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SUMMARY 

 

The metallic binary-alloy fuel Uranium-Zirconium is important for use in the new 

generation of advanced fast reactors.  Uranium-Zirconium goes through a phase transition at 

higher temperatures to a (gamma) Body Centered Cubic (BCC) phase.  The BCC high 

temperature phase is particularly important since it corresponds to the temperature range in 

which the fast reactors will operate.  A semi-empirical Modified Embedded Atom Method 

(MEAM) potential is presented for Uranium-Zirconium.  This is the first interatomic potential 

created for the U-Zr system.  The bulk physical properties of the Uranium-Zirconium binary 

alloy were reproduced using Molecular Dynamics (MD) and Monte Carlo (MC) simulations with 

the MEAM potential.  The simulation of bulk metallic alloy separation and ordering phenomena 

on the atomic scale using iterative MD and MC simulations with interatomic potentials has never 

been done before.  These simulations will help the fundamental understanding of complex 

phenomena in the metallic fuels.  This is a large step in making a computationally acceptable 

fuel performance code, able to replicate and predict fuel behavior.
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CHAPTER 1 

INTRODUCTION 

 

Since the Clementine reactor in 1949, the first nuclear fast reactor, metal alloy 

fuels have interested the nuclear community, and a number of experimental fast reactors 

have employed nuclear metallic fuel, including the EBR series, LAMPRE series, DFR 

and the Fermi reactors (Kittel 1993).  

  Generally ceramic nuclear fuel is used in the Light Water Reactors (LWR) and 

Pressurized Water Reactors (PWR); however, recently there has been increased research 

in using metallic fuels in a LWR (Malone 2012).  Metallic fuels have already been shown 

to have many benefits when used in non-water cooled reactors.  Initially metallic fuels 

were used for their ease of fabrication, high heavy metal density and favorable breeding 

efficiencies, but recently they are being noticed for additional significant benefits.  Metal 

alloy fuels demonstrate superior performance over ceramic fuels in that they behave in a 

benign manner during core off-normal events; maintain integrity in high burn-up 

conditions; and have low-loss fuel recycling during reprocessing. They also have 

proliferation-resistant recycling, a high thermal conductivity, passive reactor safety, and 

fairly isotropic neutron cross-sections. (Kittel 1993; Olander 1975)  

Metallic Fuel Advantages 

 Nuclear metallic alloy fuels are believed to have a very promising future in the 

new advanced fast reactor designs and research for several reasons.  First, they do not 

require plutonium to be separated during reprocessing, which is a benefit in regard to 

national security threats.  One of the largest concerns for nuclear national security is 

terroristic efforts to obtain material in order to create a nuclear device.  However, the 
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metallic fuel reprocessing, as opposed to ceramic fuel reprocessing, would ensure that 

key isotopes and elements required for a supercritical nuclear device would not have to 

be separated from the bulk and therefore could not be a target or opportunity for 

terroristic efforts.  Another benefit is that reprocessing of metallic fuel allows for reduced 

fuel cycle cost.  

 Secondly, the metallic fuels have the potential for the highest fissile atom density, 

resulting in a higher burn-up potential of nuclear fuel.  This would allow reactors to 

operate longer before refueling; create an opportunity to breed more plutonium during 

reactor operation, resulting in high utilization of fuel resources; and allow for smaller 

reactors with a high power density. 

 Third, nuclear metallic alloy fuels have favorable thermodynamic properties, 

promoting safety and energy harvesting.  They have a high thermal conductivity leading 

to lower fuel and cladding temperatures and less stored energy.   

 Metallic fuels also have favorable neutronic properties.  At the reactor operating 

conditions, many of the metallic fuels are in the BCC phase resulting in very isotropic 

neutron cross-sections.  These isotropic neutron cross sections are particularly important 

for small fast nuclear reactors.  

 Lastly, metallic fuels have passive safety features during core off-normal events. 

For example, during a loss-of-flow accident, fission gases and thermal expansion cause 

the fuel to expand to the cladding, whereupon the fuel at the fuel/cladding interface will 

transform to the molten phase, removing reactivity from the core. 

 There are some drawbacks to the use of metal alloy nuclear fuels as well.  They 

have high fission gas release and swelling during irradiation and a lower melting point 

than the traditional ceramic nuclear fuels. They can also react with water. Nonetheless, 

some of these disadvantages have actually been realized to be beneficial.  One of the 

disadvantages that can also be seen as a benefit is the low melting point.  The low melting 

point allows for the fuel to go into the molten phase which reduces reactor reactivity, 
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acting as a passive safety feature (this process is described further in the Fuel 

Disadvantage Section below). 

Metallic Fuel Disadvantages 

 Each nuclear fuel type has its advantages and disadvantages, and no single fuel 

type will perform better than the others in all scenarios.  There are a few concerns that 

need to be considered when using metallic fuels in particular, such as fuel swelling, 

fission gas release, fuel redistribution, cladding interactions and coolant interactions. 

 Fuel swelling and irradiation growth are drastic phenomena that metallic fuels 

undergo when irradiated.  Swelling in the fuel means that the fuel maintains a similar 

shape but the volume increases, while irradiation growth means a change in shape with 

no noticeable change in volume.  At the onset of operation, metallic fuels will swell 

rapidly due to fission gas bubbles until the bubbles become interconnected and make a 

path for the gas to escape.  After the bubbles are interconnected, the swelling behavior of 

metallic fuels is very slow and is caused by the solid fission products taking up lattice 

positions in the fuel.  The addition of the solid fission product accumulation leads not 

only to slow swelling, but also to a loss in thermal conductivity.  Furthermore, grain 

boundary tearing at the fuel edges has been seen to cause large irregular shaped cavities.  

Both the irradiation growth and grain boundary tearing are known to result in reactivity 

loss (Pahl 1990).  

 The Fuel Cladding mechanical interaction (FCMI) is a large concern when using 

metallic fuels.  As irradiation of the fuel progresses, the irradiation/thermal creep by 

fission gas pressure loading can eventually cause a stress-rupture of the cladding (Pahl 

1990; Pahl 1992).  Until the 1960’s the burn-up of the metallic fuels in fast reactors was 

limited by the FCMI (Ogata 1996).  A technical breakthrough from Argonne National 

Laboratory (ANL), drastically decreased the FCMI and allowed the burn-up potential of 

the metallic fuels to be realized (Walters 1984).  Reducing the smear density down to 
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approximately 75% provided enough space for the fuel to swell inside the cladding until 

the fission gas pores became interconnected and fuel swelling due to fission gasses 

stopped. 

 Fuel-cladding chemical interactions (FCCI) must also be considered when using 

metallic fuels.  The creep rupture at high burn-up is known to be accelerated by FCCI.  

Experiments have shown that there is fuel-cladding interdiffusion, in which Uranium, 

Plutonium, and some lanthanide fission products, react and can penetrate into the 

cladding.  The result of this interdiffusion is cladding wall thinning, a brittle cladding 

layer between the fuel and cladding, and a eutectic composition approached in the fuel 

which causes a lower melting point in that region (Pahl 1990; Hayes 2009; Ogata 1997).  

 Another concern when using metallic fuels is the fuel constituent restructuring of 

Uranium and Zirconium have been experimentally witnessed in the U-Zr type metallic 

fuels.  The Uranium and Zirconium redistribution occurs soon after reactor operation 

begins from U and Zr interdiffusion.  However, the inhomogeneity associated with the 

restructuring, while changing some of the mechanical and neutronic properties of the 

fuel, has not noticeably affected the overall fuel lifetime, but a lowered solidus 

temperature has been noticed in some fuel regions (Pahl 1990; Kim 2004).  
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Figure 1: Post-irradiation Optical Metallography and Measured Constituent 

Redistributions (Kim 2004; Hofman 1996) 

 

 All nuclear metallic fuels have a lower melting temperature than the nuclear 

ceramic fuels.  The solidus temperature for Uranium metals can be increased when 

alloyed to another metal with the same BCC high temperature phase. Common metals 

alloyed to Uranium are Zirconium, Niobium and Molybdenum.  For reactor operation the 

fuels must be kept below their melting temperature.  However, since the thermal 

conductivity of these metallic fuels is higher than that of the ceramic fuels, the heat flux 

from the fuel pin is higher, which leads to a lower temperature gradient across the fuel 

pin and allows for a high power density to be achieved while remaining below the fuel 

melting temperature.  Nevertheless, this low melting temperature can cause problems 

during fast transients. 

 Depending on the fuel temperature and the Zirconium redistribution, the fuel 

could have multiple phases during reactor operation, causing changes in both mechanical 

and neutronic properties. 
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 The swelling and low melting point of metallic fuels is a benefit during off-

normal core events.  The interconnected porosity of swollen metallic fuel coupled with 

the low melting point during a transient event allows for the thermal expansion of the fuel 

due to temperature induced phase transformations; this phase transformation prevents the 

fuel from stressing the cladding, and allows the fuel to flow onto itself in the open 

porosity (Ondracek 1973). 

 However, the metallic fuels still need additional research before they can be fully 

understood.  One of the barriers obstructing the advancement of metallic fuels is the lack 

of appropriate tools needed for computational simulations.  Computational simulation is a 

tool that can be used to give insight into physical phenomena resulting in overall 

mechanical and thermal properties that cannot be attained from experimentation alone.  

Computational simulation not only gives insight into experimental results, but also, once 

developed, allows for the necessary predictions of metallic fuel property changes under a 

variety of conditions which is needed when developing core models.  In addition, 

computational simulation combined with experimentation will not only assist in the 

operation and design of a reactor, but also provide the necessary information and insights 

for optimizing fabrication and reprocessing of the fuels.  Experimentation alone does not 

allow for the full picture of properties of the metallic fuels at high temperature to be seen.  

Experimentation at high temperature phases is also problematic: it is difficult to obtain 

accurate and reliable data due to severe thermal scatter. 

Uranium (U) 

 Uranium is a transition metal that has three distinct stable solid phases.  The 

transition of these phases can be attributed to the behavior of the de-localized f orbital-

electrons.  The ground state Uranium phase is the α (orthorhombic) phase.  As 

temperature increases Uranium will go through transitions to the β (tetragonal) and the γ 

(body centered cubic) phases respectively (Yoo 1998).  The α and β phases of Uranium 
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have unwanted an-isotropy of expansion, but the γ phase has seemingly isotropic 

expansion which are desirable in reactor environments.  Uranium’s transition 

temperatures from α to β and from β to γ are 935K and 1045K respectively (Soderlind 

1998).  

 

Figure 2: The Unit Cell of the α-U Crystal Structure 

 

Figure 3: The β-U Crystal Structure (Beeler 2012a) 
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Figure 4: The γ-U Crystal Structure 

Zirconium (Zr) 

Zirconium is also a transition metal and has two distinct solid phases.  The ground 

phase of Zirconium is hexagonally closed packed (hcp or αZr), while the high 

temperature phase is body centered cubic (bcc or βZr).  The transition temperature from 

αZr to βZr occurs at 863 °C.  Another important characteristic of Zirconium is its high 

melting point of 1855 °C, which makes Zirconium useful when alloying to Uranium as it 

raises the melting point of the alloy. 
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Figure 5: Unit cell of α-Zr Crystal Structure (“Hexagonal Closed Packing HCP”) 

 
Figure 6: The β-Zr Crystal Structure 
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Uranium-Zirconium (U-Zr) 

Zirconium is one of the principal structural metals for fuel cladding and other core 

components because of its high temperature BCC phase (above 865ºC), high melting 

temperature, very low thermal neutron absorption cross-section, relatively low cost and 

high fission product yield. For these reasons it was considered a good option to alloy with 

Uranium to construct a metallic alloy fuel.  However, the choice of which element to 

alloy to Uranium for a good metallic fuel has mostly been decided by trial and error, 

often making a compromise between mechanical properties and corrosion resistance.  

