elasticity are also hard to 

interpret clearly. Beside this limitation, their solutions by using the complex variable 

method are limited to Airy‘s stress functions which are only capable to deal with 2D 

elastic plane stress or strain problems and mainly used for isotropic materials.  

Practically, most nanostructures are fabricated with anisotropic materials and they 

have 3D shapes [8, 76-80]. Kern and Müller [38] studied the strain relaxation inside 

isolated nanoislands deposited on substrate with a given lattice mismatch, and they 
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approximated the single nanoisland as an isotropic cube to obtain the analytical result of 

the strain distribution. Based on this, Bourret et al. [81] analyzed the strain distributions 

in (0001) AlN/GaN heterostructures and emphasized the important role of the flat 

platelets for dislocation nucleations. Recently, Colby et al. [15] investigated the 

dislocation filtering behavior in GaN nanodots (with a cylindrical base and a pyramid 

cap) by selective area growth through a nanoporous template. This dislocation dissipation 

mechanism has been studied numerically through finite element method [14, 82], in 

which the surrounding surfaces are considered only as free surfaces. In such situations, 

the possibility to obtain analytical stress or strain solutions should have a critical 

importance to investigate the general anisotropic 3D nanostructrues with surface effects. 

This will also bring much convenience in the design and fabrication process. 

This work follows the concept of eigenstrain to describe the defect in solids.  We 

use Green‘s function to formulate the strain or stress field, and also take into account the 

surface effect by considering the surface stress to a fictitious traction boundary condition. 

Our framework provides a complete analytical formulation for a general 3D domain of 

defected material with elastic anisotropy.  

In Figure 22, consider an elastic solid of domain (V) with an inclusion (Ω) 

prescribed with an eigenstrain * . The solid is subjected to traction boundary condition on 

its surface (S).  
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Figure 22. An elastic solid of domain (V) with an inclusion (Ω) prescribed with an 

eigenstrain 

 

The constitutive relationship of the stress and the strain is:  

 

 
*( )ij ijkl kl klL     (38) 

 

where Lijkl is the stiffness tensor of the material. 

The strain is related to the displacement through compatibility condition: 

 

 
, ,

1
( )

2
ij i j j iu u    (39) 

 

The traction boundary condition reads: 

 

 
(0) b

i ij jt n  (40) 
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where b

ij is the bulk stress at the vicinity of the surface and 
jn is the normal unit of the 

surface. 

When no surface stress is concerned, the complete displacement field is given in 

classical micromechanics [31]: 

 

 * (0)( , )
( ) ( ) ( ) ( , ) ( ),mi

i mnkl kl y k ik
V S

n

G x y
u x L y dV t y G x y dS y

y



 

 

 
     

 (41) 

 

where ( , )ijG x y
 

is the Green‘s function that embodies the interaction between point x


and 

y


in the material.   

From Eqs. (39) and (41), the strain field is obtained as: 

 

 * (0)( ) ( , ) ( ) ( ) ( , ) ( ) ( ),ij klmn ijkl mn ijk k
V S
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 (42) 

 

where 
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 (44) 

 

When surface stress is concerned, the bulk stress state at the vicinity of the 

surface is determined from the surface stress [17, 18]: 
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 , 0,s b n       (45) 

 ,s b

ij i jn n     (46) 

 

where s

 , b

  are the surface stress and bulk stress respectively and   is the 

curvature tensor.  

It should be noted that the surface stress tensor is a two-dimensional quantity and 

the strain normal to the surface is excluded. Thus, the Greek indices take the value of 1 or 

2, while Latin subscripts adopt values from 1 to 3. 

Consider a linear constitutive relationship between surface stress and surface 

strain as[83]: 

 

 
0 ,s sS        (47) 

 

where 
0

  is the residual surface stress when the bulk is unstrained, S is the elastic 

constants for the surface that can be determined from atomistic calculations. 
s

 is the 

surface strain that only accounts for in-plane deformation usually. 

When the surface is assumed to be coherent, the surface strain is the same as the 

bulk strain at the vicinity of the surface. In this way, the bulk stress at the vicinity of the 

surface is linked to the surface properties from Eqs. (45) - (47) as: 

 

 
0( , , , ).b b sS          (48) 
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When no external load is applied on the boundary, due to the effect of the surface 

stress, the traction boundary condition could be converted to a fictitious traction 

contributed from the surface stress by substituting Eq. (48) into (40): 

 

 (0) 0( , , , ) .b s

i ij jt S n       (49) 

 

Thus, the strain field with prescribed eigenstrain and surface stress is given as: 

 

 * 0( ) ( , ) ( ) ( ) ( , ) ( , , , ( )) ( ) ( ).b s

ij klmn ijkl mn ijk kl l
V S

x L x y y dV y Q x y S y n y dS y          
         

(50) 

 

For convenience, Eq. (50) is denoted by two parts: 

 

 
1 2

ij ij ij     (51) 

 

where  

 

 1 1 * *( , ) ( , ) ( ) ( ),ij ij klmn ijkl mn
V

x L x y y dV y     
    

 (52) 

 2 2 0( , ) ( , ) ( , , , ( )) ( ) ( ).s b s

ij ij ijk kl l
S

x Q x y S y n y dS y          
     

 (53) 

 

The first part, 
1

ij is in fact the classical solution to the eigenstrain problem with 

free surfaces, and it has been solved analytically for different types of eigenstrain [30, 

31]. The second part, 
2

ij can be interpreted as the influence of the surface stress on the 

elastic field of the solid. In practical applications, the eigenstrain is usually pre-defined 
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and the solution of 1

ij could be adopted directly from literatures. Meanwhile, the 2

ij part 

contains the surface property tensors that could be determined by atomistic simulations, 

so the only unknown on the right side of Eq. (51) is the surface strain. In this way, the 

feature of Eq. (51) is an implicit equation of the strain field. One can set point x S


first 

to solve s and then plug it back to obtain the whole strain field. 

Furthermore, Eq. (51) demonstrates a general analytical framework to solve the 

elastic field for solids with defects by considering surface effect. Compared to the 

limitations of complex variable method, this framework is applicable to anisotropic 

materials and 3D structures. More importantly, it allows for the exact analytical 

expression of the results instead of the power series solution in complex variable method.  

Such exact analytical expressions of the stress or strain field will be more flexible to 

manipulate in further applications, and the physical meanings of the surface property 

parameters are straightforward to interpret. 

Validation in Case of Isotropic Circular Nanowire 

The analytical framework could be used for 3D anisotropic solids with general 

defects. In some cases, numerical methods should be employed when the structure is 

quite complex, but analytical solutions are possible to be obtained for simple scenarios. 

As an application, this work has obtained the analytical close-form solutions to the stress 

fields of an infinite isotropic circular nanowire. 

Nanowire is one of the important nanostructures in the fabrication and design. 

The radius of its cross section varies from several nanometers to tens of nanometers, 

while its longitudinal length could be sufficiently long that the nanowire could be seen as 

an infinite long and thin cylinder.  Since the lateral surface is so close to the center, the 

surface stress affects the behavior of the nanowire dramatically. In addition to that, when 

there is a dislocation embedded in the nanowire, the interaction between the dislocation 

and the surrounding surface has drawn a great attention to many researches. To establish 
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a systematic model for this problem, the complex variable method is often used and the 

solutions are provided in infinite power series form [19-24]. In this section, based on the 

framework of the Section 2, the stress field is solved for an infinite long isotropic 

nanowire with a screw dislocation effected by the surface stress. The results of the stress 

fields are compared between this work and those of complex variable method. 

Consider a straight screw dislocation with Burgers vector [0,0, ]b b


oriented in 

<001> direction in the nanowire (Figure 23). The radius of the nanowire is R and the 

dislocation is located on x1-axis with an offset of a from the center. The bulk material 

elastic constants are denoted by µ as the shear modulus and υ as the Poisson‘s ratio.   
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Figure 23. A circular nanowire with a straight screw dislocation inside 

 

The surface elasticity is also considered to be isotropic and the surface 

constitutional relationship of Eq. (47) is simplified as[18]: 

 

 
0 0 0 0 02( ) ( ) ,s

                   (54) 

 

where 0  and 0 are the surface Lamé constants;  is the Kroneker delta tensor. 
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In this scenario, only shear components of the stress and strain tensor are 

considered, as the same case dealt in the complex variable method. From equations (6, 7 

and 15), the stress state on the lateral surface is given by [22-24]: 

 

 3
3 ,

b
b t
n

d
K

dt


   (55) 

 

where 
3

b

n and 
3

b

t are the bulk shear stress component at the vicinity of the surface 

expressed in cylindrical coordinate system with
0 0

K
R

 




 . 

