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SUMMARY 

Multi-layered electronic packages continue to increase in complexity with 

demands for greater functionality.  Interfacial delamination remains a prominent failure 

mechanism due to mismatch of coefficient of thermal expansion.  Numerous studies have 

investigated interfacial cracking in on-chip and off-chip interfaces in microelectronic 

packages.  These studies commonly use classical interfacial fracture mechanics analyses 

which require some knowledge of starter crack locations and crack propagation paths.  

Cohesive zone theory has been identified as an alternative method for modeling crack 

propagation and delamination without the need for a pre-existing crack.  In a cohesive 

zone approach, traction forces between surfaces are related to the crack tip opening 

displacement and are governed by a traction-separation law.  Unlike traditional fracture 

mechanics approaches, cohesive zone analyses can predict starter crack locations and 

directions or simulate complex geometries with more than one type of interface. 

In a cohesive zone model, cohesive zone elements are placed along material 

interfaces.  Deformation and separation of these elements under mixed-mode loading 

conditions are guided by traction-separation laws.  Parameters that define these laws must 

be experimentally determined to be able to predict delamination propagation in a 

microelectronic package.  The objective of this work is to study delamination propagation 

in a copper/mold compound interface through cohesive zone modeling.  Mold compound 

and copper samples are fabricated, and such samples are used in experiments such as a 

four-point bend test and double cantilever beam test to obtain the cohesive zone model 

parameters for a range of mode mixity.  The developed cohesive zone elements are then 
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placed in a small-outline integrated circuit (SOIC) package model at the interface 

between a thermoset epoxy mold compound and a copper leadframe.  The package is 

simulated to go through thermal profiles associated with the fabrication of the package, 

and the potential locations for delamination are determined by examining the damage 

parameter of the cohesive zone elements.  Design guidelines are developed to reduce 

mold compound/copper leadframe interfacial delamination. 



 

1 

CHAPTER 1 

INTRODUCTION 

Miniaturization and rising performance demands have led to the introduction of 

multilayered structures in modern microelectronic packages.  During fabrication and 

assembly processes, these multilayered systems are subjected to several thermal 

excursions.  During such thermal excursions, thermo-mechanical stresses develop due to 

coefficient of thermal expansion mismatch among different material layers in the 

package, and these stresses can be high enough to result in interfacial delamination.   

Over the years, fracture mechanics has become the preferred method for studying 

interfacial delamination because it takes crack geometry into account and avoids 

singularity issues involved with stressed-based approaches.  But fracture mechanics is 

limited since it requires knowledge of a pre-existing crack, and such knowledge is rarely 

known a priori. 

Cohesive zone modeling is an emerging technique that can be used to study 

interfacial delamination.  Both crack initiation and propagation may be simulated with 

cohesive zone modeling since no pre-existing crack is required, and multiple cracks may 

be simulated in one model.  For these reasons, cohesive zone modeling of interfacial 

delamination is seen as a valuable alternative to fracture mechanics approaches. 
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CHAPTER 2 

BACKGROUND AND MOTIVATION 

Microelectronic packaging is a multi-disciplinary field that requires careful 

consideration of many electrical, thermal, and mechanical tradeoffs.  These tradeoffs are 

driven by performance, cost, and reliability requirements [1].  Mechanical reliability is 

essentially durability: a reliable microelectronic package should perform its required 

function throughout its design lifetime.  Reliability should be considered at all design 

stages to prevent package failure [2]. 

Interfacial delamination is one method of microelectronic package failure that is 

prevalent in packages with dissimilar materials.  Mismatch in coefficients of thermal 

expansion (CTE) generates stresses along the interface between the layers during thermal 

excursions either due to operating environmental conditions and/or due to power cycling 

of devices.  Therefore, multi-material interfaces are common points of delamination 

failure since directly bonded interfaces and adhesively bonded interfaces are generally 

weaker than cohesive materials.  This has prompted numerous experimental [3-6] and 

analytical studies [7-12] of interfacial strength. 

Many experimental methods are available for studying interfacial strength.  Tests 

such as tab pull test, button shear test, single leg bending, etc. have been used to 

investigate interfacial fracture properties [7, 8, 13-16].  Such tests effectively compare 

adhesion in a qualitative sense, but quantitative results are more difficult to obtain. 

For simple stacked geometries, some closed-form stress solutions are available, 

but these solutions are lacking in scope.  For more complex geometries, solutions are 
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very complex, or they are unavailable.  Closed-form solutions require a number of 

assumptions and do not normally account for temperature-, time-, and direction-

dependent material properties.  Often, they are limited to elastic regimes.  Also, interfaces 

and sharp corners can produce singularity issues.  For these reasons, a fracture mechanics 

approach is preferred over a stress-based analysis.  

Fracture mechanics describes stresses in a body near a pre-existing crack tip.  

Knowledge of the starter crack size and location must be assumed for a fracture 

mechanics analysis.  A parameter such as stress intensity factor (SIF) or strain energy 

release rate (SERR) is used to study crack propagation.  Such parameters consider many 

factors, including loading applied, crack size and location, and material properties.  If the 

parameter exceeds the critical SIF or the critical SERR, the crack is expected to 

propagate.  Analytical calculations of fracture mechanics parameters are frequently 

difficult, especially when the geometry is complex or when the material behavior is 

temperature- and direction-dependent or inelastic.  In such situations, finite element 

modeling (FEM) is commonly used as a tool for fracture mechanics analysis. 

Critical SERR measurements have been used to perform classical fracture 

mechanics analyses of interfacial delamination to improve mechanical reliability in 

microelectronic packaging [17-20].  FEM is used to create a model of a package such as 

small outline integrated circuit (SOIC) package or flip-chip package, and a starter crack 

of known geometry and size is modeled at a probable failure region.  Appropriate loading 

is applied.  SERR is obtained from well-known methods like virtual crack closure 

technique (VCCT), virtual crack extension technique, J-integral, etc. [e.g. 17, 18, 21, 22, 

23].  The crack is expected to grow if the SERR exceeds the critical SERR. 
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Fracture mechanics is adequate for analyzing geometries with well-known starter 

crack locations.  Crack propagation can be simulated with FEM using nodal release 

techniques, but several iterations are required to re-check failure criteria as the crack 

grows.  Also, fracture mechanics does not describe crack initiation, and analyses must be 

repeated several times to simulate different starter crack geometries.  In any case, fracture 

mechanics involves several unknowns since starter crack size and geometry are rarely 

known a priori. 

Cohesive zone (CZ) modeling is an emerging technology capable of simulating 

crack initiation and crack propagation with multiple crack locations in one model.  With 

these advantages, CZ modeling has been identified as a highly useful technique for 

studying interfacial delamination in microelectronic packaging to improve mechanical 

reliability.  Interfacial fracture experiments and CZ models have been used to simulate 

several types of interface, including integrated thin-film structures, adhesively bonded 

polymers, glass/elastomer, and on-chip interfaces [24-27].  In this work, cohesive zone 

modeling is used to study interfacial delamination in a copper leadframe/epoxy molding 

compound (EMC) interface with the goal of improving mechanical reliability. 

A fully defined cohesive zone model of a copper/EMC interface may be inserted 

into models of microelectronic packages with such an interface, like small-outline 

integrated circuit (SOIC), flip-chip, or stacked IC packages.  With CZ elements, the 

package model is a predictive model that can be used to simulate various conditions and 

determine if interfacial cracking will occur.  This work will fully define a CZ model for a 

copper/EMC interface and insert CZ elements into an SOIC model at the interface 

between copper leadframe and epoxy molding compound. 
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CHAPTER 3 

OBJECTIVES AND SCOPE OF THE RESEARCH 

Computer simulation tools have become a fundamental tool for studying and 

preventing interfacial delamination in microelectronic packaging.  Fracture mechanics 

approaches have been successful, but such techniques have several limitations.  Fracture 

mechanics cannot predict crack initiation or describe geometries involving multiple 

cracks.  Cohesive zone modeling has been identified as a solution to these limitations.  

Cohesive zone models may be used to study interfacial delamination, but well-defined 

procedures for using cohesive zone models have not yet been developed.  The objectives 

of this thesis are to study mold compound/copper interfacial delamination through the 

development of cohesive zone models and to employ such models to develop design 

guidelines for minimizing interfacial delamination in a microelectronic package.  Based 

on these objectives, the methods of this work are as outlined below: 

 

1. Characterize the critical SERR of a copper/EMC interface by performing 

interfacial fracture experiments.  Measure critical SERR at different mode-mixity 

and record load-displacement data. 

2. Create 2D models of interfacial fracture experiments and determine mode-mixity 

through FEM to characterize critical SERR versus mode-mixity. 