After many experiments and tests, Uranium-Zirconium (U-Zr), along with a few other 

alloys, appears to be a promising option as a nuclear fuel for fast reactors. 

Uranium-Zirconium has a Body Centered Cubic (BCC) structure for reactor 

operating temperatures; therefore, the BCC structure is particularly important to analyze.  

It is also important to note that the Uranium-Zirconium alloy goes through a δ (C32 

Crystal Structure) to γ (BCC) phase transition for 65%-75% Zirconium around 890 

Kelvin.   

The most recent phase diagram was constructed by H. Okamoto (Okamoto 2007) 

and was made from a compilation of experimental papers on Uranium-Zirconium.  
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Figure 7: Phase Diagram of U-Zr (Okamoto 2007) 

 

The γU, βZr phase is known to be completely miscible.  This is the high 

temperature phase in which the metallic U-Zr fuel has isotropic properties and the main 

phase of interest for high temperature fast reactors. 

Uranium-Zirconium (including U-Pu-Zr and U-ZrH) fuel is already considered to 

be one of the best options for use in the TRIGA pool type reactors and the Generation IV 

SFR’s reactors (EBR-II, SABR, S-PRISM and more).   Uranium-Zirconium in reactor 

operating conditions is in the Body Centered Cubic (BCC) phase.  The BCC phase gives 

the metallic fuel the desired isotropic thermal expansion, but has less experimental data 

than the lower temperature phases.  This research focuses on this BCC metallic phase. 
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Uranium-Zirconium Delta (C32) Phase 

 The delta (δ) phase of Uranium-Zirconium is an important phase for non-high 

temperature conditions.  The delta phase is observed during fuel fabrication and is the 

only intermetallic phase in the U–Zr system (Basak 2011). 

 

Figure 8: Unit Cell of the δ (C32) Ordered Phase U-Zr Crystal System ("Alb2 omega 

structure") 

 

Table 1: Structure of the δ U-Zr Crystal System 

Pearson Symbol hP3 

Space Group P6/mmm 

Prototype Al-B2 

Strukturbericht Designation C32 
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Applications of Uranium-Zirconium 

Subcritical Advanced Burner Reactor (SABR) 

The metallic fuels with their high heavy metal density and their complementary 

relationship with fast reactors allow engineers to consider new reactor designs.  One of 

the new reactor designs that is being explored is the Subcritical Advanced Burner Reactor 

(SABR).  The SABR design is unique because it uses a fusion neutron source (similar to 

ITER’s tokamak) to drive the subcritical fast reactor.  This design allows for large 

amounts of not highly enriched fuel to be burned.  In addition, the subcritical nature of 

the reactor creates safety benefits (Stacey, unpublished data). 

 

Figure 9: Perspective View of SABR Configuration.  (Stacey, unpublished data) 
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Figure 10: Radial Build of SABR Configuration (Stacey, unpublished data) 

 

Table 2: Basic SABR Core Properties (Stacey, unpublished data) 

Fast Reactor Core Properties 

Coolant 

TRU fuel composition 

Fuel Maximum / Allowable Temperature 

Cladding Maximum / Allowable Temperature 

Coolant Maximum / Allowable Temperature 

BOL TRU mass 

BOL keff 

Specific power 

Fuel assembly 

Fuel pin 

 

Sodium (Na) 

40Zr-10Am-10Np-40Pu 

1014  K / 1200 K 

814 K / 923 K 

787 K / 1156 K 

15104 kg 

0.973 

198.6 W/gHM 

800 

469/per assembly, 375,200 total 
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Table 2 Continued: Basic SABR Core Properties (Stacey, unpublished data) 

Power density 

Linear fuel pin power 

Sodium coolant mass flow rate 

Coolant temperature Tincool/Toutcool 

Fuel & Clad temperature Tmaxfuel/Tmaxclad 

Clad & Structure 

Electric insulator 

Fuel/Clad/Bond/Insulator/duct/coolant/wire (v/o) 

256 kW/L 

12.3 kW/m 

16,690 kg/s 

628 K/769 K 

1014 K/ 814 K 

ODS MA957 

SiC 

22.3/17.6/7.4/6.5/9.3/35.3/1.5% 

 

One of the problems this design had to overcome however was a significant 

amount of swelling and fission gas production that took place in the metallic fuel.  Since 

SABR was designed for long fuel irradiation cycles with high burn-up the fission gas 

production was especially copious.   

To overcome this obstacle, the fuel is fabricated with a 75% smear density and an 

extra-long plenum was introduced to hold the fission gasses that escaped the fuel.  

Normally swelling and fission gas production is an issue during operation with metallic 

fuels, but since the SABR design has very high burn-up conditions, it requires extra 

accommodations.  The plenum was made to be almost twice as long as the fuel region, 

allowing the extra fission gas products to escape the fuel. 
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Figure 11: SABR Fuel Pin Configuration (Stacey, unpublished data) 

Another problem the SABR design faces is the irradiation damage to the cladding.  

The cladding has an inherent irradiation limit that was experimentally determined before 

the irradiation damage causes changes in the cladding that could lead to cladding failure.  

The irradiation limit to the cladding coupled with the embrittlement and thinning of the 

cladding from Fuel Cladding Interactions (FCCI and FCMI), discussed in Metallic Fuel 

Disadvantages section, is another possible obstacle for the use of U-Zr.  While, the SABR 

design keeps the cladding irradiation damage below the set limit, more research might be 

needed to incorporate the effect of Fuel Cladding interactions.   
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CHAPTER 2 

COMPUTATIONAL THEORY & ANALYSIS 

Ensembles and Averaging  

Computational methods allow for the analysis to explore the fundamental 

properties within materials.  The detailed knowledge gained from computational 

simulations into the microstructural and atomistic properties of the fuels is required for 

the complete understanding of the macroscopic properties.  The overall goal of these 

computational atomistic simulations is to understand and predict material responses to 

stimuli. 

Macroscopic properties can be gleaned through an atomistic simulation.  In an 

atomistic simulation a sequence of points, corresponding to atom positions, satisfying the 

conditions of a particular thermodynamic state are said to belong to the same ensemble.  

These sequences of atom positions describe the state of the system.  An ensemble can be 

defined as a collection of all possible systems which have different microscopic states but 

have one or more identical macroscopic or thermodynamic extensive properties. 

Ensembles are characterized by the independent variables, the variables that are 

held constant during simulation.  Some variables need to be held constant to reduce the 

total number of variables in order to solve the system of classical motion equations and to 

be able to receive useful data corresponding to thermodynamics properties.  During the 

course of atomistic simulations, including Molecular Statics (MS), Molecular Dynamics 
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(MD) and Metropolis Monte Carlo (MC), ensembles can be used to find the approximate 

equilibrium state for the dependent unfixed variables.   

After the computational simulations have run for a while, it is commonly assumed 

that the dependent properties are fluctuating around the equilibrium value and an average 

can be constructed to approximate this equilibrium value.   

〈𝐴〉 = ∑ 𝐴𝑖𝑝𝑖𝑖  (  1 ) 

This assumption of an ensemble average being the time average after initial 

fluctuations have died down is referred to as the Ergodic hypothesis for molecular 

dynamics (MD) simulations. 

〈𝐴〉 = lim
𝑡→∞

1

𝑡
∫ 𝐴 𝑑𝑡

𝑡

0
  (  2 ) 

 

Table 3: Common Thermodynamic Ensembles 

Ensembles Independent 

Variables 

Dependent 

Variables 

Z  

(Partition 

Function) 

Pi  

(ith state 

Probability) 

Microcanonical N, V, U μ, P, T ∑ 𝛿(𝐸𝑖 − 𝐸)
𝑖

 
𝛿(𝐸𝑖 − 𝐸)

𝑍𝑁𝑉𝐸
 

Canonical N, V, T μ, P, E ∑ 𝑒−𝛽𝐸𝑖(𝑁,𝑉)

𝑖
 𝑒−𝛽𝐸𝑖(𝑁,𝑉)

𝑍𝑁𝑉𝑇
 

Grand 

Canonical 

V, T, μ N, P, L ∑ 𝑒𝛽𝑁𝜇𝑍𝑁𝑉𝑇
𝑖

 𝑒−𝛽(𝐸𝑖−𝜇𝑁)

𝑍𝑁𝑉𝜇
 

Isothermal-

Isobaric 

N, P, T μ, V, H ∑ 𝑒𝛽𝑝𝑉𝑖𝑍𝑁𝑉𝑇
𝑖

 𝑒−𝛽(𝐸−𝑝𝑉𝑖)

𝑍𝑁𝑃𝑇
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Where U is the total energy of the system, β=1/kBT is the reduced temperature, Z 

is the partition function, N is number of moles, V is volume, T is temperature, μ is the 

chemical potential, p is the pressure, H=U+PV is the enthalpy, L=U – Σ( μi Ni ) is the Hill 

energy, Pi represents the probability of observing the ith state and all of the other subscript 

i’s represent the parameter at the ith state (Hünenberger 2005). 

 

Molecular Statics (MS) 

Molecular static simulations (energy minimization) were performed using the “in-

house” code DYNAMO (predecessor to LAMMPS or PARADYN).  The process of an 

energy minimization simulation corresponds to relaxing (or moving) the atomic atoms 

positions until zero net force is acting on the system at 0K (Minimum Energy 

Configuration).  Molecular Statics with DYNAMO uses the equations of motion from 

Newton’s 2nd law to relax the atoms. 

The force acting on an atom can be represented by the derivative of the potential 

energy over space. 

𝐹 = −
𝜕𝑈

𝜕𝑟
  (  3 ) 

The potential energy is obtained from using the interatomic potentials for all of 

the atoms in the system.  The potential energy is often represented as a truncated taylor-

series expansion as follows: 
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𝑈(𝑟 + 𝛿𝑟) = U(𝑟) +
𝜕𝑈

𝜕𝑟
𝛿𝑟 +

1

2!

𝜕2𝑈

𝜕𝑟2
(𝛿𝑟)2 + ⋯  (  4 ) 

The potential energy is truncated to the first derivative for each coordinate 

direction, called gradient vector (g), or sometimes to the second derivative in the 

coordinate systems, called a Hessian Matrix (H).  DYNAMO uses the steepest descent 

method by taking the gradient vector of the potential energy for each atom resulting in 

forces acting on each atom in the system.  Each atom is moved with a step size 

proportional to the force acting upon it.  This procedure is repeated until an energy 

convergence criteria is met. 

𝑟𝑖
𝑗
= 𝑟𝑖

𝑗−1
+ α𝐹𝑖  (  5 ) 

Where ri is the position of the ith atom, j is the iteration number, α is a 

multiplication factor, Fi is the force being exerted on the ith atom and α is the 

multiplication factor. 

Since the BCC Uranium-Zirconium phase is unstable at 0K, energy minimization 

was performed by holding the atoms in the BCC phase and relaxing the unit cell.  

