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ABSTRACT 

TURBULENT TRANSITION IN ELECTROMAGNETICALLY LEVITATED 

LIQUID METAL DROPLETS 

May 2014 

JIE ZHAO 

B.A., UNIVERSITY OF SCIENCE AND TECHNOLOGY, BEIJING 

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Robert W. Hyers 

 

The condition of fluid flow has been proven to have a significant influence on a wide variety of 

material processes. In electromagnetic levitation (EML) experiments, the internal flow is driven 

primarily by electromagnetic forces. In 1-g, the positioning forces are very strong and the internal 

flows are turbulent. To reduce the flows driven by the levitation field, experiments may be 

performed in reduced gravity and parabolic flights experiments have been adopted as the support 

in advance. Tracer particles on the surface of levitated droplets in EML experiment performed by 

SUPOS have been used to investigate the transition from laminar to turbulent flow. A sample of 

NiAl3 was electromagnetically levitated in parabolic flight and the laminar-turbulent transition 

observed from the case was studied in this work. For the sample with clearly visible tracer 

patterns, the fluid flow has been numerical evaluated with magnetohydrodynamic models and the 

laminar-turbulent transition happened during the acceleration of the flow, instead of steady state. 

The Reynolds number at transition was estimated approximately as 860 by the experiment record. 

The predicted time to transition obtained from the results of simulation showed significant 

difference (~ up to 300 times) compared with the time obtained from the experiment—0.37s.  

The discrepancy between numerical and experimental results could not be explained by the 

proposed hypotheses: geometry, boundary conditions or solid core.  The simulations predict that 
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the flow would become turbulent almost instantaneously after the droplet was fully molten. There 

are important physics shown by the simulation which were not captured. 
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NOMENCLATURE 

u: Velocity field 

t: Time 

P: Pressure 

Re: Reynolds number 

F: Force 

B: Magnetic field density 

FL: Lorentz force 

I: Current 

Pi: Induced power 

ρ:  Density 

   : Shear stress 

   

  
: Velocity gradient 

 : Damping constant 

R0 (r0): Radius 

m: Mass 

 : Damping time 

  ( ): Heat power input; 



xi 
 

  : Specific Heat; 

 : Hemispherical emissivity; 

    Constant power on equilibrium temperature; 

   : Stefan-Boltzmann constant; 

   : Temperature response 

cP: Heat capacity 

 : Frequency 

J: Eddy current 

E: Electrical field 

H: Magnetic field 

p: Fluid flow pressure; 

T: The component of the total stress tensor; 

D (d): Diameter; 

V: Maximum velocity of inner flow m/s; 

µ: Viscosity Pa*s; 

τp is the relaxation time of the particle. 

 ( ): Electrical conductivity dependent of time, Ω-1
m

-1
; 

 ( ): Viscosity dependent of time, mPa*s; 
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  : Density on the melting point; 

k: Temperature dependence of density; 

  : Temperature on the melting point; 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

1.1 Introduction 

The convection of molten metals significantly impacts material processing. The fluid flow of 

molten metals affects the solidification process so that different microstructures result depending 

on the convection state in the molten metals. In order to obtain desired microstructures, the 

convection velocity in molten metals should be understood and controlled during solidification. 

The study of velocity in solidification can be achieved by one of three models: steady-state 

laminar, steady-state turbulent, and the transient model. The process of turbulence from the 

laminar flow is called the laminar to turbulent transition. In this work, the turbulent transition in a 

droplet of NiAl3 was numerically evaluated and certain models have been made. 

In addition to solidification, the convection in measurements of thermophysical properties is also 

crucial. For example, in containerless measurements of viscosity and heat capacity of molten 

metals, the results are often critically affected by the internal convection. To obtain valid results, 

the convection when measuring viscosity should be laminar. Measurements of heat capacity, 

however, benefit from an internal turbulence flow. This study of the turbulent transition clarifies 

the upper limit of laminar and lower one of turbulence. The results of this study will improve the 

design of measurements for thermophysical properties which are essential for solving Navier-

Stokes equations. 

This work also improves the study of turbulence. By changing the method of observation, the 

turbulent transition can be pinpointed more clearly and the corresponding thermophysical state 

for the numerical modelling can be calculated more accurately. The convection in the liquid 
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sample is governed by the Navier-Stokes equations, which are characterized by the Reynolds 

number, a dimensionless ratio of inertial effects to viscous effects. The convection velocity as 

well as the pressure distribution can be obtained by solving the Navier-Stokes equations. In order 

to secure the reasonable accuracy of the solution, accurate values for density and viscosity are 

needed.  

The containerless methods of electromagnetic levitation (EML) and electrostatic levitation (ESL) 

have been adopted to study solidification and thermophysical property measurements.  The 

samples can be levitated without contacting any substance (e.g. the walls of a container) so that a 

considerable reduction of contamination can be achieved and many highly-reactive materials can 

be tested. Moreover, the effect of walls on nucleation can be eliminated.  

Previous work showed that only high-velocity turbulent flow could be obtained from ground-

based EML. Strong convection observed in samples is induced by the strong positioning force 

required to counteract gravity. Meanwhile, in ground-based ESL, only low-velocity laminar flow 

caused by gradients in surface tension is found. This is called Marangoni convection. There is an 

obvious gap between the two ranges, which means the full range of convection is not accessible 

in ground-based experimentation. 

Space provides an environment without the disturbance of gravity to study solidification and 

measure material properties. In space, the convection in the sample is not as strong as on Earth 

because the force necessary to counteract gravity is not required. Thus, the electromagnetic 

levitation technique has been adopted as a processing method in space due to its advantages over 

other containerless processing techniques. 

Thus, a much wider range of convection from the laminar to turbulent flow can be achieved by 

space EML. It is very expensive to achieve EML experiments in space. The experiment needs to 

be predicted to ensure it runs well. Parabolic flight experiments are an important part of ground 
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support for space experiments. For example, in order to guarantee the safety of astronauts and 

facilities, the space samples have to be tested in parabolic flights ahead of time. For example, if 

the sample became unstable or even escaped from the holders during the parabolic flight 

experiment, it would be too dangerous to test it in space. It may damage any substances making 

contact with it and ruin the whole experiment. The tests should be redesigned. To ensure the 

space experiments’ safety, the parabolic flights data should be analyzed. Due to the complexity 

level of the system, the numerical analysis of the parabolic flights data is essential as ground 

support to experimentation in space. 

Understanding this transition phenomenon observed in parabolic flight is important in that it 

allows more efficient design of space experiments. A large uncertainty in the range of Re during 

transition enforces the use of a large safety factor in determining the measurable range of 

experimental parameter settings. A number of compositions will be tested in space from 

December 2014. 

In this work, a parabolic flight experiment with clear evidence of laminar-turbulent transition was 

selected. In parabolic flights, the electromagnetic force required to control the sample is stronger 

than in space experiments, leading to severe deformation of sample. In Hyers’ work, the 

Reynolds number at laminar-turbulent transition has been estimated as 600 for a spherical sample. 

In this work, a new geometry has been adopted: ellipsoid, instead of a sphere. In addition to 

steady-state models, a new transient model has been developed.  

1.2 Motivation 

To control the microstructure of the materials, this work developed MHD models to study the 

convection in molten metals. The measurement of thermophysical properties would be benefited 

by this study of the effect of the fluid flow in experiments. In addition, the numerical models and 

simulation result of this laminar-turbulent transition can be adopted by other cases about turbulent 
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transition. To figure out what possible things can affect the internal convection, three hypotheses 

needed to be tested: geometry, boundary conditions and solid core. 

1.3 Navier-Stokes Equations Application 

The convection in molten metals is governed by Navier-Stokes equations, just like other viscous 

fluid motion.  

The N-S equations, named after Claude-Louis Navier and George Gabriel Stokes, are a statement 

of the conservation of momentum.  The equations, derived from the application of conservation 

of momentum for an arbitrary portion of fluid, have been adopted in various areas to model the 

flow of liquid. For example, they can be used to describe how fluid flows in the ocean, so that the 

weather can be forecasted. Furthermore, the N-S Eqns. can be used to model 

magnetohydrodynamics with Maxwell’s equations. Actually, the Navier-Stokes equations can be 

applied to any non-relativistic continuum. 

Navier-Stokes equations—General 

            

        (1.1) 

   

   
               

 

  
         

 

(1.2) 

where u is velocity field; t is time; P is pressure; F is forces; Re is Reynolds number. 

The nonlinear quantity          is the convective acceleration, which is independent of time and 

coordinate system. The terms    and 
 

  
     , which are gradients of surface forces, give the 

effect of stress in the fluid.  
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The Navier-Stokes equations can produce a velocity field, providing the velocity of the fluid at a 

given point in space and time. Other quantities such as flow rate can be found with the velocity 

field. The velocity field plays a more important role than particle positions or trajectories in 

classical mechanics. 

To apply the Navier-Stokes equations, the internal fluid of the sample is assumed to flow as a 

continuum, which means it cannot be divided into particles like atoms or molecules. The Navier-

Stokes equations was used to model the internal fluid flow with fixed boundary conditions. The 

internal fluid flow has been assumed as an incompressible flow which simplifies the solution 

process.  

In real situations, the Navier-Stokes equations are nonlinear partial differential equations, which 

can be challenging. Especially in the cases of turbulence, the convective acceleration along with 

the changes in velocity over position results in nonlinearity and solving the Navier-Stokes 

equations becomes extremely difficult. It is still believed that turbulence can be described 

properly by Navier-Stokes equations with supplemental equations and boundary conditions, just 

as with laminar flow. Generally, a finer mesh would give a more stable solution. However, it 

costs more computational time. In some cases, e.g. 1-dimentional flow and Stokes flow, the 

Navier-Stokes equations can be simplified to a linear one. 

 

1.4 Electromagnetic Levitation 

1.4.1 Electromagnetic Levitation Facility 

In experiments measuring thermophysical properties like viscosity, density, and thermal 

conductivity, the interaction between sample and devices cannot be neglected. To obtain more 

precise measurements, eliminating the interference created by the facilities on experiments is one 
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of the best choices. For molten metals, the containerless measurement can be obtained by 

electromagnetic levitation (EML). This noninvasive technique has been applied in other areas, 

such as processing reactive metals and undercooled melt. 