3. Create 2D cohesive zone models of interfacial fracture experiments.  Apply 

critical SERR values from experiments and determine all six cohesive zone 
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parameters for mixed-mode interfacial delamination of a copper/EMC interface 

by mimicking experimental load-displacement data. 

4. Create a 2D model of a typical SOIC package.  Identify appropriate material 

models and apply thermal excursions involved in package fabrication.  Use 

element birth and death to develop a process model of package assembly. 

5. Create a starter crack in the SOIC model and use fracture mechanics techniques to 

evaluate SERR and compare to critical SERR obtained from experiments. 

6. Create a predictive model by applying cohesive zone elements at interfaces 

between thermoset EMC and copper leadframe.  Examine interfacial delamination 

to determine if the interface will fail. 

7. Perform various simulations using the predictive model to evaluate the effects of 

various model geometries on interfacial delamination.  Develop geometric design 

and process guidelines to reduce interfacial delamination in SOIC packages. 
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CHAPTER 4 

LITERATURE REVIEW 

Microelectronic packaging increases in complexity as demands for functionality 

increase, but interfacial delamination has been studied as a critical failure mode for over 

twenty years.  The majority of electronic packages undergo numerous thermal excursions 

over a lifetime.  As a result, thermo-mechanical stresses caused by CTE mismatch cannot 

be avoided.  Several tools are available to investigate failure criteria and determine if 

thermo-mechanical stresses will exceed these criteria.  Fracture mechanics has been used 

repeatedly to evaluate interfacial strength and investigate delamination propagation from 

various starter cracks.  In reality, location and size of starter cracks are not known a 

priori.  To overcome these limitations, cohesive zone modeling has been identified as a 

method for analyzing interfacial delamination. 

4.1 Linear Elastic Fracture Mechanics 

Fracture mechanics has been the dominant tool for studying interfacial 

delamination for many years and has been used time and time again to study die/die 

attach interfaces,  copper leadframe/resin interfaces, copper leadframe/molding 

compound interfaces, and others [4].  In a fracture mechanics approach, experiments are 

used to quantify a failure criterion for the interface.  Then package geometry is modeled, 

and simulated loading criteria are compared to the failure criteria.  If the loading criteria 

exceed the failure criteria, delamination is expected to propagate. 
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Linear elastic fracture mechanics (LEFM) defines two parameters which are 

commonly used to evaluate failure criteria around a pre-existing crack or defect.  Stress 

intensity factor and strain energy release rate have both been used effectively to analyze 

cracking and delamination, though recent studies have largely utilized strain energy 

release rate methods.  In either case, fracture mechanics assumes an initial crack or defect 

exists in the material. 

4.1.1 Stress Intensity Factor 

In homogenous bodies, several studies of stress fields around a crack tip yielded a 

number of closed form equations describing stresses in the body, with Irwin and Orowan 

among the earliest [28, 29].  By defining a polar coordinate system from the crack tip, 

later studies found that stress fields can be generalized to vary with a single parameter, 

defined as the stress intensity factor (SIF), represented by K.  K is given a subscript to 

determine the mode of loading.  Fig. 4.1 shows the modes of loading that may be applied 

to a crack in a 2D case.  Loading that induces both normal and shear stresses near the 

crack tip is said to be mixed-mode. 

 

 

Figure 4.1: Loading modes for a 2D cracked geometry. 
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The stress field ahead of a crack tip for mode I loading can be described by the 

following equations [30]. 
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The equations give normal stresses in the x and y directions (σxx, σxx) and x-y shear 

stress (τxy).  r and θ are polar coordinates shown in Fig. 4.1.  KI is the mode I SIF.  The 

stress field ahead of a crack tip for mode II loading is described by the following 

equations [30]. 
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Similarly, KII is the mode II stress intensity factor.  Thus, the stress field 

magnitudes for 2D problems are completely defined by KI and KII.  Stress field solutions 
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may be superimposed to obtain stresses near the crack tip for mixed mode loading 

conditions. 

K can be calculated analytically as a function of far-field stress and crack length 

for several known loading configurations for cracked structures.  Homogenous materials 

tend to crack under pure mode I conditions, so the critical value which causes fracture is 

known as critical stress intensity factor KIC.  Critical SIF is a material property that can be 

measured through fracture experiments.  Then if K exceeds KIC in any cracked body of 

the same material, the crack will propagate. 

4.1.2 Strain Energy Release Rate 

In an energy-based fracture mechanics approach, strain energy release rate 

(SERR) is used to analyze crack growth.  To extend a crack, energy input is required to 

create two new surfaces of unit area within the material.  The rate of change of this 

energy with respect to crack area is defined as SERR G.  Another interpretation of G is 

the energy available from applied loading for the crack to propagate.  Irwin defined 

energy release rate as a modified form of the Griffith energy balance, where Π is the 

potential energy stored within an elastic body and A is the crack area [30]: 
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For linear elastic fracture mechanics, G varies directly with KI
2
 according to the 

following equation [30]: 
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Similar to the stress intensity factor method for analyzing crack growth, crack 

extension occurs when G reaches a critical value, known as critical strain energy release 

rate GC.  Like KIC, GC is a material property for cohesive materials.  If G exceeds GC in 

any geometry, the crack will propagate. 

4.1.3 Virtual Crack Closure Technique 

In many cases, closed form equations of SERR are available for known 

geometries.  For simple geometries, such as fracture toughness test geometries, formulas 

may be derived from classical beam theory, energy balances, or from SIF analyses.  But 

in cases where equations are difficult to derive analytically, numerical solutions are 

available.  Several techniques for SERR measurement are implemented in FEM software, 

including virtual crack extension, virtual crack closure, and J-integral techniques, all of 

which have been shown to produce comparable results [31].  For this work, virtual crack 

closure technique (VCCT) is utilized to calculate SERR for interfacial fracture tests. 

The crack closure technique was developed by Rybicki and Kanninen [32].  To 

apply VCCT, a crack tip is incorporated into an FEM model.  VCCT theory does not 

require crack tip singularity elements to capture crack tip behavior.  In a 2D case, a crack 

tip is constructed in the model by leaving nodes uncoupled along a crack length a. Crack 

tip geometry is shown in Fig. 4.2.  Elements are eight node quadratic elements. 

 



 

12 

 

Figure 4.2: Crack tip geometry for VCCT calculations. 

VCCT assumes that as the crack extends from length a to a + Δa, the state of the 

crack tip remains unchanged [32, 33].  In other words, crack tip opening displacements 

and forces at the crack tip are presumed to be identical for small Δa.  Therefore, the 

energy released by extending the crack by Δa is equivalent to the energy required to close 

the crack along a length Δa.  The following equations are used to calculate G using eight 

node elements [33]. 
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v and u are vertical and horizontal displacements, respectively, and Y and X are 

vertical and horizontal nodal forces at the crack tip.  To obtain Y and X, elemental forces 
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are summed from the upper surface only.  For the 2D case, total SERR is calculated as   

G = GI + GII. 

4.1.4 J-Integral Technique 

J-Integral is another technique implemented in FEM software that has been used 

to calculate SERR [9, 31].  The J-Integral was proposed by Rice as the energy release rate 

in a cracked nonlinear elastic body [10].  For a 2D case, J can be reduced to a path-

independent line integral around the crack tip as follows [30]. 

 

   ∫ (      
   

  
  )

 
  (4.6) 

 

J is the path-independent nonlinear energy release rate along a contour Γ.  w is the 

strain energy density, the traction vector has components Ti, and ui are displacement 

vector components.  Since J-Integral considers nonlinear effects, it can be used to analyze 

cracking with elastic-plastic materials.  For the elastic case, J is equivalent to G. 

4.1.5 Interfacial Fracture Mechanics 

All of the methods discussed up to now have described cohesive fracture behavior 

of homogeneous materials.  Applying fracture mechanics techniques to an interfacial 

crack between dissimilar materials introduces additional challenges.  A bimaterial 

interfacial crack is shown in Fig. 4.3. 
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Figure 4.3: A bimaterial crack between two dissimilar materials. 

The bimaterial fracture problem was first solved analytically by Williams, who 

determined the stresses surrounding a singularity at a sharp crack tip [34].  An interfacial 

crack is described by the bimaterial constant ε, calculated by (4.7) [35]. 
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ε is the bimaterial constant and β is one of the Dundur’s parameters.  A greater 

magnitude of ε indicates less similar materials.  In a homogenous material, ε = β = 0.  

Subscripts in equation (4.7) refer to materials in Fig. 4.3.  μi are shear moduli where        

μi = Ei/[2(1 + νi)], and for plane strain ζi = (3 - 4νi).  Due to the dissimilarity of materials, 

an interface crack experiences mixed mode conditions even when pure mode I loading is 

applied [35].  The SIF stress field solution for bimaterial fracture is given by (4.8) [21].  
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For linear elastic materials, VCCT and J-integral calculations are valid for bimaterial 

interfacial fracture. 