 

Molecular Dynamics (MD) 

Molecular Dynamics (first principles) simulation consists of a numerical 

systematic solution to the classical equations of motion.  Similarly to Molecular Statics, 

Molecular Dynamics calculates the force on each atom from the gradient vector of the 

potential energy at each atom’s location.  Molecular Dynamics computes the phase-space 
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trajectory, in which the atoms are allowed to interact for a period of time with forces 

being exerted on each atom, giving snapshots of the motion of atoms.  The forces on each 

atom are calculated using the MEAM interatomic potential developed.  Temperature in a 

Molecular Dynamics simulation corresponds to an average atom velocity. 

The Molecular Dynamics code used, called DYANMO, was run under an 

Isothermal–isobaric (NPT) ensemble, in which the atoms, pressure and temperature are 

held constant.  The initial simulation consists of a random solid solution of 2000 atoms 

with periodic boundary conditions in an un-relaxed, perfect BCC lattice. 

MD Time Convergence and Averaging 

The simulation must be run long enough to reach the equilibrium value and then 

additional time to ensure a good statistical average.  The total MD simulation time was 

run for 100 picoseconds using a 2 femtosecond time step, with ensemble property 

averaging over the last 35 picoseconds.  The root mean squared (RMS) value of the 

properties gives an idea of the variation or fluctuation of the properties during the 

simulation averaging time period.   

Equations of Motion 

Molecular dynamics simulation computes the phase space trajectory in response 

to forces.  The three dimensional configuration of atoms in space is given by: 

𝑚𝑖
𝑑2𝑟�̅�

𝑑𝑡2
= 𝐹𝑖 = −

𝜕𝑈

𝜕𝑟�̅�
  (  6 ) 
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Periodic Boundary Conditions (PBC) and Finite Size Effects 

There are a variety of boundary conditions that can be used for computational 

simulation, but in order to represent the bulk mechanical properties, the simulations were 

performed using periodic boundary conditions in all dimensions.  

Since the molecular dynamics (MD) simulation uses periodic boundary 

conditions, it is necessary to ensure that the system is sufficiently large enough to 

represent the system of interest accurately.  Therefore, the potential energy from a 

random solid solution molecular dynamics (MD) simulation was analyzed for a range of 

sizes to determine an adequate size to minimize the periodic boundary finite size effects.  

However, larger systems have a dramatically longer computational runtime; therefore a 

balance is made to ensure size effects are negligible while keeping the computational 

runtime to a minimum. 

Finite periodic box size effects are hard to quantify, especially for high 

temperatures where thermal scattering events can over dominate the finite periodic box 

effects.  In addition, since a time average is taken of the properties, a larger box size will 

result in a better average due to the law of large numbers. 

  More drastically however, the box size can affect the overall MC-MD iteration 

configuration, not only does the box size have to be large enough to model the molecular 

dynamics accurately, but also it must allow for a size large enough for separation, 

clustering and ordering effects to be seen and have limited influence from the 

neighboring reflected images.   
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The cubic periodic box size was kept to 10x10x10 BCC unit cells, which together 

make a supercell, to minimize the periodic effects in the molecular dynamics simulation, 

where 10x10x10 is significantly larger than the minimum PBC size requirement of twice 

the cut-off radius distance (rcut).  This condition eliminates correlated fluctuations that 

atoms may experience due to simultaneous interactions with two images of a given 

particle. 

The 10x10x10 BCC unit cells that form the supercell’s cubic periodic boundary 

conditions (PBC) have problems replicating all of the equilibrium configuration effects 

seen in the MC-MD simulation.  However, it will be able to replicate ordering trends and 

approximate the local minimum energy configuration needed for the enthalpy of mixing. 

 

Monte Carlo (MC) 

The Monte Carlo (MC) simulation used is based on the Metropolis Monte Carlo 

algorithm (Metropolis 1953) (Wang 2005).  The MC method allows for the study of 

order-disorder and segregation phenomena in the equilibrated system.  The MC method is 

not based on the equations of motion, like the MD simulation, but the energetics of the 

states.  This type of Monte Carlo simulation is good for evaluating effects that would take 

a long time to witness during a molecular dynamics simulation.  In addition, this type of 

Mote Carlo simulation allows for insight into the possible range of thermodynamic 

properties which could change due to atomistic ordering effects. 
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Order-disorder transitions proceed through substitution between atoms followed 

by small atomic displacements.  These order-disorder transitions are commonly found in 

metals and alloys.  The Monte Carlo (MC) approach is used to drive the atoms toward 

their equilibrium state at a finite temperature. 

The MC simulation started with the ending positions of each atom after the 

previous MD simulation.  Then a series of configuration transformations were performed 

to achieve a thermo-dynamically equilibrated state.  The Monte Carlo Code uses a 

canonical (or NVT) ensemble, which means that the number of atoms, volume, and 

temperature is conserved. 

In each MC step, one of the following two configuration changes is attempted 

with an equal probability:  

1. A randomly selected atom is displaced from its original position in a 

random direction with a distance between 0 and rmax, where rmax is a 

function of temperature and is zero for 0 Kelvin. 

2. Two randomly selected atoms with different elemental types are 

exchanged.  

Operation (1) accounts for the positional relaxation processes (adjustment of bond 

lengths and angles), while operation (2) accounts for the compositional relaxation 

processes (segregation).  
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Tk

E
P

B
XY exp   (  7 ) 

After each configuration change, we evaluate the energy change between the new 

and old configurations.  If PXY > 1 (decrease in energy), the new configuration is 

accepted.  If PXY < 1 (increase in energy), the new configuration is retained with the 

probability PXY.  In the beginning of MC simulations, the potential energy of U–Zr 

decreases rapidly due to positional and compositional relaxations.  However, when the 

simulations approach equilibrium, there is no significant change in potential energy and 

the acceptance rate of element exchange operations remains stable around a certain value 

(Wang 2005). 

 

 

Figure 12: Number of MC-Steps U-Zr10 at a Temperature of 800 Kelvin 
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Short Range Order (SRO) Parameter 

Order parameters allow for the configurational and ordering changes to be 

represented by a value or a few values.  Ordering parameters allow for the overall 

ordering trends to be easily seen. 

The Short Range Order (SRO) parameter considers only first nearest neighbors 

(1NN).  PAA is the fraction of the nearest neighbor sites of atom type A that are occupied 

by A type atoms (averaged over all A atoms).  nA is the atomic fraction of A type atoms 

in the entire system.  

𝜎 = −
𝑃𝐴𝐴−𝑛𝐴

1−𝑛𝐴
  (  8 ) 

With this definition, σ = 1 for the perfectly ordered lattice, σ = -1 for the phase 

separated system, and σ = 0 for a random solid solution of equal numbers of A and B 

atoms.  If the number of A and B atoms are unequal, the magnitudes of the extreme 

values of σ are reduced. 
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SRO: 1.0 

 

Figure 13: Perfectly Ordered Periodic B2 U-Zr System (Uranium 50% atomic fraction 

and Zirconium 50% atomic fraction) 

SRO: -0.8 

 

Figure 14: An Example of a Periodically Separated U-Zr System (Uranium 50% atomic 

fraction and Zirconium 50% atomic fraction) 
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For the separated case, we can never achieve the perfect separated short range 

order parameter of -1 since we have a finite box with periodic boundary conditions.  The 

separated short range order parameter depends on both the finite periodic box size and the 

way the atoms separate, i.e. whether the atoms separate and are divided by a single planar 

line (seen in Figure 14 above) or bunch into a cluster of atoms.  

 

SRO: 0.0 

 

Figure 15: An Example of a Configuration of Planes of Atoms Not Captured by the Short 

Range Order Parameter 

 

However, there are some configurations that are not able to be captured by the 

short range ordering parameter, and therefore visual verification is still performed.  One 

of the structures that may form that cannot be captured by the SRO are alternating planes 

of atoms. 
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The Short Range Order parameter code assumes a Body Centered Cubic crystal 

structure and therefore eight nearest neighbor atoms.  The order parameter is calculated 

on a snapshot of the atoms’ positions at a given time.   

 

Molecular Statics/Dynamics (MS/MD) - Monte Carlo (MC) Iterations 

The Monte Carlo (MC) simulation with an NVT ensemble rearranges the atoms to 

have a lower free energy.  This restructuring of the atoms creates a problem since 

rearranging the atoms should cause a volume change.  Running a Molecular Statics or a 

Molecular Dynamics simulation with an NPT ensemble corrects the volume problem.  

However, the corrected volume changes how the structure rearranges during an MC 

simulation.  Therefore an iterative MC-MS and MC-MD simulation is proposed, which 

should eventually settle to the state that minimizes the free energy through a series of 

atom switching and thermal motion, if continued.  This state may or may not be the 

lowest energy state since a series of simple atom switching will most likely result in a 

state which represents a local minimum instead of the global minimum of the free energy. 

A finite number of MC-MS and MC-MD iterations is proposed to approximate 

the minimal free energy structure. 
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Figure 16: Flow Diagram of the Proposed Finite Iterative Molecular Statics (MS) and 

Monte Carlo (MC) Simulation 

 

 

Figure 17: Flow Diagram of the Proposed Finite Iterative Molecular Dynamics (MD) and 

Monte Carlo (MC) Simulation (Moore 2013) 

Local versus Global Energy Minimum 

 

Figure 18: Graphical Representation of Local versus Global Minimum 
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10-7 Steps/Atom 10-7

MD MC MD MC

100 pico-seconds 500 100 pico-seconds 500

∆t=0.002 ps Steps/Atom ∆t=0.002 ps Steps/Atom

MD MC MD

100 pico-seconds 500 100 pico-seconds

∆t=0.002 ps Steps/Atom ∆t=0.002 ps
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Simulations searching for a minimum energy can become trapped in a local 

minimum energy region.  While the overall energy minimum is the global minimum, the 

local minimum values still hold useful information. 

This phenomenon has the most drastic effect on the Metropolis Monte Carlo 

Simulation.  A finite number of simple atom switching most likely will not result in the 

global energy minimum but a local energy minimum configuration. 

 

Radial Distribution Function (RDF) 

The radial distribution function (RDF) is a useful tool for atomic analysis of 

crystal systems.  The radial distribution function gives a normalized equation of the 

distance between atoms in the lattice.  The RDF is calculated by describing how the 

radial density from a reference particle varies as a function of radial distance from this 

reference particle.  The RDF can be described by the function g(r), which gives the 

probability of finding a particle in the distance r from another particle. 

g(r) =
1

4𝜋𝑁𝑟2𝜌0
∑ ∑ 𝛿(𝑟 − 𝑟𝑖𝑗)

𝑁
𝑖=1
𝑖≠𝑗

𝑁
𝑗=1   (  9 ) 

The calculation of g(r) can give useful information about the average thermal 

scatter (by looking at the width of the peaks) and the phase of the system (by looking at 

the distance between the peaks), and it can even give information on the chemical 

ordering in a complex system when elemental radial distance functions are used. 
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Thermal Expansion 

The volumetric thermal expansion for the body centered cubic (BCC) metal is 

assumed to be isotropic, which has been observed in experiments.  The volumetric 

thermal expansion coefficient is described by the following equation: 

𝛼𝑉 =
1

𝑉
(
𝛿𝑉

𝛿𝑇
)
𝑝
  (  10 ) 

where V is the volume, T is the temperature and the subscript p denotes a change under 

constant pressure.  The coefficient of thermal expansion for the MEAM potential is 

obtained through molecular dynamics simulations with periodic boundary conditions in a 

NPT ensemble where the periodic volume is able to change at temperature changes.  