The conventional ground-based electromagnetic levitation facility (EML) is composed of two coil 

systems (Figure 1.1), providing positioning force and heating power. The former one, Lorentz 

force, which is used to levitate the sample is generated by the interaction of induced current and 

external magnetic field. At the same time, the eddy currents are generated by mutual inductance 

in the surface of the sample due to the alternating current in the heating coil system. As long as 

the current is large enough, the sample can be heated and melted easily by Joule heating. Then the 

heating field provides the power to keep the sample in liquid state during the experiments.  

 

Figure 1.1: Ground-based electromagnetic levitation technique adopted by German Aerospace 

Center (DLR). The right pattern is the cross-sectional view of the coil system. The dot and cross 

indicate the current direction in coils. The sample is levitated in the center of the coil system and 

deformed due to gravity. [7] 



7 
 

To establish the internal convection of the opaque sample, tracer particles have been applied in 

EML experiments. In our observations, some aspects of the internal flow can be inferred from the 

motion and patterns of tracer particles on the droplet surface extracted from experiments record. 

 

1.4.2 Electromagnetic Levitation in microgravity 

On Earth, the electromagnetic force required to levitate an EML sample is so large that it drives 

strong internal flow in the liquid sample. The fluid flow tends to become turbulent due to high 

fluid densities as the viscosity decreases. The turbulence in the molten sample may influence 

nucleation kinetics, phase selection and interfere with thermophysical property measurements [1]. 

Therefore, in order to reduce the effect of electromagnetic forces, the experiments performed in 

microgravity are necessary, where the positioning forces required to counteract gravity are much 

smaller than those on Earth. Diagnostic tools and facilities have been designed for the Spacelab, 

such as “TEMPUS” (Figure 1.2). It has been adopted by space missions for thermal physical 

measurements like viscosity, surface tension and specific heat, and has also been used in 

processing undercooled states.   
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Figure 1.2: TEMPUS coil system. [21] 

However, the coil set used for heating is inevitably more distant from the sample than the 

positioning coil set. As a result, the input power is decreased.   

This efficiency shortage can be avoided by a new superposition levitation method--SUPOS, 

designed by the German Aerospace Center. The SUPOS employs only one coil system to 

generate both positioning force and heating power in microgravity [3]. In the SUPOS, the coils 

and condensers have been rearranged to create two independent oscillatory circuits to levitate and 

heat the sample at the same time [3]. To minimize the thermal effect of the positioning current 

and the electromagnetic force generated by the heating current, two coil arrangements have been 

designed: one of them is applied in this work. (Figure 1.3) 
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Figure 1.3: Cutaway of SUPOS coil system with the sample in the center. The arrow indicates the 

equilibrium position of the droplet. Copper tubes containing flowing water cover the coils to cool 

them down. [3] 

Between the sample and coils is the sample holder made out of a combination of high 

performance ceramics and refractory alloys in high temperature. The sample holder not only 

serves as a sample transport container but it also provides protection to the coil system and 

facility chamber in case the liquid sample gets out of the control of the positioning force. ( Figure 

1.4) 
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Figure 1.4: Sample holder. The arrow indicates the equilibrium position of the sample. [4] 

Both the Lorentz force used to levitate the sample and induced heating power are related to the 

density of the magnetic field:  

 (   )    ( )    (  ) (1.3) 

      
     (1.4) 

     
     (1.5) 

Where B is magnetic field density; F is Lorentz force; I is current in coil set; and P is induced 

power. 

In addition, to counteract the residual gravity, this Lorentz force also prevents the droplet from 

escaping out of the sample holder. The sample is kept in the center of the coil system, where the 

magnetic density is weakest, to reduce the thermal influence of the positioning current.  
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1.5 Solidification 

1.5.1 Solidification background 

In material processing, solidification is a transformation of molten metals from a liquid to solid 

state. For example, in casting, molten metal is poured into the mold to cool and solidify into a 

certain shape. For pure metals, solidification occurs at a constant temperature, which is called the 

freezing point or melting point. The figure 1.5 shows how the process occurs over time. This is 

called a cooling curve. The plateau gives the solidification time from when freezing begins to 

when freezing is completed. Before and after the plateau the curves show the cooling process as a 

liquid and as a solid. During cooling and solidification, the latent heat of the molten metals is 

released to the surrounding environment. Over the curve, the cooling and solidification rate 

depends on the heat transfer and the thermal properties of metal. 

 

Figure 1.5: Cooling curve of a pure metal. [9] 
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Dendritic growth occurs during the freezing process. In solidification, the metallic grain is formed 

continuously and grows in a direction away from the heat transfer. Needles of solid metal are 

formed by the growth of grains, and then enlarged to form lateral branches, each growing at right 

angles to the previous one. The dendritic structure is just like a tree; new solid metal is deposited 

onto the dendrites to fill in the structure continually until the freezing process complete. Due to 

the dendritic growth, the preferred orientation of grains is coarse and toward the center of the 

casting. The figure 1.6 illustrates the grains clearly. 

 

Figure 1.6: The grain structure of pure metal during casting. Small grains grow randomly near the 

wall while large columnar grains grow towards the center of the casting. [9] 

The solidification process of alloys is different from that of pure metals. Instead of freezing at a 

constant temperature, alloys freeze over a temperature range and are affected by the particular 

composition. In the phase diagram--Figure 1.7 Left one, each cooling curve corresponds to a 

specific composition and the curve—Figure 1.7 Right one, is for 50%Ni-50%Cu. For alloys, the 

freezing process begins at the point of intersection of liquidus and composition, and ends at the 

point of intersection of solidus and composition in phase diagram. The alloy’s freezing process is 

similar to that of pure metals in that there is also dendritic growth in solidification of alloys. The 

grains grow to form dendrites, developing away from the solid formed previously. In the phase 
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diagram, a new area named the mushy zone is generated between the liquid and solid solutions, 

and in the mushy zone both molten and solid metal exist. The nature of the mushy zone is 

established by dendritic growth due to the temperature transfer between liquidus and solidus. 

Eventually the dendrite structures  can trap liquid metals to form a matrix that takes on a soft 

consistency. For different alloy systems and freezing conditions, the mushy zone may be 

relatively narrow or wide, even occupying most of the casting. As the heat transfers out of the 

molten metal to the surroundings, the liquid trapped in the dendrite structures solidifies gradually 

and is deposited on the branches until the temperature reaches the solidus of that particular alloy 

composition, which means the solidification process is complete.  

 

Figure 1.7: Left-Phase diagram of Cu-Ni alloy system; Right-Cooling curve of 50%Ni-50%Cu 

corresponding to the left phase diagram of casting. [9] 

The microstructure of a certain alloy is directly related to the solidification process, and the 

mechanical properties of the alloy depend on the microstructure. The figures 1.8 shows two 

different microstructures of a Fe-Cr-Ni alloy system. The upper portion gives a “tree-like” 

dendrite microstructure, which can be found in the ferritic phase generated by the primary 
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transformation of a Fe-Cr-Ni alloy. In this dendritic geometry, the primary arms looks like the 

trunk of the tree and the secondary arms like the branches of the tree. The lower potion shows 

microstructure generated by double recalescence, which means the alloy solidifies to the 

metastable ferrite phase at first and ultimately transforms to a stable austenite phase. This results 

in fine equiaxed grains. The “tree-like” structure has been broken up by the secondary 

transformation. 

 

Figure 1.8: Microstructures of Fe-Cr-Ni alloy after solidification. Upper: Dendritic structure 

generated by single recalescence. Lower: Fine and equiaxed structure generated by double 

recalescence. [11] 
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Crystallographic texturing which is created by dendritic solidification leads to defects like 

shrinkage cavities and cause hot cracking, reduction of corrosion resistance and diminished 

toughness. The dendritic microstructure should be eliminated as much as possible in industrial 

applications, which can be achieved by double recalescence. The result is that the dendritic 

microstructure generated by the primary transformation can be eliminated and fine equiaxed grain 

structure will replace the “tree-like” geometry to yield more favorable mechanical properties. 

 

1.5.2 Solidification of Fe-Cr-Ni alloy  

The solidification process of Fe-Cr-Ni stainless steels is a good example. In short, to prevent 

dendrites from growing, the undercooled molten alloy should solidify to a BCC metastable phase 

first, and then transfer to the FCC stable phase at the end. This two-step transformation process is 

termed double recalescence. 

The undercooling process means: certain molten alloy can stay in liquid state even when cooled 

to a temperature below the melting point. 

There are two ways for the Fe-Cr-Ni alloy to transform from undercooled liquid to solid state, 

either by single or double recalescence. The Figure 1.9 shows a phase diagram for a Fe-Cr-Ni 

alloy which shows two paths clearly. The composition is of 72 wt.-% Fe isopleth. From left to the 

right side, the wt% Cr is increasing and the wt% Ni is decreasing. On the left part of the diagram, 

the stable solidified state is FCC, and on the right part, BCC. In Hanlon’s previous work [10], the 

alloys tested were Fe-12 wt.% Cr-14wt.% Ni, located in FCC region. In this region, the upper 

dotted line implies the extension of the solidius and liquidus line below the eutectic point, called 

the metastable solidus line. Along the composition line, when the temperature of the undercooled 

alloy is below the intersection of composition and the metastable solidus line, the molten alloy 

may solidify to a BCC metastable phase first and then transform to the FCC stable phase. 
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Theoretically, if the metastable phase is generated throughout the alloy completely before the 

stable phase formed, the final microstructure will be composed of same size and shape grains, 

which will yield a more strengthened alloy.  

 

Figure 1.9: Phase diagram of Fe-Cr-Ni alloy on 72% Fe isopleth. [11] 

The lifetime of a metastable phase is called the “delay time”, and plays an important role in the 

final microstructure. If the delay time is not long enough for the molten alloys to complete 

primary nucleation before the final transformation begins, the remaining part of the molten alloys 

will solidify to the FCC stable phase directly, forming a crystalline structure.  

In experiments with undercooling less than 150 degrees C, the FCC stable phase is formed more 

quickly than the BCC metastable phase, although the formation of the BCC phase started first. 

The process of FCC stable phase formation ultimately overtakes and exceeds the BCC one. As a 

result, the solid alloy is composed of two different microstructures. As shown in the figure 1.10, 
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the top region, created by 2-step solidification, is of refined grains with similar size and shape, 

offering more grain boundaries. In contrast, an obvious dendritic structure can be found on the 

bottom region, where the molten alloys solidified to austenite phases directly. 