 

         
 

√   
(  

      
 )     (4.8) 

 

K = KI* + iKII* is a complex stress intensity factor that does not represent opening 

and shear modes strictly for the bimaterial problem.  Thus, unlike homogenous fracture, 

interfacial fracture is heavily dependent on mode-mixity ψ.   

4.1.6 Mode-mixity For Interfacial Fracture 

Several studies have investigated analytical and numerical methods for evaluating 

mode-mixity at a bimaterial interface.  Interfacial mode-mixity is defined as the relative 

proportions of shear to normal tractions ahead of the crack tip [35].  There is abundant 

evidence that critical SERR depends strongly on mode-mixity [7, 36]. 

Analytical methods for calculating mode-mixity have been proposed (e.g. 

Hutchinson and Suo), but they are mathematically complex [37].  Numerical methods 

include crack-surface displacement method, M-integral method, or modified VCCT 

results [9, 38].  For this work, the crack-surface displacement method proposed by Matos 

et al. is used to calculate mode-mixity [9]. 

Crack-surface displacement method uses crack opening displacements from FEM 

at a distance from the crack tip.  Hutchinson and Suo describe crack displacement jumps 

by (4.9) [35]. 
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Vertical and horizontal crack displacements δy and δx (Fig. 4.3) are calculated at a 

distance r from the crack tip.  KI* and KII* are components of the complex bimaterial 

SIF, and ε is the bimaterial constant.  1/E* is calculated as the average compliance of the 

two materials using plane strain moduli, where the plane strain moduli are given by       

   = Ei/(1 - νi
2
).  l is a characteristic length used to normalize the crack tip distance, 

typically chosen to be specimen width or thickness. 

Crack surface displacements are obtained from a finite element model and mode-

mixity is calculated as follows [35]. 
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ψ is calculated at a distance r which best satisfies (4.11) [35].  In plots, the left 

side of (4.11) is referred to as δ
2
/r, and the right side is referred to as G*. 
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First, G is calculated through VCCT.  Since all other parameters on the right side 

of (4.11) are known, the right side is a constant.  Then using FEM, several displacements 

δx and δy are obtained at varying distance r from the crack tip.  Both sides of (4.11) are 

plotted, and r is selected where the curves intersect. At this distance r, δx and δy are used 

with (4.10) to calculate ψ. 

For characterizing GC across a range of ψ, Hutchinson and Suo present a model in 

(4.12), where GI,C is the critical SERR at zero mode-mixity, and λ is a non-dimensional 

parameter for fitting the model [37]. 

 

               ( (   ))   (4.12) 

 

4.2 Cohesive Zone Model 

Cohesive zone (CZ) modeling is an emerging technology capable of simulating 

crack initiation in addition to crack propagation.  Therefore, a major advantage of 

cohesive zone theory over fracture mechanics theory is that CZ analysis does not require 

knowledge of starter crack size and geometry.  CZ models have been used to simulate 

several types of interfaces, including integrated thin-film structures, adhesively bonded 

polymers, glass/elastomer, and on-chip interfaces [24-27].  Here we apply a CZ technique 

to model delamination between copper leadframe and epoxy molding compound (EMC). 

4.2.1 Cohesive Zone Cracking 

In a CZ model, interfacial separation occurs within a cohesive damage zone when 

the damage exceeds a pre-set limit.  Within the cohesive zone, there are active traction 
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stresses between the cohesive surfaces, and interaction is governed by a traction-

separation law.  Before loading is applied, a CZ zone element is said to be undamaged, 

while a fully damaged element has been completely separated, and does not produce any 

force interactions between the cohesive surfaces.  Fig. 4.4 shows a cohesive zone model 

for interfacial separation. 

 

 

Figure 4.4: Cohesive zone model of interfacial separation. 

The traction σ is exerted by the interface until the interfacial separation  reaches 

a critical value C.  σ is a function of  given by traction-separation law.  As the element 

becomes damaged, the area beneath the traction-separation law is the mechanical work 

needed to separate the element.  Thus, the area beneath the traction-separation law is 

equivalent to GC.  Several shapes of CZ law are available for describing material 

behaviors, as seen in Fig. 4.5, such as bilinear, exponential, trapezoidal, and trilinear [25, 

39].  Such laws allow for cohesive zone elements to model a wide range of material 
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behavior, including the potential for modeling nonlinear behaviors that cannot be 

captured with fracture mechanics. 

 

 

Figure 4.5: Available traction-separation laws for cohesive zone models, including (a) bilinear, (b) 

exponential, (c) trapezoidal, and (d) trilinear laws. 

Defining a bilinear law is nontrivial, as there is currently no way to directly 

measure cohesive zone parameters experimentally.  Of the traction-separation laws 

shown in Fig. 4.5, (b), (c), and (d) require four or more parameters to fully define the 

cohesive zone behavior.  For this work, a bilinear traction-separation law (Fig. 4.5a) is 

used because the curve is defined by only three parameters. 

4.2.2 Bilinear Traction-Separation Law 

The bilinear traction-separation law (Fig. 4.5a) was proposed by Alfano and 

Crisfield for modeling interfacial separation [40].  Several bimaterial interfaces have been 

simulated using this law, though properly defining a mixed-mode law for such interfaces 

remains a challenge.  In this work a bilinear law (Fig. 4.6) is used to model behavior of a 

copper/EMC interface. 
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Figure 4.6: Bilinear traction-separation law for cohesive zone elements. 

The bilinear law shows interfacial traction σ versus interfacial separation δ.  As 

CZ elements undergo deformation, they exhibit elastic loading for δ < δ*.  In this region, 

no damage is accumulated in the interface, and unloading returns CZ elements to their 

initial configuration.  At point A, a critical traction σmax is reached and damage is 

initiated.  Delamination is tracked by a damage parameter D calculated by (4.13).  When 

δ > δ*, D increases, and when δ ≥ δC, D reaches a maximum value of 1. 
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Regardless of the current magnitude of δ, the damage value D can never decrease.  

In other words, unloading will not reduce the damage that has accumulated.  Therefore if 

a CZ element is unloaded while partially damaged, from point B for example, it follows a 
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path of reduced stiffness.  When loading is resumed, the element will have the same 

reduced stiffness until it returns to point B, where further damage will initiate. 

When the damage parameter D = 1, the CZ element is said to be fully damaged, 

and the stiffness of the cohesive zone element is zero.  Thus, a fully damaged element has 

been completely separated and will not produce interactions between layers.  Throughout 

separation, traction is a function of interfacial separation given by (4.14). 

 

   
    

  
(   )  (4.14) 

 

As mentioned previously, the area under the traction-separation profile is the 

critical strain energy release rate, and thus, for the bilinear law, GC = 0.5 δC σmax. 

4.2.3 Mixed-mode Implementation of the Bilinear Law 

In applications, interfacial cracking always propagates in mixed-mode conditions 

[36].  Therefore, two bilinear laws are required to define mixed-mode cohesive zone 

behavior.  The bilinear laws correspond to pure mode I and pure mode II delamination, 

and mixed-mode interpolation is applied by FEM software.  Each bilinear law is defined 

by three parameters: maximum traction σmax, critical displacement δC, and loading-

unloading ratio α = δ*/δC, comprising six total parameters required for a mixed-mode 

cohesive zone model.  This work presents a methodology for determining mixed-mode 

CZ parameters for a copper/EMC interface. 
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CHAPTER 5 

EXPERIMENTAL CHARACTERIZATION OF THE INTERFACE 

As a first step toward obtaining cohesive zone parameters, critical strain energy 

release rate is calculated for the copper/EMC interface.  Since GC is a function of mode-

mixity, GC must be characterized over a range of ψ for any particular interface.  

Researchers have demonstrated several techniques to characterize GC at varying ψ.  

These include mixed-mode bend, end-notched flexure, double cantilever beam, four-point 

bend, superlayer, and magnetic actuation [16, 19, 31, 41-46].  For this work, double 

cantilever beam and four-point bend tests are used.  Load-displacement data is recorded 

and will be used to determine CZ parameters. 

5.1 Bimaterial Copper/EMC Specimens 

Freescale Semiconductor has provided testing specimens for experimental 

characterization of the interface.  Fig. 5.1 shows a bimaterial strip specimen.  The 

specimens are bimaterial strip samples consisting of a layer of EMC molded directly to a 

copper strip.  The assembly procedure is as follows.  A transfer mold is clamped over a 

copper leadframe.  Liquid encapsulant is injected into the mold and cured at 175 °C.  

Samples are ejected from the mold and cooled to room temperature.  Materials used are 

CDA194 copper alloy and Sumitomo Sumikon® EME-G630AY molding compound.  

Material properties for interfacial characterization appear in Table 5.1. 
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Table 5.1: Material properties for bimaterial strip specimens. 