Eq. (51) shows the calculation of the strain field but it‘s easier to manipulate the 

stress field by using Eq. (38). Therefore, an analog form of the stress field is expressed 

from Eqs. (38) and(51): 

 

 
1 2 ,pq pq pq     (56) 

 

where 

 

 1 1 * * *( , ) ( ( , ) ( ) ( ) ( )),pq pq pqij klmn ijkl mn ij
V

x L L x y y dV y x       
     

 (57) 

 2 2 0( , ) ( , ) ( , , , ( )) ( ) ( ).s b s

pq pq pqij ijk kl l
S

x L Q x y S y n y dS y          
     

 (58) 

 

The first part is the stress field due to the dislocation with free surface, which is 

difficult to be obtained directly from the Green‘s function method for finite domains. 

However, it has been obtained alternatively by using the ―image dislocation‖ concept in 

micromechanics [25]: 
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 1 2 2
13 22 2

2 21 2
1 2

( ) ( ),
2 ( )

( )

x xb
x

Rx a x
x x

a





  

 
 


 (59) 

 

2

1
1 1
23 22 2

2 21 2
1 2

( ) ( ).
2 ( )

( )

R
x

x ab ax
Rx a x

x x
a









 
 

 


 (60) 

 

For the second part in Eq. (58), the Green‘s function of a cylindrical finite domain 

should be employed. Unfortunately, the explicit Green‘s function of finite domains is 

very difficult to derive and there is no such result available in literatures, so this work 

made an approximation for the calculation here with the Green‘s function of an infinite 

isotropic medium, which is given as: 

 

 
3

( )( )3 4 1
( , ) ,

16 (1 ) 16 (1 )

ij i i j j

ij

x y x y
G x y

x y x y



   

 
 

  

 
     (61) 

 

where
 

( )( )i i i ix y x y x y   
 

.
 

The derivative of Green‘s function is obtained as[84]: 

 

 

2

5
( , ) { [(2 1)( ( ) ( )) ]

3( )( )( )}.

ijk ik j j jk i i ij k

i i j j k k

C
Q x y x y x y x y x

x y

x y x y x y

         


   

   
 

 (62) 

 

where

 

1

16 (1 )
C

 


 .
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The second stress parts in Eq. (58) should be independent of 3x coordinate, so take 

3 0x  in the stress expressions. However, they involve with a cumbersome surface 

integration. Notice that it could be integrated by taking two mirroring piece 

3( )dS y Rd dy


 and 3'( )dS y Rd dy  


 (see Figure 23) where 30 y   , so first 

integrate on 3y and the second stress parts become: 

 

 2 1 1
13 13 232 2

1 1 2 2

8 ( 1)( )
( ) ( cos( ) sin( )) ,

( ) ( )

b bCR x y
x d

x y x y

 
     

 
 

  


 (63) 

 2 2 2
23 13 232 2

1 1 2 2

8 ( 1)( )
( ) ( cos( ) sin( )) ,

( ) ( )

b bCR x y
x d

x y x y

 
     

 
 

  


 (64) 

 

where x V


, y S


, and 0 2   . 

By combining Eqs. (55), (63) and (64), the final stress field is solved. Take the 

part of 2

13( )x


 for example.  

Note y S


, let 1 2cos( ), sin( )y R y R   where 0 2   ; meanwhile, x V


, 

let 1 2cos( ), sin( )x r x r   where 0 ,0 2r R      . 

Denote
0Re ,i iz z re   , so we have: 

 

 
02 2 0

13 13 13 23
00

(( ) ( ))
( ) ( , ) ( cos( ) sin( )) ,

( )( )

b bA z z z z
x r d

z z z z
       

  
  

 



 (65) 

 

with 4 ( 1)A CR   . 

Rewrite this as two terms: 

 2

13 1 2( , ) ,r I I     (66) 



 65 

 

where 

 

 13 23
1

0

( cos( ) sin( ))
,

b bA
I d

z z

   





  (67) 

 13 23
2

0

( cos( ) sin( ))
.

b bA
I d

z z

   






  (68) 

 

In complex analysis, the contour integral can be calculated easily when the 

integrating function is analytic in the region. 

 

 0

0

( )
2 ( ).

f z
dz if z

z z


  (69) 

 

By using
1 1

Re ,iz d dz d z
iz iz

   


, then we get: 

 

 13 23 13 23
1 2

0 0

( cos( ) sin( )) ( cos( ) sin( ))1
.

b b b bA A z
I dz dz

z z iz z z iR

        
 

     (70) 

 

where1/ z is intentionally changed to 2/z R because 1/ z is not analytic at 0z  . 

Now take 

 

 13 23 2
( ) ( cos( ) sin( )) .b b z

f z A
iR

       (71) 
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In this way, we get: 

 

 13 23
01 2

2 ( cos( ) sin( ))
.

b bA
I z

R

    
   (72) 

 

Similarly, 

 

 13 23
2 02

2 ( cos( ) sin( ))
.

b bA
I z

R

    
   (73) 

 

Therefore, 

 

 

2 13 23
013 02

13 23

2

2 ( cos( ) sin( ))
( , ) ( )

4 cos( )( cos( ) sin( ))
.

b b

b b

A
r z z

R

Ar

R

    
 

     


  


 

 (74) 

 

Similarly, 

 

 2 13 23
23 2

4 sin( )( cos( ) sin( ))
( , ) .

b bAr
r

R

     
 


   (75) 

 

At this stage, the integration procedure is tackled and the rest is only algebraic 

operation. Set the two stress expressions with r R for the bulk stress at the vicinity of 

the surface, and plug them into Eq. (55), which can be written in Cartesian coordinate 

system: 
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13 23 13 23cos( ) sin( ) ( sin( ) cos( )).b b b bd

K
d

       


     (76) 

 

Setting the obtained formula of 2

13 , 2

23  in Eqs. (74) and (75) with Eqs. (59) and 

(60) for the stress at the vicinity of the surface, it can be calculated in the following after 

some algebraic operations: 

 

 
2 2

13 23 2 2 2

sin( )( )
( sin( ) cos( )) .

( 2 cos( ))

b bd ab R a

d R a Ra

 
   

  


   

 
 (77) 

 

Put Eq. (77) to the second stress parts and the final stress fields are solved:  

 

 
2 2

1 0 0

13 13 2 2 2 2

sin( )cos( )( )
( ),

( 2 cos( ))
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 
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 (78) 

 
2 2

1 0 0

23 23 2 2 2 2

sin( )sin( )( )
( ),

( 2 cos( ))

ab R a r

R a Ra R

 
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 


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 
 (79) 

 

where 1

13  and 1

23 are given in Eqs. (59) and (60). 

By using complex variable method, Liu and Fang [22] has solved the stress field 

of a screw dislocation inside an inhomogeneity with interface stress. In their solution, 

when setting the infinite matrix shear modulus to zero, it‘s reduced to the result of the 

current problem: 
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 

  (81) 

 

Eqs. ((78), (79)) and Eqs. ((80), (81)) both disclose that the surface stress indeed 

plays a role in determining the stress field. The stress profile is changed more obviously 

near the surface region as the r-dependent parts of the solutions show. However, the 

result of this work can interpret the importance of the surface more straightforwardly, as 

the stress deviation from the classical part is clearly shown to be proportional to the 

surface elasticity parameter 0 0  . In Eqs. ((78), (79)), 2 1 0 0/ ~ ( ) /K R      and 

typically, 0 0 ~ 10 / , ~ 100 , ~ 10N m GPa R nm    , then ~ 0.01K . 

Results  

To compare the results obtained in this work and the complex variable method, 

the stress field is plotted along different paths of the nanowire (Figure 24): (i) 1x -axis; (ii) 

2x -axis; (iii)a general path through the center oriented at angle ; (iv) the outer circle. 

The shear modulus for a general crystal is set as 50GPa  . The surface elastic constants 

for a general solid surface are obtained by atomistic simulations and the magnitude 

of 0 0  is between 10 /N m  and 10 /N m [83, 85]. In this work, the surface elastic 

constant is set as 0 0 6 /N m   . The dislocation offset to the center is set 

as / 0.5a R   . 
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Figure 24. Cross section view of the nanowire with a screw dislocation 

 

The classical stress solutions without surface stress are taken from Eqs. ((59), (60)

), and the solutions of the complex variable method are from Eqs. ((80), (81)), while the 

results of this work are from Eqs. ((78), (79)).  