 

Figure 1.10: Microstructure of Fe-Cr-Ni system. The top portion consisted of fine grains 

generated by double recalescence, while the dendritic structure exists in the bottom portion due to 

single recalescence. [10] 

 

1.5.3 Convection in solidification process 

A hypothesis has been tested by Hanlon’s previous work that delay time is strongly related to the 

convective velocities obtained from solidification experiments. [12] The simulation result shows 

that mechanical damage of the microstructure may be caused by the induced convective flow. 

With strong enough convective velocities, the induced fluid flow can damage the growing 

dendrites in primary nucleation. The figure 1.11 and 1.12 show this mechanical damage as a 

collision of two secondary adjacent arms as a result of the primary dendrite deflection. These 
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points of collision give rise to low-angle boundaries, which cause the premature transformation to 

the stable phase. In figure 1.11, there are no collisions to set off the transformation to stable phase. 

Figure 1.12 shows the collision of secondary arms on the deflected dendrites caused by strong 

internal convection. 

 

Figure 1.11: Dendrites growing in slow convection without collision. [12] 

 

Figure 1.12: Collision is caused by the strong convection. The arrow shows the direction of flow 

velocity. [12] 
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Therefore, the convective velocity in the liquid metals or alloys is significant for microstructures 

generated by solidification. In this work, different numerical models have been tested to evaluate 

the fluid flow velocity at turbulent transition. Thus, in following studies it will be easier to choose 

the appropriate model to numerically evaluate the corresponding convection: laminar, turbulence 

and turbulent transition.  It will also save much time on subsequent research. 

The containerless method has been applied in experiments studying internal convection in 

solidification. The techniques include both electromagnetic levitation (EML) and electrostatic 

levitation (ESL). 

In electromagnetic levitation (EML), the samples of Fe-Cr-Ni alloy can be levitated and melted 

by an electromagnetic fields generated by alternating current.  The sample adopted in EML is a 

sphere with a diameter of 7mm. The induced current in the sample interacts with the external 

electromagnetic field and produces both the Lorentz force to levitate the sample and the heat to 

melt it. The internal magnetohydrodynamic convection appears when the sample becomes fully 

melted. The magnetohydrodynamic models have been built to quantify the induced flow in the 

molten sample. Reference to the previous work on ground-based EML [2]shows that the 

velocities of internal flow of droplets are on the order of 0.32m/s, which is turbulence. That’s 

because the sample needs a large Lorentz force to counteract gravity, leading to a strong internal 

flow. The only velocities of internal convection that can be tested in 1-g EML are of turbulent 

flow, which really limits material scientists. 

Electrostatic levitation (ESL) is the other containerless technique used in the experiments. To 

make sure the Fe-Cr-Ni samples adopted have the same composition as the ones used in EML, 

the scientists remove a part of these samples and use them as the new samples for ESL. [19] 

These are 2mm in diameter. Electrodes produce an electrostatic force to levitate the sample. The 

light source provides a photoelectric effect on the sample to keep it charged [20] while the sample 



20 
 

is heated and melted by lasers. The thermal gradients along the droplet sample cause Marangoni 

convection, which drives the internal flow at low velocities. Since the experiments occur in 

vacuum, there is no heat loss due to convection or conduction. The convective velocity is on the 

order of 0.04m/s of ground-based ESL flow, which is laminar. [21]  

The figure 1.13 shows the big difference in delay time between the ground-based EML and ESL 

experiments [19]. Although the samples applied in EML and ESL testing share the same 

composition Fe-12Cr-16Ni, the delay times obtained from ESL are almost two orders of 

magnitude greater than from EML. Several hypotheses attempting to explain the difference in 

delay time have been disproved by the work of reference [22, 23]. The hypothesis that the 

lifetime of the metastable phase is directly related to the internal fluid flows is convincing. [23.24]  

 

Figure 1.13: Delay times of 1-g EML & ESL experiments. [19] 
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Previous works have identified the velocity of turbulent flow in 1-g EML as 0.32m/s [2], which 

means only high-velocity turbulent flow can be obtained from ground-based EML. The strong 

convection observed in samples is induced by the strong positioning force required to counteract 

gravity. However, in ground-based ESL, only low-velocity laminar flow is found on the order of 

0.04m/s, as a result of the Marangoni convection. Figure 1.14 and Figure 1.15 gives the velocity 

and Reynolds number ranges obtained from ground-based EML and ESL experiments. There is 

an obvious gap between the two ranges, which means the full range of convection is not 

accessible in ground-based experiments. But the gap can be fixed by the microgravity 

experiments. The section 1.4.2 will give more details.  

 

Figure 1.14: Convection range obtained from 1-g EML, ESL and microgravity EML in terms of 

convective velocity. The circles show the convection accessible through 1-g EML and MSL-1 

EML. [2] 
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Figure 1.15: The Reynolds number obtained from 1-g EML, ESL and microgravity EML. The 

circle gives the convection of ground EML and MSL-1 experiments. [2] 

The microgravity electromagnetic levitation experiments have been conducted recently in order 

to fix the existing gap in convective velocity range. Microgravity EML provides a good chance to 

obtain the data in this gap, because the strong positioning forces required in ground-based EML 

are not needed in space. The velocities tested in microgravity EML can be as moderate as low 

velocity laminar. Meanwhile, large forces can be applied too. The high velocity turbulence are 

also available in space. The velocities gap, which is not accessible on Earth, can be covered by 

the microgravity EML experiments.  

 

1.5.4 Experiments on parabolic flights 

In this work, parabolic flight experiments with clear phenomena of laminar-turbulent transition 

were selected. In Hyers’ work [1], the Reynolds number at laminar-turbulent transition has been 

estimated as 600 for a spherical sample. In this study, a new geometry is adopted: ellipsoid, 

instead of a sphere sample. Moreover, new models have been developed. Since the convection 

velocity crucially affects material properties through solidification, the numerical models from 
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this work can be adopted by simulation based on the situation—laminar, turbulent or turbulent 

transition—to calculate the magnitude of the convective velocity. Thus, the solidification process 

can be learned and controlled to generate strengthened microstructures. The computational time 

cost will be reduced too. 

 

1.6 Magnetohydrodynamic flow in containerless levitation experiments 

 In many applications of containerless levitation, (e.g. measurements of viscosity) the stability of 

the internal flow is more important than the absolute magnitude of the flow velocity. On the other 

hand, the accurate magnitude of convective velocity is crucial in solidification. 

1.6.1 Convection in experiments 

The numerical models tested by this work can be used to evaluate the fluid flow velocity in 

molten alloys or metals during solidification, so that strengthened materials can be achieved by 

controlling the convection in solidification.  

In order to ensure the accuracy of the thermophysical properties measurements, the fluid flow in 

the sample should be controlled in a certain flow condition. Containerless methods eliminate any 

chance of chemical reaction between the sample and test facilities. However, even in 

containerless methods results are often critically affected by the internal convection of the 

samples. For example, in measurements of viscosity, the test droplet is excited by an oscillating 

force field near the natural frequency of the sample which then dampens out freely. The viscosity 

can be estimated using the measured decay time. If the internal flow is turbulent, a considerable 

portion of the energy of the oscillating droplet should be dissipated by the turbulent eddies so that 

the decay time becomes much shorter, resulting in too large a value of viscosity. On the other 

hand, in measurements of heat capacity turbulent mixing reduces the temperature gradient in the 
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sample. This means the heat capacity can be measured more effectively, especially when a 

material has a high Biot number.  In short, the status of the internal convection can either 

facilitate or jeopardize the property measurements. Therefore, it is important to identify the 

convection state during the measurements of thermophysical properties of molten metals and 

alloys. 

From this study of turbulent transition, the upper limitation of laminar flow and the lower one of 

turbulence can be more clearly measured. Thus, the results of this study can be used to improve 

the measurements design in order to obtain thermophysical properties accurately. For example, 

the figure 1.16 shows the uncertainty from the thermophysical properties measurements of Zr due 

to the convection [29]. The values in shadow means turbulent transition occurred, which is a large 

portion to the whole tests. 

 

Figure 1.16: Convection in reference sample Zr. [29] 
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1.6.2 Numerical modelling of magnetohydrodynamic 

The magnetohydrodynamic flow in EML droplets is driven by Lorentz forces and governed by 

the Navier-Stokes equations (1.1) (1.2) with the boundary conditions—(1.6) for laminar flow; 

turbulent flow requires both (1.6) and (1.7). 

 (1.6) 

 (1.7) 

 

Where k is turbulent kinetic energy; ϵ is turbulent dissipation. 

The Reynolds number can be expressed as: 

   
   

 
 

(1.8) 

Where Re is Reynolds number;   is density; U is velocity; D is diameter and   is viscosity. 

The magnetic force is generated by the interaction of inducted current and the positioning 

electromagnetic field. [2] 

A commercial finite element code, named FIDAP, has been adopted by the simulations of 

numerical modelling. The geometry is a 2-D axisymmetric sphere and the force which drives the 

flow is calculated by a subroutine separately.   

The results show that the modelling of flows near the laminar-turbulent transition is pretty 

difficult.  According to the work of Hyers et al. [1], the laminar-turbulent transition occurs when 

the Reynolds number reaches up to 600 in the molten sample of EML experiments. The work of 

Berry et al. shows that the renormalization group method (RNG) variation of     performs best 

on the modelling of turbulent internal flow in EML droplets. [7]  
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For the TEMPUS coil set, the simulation results by Hyers et al. provided two typical flow 

patterns of FeCrNi alloy—positioner-dominated (Figure 1.17) and heater-dominated internal 

convection (Figure 1.18). Both patterns are mirror symmetric and axisymmetric. There are four 

loops on the pattern of positioner-dominated flow in droplets with low Reynolds numbers. The 

two loops near the poles keep shrinking as the Reynolds number increases and disappears finally. 

The heater-dominated flow pattern is different from the positioner-dominated one, consisting of 

only two loops. As a result of opposite flow directions, the equatorial loops driven by positioning 

field can be weakened by the ones driven by the heating field. Therefore, the minimum velocity 

of flow can be obtained when the forces generated by the two fields are balanced. 

