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SUMMARY 

 

Excessive imaging doses from repeated scans and poor image quality mainly due 

to scatter contamination are the two bottlenecks of cone-beam CT (CBCT) imaging. This 

study investigates a method that combines measurement-based scatter correction and a 

compressed sensing (CS)-based iterative reconstruction algorithm to generate scatter-free 

images from low-dose data. Scatter distribution is estimated by 

interpolating/extrapolating measured scatter samples inside blocked areas. CS-based 

iterative reconstruction is finally carried out on the under-sampled data to obtain scatter-

free and low-dose CBCT images. In the tabletop phantom studies, with only 25% dose of 

a conventional CBCT scan, our method reduces the overall CT number error from over 

220 HU to less than 25 HU, and increases the image contrast by a factor of 2.1 in the 

selected ROIs.  

Dual-energy CT (DECT) is another important application of CBCT. DECT shows 

promise in differentiating materials that are indistinguishable in single-energy CT and 

facilitates accurate diagnosis. A general problem of DECT is that decomposition is 

sensitive to noise in the two sets of projection data, resulting in severely degraded 

qualities of decomposed images. The first study of DECT is focused on the linear 

decomposition method. In this study, a combined method of iterative reconstruction and 

decomposition is proposed. The noise on the two initial CT images from separate scans 

becomes well correlated, which avoids noise accumulation during the decomposition 

process. To fully explore the benefits of DECT on beam-hardening correction and to 

reduce the computation cost, the second study is focused on an iterative decomposition 

method with a non-linear decomposition model for noise suppression in DECT. Phantom 

results show that our methods achieve superior performance on DECT imaging, with 

respect to noise reduction and spatial resolution. 
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CHAPTER 1 

INTRODUCTION 

1.1 Cone-beam CT imaging  

X-ray kilovoltage (kV) cone-beam CT (CBCT) imaging is being increasingly used 

in various clinical applications, mainly for its large volume coverage and hardware 

compatibility with open-gantry x-ray imaging system [1-5]. For example, on-board 

CBCT on a radiation therapy machine enables dose verification, patient positioning and 

tumor targeting in image-guided radiation therapy (IGRT) [6-8]. C-arm CBCT provides 

image guidance which is critical in surgical procedures [9, 10]. There is also an explosion 

of interest in CBCT in clinical dental practice, where CBCT allows the creation of real-

time imaging in axial, coronal and sagittal planes, and provides 3D radiographic 

information [11, 12].  

Figure 1.1 shows the on-board imager system developed by Varian Medical 

System (Palo Alto, CA). The CBCT system is combined with the linear accelerator, and 

is used to locate tumors and calculate radiation dose. Figure 1.2 shows anther CBCT 

system, the Siemens Artis Zeego C-arm system. The C-arm system provides near-real-

time 3D imaging and real-time fluoroscopy, which is used in operation rooms to provide 

image guidance in surgical procedures.  

1.2 Limitations of cone-beam CT 

Despite the rapid expansion of clinical applications, the current CBCT technology 

has limitations. Scatter contamination, excessive image dose and beam-hardening 

artifacts are three major limitations that hinder the wide application of CBCT. 
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Figure 1.1 The on-board imager device mounted on Trilogy® medical linear accelerator. 
(http://newsroom.varian.com/Trilogy?mode=gallery) 
 
 

 

Figure 1.2 The Siemens Artis Zeego C-arm CBCT system. (http://www.siemens.com/pr 
ess/en/pressrelease/?press=/en/pressrelease/2008/imaging_it/medax200801025.htm) 
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1.2.1 Scatter contamination 

Scatter artifact is considered as one of the fundamental limitations of CBCT [5]. 