Figure 25 shows the stress fields for two nanowires with distinct sizes along path 

(i): 1x -axis. The nanowire of 100R nm (Figure 25b) is large enough to neglect the effect 

of the surface stress compared to the nanowire of 1R nm (Figure 25a). However, along 

this special path, the stress values are not quite different for both cases. This could be 

predicted directly from the analytical results of this work when setting 0,   in Eqs. 

((78), (79)). 

Figure 26 shows the stress fields along path (ii): 2x -axis. The stress component of 

13 for both nanowires in this work is identical to the classical solution because 

/ 2  in Eq. (78) along this special path. As for the stress component of 23 , it is just 
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slightly different from the classical result for the nanowire with 1R nm (Figure 26a), 

and it becomes the same with the classical result as the surface effect should be negligible 

when the size of the structure becomes sufficiently large. However, the result of 23  from 

the complex variable method is quite different from the classical result in both nanowires. 

This means its stress field is still largely affected by the surface stress, which deviates 

from the sense that surface stress should be negligible in sufficiently large structures, 

although its result of 13 corresponds to the classical result as expected in the nanowire 

with 100R nm and shows a little difference in the nanowire with 1R nm due to the 

surface stress. 

Figure 27 shows the stress fields along a general path through the center oriented. 

For example, one path is picked up at angle 60   . All the results behave similarly to 

the situation on path (ii). The stress component of 23  from complex variable method 

still differs largely from the classical solution in the nanowire with 100R nm , while the 

result of this work agrees well with the classical solution in this case. In addition to that, 

the stress solutions for the nanowire with 1R nm  in this work also show noticeable 

differences from the classical solutions compared to the tiny differences in Figure 26. 

This means the stress deviation from the classical results duo to surface stress is not 

uniform in different domains of the nanowire, and this deviation becomes more 

significant as it approaches to the surface of the nanowire. This could be easily seen and 

confirmed in Eqs. ((78), (79)) as the second stress part due to surface stress is 

proportional to r. 

Figure 28 shows the stress fields along the outer circle. The solutions of this work 

demonstrate obvious differences from the classical solutions in the nanowire 

with 1R nm , while they maintain good agreements with one another in the nanowire 

with 100R nm . On the other hand, the stress component of 23  from complex variable 

method still conflicts from the classical result when the size of the nanowire becomes 
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sufficiently large. From Figure 28a, it is also interesting to see that the stress differences 

between with and without surface stress are most obviously seen in the region of 

20 ~ 50  and the symmetric region of 310 ~ 340  . This looks very hard to tell from the 

solutions of complex variable method (Eqs. ((80), (81))), but it could be predicted from 

the solutions of this work (Eqs. ((78), (79))) thanks to their explicit analytical 

expressions. 
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(b) 

Figure 25. Stress fields along  x1 –axis (a. R = 1 nm; b. R = 100 nm)
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(b) 

Figure 26. Stress fields along  x2 –axis (a. R = 1 nm; b. R = 100 nm)
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(b) 

Figure 27. Stress fields along a path through the center (a. R = 1 nm; b. R = 100 nm) 
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(b) 

Figure 28. Stress fields along the outer circle (a. R = 1 nm; b. R = 100 nm) 
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The current result for nanowires is considered as a validation of the proposed 

analytical framework. This framework could be applied to more general situations 

compared to complex variable method which is mainly used for 2D isotropic cases. The 

solution in this work is given in explicit form, while the solution from complex variable 

method is provided in form of power series, which is not flexible to manipulate in further 

development. Comparing Eqs. ((78), (79)) and Eqs. ((80), (81)), the effect of surface 

property parameters on the stress field can be predicted more easily and straightforwardly 

from our solution. Concerning the result, 
13 components of our solution and complex 

variable method are close to each other and they both agree well with the classical result. 

23 components of our solution and complex variable method are different in magnitude, 

but they behave quite similarly in the changing trend. More favorably, our solution 

overlaps with the classical result for large nanowires but the solution of complex variable 

method deviates obviously from it. 

Discussions  

As seen in the numeric results, the stress fields could be altered by the surface 

stress significantly in the nanowire. This is reflected in the second stress part of Eqs. 

((78), (79)) of this work. Essentially, either the solutions of this work or complex variable 

method attempt to take account for the interaction between the dislocation and the lateral 

surface. Obviously, this behavior should be size-dependent, i.e., when the radius of the 

nanowire shrinks, the stress difference (
13 23

2 2,  ) should be more significant. Besides of 

that, the influence of this interaction could also vary when the location of the dislocation 

or the surface elastic properties changes.  

Figure 29 shows the size-dependent stress differences change with the nanowires 

with varied radii. The stress differences are expected to be much larger when the radius 

of the nanowire goes below10nm , and they also drop dramatically when the radius is 
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above 50nm . In fact, since the surface constants of a typical crystal are between 

10 /N m  and10 /N m  , the contribution of the surface stress could be safely neglected 

for structures of their dimensions higher than 50nm . 

Figure 30 shows the stress differences changes when the location of the 

dislocation changes in the same nanowire and with the same surface elasticity. It is 

clearly shown that the interaction between the dislocation and the lateral surface becomes 

stronger when the dislocation approaches the surface. From this tendency, the stress 

differences will evolve into a spike when the dislocation is at the vicinity of the surface. 

Figure 31 shows the stress differences changes with different surface elasticity 

parameters. In practical situations, the surface constant 0 0  could be positive or 

negative, but its magnitude is usually between 10 /N m and10 /N m . From the analytical 

solutions of Eqs. ((78), (79)) in this work, the stress differences are proportional 

to 0 0  , which is also seen in Figure 31. However, as seen in Eq. (47), there are also 

some other independent parameters to determine the surface elasticity, but they are not 

present in the formulations of this work or the complex variable method. This is because 

the current problem is limited to the shear stress field analysis of an infinite isotropic 

nanowire. Physically, when the surface stress is concerned, probably it could also induce 

some tensile deformation on the surface. After this tensile effect is taken into 

consideration, the complete set of surface elasticity parameters will be included in the 

formulation and the stress result will be better refined. 
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Figure 29. Stress differences changes when the size of the nanowire changes (a. σ
2

13; b. 

σ
2

23) 
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Figure 30. Stress differences changes when the location of the dislocation changes (a. 

σ
2

13; b. σ
2
23) 
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Figure 31. Stress differences changes when the surface elasticity changes (a. σ
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13; b. σ
2
23) 
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Analytical Formulation of Image Force 

With the stress solutions, the image force could be obtained through the energy 

method. The total energy per unit length of the nanowire is given as: 

 

 ,b sW W W   (82) 

 

where bW is the elastic strain energy stored in the bulk material, and sW is the surface 

excess energy. 

In continuum mechanics, the bulk elastic strain energy per unit length is: 
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which can be rewritten as three parts: 

 

 1 2 3,bW W W W    (84) 

 

where 
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 2 2 2 2

3 13 23

1
[( ) ( ) ]

2S
W ds 


   (87) 

 

The corresponding image force contribution ( 1 2 3, ,f f f ) due to these three parts 

can be obtained from the energy method of Eq. (11). Note that 1W is the same energy of 

the classical case of free surfaces, so 1f is the same as the image force of the classical 

situation[25, 86]: 
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After tedious calculations, the other two parts are obtained as: 
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On the other hand, the surface excess energy per unit length of the nanowire is 

given as: 
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The corresponding image force contribution due to the surface excess energy is: 
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From Eqs. (47) and (54), it can be simplified to: 
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where s

ij is the same with the bulk strain for coherent surfaces and the bulk strain can be 

obtained from the known stress field. 

Plugging in our analytical stress solutions and Hooke‘s Law, we obtain the last 

image force part: 
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Finally, we obtain the analytical solution to the image force of isotropic circular 

nanowire: 

 

 1 2 3 4.f f f f f     (95) 
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When the surface elasticity is set to zero, our solution is reduced to the classical 

solution in Eq. (88). By contrast, the image force solution of complex variable method is 

given from Eqs. (80) and (81) as infinite power series[22]: 
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It can be seen directly that Eq. (96) has the problem with the denominator when 

the surface elasticity 0 0  becomes negative, which makes it close to zero for a certain 

k value. This will lead the solution of complex variable method to abrupt fluctuations and 

to avoid this instability, summation terms need to be selected carefully. 