 

Figure 1.17: Positioner-dominated flow patterns of FeCrNi alloy—streamline (Left) and velocity 

field (Right). Positioner current is 150A and heater current is 0A. [2] 
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Figure 1.18: Heater-dominated flow patterns of FeCrNi alloy—streamline (Left) and velocity 

field (Right). Positioner current is 150A and heater current is 40A. [2] 

The convections from EML (Electromagnetically levitated) and ESL (Electrostatically levitated) 

droplets share the same governing equations and boundary conditions. In addition to the heater-

dominated flow, the positioning force of EML can drive the flow dominantly too. In contrast, the 

Marangoni convection in ESL droplets is driven by the temperature gradient provided by the 

heating laser, which is independent of the positioning facility. Moreover, the ESL droplet 

problems share the same numerical solution method with EML ones. FIDAP has been adopted to 

solve the problems on a 2-D axisymmetric spherical geometry and the heating process can be 

expressed by a boundary condition subroutine. The figure 1.19 shows the simulation results of 

flow velocity for a Fe72Cr12Ni6 case. 
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Figure 1.19: The velocity field and streamlines obtained from a 1-g ESL Fe72Cr12Ni6 droplet. The 

maximum velocity is 5.6 cm/s. [6] 

In short, since the velocity and temperature distributions cannot be measured directly from the 

droplets in EML or ESL experiments, the numerical modelling method is necessary for the 

quantification of convection and thermal conditions. The simulation results (Figures 1.14 and 

1.15) provide a clear description of the velocity range covered by various systems. The range of 

convective velocity accessible by ground-based experiments is very narrow. The Reynolds 

number that can be achieved by 1-g ESL is less than 110, with a velocity of 4.4 cm/s, which does 

not reach up to the laminar-turbulent transition. Meanwhile, ground EML results in too big a 

Reynolds number, 2800, in which turbulence has already developed. The line segments 

corresponding to various sample sizes (6, 7 and 8mm in diameter) indicate the velocity ranges 

obtained in microgravity EML. It is observably wider than that in ground-based testing. [2] 

In ground-based EML tests, the range of sample size is narrowed by the operating conditions in 

order to ensure a stable levitation. As a result, a limitation of convective velocity cannot be 

avoided. In ESL tests, the dominating Marangoni convection is driven by the surface tension 
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gradients caused by the temperature gradients, which are independent of operating conditions. 

The Marangoni convection in the ESL can reach up to 6 cm/sec and almost disappear when the 

heating laser is turned off.  

In microgravity EML testing, the convective velocity is downwardly limited by the positioning 

force required to counteract gravity and control the sample in the equilibrium position, and 

upwardly limited by the heating-induced convection in the sample.  

 

1.6.3 Laminar-turbulent transition in experiments 

The tracer particles have been adopted by the microgravity EML experiments to give a view of 

the internal flow via their movements on the levitated liquid sample surface. With the help of the 

tracer particles, the time of the turbulent transition can be determined. Moreover, the 

corresponding Reynolds number can be obtained from the numerical evaluation.  

When the levitated sample is heated until totally melted, the tracer particles will accumulate on 

the band of the equator indicating that the internal convection is steady laminar. The 

corresponding flow pattern can be predicted by the numerical model as the figure 1.18. If the 

viscosity of the sample is strongly dependent on temperature and the sample is continually heated, 

the internal flow will keep accelerating due to the decreasing viscosity. At this point the internal 

flow becomes unstable and eventually fully turbulent. According to Hyers’ work, it happens at 

the Reynolds number of 600.  
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1.7 Viscosity 

1.7.1 Viscosity background 

Viscosity is the ability of fluid to resist the shear stress or tensile stress of deformation. Particles 

next to each other in fluids may move with different velocities and the friction due to the 

movement is the leading cause of resistance. External force (e.g. pressure difference) is required 

to overcome the friction, and to keep the fluid moving. Because liquids consist of small 

molecules, the relationship between shear rate and shear stress can be expressed linearly: [25] 

      
   
  

 
(1.9) 

Where     is shear stress and 
   

  
 is velocity gradient. 

All metals are regarded as Newtonian, so the relations above can be adopted. More complicated 

relations between shear stress and shear rate should be considered for large polymers and fluid 

mixtures. 

 

1.7.2 Viscosity Measurement 

The study of viscosity is essential for fluid dynamics and thermodynamics as well as in industrial 

areas like casting and welding. For example, in computational modeling of 

magnetohydrodynamic flow, the utility of the results depends on the accuracy of thermophysical 

properties like viscosity. And knowledge of viscosity is essential for the designation of a new 

alloy system, to predict the final performance of alloy. 

It is difficult to measure the viscosity of molten metals or alloys by traditional measurement 

techniques due to the high temperature. Another difficulty is that the sample in liquid phase tends 

to be contaminated easily. Electrostatic levitation (ESL), as one kind of containerless method, has 
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been used by several groups [6,14] to measure the thermophysical properties of molten alloys. By 

electrostatic levitation furnace, the sample can be heated and melted by multiple laser heating 

beams without contacting any walls or gases, which eliminates contamination. This is an 

important advantage in testing corrosive materials, especially in liquid phase. It also means that 

the sample can be made stable enough to accomplish the measurement. Since the sample is 

positioned and heated by two independent systems and the electrostatic system does not generate 

any heat, a wide temperature range can be achieved. The levitated sample can be undercooled or 

superheated and sustain the state long enough to complete the measurement.  

There were two kinds of sample holders: A wire cage of W-Re with SiC pedestal, and a cup-type 

holder of SiC. The cup holder acted as a shield to protect the levitated coils from being exposed 

to the strong evaporation sample.  

In addition to the measurement of thermophysical properties in liquid alloys, the ESL facility has 

other applications too, like synthesizing new materials and the study of corrosive solids. For 

example, the tests of some materials (e.g. niobium, which has a very high melting temperature) 

can be accomplished by ESL for its containerless features.  

The oscillating drop method has been applied in ESL to measure the viscosity and surface tension 

of levitated metal droplets. The measurement is based on the theory from Kelvin’s work about the 

oscillations of viscous drops. [27] The viscosity μ can be obtained from a damping constant    

derived by Kelvin: 

μ 
   

 

  
 

(1.10) 

where   is viscosity;   is liquid density;    is radius of the sample; and   is damping time. 

This equation (1.11) can be applied only for spherical droplets without the effect of external fields.  
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In this method, an oscillation of the molten sample to its equilibrium state is required. The 

levitated liquid sample is excited to oscillate at its natural frequency and then allowed to dampen 

freely. The damping time is determined by the viscosity of sample. [26] This method allows 

samples of even corrosive materials to be tested in a metastable undercooled state.  

When the sample is positioned in the holder stably, it can be melted and overheated. Then the 

heating process is stopped by turning off the heating fields so that the sample can cool down by 

radiation. During the cooling cycle, the excitation current pulses in the heating coils generates a 

force to compress the sample laterally that the droplet is excited to oscillate. In the Pd76Cu6Si8 

case [18], the excitation force was generated every 50K until solidification completed. The radius 

of the sample can be observed by analyzing the video tape specifically. It turns out that the radius 

of the sample changes as a function of time. Both the damping constant and frequency can be 

obtained from the signal.   

The oscillating drop method has also been applied in electromagnetic levitation (EML), including 

ground-based testing [31], parabolic flights [32,33], and on the space. [34,35] 
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The figure 1.20 shows the oscillation of a molten silver sample in the TEMPUS device under 

microgravity. 

 

Figure 1.20: The oscillation process of silver measured by microgravity TEMPUS. [8] 
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1.7.3 Numerical evaluation of convection in viscosity measurement 

Since electrostatic levitation is applied in a vacuum without current, there is no component 

tangential to the electric field of the levitated sample. Therefore, no electrohydrodynamic flow 

exists like the EML droplets. The Marangoni convection is the main internal convection in ESL 

droplets, which is caused by gradients in surface tension. The laser heating effect has been taken 

into account by computer modeling, which includes heat distribution and thermal radiation. Since 

the droplet was levitated in a vacuum, the heat loss due to conduction or convection can be 

neglected. The thermal gradients on the droplet’s free surface are the main cause of surface 

tension gradients. The figure 1.21 shows the thermal profile of two droplets, with and without 

rotation.  

 

Figure 1.21: Temperature profiles in non-rotating (Left) and rotating (Right) samples of 

Fe72Cr12Ni16 system. The maximum temperature difference is 29K (Left) and 6K (Right) 

respectively. [6] 

Temperature gradients on droplets are directly related to the droplet rotation. If the sample is 

heated without rotation, the power absorbed by the droplet will concentrate in a very small area of 
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droplet surface, which is the main cause of a large gradient of temperature. The large Marangoni 

convection is directly related to the large temperature gradient. When the droplet rotates slowly, 

the laser power can be distributed along the track, which will indeed reduce both the temperature 

gradient on the droplet surface and Marangoni convection. 

Marangoni convection in ESL droplets has been modelled by many groups. Navier-Stokes 

equations (1.1) (1.2) with relevant boundary conditions (1.6) (1.7) and energy equations have 

been adopted in computer modelling. For analytical models of creeping flow, see Bauer and 

Eidel’s work [28] and for numerical models see Hyers’ [2] and Li and Song’s work [29]. The 

numerical one is more commonly adopted.  

The ESL droplets of Fe72Cr12Ni16 system have been numerical modeled by Hyers’ et al. [6], in 

order to study the convection. The figures 1.22 show the calculation results. 

 

Figure 1.22: The velocity field and streamlines of non-rotating (Left) and rotating Fe72Cr12Ni16 

alloy droplet (Right). The maximum convective velocities are 13cm/s (Left) and 5.6 cm/s (Right) 

respectively. [6] 
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When measuring viscosity, the internal flow affects the results’ accuracy. Internal turbulence can 

ruin the measurements completely by consuming the energy necessary for sustaining oscillation. 

Turbulence eddies are the main cause of energy dissipation, causing the droplet to stop oscillating 

earlier for lack of enough energy.  

This study of laminar-turbulent transition can provide more information about high-velocity 

laminar, which will be a good reference for viscosity measurements designation. 

 

1.8 Convection in surface tension measurements 

Measurements of surface tension and viscosity share the same oscillating drop method of 

containerless processing. The levitated sample can be melted and oscillated in a force-free 

environment as a high-quality mechanical oscillator. The surface tension is related to the resonant 

frequency of the oscillatio. 

The measurement of surface tension is affected by the internal fluid flow too. For example, an 

extra oscillation can be excited by the internal turbulence, which may reach such a large 

amplitude that a non-linear effect leads to the reduction of the measurement’s precision. 

