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SUMMARY 

 

 Particle suspensions are common both in nature and in various technological 

applications. The complex nature of hydrodynamic interactions between particles and the 

solvent makes such analysis difficult that often requires numerical modeling to 

understand the behavior of particle suspensions. In this dissertation, we employ a hybrid 

computational model that integrates a lattice spring model for solid mechanics and a 

lattice Boltzmann model for fluid dynamics. We use this model to study several practical 

problems in which the dynamics of spherical and spheroidal particles and deformable 

capsules in dilute suspensions plays an important role. The results of our studies yield 

new information regarding the dynamics of solid particle in pressure-driven channel 

flows and disclose the nonlinear effects associated with fluid inertia leading to particle 

cross-stream migration. This information not only give us a fundamental insight into the 

dynamics of dilute suspensions, but also yield engineering guidelines for designing high 

throughput microfluidic devices for sorting and separation of synthetic particles and 

biological cells. 

 We first demonstrate that spherical particles can be size-separated in ridged 

microchannels. Specifically, particles with different sizes follow distinct trajectories as a 

result of the nonlinear inertial effects and secondary flows created by diagonal ridges in 

the channel. Then, separation of biological cells by their differential stiffness is studied 

and compared with experimental results. Cells with different stiffness squeeze through 

narrow gaps between solid diagonal ridges and channel wall, and migrate across the 

microchannel with different rates depending on their stiffness. This deformability-based 
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microfluidic platform may be valuable for separating diseased cells from healthy cells, as 

a variety of cell pathologies manifest through the change in mechanical cell stiffness. 

Finally, the dynamics of spheroid particles in simple shear and Poiseuille flows are 

studied. Stable rotational motion, cross-stream migration, and equilibrium trajectories of 

non-spherical particles in flow are investigated. Effects of particle and fluid inertia on 

dynamics of particles are disclosed. The dependence of equilibrium trajectory on particle 

shape reveals a potential application for shape based particle separation. 

 

 



1 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 Suspensions are two phase materials usually consisting of solid and fluid phases. 

For example, in colloidal systems, particles are dispersed in a liquid solvent. Particle 

suspensions are important both in nature and in industry. Suspensions are utilized in the 

manufacturing processes, food processing, paint and paper manufacturing, and 

pharmaceutics. Particle-laden flows are also found in fluidized beds, packed beds, and 

other technological processes [1]. Thus, it is important to be able to predict the properties 

of particle suspensions. The complex nature of hydrodynamic interactions between 

particles and a solvent makes such analysis difficult that often requires numerical 

modeling to fully understand the behavior of particle suspensions.  

 In the simplest case, particle suspension is composed of rigid spherical particles 

dispersed in a Newtonian fluid. When suspension is set in motion and flows, the particle-

fluid system is characterized by an additional dissipative mechanism and an increased 

bulk viscosity. The viscosity of suspensions had been an active research area since 

Einstein’s pioneering work about a hundred years ago. It was shown that in the dilute 

limit a suspension is a Newtonian fluid, but with an effective viscosity that is )5.21(   

times greater than the fluid viscosity, where   is the solid fraction [2]. When the solid 

fraction increases, particle interactions due to hydrodynamics, Brownian motion, and 

inter-particle forces make system dynamics very complex. As a result, these interactions 
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lead to a macroscopic behavior that is significantly different from that of a Newtonian 

fluid. 

 In order to describe suspensions, the hydrodynamic interactions should be 

considered. First, the dynamics of a Newtonian fluid is governed by the Navier-Stokes 

equation, 

uuu
u 2

Re

1





p

t
.  (1)  

Here, u  and p  are the fluid velocity and pressure, respectively. The Reynolds number, 

Re, characterizes the strength of inertial force over viscous force. On the particle scale, it 

is defined as Uap 2Re  , where a ,  and   are the particle radius, fluid density, 

and fluid viscosity, respectively. When flow is dominated by viscosity and particles are 

small, one can assume that 0Re  , i.e. the fluid inertia can be neglected. This is referred 

to a Stokes or creeping flow and allows one to significantly simplify the equations 

governing fluid motion. Due to the linearity of the Stokes equations, various analytical 

techniques such as Green’s function and multipole expansions are available for the 

solution of Stokes flow problems [3, 4]. 

 Researchers have extensively studied suspensions in a Stokes flow [5-7]. The 

quasi-steady nature of Stokes flow implies that particle positions and driving forces are 

sufficient to define the dynamics of a particle. It means there is no history dependence. 

Furthermore, linearity of the Stokes flow allows superposition of independent solutions. 

This has been exploited, for example, to study the combined effect of shear and Brownian 

motion on the suspension [8, 9]. 

 Thus, Stokes flow suspensions are well-examined and well-understood. However, 

the effect of inertia on the motion of suspended particles has not yet been studied 
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thoroughly. Inertia is important when, for example, particles are large or a suspension is 

far from equilibrium [10]. In these situations, the behavior of the solid and fluid phases is 

coupled and the assumption of a zero Reynolds number is invalid, requiring the solution 

of the complete Navier-Stokes equations to correctly describe the flow of suspended 

particles.  

 Inertia may cause many important phenomena even in the dilute suspension limit. 

Experiments show that in a pressure-driven pipe flow with small inertia, the particles 

migrate to an equilibrium position located at a distance of about 0.6 of the pipe radius 

from the pipe axis [11, 12]. The migration takes place due to fluid inertia that causes a lift 

force acting perpendicular to the stream-wise direction. At higher Reynolds numbers 

where the effect of fluid inertia is more prominent, it is found that the equilibrium 

position of particles shifts closer to the wall [13, 14]. 

 Inertia can affect the flow pattern of suspensions in a simple shear flow. It is 

found recently that the streamlines close to the surface of the particles are not closed but 

actually spiraling [15]. It implies that in heat and mass transfer problems inertia provides 

a convective mechanism for particle transport through outward spiraling streamlines.  

 The inclusion of convective terms on the left hand side of the Navier-Stokes 

equation adds nonlinearity to the problem. This rules out exact analytical solutions even 

for a single particle and one has to rely on perturbation or fully numerical methods. 

Furthermore, simulations provide a more detailed and accurate description than 

experimentation. In particular, confounding variables that can be difficult to eliminate or 

quantify experimentally (such as particle roughness and interparticle forces) can be easily 

controlled in simulations [1].  
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 Recently, the lattice Boltzmann method (LBM) has gained much attention as a 

tool for modeling fluid flows involving particulate suspensions [16-18]. LBM is a 

mesoscopic method for solving the Navier-Stokes equations. Introducing particles and 

imposing the correct boundary conditions at the solid-fluid interface allow the many-

body, time-dependent hydrodynamic interactions among particles and fluid to be properly 

simulate. Unlike Stokesian dynamics [19], LBM is capable of simulating flow at finite 

Reynolds numbers with the effect of inertia. Compared with traditional computational 

fluid dynamics methods like finite element method (FEM) or finite volume method 

(FVM), LBM is relatively simple due to its spatial locality and easier for parallelization 

[20, 21]. 

1.2 Objectives 

 Our proposed studies are aimed to address the following scientific questions: (1) 

to understand the characteristic of inertial migration of spherical particles in pressure-

driven flow and to employ the inertial effects for designing a microfluidic device capable 

of continuous separation of microparticles; (2) to probe the motion of compliant cells in 

microchannels with periodical constrictions and to examine how the dynamical interplay 

between elastic deformation and fluid flow can be harnessed to separate cells with 

different mechanical stiffness; (3) to study the dynamics of spheroid particles in simple 

shear and Poiseuille flows and to investigate how non-spherical particles can be separated 

based on their shapes. To reach our goals, we develop and validated a hybrid numerical 

method for fluid-structure interactions that is based on the lattice Boltzmann method for 

incompressible viscous fluids. This three-dimensional, fully-coupled model will not only 

be able to capture the motion and deformation of solid particles in a flow with a non-zero 



5 

 

Reynolds number, but also can accurately simulate viscous flows and relevant 

hydrodynamic interactions between suspended particles and complex microchannel 

geometry. 
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CHAPTER 2 

METHODOLOGY 

 

2.1 Lattice Boltzmann Method 

 Historically, the lattice Boltzmann method (LBM) is a descendent of the lattice 

gas automata (LGA) where the discrete positions and the velocities of single particles are 

tracked on a lattice while satisfying the conservation equations locally. In a lattice gas, 

after each time step, the state at a given site can be determined by the state of the site 

itself and the neighboring sites, before the current time step [22]. The disadvantages of 

the lattice gas include the lack of Galilean invariance and statistical noise. 

 The LBM can be directly derived from the Boltzmann equation, evolved from the 

idea of fixing the drawbacks of the LGA approach. Instead of Boolean variables 

associated with a given lattice direction in LGA, the LBM uses continuous distribution 

functions. In this way, the statistical noise in the LBM can be eliminated. Accompanying 

this replacement, the discrete collision rule is also replaced by a continuous function 

known as the collision operator. This gives much more flexibility to LBM, and leads to 

Galilean invariance without scaling of time and allows the tuning of viscosity [20]. 

 We use the LBM approach developed by Ladd and his group [23] to model the 

hydrodynamics of fluid flow. The state of the system discretized in space and time is 

characterized by the velocity distribution function ),( tf i r , which describes the number 

density of the LB particles moving with discrete velocity ic  at a lattice node r  at time t. 
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The hydrodynamic fields, i.e., mass density  , momentum density uj  , and 

momentum flux uuIΠ  p , are moments of velocity distribution function, 


i if , 

i iif cj , 
i iiif ccΠ . (2) 

 The lattice Boltzmann equation (LBE) for the time evolution of ),( tf i r  is written 

as  


j

neq

jijiii fStftttf ),(),( rcr , (3) 

where t  is the time step and the linearized collision operator ijS  describes the change in 

if  due to collision, eq

ii

neq

i fff   is the non-equilibrium distribution function, and the 

lattice vectors are labeled by i. This simple evolution equation is second-order accurate in 

space and time [20]. The numerical diffusion that usually accompanies a low-order 

method is eliminated by the relationship between the eigenvalues of the linearized 

collision operator and the fluid viscosity. For small Mach numbers ( 1 scuM ), the 

general form of equilibrium distribution that is chosen to recover the Navier-Stokes 

equations can be written as, 








 





4

2

2 2

)(:

s

sii

s

iceq

i
c

c

c
af i

Iccuucj 
 , (4) 

where txcs  3/  is the sound speed, x is the spacing between neighboring lattice 

nodes, t  is the time step, and I  is the identity tensor. Typically, x and t  are both 

chosen to be unity in LBM for simplicity. If the inertial term, which is expressed through 

the quadratic term in the velocity of fluid, uu , can be neglected, then the corresponding 
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equilibrium distribution is reduced to a linear form, which leads to the Stokes equation in 

the continuum limit [24], 






 


2

s

iceq

i
c

af i
cj

 . 

 

Figure 1 Some common lattice structures. 

 

 

 We use a 19 velocity three-dimensional D3Q19 model which has one stationary 

particle and 18 velocities corresponding to the [100] and [110] directions of a simple 

cubic lattice (Fig. 1). The distribution associated with each velocity has a weight ic
a  that 

describes the fraction of particles with velocity ic  in a system at rest. These weights 

depend only on the speed ic  and for D3Q19 model they are 

3

10 a , 
18

11 a , 
36

12 a , 

















     81 ,,8 ,7    ),1 ,1 ,0( ),1 ,0 ,1( ),0 ,1 ,1(

6 ,,2 ,1           ),1 ,0 ,0( ),0 ,1 ,0( ),0 ,0 ,1(

0                                             ),0 ,0 ,0(





i

i

i

ic . (5) 

For D2Q9 model, these weights are 4/9, 1/9, and 1/36 respectively. 
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 The fundamental limitation of this class of lattice Boltzmann models is that the 

Mach number must be small, since the compressibility error is on the order of 

)( 2MO [25]. In our simulations, we always keep 15.0M . If it is not specified 

otherwise, we use a 3-parameter collision operator [23], allowing for separate relaxation 

of the 5 shear modes, one bulk mode, and 9 kinetic modes. In general, the eigenvalues of 

kinetic modes are set to -1, which simplifies the simulation and ensures a rapid relaxation 

of the non-hydrodynamic modes. The collision operator can be further simplified by 

taking a single eigenvalue for both viscous and kinetic modes. This would recover to the 

most popular form of the collision operator, so-called single relaxation time Bhatnagar-

Gross-Krook (BGK) model,  

)(
1

),(),( eq

iiiii fftftttf 


rcr , (6) 

where 



1

  is the relaxation time. However, the absence of a clear time scale 

separation between the kinetic and viscous modes can sometimes cause errors at solid-

fluid interface [23]. 

 In the Ladd’s model, the post-collision distribution 
j

neq

jijii fSff *  is written 

as 








 





4

2,*

2

*

2

)(:)(

s

sii

neq

s

ic

i
c

c

c
af i

IccΠuucj 
 . (7) 

In the collision process, mass and momentum remain conserved, but the non-equilibrium 

momentum flux changes according to 

IIΠΠΠ ):)(1(
3

1
)1(,* neq

v

neqneq   , (8) 
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where eqneq
ΠΠΠ   and neq

Π  indicates the traceless part of neq
Π . The parameters   

and v  are related to the fluid shear and bulk viscosities, respectively, 











2

112


 tcs , 












2

11

3

2 2

v

s
v t

c




 . (9) 

The factor of 1/2 corrects for numerical diffusion, so that viscous momentum diffuses at 

the expected speed for the given viscosity. 

 In the presence of an externally imposed force density g , for example a pressure 

gradient or a gravitational field, the time evolution equation of the lattice Boltzmann 

model includes an additional term ),( tg i r , 

),(),(),( * tgtftttf iiii rrcr  . (10) 

This forcing term can be expanded in a power series in the particle velocity [26], 

t
c

c

c
ag

s

sii

s

ic

i
i 







 













4

2

2 2

)(:)(

2
1

Iccuggucg
. (11) 

More accurate solutions of the velocity field are obtained, when they include a portion of 

the momentum added to each node and use value u  to replace u  in the calculation of ig  

and *

if  [27], 

2tf
i ii   gcuj  . (12) 

 An applied pressure gradient may also be represented by a constant force density. 

Indeed, adding a constant force in one direction is equivalent to changing the pressure 

difference in this direction, and this is done in our simulations to model flows driven by a 

pressure gradient. 
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 The macroscopic behavior arising from the lattice Boltzmann equation can be 

found from a multi-scale analysis or Chapman-Enskog expansion [17], using an 

expansion parameter   or Knudsen number, defined as the ratio of molecular mean free 

path length to a characteristic macroscopic length. The hydrodynamic limit corresponds 

to 1 . It can be shown that the lattice Boltzmann equation reproduces the Navier-

Stokes equations with an accuracy that is of the order of 2  and 2u  [20]. Thus at 

sufficiently low Mach numbers, the method is of the second-order accuracy in space. 

2.1.1 Multiple-relaxation-time Model 

 The multiple-relaxation-time (MRT) or generalized approach dates back to 

d’Humieres’ pioneering work [28, 29]. The MRT lattice Boltzmann equation overcomes 

some obvious defects of the LBGK model, in addition to being more stable, it allows one 

to tune the eigenvalues of the collision matrix, expanding the application to a much wider 

range of fluid and thermal transport systems. The MRT model has been successively used 

for multiphase flows [30], free surfaces [31], thermal flows [32], and viscoelastic flows 

[33]. 

 In the MRT model, the time evolution of the distribution function is expressed in 

moment space instead of the real space. To project into moment space, we need 

diagonalize the collision operator ijS  using a transformation matrix i
i

eiM , and the 

inversion of transformation matrix can be obtained using orthogonality relation, 

iii i eweiwe1M . Here, 
Ti ]0,0 ,1 ,,0 ,0[  , where ith element is 1, others 

are 0. From here on, the Dirac notations of bracket  and  are used to denote the 

column and row vectors, respectively. Eigenvectors of the collision operator are 
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T

ibiii eeee ] ,, ,[ 10   and corresponding weighted eigenvectors of the collision operator 

are iwe , where b  is the number of velocity vectors and 
k ki

c

i eaw k 2

,  is the ith 

weight. These eigenvectors can be constructed from irreducible polynomials of the lattice 

vectors ic , and can be found in [29]. The advantage of this choice of eigenvectors is that 

the equilibrium distribution has no projection onto the kinetic modes [34]. By use of 

weighted eigenvectors, the implementation of thermal fluctuations is simplified. 

Applying the transformation to the evolution equation of LBM (Eq. (3)) yields 

 ),(),(ˆ),(),( tmtmtftttf eq

iiiii rrSMrcr
1   , (13) 

where ),,,(ˆ
10 bsssdiag  1

MSMS  is a diagonal matrix whose elements are 

eigenvalues of the collision operator, and fm M  are the modes or moments of 

distribution function. We can restore the distribution functions from the modes by 

mf 1 M .  