Figure 32 shows the image forces of dislocation inside an isotropic nanowire 

obtained from our analytical framework and complex variable method. For the case of 

negative surface elasticity, our solution agrees well with that of complex variable method 

and both solutions shows obvious deviations to the classical solution when the size of the 

nanowire is below 10 nm. The image force also behaves as expected for the nanowire 

with a large size as it almost overlaps on the classical one. This means the surfaces stress 

only plays an important role in determining the image force in nano-scale and it can be 

negligible in macro-scale. However, for the case of positive surface elasticity, our 

solution shows a different tendency as the image force abruptly goes to negative values 

and this tendency seems opposite to that of complex variable method. 
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Figure 32. Image forces of dislocation inside an isotropic nanowire 

 

However, after a deeper investigation, it is found out that our solution with 

positive surface elasticity only drops when the dislocation offset is close to the surface 

and the radius of the nanowire is below 5 nm (Figure 33).  
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(d) 

Figure 33. Image forces of dislocation inside an isotropic nanowire with different offsets 

(a. δ = 0.3; b. δ = 0.45; c. δ = 0.5; d. δ = 0.8) 
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The calculation of image force for dislocations with surface stress is still an open 

question due to the lack of sufficient collaborations to validate different approaches. The 

complex variable method shows good results of image forces compared with the classical 

ones, but it is derived from the stress field of Eqs. (80) and (81), which is proven to be 

against the common sense of mechanics in case of large nanowires. On the other hand, 

our work provides an alternative solution to the image force based on the proposed 

analytical framework. The stress field has been checked to be agreeable to the classical 

one and it also has good correspondence with the result of complex variable method, 

although one stress component has a different magnitude from that. Our solution of 

image force is also acceptable but it has some deviations for the case of positive surface 

elasticity.  
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CHAPTER 6 

MULTI-SCALE DESIGN OF NANO-EPITAXY 

 

This chapter will adopt the outcome from Chapter 2 to Chapter 5 for fulfilling the 

objectives and goals of this work. First the image force of dislocations in anisotropic 3D 

nanorods will be obtained by extending the solution of nanowires in Chapter 5 to 

incorporate the 3D shape effect. Anisotropic effect will be discussed thereafter. Finally, 

this work will apply the knowledge to the practical application of GaN nano-epitaxy. A 

comprehensive parametric study of dislocations in GaN nanorods will be carried out, and 

thus the geometrical parameters could be optimized to fabricate dislocation-free 

nanostructures. This knowledge could be used to provide guidelines to the experimental 

process or fabrication technology in the next-generation nano-epitaxy. 

Image Force of Dislocations in Anisotropic Finite Cylinders 

In Chapter 5, our framework provides a complete analytical formulation for a 

general 3D domain of defected material with elastic anisotropy. In practice, the analysis 

of materials could start from the simplest case of isotropic 2D solids with surface effect, 

followed by extending isotropic materials to anisotropic materials. This can be 

implemented by plugging the corresponding anisotropic tensors into the formulation.  On 

the other hand, the proposed analytical framework should have the flexibility to take 3D 

structures of solids, which could be adjusted to fit into various situations (finite cylinders, 

nanodots with a cap, etc). The ultimate target is to provide a promising solution to the 

analysis and design of general anisotropic materials with 3D shapes. 

As a starting point, this work has obtained the close-form solutions to the stress 

fields of an infinite isotropic nanowire and compared with those of complex variable 

method. It can be also considered to consolidate the current analytical framework. Since 
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the surface stress is included, it is also capable to deal with nanostructures which may 

have quite different behaviors from conventional materials. In this way, the framework of 

this work could be applied to multi-scale studies of materials and bridge up other models 

developed for different dimensional scales of solids. 

3D Shape Effect  

To study the 3D shape effect, take the different shapes of GaN nanorods in  

Figure 8, the volume and surface integrals in Eq. (56) are both dependent on three 

coordinates compared to the simpler case of two coordinates in nanowires. In addition to 

that, Eq. (56) is an implicit equation and the unknowns are also functions of three 

coordinates. Therefore, it is not feasible to obtain the exactly analytical solution to the 

elastic field of solids with dislocations embedded in such 3D isotropic materials. 

However, based on the available image force data from our finite element analysis, it is 

possible to expand the solution of nanowire in Chapter 5 to 3D finite cylinder case by 

approximating the 3D shape effect as a height dependent function.  

Let us denote the image force of the isotropic circular nanowire by f0 and that of 

the isotropic finite cylinder (nanorod) by f. When the two structures have the same radius 

R, the two image forces should behave as shown in Figure 34. 
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Figure 34. Image forces of nanowire and finite cylinder (nanorod) 

 

According to St. Venant‘s principle, the surface effect of the two ends in the 

nanorod will only penetrate to a distance of order R, which is denoted as the effective 

length, he. Beyond the effective region, the image forces of the nanowire and nanorod 

should be identical in the middle region. As an approximation, when we take the image 

force of the nanowire from our framework, the corresponding one of 3D nanorod could 

be determined as: 

 

 0 ( ),f f g z   (97) 

 

where g(z) is a height dependent shape function that only consists z coordinate. 

In principle, the shape function of a particular nanorod should be distinct, which 

could be influenced by the geometry of the nanorod (radius and height), the material 

anisotropic orientation and even the consideration of surface stress. To simplify the 
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analysis, we only take account the geometrical feature for the shape function in this work. 

In the following, we will obtain the shape function of the image force by curve fitting the 

finite element data, and this same shape function will be adopted for further study with 

surface stress.   

In Chapter 3, we have performed a comprehensive study of the dislocation 

dissipation by image forces in solids due to the effect of free surfaces. This study 

provides all the image force curves for nanorods with different radius and height. Since 

the finite element analysis is based on the formulation of free surfaces, its image force 

magnitude of the middle region should be adjusted to the value of the analytical solution 

without surface stress. 

Figure 35 shows the image forces for three groups of nanorods with five different 

ratios between radius and height respectively. Each group keeps the radius of the nanorod 

as a constant. It is quite straightforward to notice the plateau of the image force in the 

middle region of the nanorod when the height of the nanorod is obviously larger than the 

radius. Even for the case of short nanorods, the maximum image force at the middle point 

is consistent with the longer nanorods. The comparison of the maximum image force in 

finite element analysis with the image force of nanowires calculated in analytical solution 

is listed in Table 6.  
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Figure 35. Image forces for nanorods with different radius and height 

 

Table 6 shows that there are some deviations between the finite element analysis 

and classical analytical solution although both of them are calculated in the case of 

neglecting surface stress. This might arise from the approximations made to facilitate the 

calculation of image forces in each approach. However, the ratio of the two results is 

quite consistent when the radius changes. In this way, we can add the average ratio value 

as a correction factor to Eq. (97). For our case, the correction factor is set to γ = 1.797.  
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Table 6. Comparison of image forces in finite element analysis and analytical solution 

 

r FEM result Classical analytical result Ratio 

10 0.9 0.5305 1.696 

20 0.5 0.2653 1.885 

40 0.24 0.1326 1.810 

 

 

Another important quantity to be determined from the finite element data in 

Figure 35 is the effective length, he. It is instinctive to assume that the effective length 

should be proportional to the radius of the nanorod, since the shortest distance of the 

dislocation from the lateral free surface is close to R. In Figure 35, the ratio of the 

effective length to the radius for long nanorods (H > 4R) is found to be constant, and then 

the effective length could be determined as: 

 

 2 .eh R  (98) 

   

For the case of short nanorods (H < 4R), the effective length is simply set to: 

  

 .
2

e

H
h   (99) 

 

The shape function to be determined in Eq. (97) should be agreeable to the curve 

trend shown in Figure 35, which is also schematically shown in Figure 34. The shape 

function at the initial stage (z < he) of the left end behaves quite similarly to an 

exponential function. In the plateau of the middle region, it can be simply set to 1 because 
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the image force of the nanorod overlaps with that of the nanowire. The region of the right 

end is symmetric with the left end. At last, it is sufficient to describe the shape function 

just with the region at the initial stage (z < he) of the left end, which could be proposed as 

a general exponential function:    

 

 ( ) ,bzg z ae c   (100) 

 

where a, b and c are the unknown variables to be fitted with the finite element data. 

Table 7 shows the curve fitting results of the shape function. For all the nanorods 

of different radius and height, the fitted values of a, b and c are consistent and the R-

square values are also acceptable.  