Moreover, the high velocity laminar flow causes extra oscillation too. For example, in ESL 

experiments, when the period of recirculation of the flow loops is comparable to that of 

oscillation, the amplitude can be enlarged due to the interaction of both flows. Therefore, internal 

convection in measurements of surface tension should be understood and under control. 

Unlike clear laminar or developed turbulent flow, less is understood about laminar-turbulent 

transition. As the velocity of the fluid flow increases, the Reynolds number approaches the 

turbulence region and the fluid flow becomes unstable. In this situation, it is hard to define 
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whether the viscosity or surface tension measured is accurate or not. Hence, the study of laminar-

turbulent transition requires more effort. 

 

1.9 Heat Capacity of Molten Alloys 

1.9.1 Heat Capacity Background 

Heat capacity is used to measure the heat energy required by a system to change temperature. It is 

related to the size of the system. Specific heat capacity is defined as the heat capacity per mass of 

pure substance and it can be expressed as per mole or volume, too.  The specific heat capacity is 

of interest for both industrial and academic applications. In industrial areas, precise values for the 

specific heat capacity of molten metals and alloys are required increasingly for the simulations of 

numerical analysis. [15] 

 

1.9.2 Heat Capacity Measurement 

Thermodynamic calculations of molten metals, such as Gibbs free energy and enthalpy, can be 

achieved by testing the calorimetric properties of stable undercooled metals. For example, the 

specific heat and melting enthalpy of undercooled molten metals can be used to predict the glass-

forming ability of a certain multicomponent alloys. However, the molten metals and alloys tend 

to become chemically reactive at high temperature required, which makes measurements of liquid 

metals/alloys impossible. It causes difficulty for both high temperature experiments like those of 

molten alloys (e.g. Ti6Al4V, 1920K) and those of relatively low temperature alloys with high 

chemical reactivity. [15] In order to avoid the heterogeneous nucleation and contamination 

caused by the wall-contact conditions, containerless processing is necessary to accomplish the 

calorimetric measurements of undercooled molten alloys.  
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In wall-contact calorimetric devices, the liquid sample has to touch the container so the accuracy 

of the measured specific heat capacity can be ruined by any reactions. In addition, reactions 

between the sample and the walls also affect the measurements of other thermophysical 

properties, like viscosity and surface tension. Various techniques have been investigated to 

overcome these difficulties. 

Electromagnetic levitation (EML) has been applied in the measurements of thermophysical 

properties of reactive molten alloys [15]. Containerless calorimetry is used in space to accomplish 

low temperature measurements that cannot be achieved on Earth, like those for glass-forming 

alloys. In addition, the positioning force required in microgravity to support the sample is so 

much smaller than on Earth that deformation can be avoided and the molten alloys kept as a 

sphere during the measurements, privileging the numerical modelling of simple spherical 

geometry. 

Modulated electromagnetic non-contact calorimetry has been used in low temperature physics 

and adopted by two Spacelab missions. These used the device TEMPUS to accomplish 

measurements under reduced gravity. [15] The solid sample is positioned by an electromagnetic 

quadrupole field and heated by a dipole field, which are all generated by the coil system. The 

temperature on the poles, defined by the symmetric axis of two areas of heating, can be obtained 

by optical pyrometer and the experiments can be recorded by a high quality camera. 

 

1.9.3 Numerical evaluation of convection in heat capacity measurement 

The specific heat capacity of molten melts and alloys can be evaluated from the modulated 

temperature response. In the thermodynamic calculation, the system should be considered as 

adiabatic or isothermal to estimate the internal and external heat transport. [15] 
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For modulation calorimetry, the control voltage of the generator is modulated, and a modulated 

current  is achieved by the computer. The total input power of the heating is composed of two 

parts. One is generated by the heating field and the other from the position field. According to the 

experiments, the equator of the sample receives most of the heating powers and the poles get zero. 

In the work of Wunderlich et al, the sample can be divided to two parts, representing two 

different thermal conditions. One is heated directly by the heat field, while the other is heated 

conductively. Figure 1.23 gives a view of the equivalent couple reservoir heat flow model.  

 

Figure 1.23: Inductively heated sample (Left) and Heat flow model of coupled reservoir (Right). 

[15] 

The heat power is modulated by the computer as a function of time: 
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  ( )        (  ) (1.11) 

Where   ( ) is heat power input; and   is time. 

According to the heat power, a modulated temperature response of half of the amplitude in the 

amplitude modulation mode can be derived from the heat balance equation: 

   
  

  
          (  )      

      
  

(1.12) 

Where    is specific Heat;   is sample mass;    is sample radius;   is hemispherical emissivity; 

  is constant power on equilibrium temperature; and     is Stefan-Boltzmann constant. 

Since the measurements were completed in an Ultra High Vacuum environment, the only way for 

the sample to lose heat is radiation, which is expressed by the second term in the equation above. 

The figures 1.24 and 1.25 show 2 methods of modulated input heating power corresponding to 

the temperature response.  

 

Figure 1.24: Temperature response of the amplitude modulation mode. [15] 
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Figure 1.25: Temperature response of the power mode. [15] 

The internal temperature gradient is related to the thermal conductivity of the sample. The 

thermal equilibrium inside the sample can be described by a relaxation time     , which means 

the higher the thermal conductivity, the smaller the relaxation time. The radiation also affects the 

time required for thermal equilibrium and can be described as relaxation time     . According to 

the study of Egry et al., when the modulation frequency meets the relation [16]: 

 
    ⁄     

    ⁄  (1.13) 

The specific heat capacity    has a simpler relation with the modulated temperature response    : 

    
   
   

 
(1.14) 

Where     is Temperature response; cP is heat capacity; and   is frequency. 

The heat capacity can be derived from the    , which was obtained from the above methods. 
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1.9.4 Convection in heat capacity measurement 

The internal convection greatly affects the calculation. For example, if the internal convection is 

turbulent, the high velocity movements of molecules due to the chaos make it easier to achieve 

thermal equilibrium for the liquid sample. Thus, the sample can be considered as an isothermal 

system because no temperature gradients exist initially. In other words, the amplitude of the 

temperature response can be captured more accurately, and used to calculate the specific heat 

capacity. On the other hand, turbulent internal convection offers a wider range of modulation 

frequencies from which to choose, which benefits measurements design. Since relaxation time 

     is so small for fast heat transformation, the term      ⁄  turns out to be very large. Thus, the 

wider range of modulation frequencies provides more choices for scientists to set the experiments.  

Moreover, if the equation (1.14) is applicable, the accuracy of the calculation will be increased 

since only temperature response, frequency and heat power input are needed.  Therefore, the 

convection in measurements of specific heat capacity directly relates to the results’ accuracy. The 

internal convection should be under control to sustain turbulence during the measurements.  
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CHAPTER 2 

EXPERIMENT AND ANALYSIS 

2.1 Experiment on parabolic flight 

A droplet of NiAl3 alloy of 7mm in diameter was electromagnetically levitated and melted on the 

parabolic flight. SUPOS, an electromagnetic levitation coil set, was adopted for the experiment. 

The sample was positioned by a quadrupole positioning field operated at 150 kHz and melted by 

a dipole heating field operated at 356 kHz. Both heating and positioning currents shared the same 

coil set with different frequencies. The positioning current was kept constant to provide the 

electromagnetic force to levitate the sample, while the heating current was increased up to a 

constant value to melt the sample and keep the temperature increasing.  The temperature of the 

sample was measured by optical pyrometry. The motion of tracer particles on the droplet surface 

gave the time of transition to turbulence of internal convection. 

When the sample was fully molten, it could be inferred from the regular and slow motion of 

particles that the internal flow was laminar (Figure 2.1, Figure 2.2). As the liquid droplet was 

continuously heated the internal fluid flow accelerated as the temperature kept rising, eventually 

becoming unstable and then fully turbulence (Figure 2.3). It can be noticed from the video that 

the motion of tracer particles became chaotic. 
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Figure 2.1: Laminar flow—tracer particles (white part in the circle) move out of the pole to 

accumulate in the band of equator (white band around the sample). The arrow indicates the 

direction of movements.  
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Figure 2.2: Laminar flow—tracer particles (white part in the circle) move closer to the equator. 

 

Figure 2.3: Turbulent flow—eddies (white part in the circle, about 2.07mm in diameter) 
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Although the sample was a sphere of 7mm in diameter at the beginning, the deformation occurred 

during the melting process. It can be noticed that the sample had become an ellipsoid when the 

internal convection reached laminar-turbulent transition (Figure 2.4). The radius of the equator 

kept shrinking as that of the poles enlarged. 

   

Figure 2.4: Deformed NiAl3 droplet on laminar-turbulent transition. 

 

2.2 Analysis 

2.2.1 Force distribution 

In EML, the electric current in the coil set is composed of two different frequencies for heating 

and positioning the samples. The electromagnetic force used to levitate the sample is generated 



47 
 

by the interaction of the induced current and the electromagnetic field, which is called Lorentz 

force F and can be written as: 

      (2.1) 

where   is the induced eddy current and   is the magnetic field density [1]. 

In this EML system, the induced current of the droplet is very responsive to the electromagnetic 

field generated by coils. Thus it can be considered as a magnetoquasistatic system with reduced 

Maxwell’s equations: 

   ⃑    (2.2) 

   ⃑   
  ⃑ 

  
 

(2.3) 

   ⃑⃑     (2.4) 

 

where  ⃑  is the magnetic flux density,  ⃑  is the electric field,  ⃑⃑  is the magnetic field and    is the 

current density. 

Since the magnetic Reynolds number is estimated to be small enough that the interaction between 

the electromagnetic field and the internal convection can be neglected, the calculation of the 

electromagnetic field can be completed ahead of the fluid flow field. [7] 

The mutual inductance method has been applied to solve Maxwell’s equations. The sample was 

assumed to be axisymmetric and discretized. Maxwell’s equations were solved based on each 

mesh to obtain the induced currents in the sample. With the coil currents the density of the 

magnetic field was calculated. Then the Lorentz force used to levitate the sample was derived. [5] 

The calculation process was coded [1] and applied as a subroutine to provide the momentum 

source in the modelling.  
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The figure 2.5 (Left) shows the force distribution on the sphere sample. Both the magnitude and 

the direction of the force are expressed by the arrows.  It is obvious that the region around the 

equator of the sample got more electromagnetic force than the poles.  