While thermal expansion is experimentally measured on a multi-grain sample, we 

assume the grains and dislocations have a minimal effect on the overall value for thermal 

expansion.  With this assumption we are able to compare the experimental values to the 

simulated bulk values. 

Atomistic Elastic Constants 

For the elastic constants we use Hooke’s law (σ=Eε).  Hooke’s law states that the 

stress is proportional to the gradient of the deformation occurring in the material.  If a 

continuum material is a linear elastic material, we can introduce Hooke’s law in Cartesian 

coordinates:  

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙휀𝑘𝑙  (  11 ) 

where σij is the stress, εkl is strain and Cijkl are the elastic constants. 
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 This equation assumes a linear relationship between the components of the 

stress tensor and strain tensor.  In other words the Hooke’s law gradient has been reduced 

to first and some second order differentials.  In addition, since the simulation is of a bulk 

material, for the pure elemental simulations at 0K the material can be seen as 

homogenous, so that the elastic constants should be independent over the position in the 

crystal.  Therefore we get the relation:  

𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑗𝑖𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘 = 𝑐𝑗𝑖𝑙𝑘  (  12 ) 

Consequently with this relationship, now only 36 of the 81 elastic constants are 

independent.   

(

  
 

𝜎1

𝜎2

𝜎3
𝜎4

𝜎5

𝜎6)

  
 

=

(

  
 

𝑐11 𝑐12 𝑐13

𝑐21 𝑐22 𝑐23

𝑐31 𝑐32 𝑐33

𝑐14 𝑐15 𝑐16

𝑐24 𝑐25 𝑐26

𝑐34 𝑐35 𝑐36
𝑐41 𝑐42 𝑐43

𝑐51 𝑐52 𝑐53

𝑐61 𝑐62 𝑐63

𝑐44 𝑐45 𝑐46

𝑐54 𝑐55 𝑐56

𝑐64 𝑐65 𝑐66)

  
 

(

  
 

휀1

휀2

휀3
휀4

휀5

휀6)

  
 

  (  13 ) 

To reduce the elastic constants further, crystal symmetry can be introduced.  

Therefore, cubic crystal symmetries with four 3-fold rotational point symmetry can 

reduce the remaining 36 elastic constants to 3 elastic constants (C11, C12, and C44) (Jaric 

2008; Zener 1948).  Similarly, a hexagonal crystal structure with one 6-fold rotational 

symmetry can reduce the 36 remaining elastic constants to 5 elastic constants (C11, C12, 

C33, C13, and C44) (Li 1990; Tromans 2011).  The reduction in elastic constants for cubic 

symmetry was shown by Zener (Zener 1948) and more recently by Jaric (Ledbetter 

1973). While the reduction in elastic constants for hexagonal symmetry can be seen by 

Tromans (Tromans 2011). 
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The end cubic symmetry tensor Hooke’s law results in the following: 

(

  
 

𝜎1

𝜎2

𝜎3
𝜎4

𝜎5

𝜎6)

  
 

=

(

 
 
 

𝑐11 𝑐12 𝑐12

𝑐12 𝑐11 𝑐12

𝑐12 𝑐12 𝑐11

0     0   0 
0    0  0
0   0   0 

0    0     0
0    0     0
0    0     0

𝑐44 0 0
0 𝑐44 0
0 0 𝑐44)

 
 
 

(

  
 

휀1

휀2

휀3
휀4

휀5

휀6)

  
 

  (  14 ) 

Another way to represent this Hooke’s law matrix was created by Zener (Zener 

1948), where he made relationships for cubic symmetries and defined two “Zener” elastic 

constants for cubic symmetries C and C’. 

𝐶 = 𝐶44  (  15 ) 

𝐶′ =
(𝐶11−𝐶12)

2
  (  16 ) 

𝐵 = −
𝜕2𝑈

𝜕𝑉2
𝑉 ≅

𝐶11+2 𝐶12

3
  (  17 ) 

In the “Zener” notation, C=C44 is the shear modulus, C’ is the shear Zener 

constant, and B is the bulk modulus. 

 

Formation Energy 

Formation energies were calculated starting by introducing defects into a 

supercell with equilibrium lattice constants and structural relaxation of atomic positions.  

When calculating defect formation energies, only non-interacting isolated defects were 

considered.  In addition, in order to ensure that structural changes did not occur with the 

introduction of the defect, visual verification was used on the defect simulations. 
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The formation energy of a single vacancy in a homogenous bulk crystal that does 

not change phase can be described by: 

𝐸𝑣 = 𝐸(𝑛−1) − [
𝑛−1

𝑛
] 𝐸𝑛  (  18 ) 

where E(n-1) is the total energy of an (n-1) atom supercell containing one vacancy, and En 

is the total energy of the structure with no vacancies. 

Similarly, the formation energy of an interstitial can be defined as: 

𝐸𝑖 = 𝐸(𝑛+1) − [
𝑛+1

𝑛
] 𝐸𝑛  (  19 ) 

where E(n+1) is the total energy of an (n+1) atom supercell containing one interstitial, and 

En is the total energy of the structure with no interstitials. 

 

Enthalpy of Mixing (Heat of Formation) 

The enthalpy of mixing at zero Kelvin makes the temperature component of the 

free energy negligible; therefore, the change in the free energy comes from the change in 

the enthalpy of mixing.  While physically the Body Centered Cubic Phase is unstable at 

zero Kelvin, to find the temperature effects of the MEAM potential on the enthalpy of 

mixing, the crystal structure was fixed to remain in the BCC configuration; Dr. Landa in 

his Monte Carlo and ab-initio simulations of Uranium-Zirconium (Landa 2009) used a 

similar methodology. 
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For exothermic solutions, ∆Hmix < 0, the mixing of the solution results in a free 

energy decrease.  However, the opposite is not necessarily true at all temperatures for 

endothermic solutions, ∆Hmix > 0. 

The enthalpy of a homogenous system is defined by 

H = 𝑈 + 𝑝𝑉  (  20 ) 

where H is the enthalpy of the system, U is the internal energy, p is the pressure and V is 

the volume. 

For inhomogeneous systems the enthalpy is the sum of the subsystems as shown 

by the following equation 

H = ∑ 𝐻𝑖𝑖   (  21 ) 

where i is the index of each subsystem.  If there are continuously varying properties, the 

summation becomes an integral. 

The enthalpy of mixing was calculated using the MEAM binary compound heat 

of formation for a non-ideal solution, similar to the methodology described by Jelinek in 

“Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys.” (Jelinek 

2012) 

The enthalpy of mixing was obtained by using the basic definition of enthalpy and 

ensemble averages for Volume, Pressure, Potential Energy and Kinetic Energy.  The pure 

Uranium and Zirconium ensemble average properties for a given temperature were taken 

and set to the component properties (e.g. Pi, Vi, and Ui).  The alloy ensemble average 
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properties for a given concentration and temperature were taken and set to the “mixed” 

properties (e.g. Pmix, Vmix and Umix). 

The mixed enthalpy of mixing values were separated by the random solid solution 

(MD simulation only) and the ordered solution (made by the MD-MC simulations).  This 

method allows for a representative model of the MEAM potential on the enthalpy of 

mixing, given by the following equation: 

∆Hmix = Umix − ∑ XiUii + PmixVmix + ∑ XiPiVii   (  22 ) 

The entropy of mixing for the binary alloy system is a more difficult problem to 

model, and will not be fully discussed in this thesis.  However, for a simple 

approximation of the configurational mixing entropy of the system, a statistical 

mechanics methodology can be used for ideal materials: 

∆Smix = −𝑅[XU ln(XU) + XZr ln(XZr)]  (  23 ) 

Once the enthalpy of mixing, temperature and the entropy of mixing are known, 

the Gibbs free energy of mixing can be found using the following equation: 

∆Gmix = ∆Hmix − T∆Smix  (  24 ) 
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CHAPTER 3 

INTERATOMIC POTENTIAL 

Density Functional Theory (DFT) states that energy is a functional of the electron 

density.  Therefore, if the electron density is known everywhere in the system, the 

potential energy can be determined from that information using the following equation: 

U = f[𝜌(𝑅)]  (  25 ) 

][)]([)]([)]([)]([)]([ rErErErJrTrE iiextxcs  
  (  26 ) 

where E is the total energy, Ts is the single particle kinetic energy, J is the Hartree-

Electron-Electron Energy, Exc is the Exchange Correlation Functional, Eext is the 

Electron-Ion Coulombic interaction and Eii is the Ion-Ion energy. 

The electron density is the underlying principal quantity for the Density 

Functional Theory (DFT).  The electron density can be defined by the probability of an 

electron being present at a specific location.  In mathematical terms it can be described as 

the integral of the wave function 𝜓 over the spin coordinates of all electrons over all but 

one of the spatial variables (𝑥 ≡ 𝑟 , 𝑠), and is given by the following equation: 

𝜌(𝑟 ) = 𝑁 ∫…∫|𝜓(𝑥 1, 𝑥 2, … , 𝑥 𝑁)|2𝑑𝑥 1𝑑𝑥 2 …𝑑𝑥 𝑁  (  27 ) 

where 𝜌(𝑟 ) is the probablilty of finding any of the N electrons within the volume element 

𝑑𝑟 . (Hohenberg 1964; Kohn 1965) 
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The electron density functional theory’s concept of electron density’s replacement 

of wave functionals led to the creation of the Embedded Atom Method (EAM) potential.  

The EAM potential is based on the assumption that an atom can be embedded into a 

homogenous electron gas, and that the resulting change in potential energy is a functional 

of the embedded atom electron density that can be approximated with an embedding 

function.   

 

Figure 19: Physical Representation of the Basics of the Embedding Function (Baskes, 

unpublished data) 

However, the electron density in a crystal is not homogenous.  Therefore the 

EAM potential changes the background electron density to the electron densities for each 

atom and supplements the embedding energy by a repulsive pair potential to represent 

atoms core-core interactions. 



homogeneous 

electron gas 

homogeneous 

electron gas 
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Figure 20: Physical Representation of the Embedding Function into a Lattice (Baskes, 

unpublished data) 

The EAM potential uses a simple linear superposition of the atoms’ electron 

densities as the background electron density. 

�̅�𝑖 = ∑ 𝜌𝑗
𝑎(𝑅𝑖𝑗)𝑗   (  28 ) 

𝑅𝑖𝑗 = |𝑟𝑖 − 𝑟𝑗|  (  29 ) 

In the equations above, 𝑅𝑖𝑗 is the distance between atoms i and j, 𝜌𝑗
𝑎 is the atomic 

electron density and ri is the position of atom i.   

The Embedded Atom Method (EAM) potential is a semi-empirical potential 

developed by Daw and Baskes in 1983 and has been used to successfully model a variety 

of face centered cubic (FCC) metals.  The EAM inter-atomic potential does not simply 

depend on atom locations, but includes many body effects that depend on the local 

environment. 



homogeneous 

electron gas 

inhomogeneous 

electron gas 
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The potential energy of a crystal system, using the EAM potential, can be 

calculated using the embedding function F, the electron densities 𝜌𝑖 and the pair 

interaction potential ϕ.   