 In the D3Q19 model, the corresponding 19 moments m  are arranged in the 

following order 

T

zyxxzyzxywwwwxxxxzzyyxx mmmpppppqjqjqjem ], , ,, ,, ,,3 ,3 , ,, ,, , , , ,[  . (14) 

Here, fluid density   and momentums zyx jjj   , ,  are conserved, whereas kinetic energy 

e , kinetic energy square  , energy flux zyx qqq   , , , symmetric traceless of the viscous 

stress tensor ( xxp3 , wwp , xzyzxy ppp , , ), and other five modes are not conserved. The 

diagonal collision matrix is 

) , , , , , , , , , , ,0 , ,0 , ,0 , ,,0(ˆ
16161613131310910944421 sssssssssssssssdiagS , (15) 

where zeros correspond to conserved moments. The matrix M is given by 
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

-1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

1 -2 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 1 1 1 

0 1 -1 0 0 0 0 1 -1 1 -1 1 -1 1 -1 0 0 0 0 

0 -2 2 0 0 0 0 1 -1 1 -1 1 -1 1 -1 0 0 0 0 

0 0 0 1 -1 0 0 1 -1 -1 1 0 0 0 0 1 -1 1 -1 

0 0 0 -2 2 0 0 1 -1 -1 1 0 0 0 0 1 -1 1 -1 

0 0 0 0 0 1 -1 0 0 0 0 1 -1 -1 1 1 -1 -1 1 

0 0 0 0 0 -2 2 0 0 0 0 1 -1 -1 1 1 -1 -1 1 

0 2 2 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 

0 -2 -2 1 1 1 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 

0 0 0 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 0 0 0 0 

0 0 0 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 0 0 0 0 

0 0 0 0 0 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1 

0 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1 0 0 0 0 

0 0 0 0 0 0 0 1 -1 1 -1 -1 1 -1 1 0 0 0 0 

0 0 0 0 0 0 0 -1 1 1 -1 0 0 0 0 1 -1 1 -1 

0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 -1 1 1 -1 

                   

The equilibrium values of the non-conserved moments are as follows, 0

)( jj eqe , 

0)( eq , 0)()()(  eq

z

eq

y

eq

x qqq , 0

222)( 3)2( zyx

eq

xx jjjp  , 0

22)( )( zy

eq

ww jjp  , 

0)()()()()(  eq

z

eq

y

eq

x

eq

ww

eq

xx mmm , 0

)( )( yx

eq

xy jjp  , 0

)( )( zx

eq

xz jjp  , 

0

)( )( zy

eq

yz jjp  . The constant 0  is the mean density in the system and is usually 

set to be unity. 

 To ensure isotropy, most LB models include more variables than appear in the 

hydrodynamic equations. For D3Q19 model, only 10 independent variables are necessary 

to recover the three dimensional Navier-Stokes equations. These 10 variables are the 

density, the three components of velocity, and the six components of a symmetric stress 

tensor. The other extra variables are associated with non-hydrodynamic variables that 

have no effect on the hydrodynamic behavior, but affect the stability and accuracy of the 

method and the boundary conditions. The suggested eigenvalues of this model can be 
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found through a linear analysis [35]. The effect of these values on the boundary 

conditions has been previously discussed [24, 36]. The kinematic viscosity   and the 

bulk viscosity v  of the MRT model are  




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1

139 ss
 , 










2

11

9

2

1s
v . (16) 

2.2 Lattice Spring Model 

 The solid material in our simulations is modeled by a lattice spring model (LSM) 

or mass-spring model, which consists of a network of springs that connect regularly 

spaced mass points. LSM has been widely used in computer graphics to model 

deformable objects, such as cloth or fabric simulation, face animation. It has been used to 

model the behavior of soft tissues in surgery training systems [37] and to model 

membranes of capsules and biological cells [38, 39]. Compared to a finite element 

method (FEM), LSM has the advantage that it is more robust at large deformations, 

relatively simple to implement, and it typically requires less computational effort. LSM 

has been shown to be algebraically equivalent to simple finite-element methods in which 

the lattice springs are analogous to element boundaries and linear interpolations function 

are utilized [40, 41]. However, relatively little attention has been devoted to the accuracy 

of this model. In order to reproduce the correct mechanical properties of solid material, 

many parameters, such as mesh configuration, spring stiffness and mass of nodes, need to 

set up carefully [42].  

 In LSM, the solid body is modeled as a set of point masses (nodes) connected by 

weightless elastic springs obeying some variant of the Hooke’s law. The spring network 

may either derive from a two-dimensional polygonal mesh representation of a surface, or 
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from a three-dimensional mesh modeling the internal structure of an object. Additional 

springs between nodes can be added, or the force law of the springs modified, to achieve 

required mechanical properties. Applying Newton’s second law to the point masses 

including the forces applied by the springs and any external forces (due to gravity, 

hydrodynamic forces, etc.) gives a system of differential equations for the motion of the 

nodes.  

     

Figure 2 (a) Two-dimensional triangular lattice, with node i at the center, surrounded by 

six regularly spaced neighbors. The hexagon with dash line represents a unit cell 

associated with node i. (b) Two-dimensional square lattice with diagonal springs. The 

square with dash line represents a unit cell associated with node i. The spring constant 1k  

associated with nearest-neighbor connections, and 2k  associated with diagonal second-

neighbor connections. 

 

 

 Isotropic linear elastic materials are characterized by two parameters, i.e., 

Young’s modulus E and Poisson’s ratio  .Therefore, it is necessary to establish a link 

between the parameters of LSM and the material properties. It has been proven that both 

triangular and square lattices can be made to behave like an isotropic elastic continuum 

[43]. We will briefly describe the derivation process and the relationship between spring 

constants and elasticity parameters. 

          

(a) (b) 
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 For two-dimensional (2D) triangular lattice, a node is connected by springs to six 

nearest neighbors with spring constant k , as depicted in Figure 2a. The elastic energy of 

the node i should obey the requirements of translational and rotational invariance. 

Translational invariance implies that the energy can only depend on the differences 

between node positions, i.e., ijij rrr  . Rotational invariance implies that the energy 

can only depend on the scalar products of such vectors, i.e., ijij rr  . The elastic energy 

stored in node i is 20
3

1

)(
2

1
ij

ij

iji kU rr  


, where ij is a nearest neighbor pair, 0

ijr  is the 

equilibrium position vector between the nodes and its length 0

0 arij   is equal to the lattice 

spacing. The summation from 1 to 3 is due to the fact that the springs are shared by two 

neighbor nodes and the structure is symmetric. The elastic forces acting on the nodes can 

be obtained from the derivative of the elastic energy. The force acting on node i due to 

the deformation of the spring between nodes i and j is ij

ij

ijij

ij

i
ij k

U
F r

r

rr

r 











 







0

.  

 The elastic energy density of the lattice is the sum of energy stored in each node 

divided by the total area 23 2

0aNA  . The energy density is given by 

20
3

1
2

01

)(
3

1
ij

ij

ij

N

i

i
a

k
U

A
rr  



 , where N is the total number of nodes. The dash 

hexagon in the Figure 2a represents a cell centered surround node i. It is assumed that the 

displacements imposed on the lattice remain small. In this case, the displacement 

difference can be rewritten as 
T

ijij

ij

ijij

r
rεr

rr
ˆˆ

0

0




, where ε  is the Cauchy’s strain tensor, 

and ijr̂  is the unit direction vector of pair ij. For example, for pair 1ij , the unit direction 
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vector 0] ,1[ˆ ijr , so 110

0 aijij  rr . Similarly, for pair 2ij  and pair 3ij , 














 )(

4

3

4

3

4
2112

2211
0

0 


aijij rr  and 













 )(

4

3

4

3

4
2112

2211
0

0 


aijij rr , 

respectively. The elastic energy density can finally be written as a function of the strains, 

   

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k
. This form can be readily compared with 

the elastic energy density of a two-dimensional isotropic elastic continuum [44], i.e.,  

   2
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21

2
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2
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2

2211
2

1
  . (17)  

From the comparison, we obtain 43k  . The elastic constants can, therefore, be 

expressed in terms of Lamé constants   and  . In terms of the spring constant, Young’s 

modulus for 2D material is kEs
3

2

2
4 









 , Poisson’s ratio is 

3

1

2








 s , 

area compression modulus is 23kKs   , and surface shear modulus is 

k
E

G
s

s
s

4

3

)1(2






 . 

 For this simple network, the Poisson’s ratio is a constant value of 1/3. However, 

the Poisson’s ratio can be modified by introducing a bond-bending interaction which 

controls the rotation of each of the six angles made by node i and two its neighbors [43]. 

The mass of each node is the same due to the network isotropy, 2/3 2

0aM s , where 

s  is the density of the solid material.   

 In a square lattice, springs connect four first and four second neighbors, as 

depicted in Figure 2b. Similar to the triangular lattice, the elastic energy density can be 
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written as     2

21

2

12222112

2

22

2

1121 2/2/   kkkk . Comparison with Eq. 17 

yields the following coefficients 2k  and 21 2 kk  . Hence, in terms of the spring 

constants kkk  2/12 , the elastic parameters can be expressed as 38kEs   and 

3/1s . The mass of each node is given by 2

0aM s .  

       

Figure 3 (a) 3D cubic lattice, with node i at the center, surrounded by 18 neighbors. (b) 

3D triangular prism lattice, with node i at the center, connecting 20 neighbors (only one 

sixth of network element is shown here). The spring constant 1k  associated with nearest-

neighbor connections at the same layer, 2k  associated with nearest-neighbor connections 

at the upper and lower layers, and 3k  associated with the diagonal second-neighbor 

connections at different layers. 

 

 

 For a three-dimensional (3D) model, an elastic solid can be represented by a 

network of springs, which connects 18 nearest and next nearest neighbors on a simple 

cubic lattice (Fig. 3a). It ensures three-dimensional network isotropy. Using the same 

method as described above, we obtain the elastic energy density as a function of the 

strains, 
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Comparing with 3D isotropic continuum equation [44], 

               

(b) (a) 
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we find the following relationship 0ak  . Thus, the elastic parameters are 

02

5)23(
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k
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


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4

1

)(2



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


 , and the bulk modulus is 

0353/2 akK   . The Poisson’s ratio can be modified by adding bond-bending 

springs to control the angles between adjacent nodes [45]. 

 To extend a 2D triangular lattice to 3D, a triangular prism network is constructed 

from two layers of triangular lattice elements. The layers are separated by a distance 

equal to the length of triangle edges and are connected by springs between the nearest 

(with spring constant 2k ) and next-nearest neighbor nodes (with spring constant 3k ) (Fig. 

3b). Using the linear elasticity theory, spring constants are set as follows, kk 21  , 

kk 2 , and 323 kk  , yielding Lamé constants 032 ak  . Thus, Young’s 

modulus is 035 akE  , Poisson’s ratio is 41 , and the mass of each spring nodes is 

23 3

0aM s . 

 LSM can be used to obtain both dynamic and static steady-state solutions. In the 

latter case, the equations of motion should be damped to reach the equilibrium state that 

satisfies the applied boundary conditions. A damping force can be set proportional to the 

node velocity i

d

i vF  , where   is the damping constant. This damping force 

vanishes at steady state.  

2.2.1 Model for Thin Membranes 

 LSM can be applied to model thin membranes. When the thickness of the 

membrane is small compared to the membrane extent, the membrane can be modeled as 
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an elastic sheet with bending rigidity. There are two approaches to introduce bending 

rigidity in a membrane. For a 2D triangular lattice, one way is to add bending springs 

among all triplets jji  , where 3 jj  (i.e., j  denotes the neighbor opposite to 

neighbor j) [46]. This approach also refers to bond-bending model (BB) [47]. The 

bending energy stored in node i is 
 
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where bk  is the bending spring constant, and  0  is the spontaneous or initial angle 

between bonds ji  and ji  .  

 For small deflections, following a procedure similar to that used for linearized 

stretching springs, we obtain the bending energy density 
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 , where w  is the displacement perpendicular 

to the membrane surface. Comparing with the continuum equation for small-deflection 

plate bending [48] given by,      22
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D
  , we find that 

bending rigidity or modulus is 433 bkD   when 31 , where 
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 can be 

defined as a thin plate of thickness h . The forces acting on nodes j , j , and i  due to the 

bending of triplets jji   are 
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, and  jji  FFF , respectively. For a 2D square 

lattice, similarly, we derive the relation of bending rigidity and bending spring constant 
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as 321 Dkb  , 32 Dkb  , where 1bk  is associated with the nearest-neighbor connections, 

and 2bk  indicates the diagonal connections. 

                                                                                    

Figure 4 (a) A bending element with dihedral angle θ. (b) Sketch of a triangular element 

of springs. 

 

 

 Another way to include bending contribution is to consider the change of dihedral 

angle of adjacent pairs of triangles (abbreviated as DA for this model) [49]. The bending 

contribution to the Helmholtz free energy of the system is 

 )cos(1 0   i

i

bbending kU , where i  is the instantaneous angle between two 

adjacent triangles with the common edge i, and 0  is the spontaneous angle. The 

relationship between the bending spring constant and the macroscopic bending rigidity 

can be derived for the case of a spherical shell, which gives 23 bkD   [50]. Similarly, 

for a square lattice, we obtain 32Dkb  . Figure 4a shows two equilateral triangles 

with the angle   between two triangle normals an  and bn . The force acting on the nodes 

can be derived from the bending energy, a

an
n

r
F

2

34

1  , b

bn
n

r
F

2

34

2  , 

(b)  

 
 

(a) 
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4131 rrn a  and 3242 rrn b  are the area weighted normals, and 

)sincoscos(sin 00   bk . Here, 
ba

ba

nn

nn 
cos , and  2cos1sin   taken 

with the positive sign if     0 baba ttnn  and with the negative sign otherwise; at  

and bt  are the center of mass vectors of triangles a and b, respectively.  

2.2.2 Modeling Solid Body Dynamics 

 To capture the dynamics of solid object, we integrate Newton’s equation of 

motion, 22 tM iii  rF , using the velocity Verlet algorithm [51]. Here, iF  is the total 

force acting on the node i including the spring force, the hydrodynamic force, and any 

external forces. The velocity Verlet scheme is a second-order in time and fourth order in 

space finite difference approximation to the equations of motion. This allows us to obtain 

the accurate velocity at the interface nodes to couple the solid and fluid systems. The 

Verlet algorithm updates the position, velocity and acceleration of the nodes in the 

following manner,  

iiii Mtt ),()( rFa   

ttttt iii  )(
2

1
)()2( avv  

tttttt iii  )2()()2( vrr  

iiii Mtttt )2/,()(  rFa  

ttttttt iii  )(
2

1
)2()( avv , (20) 
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where iv  and ia are the velocity and acceleration of the node i, respectively.  

 For a rigid object, we need to sum up the forces on each node to obtain the total 

force and torque acting on the body. The kinematics of rigid body motion yields a 

formula for the acceleration of node i  on the body in terms of the position ir  as 

))()(( RrαRrωωFF   iiiii MM . Here, F  is the total force on the body, 

iF  is the newly redistributed force on each node, R  is the position of the center of mass, 

ω  and α  are the angular velocity and angular acceleration of the rigid body, respectively. 

The angular acceleration is calculated from Euler’s equation,   MωI 
dt

d
, in an inertial 

frame of reference, where I  is the moment of inertia tensor calculated in the inertia 

frame and M  is the total torque. For a rigid body, the relative displacements of the nodes 

must be zero. Therefore, to ensure this constraint, there include a ‘penalty’ force of the 

form  
j

ijijijij

p

i rrk rF ˆ)( 0 . This force is added to the nodes at each LSM iteration. 

Here, j  is the index of nodes connected to node i , ijk  is the spring constant between the 

nodes, ijr  and 0

ijr  are the current and initial displacement between the nodes respectively, 

and ijr̂  is the unit direction vector of pair ij . 

 Considered numerical stability, the time step should be chosen that it is less than 

the time needed for elastic wave propagation through lattice element. This leads to the 

condition pVxt  , where sp GKV )3/4(   is the P-wave velocity [52] and x  

is the lattice spacing. Furthermore, for deformable solid, we need to maintain 1x  (in 

LB units), which prevents large fluctuations in the force of the fluid on the lattice spring 

nodes due to the discretization [53]. For a rigid solid, we do not have this restriction, 
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since the total hydrodynamic force is redistributed to all the nodes on the surface and the 

solid follow the motion of a rigid body. If the solid is stiff, the P-wave velocity pV  may 

require t  smaller than 1. In this case, we perform several LSM iterations for each LBM 

cycle, thus reducing t  sufficiently to stabilize the simulations. 

2.3 Solid-fluid Coupling 

 To simulate the hydrodynamic interactions between fluid and solid, the model 

must incorporate an appropriate boundary condition at the solid-fluid interface. The 

simulation proceeds as following: first, the LSM system (solid) is updated by calculating 

the forces that are acting on the LSM nodes due to the springs, the surrounding fluid and 

external field. Next, new positions, velocities, and accelerations of the LSM nodes are 

calculated using the Verlet algorithm. During the update of LBM system, we first find 

LBM links intersecting the solid-fluid interface. We then obtain the velocities at the 

intersection points from neighboring LSM nodes (see Fig. 5a). Next, the appropriate 

boundary rule is applied to these boundary nodes, which ensures no-slip and no-

penetration conditions at the interface. 

 The most popular boundary rule in LBM is the linked bounce back (LBB) rule 

[23], where the momentum of a fluid distribution function reverses when fluid collides 

with a solid surface. The location of boundary node is the half-way between fluid nodes, 

so it will portray a curved boundary as a series of steps. It has been shown that this 

boundary rule is of the first order accurate for solid surfaces oriented at arbitrary angles 

[23].  

 Recently, alternative methods to retain second order accuracy have been proposed 

[24], which include linear (LI) and quadratic (QI) interpolation rules, multi-reflection rule 
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(MR), and equilibrium interpolation link bounce-back (EI) rule. However, all these rules 

have some drawbacks, either the location of the no-slip boundary walls depends on fluid 

viscosity (LI and QI) or they requires information from multiple fluid nodes (QI and 

MR). In our simulations, we use two boundary rules: LI and EI rules. 

  

 

Figure 5 (a) Location of boundary nodes for a curved surface. (b) Schematic diagrams of 

the linear interpolation rule; q is the distance of the fluid node 1r  from the boundary node 

br , normalized by the lattice spacing. 

 

 

 The solid surface is not always located midway between two LBM nodes. 

Second-order accuracy therefore requires the use of an interpolation. In LI rule, we 

follow the scheme that is developed by Bouzidi et al. [54] as illustrated in Figure 5b. For 

2/1q , we obtain ),( 0

* tf i r , which is the postcollision distribution at the position 0r , by 

linear interpolation between ),( 1

* tf ii cr   and ),( 1

* tf i r . After propagation step and being 

reflected at the boundary node, the interpolated distribution will end up at node 1r  with a 

velocity in the opposite direction i . Hence,  

2/1 ),,()21(),(2),( 1

*

1

*

1  qtfqtqfttf iiii crrr . (21) 

       

            

(b) (a) 



26 

 

For 2/1q , we first propagate the fluid particle at node 1r , such that it ends up at the 

position 0r , i.e., ),(),( 1

*

0 tfttf ii rr  . We then obtain ),( 1 ttf i  r  by linear 

interpolation between ),( 0 ttf i  r  and ),( 1 ttf ii  cr , i.e. 