 Copper EMC 

E [GPa] 121 25.0 

ν 0.33 0.30 

 

 

 

Figure 5.1: Bimaterial strip specimen for experimental characterization. 

In some studies, residual stresses and cure shrinkage of the EMC material may be 

considered in calculations of GC.  Consideration of residual stresses and cure shrinkage is 

expected to increase the measured value of GC for a copper/EMC interface [43].  

Therefore, the values calculated in this work without considering residual stresses and 

cure shrinkage are conservative measurements of critical SERR. 

5.2 Double Cantilever Beam Test 

The double cantilever beam (DCB) test has also been used successfully to 

measure critical strain energy release rate.  DCB geometry replicates loading conditions 
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fairly close to mode I and requires loading fixtures to be attached to the specimen.  

Values from load-displacement data are used to calculate GC. 

5.2.1 DCB Experimental Results 

A DCB test schematic appears in Fig. 5.2.  Before testing a pre-crack is created in 

the specimen.  To create the pre-crack, the specimen is clamped a known distance from 

the end and the free end is bent downward to initiate the delamination.  Approximate pre-

crack length is controlled by the placement of the crack.  After the pre-crack has been 

created, aluminum loading fixtures are attached to the specimen using epoxy.  The 

specimen is placed into a Delamination Testing System tensile test machine and fixtures 

are connected via two loading pins.  The loading pins and fixtures are greased before 

assembly to prevent moments from being applied to the specimen. 

 

 

Figure 5.2: Schematic for double cantilever beam test. 

 Displacement-controlled loading is applied in a tensile direction at 10 μm/sec.  

Initially, the load is expected to increase linearly.  At some critical load, load begins to 

decrease.  Load reduction indicates delamination has propagated some distance.  

Although load has decreased and delamination has started to propagate, the exact crack 
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length needs to be determined for analytical calculations as well as for numerical models.  

Therefore, a loading-unloading approach is employed to determine the change in 

compliance and thus crack length [e.g. 27].  The unloading is expected to be linear, with 

increased compliance compared to the initial loading.  The compliance increase confirms 

that the delamination has propagated.  Once the linear unloading is observed, the re-

loading is done.  Load should again increase linearly with the same compliance as the 

unloading curve, until a critical load is reached, and delamination propagates further.  

This process is repeated four to six times.  A test in progress is shown in Fig. 5.3. 

 

  

 

Figure 5.3: Experimental setup for double cantilever beam test. 
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Fig. 5.4 shows a typical load-displacement response from a specimen tested at 

room temperature.  The specimen shows elastic bending after some initial slack in the 

system.  The loading reaches a maximum of about 2.4 N and the load begins to decrease.  

At this time, the loading direction is reversed, and a linear unloading path is observed.  

By observation, the compliance C has increased from the initial loading, indicating 

delamination has propagated some distance.  Loading is again reversed, and this process 

is repeated an additional five times.  Pcrit and C from any unloading curve can be used to 

calculate GC. 

 

 

Figure 5.4: Load-displacement data from a DCB experiment. 

5.2.2 DCB Analytical Calculations 

For a bimaterial interface with layers of dissimilar materials, a strong analytical 

solution for SERR is not available.  Some resources offer derivations from plate theory or 
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SIF analysis that result in complex equations [47, 48].  In cases where one layer is 

significantly thicker, the compliance method may be applied by treating the thinner layer 

as a single cantilever beam [5].  A modified compliance method may produce a good 

approximation for cracks with lengths much longer than beam thickness [48].  In this 

method, the layers of the DCB specimen are treated as separate cantilever beams, 

resulting in the following equation from Soboyejo et al. for mode I SERR [46]. 
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G is the strain energy release rate for mode I loading produced by the DCB 

loading configuration from applied load P.  From Fig. 5.2, a is the crack length and b is 

specimen width.  βE is the stiffness ratio between copper and EMC, and βT is the 

thickness ratio.  Material property E appears in Table 5.1 for both materials.  Knowledge 

of crack length a is required to apply this formula.  Crack length will be determined by 

FEM modeling. 

5.2.3 DCB Numerical Modeling 

For the DCB test, crack length is required to calculate GC.  First, FEM is used to 

obtain crack length from compliance.  Then GC and ψ can be calculated. 

Crack Length 

To obtain crack length, a 2D plane strain model of the DCB test is prepared.  The 

model is shown in Fig. 5.5.  Copper and EMC are assumed to be linear elastic for small 
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deformations, and material properties from Table 5.1 are used.  At the interface, nodes 

are left uncoupled along a preset length a to create a crack.  The remaining nodes at the 

interface are coupled to form the interface.  One node is fixed at the lower surface to 

represent the fixed loading pin.  A vertical displacement is applied to one node at the 

upper loading pin.  Initial simulations show that interfacial stresses are primarily tensile 

and no material inter-penetration occurs, so contact pairings are not necessary for the 

DCB model. 

 

Figure 5.5: 2D model of DCB test. 

The simulation is performed for several crack lengths for 3 mm < a < 15 mm and 

compliance C = displacement/force is recorded for each simulation.  The result is a plot 

of compliance versus crack length, shown in Fig. 5.6.  Least squares regression is used to 

obtain compliance as a cubic function of crack length.  Crack lengths used for 

calculations are summarized in Table 5.2. 
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Figure 5.6: Simulated DCB compliance versus crack length. 

Critical Strain Energy Release Rate 

To obtain GC, results from several unloading curves in Fig. 5.4 will be averaged.  

For example, in the first unloading path shown, least squares regression gives a 

compliance of 0.246 mm/N.  This value is applied to the cubic function in Fig. 5.6, 

yielding a = 9.00 mm.  The subsequent critical force from Fig. 5.4 is Pcrit = 2.23 N.   

The model in Fig. 5.5 is rebuilt with crack length a = 9 mm.  As the Pcrit is known 

for this crack length, the model is re-run, where a force equivalent to Pcrit = 2.23 N is 

applied on the top pin of the DCB specimen.  The critical force is divided by the 

specimen width since the model is 2D.  With these loading conditions, the calculated G 

will be equivalent to GC.  The deformed model is shown in Fig. 5.7. 
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Figure 5.7: Deformed 2D model of DCB test used for calculating GC and ψ. 

The peel stress (σy) plot forms a familiar shape around the crack tip.  The stresses 

vary with both angle and distance from the crack tip, as described by (4.8).  Unlike a 

homogenous cracked body, the stress contours are not symmetric about the x-axis.  To 

determine if yielding occurs in the copper, von mises stress is plotted, and the maximum 

value in the copper is 304 MPa.  This value is below the material yield stress, so the 

linear elastic material assumption is valid. 

The VCCT method is applied to the deformed model to calculate mode I and 

mode II energy release rates.  From the three specimens, several data points are selected 

with various crack lengths, and Table 5.2 shows GC from VCCT.  VCCT returns an 

average GC = 35.6 J/m
2
. 
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Table 5.2: GC calculated for the DCB test. 

C [mm/N] a [mm] Pcrit [N] GC [J/m
2
] 

0.260 9.18 2.2814 35.6 

0.367 10.4 2.0368 36.2 

0.370 10.4 2.0736 37.5 

0.385 10.6 1.9358 33.9 

0.467 11.3 1.8376 34.6 

 

Using the first pairing of values for a and Pcrit from Table 5.2, the analytical 

expression (5.1) returns 37.69 J/m
2
.  Since the analytical expression assumes that all of 

the Pcrit applied contributes to mode I loading, the result is a slight overestimate of GC, 

confirming the results obtained through VCCT. 

Mode-Mixity 

Mode-mixity is obtained through the crack displacement method.  From Fig. 5.7, 

crack displacements are obtained at varying distances from the crack tip.  Both sides of 

(4.11) are plotted in Fig. 5.8.  The curves intersect at r = 0.016 mm, so ψ is calculated at 

this distance from the crack tip.  For the DCB test, ψ = 5.26° using (4.10). 

 

 

Figure 5.8: Determination of r for DCB mode-mixity calculation. 
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5.3 Four-Point Bend Test 

The four-point bend (FPB) test is a popular experiment for critical strain energy 

release rate characterization since it produces stable delamination at the interface and 

does not depend on crack length [7, 31, 43].  The FPB loading configuration produces a 

constant moment between the inner loading pins.  As a result, steady-state interfacial 

delamination occurs, evidenced by displacement increasing at a constant critical load.  

This constant force Pcrit is collected from load-displacement data for use in calculating 

GC. 

5.3.1 FPB Experimental Results 

A FPB test schematic appears in Fig 5.9.  Before testing, the mold compound is 

notched using a DISCO automatic dicing saw to initiate delamination at the interface.  