Since the droplet was deformed into an ellipsoid in the experiment, the force distribution changed 

due to the increased distance between the sample and the coil set. The direction and magnitude of 

the arrow give the electromagnetic force distribution. It is obvious that the largest force loaded on 

the sphere geometry was on the equator of the domain while the ellipsoid one received the largest 

force on the band between the equator and the poles. 

 

Figure 2.5: The change of electromagnetic force distribution on the sample—from sphere (Left) 

to ellipsoid (Right). 
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2.2.2 Turbulent transition phenomena  

In the research of Hyers et al. [1], the flow at turbulent transition is regarded as laminar, based on 

the side view observation of pile of tracer particles on the equator. In this work, the motion of 

tracer particles can be figured out more clearly from the top view of the sample than from the 

previously used side view.  

The velocity of flow on the droplet surface can be obtained by analyzing the motion of visible 

particles. By the side view videotape, it can be observed that the small particles on the sample 

surface flow from the two poles to the equator of the droplet. In the following, as the droplet was 

heated continuously, the floating particles were accelerated by the internal 

magnetohydrodynamics (MHD) flow and showed apparent chaotic motion, indicating that the 

turbulence had begun. However, compared to the record from the side view of the particles’ 

motion, the top view of the droplet pole shows a much more accurate time for the laminar-

turbulent transition. From the top view, it can be observed easily that the particles drawn by the 

internal laminar flow move out from the pole and travel to collect on the equator directly, 

indicating the formation of corotating toroidal loops inside the droplet. When the direction of the 

particles changed—inward toward the poles—that implies the inner flow became chaotic, and 

laminar-turbulent transition started. Meanwhile, the change of the stagnation line is too slight to 

be noticed from the side view. In other words, because the stagnation line would remain stable in 

the turbulent transition, the method of using the stagnation line to indicate the internal convection 

state is not accurate. Another few seconds are needed for the stagnation line to show the 

instability and break. Since the sample was heated continuously, the temperature captured by the 

side view when the stagnation line broke was higher than for turbulent transition.   

In this work, the thermophysical properties like density, electrical conductivity, and viscosity are 

related to the sample temperature directly. The change to top view observation can provide a 
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more precise value for the thermophysical properties in order to obtain a more accurate evaluation 

of internal convection in EML droplet by numerical modelling. 

 

2.2.3 Convection in NiAl3 sample 

The current in this set of coils is superposed，which means there is only one set of coil which 

provides both the positioning field (quadrupole) and the heating field (dipole) at the same time. 

Both the heating and positioning fields drive convections in the droplet.  

The internal convection is governed by the Navier-Stokes equations (1.1) and (1.2) with boundary 

conditions in equations (1.7) and (1.8). 

Following the method of Hyers, et al. [2], the flow was simulated in a NiAl3 sample at the 

temperature of laminar-turbulent transition, 1472.15K, in MSL-EML. The experiment parameters 

are: Positioning control Voltage=10V and Heating control Voltage=10V.  
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CHAPTER 3 

EXPERIMENT RECORD 

The convection in the liquid sample was evaluated by the motion of tracer particles which were 

driven by the internal flow. The tracers were floating on the surface of the sample during the 

experiment. The velocity of internal fluid flow close to the sample surface can be obtained by 

analyzing the pattern of tracer particles. 

 

3.1 The velocity captured from a tracer particle. 

Based on the analysis of the experiment, the top view observation gave a more accurate moment 

for the laminar-turbulent transition. To calculate the velocity of tracer particles just before the 

laminar-turbulent transition, single particle has been picked for its clear motion from the top view 

video tape. The figure 3.1 were captured to show the movement of the tracer, which moved from 

the pole to the band near the equator. 
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Figure 3.1: The path of the picked tracer particle moving on the sample surface drawn by the 

internal convection—from the pole to the band directly. 

 The length of the tracer’s path was obtained from the shape of the deformed droplet, which is an 

ellipsoid recorded by the side view observation. The figure 3.2 is the deformed droplet.   
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Figure 3.2: Deformed droplet on laminar-turbulent transition.  

The size of the deformed droplet was captured manually, using the description of the ellipsoid 

provided by the equation 3.1: 

  

  
 
  

  
   

(3.1) 

Where a is 3.12 mm and b is 4.42 mm. That means that on the laminar-turbulent transition, the 

sphere sample had become an ellipsoid with semi-minor axis of 3.12 mm on the horizontal plane 

and semi-major axis of 4.42 mm vertically. The path of the tracer was illustrated in the figure 3.3: 
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Figure 3.3: The points picked on in modelling for showing the path of the tracer particle.  

The arc length between two points was estimated by the following equations. The initial value of 

θ was 0, meaning the arc length between the point and the pole was derived. 

  ∫ √(     ) (     )      
  

 
 

(3.2) 

Where L is the length and α is the angle between the selected point and the pole, estimated by the 

equation: 

       
 

 
 

(3.3) 
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Thus, the displacement of the particle moving from the pole can be calculated by the equation 

(3.2) and (3.3). 

The table 3.1 gives the calculation: 

Table 3.1: Displacement of the picked tracer particle—L (arc length). 

NO. 
Time 
(s) 

∆t 
(mm) 

x 
(mm) 

y 
(mm) y/b 2α 

L 
(mm) 

1 50.59 
 

1.137 4.112 0.931 0.747 3.366 

2 50.599 0.009 1.189 4.083 0.924 0.783 3.534 

3 50.61 0.011 1.294 4.018 0.910 0.856 3.883 

4 50.619 0.009 1.308 4.009 0.908 0.866 3.930 

5 50.63 0.011 1.485 3.883 0.879 0.994 4.545 

6 50.639 0.009 1.704 3.698 0.837 1.157 5.356 

7 50.65 0.011 2.042 3.336 0.755 1.429 6.758 

8 50.659 0.009 2.147 3.201 0.725 1.521 7.244 

9 50.67 0.011 2.432 2.762 0.625 1.791 8.725 

 

The figure 3.4 show the displacement of the point away from the pole.  
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Figure 3.4: The displacement of the tracer particles vs. time. 

From the figure 3.4, it was obvious that the data can be fitted well by the equation: 

                         (3.4) 

where s is the travelling displacement of the tracer particle away from the pole, which was the arc 

length L calculated by the equation (8.2) and (8.3).  

The average velocity of the tracer was v=76.4 mm/s. Thus, the Reynolds number just before the 

laminar-turbulent transition was derived by the equation (Equation 1.8) and turns out to be 860. 

Furthermore, the acceleration of the tracer particle turned out to be a constant. The relative error 

increased as the particle moved toward the equation because of the smaller projection of each 

increment of arc length.  

y = 855.62x2 - 1.5994x + 3.414 
R² = 0.9918 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

D
is

p
la

ce
m

e
n

t 
(m

m
) 

Time (s) 

Displacement (mm) 



59 
 

From Hyers’ previous work, the laminar-turbulent transition was regarded as steady state and the 

Reynolds number at the turbulent transition was evaluated to be 600, which is close to the one 

estimated by this work.  

 

3.2 Stokes number of the tracer particle  

Although the velocity of the tracer particle floating on the surface of the sample has been 

calculated already, that cannot be regarded as the convection velocity. Since the particle was 

drawn by the fluid flow, it may have moved slower than the internal fluid. 

The tracer particles which were drawn out of the poles by fluid flow are composed of certain Ni-

Al alloy. From the phase diagram (Figure 4.1), the composition may have more Ni, for the 

particles were the last to melt and the first to freeze.  

The Stokes number of the tracer particle can be derived from the following equation: 

    
   

 
 

(3.5) 

 

where u is the velocity of the convection and D represent the diameter of the sample. τp is the 

relaxation time of the particle. 

Assuming the difference in particle and fluid velocity is small (Re<1), the τ can be expressed as: 

  
    

 

   
 

(3.6) 

 

Where ∆ρ is the density difference between the tracer particles and the fluid; μ is the fluid 

viscosity and dp is the diameter of the tracer particle. 
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The tracer particles left floating on the sample surface were the remainder after the melting 

process and it was not easy to figure the exact material out. Thus, the extreme condition would be 

assumed that the tracer particles were all made of Ni with the density of ρp=7900 Kg/m
3
 and the 

density difference was calculated as ∆ρ ρp-ρ 3181.81 Kg/m
3
. 

The calculation of the Stokes number was completed with the table of the convection and tracers’ 

properties (Table 3.2). 

Table 3.2: Calculation for the Stokes number. 

Properties ρp   Kg/m
3
 ρ  Kg/m

3
 ∆ρ  Kg/m

3
 dp  m μ  Pa*s 

Value 7900 4718.92 3181.08 0.00029 0.0029 

Properties τp  s u  m/s D  m Stokes number 

Value 0.0051 0.076 0.07 0.0056 

 

The Stokes number 0.0056 turned out to be much less than 1, which means the assumption 

matched the experiment. The relative velocity between the tracer particles and the internal 

convection can be neglected that the tracer particles’ movement on the sample surface show the 

convection conditions.  

The steady solid band covering the equator may possibly be Al2O3, which was expected to 

vaporize and stick to experiment facilities during the experiments, such as the coil set. 
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CHAPTER 4 

NUMERICAL EVALUATION 

4.1 Thermophysical properties 

The thermophysical properties of the sample, NiAl3, needed by modelling can be determined in 

turn. The study of Egry et al. [18] provided the equations 4.1 and 4.2 with the table 4.1 and 4.2 to 

fit the electrical conductivity and viscosity. 

Electrical conductivity: 

 ( )   (  )    (    ) (4.1) 

 

Table 4.1 Electrical conductivity 

CAL [at%] TL [K] σ(TL)  [Ω
-1

m
-1

] mσ [Ω
-1

m
-1

K
-1

] T [K] 

75 1398 1016500 59 1472.15 

 

Viscosity: 

 ( )         (4.2) 

 

Table 4.2 Viscosity 

CAL [at%] η0 [mPa*s] mη [(mPa*s)/K] T [K] 

75 7.94 -0.0034 1472.15 
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The temperature captured from the top view of the video at the laminar-turbulent transition is 

1472.15K. Given the composition of the sample, the electrical conductivity and viscosity at 

laminar-turbulent transition can be derived to 1.02E+6 Ω-1m-1 and 2.93 mPa*s. 