CBCT imaging on a human body could result in scatter-to-primary (SPR) typically over 2 

[13].  High intensity of scatter signals causes severe cupping and streak artifacts, reduced 

accuracy in reconstruction values, as well as degradation of contrast-to-noise ratio (CNR), 

which hampers the application of CBCT [14-16]. Figure 1.3 shows the comparison of 

CBCT and diagnostic CT images of the same patient. This diagnostic CT system has an 

estimated maximum SPR of ~0.01 on patients due to the small axial coverage [17], and 

the images are used as scatter-free references. As the white arrows indicate, large shading 

errors are seen in the CBCT images (Figure 1.3 (a)). Some fine structures present in the 

diagnostic CT images are also buried in the artifacts (Figure 1.3 (c)) due to the CNR loss. 

Generally, the number of scattering events is proportional to the illumination 

volume size. For example, Siewerdsen et al. performed phantom studies with flat-panel 

cone-beam CT, and found that large cone angles result in significant shading artifacts as 

well as increased CT number errors [18]. Endo et al. observed similar results on a 256-

slice multidetector CT scanner. The estimated SPR was drastically decreased with small 

cone angle, and increased nearly twice as the diameter of a cylindrical phantom increases 

from 200 mm to 350 mm [17]. Global cupping artifacts and local streaking artifacts are 

the two major types of artifacts caused by scatter contamination. The global cupping 

artifacts result from the facts that scattered radiation increases the overall signal intensity 

of the projections, thus, the reconstructed object is less attenuating than the real one. The 

local streaking artifacts are majorly observed in the areas where the object is highly 

attenuated and the intensity of the corresponding primary signal is small. Simulation 

studies showed that the CT number errors are more than 350 hounsfield unit (HU), and 

streaking artifacts are up to 100 HU with an SPR of 2 [5]. 

Increased SPR not only causes the decrease of CT number accuracy, but also the 

degradation of CNR. Wang et al. found a relationship between CNR with and without 
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scatter correction for a small SPR, which shows that increased SPR results in a decrease 

of CNR [19]. Note that, loss of CNR can be compensated with increased imaging dose. 

However, additional imaging dose is not practical in clinical applications, since CNR is 

approximately proportional to the square root of x-ray imaging dose [20].  

 

 

Figure 1.3 CBCT and diagnostic CT of the same patient. (a) CBCT of chest; (b) 
diagnostic CT  of chest; (c) CBCT of head; (d) diagnostic CT of head. Display window: 
(a)&(b): [-500 500] HU; (c)&(d) [-335 655] HU. The white arrows highlight the 
differences of the images. 

 

Based on whether scatter signals are directly measured or not, the existing scatter 

correction methods can be divided into two major categories: measurement-based 

methods and non-measurement-based methods. Measurement-based methods measure the 

scatter signals with an insertion of a beam blocker [21-24]. These methods are easy to 

implement, and obtain accurate scatter estimation. However, the beam blocker attenuates 
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primary projections, thus an accurate reconstruction is impossible with conventional 

reconstruction method if the blocked primary is not compensated for.  Non-measurement-

based methods estimate scatter signals with the knowledge of the system geometry and 

imaged object [25-29], or prevent scattered radiation from reaching the detector, typically 

by using an anti-scatter grid or increasing air gap between patient and detector [30-36]. 

These methods have shown success on scatter correction and suppression, but the 

application is limited in clinical practice. Deterministic scatter models typically 

approximate the scatter distribution as a convolution of primary signals with a scatter 

kernel. This method achieves a satisfactory accuracy of scatter estimation, but the 

efficacy is generally limited. Monte Carlo (MC) simulation obtains more precise scatter 

estimation. However, the intense computation makes it unpractical in clinical applications. 

Air gap requires no special algorithms or additional hardware, but increasing the distance 

between patient and detector is infeasible in many clinical applications. Furthermore, due 

to the increase of object-to-detector distance, extra imaging dose is required to maintain 

the same level of x-ray flux on the detector. Anti-scatter grid shows limited efficiency on 

scatter correction. Meanwhile, the insertion of anti-scatter grid results in inevitable 

primary loss, which requires increased x-ray dose to compensate for.  