2/1 ),,(
2

12
),(

2

1
),( 1

*

1

*

1 


  qtf
q

q
tf

q
ttf iii rrr . (22) 

 Although the linear interpolation scheme leads to second-order accuracy at the 

boundary, the location of the interface depends on fluid viscosity in a way that cannot be 

easily estimated as it is for the bounce-back rule. For EI rule developed by Chun and 

Ladd [24], a separation of equilibrium and nonequilibrium parts provides a viscosity-

independent boundary rule. This is because the viscosity dependence of hydrodynamic 

boundary only comes from the nonequilibrium distribution. The decomposition must be 

done before the propagation step, so the equilibrium part is interpolated first and the 

nonequilibrium part is bounced back. For the case 2/1q , we use the neighboring node 

at icr 1  for the interpolation. Similarly to the standard linear interpolation, we obtain 

2/1 ),,()21(),(2),( 111 


qtfqtqfttf i

eq

i

eq

i

eq

i
crrr . (23) 

On the other hand, for 2/1q , we use the expected equilibrium distribution at the 

boundary node br  to interpolate, 

2/1 ),,(
12

),(
1

),( 11 








qtf
q

q
tf

q

q
ttf b

eq

i

eq

i

eq

i
rrr , (24) 

where ),( tf b

eq

i r  is the equilibrium distribution corresponding to the local velocity of the 

interface bu . If the interface is stationary, 0),( ic

b

eq

i atf r . The final distribution at the 
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fluid node ),( 1 ttf i  r  should includes the nonequilibrium distribution regardless of q , 

which is obtained from the bounce-back rule ),(),( 11 tfttf neq

i

neq

i
rr 


. 

 For a moving interface, we have to account for the velocity bu  of the solid 

material at the interface. This leads to an additional term 
2

2

s

bi

c

c

a i uc 



 in the above 

equations that is proportional to the velocity bu , where   is the local density. When a 

particle collides with an impenetrable wall, it reverses its momentum normal to the wall 

and gains an additional momentum due to the wall velocity. Thus for LI rule, the 

distributions are 

2/1 ,
2
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
. (25) 

The intersection point may not overlap with the lattice spring node. In this case, the 

velocity bu  can be obtained using a linear interpolation between the neighboring lattice 

spring nodes of the triangulated surface.  

 As a result of the bounce-back process, fluid exerts a force on the solid-fluid 

interface. This force is taken to be equal to the rate of exchange in momentum that takes 

place as the fluid particle is reflected at the solid-fluid interface,  

  iiibb ttftf
t

x
tt crrrF ),(),()

2

1
,( 1

*

1

*
3





  . (26) 

It was recently found that this formula gives an error in the quadratic terms in the 

distribution function that breaks Galilean invariance [55]. This error cancels out when 

simulating fluid-filled thin shells, in which a corresponding internal fluid particle 
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interacts with the solid surface. However, when one models a solid body without an 

internal fluid, a corrected bounce-back operation term needs to be used, 

ib

s

bi

s

c

bb u
cc

a i cucFF 







 2

2

2

4 2

1
)(

2

1
12 . The hydrodynamic force bF  is then 

distributed among the neighboring lattice spring nodes, such that the normal and 

tangential forces on the interface are conserved [53].  
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CHAPTER 3 

MODEL VALIDATION 

 

 In this section, the accuracy of our hybrid fluid-structure interaction model 

presented in the previous chapter is examined and the model is validated by simulating 

fluid flow around solid particles. This serves as a basis for the subsequent researches on 

the flow of particle suspensions. 

3.1 Flow Past Sphere in Unbounded Flow 

 We study the convergence of our model by placing a solid sphere at the center of 

a cubic domain with size aL 5 , where a  is the radius of the sphere. In our simulation, 

fluid is driven by a pressure gradient with a constant particle Reynolds number 

05.0Re  Uap . Periodic boundary conditions are used in all directions. The analytic 

solution [56] for drag force acting on a periodic array of spheres forming a cubic lattice in 

creeping flow is given by aUKF 6 , where the correction coefficient 

)(5593.17601.11 3/823/11 cOcccK  , c  is the volume fraction of a sphere in the 

cubic domain, and U  is the mean velocity at periodic boundary. This analytical solution 

is valid for 1c .  

 The lattice spacing of both LSM and LBM are refined sequentially, and the 

relative error of the force is computed by comparing the simulation results with the 

analytical solution. The relative node spacing is defined as lattice spacing divided by 

domain size L . The results are shown in Figure 6a, indicating that our simulations 

converge to the analytical solution. The slope of 1.86 obtained in the simulations is close 
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to the theoretical accuracy of LBM, which is of the second order accuracy, and also 

indicates the boundary condition at fluid-solid interface is of the second order accuracy. 

   

 

Figure 6 (a) Convergence of relative errors of drag force on a fixed sphere in unbounded 

Stokes flow. (b) Drag coefficient of a periodic array of settling spheres at different Re. 

 

 

 This simulation tests the boundary condition when the solid sphere is stationary. 

In order to examine the situation when the interface moves across the lattice, we impose a 

constant velocity on the solid sphere. Similarly, we compare our simulation with the 

analytical solution (here, U  is relative velocity between fluid and solid), and find the 

relative error is within 1.2% for 10a  (LB unit). No force or velocity fluctuations are 

observed in the simulation, indicating a sub-grid scale resolution for our coupled model. 

 In order to probe the utility of our method for simulating moving boundaries in an 

inertial flow, we allow a periodic array of spheres to settle at larger Reynolds numbers. In 

the simulation, a sphere was placed in a cubic box of aaa 323280   with periodic 

conditions on all sides. An empirical equation for the drag coefficient is given by White 

[57], 4.0
Re1
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formula fits a large amount of data available within 10% error. Our results are shown in 

Figure 6b, which agree well with the empirical expression. 

3.2 Effect of Time Relaxation Parameter on Fluid-solid Coupling 

 To probe the accuracy and stability of different LBM boundary rules, we examine 

the steady Stokes flow through a cubic array of spheres. The cubic domain size aL 5  is 

used in our simulations, where 10a  is the radius of the sphere. We evaluate the 

viscosity dependence of the computed drag force by using different fluid-solid coupling 

schemes. MRT-LI, MRT-EI, Ladd-LI, Ladd-EI, BGK-LI are respectively used to denote 

the MRT scheme with linear interpolation, MRT with equilibrium interpolation, Ladd’s 

scheme with linear interpolation, Ladd’s scheme with equilibrium interpolation, and 

BGK scheme with linear interpolation boundary conditions (see Chapter 2). For MRT 

model, the eigenvalues of collision operator are chosen as  2164 ss , 

 1310921 sssss , where   is the relaxation time related to viscosity; this 

corresponds to 5.0w  as in [24]. 

Figure 7 (a) Relative error in drag force for a simple cubic array of spheres as a function 

of fluid viscosity. (b) Viscosity dependence of the mass leakage for different schemes. 
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 In LBM, the fluid viscosity can only be changed by varying relaxation time. 

Figure 7a shows the relative error of the drag force as a function of fluid viscosity. The 

results indicate that the data obtained using MRT scheme are much less dependent on 

viscosity than those obtained by Ladd scheme and BGK scheme. The MRT-EI scheme is 

almost independent of viscosity. MRT-LI and Ladd-EI schemes have acceptable error 

when the viscosity is less than 0.5. BGK-LI scheme has the worst results and is only 

accurate when 2.0 . All these schemes have minimum errors when 1.0 . We 

conclude that MRT-EI scheme should be used to model highly viscous fluids. For low 

viscosity, Ladd scheme is recommended since its run time is about 30% faster than MRT 

scheme. 

  A major drawback of the interpolation schemes is that the total fluid mass is not 

always exactly conserved. For special cases, such as a channel flow with the walls 

symmetrically placed on the grids, there is no mass leakage since the gain and loss of 

mass from the interpolations are exactly cancelled each other [24]. However, solid 

surfaces are typically not located in symmetric positions, so that fluid mass tends to keep 

increasing or decreasing over time depending on the position of the fluid-solid 

boundaries. The mass leakage per time step,     00),(  ttM
j

jr  is roughly 

constant for a given configuration and proportional to the average velocity of fluid. The 

results in Figure 7b show that UM  is negligible when 5.0  for all schemes, but 

increases linearly with viscosity. It should be noted that even though the mass gain or loss 

increases with time, we did not observe any variation of velocity field due to mass 

leakage, which is similar to the results reported in [24]. 
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3.3 Frequency-dependent Rotational Friction Coefficient 

 To model the dynamics of a solid particle, different approaches can be used with 

regard to including the fluid located in the particle interior into the model. As first 

suggested by Ladd [16], a particle can be treated as a solid shell of mass 0m  and moment 

of inertia 0I , filled with a fluid. It has been shown that this model is not accurate to 

model the dynamics of solid particle under certain situations [18].  

 Ladd [16] investigated the influence of the internal fluid on the rotational 

dynamics of a single spherical particle. For high-frequency rotation ( 2av , where 

  is the frequency,   is the viscosity, and a  is the particle radius), the internal fluid 

makes no contribution and the particle displays the same behavior as a rigid particle with 

the moment of inertia 0I . For low-frequency rotation ( 2av ), the internal fluid 

contributes essentially as a rigid body and the particle acts as a rigid particle with the 

combined mass and moment of inertia of the shell plus the internal fluid.  

 It is worth noting that the internal fluid can be assigned a higher viscosity to 

ensure the relaxation to the long time limit. However, at short times, the inertial lag of the 

fluid is noticeable and does affect the dynamics. For this reason, several schemes have 

developed to eliminate the effect of internal fluid [10, 18]. We follow the method 

developed in [18] that treat the internal fluid nodes as virtual nodes. The virtual nodes are 

updated as normal nodes at the collision step in LBM, but they do not impose torque and 

force on the solid particle interface. In contrast, a solid shell containing internal fluid is 

implemented by summing up hydrodynamic forces exerted by both internal and external 

fluids at the boundary nodes. Therefore with small change, this method is able to simulate 

both solid particles and fluid-filled capsules. 
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Figure 8 (a) Frequency-dependent torque on a rotating sphere with and without internal 

fluid. The torque on the sphere is normalized by 00 . (b) Phase lag between oscillations 

and torque on a rotating sphere with and without internal fluid. 

 

 

 To validate this method, we consider an unsteady motion of an isolated sphere in 

the limit of zero Reynolds number. We begin by investigating the motion of a sphere 

undergoing small-amplitude rotational oscillations )cos()( 0 tt  . In this case, the 

internal fluid exerts a frequency-dependent torque )(T  on the particle. The motion of 

particle can be analyzed theoretically [58] to separately obtain the internal and external 
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as the fluid. Our results are shown in Figure 8. We find that the phase lag slightly 

underestimates the theory at sufficiently high frequencies when the period of oscillation 

(
*

2  ) is less than 10 LBM time steps. The accuracy can be increased by increasing the 

size of the sphere or by decreasing the viscosity of the fluid. At low frequency, the effect 

of the internal fluid on the magnitude of the torque is minor. However, the contribution to 

the phase lag is noticeable. Our method can accurately model the low-frequency effects 

of the internal fluid in close agreement with the theory prediction. 

3.4 Drag and Lift Forces on Sphere in Shear Flow 

 It is well-known that particles carried by a viscous fluid along a wall are subjected 

to a lift force normal to the flow direction. For a vanishing small Reynolds number, at the 

leading order O(0) the lift force on a sphere is zero due to the linearity of the Stokes 

equations. At the next order O(1), fluid inertia results in a lift force normal to the wall 

[59]. The calculation of lift force is a highly sensitive test of the model accuracy and we 

use this test to examine the properties of our model. 

 Recently, Samir [59] used a regular perturbation expansion method to study the 

lift force on a sphere at a low Reynolds number. For a sphere fixed in a linear shear flow, 

he provides an accurate fitting formula valid for 1Re   and distance 10001.1  al , 

006228.007648.0264.196328.0

01386.015728.06728.29608.34562.30172.2
ln

234

2345









SL , where 

)ln( al , l  is the distance from particle center to the wall, a  is particle radius, 

24 aFL LS   is the lift coefficient, and   is the shear rate.  
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Figure 9 (a) Lift force on a fixed sphere in linear shear flow and comparison with the 

theory. (b) Drag force on a fixed sphere in linear shear flow. (c) Drag force on a moving 

sphere parallel to the wall in a quiescent fluid. 

 

 In the simulations, the grid resolution is set 5a , and the domain size is 

aaa 404040  . Besides the standard Ladd-LI scheme, MRT-EI scheme with viscosity 

35  is also examined in these tests. Figure 9a compares our simulations with the 

theory for the lift force on a fixed sphere in a shear flow. Our results are close to the 

theory for 2al . In the limiting case when the particle is in contact with the wall, 

Krishnan and Leighton [60] obtained an analytical value 257.9SL . In this limit, our 

computational result is 9.7, which is within a 5% error. When the particle is far away 

from the wall, our results begin to deviate from the theory. It is because the theory is 

derived for semi-infinite domain with a single wall. In contrast, the effect of the top wall 
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cannot be neglected in our simulations. So our simulation underestimates the lift force 

when 2al .  

 We also compare the drag force with the correlation provided by Zeng [61], and 

our simulations show good agreement for both computational schemes (Fig. 9b). An 

accurate fit for the low Reynolds number drag force on a stationary particle in a shear 

flow is given by [61], 











)21(16

9
)2exp(138.01

Re

24


DsC , where )1(5.0  al , 

al2Re  , and 
2222  laFCDs  .  

 Additionally, we test our method by simulating the case when a sphere moves 

parallel to a wall in a quiescent fluid. For a translating sphere, the correlation for the lift 

force is given by [59], 
)(54.16)(59.23)(14.8)(

243.9)(67.42)(52.45)(48.14)(77.1
234

234

alalalal

alalalal
LT




 , 

where 22

pLT UaFL   and pU  is the translating velocity of particle. The corresponding 

drag coefficient is [61], 

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24
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t

DtC , where 

pt aU2Re  . It should be noted that when the sphere is allowed to move parallel to the 

wall, the lift force would be substantially reduced compared to a stationary sphere. 

  In our simulations, we find the lift force on the sphere fluctuates in a periodic 

way. These fluctuations are related to the relative position of the sphere with respect to 

the LBM grid nodes. Similar behavior has been previously reported [62]. We note, 

however, that oscillations of the drag force are negligible small. By averaging the lift 

force over time required to move over the distance equal to single grid spacing, we find 

the lift force that agrees with the theory within 4% error. For the drag force, good 
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agreement is found when the particle is at least one grid unit away from the wall (Fig. 

9c). For smaller distances between particle and wall, the lubrication force should be 

included into the model. There are several ways to incorporate lubrication forces into 

LBM [63, 64]. However, we do not consider the lubrication force in our model since we 

focus on the flow regimes where the distance between a solid particle and a wall is 

greater than one lattice unit. 

3.5 Lattice Spring Model Validation 

 When the thickness of a membrane is small compared to the capsule diameter, the 

membrane can be modeled as an elastic sheet with surface shear elastic modulus SG , area 

dilation modulus SK , surface Young’s modulus SE , and Poisson’s ratio S . Only two of 

those moduli are independent, whereas other can be found using the relations of elasticity 

)1()1( SSSS GK    and )1(2 SSS GE  . When the membrane is isotropic, the 

principal directions of deformation and stress are co-linear. A simple way to express the 

membrane constitutive law is to relate the principle tensions (forces per unit area) T  to 

the principal extension ratio in the membrane plane 0LL , where L  is the final length 

and 0L  is the initial length of the material. For a uniaxial stretch, for example, in the 1x  

direction 01 T , in the limit of small deformation, 1

2

11 2/)1(  SS EET  , where 1  is 

the Green strain. The area dilation modulus can be obtained from isotropic stretching 

( TTT  21 ). Its value in the limit of small deformations is given by 

021 /)1( SSKKT SS   , where 0SS  is the relative area change [42].  

 A number of constitutive laws have been proposed to model thin hyperelastic 

membranes. Depending on the constitutive law, different materials can be modeled 
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including relatively large deformations. For example, models with a strain softening 

feature can be used for gelled membranes that exhibit rubber-like elasticity or models 

with strain hardening can be employed to study membranes made of a polymerized 

network with strong covalent links. For each law discussed below, we provide only an 

expression for 1T  as a function of the deformation, whereas a corresponding expression 

for 2T  can be obtained by interchanging the indices 1 and 2.  

 In the limit of small deformations, all constitutive laws reduce to the Hooke’s law, 

 )1(1
1

2

2

2

11 


 


S

S

SH G
T . An area incompressible membrane is characterized by 

1S . For large deformations, a widely used law is the neo-Hookean law (NH) that 

describes the behavior of an infinitely thin sheet of a three-dimensional isotropic material 

that is volume incompressible, 









2

21

2

1

21

1
)(

1





SNH G

T . For small deformations, the 

corresponding Poisson’s ratio is 1/2. Another law (SK) has been derived for 2D materials 

has independent surface shear and area dilation moduli [65], 

 )1()1( 2

2

2

1212

2

111   CGT S

SK . In the limit of small deformations, the 

corresponding parameters are )1(  CCS , and )21( CGK SS  .  

 For large deformations, the condition 02 T  provides an expression of 2  as a 

function of 1  that gives an expression for the tension 1T  for different constitutive laws. 