The notch is centered in the length of the mold compound, and the depth of cut is selected 

so that 100 μm of EMC remains above the copper.  The specimen is placed on two fixed 

support pins with the EMC layer downward.  The notch is centered between the fixed 

support pins, and the loading pins are lowered into contact with the copper.  All loading 

and support pins have diameter 3 mm. 
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Figure 5.9: Schematic for four-point bend test. 

Displacement-controlled loading is applied at a rate of 0.50 mm/min.  The 

specimen is expected to exhibit linear load versus displacement initially.  At some critical 

load, a crack will propagate unstably from the EMC notch to the copper/EMC interface, 

signaled by a load drop.  Then as loading continues, delamination will propagate stably 

along the interface.  Testing is performed on a TestResources tensile test machine.  Load 

and displacement data are recorded throughout by a TestResources force transducer and 

Epsilon Technologies extensometer.  Fig. 5.10 shows an experiment in progress. 
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Figure 5.10: Four-point bend test in progress. 

Fig. 5.11 contains a load-displacement response from one of the specimens tested 

at room temperature.  After some initial slack in the system, the specimen shows a linear 

response.  At a load of approximately 8.2 N, the load drops twice as a crack propagates 

from the EMC notch to the interface.  As displacement increases, the load stabilizes, 

indicating interfacial delamination between EMC and copper.  By comparing data from 

three trials, steady-state delamination can be observed at an average critical load          

Pcrit = 6.25 N. 
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Figure 5.11: Load-displacement data from an FPB experiment. 

5.3.2 FPB Analytical Calculations 

For the bimaterial interface, strain energy release rate may be computed by the 

following equations from Charalambides et al. [49]. ICu is the area moment of inertia of 

the copper strip, while IC is the area moment of inertia of the entire composite beam.  λ is 

a non-dimensional parameter that gives the stiffness ratio between copper and EMC. 
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Critical strain energy release rate GC is obtained by calculating G during the 

steady-state delamination.  Therefore, Pcrit observed in experiments can be substituted 

into (5.2) to determine GC.  For an average Pcrit of 6.25 N, the equation yields                

GC = 44.6 J/m
2
. 

5.3.3 FPB Numerical Modeling 

To calculate the mode-mixity associated with the FPB test, the VCCT method 

was applied using FEM.  A 2D plane-strain model of the FPB test is prepared using 

ANSYS.  Fig. 5.12 shows the model used for VCCT calculations. 

 

 

Figure 5.12: 2D model of FPB test. 

To reduce computation time, a one-half symmetry model is constructed.  Since 

deformations are small, both copper and EMC are assumed to be linear elastic at room 

temperature.  Material properties from Table 5.1 are used.  To capture specimen 

deformation during delamination propagation, a 2 mm delamination is constructed in the 
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interface starting from the symmetry line.  2 mm is selected arbitrarily since G is 

independent of crack length for the FPB test.  Copper nodes at the symmetry boundary 

have displacement constrained in the x-direction.  At the narrow support pin, vertical 

displacement is constrained.  At the wide loading pin, a force equivalent to                   

Pcrit = 6.25 N is applied so that the calculated G = GC.  The applied force is the critical 

force divided by 2b to account for symmetry and the specimen width b.  The deformed 

model is shown in Fig. 5.13.  Initial simulations do not show crack-interpenetrations and 

stresses are primarily tensile, so contact pairings are not used in the model. 

 

 

Figure 5.13: Deformed 2D model of FPB test used for calculating GC and ψ. 

The FPB model shows similar stress contours to those at the DCB crack tip.  The 

contours are asymmetric due to the dissimilar layers.  The stresses vary with distance and 

angle from the crack tip.  The maximum von mises stress is found to be below the copper 

yield stress, so the elastic assumption is accepted. 
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The VCCT method is applied to the deformed model to calculate mode I and 

mode II energy release rates.  From three trials, three measurements are shown in Table 

5.3.  Using the average Pcrit of 6.25 N, VCCT returns an average value GC = 44.6 J/m
2
, 

coincidentally equal to the analytical result. 

Table 5.3: GC calculated for the FPB test. 

 Pcrit [N] GC [J/m
2
] 

Specimen 1 5.946 42.03 

Specimen 2 6.305 47.26 

Specimen 3 6.491 50.09 

Average Force 6.25 44.6 

 

Mode-mixity is obtained through the crack displacement method.  From Fig. 5.13, 

crack displacements are obtained at varying distances from the crack tip.  Both sides of 

(4.11) are plotted in Fig. 5.14.  The curves intersect at r = 0.027 mm, so ψ is calculated at 

this distance from the crack tip.  For the FPB test, ψ = 14.0° using (4.10). 

 

 

Figure 5.14: Determination of r for FPB mode-mixity calculation. 
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5.3.4 FPB Symmetry Assumption 

Analytical and FEM calculations of GC for the FPB test assume a perfect 

symmetry in the specimen.  This means that delamination initiates in both directions from 

the EMC notch simultaneously.  In reality, the delamination may initiate and propagate in 

one direction before traveling in the other direction.   

Noijen et al. investigated the effects of delamination asymmetry on GC 

calculations through FEM [50].  They prepared a model displaying one-sided 

delamination and compared displacements to a fully symmetric model.  They determined 

that differences between symmetric and one-sided delamination are negligible in the 

steady-state delamination phase.  Therefore, symmetry is a valid assumption for 

analytical calculation of critical strain energy release rate. 

5.4 Critical Strain Energy Release Rate Characterization 

The results calculated previously are combined to characterize critical strain 

energy release rate across a range of mode-mixity.  GC versus ψ is plotted in Fig. 5.7.  GC 

is lowest near mode I loading and GC increases significantly with ψ.  The Hutchinson and 

Suo model (4.14) is applied to the model to obtain (5.3).  

 

               (      )   (5.3) 

 



 

40 

 

Figure 5.15: GC versus ψ for the copper/EMC interface. 

The model in (5.3) is fitted using the two data points from DCB and FPB results.  

Since both data points have relatively low mode-mixity, the GC values at higher mode-

mixity are somewhat unknown.  Future experiments will need to measure GC at higher 

mode mixities and confirm the curve fitted in this work.  For this study, the results shown 

in Fig. 5.15 will be applied in FEM software to develop a mixed-mode cohesive zone 

model for the copper/EMC interface. 
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CHAPTER 6 

DETERMINATION OF COHESIVE ZONE PARAMETERS 

To obtain cohesive zone element properties, both FPB and DCB tests are modeled 

and simulated with ANSYS Mechanical APDL.  Since the properties cannot be obtained 

directly through analytical or numerical results, values will be selected to replicate load-

displacement data obtained from experiments. 

6.1 Cohesive Zone Model  

ANSYS® has built-in CZ elements that may be used to simulate interfacial 

delamination.  For 2D models, six node quadratic CZ elements with plane strain are used.  

Fig. 6.1 shows the placement of CZ elements along an interface. 

  

 

Figure 6.1: Placement of cohesive zone elements at the interface. 

Before loading, the elements have zero initial thickness, and nodes from upper 

and lower surfaces are coincident.  A bilinear law is selected to govern interfacial traction 
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and separation.  For the bilinear traction-separation law, six independent parameters are 

required to fully characterize CZ models for mixed-mode loading conditions.  These 

parameters define two bilinear traction-separation laws corresponding to pure mode I and 

pure mode II delamination. 

6.2 DCB Cohesive Zone Modeling 

Since DCB loading of a bimaterial specimen is close to pure mode I loading, a CZ 

model of the DCB test will be prepared first.  The DCB cohesive zone model appears in 

Fig. 6.2. 

 

 

Figure 6.2: 2D cohesive zone model of DCB test. 

The DCB experiment is modeled using 2D elements with plane strain.  Eight node 

quadratic elements are used for copper and EMC layers, and six node quadratic CZ 

elements are inserted along the interface.  An initial crack with pre-set length is placed at 

the left end of the specimen.  Within the crack, no CZ elements are inserted and nodes are 

left uncoupled so that there are no interactions between surfaces.  At the left end of the 

specimen, one copper node at the bottom surface is fixed in both vertical and horizontal 

directions.  One EMC node at the upper surface is used to apply variable displacement 

loading.  Plasticity is again assumed to be negligible for small deformations, and linear 
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elastic material models are used for copper and EMC.  Material properties from Table 5.1 

are used.  Based on results from previous simulations, no contact pairings are used in the 

model. 

6.3 FPB Cohesive Zone Modeling 

A FPB cohesive model of the specimen is also prepared.  The CZ model also 

takes advantage of one-half symmetry to reduce computation time.  The FPB cohesive 

zone model is shown in Fig. 6.3. 

 

 

Figure 6.3: 2D cohesive zone model of FPB test. 