1.2.2 Imaging dose 

CT imaging dose becomes an increasing public concern nowadays. The risk of 

radiation-induced cancer is important, especially when sizeable patient data are acquired 

and/or when repeated scans are performed on the same patient. Dose control is more 

demanding on volumetric CT systems, which are susceptible to scatter contamination due 

to the large illumination field. As a fundamental limitation, scatter reduces image 

contrasts and therefore large dose is required for a clinically useful contrast-to-noise ratio. 

These challenges are seen in on-board CBCT on a radiation therapy machine, which is 

used for precise tumor targeting at treatment time. Although CBCT improves the 
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performance of image guided radiation therapy, the benefits of its daily use during a 

treatment course of 4-6 weeks are counteracted by excessive x-ray imaging doses. The 

repeated CBCT scans during a fractionated treatment course produce high dose to healthy 

organs, which is up to 5~10 cGy per scan and 100~300 cGy per treatment course [37-42]. 

Recent development on the CT data acquisition can significantly lower the imaging 

dose without degrading image quality. For example, automatic exposure control 

adaptively adjusts the tube current depending on the magnitude of the detected projection 

such that the noise variance is more uniform on the CT images [43-46]. Detectors with 

better detection quantum efficiencies (DQE) obtain images with higher signal-to-noise 

ratios (SNR) for the same imaging dose [47, 48]. The advances in data processing and 

reconstruction algorithms provide an alternative approach on substantial dose reduction. 

Noise suppression methods are able to maintain the SNR level with reduced tube current 

or pulse duration (i.e. mAs) [49-52]. Advanced CT reconstruction algorithms present 

advantages on further reducing the imaging dose by decreasing the data acquisition. By 

modeling the physical process of a CT scan, including scattering, beam-hardening, and 

statistical fluctuation, iterative reconstruction algorithms are more resistant to noise and 

therefore require less dose [49, 53-55]. With prior patient knowledge, which cannot be 

easily incorporated in analytical reconstruction, iterative reconstruction obtains high-

quality images even on insufficient data.  

1.2.3 Beam-hardening artifacts 

Beam-hardening artifacts arise from the inherent poly-energetic nature of the x-ray 

beam generated by current commercial x-ray tubes on an onboard CBCT system. The 

mean energy of the x-ray beam increases as it penetrates the object, since lower energy 

photons are absorbed in preference to higher energy photons. The energy dependence of 

the object linear attenuation coefficients makes line integral measurements inaccurate, 

leading to shading artifacts and streak artifacts appeared between two dense objects (e.g. 
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bones), with CT number errors of up to 100 HU [56, 57]. To  better  view  the  scatter  

and  beam-hardening  artifacts  separately,  we  carried out  a  head phantom study on a 

tabletop CBCT system with a 120 kVp source. Besides the CBCT scan (Figure 1.4 (a)),  a  

second  scan  was  performed  with  a  narrowly  open  collimator – a  fan-beam  

equivalent geometry – to suppress the scatter signal (Figure 1.4 (b)).  The fan-beam CT 

image is considered to contain beam-hardening artifacts only.  To obtain  a  reference  

image  without  beam-hardening effects, we used the same fan-beam geometry and a 39 

mm Al layer to heavily  filter  the  x-ray  beam  in  a third scan  (Figure 1.4 (c)).  The 

incident x-rays were close to mono-energetic, but significantly attenuated. The scan was 

therefore repeated twenty times and averaged to make the image noise matchable to that 

in Figure 1.4 (a) and (b). The comparison indicates that the beam-hardening artifacts 

(around 70 HU) are severe around high-intensity areas. 

One way to alleviate the beam-hardening problem is to pre-filter the x-ray beam, 

which narrows the x-ray output spectrum. The performance of this physics-based 

approach is limited since a strong beam filter heavily attenuates the x-ray beam and 

therefore lowers the effective tube output. Furthermore, the mean energy of the x-ray 

spectrum increases after filtration, leading to reduction of image contrast and therefore 

low-contrast detectability. Many software-based methods have been proposed to combat 

beam-hardening effects on commercial CBCT systems. Beam-hardening errors include 

global cupping artifacts from the background low-intensity materials (e.g. tissue and 