In this way, the analytical solution can be obtained. Under large uniaxial stretch, the 

variation of 1T  with 1  is nonlinear for NH and SK laws.  
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Figure 10 (a) Relative error of elastic moduli as a function of mesh spacing under 

uniaxial extension and isotropic extension. (b) Tension-strain relationship under uniaxial 

elongation from continuum theories and spring models. (c) Tension-strain relationship 

under isotropic dilation from continuum theories and spring models. (d) Deflection of a 

free end loaded 2D sheet from the theory and spring models. 

 

 

 We calculate the mechanical properties of the LSM and compare them with the 

continuum models. We first examine the effect of mesh size x  by investigating the 

deformation of a 2D spring network with square shape under uniaxial and isotropic 

extension. Figure 10a shows the values of SS EEE /  and SS KKK /  as functions of 

mesh size for a square lattice (Sq). Here, E  and K  are numerical results calculated from 

the strain-stress relationship under small deformations, while SE  and SK  are analytical 

values for LSM calculated from the expressions given in Chapter 2.2. The tension T  is 

calculated based on the width of sheet after deformation. It is evident that the size of the 
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mesh influences the accuracy of the model. When the mesh is coarse, the spring network 

seems to overestimate the moduli since the hypothesis of a homogenous deformation of 

the individual lattice springs becomes inaccurate. As the mesh is refined, the values 

converge toward the analytical values for isotropic material. The deviation from the 

analytical value is less than 2% when grid size 025.0x  for a unit length network 

sheet. The Poisson’s ratio is found to be in good agreement with the analytical values.  

 Next, we compare the tension-strain relationships of a spring network with 

continuum models under large deformations. In all cases, we use a fine mesh to suppress 

the effect of mesh size. The tension-strain relationships are shown in Fig. 10b for several 

membrane models under uniaxial elongation. We note that SK law is strain hardening, 

while NH law is strain softening. When the strain is not very large ( 6.0 ), both square 

lattice and triangular lattice exhibit a linear tension-strain relationship, close to the 

Hooke’s law with 3/1S . For very large deformation, spring network shows slight 

strain hardening behavior. The isotropic tension-area dilation relations are shown in Fig. 

10c. For a 2D sheet of square lattice, it shows a strain softening behavior close to NH 

law, which is similar to the result reported in [42]. 

 We also study the behavior of a spherical capsule under uniform inflation. The 

sphere shell is composed of triangular lattices. Due to the discretization it is impossible to 

generate a fully isotropic mesh on a spherical surface. The most regular mesh that can be 

generated for a sphere is by subdivision of a regular icosahedron [66]. The subdivision 

scheme starts at creating a new node at the middle of each edge. Those new nodes are 

then projected onto the sphere surface and connected to form additional faces. This 

procedure can be repeated several times to create a finer gird.  
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 In this study, the surface is discretized with 1280 triangles. In order to model 

inflation of a spherical capsule, we impose external forces uniformly distributed on the 

surface nodes with the direction normal to the surface. Following [42], we define the 

tension SRT
i ii 2 nF , where R  is the radius of the capsule after deformation, in  is 

the outward normal unit vector to the surface at node i, and S  is the total surface area. 

The tension-strain curve can be perfectly overlapped with the results of a 2D isotropic 

deformation with square lattice (Fig. 10c). Therefore, we can conclude that, for isotropic 

extension, previous findings on the mechanical properties of flat 2D spring networks can 

be applied to curved membranes. 

 After examining the behavior of LSM for the in-plane deformation, we probe the 

mechanical response of LSM under bending load. Specifically, a transverse loading test is 

performed using a clumped 2D spring sheet. For a long and relatively thin sheet, the 

effect of a force applied to the free end is sheet bending with negligible in-plane 

deformation. The results shown in Figure 10d are compared to the theoretical solution 

)3(
6

2

xL
EI

Fx
y  , where F  is the loading force at the free end, y  is the deflection, L  is 

the length of sheet, and 12/3WhI   is the moment of inertia for a rectangular plate of 

thickness h  and width W . Two types of spring network with two different bending 

models (bond-bending and dihedral angle) are compared with the theory. All models 

agree well with the theory within 5% error. We also find dihedral angle (DA) model has a 

more uniform deflection along the width of the sheet compared to bond-bending (BB) 

model. 

3.6 Deformable Spherical Capsule in Shear Flow 
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 The deformation of a single capsule freely suspended in linear shear flow has 

been studied extensively over the years. The results of the simulations allow us to relate 

the capsule deformation to the flow strength and to predict the stress level in the 

membrane [67].  

 We assume the external fluid and the fluid inside the capsule are Newtonian and 

share the same properties, including fluid density and viscosity. In the limit of a Stokes 

flow, the only dimensional parameter that characterizes the system is the capillary 

number SGaCa  , which defines the ratio between viscous and elastic forces. Here, 

  is the shear rate of the undisturbed external fluid, and a  and SG  are the radius and the 

surface shear modulus of the capsule, respectively. Due to the presence of an external 

shear flow, the initially spherical capsule obtains an elongated shape with the long axis 

inclined with respect to the flow direction, while the membrane steadily rotates around 

the center of mass of the capsule. This tank-treading behavior has been observed by many 

researchers [68, 69]. The deformation of the capsule is typically quantified using the 

Taylor parameter 12D  in the shear plane, 
BL

BL
D




12 , where L  and B  denote the 

maximum and minimum profile diameters in the measurement plane, respectively.  
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Figure 11 (a) Taylor deformation as a function of capillary number for capsules with 

NH, SK, and lattice spring model. (b) Taylor deformation in the shear plane as a function 

of capillary number for different bending rigidities. Theoretical data is from [69]. 

 

 

 In a Stokes flow, the analytical expression for small deformations in the shear 

plane [69] is CaD
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12 , where S  is the Poisson’s ratio of the membrane. This 

expression is valid for 1.0Ca  and materials with zero bending rigidity. The asymptotic 

model predicts that compressive tension occurs in the vicinity of the equatorial plane. 

This means that the capsule is mechanically unstable and the membrane may buckle. 

Numerically, bending rigidity should be introduced into the membrane to prevent 

buckling. Furthermore, in practice, most physical membranes have a finite thickness and 

thus a resistance to bending.  

 In order to validate our numerical model, we compare our model with the theory 

for different values of bending rigidities with relatively small deformations. We use a 

large computational domain aaa 101015  , where the capsule radius 10a , which 

reduces the effect of the boundaries on the capsule deformation.  
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 Figure 11(a) shows the Taylor parameter versus capillary number for a LSM 

capsule. The deformation of the capsule changes linearly with capillary number under 

small deformations. When the capsule is subject to a strong flow (large Ca ), the 

deformation is similar to a neo-Hookean membrane capsule. The surface bending rigidity 

is defined as 
 2

3

112 S

S hE
D


 , where SE  is the Young’s modulus and h  is the effect 

thickness of the membrane. Figure 11(b) shows the Taylor parameter as a function of Ca  

for capsules with different bending rigidities under small deformation. For a small 

bending rigidity, numerical results are close to the analytic solutions. Specifically, the 

relative errors are within 3%, 5%, 11%, and 17% for membranes with thickness 1.15, 

1.45, 1.87, and 2.31 (LB unit), respectively. Higher bending rigidity makes the capsule 

stiffer, which agrees with the previously published results [68].  

3.7 Summary 

 In this chapter, we validated our computational model for fluid-structure 

interactions that integrates the lattice Boltzmann and lattice spring models. The accuracy 

of the combined model is examined by comparing the simulation results with analytical 

and numerical solutions from the literature. The applicability of the model for simulation 

of fluid flows with particles is demonstrated.  
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CHAPTER 4 

CONTINUOUS SORTING OF MICROPATICLES BY SIZE IN 

RIDGED MICROCHANNELS 

4.1 Introduction 

 Separation of microscopic particles and capsules by size is a critical step in many 

medical assays and biochemical studies. Active methods for microparticle separation 

utilize forces from external sources such as dielectric, magnetic, acoustic forces or 

employ optical manipulation to discriminate particles and cells with different sizes [70-

74]. These active methods typically provide excellent separation accuracy, but often offer 

limited throughput and require complex sample preparation and sophisticated external 

control.  

 Another approach is to use hydrodynamic effects in microfluidic channels, in 

which case individual particles are propelled by a flowing fluid and are separated due to 

interactions with channel microscale topography [75-80]. These interactions force 

particles with different properties follow different trajectories inside microchannel, 

thereby inducing their segregation. The passive hydrodynamic methods typically offer 

high-throughput and continuous separation critical for massive screening of biomedical 

samples. Furthermore, these methods can be often operated in an autonomous manner 

without any external control [70, 77, 81]. 

 Among different methods for passive particle separation, microfluidic methods 

harnessing inertial hydrodynamic effects benefit from a simple device layout combined 

with the ability to operate at high flow rates, making this approach an attractive 

alternative for designing high-throughput microfluidic sorters [81]. This hydrodynamic 
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method is based on non-linear inertial effects in microfluidic channels that provoke cross-

stream migration of solid particles. This inertial particle drift is associated with interplay 

of two hydrodynamic forces, namely a wall-induced lift force that repels particles away 

from the wall, and a force due to a non-uniform shear in channel flow that causes 

particles to migrate away from the channel centerline. A balance between these forces 

sets the particle equilibrium position in the flow, which depends not only on channel 

geometry [82] [83], but also particle size [81]. This size-dependence of cross-stream 

migration can be, therefore, employed for size-based particle separation. Specifically, 

small particles can be typically found at a distance about H2.0  from the wall in a 

channel with height H [11], whereas larger particles follow trajectories that are closer to 

the channel centerline. A practical disadvantage of this method is that the spatial 

separation between trajectories of different particles is relatively small and is comparable 

to particle size, thus making it difficult to identify and isolate particles with different 

sizes without extra processing steps. 

 In this chapter, we use simulations to design a ridged microfluidic channel that 

effectively sorts and separates neutrally-buoyant microparticles by size. The high-

resolution particle separation is achieved using a combination of inertial migration effects 

and secondary flows induced by channel topography. More specifically, the top and 

bottom channel walls are decorated with symmetrically aligned diagonal ridges (Fig. 

12a). The gap between opposite ridges is greater that the diameter of particles, thereby 

allowing their free passage between ridges and reducing the potential channel clogging. 

In our microfluidic system, inertial migration separates particles in the vertical z  

direction. This vertical separation is then amplified by secondary flows created by 
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periodical ridges that transport particles with different sizes to opposite channel sidewalls 

in the y  directions. Thus, the combination of these two effects drastically enhances the 

separation efficiency and resolution. As we show below, this separation method is 

practically insensitive to the magnitude of fluid velocity and can be successfully 

employed with relatively high flow rates, which makes this approach especially attractive 

for high-throughput sorting and separation applications. 

4.2 Computational Setup 

 In our three-dimensional simulations, we consider a pressure-driven flow in a 

periodic microfluidic channel of height H  and width HW 2.3  (Fig. 12a). The top and 

bottom channel walls are lined with symmetrical solid ridges. The rectangular ridges 

have the width Hb 4.0  and height Hc 2.0  and form a uniform gap between two 

oppositely laying ridges that is equal to Hh 6.0 . Furthermore, the ridges are inclined at 

an angle 45  relative to the channel longitudinal axis. In our current implementation, 

the channel is periodic in the x  direction with a period equal to HL 5 ; thus, the 

separation between centers of consecutive pairs of solid ridges is L . A constant pressure 

gradient is imposed in the negative x  direction via a uniform body force to create a 

Poiseuille flow in the channel. We introduce neutrally-buoyant spherical particles with 

diameters a  in the range between Ha 1.0min   and Ha 5.0max  , and track their 

trajectories as the particles move through the ridged microchannel. We set the channel 

height equal to 50H  LBM units. Hereafter, all dimensional values are given in the 

LBM units is not specified. 

 We impose non-penetration, no-slip conditions on the channel walls in the y  and 

z  directions and a periodic boundary condition in the x  direction. Specifically, when a 
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particle leaves the channel at Lx  , we introduce a new particle at 0x  with the same 

y , z  positions and the same exerting forces, thus we model the movement of particle 

through a periodic array of ridges in a microfluidic channel. 

 We characterize the microchannel flow in terms of the Reynolds number 

HUmRe  that indicates the relative importance of inertial and viscous effects. Here, 

82PHU xm   is the maximum flow velocity of the fluid with Px  being the 

pressure gradient along the channel of a uniform height H . In the simulations described 

below, we vary Re  between 0.5 and 20. 

4.3 Results and Discussion 

 We start our simulations by placing particles with different diameters at 

Wy 5.0 , and track the particle motion inside the ridged microchannel. We first fix the 

lateral y  position of particles and let the particles to reach their equilibrium trajectories 

in the xz   plane, and then release the particles so they can move in the y  direction. 

This allows us to eliminate the effect of initial transient on the particle lateral migration.  

 Figures 1b and 1c shows the spatial trajectories of centers of mass of different 

particles after they are released at the same initial position Wy 5.0 . Due to the 

periodical ridges, the trajectories oscillate as particles are propelled in the channel. More 

importantly, the trajectories of particles with different diameters are distinctly different. 

In the yx   plane, smaller particles migrate in the positive y  direction, whereas larger 

particles migrate in the negative y  direction (Fig. 12b). Thus, different-sized particles 

almost uniformly spread out in the yx   plane, thereby separating by size.  
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Figure 12 Panel (a) shows schematic of a microfluidic channel with diagonal ridges 

protruding from the top and bottom walls. Trajectories of particles with different sizes in 

(b) yx   plane and (c) zy   plane. In panels (b) and (c), 10Re   and the lines from the 

top down respectively correspond to particles with sizes: 1.0Ha , 0.16, 0.24, 0.3, 0.4, 

and 0.5. Panel (d) presents equilibrium positions of different sized particles in pressure 

driven channel flows with different Re . The symbols indicate equilibrium positions in 

ridged channels, whereas the dotted and solid lines show the particle equilibrium 

positions in channels with smooth walls with 1Re   and 10Re  , respectively.  
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 This separation process is rather fast. After about 20 channel periods the smallest 

and the largest particles migrate to the opposite channel sidewalls, making it easy to 

differentiate and isolate these particles. We note that the separation can be further 

enhanced by including additional ridges and increasing the channel width. Thus, a 

microchannel with diagonal ridges constitutes an effective means for rapid sorting and 

separation of solid particles by size. 

 We first study the transient process during which particles drift from the initial 

vertical position to a new equilibrium trajectory in the xz   plane. Figure 13 shows the 

focusing of particles with the same diameters ( 20a ), but different initial positions. We 

find that the particles have three possible equilibrium trajectories. One is at the channel 

center due to the symmetry, but this equilibrium trajectory is unstable and any small 

perturbations end up in particles migrating to other equilibrium trajectories.  

 The two other equilibrium trajectories are symmetric with respect to the channel 

height. When the initial position of a particle is close to the wall, it can rapidly reach the 

equilibrium trajectory after only one period of the ridges (the blue line in Fig. 13). This 

indicates that wall repulsive force pushes particles to the channel center. On the other 

hand when the initial position of particle is close to the centerline, it may take several 

periods for the particles drift to an equilibrium trajectory. In this case the drift is due to a 

shear-induced lift force. 
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Figure 13 Focusing of particles with different initial positions in the x-z plane. 

 

 The magnitude of the lift force in a parabolic flow between two infinite planes is 

given by 242 /)/(Re, HaUHzfF mLL   [14]. Here, Lf  is a nondimensional lift 

coefficient that depends on the position of the particle in the flow and the channel 

Reynolds number. At equilibrium, where all forces on the particle are balanced, 0Lf . 

The expression for the inertial migration velocity, LU , can be developed assuming that 

the lift force is balanced by the Stokes drag, i.e. LL aUF 3 , yielding 

232 3 HaUfU mLL  .  

 To estimate of the migration time, we assume the average value of 

aHfL 025.0  for the particle migration from the center to the equilibrium position 

[81]. In this case, the number of microchannel structure periods required to migrate to the 

equilibrium trajectory is 
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results are relatively close to the simulations. We find that the migration velocity is small 

compared to the mainstream velocity ( 017.0mU  LB unit). However, if the particles are 

not far away from the equilibrium position, migration periods typically are less than 20 

due to the confined channel height. 

 

Table 1 Comparison of migration periods from simulation and calculation at 5Re  . 

Particle 

diameter (d, 

LB unit) 

Migration 

distance ( dz / ) 

Migration 

velocity 

( mL UU / ) 

Migration 

periods 

(simulation) 

Migration 

periods 

(calculation) 

20 0.115 3.05e-3 4 3.6 

20 0.265 3.05e-3 10 8.3 

20 0.315 3.05e-3 14 9.9 

15 0.367 1.72e-3 11 15.3 

15 0.567 1.72e-3 21 23.7 

10 0.35 0.76e-3 19 22.0 

10 0.85 0.76e-3 39 53.4 

 

 Different-sized particles also exhibit distinct trajectories in the zx   plane (Fig. 

12c). In this case, however, the separation between trajectories of different particles is 

relatively small and remains roughly the same as particles are propelled along the 

microchannel. The only exception is for particles that are close to the side wall, their 

equilibrium trajectories change as they approach the side wall.  

 The separation of particles with different sizes in the zx   plane is related to the 

particle inertial drift in a pressure-driven channel flow which alters particle z  position 

[77, 84]. In Figure 10d, we show the particle positions at equilibrium, eqz , as a function 

of particle diameter. To calculate these equilibrium positions, we average the z  

component of particle trajectories. We find that larger particles have eqz  closer to the 

channel centerline at 0z , whereas smaller particles drift closer towards the channel 

walls. Similar results are found for smooth channels without ridges (shown in Fig. 12d by 
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the solid and dotted lines). This size dependent equilibrium positions was experimentally 

observed by Di Carlo et al. [81]. In plain channels, however, the separation between the 

smallest and largest particles is less than a half of the separation in ridged channels. We 

also find, for the channel with normal ridges, the equilibrium positions are almost the 

same as slanted ridges. Thus, periodical ridges enhance the size-dependence of particle 

drift in the zx   plane by displacing larger particles closer to the channel centerline.  