 

Table 7. Curve fitting of the shape function 

 

r h a b c R-square 

10 

50 -0.5574 -3.6580 0.9936 0.9728 

100 -0.5762 -4.0310 0.9964 0.9878 

200 -0.5365 -3.9540 0.9792 0.9947 

20 

100 -0.5922 -6.0360 0.9990 0.9695 

200 -0.5851 -4.8300 0.9582 0.9785 

400 -0.4846 -4.0210 1.0280 0.9855 

40 

200 -0.5022 -3.8250 0.9693 0.9345 

400 -0.4399 -3.7800 0.9823 0.9522 

800 -0.4459 -3.3160 0.9870 0.9467 

Average: -0.5244 -4.1612 0.9881 0.9691 
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The obtained shape function is obtained by fitting the classical analytical solution 

to the finite element data without surface stress. As for obtaining the shape function with 

surface stress, unfortunately there is no collaboration result from literatures. In Chapter 2, 

this work has demonstrated the possibility to incorporate surface effect into the current 

finite element model of dislocations in solids, but it would take some effort to implement 

the surface stress in Eqs. (45), (46) and (47) numerically, which might involve designing 

a novel surface element type and connecting it to the neighboring bulk element. 

However, for the present, this work directly adopts the shape function obtained for the 

case without surface stress and applies it to the case with surface stress. Therefore, the 

final analytical solution to the image force for 3D isotropic finite cylinder is given as: 

  

 0 ( ),f f g z   (101) 

 

where γ is the correction factor by calibrating with the finite element data; f0 is the 

corresponding image force of the nanowire with surface stress and it has been provided 

by Eq. (95); g(z) is the shape function consisting of only z coordinate and it is given in 

Eq. (100) by curve fitting of the finite element data. 

Figure 36 shows the comparison of image forces in 3D isotropic nanorods 

between the original finite element result without surface stress and the analytical results 

with and without surface stress. Although the finite element result has some fluctuations 

due to the precision of the numerical calculation, it agrees well with the analytical result 

without surface stress. This turns out to be as expected since the shape function is fitted 

to the original finite element data. In case that surface stress is considered, image forces 

generally increase for negative surface elasticity and decrease with positive surface 

elasticity. In this case, the surface with negative surface elasticity resembles a ―soft‖ 
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media compared to the bulk material and it becomes ―rigid‖ with positive surface 

elasticity. It can be also seen from Figure 36 that surface stress plays a more important 

role in thinner nanorods (R = 10 nm) and it diminishes as the radius of the nanorod 

increases. In fact, surface stress has only a little contribution to the final image force 

when the radius of the nanorod is around 50 nm and above. This is also seen in the case 

of nanowires in Figure 32. 
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Figure 36. Comparison of image forces in isotropic nanorods (a. R = 10 nm, H = 50 nm; 

b.R = 10 nm, H = 100 nm; c. R = 40 nm, H = 200 nm; d. R = 40 nm, H = 400 nm) 
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Anisotropic Effect  

To study the anisotropic effect, in the analytical framework, the anisotropy of 

materials is incorporated through Eq. (38) with the stiffness tensor and Eq. (41) with the 

Green‘s function. In the case of wurzite GaN with HCP lattice structure, it basically has 6 

bulk elastic constants [28], or approximated as a transversely isotropic material with 5 

bulk elastic constants[14, 15, 44, 82]. The nonzero independent components of its 

stiffness tensor in Eq. (25) are C11, C12, C13, C33 and C44 with another nonzero dependent 

component 66 11 12( ) / 2C C C  . The expression of the Green‘s function for transversely 

isotropic materials is quite complex and it is provided by Pan and Chou[87]: 
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where 
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For the case of 13 13 442 0C C C   , the intermediate parameters are as follows: 
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For the case of 13 13 442 0C C C   , the intermediate parameters are as follows: 
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Although the Green‘s function for transversely isotropic materials above is given 

as the simple case of infinite media, it is still difficult to plug into our framework in Eq. 

(41). As a matter of fact, in nano-epitaxy, it has always been a challenging task to 

investigate the anisotropy effect analytically, and thus the anisotropic semiconductors are 

often approximated as isotropic materials. Kern and Müller[38] analyzed the elastic 

relaxation of coherent epitaxial deposits and treated the nanoisland as a simple isotropic 

cube with applications to In0.5Ga0.5As/GaAs epitaxy. Luryi and Suhir[6] studied the 

critical deposition height for GexSi1-x/Si systems by taking the GexSi1-x epilayer as an 

isotropic film. Zubia and Hersee[12] extended the work of Luryi and Suhir to incorporate 

the compliance of the substrate, and the example of depositing Ga0.51In0.49P/GaAs was 

used as an isotropic case study. Sharma and Ganti[88] obtained the size-dependent strain 

state of embedded quantum dots for InAs/GaAs systems and both InAs and GaAs are set 

to isotropic materials. Recently, Ahmadzadeh-Bakhshayesh et al. [24] studied 

surface/interface effects on elastic behavior of a screw dislocation in an eccentric core-

shell nanowire which takes  InAs as an isotropic core and InP as an isotropic shell.  

However, in practical situations, such anisotropic effect should not be neglected. 

For instance, there have been massive studies on semiconductors (GaN, GaAs, InGaN, 

etc.) prepared through Metal-Organic Vapor Phase Epitaxy (MOVPE), which requires 

more precise anisotropic calculations instead of the traditional idealization as isotropic 

materials. Compared with the isotropic case, the determination of the elastic field and 

image force of dislocation in anisotropic media is much more complex and difficult. 

Early in the 1950‘s, Eshelby et al. [89] proposed a sextic anisotropic elasticity theory of 

straight dislocations for two-dimensional (2D) problems. This theory was later elaborated 

by Stroh as the well-known Stroh‘s formalism [90]. A few researches have been devoted 

in the investigation of the interaction between the dislocation and inclusion or point force 

in anisotropic cases [91-94], but the analysis involves lengthy derivations and the results 

are not provided in explicit form even for 2D problems. 
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This work revisits Eshelby‘s sextic anisotropic elasticity theory to obtain the 

elastic field of a screw dislocation in infinite anisotropic solid (cubic and hexagonal 

crystal). The image force of the dislocation in anisotropic nanowire is derived based on 

such elastic field by using the concept of ―image dislocation‖. More importantly, this 

work proposes to study the image force of nanorod by approximating the three-

dimensional (3D) shape effect as a height-dependent shape function, which could be 

obtained through curve fitting of the finite element data. Finally this work provides a 

concise analytical solution to the image force of dislocation in a general anisotropic 

nanorod, which is applied to the case of GaN nanostructures. Based on such results, the 

analytical approach in this work could provide insights for the nanostructure design and 

fabrication widely. 

Elastic field of dislocations in infinite anisotropic crystals  

Let us reconsider the problem of the elastic displacement about a straight 

dislocation in an infinite anisotropic media. The constitutive relationship of the stress and 

the strain is:  

 

 
ij ijkl klC   (114) 

 

where Cijkl is the stiffness tensor of the material. 

The strain is related to the displacement through compatibility condition: 

 

 
, ,

1
( )

2
ij i j j iu u    (115) 

 

The stress equilibrium condition reads: 
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, 0.ij j   (116) 

 

For convenience, the coordinate axes are oriented with the x3 (or z) axis parallel to 

the dislocation line. The stiffness tensor, Cijkl  is referred to this basic system. As in the 

work of Eshelby et al.[89], it indicates that the general solutions of the elastic equations 

(displacement, strain and stress) for an arbitrary homogeneous anisotropic solid are 

independent of x3. In this case, Eq. (116) can be rewritten as: 

 

 
, 0,i    (117) 

 

where the Latin index takes from 1 to 3 and the Greek index takes from 1 to 2 only. 

From Eqs. (38), (39) and (117), the displacement is given in the following: 
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Eq. (118) represents three simultaneous equations for the three components of the 

displacement, which have the standard-form solutions of the following type: 

 

 ( ),k ku A f   (119) 

 

where 1 2x px    while Ak and p are constants to be determined.  
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Put Eq. (119) back into (118), it yields: 
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After cancellation of the common factor 2 2/f   , and denote 

by 2

1 1 1 2 2 1 2 2( )ik i k i k i k i ka C C C p C p    , Eq. (120) becomes a linear equation of Ak: 

 

 0.ik ka A   (121) 

 

To ensure the final nonzero displacement, this linear equation should have 

nonzero solutions to Ak only when the determinant of the matrix [aik] is zero: 

 

 | [ ] | 0.ika   (122) 

 

Eq. (122) is a sixth-order equation of p with roots pn (n = 1, 2, 3, 4, 5, 6). For each 

root, there is a set of Ak(n) that satisfies Eq. (121). Eshelby et al.[89] have shown that pn 

and Ak(n)  must occur in pairs of complex conjugates 

( * *

3, ( ) ( 3), 1,2,3i i k kp p A i A i i    ), thus one can only consider the three roots (p1, p2, 

p3) and the corresponding sets (Ak(1), Ak(2), Ak(3)), and the displacement is solved as: 
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where Re[…] means ―the real part of …‖ and 1 2n nx p x   . 