The melting point of the NiAl3 was necessary for the calculation of density and it could be 

derived from the phase diagram of a Ni-Al alloy system (Figure 4.1). [17]

 

Figure 4.1: phase diagram of a Ni-Al alloy system 

According to the mole fraction of NiAl3, the melting point of the alloy turns out to be 1100℃, 

1373.15K. Thus, the density of the alloy at the laminar-turbulent transition can be derived from 

the following equation with the data of metal densities [17]:  
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      (          ) (4.3) 

 

where ρ is Density at a certain temperature;    is density at the melting point; k is temperature 

dependence of density and    is temperature at the melting point. 

Table 4.3: Metal thermophysical properties [17] 

 Molecular 

Weight 

Melting Point 

(K) 

at% wt% k   

(kg/m
3
K) 

Ni 58.69 1728.15 0.25 0.42 -1.19 

Al 26.98 933.47 0.75 0.58 -0.35 

NiAl3  1373.15   -0.7 

 

Table 4.4: Alloy density 

Density (Kg/m
3
) Melting point  

of Metals 

Melting point 

of Alloy (1373.15K) 

Transition 

Temperature 

(1472.15K) 

Ni 7900 8322.45  

Al 2380 2226.11  

NiAl3  4788.52 4718.92 

 

The density of the NiAl3 was estimated to be 4718.92 kg/m
3
 based on the density of Ni and Al. 

The following table shows the material properties adopted in current models. 
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Table 4.5 Thermophysical properties 

Material Properties NiAl3 Error 

Electrical conductivity 

(Ω
-1

m
-1

) [18] 

1.02E+06  

Viscosity (mPa*s) 

[18] 

2.93 25% 

Density (Kg/m
3
) [17] 4718.92 1% 

 

 

4.2 Research method 

4.2.1 Background 

The fluid flow in the EML droplet has been simulated with magnetohydrodynamic models based 

on clearly visible tracer patterns to calculate the Reynolds number at laminar-turbulent transition.  

In Hyers’ previous work [1], the internal convection of EML droplets at laminar-turbulent 

transition in microgravity was regarded as laminar in steady state and was numerically evaluated.  

Also in that work, the geometry of a droplet was defined as a sphere since the force required in 

microgravity to levitate a droplet in space was small enough that the sample could keep its shape 

during the experiments. The simulation result of the steady state model gave the internal 

convection pattern with two recirculation loops. (Figure 2.2) The predicted Reynolds number at 

turbulent transition should be derived from the maximum value of velocity; simulation places this 

number around 600. 
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4.2.2 Magnetohydrodynamics (MHD) models 

In this work, a 2-D steady-state model adopting the commercial software COMSOL was applied 

at first. However, it failed to work. Many initial conditions of velocity and mesh arrangements 

have been taken into account, but the numerical calculation still do not converge.  

Another two steady-state models using both COMSOL and ANSYS have been applied, in which 

the internal convection was regarded as turbulent instead of laminar. The calculation of the 

COMSOL model was considered to be diverged again due to the unreasonable turbulence 

viscosity evaluation. The model using ANSYS performed well and gave a convergent calculation. 

The time-averaged velocity field obtained from the turbulence model is very similar to the 

laminar ones gotten by the Hyers et al. study, which has two symmetric loops directed inward on 

the equator. However, the maximum velocity calculated is so large that the Reynolds number has 

reached up to more than 9000, which is too large to be considered laminar flow. The Reynolds 

number for laminar flow in a pipe should be less than 2000 and convection with Reynolds 

number larger than 4000 is regarded as turbulence. While in an EML droplet, the Reynolds 

numbers at the laminar-turbulent transition was around 600. [1] Since the shape of the sample 

was between that of a sphere and a pipe, the Reynolds number could be believed between 600 and 

2000. It can be concluded that the convection in that situation (Positioning control Voltage=10V, 

Heating control Voltage=10V, Temperature=1472.15K) would become a turbulent in the end. 

Therefore, new transient models were developed in which the process of laminar-turbulent 

transition is traced as a function of time. The period required by the internal flow to transfer to 

turbulence is going to be captured to compare with that from experiments. The evolution of the 

velocity field can be analyzed frame-by-frame corresponding to the value of maximum velocity. 

Since the calculation from the transient models did not match the time to transition obtained from 

the experiment, the different boundary conditions were taken into account. According to the 
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experiment record, there was a wide band which was whiter than other area around the poles. In 

the simulation, the band was considered as solid, instead of liquid, floating on the liquid sample 

surface. The range of the solid was captured manually from the experiment record so that the 

boundary condition was defined as “slip” (liquid) and “no slip” (solid band). However, the time 

to transition obtained by simulation turned out to be around 0.003s, which failed to match with 

the experiment either.  

The internal condition of the liquid sample was taken into account too. The existence of the solid 

tracer particles indicates there was solid inside. Since the sample deformed to a smooth ellipsoid, 

it was impossible that a large amount of the solid left in the sample. To figure out the effect of the 

solid on flow, the sample was assumed to have a large amount of solid portion in the center which 

was of shape of apple core. The boundary conditions were applied, too. The models still provided 

a time to transition of 0.003s, which failed to match with that of experiment. 

 

4.2.3 Geometry 

In the simulations completed by Hyers et al. [1], it is reasonable to consider the droplet as a 

sphere at the laminar-turbulent transition since the positioning force needed in space is small 

enough to neglect its effect on the sample shape. While in this work, a droplet of NiAl3 was 

electromagnetically levitated in parabolic flight experiments. The force distribution on the sample 

is different from that in microgravity experiments. To guarantee the safety of the experiments, it 

is necessary for the sample to sustain an equilibrium position in the holder, or at least not escape 

from the holder. Thus, the force provided by the positioning field is much larger than that 

required by levitation.  

From the record of the side view, it’s easy to notice that the shape of the sample began to deform 

even before the sample totally melted. The radius of the equator kept shrinking as that of the 
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poles enlarged during the melting process. The droplet had become an ellipsoid at the laminar-

turbulent transition. Therefore, in this work both sphere and ellipsoid geometry should be taken 

into account and the ellipsoid mesh is expected to give a much more accurate result than a sphere 

one.  

Two 2-D axi-symmetric geometries have been adopted by the numerical modeling of EML NiAl3 

droplet. Figure 4.2 shows the two different geometries applied by the simulation. The left one is 

an ideal sphere, as in previous simulations, which assumes the droplet retained its shape over the 

experiment (Figure 4.2 Left). The right one is an ellipsoid, which was captured from frames of 

side view record (Figure 4.1). Here, the droplet was deformed on the laminar-turbulent transition. 

(Figure 4.2 Right)  
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Figure 4.2: Mesh. Left: Sphere, 7mm in diameter; Right: Ellipsoid, 8.82mm in long axis and 6.22 

in short axis. 

 

4.2.4 Boundary conditions 

In all the steady state models and the first few transient models, the droplet was supposed to hold 

free surface—“Slip” (Figure 4.3), which means both the normal component of velocity and shear 

stress on the surface are equal to zero, because the sample was believed to have been fully molten 
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when the laminar-turbulent transition occurred. The equations for free surface of laminar flow 

refer to equation (1.6). 

 

Figure 4.3 : The boundary condition was defined as free surface—“Slip”. The left one adopted 

the geometry of sphere and the right one used ellipsoid. 

Since all the models are all 2-D axis-symmetrical, the condition on the axis was pretty similar to 

the surface (Figure 4.4) —both the normal component of velocity on the axis and the derivative 

of velocity perpendicular to the axis are equal to zero (Equation 4.4 and 4.5): 

 

   
     

|
    

   
(4.4) 

       |    
   (4.5) 
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Figure 4.4: Symmetric axis in both sphere (Left) and ellipsoid (Right) geometry. 

From the experiment record, the tracer particles accumulated to give a band around the equator of 

the sample, which was the brighter part observed by the side view (Figure 4.5 Left). This 

collection of the tracer particles was regarded as a solid, meaning for certain models,  the 

boundary conditions were made up of combined “Slip+non-Slip” surfaces.  
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Figure 4.5: The band (Brighter area in the left picture) on the equator was composed of unsolved 

tracer particles, which created a solid shell impeded the internal fluid flow (Right). 

In modelling, the boundary conditions were defined just like the figure 4.6. 
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Figure 4.6: “Slip+non-Slip” boundary conditions on both sphere and ellipsoid geometry. 

 

4.2.5 Solid core 

Since neither the geometry nor boundary conditions matters the time to transition, a model with a 

solid core was made to see whether the internal condition affects the simulation result. The “solid 

core” means that the sample was considered as part molten when the laminar-turbulent transition 

occurred and the core area of the sample was defined as solid like an apple core. Because the area 

of the equator received more heating energy with a higher temperature and the direction of the 

flow was inward on the equator. Both of those factors were good for the melting process. Thus, 

the shape of the solid core was defined as the figure 4.7. 
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Figure 4.7: The boundary conditions in the model with a solid core, which are assumed to have a 

non-slip boundary condition at the interface between  the solid core and the liquid part. 

 

4.2.6 Summary 

Table 4.6 gives a brief summary of the models that have been tested. The calculation for the first 

2 groups did not converge, so the internal convection was not in a steady state. The 3rd steady 

state model provided a converged calculation, but the convection was considered turbulent flow 
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instead of high-Reynolds-number laminar. Thus, the fluid flow should become turbulent 

eventually. The 4th, 5th, and 6th groups adopted the transient model in which convection was not 

independent of time and the time to transition obtained from the models would be compared with 

the one acquired from the experiment record. The geometry, boundary conditions, and the 

internal structure were also listed in the table.  

Table 4.6 Numerical Models 

 State Convection Mesh Boundary 

Conditions 

Internal 

condition 

Commercial 

Software 

Calculation 

1 Steady 

State 

Laminar Sphere Slip Liquid COMSOL Did Not 

Converge 

2 Steady 

State 

Turbulent Sphere Slip Liquid COMSOL Did Not 

Converge 

3 Steady 

State 

Turbulent Sphere & 

Ellipsoid 

Slip Liquid ANSYS Converged 

4 Transient Laminar Sphere & 

Ellipsoid 

Slip Liquid COMSOL Converged 

5 Transient Laminar Sphere & 

Ellipsoid 

Slip & 

Slip+non-

Slip 

Liquid COMSOL Converged 

6 Transient Laminar Sphere & 

Ellipsoid 

Slip & 

Slip+non-

Slip 

Solid 

core 

COMSOL Converged 
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CHAPTER 5 

SIMULATION RESULT 

5.1 Steady state model 

 

Figure 5.1: Left: Velocity field evaluated by sphere mesh (Re=11064.5); Right: Velocity field 

evaluated by ellipsoid domain (Re=11323.64). 