 

 

Figure 14 Panel (a) shows cross-stream velocity distribution in a channel with ridged 

walls. The velocity is averaged over one period of the wall structure. The arrows show 

the direction of fluid velocity, whereas the color represents the normalized magnitude of 

lateral fluid velocity. Note that the diagonal ridges create circulatory flows that transport 

fluid to the left in the channel midplane and to the right close to the top and bottom walls. 

Panel (b) shows averaged lateral flow velocity as a function of vertical position inside 

channel. Here, the vertical dotted lines show equilibrium position of particles with 

different sizes and the arrows indicating corresponding particle cross-stream drift 

velocities. Panel (c) shows the migration distance per channel period as a function of 
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particle size for different Reynolds numbers. Note that while the flow rate is changed 40 

times between 5.0Re   and 20Re  , the migration rate per ridge changes by only a few 

percent.  

 

 

 The diagonal ridges not only enhance the particle size separation in the zx   

plane (Fig. 12c), but also induce particle spreading in the yx   plane (Fig. 12b). To 

explain the yx   separation, we calculate the average velocity field in the zy   plane in 

microchannel. Figure 14a shows that diagonal ridges create two vortices, in which the 

fluid at the channel center ( 0z ) is transported in the negative y  direction, whereas the 

fluid located near channel walls ( 2Hz  ) moves in the positive y  direction. This 

effect is harnessed to create the y  separation among particles with different z  positions.  

 Figure 14b shows the average fluid velocity avgV  in the y  direction and the 

equilibrium positions of different sized particles eqz . For larger particles, the velocity is 

negative and, thus, these particles migrate towards the wall at 0y . On the other hand, 

for smaller particles, the velocity is positive and these particles move towards the wall at 

Wy  . Between eqz  of the smallest and largest particles, the fluid velocity avrV  

monotonically changes, thereby enabling almost uniform spreading of different sized 

particles. We note that the magnitude of lateral migration velocity is at least 10 times 

faster than the vertical migration velocity (Table 1), which indicates the secondary flow 

in lateral direction significantly enhances the particle separation.  

 We summarize our simulations in Fig. 14c, where we plot the y  displacement of 

particles over one channel period, y , as a function of particle diameter a . This plot can 

be used to determine size of particles based on their trajectories, whereas the final 

separation resolution is defined by the channel width.  
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 To further investigate the influence of flow velocity on particle separation, we 

calculated the displacement in flows with different Re  and found that y  is almost 

independent of flow rate (Fig. 14c). Indeed, particle equilibrium position eqz  practically 

does not change with Re  (see Fig. 12d), whereas the circulation flow velocity is linearly 

proportional to the mean fluid velocity. Thus, the separation method is insensitive to 

channel flow rate for a wide range of Re , which is important for the robust operation of 

high-throughput devices. Based on our simulations for 20Re  , we estimate that a ridged 

microchannel of 1 mm length can separate up to 510  particles per minute and the 

separation rate can further enhanced using channel parallelization.  

4.4 Summary 

 In summary, we use computer modeling to design a ridged microchannel that 

hydrodynamically separate solid spherical particles by size. This new continuous 

separation method is insensitive to the variations in fluid flow rate, features high 

throughput, enhanced resolution, and simple channel layout, enabling simple integration 

in lab-on-a-chip devices for autonomous particle sorting. Furthermore, we expect this 

method can be adapted with minimal changes for stiffness-based separation of biological 

cells and compliant particles, in which case the equilibrium trajectories in the channel 

flow are defined by particle mechanical stiffness. 
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CHAPTER 5 

STIFFNESS DEPENDENT SEPARATION OF CELLS IN A 

MICROFLUIDIC DEVICE 

5.1 Introduction 

 Rapidly sorting and separating biological cells can enable a large number of 

applications in bio-related science and technology. For example, diseased cells have been 

identified through morphological differences with healthy cells and fluorescent molecular 

markers are routinely used to separate specific subpopulations of cells [85, 86]. However, 

the morphological overlap between the diseased and healthy cells often poses a 

significant problem to accurate identification of cell populations. New molecular and 

biophysical markers which can be detected and used to rapidly sort cells are critical to 

robust separation of specific cell subpopulations. 

 A variety of different mechanisms utilizing microfabricated structures have been 

used to separate biological cells, including magnetic fields [72, 87, 88], electric fields 

[89-92], optical forces [93, 94], and acoustic fields [71, 95, 96]. However, these active 

separation methods generally require an applied external field which adds to the 

complexity and increases the cost. Alternatively, labeling of cells through specific 

binding of fluorescent antibodies [97] is expensive and hampers the downstream analysis 

of separated cells. Additionally, the separation executed by these techniques occurs only 

after individual readout of the labeling differentiation. This process may be slow, leading 

to limited throughput. 

 Consequently, a label-free method that can separate cells continuously by 

biophysical properties would greatly complement existing separation technologies. A 
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number of disease states result in drastic changes in cell mechanics in comparison with 

healthy counterparts. For example, several studies have shown a reduction in cell 

stiffness in human cancer cells [98, 99]. Mechanical stiffness has been utilized to identify 

abnormal cell populations in detecting cancers [100-103] and infectious diseases [98, 

102]. Recently, mechanical stiffness of cells was used to classify and enrich cell 

populations [104-106].  

 One of the limitation of the current methods of high throughput biophysical 

detection and separation is a coupling between cell size and stiffness [106, 107] or optical 

refractive index and stiffness [99]. This coupling affects the effectiveness of stiffness-

based separation due to the heterogeneity within cell populations. In this chapter, we 

demonstrate a new strategy to passively, continuously, and non-destructively separate 

cells into subpopulations by exploiting the variation in mechanical stiffness between 

individual cells using a fluid flow in a structured microfluidic channel. 

5.2 Computational Setup 

 We use three-dimensional computational simulations to design microfluidic 

channels for continuous flow separation of deformable cells. The microfluidic channel is 

decorated with an array of diagonal ridges protruding from the top wall (Fig. 15a). The 

dimensions of our simulation box are: length L = 5.2D, width W = 12.5D, height H = 

1.33D, where D is the diameter of the cell. The solid ridge has width 1.33D and is 

inclined to an angle 45  relative to the channel axis. The gap between the ridge and 

channel bottom wall h  is equal to 0.57D.  
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Figure 15 (a) Schematic of the microfluidic device. The ridge is inclined at angle 

45  and the ridge width mb 20 . The spacing L  of ridge period is m3.78 . The 

gap h  between the ridges and the substrate is m5.8 . (b) Snapshots present the 

dynamics of a cell when passing through the ridges. Arrows show the velocity field in 

zx   plane. The color bar shows surface strain of the cell. 

 

 

 A pressure gradient in the x  direction is imposed via a uniform body force. We 

apply non-penetration, no-slip conditions for the walls in the y  and z  directions and a 

periodic boundary condition in the x  direction. Thus, we effectively model the motion of 

cells in a channel with a periodic array of diagonal ridges. We characterize the flow in 

terms of the Reynolds number  HU 0Re   that represents the relative importance of 

inertial and viscous effects. Here,   is fluid density,   is fluid viscosity, and 
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122

0 PHU x  is the average fluid velocity in a straight channel of height H  due to 

the pressure gradient Px . The Reynolds number is set to be equal to 1.33. We 

characterize the relative importance of viscous forces versus the elastic response of cell 

by defining a dimensionless cell capillary number EDUCa 0 , where E is cell 

Young’s modulus. 

5.3 Cell Model 

 We choose lymphoblastic cell line K562 (CCL-243) as the prototype. These non-

adherent cells appear to be spherical with an average diameter of approximately 15 m . 

The cell is modeled as a spherical fluid-filled elastic shell. The shell is formed from a 

layer of 642 equally spaced LSM nodes connected by stretching and bending springs. The 

spring constants are tuned such that cell deformation matches the atomic force 

microscope (AFM) experiments conducted by our collaborators. The cytoplasm is 

characterized by a high viscosity [108]. To mimic this viscoelastic property, we set the 

viscosity of the fluid encapsulated in cell  310in .  

Figure 16 (a) Schematic view of the cell compression between two plates. (b) Force 

versus dimensionless indentation curve derived from a cell, fitted with the Hertzian 

model. 

(b) (a) 
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 To establish the mechanical properties of the model cells we conduct indentation 

simulations mimicking AFM experiments. In the indentation simulation, cells are 

compressed between two parallel plates (Fig. 16a). The force-indentation curve is 

obtained in the simulation and then Hertzian model is used to fit the curve to calculate the 

apparent Young’s modulus. The Hertzian model has been shown to be valid for small 

deformations of biological cells (up to 10% of the cell diameter) [109].  

 When the spherical cell is subjected to an applied normal force F between two 

rigid flat walls, the Hertzian model gives the following relation for compressed cell 

2/3

213

4





ER
F . Here,   is the indentation, i.e. a half of the compressive 

displacement at the pole of the deformed cell,   is the Poisson’s ratio (for soft biological 

samples, it is assumed to be 0.5), E is apparent Young’s modulus, and R is the radius of 

the cell. Figure 16b shows the force-indentation dependence obtained in our simulations 

and the fitted curve corresponding to the Hertzian model. The simulation results are close 

to the Hertzian model, which indicates that our cell model yields a static mechanical 

response similar to that of biological cells. 

5.4 Results and Discussion 

 We start our simulations by placing cells at the middle of the microchannel 

( Wy 5.0 ) and letting them to reach their equilibrium trajectories in the vertical 

direction. Then, we release the cells so they can move freely in the lateral direction. This 

allows us to eliminate the effect of initial transients on the cell lateral migration. 

Snapshots in Figure 15b show how the cells dynamically deformed by the solid ridges. 

The initially spherical cell is compressed when it passes through the first ridge and 
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remains, due to slow relaxation, in this compressed state when moves in the rigid 

channel. 

 

 

Figure 17 (a) Simulation results show trajectories of cells of different stiffness in the 

channel. The lines from the top down respectively correspond to cells with capillary 

numbers: Ca = 2.1e-3, 2.6e-3, 3.9e-3, and 5e-3. Gray straps indicate the ridges. (b) 

Overlaid of still frames from experiment and simulation shows cell trajectories. The 

black dots represent the center of cells. The solid line presents the corresponding 

simulation result. (c) Schematic of the cell’s trajectory across a diagonal ridge. (d) Top 

view of velocity field and streamline in the channel.  

 

 

 Figure 17a shows the simulated spatial trajectories of cells with different stiffness. 

The simulation shows that dissimilar cells exhibit diverging trajectories. We find that 

stiffer cells move in the positive y direction, whereas softer cells migrate in the negative y 
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direction, thereby separating by stiffness. The experimental trajectories with cells with 

corresponding stiffnesses are shown in Fig. 17b with the results from the simulations 

overlaid.  

 The experimental and simulated trajectories are in good agreement indicating the 

simulation accurately captures the trajectory oscillations due to the periodical ridges and 

the distinct paths due to different stiffnesses. The lateral migration rate is almost uniform 

across the channel, which provides constant lateral displacement per ridge and steady 

separation. When cells move in the narrow gap between a ridge and the top wall, they 

display a disc-like shape (see Fig. 15b). We find that due to a large internal viscosity cells 

do not fully recover to their undeformed shapes when propelled in the wider sections of 

channel between consecutive ridges, but remain squashed. 

 Cells propelled by fluid flow experience mechanical forces when they confront 

periodic ridges in microchannel (indicated by RF  in Fig. 17c). These forces arise due to 

cell deformation and, therefore, are proportional to the cell mechanical stiffness. Thus, 

cells with different stiffness experience different mechanical forces when they pass 

through periodical constrictions. Thermodynamically, this mechanical force is associated 

with the change of system free energy due to cell elastic deformation and, therefore, is 

directed normal to the ridge. At the same time, drag force from the fluid propels the cell 

forward (indicated by DF  in Fig. 17c). Thus, the total force has a component that drives 

cells along the ridge before it goes through. Cells with larger stiffness result in a larger 

force, leading to greater transversal displacement in the positive y  direction (Fig. 17b). 

On the other hand, when cells are soft, the mechanical force is weak and cells move with 

fluid streamlines. Diagonal ridges alter fluid flow direction (Fig. 17d) [110, 111] and, 
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consequently, softer cells are more propelled by the flow, in the negative y  direction 

(Fig. 17a). 

 We find that the lateral migration per ridge is determined by the intrinsic cell 

stiffness and the channel flow rate, both of which can be described in terms of the 

dimensionless capillary number. Figure 18a shows cell lateral migration per ridge as a 

function of capillary number. We find that the threshold capillary number cCa  (where the 

lateral migration is zero) remains unchanged with different flow rates. This indicates that 

the magnitude of threshold particle stiffness can be tuned by changing the flow rate. This 

enables our device suitable to separate different types of cells with different mechanical 

properties by simply changing the flow rate without changing any geometric dimensions 

of the channel. The relatively soft cells with cCaCa   migrate negatively in transverse 

direction, whereas stiffer cells with cCaCa 
 
migrate positively in transverse direction. 

As a result, soft and stiff cells accumulate on the opposite sides of the microchannel.  

 

 

Figure 18 (a) Normalized transverse displacement per ridge as a function of capillary 

number with different Re numbers. (b) Normalized transverse displacement per ridge as a 

function of capillary number (bottom x axis) and Young’s modulus (top x axis). The red 

solid squares with error bars represent the experimental results. The hollow symbols 

show the simulation results for different cell diameters. The blue dashed lines are guides 

for the eye. 
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 Experimental results show that cell size is not a significant factor in cell 

separation for the conditions tested. We hypothesize that the lack of sensitivity to cell 

size in the separation is due to the cell’s viscoelasticity. The mechanical compression 

imposed by the ridges is periodic, with a time between ridges (approximately ms75.0 ) 

much shorter than the time for relaxation of the cells. Viscoelasticity of leukocytes and 

K562 cell line was previously studied by micropipette aspiration [112, 113] and the 

characteristic time scale for cell relaxation was found about 0.1 seconds. Therefore, the 

individual cells will likely not have sufficient time to fully relax to equilibrium diameter 

before they are compressed by the next ridge. This behavior is also is found in our 

numerical simulations. 

 Since the mechanical force on the cells due to narrow constrictions is mostly 

defined by the size of deformed cell normal to the constriction, initial cell size does not 

significantly affect the transverse separation. This weak sensitivity of separation to cell 

size allows eliminating pre-processing size separation which may be required by other 

methods for high-throughput hydrodynamic separation by stiffness [106]. Our 

simulations show that cell size has a relatively small effect on lateral migration (Fig. 18b) 

and the range is mainly within the experimental error. Additionally, cell deformation and 

dynamics can be affected by viscoelastic responses of biological cells, which have not 

been included in our computational mode. These effects can be especially important 

when cells undergo large periodic deformations. Viscoelastic behavior of cell under large 

deformations should be considered in the further research. 

5.5 Summary 
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 We demonstrate a new approach to continuously separate cells by their 

differential stiffness. This deformability-based microfluidic separation platform may be 

valuable for separating and identifying diseased cells from healthy cells, as a variety of 

cell pathologies manifest through a change in mechanical stiffness in cells. Furthermore, 

this platform can be applied in high-throughput cell stiffness measurements. 
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CHAPTER 6 

FLUID AND PARTICLE INERTIA EFFECTS ON THE MOTION OF 

SPHEROID PARTICLES IN SHEAR FLOW 

6.1 Introduction 

 Hydrodynamic interaction of a non-spherical particle leads to a dynamic 

orientation of the particle in the flow. In 1922, Jeffery [114] demonstrated that an isolated 

inertialess ellipsoid in an unbounded zero-Reynolds-number linear shear flow follows 

one of a family of closed orbits (usually called Jeffery orbits) around the vorticity axis. 

There is an infinite number of such orbits, and the specific orbit that particle follows 

depends on the initial particle orientation. The orbit period of an spheroid with an aspect 

ratio baar   (defined as the semi-axis length a  divided by the semi-axis length b ) is 

given by  )(2 1 rrJ aaT , where   is the shear rate.  

 A schematic diagram of a spheroid rotating in a simple shear flow is depicted in 

Figure 19. The orientation of the spheroid can be defined by a unit vector p . In order to 

compare particle trajectory with a Jeffery’s orbit, we also define   as the angle between 

p  and the vorticity ( z ) axis, and   as the angle between the projection of p  on the shear 

( yx  ) plane and the x  axis. Thus,  cossinxp ,  sinsinyp , and coszp . 

The solution of the Jeffery equation is )2tan(tan 0  Jr Tta  and 

 222 cossintan  rr aCa , where t  is time and the phase shift 0  is determined by 

the initial conditions. The values of an orbit constant C  range from 0 to  , 

corresponding to the orientations 0  and 2  , respectively.  



68 

 

 
Figure 19 Schematic diagram of a spheroid particle rotating in a simple shear flow. 

 

 

 Jeffery’s theory has been experimentally verified [115, 116], but some 

experiments also found that particles did not move in a closed orbit, but showed a slow 

drift to a preferred orbit [117]. Bretherton [118] found that the orbit would be closed for 

almost any body of revolution within the context of the Stokes equations suggesting that 

the drift to a preferential orbit may be explained by inertia or non-Newtonian effects. In 

these early works, both the particle inertia and the fluid inertia were neglected. Leal [119] 

examined the dynamics of inertialess particles in a fluid flow with inertia. Still open 

questions were, however, how a combination of fluid inertia and particle rotary inertia 

affects the motion of spheroids and what parameters characterize this behavior. 

 More recently, it has been shown that at a finite Reynolds number, neutrally 

buoyant elongated particles (prolate spheroids) tend to drift to an orbit where they rotate 

in the shear plane [120]. Subramanian & Koch [121] examined the dynamics of a slender 

fiber in a simple shear flow. They concluded that at a critical Re the fiber stops rotating 

and obtains a final stationary orientation in the shear plane. This result was confirmed by 
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Ding & Aidun [122] who also found that the period of rotation increases to infinity at a 

critical Re for elliptical cylinders and oblate spheroids in a simple shear flow.  