The three analytical functions, fn are taken in the following form: 
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where D(n) are three complex variables to be solved. 

The displacement of dislocations is satisfied from Eq. (123) and (124): 
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where bk is the k-th component of the Burgers vector of dislocations. 

Since the dislocation is embedded in an infinite media, there should be no net 

force on the dislocation line, which is guaranteed by[25]:  
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where 
1 2( )ijk ijk ijk nB n C C p  . 

In Eqs. (125) and (126), the plus sign is used when the imaginary part of pn is 

positive and the minus sign is used when it is negative. Eqs. (125) and (126) are sufficient 

to solve D(n) and the displacement and stress field can be obtained from Eqs. (123) and 

(38) afterwards. 
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The anisotropic effect in cubic and hexagonal close-packed (HCP) crystals is 

depicted by the anisotropic ratio, 
44 11 122 / ( )C C C   .  Table 8 shows the solutions to 

elastic fields of a screw dislocation embedded in cubic and hexagonal crystals along 

different directions. The result of Cubic <001>-oriented dislocation is identical to the 

textbooks [25, 31] by using eigenstrain method, and the result of Cubic <110>-oriented 

dislocation is also in accordance with Eshelby et al. [89] which has been given in 

cylindrical coordinate systems.  

This work also provides the results for three basic axes oriented dislocations in 

hexagonal crystals in Table 8. It is interesting to find out that HCP <0001>-oriented 

dislocations generates the same elastic fields with Cubic <001>-oriented dislocations, and 

HCP <11-20> vs.  Cubic <110> case. The result of HCP <1-100>-oriented dislocations is 

analog to HCP <11-20> by changing the anisotropic ratio from β to 1/β. On the other 

hand, although hexagonal crystals have two more independent elastic constants (C13, C33) 

than cubic crystals, the two constants don‘t appear in the results for the three basic axes 

oriented dislocations in hexagonal crystals here. However, if we consider a dislocation 

oriented in other directions of cubic or hexagonal crystals, those two constants may 

appear in the final result[95]. 
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Table 8. Elastic field of a screw dislocation embedded in infinite anisotropic media 
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Image force of dislocations in anisotropic cylindrical solids  

As state in Chapter 2, when dislocations are embedded in an infinite media, there 

is no net force acted on dislocations. However, if the domain is finite, dislocations will be 

subjected to the so-called ―image forces‖ due to the interaction between dislocations and 

crystal surfaces. The study of image forces is useful to investigate the stability and 

dynamic behavior of dislocations and further determine the properties of materials. One 

typical example is the study of dislocation dissipation in nanowires prepared by Nano-

Epitaxy. The nanowire could be seen as an infinite anisotropic cylinder and the 
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dislocation could be attracted to the surrounding free surface by the image force when the 

nanowire meets certain geometrical requirements. This is very important for fabricating 

dislocation-free nanostructures and brings a promising approach for the design process. 
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Figure 37. Cross-view of a screw dislocation in a nanowire with its ―image dislocation‖    

 

For the present case, consider a straight screw dislocation with Burgers vector 

[0,0, ]b b


oriented in <001> direction in the nanowire (Figure 37). The radius of the 

nanowire is R and the dislocation is located on x1-axis with an offset of a from the center. 

The bulk material elastic constants are denoted by µ as the shear modulus and υ as the 

Poisson‘s ratio. The free surface traction boundary condition is: 

 

 0,ij jn   (127) 

 

where nj is the unit vector normal to the free surface. 
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A simple solution to the image force of a screw dislocation in an isotropic 

nanowire is given by Eshelby et al. [86] by introducing an ―image dislocation‖ with an 

opposite Burgers vector located at R
2
/a.  The stress field is solved as: 
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The image force is given as [25, 86]: 
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When the solid is considered to be anisotropic, the same results are found in case 

of Cubic <001> or HCP <0001> -oriented dislocations according to the stress field in 

Table 8 compared with isotropic case. However, if we apply the same ―image 

dislocation‖ method for dislocations oriented along other directions in Table 8, the image 

force in case of Cubic <110> or HCP <11-20> -oriented dislocations is: 
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Similarly, the image force in case of HCP <1-100> -oriented dislocations is: 
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However, it could be checked that the free surface traction boundary condition of 

Eq. (127) will not be satisfied perfectly in these two cases.  

Take the case of Cubic <110> or HCP <11-20> -oriented dislocations as an 

example. In cylindrical coordinate system, Eq. (127) can be reduced to 

prove 0,( , , , )ij j ir r irn n i j r z       . Since 0rr r   for screw dislocations, it 

only requires 0zr  . From Eq. (38), this means: 

 

 
, , , ,zr zrkl k l zrzl z l zrzr z r zrz zC u C u C u C u       (133) 

 

where k = z and l = r, θ because only 0zu  and it exclusively depends on r, θ. 

In Eq. (133), the stiffness tensor is expressed in cylindrical coordinate system. It 

can be calculated from the basic stiffness tensor in Cartesian coordinate system in the 

following way: 

 

 
rstu ri sj tk ul ijklC a a a a C  (134) 

 

where Crstu is the stiffness tensor in cylindrical coordinate system and Cijkl is the stiffness 

tensor in Cartesian coordinate system; a is the transformation matrix between the two 

coordinate systems which is given as: 
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From Eqs. (134) and (135), one can easily get Czrzr = C1212 = C44 and Czrzθ = 0. 

Therefore Eq. (133) is reduced to prove: 
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If we apply the same ―image dislocation‖ method to anisotropic case, and we 

assume the image dislocation is located at a general position λ instead of R
2
/a in isotropic 

case, the displacement field is given as: 
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Note that 
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It can be calculated as: 
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Combining Eqs. (136) and (139) with the substitutions of 

1 2cos , sinx R x R   , we get: 

 

 2 2 2 2 2 2 2 2 2(1 )( )cos ( ) ( ) 0R a a R a R              (140) 

 

The free surface traction boundary condition on the outer circle indicates Eq. 

(140) holds for any [0,2 )  . Since the case of λ = a is not concerned here, the only 

choice is: 

 

 
2

1,
R

a
    (141) 

 

which is the solution to the isotropic case. 

From Eq. (140), we can see that the first term cannot be eliminated for 

any [0,2 )   in anisotropic case. This means the free surface traction boundary 

condition cannot be satisfied by using ―image dislocation‖ method in anisotropic case. 

This deviation comes from the anisotropic effect on dislocations oriented along 

lower symmetric directions, thus it could be very sensitive to the anisotropic ratio. 

Furthermore, this deviation can be directly predicted from Eq. (127), which  indicates the 

stress component, σrz (in cylindrical coordinate system) will become nonzero for 

dislocations oriented along lower symmetric directions. 

Figure 38 shows the stress deviation changes with different anisotropic ratios for 

Cubic <110> or HCP <11-20>-oriented dislocations (HCP <1-100> case is similar by 

changing β to 1/β). The stress component, σrz has been normalized after being divided 

by 0 44 / 2C b R  . Obviously the deviation decreases so the stresses and image forces 

converge to isotropic case when β1, otherwise the differences become larger as β 
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deviates more from 1. The curves for β < 1 and β > 1 cases look like ―reciprocal‖ of each 

other, which can be seen directly from the image force formulations given in Eqs. (131) 

and (132). Moreover, the stress deviation is most obviously seen in the region of 

20 ~ 50  and the symmetric region of 310 ~ 340  . In fact, the maximum stress deviation 

can be controlled to be less than 10% of 0  when 0.9 < β <1.1. Note that the stress 

deviation is measured with respect to 0 , which is mostly larger than the actual stress on 

the outer circle as seen in Eqs. (59) and (60). In some cases, such stress deviation could 

be neglected and the simple image force formulations could be directly adopted for the 

analysis thereafter. 
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Figure 38. Anisotropic effect on the stress component, σrz along the outer circle for Cubic 

<110> or HCP <11-20>-oriented dislocations 
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Applications to GaN nanostructures 

GaN nanowire is a typical semiconductor nanostructure which is widely prepared 

through Metal-Organic Vapor Phase Epitaxy (MOVPE). As a wurtzite lattice structure 

(an example of hexagonal crystal system), GaN is usually grown along <0001> (c-) polar 

axis, but nowadays it has been found out that epitaxial <11-20> (a-) and <1-100> (m-) 

non-polar GaN demonstrates better internal quantum efficiency by reducing spontaneous 

and piezoelectric polarizations [96-98]. Considering the crucial role that the dislocation 

plays in determining the properties of solids, it is important to investigate how 

dislocations behave in such anisotropic crystals, which is highly influenced by the image 

force acted on dislocations. Recently, there have been only some numerical studies by 

finite element method on the image force of dislocations in anisotropic GaN nanowires 

and nanorods [14, 15, 82], but analytical approaches will be more fundamental and they 

will provide better insights for the nanostructure design and fabrication. 