The calculation of the steady state model eventually converged and figure 5.1 shows the 

simulation results of the velocity field with different meshes. (Figure 5.1, Left: the sample was 

regarded as a perfect sphere, Right: the shape captured from the experiment record). There are 

two symmetric loops in the pattern, which is very similar to the one obtained from laminar flow 

simulation. However, this result provides a time-averaged velocity value at each point, rather than 
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relaying the exact motion of the flow, and the arrow gives the direction of the time-averaged 

velocity. According to the legend corresponding to each mesh, the maximum value has reached 

up to around 1m/s. Thus, the Reynolds number can be calculated by equation (1.9) and turns out 

to be 11065 (Left) and 11324 (Right), which is too large to be considered laminar flow. (Re≤600 

[1]) In the calculation, the reference length used by the sphere domain (Left) was the diameter of 

the droplet. While the short axis of the ellipsoid was regarded as the reference length of the 

deformed droplet for the shape of the deformed droplet was like between a sphere and a pipe. 

Therefore, it is a turbulent flow. It can be concluded that under the experiment, conditions of the 

laminar-turbulent transition occurred; the internal convection became turbulent eventually.  

Although derived from different meshes, the two patterns of velocity field are very similar, with 

two symmetric loops directed inward on the equator.  The maximum values of velocity are also 

close, reaching up to 1m/s near the boundary of the sample surface. In fact, there is very little 

difference between two simulation results.  

 

5.2 Transient model--Geometry 

One hypothesis for the discrepancy of time to transition between the experiment and the steady-

state model is that the flow becomes turbulent before reaching steady state. Accordingly, transient 

models adopting two kinds of geometries were constructed. 

According to the experiment record, the Reynolds number should be around 800 and the 

maximum velocity of the fluid flow should be about 0.076m/s on at the onset of the laminar-

turbulent transition. (Chapter 3) 

From the video of the experiment, it took 0.371s for the fluid flow to become turbulent.  
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Two kinds of geometries have been tested in the 4
th

 group of transient models. Compared with the 

time to transition from experiment—0.371s, there was no obvious difference of those obtained 

from two geometries which turned out to be 0.0025s and 0.0013s (Figure 5.2 and Figure 5.3). In 

other words, the internal fluid flow was accelerated to turbulence almost instantly, which is far 

different from the time to transition captured from the experiment, 0.371s. Therefore, the 

difference in the shape of the geometry cannot explain the discrepancy between the MHD models 

and the experiment result.  

Since the velocity field obtained from transient model was not fully developed (Figure 5.4), the 

pattern of the velocity field was different from that of steady-state models (3
rd

 group). The flow 

near the axis in the steady state model had a high velocity, while in the transient model, the 

convection near the axis show low velocity. 

 

Figure 5.2: The velocity field and streamline obtained from the transient model with sphere 

geometry. The maximum velocity had reached up to 0.07m/s when the electromagnetic force was 

fully loaded. The Reynolds number was around 800. 
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Figure 5.3: The velocity field and streamline obtained from the transient model with ellipsoid 

geometry. The Reynolds number had already reached up to about 800 at 0.0013s, which means 

the internal fluid flow was accelerated to turbulence immediately. 
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Figure 5.4: Frames before the maximum reached up to 0.07s, obtained from the simulation result 

of the velocity field.  

The hypothesis that the internal fluid flow needed a longer time to become turbulent because of 

the less distributed force due to the deformed shape was denied. Although both geometries have 
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been tested, the fluid flow was accelerated sharply to become turbulence. The geometry did affect 

the time to transition (Sphere: 0.0025s; Ellipsoid: 0.0013s), but cannot explain the discrepancy 

between the experiment and the simulation. 

 

5.3 Transient model—Boundary conditions 

According to the experiment record, the solid tracer particles gathered around the equator to form 

a solid shell which was more like a wall than the free surface of droplet. Thus, the boundary 

conditions of the domain in the 5
th

 group were composed of “slip” (liquid-free surface) and “non-

slip” (solid) for liquid and solid surface. The area close to two poles of the sample were defined 

as “slip” for free surface while the band around the equator used “non-slip”. 

From the models adopting “slip+non-slip” boundary conditions, the figure 5.5 and 5.6 provide the 

velocity field and streamline when the Reynolds number reached up to around 800. Figures 5.7, 

5.8, 5.9, 5.10 gave a view of how the “non-slip” boundary affects the fluid flow on the sample 

surface—the boundary layer developed (Figure 6.4 and Figure 6.6). The time to transitions 

calculated by the different geometries were 0.0026s and 0.003s respectively, which show little 

difference. Moreover, the time to transition did not last long enough to be comparable with the 

one captured from the experiment (0.371s). Thus the “slip+non-slip” boundary condition did 

affect the velocity field in the sample but was not the main factor to influence the time to 

transition.  
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Figure 5.5: The velocity field and streamline obtained from the transient model with “slip+non-

slip” boundary conditions and sphere geometry. The time to transition needed by the flow was 

very small, 0.0026s, which means the boundary conditions did not relate to the calculation result 

directly. 
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Figure 5.6: The velocity field and streamline obtained from the transient model with “slip+non-

slip” boundary conditions and ellipsoid geometry. Time to transition required was still very short 

that only 0.003s, which means, the flow reached up to turbulence right after the electromagnetic 

force fully loaded.  
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Figure 5.7: The velocity field near the sample surface in the 4
th

 group of transient models with 

sphere geometry. 
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Figure 5.8: The velocity field near the sample surface in the 5
th

 group of transient models with 

sphere geometry. The path of fluid flow near the surface was bended due to the “non-slip” 

boundary condition. 
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Figure 5.9: The velocity field near the sample surface in the 4
th

 group of transient models with 

ellipsoid geometry. 
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Figure 5.10: The velocity field near the sample surface in the 5
th

 group of transient models with 

ellipsoid geometry. The path of fluid flow near the surface was bended due to the “non-slip” 

boundary condition too. 

Therefore, the hypothesis that part of the solid band on the surface delayed the internal fluid flow 

was denied. The time to transition from the numerical models with “slip+non-slip” boundary 

conditions was too short to be compared with that from experiment, even using the ellipsoid 

geometry.  

The following table shows the summery of the time to transition. 

Table 5.1 Time to transition from the 5th and 6th group of models. 

Time (s) Sphere Ellipsoid 

“Slip” (5
th

 group) 0.0025 0.0013 

“Slip+Non-Slip” (6
th

 group) 0.0026 0.003 
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It is obvious that the “slip+non-slip” boundary condition decreases the effect of geometry (Sphere 

vs Ellipse), but large effect on ellipse domain (Slip vs Non-slip).   

 

5.4 Transient model—Solid core 

The internal condition of the sample was taken into account too. The 3
rd

 model showed that the 

convection should become turbulent eventually. However, the fluid flow required 0.37s to 

approach the laminar-turbulent transition according to the experiment record, while the model did 

this instantly. From the 4
th

 and 5
th

 groups of models evaluation, neither the shape of the 

geometries nor boundary conditions was the main cause of the delay of internal fluid flow. Thus, 

a model with an assumed solid core was tested. The figure 5.11 gave the calculation result. 

 

Figure 5.11: The velocity field and streamline obtained from the transient model with a solid core 

in shape of an apple core. There was little difference show in the time to transition, which is very 

short and was not comparable with the one from the experiment.  
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From the result, the fluid flow spent only 0.002s to reach up 0.07m/s, Reynolds number around 

800, which was too short to explain the time to transition obtained from experience. According to 

the simulation result of 4th and 5th group, the flow was slow already where solid could be, so 

there was only little effect of solid inside. The assumption of solid core did not affect the 

numerical evaluation. 

Moreover, since the experiment temperature 1472.15K (1199℃) on laminar-turbulent transition 

was higher than the melting point 1373.15K (1100℃), (see Phase Diagram Figure 4.1), there 

should be no large range of solid structures left in the core area to hinder the flow from being 

accelerated. The hypothesis of a solid part with a “tree-like” structure was cancelled out too, 

because if there were a “tree-like” structure filled in the liquid sample, the path of tracer particles 

would be bent instead of straight. From the experiment record, it was very clearly that the tracers 

were drawn from the pole and moving to accumulate the bright solid band directly. 

Therefore, the hypothesis that there was still solid part left and the solid structure hindered the 

convection was disproven. Thus, the existence of internal solid structures does not explain the 

discrepancy.  
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CHAPTER 6 

CONCLUSION 

1. The tracer particles’ movement on the sample surface provided the convection condition 

due to the small Stokes number. The top view of observation in the experiment gave a 

better insight of the internal convection, because the side view was obscured by a solid 

shell, probably of oxide. 

2. The Reynolds number at the turbulent transition was estimated as approximately 860. 

3. Although the flow observed from the video transitioned from laminar to turbulent, the 

Reynolds number calculated by steady state model was too large for the flow to be 

laminar at equilibrium. The flow might exist in a superlaminar state for a while before 

transitioning to turbulence.  Moreover, the formation of eddies is a transient process that 

also takes some time. Therefore, the laminar-turbulent transition happened during the 

acceleration of the flow. The flow accelerated very fast, which is determined by the 

electromagnetic force and density of the flow on a given volume element. 

4. Predicted time to transition showed a significant difference (~ up to 300 times) compared 

with the experiment.  

5. The simulation results show that none of proposed hypotheses can explain the transition 

of the high velocity convection in this case of NiAl3: the shape of the geometry, the 

boundary conditions, or a solid core. The simulations predict that the flow would become 

turbulent almost instantaneously after the droplet was fully molten. There are important 

physics shown by the simulation were not captured. 
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CHAPTER 7 

FUTURE WORK 

1. In the future work, new hypotheses need to be tested in simulations to explain the 

transient time of the high velocity in this case of NiAl3. 

2. New experiments should be designed which can be modeled more accurately. The 

internal convection should be quasistatic. To obtain slower transients, smaller forces or 

higher viscosity are required. In addition, a simpler boundary condition and geometry are 

good for the calculation too. 

3. The experiments and numerical evaluation of the case from the literature [1] needs to be 

repeated to examine whether there were important physics not captured before.   
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