𝑈 = ∑ 𝐹(�̅�𝑖)𝑖 +
1

2
∑ 𝜙(𝑅𝑖𝑗)𝑖,𝑗   (  30 ) 

 

MEAM 

However, the EAM potential has problems simulating materials with significant 

directional bonding, and cannot be used when simulating these materials.  Criteria for 

significant directional bonding in materials were created using the Cauchy Relation or 

Cauchy Discrepancy which relates the c12 and the c44 elastic moduli for symmetrically 

cubic materials.  The Cauchy Relation stated that the transverse expansion elastic 

constant (c12) is equal to the shear modulus elastic constant (c44) or C12=C44 (Born and 

Huang 1954) if the crystal and the atoms have cubic symmetry.  This condition is not 

satisfied for most metals.  Therefore materials with C12/C44 - 1 < 0 (Cauchy Discrepancy) 

are said to have a significant amount of directional bonding and cannot be described by 

EAM (Born 1954). 

The Modified Embedded Atom Method (MEAM) potential builds off the EAM 

potential by allowing the background electron density to depend on the local environment 

whereas the EAM potential uses a linear superposition of spherically averaged electron 

densities. 
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The MEAM inter-atomic potential is a semi-empirical potential proposed by 

Baskes et al. (Baskes 1992) that has been successfully used to reproduce the physical 

properties of various metals with different crystal structures.  The MEAM potential is 

useful because it has the ability to replicate physical properties while keeping the 

computational power and time, which are necessary to complete the simulations, down to 

an acceptable level.  This is a large step in making a fuel performance code and an 

accurate irradiation damage code. 

The MEAM potential for a single element contains 14 adjustable parameters used 

to obtain the physical properties seen by experiments or ab-initio simulations.  However, 

the MEAM potential becomes more complex for binary and tertiary alloys.  A binary 

alloy has 14 adjustable parameters for each element and at least 15 adjustable parameters 

for the binary alloy interactions. 

A MEAM potential is presented for the high temperature body-centered cubic 

(gamma) phase of U.  MEAM potentials add an angular component to the older EAM 

potential to account for directional bonding.  

With the MEAM potential, the total energy E of a system of atoms is given by: 

𝑈 = ∑ 𝐹(�̅�𝑖)𝑖 +
1

2
∑ 𝜙𝑖𝑗(𝑅𝑖𝑗)𝑖,𝑗≠𝑖 𝑆(𝑅𝑖𝑗)  (  31 ) 

where Fi is the embedding function, ρi is the background electron density at site I, S is the 

radial screening and φij(Rij) is the pair interaction between atoms i and j at a distance Rij.   
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Embedding Function  

The embedding function describes the energy it takes to add (or embed) the atom 

to the crystal structure.  The embedding function for the MEAM potential is defined by: 

𝐹𝑖(�̅�𝑖) = 𝐴𝑖𝐸𝑐𝑖 (
�̅�𝑖

𝜌𝑖
𝑒̅̅̅̅ ) 𝑙𝑛 (

�̅�𝑖

𝜌𝑖
𝑒̅̅̅̅ )  (  32 ) 

where A is an adjustable parameter, Ec is the cohesive energy, and 𝜌𝑒 is the electron 

density evaluated at equilibrium in the reference structure. 

 

Universal Binding Energy Relationship (UBER)  

The reference state energies are found from the Universal Binding Energy 

Relationship (UBER), which uses a reference structure to help create the pair potential.  

The UBER describes cohesion and adhesion of unrelaxed surfaces, chemisorption and 

diatomic molecules (Rose 1983).  The UBER in the MEAM is normally fit through a few 

parameters. 

The pair potential, instead of being given explicitly, is given as a functional of an 

embedding atom function and a universal function (𝐸𝑢(𝑅)) that is able to reproduce the 

universal equations of state (EOS) (Rose 1984) for the potential energy of a reference 

crystal structure.  The universal function (𝐸𝑢(𝑅)) describes the uniform expansion or 

contraction in the reference structure. 
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The value of the energy per atom for the equilibrium reference structure is 

obtained from the zero-temperature universal equation of state by Rose et al.(Rose 1984) 

as a function of nearest-neighbor distance R: 

𝐸𝑢(𝑅𝑖𝑗) = −𝐸𝑐 [1 + 𝑎∗ + 𝛿(𝑎∗)3 𝑟𝑒

𝑅𝑖𝑗
] 𝑒−𝑎∗

  (  33 ) 

𝑎∗ = 𝛼(𝑅𝑖𝑗 𝑟𝑒⁄ − 1)  (  34 ) 

𝛼 = (9𝐵Ω 𝐸𝑐⁄ )1 2⁄   (  35 ) 

The repulse and attract parameters of the MEAM potential are the short range 

attraction and repulsion forces in the UES (the cubic repulsion/attraction term in the Rose 

Energy). 

Reference State & Pair Potential 

The universal equation of state (EOS) combined with a reference structure can be 

back-calculated to a pair potential.   

For the reference state: 

𝐸𝑢(𝑅𝑖𝑗) = 𝐹[𝜌0̅̅ ̅(𝑅𝑖𝑗)] +
1

2
∑ 𝜙(𝑅𝑖𝑗) = −𝐸𝑐 [1 + 𝑎∗ + 𝛿(𝑎∗)3 𝑟𝑒

𝑅𝑖𝑗
] 𝑒−𝑎∗

𝑖,𝑗   (  36 ) 

The equation can be re-written in the first nearest neighbor MEAM form of:  
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𝐸𝑢(𝑅𝑖𝑗) = 𝐹[𝜌0̅̅ ̅(𝑅𝑖𝑗)] + (
𝑍1

2
)𝜙(𝑅𝑖𝑗)  (  37 ) 

where Z1 is the number of first nearest neighbor atoms.  The equation can be rearranged 

to get the pair potential as follows: 

𝜙(𝑅𝑖𝑗) = (
2

𝑍1
) {𝐸𝑢(𝑅𝑖𝑗) − 𝐹[𝜌0̅̅ ̅(𝑅𝑖𝑗)]}  (  38 ) 

where �̅�0 is the background electron density for the reference structure. 

Background Electron Density 

The background density depends on the local environment, in particular the 

atoms’ angular relation to one another.  These angular contributions are split into partial 

electron densities.   The background electron density (�̅�) is composed of a spherically 

symmetrical partial electron density �̅�𝑖
(0)

 and angular partial electron densities �̅�𝑖
(1)

, �̅�𝑖
(2)

 

and �̅�𝑖
(3)

, and has the following form: 

(𝜌𝑖
(0)

)
2

= [∑ 𝜌𝑗
𝑎(0)

(𝑅𝑖𝑗)𝑗≠𝑖 ]
2

  (  39 ) 

(𝜌𝑖
(1)

)
2

= ∑ [∑
𝑅𝑖𝑗

𝛼

𝑅𝑖𝑗
𝜌𝑗

𝑎(1)
(𝑅𝑖𝑗)𝑗≠𝑖 ]

2

𝛼   (  40 ) 

(𝜌𝑖
(2)

)
2

= ∑ [∑
𝑅𝑖𝑗

𝛼𝑅𝑖𝑗
𝛽

𝑅𝑖𝑗
2 𝜌𝑗

𝑎(2)
(𝑅𝑖𝑗)𝑗≠𝑖 ]

2

𝛼,𝛽 −
1

3
[∑ 𝜌𝑗

𝑎(2)
(𝑅𝑖𝑗)𝑗≠𝑖 ]

2

  (  41 ) 

(𝜌𝑖
(3)

)
2

= ∑ [∑
𝑅𝑖𝑗

𝛼𝑅𝑖𝑗
𝛽
𝑅𝑖𝑗

𝛾

𝑅𝑖𝑗
3 𝜌𝑗

𝑎(3)
(𝑅𝑖𝑗)𝑗≠𝑖 ]

2

𝛼,𝛽,𝛾 −
3

5
∑ [∑

𝑅𝑖𝑗
𝛼

𝑅𝑖𝑗
𝜌𝑗

𝑎(3)
(𝑅𝑖𝑗)𝑗≠𝑖 ]

2

𝛼   (  42 ) 
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In these equations, 𝜌𝑗
𝑎(ℎ)

 are the atomic electron densities of atom j at the distance 

Rij relative to the site i. 

The atomic electron densities are given by: 

𝜌𝑗
𝑎(ℎ)

(𝑅𝑖𝑗) = 𝜌0 𝑆𝑖𝑗 𝑓𝑐𝑢𝑡(𝑅𝑖𝑗) 𝑒𝑥𝑝 [−𝛽(ℎ) (
𝑅𝑖𝑗

𝑟𝑒
− 1)]  (  43 ) 

where 𝛽(ℎ) is the partial electron density decay, 𝑟𝑒 is the nearest neighbor distance, Sij is 

the screening factor, fcut is the cut-off function, and 𝜌0 is a scaling factor which plays no 

role for pure elements, but has a significant role for alloy systems. 

 

Figure 21: Physical Interpretation of directional bonding by partial electron densities 

(Baskes, unpublished data) 

The geometric way 𝜌𝑖
(𝑙)

 is defined allows us to consider the partial background 

electron densities relate to the specific angular momentum contributions to the 

background electron densities known as electron orbitals(spdf).  The partial background 

electron densities are orthogonal and can also be written in terms of Legendre 

polynomials. 

l 
 θ 
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(𝜌𝑖
(𝑙)

)
2

= ∑ ∑ 𝜌𝑗
𝑎(𝑙)

(𝑅𝑖𝑗)𝜌𝑘
𝑎(𝑙)(𝑅𝑖𝑘)𝑃𝑙

0 (𝑐𝑜𝑠(𝜃𝑖𝑘𝑗))𝑘≠𝑖𝑗≠𝑖   (  44 ) 

𝑃𝑙
0 are the Legendre polynomials: 

𝑃0
0(𝑧) = 1  (  45 ) 

𝑃1
0(𝑧) = 𝑧  (  46 ) 

𝑃2
0(𝑧) = 𝑧2 −

1

3
  (  47 ) 

𝑃3
0(𝑧) = 𝑧3 −

3

5
𝑧  (  48 ) 

The total background electron density can be obtained from the weighted partial 

background electron densities through an intermediate term Γ: 

�̅�𝑖 = 𝜌𝑖
(0)

√1 + Γ  (  49 ) 

Γ = ∑ 𝑡𝑖
(𝑙)

(
𝜌𝑖

(𝑙)

𝜌
𝑖
(0))

2

3
𝑙=0   (  50 ) 

where 𝑡𝑖
(𝑙)

 can be seen as the weighting factor for each of the partial electron densities.  

For convenience 𝑡(0) = 1. Setting one value helps to visualize changes in the weighted 

parameters since the electron density is weighted by the t parameters.   

Screening  

Screening between two atoms (I and j) is defined as the product of screening 

factors, Sijk, due to the neighboring atoms (k) that contribute to screening. 
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𝑆𝑖𝑗 = ∏ 𝑆𝑖𝑗𝑘𝑘≠𝑖,𝑗   (  51 ) 

Consider a two-dimensional model of screening, leading to an ellipse method of 

describing screening.  If the atoms i and j lie on the x-axis and the atom k is somewhere 

in the x,y plane that does not lie on top of either atom, an ellipse model can be used to 

describe the regions of screening. 