 Feng & Joseph [123] numerically investigated the rotation of an ellipsoid in a 

simple shear flow. Solid inertia and unsteady inertia of the fluid (the Basset force) were 

taken into account even in the limit of a creeping flow. They found that the unsteady 

inertia of fluid can change the characteristics of the particle motion in creeping flows. 

Broday et al. [124] examined the motion of spheroids in a vertical shear flow, with 

emphasis on the combined effect of particle inertia, flow velocity gradient, and the 

gravity on particle migration across streamlines. They found that inertial particles migrate 

across streamlines and the rate of drift depends on particle shape. 

 Yu et al. [125] studied the rotation of a neutrally buoyant spheroid in a simple 

shear flow. They found that fluid inertia can significantly affect the orbits of spheroids. 

For a prolate spheroid, particle undergoes Jeffery orbit, tumbling, quasi-Jeffery orbit, log 

rolling, and inclined rolling with increasing Reynolds number, whereas an oblate 

spheroid undergoes Jeffery orbit, log rolling, inclined rolling, and a motionless state. It 

was shown that the orbit behavior is sensitive to the initial orientation in the case of 

strong inertia.  

 Altenbach et al. [126] investigated the effect of particle inertia on the rotary 

motion of a fiber in a uniform creeping flow. They found that the principal effect 

associated with the particle inertia is a slow drift of the rotating fiber towards the flow 

plane. Lundell & Carlsson [127] found a similar behavior for heavy ellipsoids. They 

defined the Stokes number  24 aSt s
 , where s  is the density of the particle and a  

is the length of the semi major axis of the ellipsoid. For small St , particle motion is 
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similar to Jeffery obits with the addition of an orbit drift to the flow plane. At larger St , 

for particles oriented in the flow plane, the rotation rate increases abruptly to half of the 

shear rate, while for particles with other orientations, the motion goes from a kayaking 

motion to the rotation around an oblique axis.  

 Rotation of spheroids has been studied with a wide variety of experimental and 

numerical methods. Most of these studies either examined inertialess particles or the 

conditions in which fluid inertia has a negligible effect. Only a few studies probed the 

simultaneous effect of both particle and fluid inertia on spheroid dynamics. However, 

even these are limited to particular cases of neutrally buoyant particles [125], constrained 

to rotation in the shear plane [122], and elliptical cylinders in a two-dimensional shear 

flow [122, 128]. A comprehensive understanding of the effect of fluid and particle inertia 

on the orientation and rotation of particles with different aspect ratios is yet to be 

established. 

 Several studies have also examined the effect of confinement on non-spherical 

particle trajectories. Ku & Lin [129] examined the effect of channel confinement ratio on 

the rotational motion of a two-dimensional fiber in a simple shear flow. They found when 

the confinement ratio is larger than 3, it has no effect on the motion. They also found that 

when Re  increases beyond a critical value, periodic rotation stops. This critical Reynolds 

number increases with decreasing confinement ratio. 

 Our review indicates that the dynamics of spheroid particles in a microfluidic 

environment is a complex process that still remains poorly explored. To get a better 

insight into the dynamics, there is a critical need for comprehensive computational 

models capable of simultaneously capturing the effects of fluid and particle inertia, as 
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well as the effect of bounding walls. These models can not only help us better understand 

the dynamics of spheroid particles, but also can be applied to design new microfluidic 

methods for the separation and focusing of non-spherical particles [130]. 

6.2 Computational Setup 

 In our study, the computational domain is a box of sizes HWL  . Two 

boundaries located at 0y  and Wy   move in opposite directions with a constant 

speed U  as shown in Figure 19. The particle Reynolds number is defined as 

 24Re al  for a prolate spheroid and  24Re bl  for an oblate spheroid, where 

l  is the fluid density,   is the fluid viscosity, and WU2  is the shear rate. To 

characterize the effect of particle inertia, we define the Stokes number as lsSt Re , 

where s  is the density of the solid particle.  

 In order to model an unbounded shear flow, we employ the Edwards-Lee 

boundary condition [131] at the upper and lower boundaries of the computational 

domain. This boundary condition allows us to reduce the wall effect in the shear gradient 

direction due to a finite size of the computational domain. Periodic boundary conditions 

are applied in other two directions. We set dL 20  and dH 12  which ensures that the 

periodic domain boundaries do not affect the simulations. Here, d  is the length of the 

semi-major axis (i.e. ad   for a prolate spheroid and bd   for an oblate spheroid). We 

validated that our results are not sensitive to the domain size by performing simulations 

with an increased domain size. Combining a large domain size with the Edwards-Lee 

boundary conditions used at the shear walls makes our method applicable for studying 

particle motion in an unbounded shear flow. 
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 To separate the effects of particle inertia and fluid inertia in our simulations, we 

conduct simulations with and without fluid inertia. To exclude the effect of fluid inertia, 

we modify the standard LBM by removing the quadratic term from the particle 

equilibrium distribution [24]. With this modification, LBM reproduces the 

hydrodynamics governed by the Stokes equation. 

 In all our simulations, a simple shear flow is used as the initial velocity 

distribution. The particle is released at the center of the computational domain with zero 

velocity. Although the translational motion of the particle is not constrained, the center of 

the spheroid is found to remain at the initial position.  

 To validate our model, we compared our simulation results for a neutrally 

buoyant oblate spheroid rotating in a shear flow with the results of a previously reported 

numerical model [18]. In our validation study, the domain size is set to 4080200  , and 

the semi-axes of the particle are 8, 16, 16 (LBM unit), which are identical to the 

parameters used in [18]. The initial orientation of the particle is 0) ,2() ,( 00   , i.e., 

the symmetry axis is parallel to the flow direction.  

 The results of the validation study are depicted in Figure 20. Figure 20a shows 

that the periods of tumbling at 50Re   and 70Re   are much longer than the Jeffery’s 

solution ( 5.0ra , 708.15JT ) and the rotation stops when 90Re  . The tumbling 

period as a function of Re is shown in Figure 20b. The simulation results are compared to 

the predictions of a scaling law 2/1Re)(Re  ccT  with 81Re c  and 200c  shown 

by the solid line in this figure. We find that our simulation results agree well with the 

results obtained by Aidun [18]. We also find that at higher Reynolds numbers the 

tumbling period of a fluid-filled rigid capsule is much shorter than that of a solid particle, 
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indicating that the internal fluid contributes additional torque on the shell. We note that in 

[132], the tumbling period and angular velocity were found slightly different from our 

results. This discrepancy can be attributed to a different domain sizes used in [132].  

 

Figure 20 (a) The angular velocity of an oblate spheroid as a function of the non-

dimensional time for different Reynolds numbers. (b) The tumbling period of an oblate 

spheroid as a function of Reynolds number. The prediction of a scaling law is shown by 

the solid line. The circles are the simulation results of solid particles and the triangles are 

the results of rigid fluid-filled capsules.  
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 In what follows, we will first examine the rotation behavior when the symmetry 

axis of a particle rotates around the vorticity axis ( 2  ). The separate effects of 

particle inertia and fluid inertia are discussed. Next, the three-dimensional rotation of 

spheroids with different initial orientations is studied. We show that particle and fluid 

inertia have distinct effects on the equilibrium particle orientation. Moreover, we 

demonstrate that the initial orientation also affects the steady state of spheroids.  

6.3 Rotation around the Vorticity Axis 

 When the spheroid symmetry axis is initially located in the shear plane, the 

spheroid remains in this plane at all times. This greatly simplifies the system dynamics. 

For a massive spheroid with a negligible fluid inertia ( 0Re  ), the hydrodynamic torque 

on the spheroid given by Jeffery can be coupled with the equations of motion of the 

spheroid. In this situation, a second-order ordinary differential equation (ODE) can be 

derived,   

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 The above equation can be numerically integrated to obtain   as a function of 

time. For negligible small St , the left-hand side of equation is close to zero, reproducing 

the well-known Jeffery’s solution. For non-zero St , both the rotation period and the 

angular velocity deviate from the Jeffery’s solution. For very large St , after an initial 
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transient, the spheroid rotates with a constant angular velocity 5.0  and the rotation 

period is 4HT .  

 In order to examine the effect of particle inertia for differently shaped spheroids 

in a flow without fluid inertia, we conducted simulations for a range of St  and ra , and 

with the Reynolds number equal to zero. Figure 21 shows how the rotation period and 

angular velocity normalized by the respective Jeffery’s solutions depend on the Stokes 

number for four different values of ra . The symbols represent the results of numerical 

simulations, and the dashed lines represent the theoretical solution [14, 29].  

 Good agreement between the simulations and the theory in Figure 21 further 

demonstrates the accuracy of our numerical model. We also find that the deviation from 

the Jeffery’s solution, indicated by non-zero values of the normalized period and angular 

velocity, increases with the Stokes number. For nearly-spherical particles with aspect 

ratios close to 1 (see Figures 21a and 21c), the deviation is smaller compared to the 

particles with large aspect ratios (see Figures 21b and 21d). The period of rotation is only 

1% smaller than Jeffery’s solution even when 100St  for nearly-spherical particles. On 

the other hand, the effect of particle inertia on angular velocity cannot be neglected even 

for nearly-spherical spheroids. As Stokes number increases, the maximum angular 

velocity decreases and the minimum angular velocity increases, leading to smaller 

fluctuations of the angular velocity. This trend is consistent with the observation that 

spheroids rotate with a constant angular velocity for sufficiently large Stokes numbers. 

Figure 21 also indicates that the effect of Stokes number is significant leading to a 

difference with Jeffery’s solution exceeding about 5% only when 40St . 
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Figure 21 Effect of particle inertia on rotation period and angular velocity for different 

particle aspect ratios at zero Reynolds number. (a) 2.1ra , (b) 2ra , (c) 8.0ra , (d) 

5.0ra . The symbols are results from simulation and the dash lines are results 

calculated using analytical theory [14, 29]. Subscript J denotes the Jeffery’s analytical 

solution. 

 

 In Figure 22a, we examine the effects of fluid inertia and particle inertia on the 

angular velocity of a spheroid with 2ra . For 0Re   and 02.0St , the numerical 

result (the solid black line) overlaps with the Jeffery’s solution (the dashed blue line). For 

0Re   and 100St , our numerical result (the solid red line) is close to the calculation 

from the ODE (the dashed red line). During the initial transient of a massive spheroid 

with 100St , the maximum angular velocity decreases and the minimum angular 

velocity increases. This observation is consistent with the fact that heavy spheroids tend 

to rotate with a constant velocity [133]. On the other hand, when 20Re  , 2St  (the 
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solid green line), the fluid inertia causes both the maximum and the minimum angular 

velocities to decrease, increasing the overall rotation period.  

 

Figure 22 (a) The angular velocity of a spheroid with aspect ratio 2ra  at different 

flow conditions. The streamlines in the yx   plane for a prolate spheroid rotating in the 

shear plane with the instant orientation angle 10 . (b) 0Re  , 02.0St , (c) 

10Re  , 1St , (d) 0Re  , 100St . 

 

 The difference between the effects of particle inertia and fluid inertia can be 

explained by examining the corresponding flow fields. Figure 22b shows the streamlines 
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 For the rotation with a large fluid inertia (Figure 22c), there is a recirculation 

region at the center of the channel. Oppositely to the effect of the far-field shear flow, the 

recirculation region in the fluid has a contribution that acts against the particle rotation 

direction. This adverse contribution increases with the Reynolds number, increasing the 

period and reducing the angular velocity of rotation.  

 Flow around a massive spheroid in a fluid without inertia (Figure 22d) exhibits 

streamlines that have the same pattern as in the flow around an inertialess spheroid 

(Figure 22b). It indicates that the particle inertia does not affect the hydrodynamic torque 

on the particle. Thus, the torque formula obtained by Jeffery can be employed to estimate 

the effect of particle inertia on spheroid rotation at Re=0 [127]. 

 To further examine the effect of fluid inertia on spheroid rotation, we conduct 

simulations in which we vary the Reynolds number in the range from 0 to 40 while 

keeping the value of corresponding Stokes numbers one order of magnitude smaller than 

that of Re. Figure 23 shows how the normalized rotation period and angular velocity 

depend on the Reynolds number for different particle aspect ratios. We see that the 

deviation from the Jeffery’s solution increases with Reynolds number. For nearly-

spherical particles (Figure 23a, 23c), the deviation is smaller compared to the particles 

with larger aspect ratios (Figure 23b, 23d). As Reynolds number increases, both the 

maximum and the minimum angular velocities decrease.  

 We find that slender particles are more affected by fluid inertia at lower Reynolds 

numbers. This is similar to the effect of particle inertia on the spheroid dynamics. 

However, the effect of fluid inertia is more prominent than particle inertia and it should 

not be neglected even when 1Re  . As we showed above, fluid inertia creates a 
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recirculation region at the center of the channel and imposes a negative torque on the 

particle. The magnitude of the negative torque depends on the particle orientation and is 

maximized when the particle is aligned along the flow. Therefore, the minimum angular 

velocity occurs when   is close to 0 and it decreases faster than the maximum angular 

velocity as Reynolds number increases.  

 If the Reynolds number exceeds a critical value, the minimum angular velocity 

decreases to zero. Thus, above the critical Reynolds number, the particle stops rotating 

and reaches a stable stationary orientation with the symmetry axis tilted by a small angle 

with respect to the flow direction [122, 129]. Based on this result, we can expect that the 

critical Reynolds number decreases for slender particles. 

 

Figure 23 Effect of fluid inertia on rotation period and angular velocity for different 

particle aspect ratios. (a) 2.1ra , (b) 2ra , (c) 8.0ra , (d) 5.0ra . Subscript J 

denotes the Jeffery’s analytical solution. 
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 The results presented in this section indicate that particle and fluid inertia have 

distinct effects on the dynamics of spheroidal particles. Particle inertia does not change 

the net torque exerted on the particle, but make the particle rotation more uniform. Since 

the particle inertia does not change the flow pattern, the effects of particle and fluid 

inertia can be superposed to estimate the rotational dynamics of a particle with an 

arbitrary density ratio. Furthermore, we can speculate that as the density ratio increases, 

the critical Reynolds number corresponding to the stationary particle motion increases 

due to the effect of particle inertia. This hypothesis agrees with the results obtained by 

Ding [122]. 

6.4 Rotation in Three Dimensions 

 It has been previously shown that neutrally buoyant spheroids exhibit different 

steady or rotation modes as the Reynolds number increases [120, 125, 132]. However, 

some results from literature contradict each other. Moreover, to the best of our 

knowledge there are no prior studies that separately examine and compare the effects of 

fluid inertia and particle inertia. Herein, we focus on the dynamics of spheroid particles at 

low to moderate Reynolds numbers, and investigate the effects of particle inertia, fluid 

inertia, and initial orientation. 

 When the initial orientation angle 2  , Jeffery’s theory predicts that the 

particle should follow one of a family of closed orbits around the vorticity axis. However, 

when particle inertia and/or fluid inertia are not negligible, the orbit may be not closed 

and a drift towards the shear plane (tumbling) or the vorticity axis (rolling) may emerge. 

During this drift, the orbit parameter, C , is not a constant, but rather changes with time. 

The evolution of the orbit parameter C  can be, therefore, used to characterize the 
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spheroid drift. For convenience, we introduce a normalized orbit parameter 

)1(  CCCb  that changes in a range [0, 1]. In this case, 1bC  represents the tumbling 

motion in the shear plane, while 0bC  corresponds to the rolling motion.  

 

Figure 24 (a) The orbit, projected onto the shear plane, of a prolate spheroid in a shear 

flow with 2ra , 50St , 0Re  , and the initial orientation 40   , 00  . The dash 

lines show the closed Jeffery orbits at different orientations. (b) The orbit parameter as a 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

C
b

 t

St=10

St=20

St=100

St=50

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

x

y

θ0=π/3

θ0=π/4

θ0=π/6

(b) 

(a) 



82 

 

function of time for different Stokes numbers with 0Re  , 2ra , and initial orientation 

40   , 00  . 

 

 In Figure 24a, the orbit of a rotating prolate spheroid with 2ra , 50St , and 

0Re   is projected onto the shear plane. The spheroid is released with an initial 

orientation 40    and 00   indicated by the blue dot in Fig. 24a. We find that the 

projected orbit spirals out towards the shear plane (the tumbling motion). In the same 

figure, the dash lines show the corresponding Jeffery orbits in the form of closed ovals. 

Since in the simulations presented in this figure we excluded the effect of fluid inertia, 

the drift originates from the particle inertia only. 

 It has been previously found that the drift precession of a spheroid is a competing 

effect between centrifugal and gyroscopic forces [134]. The evolution of the orbit 

parameter is shown in Figure 24b for different Stokes numbers. We find the drift of orbit 

accelerates as particle inertia increases. Indeed, the figure shows that when the Stokes 

number is small, particle drifts slowly towards the shear plane. As the Stokes number 

increases, the drift rate increases. The variation of the orbit parameter is not a linear 

function of time.  
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Figure 25 The effect of particle inertia on the orbit drift rate c  for particles with 

different aspect ratios and initial orientations at 0Re  . (a) 2.1ra , (b) 2ra , (c) 

8.0ra , (d) 5.0ra . In all simulations, 00  . The empty symbols represent the 

results from the literature [127, 134]. 

 

 Next, we examine the effect of the initial orientation on the trajectory drift. The 

orbit drift can be quantified by an orbit drift rate c  [125, 127], defined as 
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parameter C  during one rotating period. Therefore, a positive value of 'c  means that the 
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 In Figure 25, the orbit drift rate c  is shown as a function of the Stokes number 
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spheroids, particle inertia induces a drift towards the shear plane, while for oblate 

spheroids, a drift to the rolling motion takes place independent of the initial orientation. 

This conclusion is consistent with the results of other researchers that particle inertia 

induces drift towards the rotation about the shortest axis [127, 134].  