water) and local shading artifacts from the high-intensity materials (e.g. bones). The 

global cupping from the background material can be effectively removed by assuming a 

single material for the whole object and applying correction on the projection data with a 

polynomial fitting or a lookup table [58]. This method performs well in most cases, but 

fails to remove the shading artifacts from the high-intensity objects. Iterative algorithms 

are able to achieve an improved beam-hardening correction when two or more materials 

are present in the object [56]. Nevertheless, the performance of these algorithms depends 
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on either accurate knowledge of the physical properties of the x-ray spectrum and 

detector response, or proper settings of empirical algorithm parameters. Dual energy 

imaging provides another solution to the beam-hardening problem [59-61]. Two basis 

materials images are decomposed from the data with two different x-ray spectra (e.g. 

with low and high tube kVp energies), and then are synthesized for a given single energy, 

which is free of beam-hardening artifacts.  

 

 

Figure 1.4 CT images of a head phantom on a flat-panel-based system. a) CBCT; b) fan-
beam CT (with a narrowly open collimator to suppress scatter); c) fan-beam CT with a 39 
mm Al beam filter to suppress beam-hardening effects. Display window: [-100 200] HU. 

1.3 Dual energy CT 

Since the development of dual energy CT (DECT) in 1976, DECT  has attracted 

increasing attention due to its capability of providing material decomposition, energy 

selective imaging as well as correcting for beam-hardening artifacts [59, 62-64]. DECT 

has the potential to distinguish material which cannot be separated with conventional 

single energy CT. DECT provides important diagnostic information in various clinical 

applications. For example, in the head and neck area, dual energy methods remove bone 

from CT angiography and resolve the superimposition of bone and vessels [65]. In the 

assessment of lung perfusion, dual energy method obtains an equivalent clinical 
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information, but significantly reduced imaging dose compared to dynamic CT [66]. In 

the abdomen area, the material decomposition of DECT is capable of identifying renal 

stones based on their composition, and of improving the lesion detections [67].  

Dual energy imaging is based on the characteristic of attenuation coefficient over 

the diagnostic energy range where Rayleigh scattering can be ignored. In this energy 

range, the linear attenuation coefficient of any material is a weighted summation of two 

universal energy dependent basis functions accounting for photoelectric and Compton 

interactions. In practical implementations, the basis functions of the decomposition can 

be the energy-dependent linear attenuation coefficients of two different actual or even 

virtual materials (e.g. tissue and bone). This signal decomposition can be implemented 

on either raw projections or reconstructed images. With projection-domain 

decomposition, the weights of the two basis functions are uniquely determined from 

measured projections with two different x-ray spectra. Their spatial distributions are 

then reconstructed using the same CT principle. As the calculated weights are energy-

independent, these two images are free of beam-hardening artifacts. Image-domain 

decomposition implements a linear transformation on the CT images reconstructed from 

dual energy projections, which also provides material decomposition information. 

Compared to projection-domain method, which often requires the knowledge of x-ray 

spectra and detector response, or employs a relatively complex non-linear 

decomposition model, image-domain method is easier to implement, thus more 

commonly used in clinical applications. On the other hand, projection-domain 

decomposition obtains images with better quality, since it effectively removes beam-

hardening errors [59-61].  

DECT requires scans with two different x-ray tube energies, i.e. one with high 

energy and one with low energy. A straightforward method for dual energy data 

acquisition is to obtain two sets of CT data from two rotations with two different x-ray 

spectra [68]. This method requires no additional hardware, thus is of relatively low cost. 
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However, the method is of poor temporal resolution and is susceptible to motion 

artifacts. The recent advances of new CT imaging systems revolutionize the way of the 

projection data acquisition. For example, dual-source CT systems are able to 

simultaneously acquire two orthogonal projections with different x-ray energies [69, 70]. 

The fast kVp switching CT rapidly switches the x-ray tube voltage between two settings 

(e.g. 80 kVp and 140 kVp) during the data acquisition in one scan [71]. 