Atom screening can be visualized using the ellipse model seen in Figure 22.  In 

this model, atoms i and j are being screened by atom k.  The amount of screening is 

separated into 3 regions: completely screened, partially screened, and non-screened. 

 

Figure 22: Visual Representation of MEAM Screening with an Ellipse (Baskes, 

unpublished data) 

From this two-dimensional interpretation of screening, an equation can be made 

to represent the ellipse: 
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𝑥2 + (
1

𝐶
) 𝑦2 = (1

2
𝑅𝑖𝑗)

2
  (  52 ) 

 

The ellipse parameter C is determined by a function of ratios between atoms i,j and k 

given by: 

𝐶 =
2(𝑋𝑖𝑘+𝑋𝑘𝑗)−(𝑋𝑖𝑘−𝑋𝑘𝑗)

2
−1

1−(𝑋𝑖𝑘−𝑋𝑘𝑗)
2   (  53 ) 

where: 𝑋𝑖𝑘 = (𝑅𝑖𝑘/𝑅𝑖𝑗)
2
 and 𝑋𝑘𝑗 = (𝑅𝑘𝑗/𝑅𝑖𝑗)

2
.  The screening factor Sikj is defined as: 

𝑆𝑖𝑘𝑗 = 𝑓𝑐[(𝐶 − 𝐶𝑚𝑖𝑛)/(𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛)]  (  54 ) 

where Cmin and Cmax determine the extent of the screening and fc is the cut-off 

function. 

Cut-Off Function 

The cutoff function describes the smooth, gradually decreasing distance effect on 

the interactions between the atoms.  The smooth cut-off screening function (fc) is 

defined: 

𝑓𝑐(𝑥) = 1,      𝑥 ≥ 1 

[1 − (1 − 𝑥)6]2,         0 < 𝑥 < 1, 

0,               𝑥 ≤ 0  (  55 ) 
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𝑥 = (
𝑅𝑖𝑗

𝑐𝑢𝑡−𝑜𝑓𝑓
−𝑅𝑖𝑗

Δ𝑅𝑖𝑗
)  (  56 ) 

where ∆ is the width of the cut-off region and Rcut-off is the maximum cut-off distance.  

Normally, MEAM cut-off function has the (1-x) term to the fourth power rather than the 

sixth.  However, the power was changed to the sixth when fitting the stacking fault 

energy for zirconium. 

2nd Nearest Neighbor (2NN) MEAM 

The main difference between the 1NN MEAM and the 2NN MEAM is that the 

2NN MEAM attempts to incorporate 2NN atomic interactions, which are weaker than 

1NN interactions, into the pair interaction term ϕ.  The 1NN MEAM is able to neglect the 

second nearest neighbor interactions through the use of a strong many-body screening 

function.  However, the 2NN MEAM is able to include second nearest neighbor 

interactions by adjusting the many-body screening function so that it becomes less 

severe. 

Screening can play a large role on many parameters as temperature changes.  

Thermal vibration can cause atoms to drift in and out of various screening regions.  When 

implementing the1st Nearest Neighbor (NN) MEAM, the screening parameters are 

selected to ensure that the first nearest neighbors are entirely un-screened.  This “strong” 

screening allowed for the neglect of 2NN interactions, with only 1NN interactions being 

considered.  The strong screening was taken into account by the many body screening 

function from a large minimum initial screening distance (Cmin). 
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However, for 2nd NN MEAM potentials the start initial minimum distance that 

screening starts (Cmin) is reduced, leading to a screening function that is less “strong” 

and incorporates second nearest-neighbor interactions.  The UBER relationship for 2NN 

MEAM is slightly different due to the fact that the second nearest neighbor energy 

contributions have to be added. 

𝐸𝑢(𝑅𝑖𝑗) = 𝐹[𝜌0̅̅ ̅(𝑅𝑖𝑗)] +
1

2
∑ 𝜙(𝑅𝑖𝑗)𝑖,𝑗   (  57 ) 

𝐸𝑢(𝑅𝑖𝑗) = 𝐹[𝜌0̅̅ ̅(𝑅𝑖𝑗)] + (
𝑍1

2
)𝜙(𝑅𝑖𝑗) + (

𝑍2𝑆

2
)𝜙(𝑎𝑅𝑖𝑗)  (  58 ) 

𝐸𝑢(𝑅𝑖𝑗) = −𝐸𝑐 [1 + 𝑎∗ + 𝛿(𝑎∗)3 𝑟𝑒

𝑅𝑖𝑗
] 𝑒−𝑎∗

  (  59 ) 

𝑎∗ = 𝛼(𝑅𝑖𝑗 𝑟𝑒⁄ − 1) (  60 ) 

𝛼 = (9𝐵Ω 𝐸𝑐⁄ )1 2⁄   (  61 ) 

Here, Z2 is the number of 2nd NN atoms, a is the ratio between the second and 

first nearest-neighbor distances, and S is the screening function on the second nearest-

neighbor interactions.  It should be noted that the screening function S is a constant for a 

given reference structure, if a value is given to Cmax and Cmin.  

By introducing another pair potential, ψ(R), the equation above can be written as: 
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𝐸𝑢(𝑅𝑖𝑗) = 𝐹[𝜌0̅̅ ̅(𝑅𝑖𝑗)] + (
𝑍1

2
)𝜓(𝑅𝑖𝑗)  (  62 ) 

𝜓(𝑅𝑖𝑗) = 𝜙(𝑅𝑖𝑗) + (
𝑍2𝑆

𝑍1
)𝜙(𝑎𝑅𝑖𝑗)  (  63 ) 

Now, ψ(R) can be calculated from the equation as a function of R. Then, the pair 

potential ϕ(R) is calculated using the following relation: 

𝜙(𝑅𝑖𝑗) = 𝜓(𝑅𝑖𝑗) + ∑ (−1)𝑛 (
𝑍2𝑆

𝑍1
)
𝑛

𝜓(𝑎𝑛𝑅𝑖𝑗)𝑛=1   (  64 ) 

Here, the summation is performed until the correct value of energy is obtained for 

the equilibrium reference structure (Lee 2001). 

2NN Alloy MEAM 

To describe an alloy system, the pair interaction between different elements 

should be determined.  In the 2NN MEAM, a perfectly ordered binary intermetallic 

compound, where only one type of atom has different atoms as first nearest-neighbors, is 

considered to be a good reference structure for creating the alloy pair potential. The B1 

(NaCl type) reference structure is used for the U-Zr MEAM potential.  For the B1 

reference structure, the total energy per atoms (for half i atoms and half j atoms), 𝐸𝑖𝑗
𝑢(𝑅), 

is given by: 

𝐸𝑖𝑗
𝑢(𝑅) =

1

2
{𝐹𝑖(�̅�𝑖) + 𝐹𝑗(�̅�𝑗) + 𝑍𝑖𝑗𝜙𝑖𝑗(𝑅) +

1

2
𝑍2

𝑖𝑗
(𝜙𝑖𝑖(𝑎𝑅) + 𝜙𝑗𝑗(𝑎𝑅))}  (  65 ) 

where Zij is the number of second nearest-neighbor atoms in the reference structure. ϕii 

and ϕjj are pair interactions between i atoms and between j atoms, respectively, and a is 

the ratio between the second and first nearest-neighbor distances. The procedure of 
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computing ρi and ρj is not different from that in 1NN MEAM except that the contribution 

from the second nearest-neighbors should also be considered. The pair interactions 

between the same types of atoms can be computed from the descriptions of individual 

elements (Lee 2001). 

𝜙𝑖𝑗(𝑅) =
1

𝑍𝑖𝑗
{2𝐸𝑖𝑗

𝑢(𝑅) − 𝐹𝑖(�̅�𝑖) − 𝐹𝑗(�̅�𝑗) −
1

2
𝑍2

𝑖𝑗
(𝜙𝑖𝑖(𝑎𝑅) + 𝜙𝑗𝑗(𝑎𝑅))}  (  66 ) 

The cohesive energy for the alloy is determined by the elemental cohesive 

energies and a formation parameter ∆ij. 

𝐸𝑖𝑗
0 =

(𝐸𝑖
0+𝐸𝑗

0)

2
− Δ𝑖𝑗  (  67 ) 

 

MEAM U-Zr Alloy Reference Structure 

 

Figure 23: Unit Cell of the B1 U-Zr Reference Crystal Structure 
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Table 4: Structure Details of the B1 U-Zr Reference Crystal Structure 

Pearson Symbol cF8 

Space Group Fm3m 

Prototype Na-Cl 

Strukturbericht Designation B1 
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CHAPTER 4 

RESULTS & DISCUSSION 

Uranium-Zirconium (U-Zr) 2NN MEAM Potential 

Uranium had not been modeled with interatomic potentials until 2012, when three 

different papers came out in the same year (Beeler 2012b)(Smirnova 2012)(Yangzhong 

Li 2012).  Elemental MEAM potentials for Uranium and Zirconium as well as alloy and 

screening parameters are need to be defined.  For the pure Uranium MEAM potential 

used is built off the Uranium potential developed by Dr. Beeler (Beeler 2012b).  While a 

few Zirconium MEAM potentials already existed, none were built primarily for the high 

temperature βZr phase.   Therefore a new Zirconium MEAM potential had to be 

formulated as well as the alloy parameters. 

The MEAM potentials for Uranium (Beeler 2012b) and Zirconium (Kim 2006; 

Bauer 1959) have been adjusted for use in the U-Zr alloy.  This potential is the first 

interatomic U-Zr potential that has been made.  It is important for the MEAM potential of 

the U-Zr binary alloy to capture some of the physical properties including the crystal 

structure, thermal expansion, enthalpy of mixing, and phase transitions. 