The anisotropic ratio of GaN is calculated to be 

44 11 122 / ( ) 0.9258C C C    [44], therefore the maximum stress deviation on the 

boundary of GaN nanowires will be less than 10% of 0 for this case as predicted in 

Figure 38. More specifically, the actual stress components of anisotropic GaN are plotted 

along with the isotropic case (Figure 39). As seen in Section 3, the stress deviation in 

Figure 38 is normalized by 0 , which is much larger than the actual stress here, so the 

actual stress components of GaN are very close to the isotropic case. This means the 

―image dislocation‖ method could be directly applied to the analysis of image forces on 

GaN dislocations. The results for GaN dislocations along the three basic axes are 

provided in Eqs. (88) - (132).  



 116 

0 100 200 300
-0.2

-0.1

0

0.1

0.2




1
3
/

0

 

 

Anisotropy

Isotropy

0 100 200 300
-0.1

0

0.1

0.2

0.3

0.4




2
3
/

0

 

 

Anisotropy

Isotropy

 

      (a)          (b) 

Figure 39. Stress components of GaN nanowire on the outer circle and the comparison 

with isotropic case (a. σ13; b. σ23) 

 

The current analytical result is also compared with that from finite element 

analysis. Table 9 shows image forces of dislocations along <11-20> (a-) and <0001> (c-) 

axes of GaN nanowires with different sizes by finite element method[82]. For all 

nanowires, the result of fc/fa is close to GaN anisotropic ratio, which is consistent with the 

current solution predicted by Eqs. (88) and (131). The absolute magnitude of the image 

force in Table 9 is different from the current analytical result, but the magnitude ratios of 

the two results are consistent when the radius changes. This difference comes from the 

calculating approximation used in each approach as discussed in Ref. [99] and it suggests 

using a correction factor to link the analytical result to the finite element data. For the 

current case of GaN nanowires, the correction factor is set to γ = 4.6803.  
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Table 9. Image forces of GaN grown along <11-20> (a-) and <0001> (c-) axes 

 

R (nm)      fa (N/m)      fc (N/m)      fc/fa 

10 1.3630 1.3120 0.9626 

20 0.7435 0.7072 0.9512 

40 0.4209 0.3956 0.9399 

 

 

With the obtained shape function, the final analytical solution to the image force 

for GaN nanorods is given as:  

 

 0 ( ),f f g z   (142) 

 

where γ is the correction factor by calibrating with the finite element data; f0 is the 

corresponding image force of the nanowire along different orientations provided by Eqs. 

(88) - (132); g(z) is the shape function consisting of only z coordinate and it is given in 

Eq. (100) by curve fitting of the finite element data. 

The final result in Eq. (142) provides an analytical tool to calculate the image 

forces on dislocations in GaN nanorods. Compared with numerical results from finite 

element method, it is much easier and faster to obtain image forces for any GaN nanorod 

once the geometrical parameters are given, which brings much convenience to predict the 

behavior of dislocations in MOVPE process. Our solution is also extendable to comply 

with other types of crystals by replacing the original image force part (f0) in Eqs. (88) - 

(132), which takes account for different elastic constants with different crystals. In 

addition to that, it is also possible to incorporate other influencing factors into the current 

analytical solution, e.g., surface stress of nanostructures that plays an important role when 

the critical dimension of nanostructures becomes less than 10 nm. This can be 
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implemented by refining the image force part (f0) with the consideration of surface 

elasticity tensors [22, 23, 99-101]. 

In this work, image forces of dislocations along the three basic axes in GaN 

nanorods are calculated from the analytical solution in Eq. (142) and they are compared 

with finite element results. In Figure 40, image forces start from zero and increase along 

the height of nanorods, and then they stay as a plateau in the middle region until they 

approach the other end of nanorods. The two regions near each end of nanorods are 

symmetric with each other and we can see the surface effect from the two ends only 

penetrates to a certain depth into the nanorod. Although the finite element result has some 

fluctuations due to the precision of numerical calculations, it is clear that the curve trend 

agrees well with the corresponding analytical solution even when the radius of the 

nanorod changes. This is as expected since the shape function in the analytical solution of 

Eq. (142) is obtained by fitting to the finite element data.  

As predicted by the analytical solution, the magnitudes of image forces on 

dislocations along different axes are ordered as: fa > fc > fm. Since the image force could 

be viewed as the driving source in solids to dissipate dislocations towards surfaces, this is 

interesting to the process of MOVPE as it indicates GaN grown along one non-polar 

direction (a-axis) could have better mechanical properties than the standard growth 

method along the polar direction (c-axis), but the situation would be worse for GaN 

grown along the other non-polar direction (m-axis). Recently, experimental and 

theoretical studies on <0001>-oriented dislocation dissipation mechanism in anisotropic 

GaN nanowires and nanorods [14, 15, 82] have demonstrated: GaN nanorod grown along 

c-axis with a radius of 26 nm and a height of 65 nm provides the most efficient 

dislocation filtering with a probability of up to 95% as a result of image forces. Based on 

this result and the current work, one can expect GaN nanorods grown along a-axis with 

the same geometry aforementioned could have lower dislocation densities, or one can 

fabricate GaN nanorods of comparable qualities along a-axis with a larger range of radius 

choices and vice versa for GaN nanorods grown along m-axis. Unfortunately, there are 

only some provisional experimental observations on bulk GaN layers grown in non-polar 
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directions in literatures [96-98], but no effort has been devoted in growing GaN 

nanowires or nanorods in those directions so far. 

The results of image forces are obtained specifically for GaN nanorods here, but 

the analytical approach developed in this work is applicable to other material systems, 

such as GaAs, InGaN etc. which also exhibit the anisotropic effect when their mechanical 

properties are considered. Therefore, this work could contribute to a wide range of 

nanostructure design and fabrication for dislocation-free devices. 
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Figure 40. Image forces of dislocations in GaN nanorods (a. r = 10 nm; b. r = 20 nm) 
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This work solves the stress field of a screw dislocation in an infinite anisotropic 

solid. The image force of a dislocation in an anisotropic nanowire is then derived by 

using the concept of ―image dislocation‖ and that is also obtained for nanorods by 

approximating the three-dimensional (3D) shape effect as a height-dependent shape 

function, which is fitted to the finite element data. The analytical solution is applied to 

analyze image forces on different dislocations in GaN nanorods oriented along polar (c-

axis) and non-polar (a, m-axis) directions. The result shows the dislocation dissipation 

could be more effective in a-GaN but less in m-GaN by comparing with the standard 

growth of c-GaN. The approach developed in this work is applicable to other material 

systems, such as GaAs, InGaN etc. Therefore, it could contribute to a wide range of 

nanostructure design and fabrication for dislocation-free devices. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

 

 The work presented in this dissertation provides a thorough multi-scale modeling 

and design of nanostructures prepared through Metal-Organic Vapor Phase Epitaxy 

(MOVPE), along with its possible application to the practical fabrication of high-quality 

semiconductor devices.  It aims at a systematic investigation about the dislocation 

dissipation mechanism in nanostructures by combining the surface effect at atomistic 

level and the mechanical model at macroscopic level. The target is to provide some 

feasible and reliable design tools or routines for growing high quality nanostructures 

(size, geometry, anisotropy, etc.). It will contribute to providing guidance for the 

fabrication of next-generation dislocation-free nano-devices. 

Scientific Contributions 

 This work ranges from the development of fundamental mechanical formulations 

to the numerical application to practical nanostructure analysis. In terms of the former 

point, this work has the following significant contributions: 

• It provides a clear understanding of dislocation dissipation mechanism by the 

image force due to surface effect. Two representative approaches, the nonlocal method 

and the energy method, are explained about their principles, calculating procedures, along 

with examples of their usage.  