The FPB experiment is modeled using 2D elements with plane strain.  Eight node 

quadratic elements are again used for bimaterial layers, and six node quadratic CZ 

elements are inserted between copper and EMC.  No initial crack is constructed; CZ 

elements are placed throughout the length of the specimen.  To simulate the EMC notch, 
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a symmetry boundary condition is applied only to the copper layer so that the left face of 

the EMC layer is unconstrained.  Plasticity is neglected and linear elastic material models 

are again used with material properties from Table 5.1.  Based on results from previous 

simulations, no contact pairings are included in the model. 

6.4 Simulated Load-Displacement Results 

Using the DCB and FPB cohesive zone models, displacement controlled loading 

is applied to simulate the experimental results.  The cohesive zone parameters are 

selected so that simulated data matches the experimental data 

A general design procedure for determining cohesive zone properties for the 

bilinear traction-separation law is as follows.  First, the mode I bilinear law is considered.  

The area of the triangle is set to GC for mode I from Fig. 5.15.  σmax is adjusted to cause 

delamination at the appropriate critical force.  α can be modified to fine-tune the initial 

slope and shape of the load-displacement response.  For the mode II bilinear law, the area 

of the triangle is set to GC for mode II from Fig. 5.15.  After several iterations, the mixed-

mode CZ model is used to simulate the following results.  

 

6.4.1 Double Cantilever Beam Simulation 

Using the mixed-mode CZ model for copper/EMC interface, a DCB load-

displacement response is simulated for different crack lengths and plotted against data 

from experiments (Fig. 6.4, 6.5). 
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Figure 6.4: Simulated DCB load-displacement data with 9 mm starter crack using cohesive zone 

modeling. 

 

Figure 6.5: Simulated DCB load-displacement data with 6.35 mm starter crack using cohesive zone 

modeling. 

Since compliance varies with crack length, the initial slope and peak force are 

controlled by the pre-set starter crack length.  For crack lengths of 9 mm and 6.35 mm, 

the CZ model is able to capture the experimental behavior.  After an initial peak load, the 
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model shows reduction in load, indicating interfacial delamination in the CZ elements.  

The load continues to drop as displacement increases. 

6.4.2 Four-point Bend Simulation 

Using the same mixed-mode CZ model, the FPB load-displacement response is 

simulated and plotted against experimental results in Fig. 6.6. 

 

 

Figure 6.6: Simulated FPB load-displacement data using cohesive zone modeling. 

Crack propagation through the molding compound is not simulated, so the model 

does not capture the initial peak loads seen in experiments.  The model captures the initial 

specimen stiffness and the constant force Pcrit for steady-state delamination. 

6.5 Cohesive Zone Parameters 

Thus, the selected cohesive zone parameters are capable of replicating mixed-

mode delamination for the FPB test and DCB test.  Load-displacement data captures 
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critical forces and displacements for delamination as well as initial loading stiffness 

behavior.  The mixed-mode bilinear law is shown in Fig. 6.7, with all six parameters 

listed in Table 6.1.  The fully-defined cohesive zone model may be used to simulate 

mixed-mode interfacial delamination between copper leadframe and epoxy molding 

compound in any geometry. 

 

 

Figure 6.7: Mixed-mode bilinear traction-separation law for the copper/EMC interface. 

Table 6.1: Mixed-mode cohesive zone parameters for the copper/EMC interface. 

 Mode I Mode II 

σmax [MPa] 30 400 

δC [μm] 2.373 10 

δ* [μm] 0.2373 1 
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CHAPTER 7 

COPPER/EMC DELAMINATION IN SOIC PACKAGE 

Cohesive zone parameters have been determined as a more powerful tool for 

investigating interfacial delamination between copper and EMC in microelectronic 

packaging.  To demonstrate the use of the mixed-mode CZ model, a small outline 

integrate circuit (SOIC) package is examined. 

In SOIC fabrication, EMC is dispensed by the same transfer molding process used 

to prepare the bimaterial specimens.  Identical EMC/copper materials and cure 

temperatures are used with similar moisture and surface roughness conditions.  Therefore 

the experimental results measured with the bimaterial specimens are expected to provide 

a good representation of the interface within the SOIC package.  Thus, both GC 

measurements and cohesive zone parameters apply to behavior of the copper/EMC 

interface in the SOIC package. 

First, a stress-based analysis of the SOIC package is completed to verify the 

location of the critical region.  A fracture mechanics approach is used to evaluate SERR 

along the critical interface, and results are compared the experimental results.  Finally, 

cohesive zone elements are placed along the interface to determine if the interface will 

fail.  Using the CZ model, design guidelines for SOIC packaging are obtained through a 

parametric study. 

The SOIC package is a common package used in microelectronic design due to 

inexpensive and simple fabrication processes.  The SOIC package has five key 
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components: copper leadframe, silicon die, die attach, wire bond, and molding compound 

(Fig. 7.1).   

 

 

Figure 7.1: 2D cross-section of SOIC package geometry. 

The copper leadframe forms the foundation of the SOIC package.  The leadframe 

holds all functional components of the package and provides interconnections to the 

system board.  The silicon die is attached to the leadframe with a die attach adhesive.  To 

complete the interconnections, wire bonds are formed from the die to the leadframe.  An 

epoxy molding compound (EMC) is applied over the entire package to encapsulate and 

protect the die and wire bonds.  Copper leads extend outside the molding compound to 

form board-level interconnections. 

At either end of the copper pad, EMC is bonded directly to the copper leadframe.  

This interface has been identified as a critical failure location for SOIC packages.  The 

critical interface is shown in Fig. 7.2.  On the right side of the interface, the copper pad is 

bounded by EMC.  On the left, a trimaterial boundary is formed where EMC, copper pad, 
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and die attach meet.  High stresses are expected to develop along the copper/EMC 

interface due to mismatch in CTE between these materials. 

 

 

Figure 7.2: The critical copper/EMC interface located at the exposed copper pad. 

Fabrication of the SOIC package requires two thermal excursions, outlined in Fig. 

7.3.  The leadframe shape is stamped from a copper sheet.  Liquid die attach adhesive is 

dispensed, then the die is attached and the adhesive is cured at 225 °C.  The package is 

cooled to room temperature, and electrical connections to copper leads are formed via 

wire bonding.  Lastly, the package is pre-heated, and a liquid epoxy molding compound 

is injected into a mold.  The EMC cures at 175 °C, then the completed package is cooled 

to room temperature and ejected from the mold. 
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Figure 7.3: SOIC fabrication process. 

7.1 Package Geometry and Boundary Conditions 

To save computation time, a half symmetry model is constructed as shown in Fig. 

7.4.  Typical SOIC geometry is obtained from component datasheets. 
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Figure 7.4: 2D model of SOIC package. 

The die is attached to the copper pad by a single layer of die attach elements.  The 

die attach fillet is modeled since it is expected to have a significant effect on stresses in 

the critical region.  The die/copper pad assembly is encapsulated by the epoxy molding 

compound, and the copper lead extends from the package.  Wire bonds have extremely 

low stiffness and are not expected to contribute to package stresses, so they are omitted 

from the model. 

At the left edge of the model, all nodes are constrained in the horizontal direction 

to create the symmetry boundary condition.  Additionally, one node is constrained in the 
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vertical direction to prevent rigid body motion.  Thermo-mechanical loading is applied 

via a uniform temperature on all nodes. 

7.2 Material Models 

In the SOIC package, stresses are developed from CTE mismatch under thermal 

loading.  Thus, temperature dependent properties must be incorporated wherever 

applicable.  The following material properties have been obtained from literature and 

industry for modeling microelectronic packaging.  Stress-free reference temperatures Tref 

are selected based on fabrication processes discussed in section 7.3. 

7.2.1 Copper Leadframe 

For the leadframe material, CDA194 high strength modified copper is used.  The 

material has excellent workability for forming into the leadframe shape and excellent 

corrosion resistance and electrical properties.  A linear elastic material model is selected, 

since stresses are not expected to approach the yield stress.  Material properties in Table 

7.1 are obtained from material datasheets.  The pad begins to develop stresses as the 

package cools from the die attach cure temperature, so the reference temperature is 

selected to be the die attach cure temperature.  The lead does not come into contact with 

the die or die attach before EMC is applied, so no stresses are incurred until then.  The 

reference temperature for the lead is chosen to be the EMC cure temperature.  
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Table 7.1: Copper leadframe material properties. 

Property Value 

E [GPa] 121 

ν 0.35 

α [ppm/°C] 17.6 

Tref [°C] 225 (pad) 

175 (lead) 

 

7.2.2 Silicon Die 

For modeling silicon dies in microelectronic packaging, anisotropy is not 

prominent and an isotropic model can be used [21].  Therefore, the die is modeled as a 

linear elastic, isotropic material.  Material properties have been obtained from literature 

[21].  The reference temperature is selected to be the die attach cure temperature. 

Table 7.2: Silicon die material properties. 