 However, the orbit drift rates are different for different orientations. When the 

initial orientation 0  is closer to the stable orbit ( 2   for prolate spheroids, and 

0  for oblate spheroids), the orbit drift rate is greater. For nearly spherical particles 

with a small Stokes number, our numerical results are close to the theoretical analysis 

[134] shown by the black empty symbols in Figures 25a and 25c. However, the theory 

does not predict that the drift rate depends on the initial orientation. In Figure 25c, the red 

empty squares are values obtained following Lundell and Carlsson [127] for prolate 

spheroids with the aspect ratio of 2 at a zero Reynolds number (note the Stokes number 

defined in [127] is based on the radius of the particle, thus it is four times smaller than 

that used here). Our numerical results agree well with the results obtained by Lundell and 

Carlsson. We also examined several cases with different values of the initial orientation 

angle 0 , and found that 0  does not significantly affect the drift behavior. It is because 

  rotates 2  each period. 

 We find that particle aspect ratio affects the magnitude of the drift rate. For 

slender particles shown in Figures 25b and 25d, the drift rates are faster than those of the 

nearly spherical particles. Furthermore, the drift rate increases with increasing Stokes 

number. The variation of the drift rate shows a nearly linear behavior with the Stokes 

number when particle inertia is small. For higher Stokes numbers, the change of the drift 

rate slows down for particles with nearly spherical shapes (Figs. 25a and 25c). 
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Figure 26 Effect of fluid inertia on orbit drift rate c  for different particle aspect ratios 

and different initial orientations. (a) 2.1ra , (b) 2ra , (c) 8.0ra , (d) 5.0ra . In all 

simulations, 00  . 

 

 

 We probe the effect of fluid inertia on the drift of spheroid particles with 

relatively small particle inertia. In particular, we examine particles that have inertia which 

is ten times smaller than the fluid inertia. For prolate spheroids, fluid inertia always 

induces a drift towards the rotation in the shear plane regardless of the particle aspect 

ratio and the initial orientation. By contrast, fluid inertia causes oblate spheroids to drift 

towards the vorticity axis. For Reynolds number less than 20, the orbit drift rate shows a 

monotonic increase with increasing Re (see Figure 26). This increase depends on the 

particle aspect ratio. For 2ra , the growth of orbit drift rate slows down with Re and 

reaches a plateau when 10Re  .  
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 We find that oblate spheroids exhibit a faster drift towards the vorticity axis when 

the initial orientation 0  approaches zero. For prolate spheroids, on the other hand, a 

faster drift occurs when 0  is close to 2 . The dependency on the initial orientation is 

more significant for slender particles (Figures 26b and 26d) that have drift rates larger 

than that of nearly-spherical particles (Figures 26a and 26c). For nearly-spherical 

particles, the drift rates are nearly insensitive to the initial orientation. We find that for 

the parameters used in our study, the effect of particle inertia on the drift rate is 

comparable to the effect of fluid inertia, which indicates both particle inertia and fluid 

inertia cannot be neglected. 

 In order to probe the combined effect of fluid inertia and particle inertia, we 

conduct simulations of neutrally buoyant particles for which both these effects come into 

play. We find that the behavior of drift rate is similar to that of inertialess particles in a 

fluid with inertia. This is because both fluid and particle inertias have the similar effect 

on the drift rate. Our results contradict to the results for nearly-spherical spheroids 

obtained by Subramanian & Koch [134]. They found that fluid inertia causes prolate 

spheroids to drift towards the vorticity axis, while oblate spheroids drift towards the shear 

plane. We did not see this behavior in our simulations.  
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Figure 27 Combined effect of fluid inertia and particle inertia on the orbit drift rate of 

neutrally buoyant spheroids with different particle aspect ratios and different initial 

orientations. (a) 2.1ra , (b) 2ra , (c) 8.0ra , (d) 5.0ra . In all simulations, 

00  . The empty symbols are the results of the superposition of fluid inertia effect 

(Figure 26) and particle inertia effect (Figure 25) calculated separately. The red product 

symbol represents the results of neutrally buoyant spheroids by Yu [125]. 

 

 In Figure 27, we also plot the drift rate obtained by superposition of the rates due 

to fluid inertia and particle inertia that are calculated separately. The superimposed 

results are rather close to the simulations of neutrally buoyant spheroids, indicating that 

these effects can be considered to be linearly independent. This result also suggests that 

the trajectories of particles with different density ratios can be estimated using the 

superposition of separate results obtained with fluid and particle inertia. When 20Re  , 

the superimposed results slightly overestimate the orbit drift, indicating nonlinear effects 

associated with particle and fluid inertia become more significant with increasing Re. 
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 In Figure 27b, we compare our simulations with the results reported by Yu [125] 

for neutrally buoyant spheroids with 2ra , 40   . While our results show the same 

trend, there is a discrepancy that increases with increasing Re. The discrepancy can be 

related to a limited domain size used in [125]. It has been also demonstrated that for a 

less confined domain, the critical Reynolds number for which the drift changes its 

direction shifts to a smaller value [132]. This result is consistent with our simulations that 

show that the maximum drift rate occurs at 30Re  , which is smaller than that for a 

bounded domain where the drift rate reaches its maximum at 40Re   [125]. 

6.5 Summary 

 In conclusion, we study the effects of particle inertia and fluid inertia on the 

motion of spheroid particles in a shear flow. Our results are important for the 

understanding of motion and orientation of neutrally and non-neutrally buoyant spheroids 

at low and moderate Reynolds numbers. We draw the following conclusions on the 

dynamics of spheroid particles: 

(i) For prolate spheroids rotating around the vorticity axis, the rotation period and 

the variations of angular velocity decrease as Stokes number increases. With 

increasing Reynolds number, both the maximum and minimum angular 

velocities decrease, and thus the rotation period increases. 

(ii) At zero Reynolds number, particle inertia induces particle drift towards the 

vorticity axis for oblate spheroids, whereas for prolate spheroids, the drift is 

towards tumbling orbit in the shear plane.  

(iii)Inertialess prolate spheroids drift towards the shear plane, whereas for 

inertialess oblate spheroids, fluid inertia induces a drift towards the vorticity 
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axis. However, when Reynolds number is sufficiently large, the trend prolate 

spheroids changes.  

(iv) For the low and moderate Reynolds numbers and the densities of particle and 

fluid are comparable, both fluid inertia and particle inertia are important for 

orbital drift. When the Reynolds number is relatively small, superposition can 

be used to estimate the combined effect of fluid inertia and particle inertia on 

spheroid dynamics.  
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CHAPTER 7 

DYNAMICS OF SPHEROID PARTICLES IN CHANNEL FLOW 

7.1 Introduction 

 Shape represents one of the most important characteristics of biological particles 

[135]. For example, eukaryotic cells such as yeast show cell-cycle dependent changes in 

their shape as a budding daughter cell forms attached to the mother cell [136]. Shape is 

also a useful indicator of cell state in clinical diagnostics. For example, cell shape 

changes accompany many diseases, such as modified red blood cell morphology resulting 

from sickle cell disease, anaemia, or malaria [137]. Thus, shape can be a specific marker 

in bioparticle separation and may serve as a basis for passive particle fractionation. More 

generally, many biological and synthetic particles of interest such as parasites, bacteria, 

viruses, but also marine organisms [138], man-made microparticles and microcapsules 

[139, 140] possess a variety of shapes and the ability to separate particles with particular 

shapes enables subsequent medical and industrial applications. 

 The motion of spheroid particles in a pressure-driven channel flow is encountered 

in a broad range of biological and engineered systems. Therefore, understanding the 

dynamics of spheroid particles in channel flow would not only help us explain the 

phenomena encountered in particle suspensions, but also provides the practical guideline 

for developing new approaches for separation and focusing of non-spherical particles 

[130]. 

 The dynamics of a single spherical particle at a finite Reynolds number has been 

investigated extensively for a pressure-driven Poiseuille flow. In 1962, Segre and 

Silberberg [11] observed that rigid neutrally buoyant spheres in a pipe flow migrated to 



91 

 

an equilibrium position located at a radius of Rr 6.0 , with R  being the pipe radius. 

Schonberg and Hinch [13] studied the inertial migration of a sphere in a plane Poiseuille 

flow at small Reynolds numbers ( 751Re c , 1Re p ), and found that the equilibrium 

position moves towards the wall as Reynolds number increases. Asmolov [14] extended 

the matched asymptotic approach of Schonberg to higher Reynolds numbers (up to 

1500).  

 The migration away from the channel centerline is attributed to the competing 

effects of the curvature of the velocity profile and the wall influence [77, 141]. Recently, 

experiment conducted by Matas [142] confirmed that the equilibrium position moves 

towards the wall of a pipe as Reynolds number increases. It was found that an additional 

equilibrium position exists at the inner radius of the pipe for 700Re  . Matas [143] 

extended the asymptotic expansion to cylindrical channels. All the theories were 

developed under an assumption that the presence of a particle does not affect the velocity 

field, i.e. a point-particle assumption was used.  

 Only a few studies considered the effect of the particle size. Di Carlo [144] and 

Chun [145] studied the migration of confined particles through rectangular cross-section 

microchannels. More recently, Bhattacharya [146] analytically investigated the inertia-

induced radial migration of finite sized particles inside a narrow cylindrical channel. 

These works revealed the importance of the effects associated with particle size on the 

overall behavior of a particle suspension at a finite Re. 

 There is a limited number of studies that examine the orientation dynamics of 

spheroid particles in a Poiseuille flow. Chwang and Wu [147] solved the Stokes 

equations to determine the motion of a spheroid in unbounded quadratic flows. They 
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showed that the spheroid moves in a straight line parallel to the flow direction without 

any lateral drift. Sugihara-Seki [148] numerically studied a rigid ellipsoid in a Poiseuille 

flow through a narrow tube in the zero-Reynolds-number limit. He found that a prolate 

spheroid either tumbles or oscillates depending on the particle-tube size ratio, the aspect 

ratio of particle, and the initial conditions.  

 A large oblate spheroid may approach a steady trajectory located closer to the 

tube centerline. Pan et al. [149] simulated the motion of a neutrally buoyant ellipsoid in 

Poiseuille flows and found that its rotation exhibits distinctive states depending on the 

Reynolds number and the shape of the ellipsoid. Chen et al. [150] investigated the motion 

of single and multiple neutrally buoyant elliptical cylinders in a plane Poiseuille flow. 

They found for a single elliptical cylinder with small channel size ratio ( 2.0K ), the 

cylinder with a higher aspect ratio moves closer to the centerline and has a higher 

translational velocity. For a larger channel size ratio, as Reynolds number increases, the 

cylinder consequently exhibits full rotation, oscillatory rotation, and finally a pure 

translational motion.  

 In spite of the progress made in these previous studies, the relationship between 

the orientation dynamics and the center of mass trajectory of spheroids in a Poiseuille 

flow remains unclear. In this chapter, we will conduct a systematic investigation of the 

motion of spherical and spheroid particles in planar Poiseuille flow. 

 In what follows, we first study the inertia migration of spherical particles in a 

plane Poiseuille flow. The effect of particle size will be examined. Then, we focus on the 

inertia migration of spheroid particles when the symmetry axis of the particle rotates 

around the vorticity axis. Finally, the three-dimensional rotation and migration of a 
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spheroid in a channel flow is investigated with the emphasis on the steady state motion of 

neutrally buoyant spheroids. 

7.2 Computational Setup 

 We consider a channel of height H  filled with a viscous fluid with viscosity   

and density   (Figure 28). A neutrally buoyant spherical or spheroid particle is 

introduced into the flow. Spherical particles are characterized by the diameter d , 

whereas spheroid particles are characterized by the semi-axes a  and b , and the particle 

aspect ratio baar  .  

 To characterize the flow within the channel, we defined a channel Reynolds 

number  HUmc Re , where mU  is the maximum velocity of the undisturbed fluid 

flow. The channel Reynolds number represents the ratio between fluid inertia and viscous 

forces. The effect of inertia on particle motion is characterized in terms of a particle 

Reynolds number 2ReRe cp  . Here, Hd 2  is the channel confinement ratio of 

spherical particles, whereas for spheroidal particles, the confinement ratio is Ha  for 

prolate spheroids, and Hb  for oblate spheroids.  

 
 

Figure 28 Schematic of a neutrally-buoyant solid particle propelled by a pressure-driven 

channel flow. 
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 We impose a non-penetration, no-slip boundary condition at the top and bottom 

walls of our computational box which has height H . In the x  and z  directions, we apply 

periodic boundary conditions. For spherical particles, we set the lateral size of the 

computational box equal to d10 . For prolate spheroid particles, we set aL 20 , 

aW 13 . For oblate spheroid particles, we set bL 20 , bW 13 . We have verified that 

the dimensions of our periodical computational box are large enough and so they do not 

affect the results of our simulations.  

 In all of our simulations, the initial velocity distribution inside the channel was set 

to match a plane Poiseuille flow. Particles are released with zero translational and angular 

velocities. Hereafter, we only present our results for the lower half of the channel flow, 

since they are symmetric with respect to the channel centerline. 

7.3 Inertial Migration of Spherical Particles 

 We first examine the cross-stream inertial migration of spherical particles in a 

channel with a small confinement ratio 025.0 . In this case, the effect of particle size 

is weak allowing direct comparison with theoretical solutions for 0  [13, 14]. In 

Figure 29, we show the dimensionless migration velocity as a function of the distance 

from a channel wall. We find that particle lateral velocity is positive when it is closer to 

the wall and negative closer to the channel centerline. The positive velocity means that 

particle migrates away from channel wall, whereas the negative velocity indicates the 

migration away from the centerline. Thus, there is a stable off-center equilibrium position 

where particle velocity is zero.  

 To validate our computational model, we compare the simulations for rigid 

spherical particles with theoretical results for different Reynolds numbers [13, 14]. We 
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find good agreement between our simulations and the theory in terms of the particle drift 

velocity and the equilibrium positions where the drift velocity is zero. We find a 

discrepancy between our model and the theory in the near-wall region. This discrepancy 

can be explained by the fact that the Stokes expression for the drag force pL dVF 3  

used to calculate the theoretical value of drift velocity is not valid near the wall. Thus, 

overall agreement between the simulations and theory indicates that our computational 

method can properly capture the non-linear effects associated with inertia drift of solid 

particles in a channel flow. 

 

Figure 29 Cross-stream migration velocities of rigid spherical particles in channels with 

different Reynolds numbers. The symbols show the results of our numerical simulations 

with confinement ratio 025.0 , whereas the solid line presents the theoretical data 

[13, 14]. 
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range between 0 and 1. The value of 1 corresponds to the limiting case where the particle 

is in contact with the wall. The data in Figure 30 is presented for a range of Reynolds 

numbers. We find that as the confinement ratio and/or the Reynolds number increase, the 

magnitude of dimensionless cross-stream velocity decreases. 

 
Figure 30 Dimensionless cross-stream migration velocities of rigid spherical particles in 

confined channels with different Reynolds numbers and confinement ratios. (a) 05.0 , 

(b) 1.0 , (c) 15.0 , (d) 2.0 , (e) 25.0 , (f) 3.0 .  

-0.12

-0.08

-0.04

0

0.04

0.08

0.12

0.16

0 0.2 0.4 0.6 0.8 1
V

p
/

R
e

p
U

m

(H-2y)/(H-d)

Rc10

Rc20

Rc40

Rc60

Rc80

Rc100

Rec=10

Rec=20

Rec=40

Rec=60

Rec=80

Rec=100

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

V
p
 /

R
e

p
U

m

(H-2y)/(H-d)

Rc=20

Rc=40

Rc=60

Rc=80

Rc=100

Rec=20

Rec=40

Rec=60

Rec=80

Rec=100

(a) (b) 

-0.05

0

0.05

0.1

0 0.2 0.4 0.6 0.8 1

V
p
 /

R
e p

U
m

(H-2y)/(H-d)

Rc=20

Rc=40

Rc=60

Rc=80

Rc=100

Rec=20

Rec=40

Rec=60

Rec=80

Rec=100

-0.012

-0.008

-0.004

3E-18

0.004

0.008

0.012

0 0.2 0.4 0.6 0.8 1

V
p
 /

R
e

p
U

m

(H-2y)/(H-d)

Rc=20

Rc=40

Rc=70

Rc=100

Rec=20

Rec=40

Rec=70

Rec=100

-0.03

-0.015

0

0.015

0.03

0.045

0 0.2 0.4 0.6 0.8 1

V
p

 /
R

e
p
U

m

(H-2y)/(H-d)

Rc=20

Rc=40

Rc=60

Rc=80

Rc=100

Rec=20

Rec=40

Rec=60

Rec=80

Rec=100

-0.005

-0.003

-0.001

0.001

0.003

0.005

0 0.2 0.4 0.6 0.8 1

V
p
 /

R
e

p
U

m

(H-2y)/(H-d)

Rc=20

Rc=40

Rc=70

Rc=100

Rec=20

Rec=40

Rec=70

Rec=100

(c) (d) 

(e) (f) 



97 

 

 Figure 30 shows that the migration velocities exhibit similar trends for different 

Reynolds numbers and confinement ratios. Therefore, it can be potentially expected that 

there is a universal scaling that can be used to represent all data in terms of a single 

function. Indeed, a scaling law of the drift velocity mcp UV Re~   has been previously 

reported for square channels [144] and for cylindrical channels [146]. This scaling law 

gives good results when the confinement ratio is in the range of 2.01.0    and when 

the particle is located near the channel centerline.  

   

 

Figure 31 Scaled cross-stream velocities for different Reynolds numbers and 

confinement ratios. (a) 05.0 , (b) 1.0 , (c) 15.0 , (d) 2.0 . 
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of channel Reynolds numbers and confinement ratios. The figure shows that the scaled 

velocity collapses to a single curve for 25.005.0    and 40Re c . 

 In Figure 32, we plot particle equilibrium position as a function of Reynolds 

number for different confinement ratios. We find that the equilibrium position shifts 

towards the wall with increasing Reynolds number. We also find that particle equilibrium 

position is dependent on the confinement ratio. When  large, particle is equilibrated 

near the channel centerline, whereas for smaller confinement ratio the equilibrium 

position is closer to the wall. This result points to a potential application of dynamically 

measuring particle size based on their trajectories in a channel flow.  