• It has developed a novel analytical framework to solve the elastic field of solids 

with dislocations and surface stress. The core idea of this framework is to combine the 

general eigenstrain problem solution from micromechanics and the surface elasticity 

model from atomistic studies. It could be applied to general anisotropic 3D materials 

which are unable to be handled by other literature works (mostly based on complex 
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variable method and its variants). More importantly, it allows for the exact analytical 

expression of the results instead of the power series solution in complex variable method.  

Such exact analytical expressions of the stress or strain field will be more flexible to 

manipulate in further applications, and the physical meanings of the surface property 

parameters are straightforward to interpret. 

• It provides close-form stress solution to the case of isotropic circular nanowires 

(2D) based on the proposed analytical framework, and the analytical result of the image 

force has been derived afterwards. All the analytical results in this work are in explicit 

flexible forms compared to the complicate forms of infinite power series in complex 

variable method. The physical meaning of surface elasticity is clearly illustrated thanks to 

our result, which is hard to interpret from complex variable method. Concerning the 

result, 
13 components of our solution and complex variable method are close to each 

other and they both agree well with the classical result. 
23 components of our solution 

and complex variable method are different in magnitude, but they behave quite similarly 

in the changing trend. More favorably, our solution overlaps with the classical result for 

large nanowires but the solution of complex variable method deviates obviously from it. 

 

On the other hand, in terms of applications, this work has the following 

contributions: 

• It provides a finite element model of implementing a screw dislocation in solids 

with only free surfaces, which facilitate the specification of the surface boundary 

condition. The stress field obtained from finite element analysis is then used to calculate 

the image force of the dislocation. Through this numerical model, image forces of a 

screw dislocation embedded in various shaped GaN nanorods are calculated. By 

comparing with critical force to overcome the lattice resistance, this work demonstrate 

the mechanism of dislocation dissipation in GaN nanorods. 
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• It has obtained bulk and surface properties of crystals through Molecular 

Dynamic (MD) simulations. The concept of surface excess energy has also been 

illustrated, which brings about the definition of elastic surface property tensors. Finally, a 

complete dataset of GaN surface property tensors has been obtained and it could be used 

to study the surface effect of GaN nanostructures in the future. 

• It revisits Eshelby‘s sextic anisotropic elasticity theory to obtain the elastic field 

of a screw dislocation in infinite anisotropic solid (cubic and hexagonal crystal). The 

image force of the dislocation in anisotropic nanowire is derived based on such elastic 

field by using the concept of ―image dislocation‖. The result of HCP <1-100>-oriented 

dislocations is analog to HCP <11-20> by changing the anisotropic ratio from β to 1/β. 

On the other hand, although hexagonal crystals have two more independent elastic 

constants (C13, C33) than cubic crystals, the two constants don‘t appear in the results for 

the three basic axes oriented dislocations in hexagonal crystals here. 

• It proposes to extend the image force solution of nanowires (2D) to the case of 

nanorods (3D) by introducing a height-dependent shape function, which is obtained by 

curve fitting to the finite element data. The magnitude of the image force is adjusted with 

a correction factor. The comparison of image forces between the original finite element 

result without surface stress and the analytical results with and without surface stress 

shows that it agrees well with one another. This turns out to be as expected since the 

shape function is fitted to the original finite element data. In case that surface stress is 

considered, image forces generally increase for negative surface elasticity and decrease 

with positive surface elasticity. In this case, the surface with negative surface elasticity 

resembles a ―soft‖ media compared to the bulk material and it becomes ―rigid‖ with 

positive surface elasticity. 

• It devotes to a specialized investigation on the case of anisotropic GaN 

nanostructures based on the aforementioned method. The analytical solution is applied to 

analyze image forces on different dislocations in GaN nanorods oriented along polar (c-
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axis) anAlferov, 2001d non-polar (a, m-axis) directions. The result shows the dislocation 

dissipation could be more effective in a-GaN but less in m-GaN by comparing with the 

standard growth of c-GaN. The approach developed in this work is applicable to other 

material systems, such as GaAs, InGaN etc. Therefore, it could contribute to a wide range 

of nanostructure design and fabrication for dislocation-free devices. 

Future Work Suggestions 

 The current work presented in this dissertation has provided a multi-scale nano-

epitaxy modeling and design from atomistic simulations to continuum methods. It indeed 

has accomplished a thorough investigation of the elastic field and image force in solids 

with dislocations and surface stress, with some applications to the case of anisotropic 

GaN nanostructures. However, there are still some issues to be further improved, or some 

problems are not addressed within this work but might be related to this work. Here are 

some suggestions about such future work directions: 

• The finite element model illustrated in Chapter 3 of this dissertation is only used 

for free surfaces. Such boundary condition is insufficient to describe the surface behavior 

for nanostructures as elaborated in this work. A possible improvement could be a refined 

specification of the surface boundary condition through the surface stress formulation in 

Eq. (18) or the surface excess energy model in Eq. (28). However, it requires additional 

work to make some codes of the user material properties.  When the nano-scale surface 

effect is incorporated in a better way, the image force behavior should be expected to be 

distinct, and the dislocation dissipation could be investigated more accurately. Based on 

the methodology introduced in this work, it provides a feasible approach to incorporate 

the surface stress into the current dislocation model. 

• Surface elasticity tensors are obtained in this work through MD simulations. 

Unfortunately, there are very few research reports about the surface property tensors for 

GaN in literatures. Here we only found the references on the constant surface excess 

energy values and they are obtained by first principle calculations[64, 65]. Although our 
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results agree well with those of the first principle calculations, but it is based on the 

simple curve fitting method which is mainly used for the pure crystal of single element at 

0K temperature in principle. More theoretical work should be carried out on the 

validation of such calculations, or a better scheme of obtaining the surface elasticity 

tensors could be seek out. 

• This work has developed a novel analytical framework to solve the elastic field 

of solids with dislocations and surface stress. It could be applied to general anisotropic 

3D materials, which is only used for the calculation of the image force afterwards in this 

work. In fact, the solution to the stress and strain field could be used for many other 

scenarios but not limited to the case of image force. Since it allows for the exact 

analytical expression of the results instead of the power series solution in complex 

variable method, such exact analytical expressions of the stress or strain field will be 

more flexible to manipulate in further applications, especially some interdisciplinary 

situations such as mechanical-electrical, mechanical-optical or mechanical-magnetical 

devices.  

• In Chapter 6, this work has obtained the image force of dislocations in 

anisotropic nanowires with the concept of ―image dislocation‖. This is an approximated 

solution because it doesn‘t satisfy the boundary condition perfectly, so it should be 

improved by finding out the exact solution to this problem. In literatures, there have been 

some works devoted into such solutions to dislocations in anisotropic media with free 

surfaces[91, 93, 94]. The approach is based on the Stroh‘s formulism of complex analysis 

but it takes account for the free surface as a disturbance to the original stress field. It 

could provide an exact solution to the current problem but an explicit close-form solution 

seems to be impossible. However, when an exact solution is obtained, it should be helpful 

for a refined calculation in this work. 

• An important factor of nano-epitaxy that is not addressed in this work is the 

lattice mismatch between the substrate and the epilayer, which is crucial in practical 



 127 

fabrications of nanostructures. It could be seen as the main source of dislocation 

generation. In experiment, different substrates are carefully chosen to minimizing the 

lattice mismatch under the consideration of costs or other issues. Within the scope of this 

work, the lattice mismatch could be considered as an additional eigenstrain compared 

with the dislocation eigenstrain. The lattice mismatch is usually used to calculate the 

strain energy (without dislocation inside the material at this stage) and then it is compared 

to the critical energy of a single dislocation (without lattice mismatch inside the material 

then). However, it might be a challenging task to deal with the lattice mismatch and 

dislocation all together, which is rarely investigated in literatures neither.  So far, the 

study on the interaction between lattice mismatch and dislocation is still an open 

question, even when no surface effect is considered.  

• The work is to contribute to providing guidance for the fabrication of next-

generation dislocation-free nano-devices. Therefore abundant experimental results will be 

a great collaboration with this work in terms of validation and inspiration. The 

aforementioned theoretical work has been supported from the experiment lab led by Dr. 

Abdallah Ougazzaden at Georgia-Tech, Lorraine, but the collaboration between my 

research and the experiment work needs to be intensified. Nowadays it is possible to 

analyze the stress or strain state in crystals through experimental measurements. This 

could be a great help to consolidate my work and make good correspondences with each 

other. It will be quite promising to provide feasible and reliable design tools or routines 

for growing high quality nanostructures in practical applications.  
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