Property Value 

E [GPa] 170 

ν 0.30 

α [ppm/°C] 2.33 

Tref [°C] 225 

 

7.2.3 Die Attach Adhesive 

The silicon die is attached to the leadframe by a DIEMAT DM4130HT/J154-5 

thermoplastic/thermoset adhesive paste.  The adhesive is a very thin layer with very low 

stiffness compared to other materials.  Therefore, a linear elastic temperature independent 

model is used.  Material properties are obtained from material datasheets, and the 

reference temperature is set to the cure temperature. 
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Table 7.3: Die attach adhesive material properties. 

Property Value 

E [GPa] 2.3 

ν 0.35 

α [ppm/°C] 32 

Tref [°C] 225 

 

7.2.4 Epoxy Molding Compound 

To encapsulate and protect the die and wire bonds, a SUMITOMO BAKELITE 

SUMIKON® EME-G630AY epoxy molding compound is used.  EMC stiffness is heavily 

dependent on temperature, so stiffness and CTE values are applied above and below the 

glass transition temperature 140 °C.  For this analysis, a linear thermo-elastic formulation 

is assumed valid.  Material properties are obtained from material datasheets. 

As the EMC cures and solidifies, some shrinkage occurs in the molding 

compound that is unrelated to CTE.  This behavior is known as cure shrinkage.  The 

SOIC model should account for cure shrinkage to accurately capture thermo-mechanical 

stresses in the package.  A study on cure shrinkage in EMC materials found a typical 1% 

volumetric shrinkage during cure [51].  Thus cure shrinkage in the EMC can be 

accounted for by increasing the simulated reference temperature to account for the 1% 

volumetric shrinkage as shown in (7.1). 

 

     
       

    

  
 (7.1) 

 

Applying this formula, the EMC cure temperature of 175 °C produces a reference 

temperature of 185.42 °C. 



 

56 

Table 7.4: Epoxy molding compound material properties. 

Property Value 

E [GPa] 25 at 25 °C 

0.7 at 260 °C 

ν 0.30 

α [ppm/°C] 9 at 25 °C 

32 at 260 °C 

Tref [°C] 185.42 

 

7.3 Process Modeling 

To simulate stresses incurred from fabricating the package, process modeling is 

applied to the model.  With process modeling, several thermal loads are applied to the 

model to simulate the excursions required to create the package.  In addition, element 

birth and death is used to introduce package components at the correct stages of 

assembly. 

Element birth and death is a common FEM technique for simulating sequential 

assemblies.  Using element birth and death, elements are created in a killed state, in 

which the stiffness is reduced by several orders of magnitude, and the element develops 

no stresses.  Elements are birthed at the appropriate step of fabrication and at the stress-

free cure or bonding temperature.  Birthing an element returns its original material 

properties. 

The FEM process model is based on the fabrication outlined in Fig. 7.3.  In an 

SOIC fabrication, the die is first bonded to the copper leadframe using the die attach 

epoxy.  The epoxy is applied and cured at a high temperature, and then the package is 

cooled to room temperature.  Second, epoxy molding compound is dispensed and cured 
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at a high temperature, and then the package is once again cooled to room temperature, 

completing the assembly process.  Therefore, process modeling is utilized in ANSYS with 

the following routine in Table 7.5.  Room temperature is assumed to be 25 °C. 

Table 7.5: Process modeling for SOIC package assembly. 

Load Step Live Components Description 

1 Copper pad Heat copper pad to 225°C  

2 Copper pad, silicon die, die attach Attach die and cool to 25 °C 

3 Copper pad, silicon die, die attach Heat die/leadframe to 175 °C 

4 All components Cool package to 25 °C 

 

7.4 Stress Contours in SOIC Package 

After completing the process modeling in Table 7.5, the package incurs the 

following normal and shear stress contours, in units of MPa. 
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Figure 7.5: Normal stress σy [MPa] in the SOIC package after process modeling. 
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Figure 7.6: Shear stress σxy [MPa] in the SOIC package after process modeling. 

After cooling to room temperature, the package is in a generally compressive 

stress-state.  In the copper lead and most of the molding compound, both normal and 

shear stresses are minimal.  Both normal and shear stress contours show elevated values 
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along the critical interface between copper and mold compound.  From Fig. 7.5, normal 

stresses are generally compressive, though tensile stresses are found at either end of the 

interface.  Normal stresses are especially high on the left side, at the tip of the die attach.  

Similarly, shear stresses show much higher values at this interface.  Therefore, the left 

side of the interface is a likely starting location for an interfacial crack between copper 

and EMC.  Normal and shear stresses along the interface are plotted along the interface in 

Fig. 7.7, where a coordinate of zero signifies the left side of the interface. 

 

 

Figure 7.7: Stresses along the copper/EMC interface after process modeling. 

7.5 Interfacial Fracture Mechanics Analysis 

Before cohesive zone elements are inserted along the interface, an initial fracture 

mechanics analysis is performed on the copper/EMC interface.  After process modeling, 

stress contours suggest that the left side of the interface is a likely starting location for an 

interfacial crack.  Using the SOIC model shown in Fig. 7.4, a starter crack is inserted 
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along the interface by leaving several nodes uncoupled beginning from the left side of the 

critical interface.  The starter crack location is shown in Fig. 7.8. 

 

 

Figure 7.8: Pre-crack inserted into the 2D SOIC model. 

After the starter crack is built, process modeling is again applied to the model.  

Nodes along the interface are coupled until the final loading step when the completed 

package is cooled to room temperature.  An initial simulation of process modeling 

showed some inter-penetration of crack surfaces.  To prevent this, a surface-to-surface 

contact pairing is applied to nodes in the pre-crack, and the simulation is repeated.  

Contact surfaces are assumed frictionless.  The deformed crack shape for a starter crack 

of length 0.1 mm is shown in Fig. 7.9. 
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Figure 7.9: Normal stress σy [MPa] near the pre-crack in the SOIC after process modeling 

Using VCCT, G is calculated at the copper/EMC crack tip for varying pre-crack 

length a.  Results are shown in Fig. 7.10. 

 

 

Figure 7.10: SERR at the copper/EMC crack tip versus crack length. 
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At all crack lengths, SERR is far below the critical SERR determined through 

experiments.  Therefore, fracture mechanics predicts that no delamination will occur after 

fabrication processes.  

7.6 Cohesive Zone Delamination Analysis 

Now the model shown in Fig. 7.4 is rebuilt using cohesive zone elements.  

Cohesive zone elements are placed along the copper/EMC interface in the critical region 

as shown in Fig. 7.11. 

 

 

Figure 7.11: Cohesive zone elements inserted into the 2D SOIC model. 

Process modeling is again applied to the cohesive zone model.  Nodes along the 

interface are coupled until the final loading step to prevent separation before the EMC 

has been activated.  A frictionless surface-to-surface contact pairing is applied to nodes at 

the interface to prevent crack surface inter-penetration.  Fig. 7.12 and Fig. 7.13 show 

normal and shear stress contours in the package. 
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Figure 7.12: Normal stress σy [MPa] in the SOIC package after process modeling with CZ elements. 
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Figure 7.13: Shear stress σxy [MPa] in the SOIC package after process modeling with CZ elements. 

Interfacial separation is plotted along the interface in Fig. 7.14, where distance 

along the interface is again measured from the left side.  For both normal and shear 

separation, δ(x) < δ* and therefore the damage in the interface is zero. 
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Figure 7.14: Interfacial separation in CZ elements after process modeling. 

Since the entire interface is undamaged, the interface is fully closed.  The 

cohesive zone results are compared to the closed-crack model (Fig. 7.7).  Fig. 7.15 shows 

closed-crack interfacial stresses and cohesive zone interfacial stresses.  The cohesive 

zone model is able to capture the closed-crack stress contours along the interface. 
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Figure 7.15: Interfacial stresses simulated by closed-crack and cohesive zone models. 

7.7 Parametric Study of Geometric Parameters 

Now that the predictive SOIC model has been created, several geometric 

parameters are varied and simulated using cohesive zone elements at the interface.  

Interfacial separation is plotted for several different parameters in the following figures.  

These plots are used to develop geometric design guidelines for SOIC packages.  For 

simplicity, normal interfacial separations are plotted for various geometric parameters.  

The effects of die thickness, interfacial length, EMC thickness, die attach cure 

temperature, and EMC cure temperature are examined.  In the following figures, blue 

coloring indicates nominal parameters used in Fig. 7.13.  All other dimensions and 

parameters are kept at the nominal value when possible. 

The die subassembly goes through two thermal excursions and is expected to 

contribute significantly to interfacial separation.  In the SOIC model, die thickness is 

modeled at 0.254 mm, 0.5 mm, 0.75 mm. 
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Figure 7.16: Normal separation with varying die thickness [mm]. 