The high percentage of Uranium is not analyzed for this MEAM potential, and 

some of the more complex phases will also not be analyzed, as they play lesser roles in 

the physical properties for the temperature range in question. 
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Elemental MEAM Parameters 

The parameters for the 2nd Nearest Neighbor MEAM potential are: 

Table 5: Uranium Elemental Modified Embedded Atom Method (MEAM) Potential 

Parameters (Beeler 2012b) 

Elemental Uranium 

MEAM Parameters 

Value Description of Parameter or Source 

when Fitting 

lat FCC Reference Lattice 

Ec 5.27 Cohesive Energy of α/γ/fcc 

α 5.1 Bulk modulus of γ 

A 1.04 Relative stability of α and γ 

β(0) 6 Relative stability of fcc and γ 

β(1) 6.8 Shear elastic constants of α 

β(2) 7 Shear elastic constants of α and γ 

β(3) 7 Shear elastic constants of γ 

t(0) 1 Set to allow as reference 

t(1) 2.5 Vacancy formation energy in γ 

t(2) 4 Shear elastic constants of α and γ 

t(3) 3 Atomic volume of α 

alat 4.36 Lattice constant of γ 

ρ0 1 Background Electron Density Scaling 

δ (attract=repulse) 0.1 Thermal expansion of γ 

Cmin 1 Cohesive energy of α/γ/fcc 

Cmax 1.9 Cohesive energy of α/γ/fcc 
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Table 6: Zirconium Elemental Modified Embedded Atom Method (MEAM) Potential 

Parameters 

Elemental Zirconium 

MEAM Parameters 

Value Description of Parameter or Source 

when Fitting 

 lat BCC Reference Lattice 

Ec 6.2 Cohesive Energy of α/β 

α 4.1 Bulk modulus of α/β 

A 0.48 Relative stability of α and β 

β(0) 2.8 Relative stability of α and β 

β(1) 2 Shear elastic constants of α  

β(2) 7 Shear elastic constants of α and β  

β(3) 1 Shear elastic constants of α and β 

t(0) 1 Set to allow as reference 

t(1) 3 Vacancy formation energy in α and β 

t(2) 2 Shear elastic constants of α and β 

t(3) -7 Atomic volume of α 

alat 3.58 Lattice constant of β  

ρ0 1 Background Electron Density Scaling 

attract  0 Thermal expansion and stability of β  

repulse 0.03 Thermal expansion and stability of β 

Cmin 0.7 Cohesive energy of α/β 

Cmax 0.99 Cohesive energy of α/β 
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Fitting MEAM Potential Parameters 

 The bulk modulus and elastic constants can be used to fit the pure element 

MEAM 1NN potential, then modified for the 2NN MEAM potential.  Parameters α, β(0) , 

β(2) , and t(2) initial values are set according to the known first principal bulk modulus and 

elastic constants at zero kelvin by: 

𝛼 = √
9𝐵Ω

𝐸𝑐
  (  68 ) 

𝛽(0) = √
(9𝐵−2𝑍𝑐′)Ω

𝐴𝐸𝑐
  (  69 ) 

𝛽(2) = 6  (  70 ) 

𝑡(2) = √
𝑍2(𝑐44−2𝑐′)Ω

2𝐴𝐸𝑐(𝛽(2)−2)
2  (  71 ) 

The other parameters are either iterated to fit or directly fitted to experimental and 

first principal calculations.  First principal ground state calculations were performed and 

experimental data gathered to get a cohesive energy term Ec for both Uranium and 

Zirconium. 

First iteration for both Uranium and Zirconium the other parameters were set to: 

A=1, t(1)=0, t(3)=0, B(1)=2, B(2)=6, B(3)=2, Cmin=2.0, Cmax=2.8 and δ=0.  Next, A is 

chosen so that the bcc/fcc and bcc/hcp cohesive energies agree with first principal 

calculations for uranium and zirconium, respectively.  However, when the parameter A is 

changed, the values for β(0) and t(2) change as well.  Therefore, this process is iterated 

until convergence.   
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The parameter t(3) is changed so that the relaxed stacking fault energy agrees with 

the first principal calculations.  Next, t(1) is changed so that the relaxed vacancy formation 

energy agrees with the first principal calculations.  Then, the δ parameter is changed so 

that the thermal expansion coefficient agrees with the experimental value.  Then, after the 

main parameters have been fit the additional parameters like β(1), β(2), β(3), Cmin, Cmax 

and alat are adjusted to fit the rest of the experimental or first principal values.  Finally, 

all of these steps are repeated and iterated to better fit the experimental or first principal 

calculation values until a decent agreement is achieved.  

Many of the parameter fitting for MEAM described above, assumes only 1NN 

MEAM fitting, therefore, for fitting a 2NN MEAM many of the starting parameter values 

can be set to the 1NN MEAM parameters then iterated and adjusted as needed. 

FCC was chosen as the reference structure of Uranium because it was relatively 

simple compared to using a bcc reference structure, where screening parameters are a 

larger concern.  The more complex BCC structure was chosen to be the reference 

structure of Zirconium to allow the MEAM potential to mimic both hcp and bcc structure 

behaviors. 

The cohesive energy for each element was found through DFT calculations.  In 

addition, DFT calculations were used to calculate the energy differences between phases, 

as well as the bulk modulus.  The bulk modulus of uranium was obtained using the DFT 

code VASP (Kresse 1993) resulting in 111 GPa for FCC and 121 GPa for BCC uranium.  

For zirconium, the bulk modulus was found from DFT calculations of HCP and BCC 

were 83 GPa and 85 GPa, respectively.  
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Thermal expansion and lattice parameter values were adjusted to match 

experimental results.  The lattice constant is adjusted by changing the “alat” parameter.  

While the thermal expansion is controlled by the cubic term in the universal equations of 

state (EOS), commonly referred by δ, is decomposed into two parameters (an attraction 

and repulsion cubic term parameters).  It should also be noted that adjusting the repulsion 

and attraction parameters can change the melting point. 

To obtain the correct thermal expansion values for the elements, each element’s 

repulse=attract MEAM parameters were adjusted, which can also effect the melting 

point.  If the thermal expansion and melting temperature cannot be both fit by adjusting 

the repulsion and attraction terms it may be necessary to adjust the parameters if you are 

in a region close to melting.  This is very important when the metal transitions into 

melting or amorphous regions, as is seen when the material is irradiated.  When the 

material is irradiated the metal atoms may have a significant thermal spike around the 

primary knock on atom (PKA), which could lead to local amorphous regions or melting. 

This process depends on the energy difference between the bcc and amorphous 

structures. 

Uranium MEAM vs. First Principals DFT Comparison 

The MEAM parameters were compared against DFT first principal simulations.  

The first principal DFT calculations were performed in VASP (Kresse 1993), by Dr. 

Beeler (Beeler 2012a; Beeler, pers. comm.). 

It should be noted that Yoo (Yoo 1998) was able to obtain 113GPa experimental 

bulk modulus for γ BCC Uranium at approximately zero kelvin. 
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Table 7:  Body Centered Cubic (BCC) Uranium Elastic, Bulk modulus and Formation 

Energy Comparison at Zero Kelvin 

BCC Uranium 0K Elastic Constants, Bulk 

Modulus and Formation Energy 

Comparison 

Property MEAM GGA 

C11 [Gpa] 111 - 

C12 [Gpa] 117 - 

C44 [Gpa] 15 37 

C' [Gpa] -3 -35 

B [Gpa] 117 121 

Vacancy [eV] 1.34 1.38 

Interstitial [eV] 1.8 1.54 

 

Table 8: Face Centered Cubic (FCC) Uranium Elastic, Bulk modulus and Formation 

Energy Comparison at Zero Kelvin 

FCC Uranium 0K Elastic Constants and Bulk 

Modulus Comparison 

Property MEAM GGA 

C11 [Gpa] 91 - 

C12 [Gpa] 129 - 

C44 [Gpa] 20 40 

C' [Gpa] -19 -49 

B [Gpa] 116 111 

Vacancy [eV] 1.1 - 
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Zirconium MEAM vs. First Principals DFT Comparison 

 

Table 9: Hexagonally Close Packed (HCP) Zirconium Elastic, Bulk modulus and 

Formation Energy Comparison at Zero Kelvin 

HCP Zirconium 0K Elastic Constants, Bulk 

Modulus and Formation Energy 

Comparison 

Property MEAM GGA 

C11 [Gpa] 126 144 

C33 [Gpa] 173 166 

C44 [Gpa] 23.3 33.4 

B [Gpa] 84 83 

Vacancy [eV] 1.7 1.7 

 

Table 10: Body Centered Cubic (BCC) Zirconium Elastic, Bulk modulus and Formation 

Energy Comparison at Zero Kelvin 

BCC Zirconium 0K Elastic Constants, Bulk 

Modulus and Formation Energy 

Comparison 

Property MEAM GGA 

C11 [Gpa] 94 - 

C12 [Gpa] 72 - 

C44 [Gpa] 71 34 

C' [Gpa] 11 -1 

B [Gpa] 81 85 

Vacancy [eV] 2.1 1.8 
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Alloy MEAM Parameters 

Alloy MEAM Parameter Fitting 

The alloy reference structure chosen for the U-Zr pair potential was B1 for 

simplicity.  Overall, reference crystal structures with first nearest neighbors (1NN) of 

opposite type are preferred and tend to get better results for most alloys. 

First principal calculations, with a B1 crystal structure were used to fit the alloy 

cohesive energy, lattice constant, energy of the phase, and elastic constants.  The alloy 

MEAM parameters were fit iteratively with a similar procedure as the elemental 

parameters were.  The alloy cohesive energy and reference state equations and 

calculation methodology for the MEAM alloy can found in the previous Alloy MEAM 

section.  The thermal expansion of the U-Zr alloy is also modified by adjusting the cross 

elemental cubic attraction and repulsion terms of the EOS. 

The elemental parameter “alat” is modified to help the lattice constant and fix the 

experiential data points of quenched lattice parameters at U-Zr40% and U-Zr90% from 

Summers-Smith (Summers-Smith 1955).  Then, lattice parameters values from Akabori 

1995 (Akabori 1995) and Basak 2010 (Basak 2010) were used to verify that they were 

behaving properly for different temperatures and concentrations. 

To fit the MEAM enthalpy of mixing curve to the first principal enthalpy of 

mixing curve for ground state U-Zr solution by Landa (Landa 2009), the alloy screening 
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parameters had to be adjusted.  These screening parameters were fit iteratively using the 

enthalpy of mixing of the MS-MC simulation and analyzing ordering behaviors. 

 

Table 11: Alloy Modified Embedded Atom Method (MEAM) Potential Parameters 

Alloy (U-Zr) 

MEAM Parameter 

Value Description of Parameter / How was Fit 

Lattice B1 Reference Lattice Structure 

re 2.85 Equilibrium Lattice Constant for B1 

Reference Structure 

∆ 0.7 Change of Cohesive Energy when Mixing, 

fit to Enthalpy of Mixing 

α 5.5 Bulk Modulus of B1 Reference Structure 

rcut 5.5 Cut-Off Distance 

xncut 2 Power term in cut-off function, fit to 

match stacking fault energy 

xmcut 6 Power term in cut-off function, fit to 

match stacking fault energy 

δ (attract=repulse) 0.4 Thermal Expansion of U-Zr 

 

Table 12: Binary Alloy Modified Embedded Atom Method (MEAM) Potential Screening 

Parameters 

Parameter U-U-U U-Zr-U Zr-U-U Zr-Zr-U Zr-U-Zr Zr-Zr-Zr 

Cmax 1.7 2.8 2.8 2.8 2.8 0.99 

Cmin 1.2 0.6 0.8 0.8 0.6 0.7 
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The theory and fitting procedure of a second-nearest neighbor MEAM potential 

can be found in publications by Byeong-Joo Lee and M. I. Baskes (Lee 2000; Lee 2001).  

Most of the elemental parameters are chosen to match experimental, ab-initio, or Density 

Functional Theory (DFT) values (Baskes 1992; Baskes 1999), while the many of the 

alloy parameters are obtained through trial and error processes.   

Limitations of This MEAM Potential 

The MEAM potential used has some unresolved problems, and is unable to 

replicate the U-Zr alloy over all concentrations and temperatures.  One of the regions that 

the MEAM potential is unable to replicate is the high temperature range, 800K and 

above, for the uranium-rich U-Zr alloy with 30 atomic percent Zirconium or less.  In this 

region the BCC phase is unstable when the uranium and zirconium atoms are mixed. 

In addition, the experimental ordering and enthalpy of mixing at higher 

temperatures, 1000K and above, shows a drastically different trend than the first principal 

calculations or this MEAM potential MD simulations.  To match the experimental results 

at higher temperatures, a new MEAM potential will have to be formed. 