 
Figure 32 Particle equilibrium position as a function of Reynolds number at different 

confinement ratios. The dotted line shows theoretical data from [14]. 
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 If a spheroid is initially located in the shear plane ( 2  ), the particle remains 

in this plane at all times. This greatly simplifies the dynamics of the system and we first 

consider this scenario. We simulate spheroid particles with different aspect ratios and 

different initial positions propelled by a channel flow. Figure 33 shows trajectories of 

spheroids with different aspect ratios in a channel with 40Re c  and 15.0 . Two 

particles are released from a position that is close to the channel centerline, whereas two 

other particles are released closer to the wall. All the particles migrate to equilibrium 

trajectories located midway relative to the initial release positions of the particles. The 

particles periodically oscillate as they follow the equilibrium trajectories. We denote the 

average height of the equilibrium trajectory peq yy   as the particle lateral equilibrium 

position in the channel. 

 We find that the equilibrium position of the spheroids with the same ra  coincides 

independent of the particle initial position. For particles with larger ra , eqy  is slightly 

closer to the wall and the migration time required to reach the equilibrium position is 

longer compare to particles with smaller ra .  

 The oscillations of trajectories, which are induced by the rotation of the spheroid, 

are more pronounced when particles are closer to the wall. The amplitude of the 

oscillations also depends on the aspect ratio. Figure 33b shows the cross-stream velocity 

of the particle center of mass as the particle moves along the equilibrium trajectory for 

several rotation periods. The instantaneous cross-stream velocity of a spheroid is zero 

when its major axis is aligned with the flow direction, and is the maximum when its 

major axis is nearly perpendicular to the flow direction. The figure shows that the particle 
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with higher aspect ratio has slightly larger velocity oscillations and rotation period. 

Although the velocity oscillates, the period-averaged cross-stream velocity is zero.  

 
Figure 33 (a) Lateral migration of a spheroid with different aspect ratios in a channel 

with 40Re c  and 15.0 . (b) Cross-stream migration velocity at the equilibrium 

trajectory versus time for spheroids with different aspect ratios at 40Re c , 15.0 . 
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from the channel centerline. To normalize the distance, we use ad 2  for prolate 

spheroids and bd 2  for oblate spheroids. We find that compared to spherical particles 

for which 1ra , spheroids have smaller migration velocities and the equilibrium 

positions of spheroidal particles are closer to the wall.  

 For the same Reynolds number, the magnitude of migration velocity increases as 

the channel confinement ratio   increases. This increase is related to a steeper velocity 

gradient in more confined channels which accelerates the migration of particles to the 

equilibrium position. Furthermore, when particles are close to the wall, the wall induced 

lift is stronger due to a smaller distance between particle surface and the wall. For a fixed 

confinement ratio, we find that the migration velocity is faster for larger Re  due to 

stronger nonlinear effects.  
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Figure 34 Dimensionless cross-stream migration velocities of rigid spheroidal particles 

in confined channels with different Reynolds numbers and confinement ratios. (a) 

1.0 , 20Re c , (b) 15.0 , 20Re c , (c) 2.0 , 20Re c , (d) 1.0 , 

40Re c , (e) 15.0 , 40Re c , (f) 2.0 , 40Re c , (g) 1.0 , 60Re c , (h) 

15.0 , 60Re c , (i) 2.0 , 60Re c , (j) 1.0 , 100Re c , (k) 15.0 , 

100Re c , (l) 2.0 , 100Re c . 

 

 Figure 34 shows that the lateral migration velocity depends on the channel 

Reynolds number, confinement ratio, and particle aspect ratio. Based on the scaling for 

spherical particles, we construct a similar scaling for spheroidal particles that also 

incorporates the parameters relevant to spheroids. We find that the migration velocity 

scales as mcV Ue V 5.0313
Re

 for 2.005.0  V  and 40Re c . The scaled data is plotted 

in Figure 35 which shows that data for different particles collapse into a single curve with 

acceptable accuracy.  

 Note that the volumetric confinement ratio HrVV   used in the above scaling 

is calculated using an equivalent radius 3 abcrV   that corresponds to a sphere with a 

volume equal to that of the spheroid. For example, when the confinement ratio equals to 

0.1, the corresponding volumetric confinement ratios are 0.063, 0.0763, 0.0794, and 

0.0874 for spheroids with ra  equal to 2, 1.5, 0.5, and 2/3, respectively. Thus, lateral 

migration velocity of spheroidal particles can be estimated using the migration velocity of 

a sphere with the same volume.  
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Figure 35 Normalized cross-stream velocity as a function of the fractional distance from 

the channel centerline for different aspect ratios when 40Re c . Solid lines denote cases 

with 1.0  and dashed lines denote cases with 15.0 .  

 

 In Figure 36, we plot particle equilibrium positions as a function of Reynolds 

number for different confinement ratios. The solid symbols represent results for spherical 

particles. We find that the equilibrium position shifts towards the wall with increasing 

Reynolds number. We also find that the particle equilibrium positions depend on the 

confinement ratio. When   is large, particles equilibrate near the channel centerline, 

whereas for smaller confinement ratios the equilibrium positions are closer to the wall.  

For prolate spheroids, the stable motion is tumbling, thus the length of both major 

and minor axes affects the spheroid trajectory and equilibration. It has been suggested 

that the equilibrium position of spheroids can be estimated based on the equilibrium 

position of a sphere with the radius equal to the major axis of the spheroid [130]. Figure 

36a indicates that this approximation is inaccurate. The figure shows that the equilibrium 

position of a spheroid with 2ra  and a confinement ratio 2.0  is about the same as 
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the equilibrium position of a sphere with a confinement ratio 15.0 . Similar behavior 

is found for a spheroid with 5.1ra  shown in Figure 36b. 

 

Figure 36 Equilibrium positions of particles as a function of Reynolds number at 

different confinement ratios. The solid lines denote the results for spherical particles, and 

the dashed lines denote the results for spheroids. (a) 2ra , (b) 5.1ra , (c) 32ra , 

(d) 5.0ra . Note that for oblate spheroids shown in (c) and (d), particles equilibrate 

when they rolls with the symmetry axes parallel to the vorticity axis. 

 

 The equilibrium positions of spheroids can be estimated more accurately using the 

equilibrium position of spheres with the same cross-sectional area, rather than the 

diameter equal to the major axis. Figure 37 shows the equilibrium positions as a function 

of area confinement ratio rA a  . We find that the data for spheroids with 

25.0  ra  fits well the curve obtained for spheres. For example, when the confinement 

ratio equals to 0.1, the corresponding area confinement ratios A  are 0.0707 and 0.0817 
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for prolate spheroids with aspect ratio equals to 2 and 1.5, respectively. For this reason, 

the equilibrium position of a spheroid with 2ra  at a confinement ratio 0.1 is close to a 

sphere at confinement ratio 075.0  shown by the red line in Figure 36a. For oblate 

spheroids at rolling motion (Figures 36c and 36d), we find that their equilibrium positions 

are close to that of spheres with the same confinement ratios. The latter can be explained 

by the fact that the area confinement ratio A  for rolling oblate spheroids and spheres are 

identical. 

 
Figure 37 Equilibrium positions as a function of area confinement ratio. The solid lines 

and the symbols denote the data for spheres, the empty circle symbols denote the data for 

spheroids with 2ra , and the empty square symbols represent the data from spheroids 

with 5.1ra . 

 

 Figure 38 shows the rotational period and the angular velocity of particles that 

undergo tumbling when moving along the equilibrium trajectory. In this figure, the values 

are normalized by the local shear rate in the channel flow, HUHy mp )84(  . For 

comparison, we also include the Jeffery’s solutions that are shown by the solid and dotted 

lines [114]. Specifically, the rotation period of a spheroid is given by 
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 )(2 1 rrJ aaT , and the maximum and minimum angular velocities are 

)( 222

max, baaJ    and )( 222

min, babJ   , respectively.  

 We find that both the maximum and the minimum angular velocities in a channel 

flow are slightly smaller than the Jeffery’s solutions, pointing to a longer rotation period. 

As Reynolds number increases, the deviation from Jeffery’s solutions increases. This 

trend is similar to the results we obtained for spheroids in a simple shear flow (see 

chapter 6). We also find that the deviation is greater for slender spheroids. Channel 

confinement ratio also affects the rotation. In more confined channels, spheroids rotate 

slower with a smaller angular velocity. This reduction in the angular velocity can be, 

therefore, attributed to the influence of channel walls on particle motion.  
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Figure 38 The rotational period and the angular velocity at the equilibrium position when 

particles undergo the tumbling motion at various Reynolds numbers. Jeffery’s solutions 

are also plotted for comparison. (a), (b) 1.0 ; (c), (d) 15.0 ; (e), (f) 2.0 . 

 

 

 When the initial orientation angle 2  , spheroid particles exhibit different 

rotation modes. Staben et al. [151] numerically studied the three-dimensional motion of 

neutrally buoyant spheroids in a Stokes flow. They found that spheroids can exhibit a 

two-dimensional oscillating motion, a two-dimensional tumbling motion, three-

dimensional oscillations, or three-dimensional tumbling depending on the initial center 

location and initial orientation.  

 Using experiments in a rectangular channel, Masaeli et al. [130] classified the 

rotational modes of prolate spheroids as “in plane rotation” (tumbling), “out of plane 

rotation”, and “no rotation”. They found that as Reynolds number increases, the 

frequency of rotational modes decreases and most of the particles follow a tumbling 

motion. This implies that the latter two modes may not be the stable rotational modes. 

Our previous study shows that prolate spheroids in an unbounded shear flow drift to the 

tumbling motion, while oblate spheroids possess a stable rolling motion after a transient 

precession. In what follows, we focus on the rotational behavior of spheroids in a planar 

channel flow. 
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 To investigate the orbit change, we define orbit drift rate as 

 

JT

CC
c



 )()2(ln2 
  [125, 127], where C  is the orbit parameter. Thus, a 

positive 'c  means the orbit drifts towards the tumbling motion, while a negative 'c  means 

the orbit drifts towards the rolling motion. In Figure 39, the orbit drift rate is shown as a 

function of the Reynolds number for spheroids with different aspect ratios and initial 

orientations. The Reynolds number is based on the local flow shear rate and is defined as 

 24Re alS   for prolate spheroids and  24Re blS   for oblate spheroids. Here, 

the local shear rate   is calculated based on the averaged center position of the particle. 

Even though we simulate particles with the same channel Reynolds number, the particles 

may have different SRe  depending on their location within the flow.  

 We find that for prolate spheroids, the inertia induces a drift towards the shear 

plane (tumbling motion), while oblate spheroids drift towards the rolling motion. This 

drift takes place regardless of the initial orientation and the initial position. This result is 

consistent with the stable rotational modes of spheroids in an unbounded shear flow. In 

other words, the stable equilibrium rotational mode of prolate spheroids is tumbling, 

while for oblate spheroids, the stable equilibrium mode is rolling.  

 The orbit drift rates are different for different initial orientations (see Figure 39). 

When the initial orientation 0  is closer to the stable orbit ( 2   for prolate spheroids, 

and 0  for oblate spheroids), the orbit drifts faster. Particles with different aspect 

ratios show similar dependencies of the orbit drift rate on Re.  
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Figure 39 Effect of fluid inertia on the orbit drift rate c  for different particle aspect 

ratios and initial orientations in a channel flow with 1.0 . (a) 5.1ra , (b) 2ra , (c) 

32ra , (d) 5.0ra . In all simulations, 00  . 

 

 

 The results in Figure 39 are for the channel confinement ratio equal to 1.0 . 

We have also examined the behavior of orbit drift in channels with 2.0 . We find the 

trends for prolate spheroids to drift to the tumbling mode and for oblate spheroids to drift 

to the rolling mode are similar to those found in the wider channel. Furthermore, we find 

that the drift rate at the same SRe  is smaller for 2.0  compared to channel with 

1.0 . 

 In the previous section, we have demonstrated that spheroids initially orientated in 

the yx   plane migrate monotonically in the cross-stream direction to an equilibrium 

trajectory. We find, however, that particles with other initial orientations can also exhibit 
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a non-monotonic migration. For example, when a prolate spheroid is released with an 

initial orientation close to the rolling motion, it may first migrate closer to the wall where 

rolling particles equilibrate, and then as the orbit drifts to the tumbling motion, the 

particle can migrate to a new equilibrium trajectory located closer to the channel 

centerline. This overshooting phenomenon is observed in our simulations (Figure 40).  

 

Figure 40 (a) Trajectory of the particle tip ( tiptiptip zyx ,, ) with respect to the particle 

center of mass ( CGCGCG zyx ,, ) and (b) temporal evolution of the lateral migration for a 

particle with aspect ratio 5.1ra  at 60Re c , 2.0 . 

 

 

7.5 Summary 

 In conclusion, the motion of neutrally buoyant spherical and spheroid particles in 

a planar Poiseuille flow has been studied. We have shown that the equilibrium position of 

spherical particles depends on channel confinement ratio. We also provide a detailed 

investigation of the motion of spheroids in a planar channel flow. It is found that the 

stable motion of prolate spheroids is tumbling, whereas the stable motion of oblate 

spheroids is rolling. These stable rotation modes are independent of the particle initial 
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orientation and the channel confinement ratio. The lateral migration velocity of spheroids 

in tumbling can be estimated using the migration velocity of spheres with the same 

volume. The equilibrium positions of spheroids are close to those of spheres with the 

same cross-sectional area. We propose a scaling for the lateral migration velocity that 

includes the effects of the channel confinement ratio, particle aspect ratio, and Reynolds 

number. Finally, the rotational period of particle at equilibrium is compared with the 

Jeffery’s solution. It is found that the period is longer than that predicted by the Jeffery’s 

theory. The period increases with increasing Reynolds number. The deviation from 

Jeffery’s solution is greater for slender particles.  
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CHAPTER 8 

CONCLUDING REMARKS AND OUTLOOK 

 

 In this study, a fluid-structure interaction model was used to examine the 

dynamics of solid particles in a viscous flow. The computational model is based on the 

lattice Boltzmann model combined with the lattice spring model. We showed that this 

fully-coupled three-dimensional model can accurately simulate complex dynamics of 

compliant and non-spherical particles in a fluid flow at finite Reynolds numbers.  

 We used computer simulations to design a ridged microchannel that 

hydrodynamically separate solid particles by size. Specifically, particles with different 

sizes follow distinct trajectories as a result of the nonlinear inertial effects and secondary 

flows created by diagonal ridges in the channel. This new continuous separation method 

offers high throughput, enhanced resolution, and simple channel layout, enabling simple 

integration in lab-on-a-chip devices for autonomous particle processing.  

 We developed a computational model to investigate the motion of biological cells 

in microfluidic channels. We examined the utility of ridged microchannels for high-

throughput separation of biological cells by their differential stiffness. Cells with 

different stiffness squeezed through narrow gaps between solid diagonal ridges and the 

channel wall and migrate across the microchannel with different rate depending on their 

stiffness. This deformability-based microfluidic separation method can be used for 

detecting diseased cells, as a variety of cell pathologies manifest through the change in 

cell mechanics. 
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 We employed our computational model to explore the dynamics of spheroid 

particles in a simple shear flow and in a Poiseuille flow. The effect of particle inertia and 

fluid inertia on the motion of spheroid particles has been studied. We showed that 

increasing fluid inertia suppresses the oscillations of particle rotational velocity and 

results an increased rotational period. Particle inertia and fluid inertia both affect the 

orbital drift of spheroid particles. Prolate spheroids drift towards the shear plane, while 

oblate spheroids drift towards the vorticity axis. We also demonstrated that superposition 

can be used to estimate the combined effect of fluid inertia and particle inertia.  

 Inertial migration of spherical and spheroid particles in a planar Poiseuille flow 

was examined. We identified a scaling for particle migration velocity that integrates the 

effects of channel confinement ratio, particle aspect ratio, and Reynolds number. It is also 

found that the stable motion of prolate spheroids is tumbling, whereas the stable motion 

of oblate spheroids is rolling. The dependence of equilibrium trajectory on particle shape 

points to a potential application of a microchannel flow for shape based particle 

separation. 

 The results of our studies advance the basic understanding of complex 

hydrodynamic interactions governing the motion of solid particles in a channel fluid. Our 

results help to develop engineering guidelines for designing new high-throughput 

microfluidic devices for sorting, focusing, and separation of synthetic solid particles and 

biological cells. 

 Flow of particle suspensions is a complex process that poses multiple challenging 

problems to the researches. Our work is focused on just several specific examples 
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involving the dynamics of deformable and non-spherical solid particles in a viscous flow 

in the dilute limit. Based on our results we can suggest the following future studies.  

 A study of densely concentrated suspensions is a direct extension of our current 

work. In concentrated suspensions, particle-particle interactions are important. Small 

distances between particles require the model to take into account lubrication forces. We 

can expect that particle concentration and finite fluid inertia can significantly alter the 

rheology of dense suspensions and affect the macroscopic response of the material to 

forces. 

 Investigation of a blood flow is a further extension of our work. LSM can be 

extended to simulate the mechanics of red blood cells (RBC) and platelets. It is suggested 

that deformability of RBCs leads to non-Newtonian behavior of blood. This model could 

be used to better understand the dynamics of blood flow in the microcirculation with 

curved geometry and bifurcations. Therefore, it is important to examine the interactions 

between cells and blood vessel walls. Cell adhesion in the microcirculation can play a 

critical role in the development of different physiological conditions. 

 The cell model used in our work is rather simple and does not incorporate any 

effects associated with internal structure of a cell. The mechanical properties of 

cytoskeletal networks are intimately involved in determining the behavior and mechanics 

of living cells. Therefore, the development of a mesoscopic cell model integrating cell 

membrane, cytoplasm, and cytoskeleton will enable new investigations that can reveal 

interesting and important insights into the physics of cell mechanics. 
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