 

Figure 7.17: Shear separation with varying die thickness [mm]. 

As expected, increasing the die thickness increases the damage in the interface.  

Silicon has low CTE compared to copper.  This causes high shear stresses to the right of 

the die.  A thinner die will help reduce the likelihood of interfacial delamination in the 

SOIC package. 



 

69 

If the die area changes, the interface can become much shorter or longer.  In the 

model, die width is modified so that the interface is simulated at lengths of 0.515 mm, 

0.980 mm, and 0.35 mm. 

 

 

Figure 7.18: Normal separation with varying interface length [mm]. 

 

Figure 7.19: Shear separation with varying interface length [mm]. 
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The length of the interface does not have much effect on the interfacial separation 

near the left side of the interface.  However, as the distance along the interface increases, 

δ continues to decrease.  Therefore, in a longer interface, there is more chance that a 

propagating crack will arrest before reaching the right side of the copper pad. 

If the overall package thickness is reduced, the EMC height above the die is 

reduced.  EMC thicknesses of 1.867 mm, 1.667 mm, and 1.467 mm are modeled, 

measured from the upper surface of the die.  From the following figures, changing the 

EMC thickness has no significant effect on interfacial separation. 

 

 

Figure 7.20: Normal separation with varying EMC thickness above die [mm]. 
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Figure 7.21: Shear separation with varying EMC thickness above die [mm]. 

Several products are available for attaching the die to the copper leadframe.  

Material properties may be similar, but different curing temperatures may be required.  

The SOIC package is modeled with die attach cure temperatures of 225 °C, 245 °C, and 

205 °C.  Material reference temperatures are modified where appropriate. 

 

 

Figure 7.22: Normal separation with varying die attach cure temperature [°]. 
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Figure 7.23: Shear separation with varying die attach cure temperature [°]. 

Since the EMC material is not active when the die is attached, the die attach cure 

temperature has no effect on the interfacial separation.  Therefore the die attach material 

does not contribute to copper/EMC interfacial delamination. 

Similarly, various EMC materials require different cure temperatures.  Interfacial 

stresses are incurred during the final cooling to room temperature, so EMC cure 

temperature should have a significant effect on interfacial separation.  Temperatures of 

175 °C, 195 °C, and 155 °C are modeled.  In each simulation, the cure shrinkage 

consideration for the EMC is updated. 
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Figure 7.24: Normal separation with varying EMC cure temperature [°]. 

 

Figure 7.25: Shear separation with varying EMC cure temperature [°]. 

The EMC cure temperature has a large effect on copper/EMC separation because 

the interfacial stresses are incurred during this final thermal excursion.  Selecting an 

EMC material with a lower cure temperature is an effective way to directly reduce 

interfacial stresses. 



 

74 

7.8 SOIC Design Guidelines 

Several of the parameters investigated have significant effects on the interfacial 

separations.  Though none of the combinations indicate failure will occur after 

fabrication, identifying trends can help avoid subsequent failure during thermal cycling.  

The following design guidelines can be used to increase mechanical reliability in the 

SOIC package. 

 

1. The die thickness should be kept as small as possible. 

2. If the interface length is increased, a crack that propagates may arrest before 

reaching the end of the copper pad. 

3. The overall package may be thinned significantly without any noticeable 

consequence with respect to reliability. 

4. Die attach cure temperature does not significantly affect interfacial separation. 

5. An EMC material with lower cure temperature is preferred to reduce stresses at 

the interface. 
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CHAPTER 8 

CONCLUSIONS 

The primary objective of this work was to develop a predictive tool for 

investigating interfacial delamination using cohesive zone modeling.  First, critical SERR 

for a copper/EMC interface was experimentally determined through interfacial fracture 

experiments.  Experiments were carried out at multiple mode-mixity to characterize GC 

with respect to ψ.  Using GC measurements and load-displacement data from these 

experiments, cohesive zone parameters were determined to simulate the copper/EMC 

interface by mimicking load-displacement data from the interfacial fracture experiments.  

A 2D SOIC model was prepared and appropriate material models were identified.  A 

process model was created by modeling thermal excursions and using element birth and 

death to simulate the SOIC fabrication procedure.  A fracture mechanics approach was 

performed on the SOIC by creating a pre-crack and evaluating the SERR.  Cohesive zone 

elements were placed along the interface, and CZ fracture results were compared to 

fracture mechanics results.  Using the CZ model, a parametric study was performed by 

modifying various parameters and comparing results.  The following conclusions are 

based on this study. 

8.1 Experimental Characterization of the Interface 

To characterize the interface, DCB and FPB tests were performed.  For both tests, 

GC was calculated using VCCT and verified with analytical equations.  Both experiments 

provided good results for GC.  As anticipated, the DCB test produced a mode-mixity 
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close to 0°, but the mode-mixity for the FPB test was lower than expected.  The FPB test 

was intended to produce mode-mixity close to 45° as commonly seen in thin-film 

delamination tests.  Due to the large difference in thickness between copper and EMC 

layers, the mode-mixity for the FPB test was only 14.0°.  As a result, the Hutchinson and 

Suo model fit in Fig. 5.15 is not a strong fit.  Future work should include an interfacial 

fracture test at higher mode-mixity. 

8.2 Determination of Cohesive Zone Parameters 

Cohesive zone parameters were successfully acquired for the copper/EMC 

interface.  Fig. 6.4 – Fig. 6.6 show good fits between simulated and experimental load-

displacement data for both DCB and FPB.  In the FPB results, the CZ model does not 

capture crack propagation through the EMC, though a future model could insert CZ 

elements in the EMC to accomplish this.  Small variations between experimental and 

model data may be caused by frictional and plasticity effects.  Thus the general CZ 

design procedure was validated and it may be used to determine parameters for other 

interfaces.  Also, the CZ parameters determined for this copper/EMC interface may be 

inserted into other models at interfaces between copper leadframe and epoxy molding 

compound. 

8.3 Copper/EMC Delamination in SOIC Package 

After fully characterizing the mixed-mode CZ model for the copper/EMC 

interface, an SOIC model was prepared to investigate delamination in a microelectronic 

package. A process model was developed to simulate thermal excursions associated with 
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fabrication of the package.  A fracture mechanics analysis and a cohesive zone analysis 

of copper/EMC interfacial fracture both agreed that no delamination would result from 

package fabrication.  It is more likely that interfacial delamination will occur as a result 

of fatigue loading during thermal cycling.  The cohesive zone analysis performed here is 

a first step toward a model that can incorporate fatigue loading. 

Though no damage was incurred during process modeling with CZ elements, the 

interfacial separations can be used effectively to compare the effects of various packaging 

parameters.  The design guidelines resulting from the parametric study are summarized 

below. 

 

1. Die thickness should be kept as small as possible. 

2. An EMC material with lower cure temperature is preferred. 

 

8.4 Research Contributions 

This work represents a significant advance in the use of cohesive zone modeling 

for studying delamination in copper/mold compound interface in microelectronic 

packaging.  The CZ parameter design procedure presented here may be used to develop a 

mixed-mode cohesive zone law for any interface.  Within the field of microelectronic 

packaging, the procedure can be used for several common packaging interfaces, such as 

silicon/epoxy molding compound, silicon/underfill, etc. 

The mixed-mode CZ model can be used as a predictive model to determine if 

loading conditions will cause interfacial cracking in the package.  The fully-defined CZ 
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model may be used in other geometries that contain a copper/EMC interface, such as flip-

chip packages, stacked IC packages, 3D IC packages, and multi-chip modules.  

Eventually, multiple interfaces may be modeled in the same package by defining mixed-

mode CZ models for each interface. 

8.5 Future Work 

Future work on studying interfacial delamination through cohesive zone models 

will continue with the following goals in mind: 

 

1. An additional interfacial fracture test such as ENF or 4ENF should be performed 

to characterize critical SERR near mode II.  Additional data points will provide a 

better fit to the Hutchinson and Suo model and will validate the selection of the 

mixed-mode cohesive zone parameters. 

2. Residual thermo-mechanical stresses, cure shrinkage, and copper plasticity may 

be considered in calculations of critical SERR.  Copper plasticity may affect 

measurements since the copper layer in the bimaterial specimens is thin relative to 

the EMC layer.  Residual stresses and cure shrinkage may contribute to stresses 

near the crack tip and raise the measured critical SERR. 

3. Copper/EMC adhesion is affected by many factors, such as moisture, temperature, 

and surface roughness.  The CZ model may be modified to simulate these effects. 

4. Since no delamination is predicted to occur after fabrication, a new study should 

investigate fatigue failure of the copper/EMC interface.  Far in the future, a CZ 
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model may be able to predict interfacial failure under cyclic loading.  Appropriate 

elastic-plastic and viscoplastic material models should be considered. 
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