Molecular Statics (MS) and Monte Carlo (MC) Simulations 

The MEAM potential used in the simulations results in good agreement with the 

ab-initio and CALPHAD heat of mixing curves from Landa et al. (Landa 2009).  The 

positive heat of mixing suggests the possible existence of a miscibility gap in the U-Zr 

phase diagram using the MEAM potential. 
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The maximum heat of mixing from the MS-MC simulation around U60Zr40 is 

close to the first principals estimated maximum between U70Zr30 and U60Zr40 (Landa 

2009). 

 

 

Figure 24: Comparison of the Enthalpy of Mixing (Formation Energy) at Zero Kelvin 
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Figure 25: Short Range Order (SRO) of the Ground States with Varying Composition 

after MS-MC iterations were performed 
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                              (c)                                                       (d) 

 

  

                              (e)                                                        (f) 
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                              (g)                                                       (h) 

 

 

                              (i)                                                     

Figure 26: Snap-Shots of the Atom Configurations at the Ground State for Various U-Zr 

Alloy Concentrations after MS-MC Simulation Iterations (a) γ-U90Zr10 (b) γ-U80Zr20 (c) 

γ-U70Zr30 (d) γ-U60Zr40 (e) γ-U50Zr50 (f) γ-U40Zr60 (g) γ-U30Zr70 (h) γ-U20Zr80 (i) γ-U10Zr90 
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Transition to the Delta U-Zr Phase 

The transition from the body centered cubic to the delta phase of U-Zr has been 

explained by Dr. Basak (Basak 2010; Basak 2011) to be an omega transformation 

mechanism in which alternate (111) planes of the U-Zr BCC phase (parent phase) 

collapse to form AlB2 type hexagonal crystal structure.  The ordering in Figures 27, 28 

and 29 below show atoms arranging themselves in alternating (111) planes, showing the 

thermodynamic push for the atoms to arrange themselves in the beginning stages of the 

gamma (bcc) to delta (C32) U-Zr phase. 

 

 

Figure 27: U-Zr70 (70 Atomic Percent Zirconium), Snap-shot of Atomic Configurations 

in the Ground State Viewed from the [110] direction After the MS-MC Simulation 

Iterations 
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Figure 28: U-Zr70 (70 Atomic Percent Zirconium), Snap Shot of Atomic Configuration 

viewed from the [100] direction after the MS-MC iterative simulations 

 

 
Figure 29: U-Zr70 (70 Atomic Percent Zirconium), Snap Shot of Atomic Configuration 

viewed from the [111] direction after the MS-MC Iterative Simulations 
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Molecular Dynamics (MD) and Monte Carlo (MC) Simulations 

The Molecular Dynamics Simulation for a random solid solution lattice parameter 

(which can be used to approximate the thermal expansion) is in agreement with the 

experimental lattice parameter value for γ-U30Zr70 alloy, within a few percent.  The 

experimental lattice parameter from Landa et al. is 3.589Å for γ-U30Zr70 alloy at the γ-δ 

transition temperature T=925K (Akabori 1995), while the MD simulation lattice 

parameter was 3.5467Å.   

The thermal expansion of the Molecular Dynamics Simulation results in the 

expected linear curve seen below in Figure 30, while the MC-MD thermal expansion has 

a non-linear nature corresponding to the ordering of the system.   

 

 

Figure 30: Thermal Expansion from Molecular Dynamics Simulation of a Random Solid 

Solution (Moore 2013) 
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 The thermal expansion and additional properties for pure Uranium given this 

MEAM potential were reported by Dr. Beeler (Beeler 2012b). 

 

Table 13: The melting temperature, enthalpy of fusion, volume change on melting, 

specific heat capacity and thermal expansion are calculated and compared to 

experimental values (Beeler 2012b) 

Property  MEAM Value Experimental Value 

Tmelt (K) 1410 1408 

∆Hfusion (kJ mol-1) 8.66 8.5 

∆Vmelt (%) 2.17 - 

Cp (J g-1 K-1) 0.11 0.12 

Linear Volume 

Coefficient of Thermal 

Expansion (per 100 K) 

0.19% 0.22% 

 

 

 

Figure 31: Thermal Expansion from Iterative Molecular Dynamics and Monte Carlo 

(Moore 2013) 

 



 74 

Separation (Order/Disorder) 

The results of the Molecular Dynamics (MD) simulation against the iterative 

Monte Carlo and Molecular Dynamics (MC-MD) simulation relate the difference in 

properties from a random solid solution versus an ordered or disordered system.  Real 

solutions cannot always be assumed to be random.  Real solutions tend to an atomic 

arrangement that minimizes the free energy of the mixture.  

The order/disorder of the system was seen to play a role in phase stability.  In 

some cases for higher temperature simulations, the order/disorder transition of the atoms 

improved the stability of the BCC crystal phase where a MD simulation on a random 

solid solution would have melted. 

Forced symmetry was enforced on the periodic lattice, resulting in the γ to δ phase 

transition of the Uranium-Zirconium alloy remaining in a Body Centered Cubic Crystal 

structure.  The γ to δ phase transition for U-Zr can still be observed through the ordering 

of the MC-MD simulation when finding the low energy structure. 

The lowest energy structure around 50% Zirconium should be disordered, which 

is replicated by the MEAM potential.  Experimentally, an ordered C32 structure is seen 

around 67% Zirconium.  Therefore we expect an ordered structure to form during the 

MC-MD simulations.  This is also replicated by the MEAM potential.  The MC-MD 

simulation result at 60% Zirconium is separated while the 70% Zirconium ordering 

begins to occur.  Figure 32 below shows that clustering begins to occur for U-Zr at sixty 

atomic percent zirconium.  In addition, the figure shows separation by fifty atomic 

percent zirconium. 
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The iterative Monte Carlo and Molecular Dynamics simulations were run at 800 

kelvin for an array of atomic compositions of Uranium-Zirconium alloy consisting of 

2000 periodic atoms.  The final atomic configuration seen in Figure 32 clearly shows the 

preferential atomic ordering for each composition of Uranium and Zirconium atoms.   

 

 

                              (a)                                                      (b) 

 

                              (c)                                                      (d) 
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                              (e)                                                      (f) 

Figure 32: Atomic Arrangements after the Completion of the Iterative Molecular 

Dynamics and Monte Carlo Simulations at 800K for (a) γ-U60Zr40 (b) γ-U50Zr50 (c) γ-

U40Zr60 (d) γ-U30Zr70 (e) γ-U20Zr80 (f) γ-U10Zr90 (Moore 2013) 

 

The short-range order (SRO) parameter is a measure of the order versus disorder 

of the alloy system, once again showing the clustering to segregation effect of U-Zr for 

lower Zirconium concentrations and the ordering for higher Zirconium concentrations.  
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Figure 33: Short Range Order Parameter for Various Atomic Percent Zirconium in the 

Uranium-Zirconium Alloy (Moore 2013) 

It is important to remember that the SRO magnitudes will decrease as the 

concentration moves away from 50-50%. 
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Figure 34: Short Range Order Parameter Evolution throughout the Iterative Molecular 

Dynamics and Monte Carlo Simulations (Moore 2013) 

 

The short-range order in Figure 34 shows that the MEAM potential used in the 

MC-MD simulations at lower temperatures captures the expected physical ordering.  

However, at higher temperatures, U50Zr50 and U40Zr60 differ from the expected ordering.  

Around approximately 950K, both U50Zr50 and U40Zr60 should approach a more random 

solution. 
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Separation in Uranium-Rich U-Zr Alloy 

 
Figure 35: (a, b) Bright-field TEM images of the as-cast U-10Zr (Zirconium 10% by 

weight, corresponding to approximate 23 atomic percent) alloy showing alternating 

lamella, with adjacent variants of the lamellar structure evident in (b) (McKeown 2013) 

 

A uranium rich U-Zr alloy of 10% wt. Zirconium was produced by met-casting.  

The sample was heated at a rate of 50°/min to approximately 1900°C, which is above the 

melting temperature.  Then is was held isothermal for 1 hour before cooling back down to 

room temperature at a rate of 30°/min.  Then the sample was flipped and the process was 

repeated. (McKeown 2013) 

This separation effect can also be seen in the MEAM potential.  At 800K, while 

the potential is unstable for alloys with a zirconium concentration under thirty atomic 

percent, we can see that under U-Zr50 at. % (in Figure 32 (a) and (b)) there is a 

separation resulting in bands of Uranium and Zirconium.  These separation bands mimic 

the separation seen in the TEM image.  The as-cast fuel shown in the TEM image is of 
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similar concentration to the MEAM MD simulation showing the band separation.  This 

indicates that the MEAM potential, even though held in the BCC phase, mimics the 

thermodynamic push toward separation for uranium-rich U-Zr. 

 It should be noted that the separation behavior at zero kelvin (MS-MC) differs 

from the separation behavior witnessed in the temperature (MD-MC) simulations.  The 

zero kelvin simulations result in a clustering behavior in the uranium rich alloys (Figure 

26 (a, b, c, d, e)), while the simulations at 800K results in a more band-like separation ( 

Figure 32 (a, b)). 
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CHAPTER 5 

SUMMARY and CONCLUSIONS 

Recently, there has been renewed research into uranium nuclear metallic alloys.  

However, previous research on the principals of the thermodynamic properties and 

atomistic ordering is limited, despite the complex ordering phenomenon observed for 

metallic fuels.  This work uses a Modified Embedded Atom Method (MEAM) 

interatomic potential fit to first principal and experimental values to analyze ordering 

phenomenon in the body centered cubic (BCC) phase of interest.  One of the benefits of 

creating a MEAM potential for this analysis, is that it can be used to analyze large atomic 

systems at high temperature, which cannot be accomplished using first principal 

methodology due to computational run time restrictions.  The U-Zr MEAM potential is 

the first interatomic potential that has been created for the U-Zr metallic alloy.  

The Modified Embedded Atom Method (MEAM) potential results in replicating 

both the δ-γ phase transitions, the uranium-rich separation and the thermal expansion of 

the Uranium-Zirconium alloy.  In addition, the MEAM potential results in agreement 

with the first principals Heat of Formation Curve (Enthalpy of Mixing) and ordering at 

0K – 1000K.  However, the MEAM potential is limited to the moderate to high 

zirconium concentration for the Uranium-Zirconium alloy. 

Comparing the zero kelvin (MS-MC) simulations against the temperature (MD-

MC) simulations in uranium-rich U-Zr alloys, a clustering versus band like separation is 
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seen.  This leads us to believe that the band like separation seen in as-cast uranium-rich 

U-Zr alloys is due to a thermodynamic push at temperature. 

While the MEAM potential is able to capture many of the U-Zr properties, a few 

scenarios still need work.  The MEAM potential must be adjusted to accurately capture 

ordering effects at higher temperatures and to capture the body centered cubic stability 

for low atomic percent zirconium.  In addition, the experimental ordering and enthalpy of 

mixing at higher temperatures shows a drastically different trend than the first principal 

calculations or this MEAM potential MD simulations.  To match the experimental results 

at higher temperatures, a new MEAM potential will have to be formed. 

Uranium-Zirconium metal alloy fuels have a promising future in nuclear science.  

With the MEAM potential used in Molecular Dynamics (MD) and Monte Carlo (MC) 

simulations, the phases and properties of the U-Zr alloy can be accurately reproduced.  

This is a large step in understanding fundamental properties of metallic nuclear fuels and 

developing a computational model for use in a fuel performance code.   
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