Implementations of dual-energy methods become practical on these systems. The 

development of energy-resolving detectors also makes energy-selective reconstruction 

possible on projection data from one single scan [72, 73].  

1.4 Main contributions and publications 

  Most of the work can be found in the following journal papers and conference 

proceedings: 

 Xue Dong, Tianye Niu, Lei Zhu, “Relationship between x-ray illumination volume size 

and flat field intensity and its impacts on x-ray imaging”, Medical Physics, 

39(10):5901-5909, 2012.  

 Xue Dong, Michael Petrongolo, Tianye Niu, Lei Zhu, "Low-dose and scatter-free cone-

beam CT imaging using a stationary beam blocker in a single scan: phantom studies", 

Computational and Mathematical Methods in Medicine, Volume 2013 (2013), 637614. 

 Tianye Niu, Xue Dong, Michael Petrongolo, Lei Zhu, "Iterative image-domain 

decomposition for dual-energy CT", Medical Physics, 41(4):041901, 2014.  

 Xue Dong, Tianye Niu, Lei Zhu, "Combined iterative reconstruction and image-domain 

decomposition for dual energy CT using total-variation regularization", Medical 

Physics (in press). 

 Xue Dong, Xun Jia, Tianye Niu, Lei Zhu,  "Low-dose and scatter-free cone-beam CT 

imaging: a preliminary study", Proc. SPIE 8313, 831319 (2012) 

  Xue Dong, Tianye Niu, Lei Zhu,  "Single-scan energy-selective imaging on cone-beam 

CT: a preliminary study", Proc. SPIE 8668, 86682Z (2013) 
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as well as conference presentations: 

 Xue Dong, Tianye Niu, Lei Zhu,  "Relationship between x-ray illumination volume size 

and flat field intensity and its impacts on x-ray imaging", 2011 Joint AAPM & COMP 

conference, Vancouver, Canada.  

 Xue Dong, Tianye Niu, Lei Zhu,  "Single-scan energy-selective imaging on cone-beam 

CT: a phantom study", 2013 Varian Research Partnership Symposium , Atlanta, GA. 

 Xue Dong, Tianye Niu, Lei Zhu,  "Iterative reconstruction for dual energy CT using 

accelerated barrier optimization compressed sensing (ABOCS) ", 2013 AAPM, 

Indianapolis, IN. 

         At the time of this writing, the results in Chapter 4 have not been published, and a 

journal paper submission is in preparation.  

1.5 Outline of this dissertation 

The dissertation is organized in the following manner: 

Chapter 1 presents the background and scope of this dissertation, and outlines the 

dissertation. 

Chapter 2 discusses the scatter correction and dose reduction methods in CBCT. A 

novel method that combines measurement-based scatter correction and CS-based 

iterative reconstruction is proposed to generate scatter-free images from low-dose 

projections. 

Chapter 3 investigates the noise boost problem in DECT, and presents a new 

method for noise suppression in DECT with image-domain decomposition.  

Chapter 4 explores the benefits of DECT on beam-hardening correction, and 

expands the framework of an iterative de-noising method to include a non-linear 

decomposition model for noise suppression in DECT. 

Chapter 5 summarizes the dissertation and suggests directions for future research.  
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Finally, Appendix explains the deviation of noise-covariance matrix of the 

observation with a non-linear decomposition model.  
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CHAPTER 2 

LOW-DOSE AND SCATTER-FREE CONE-BEAM CT IMAGING 

USING A STATIONARY BEAM BLOCKER IN A SINGLE SCAN 

 

2.1 Introduction 

On-board cone-beam CT (CBCT) is being increasingly implemented on radiation 

therapy machines for accurate patient positioning and tumor targeting in image-guided 

radiation therapy (IGRT). The use of CBCT increases patient setup accuracy, and also 

opens possibilities of CBCT-based accurate tumor delineation and therapeutic dose 

calculation. Nevertheless, the wide application of CBCT in IGRT is limited by excessive 

imaging dose and poor image quality. 

The repeated CBCT scans during the treatment procedure produce high dose to 

healthy organs. It has been reported that the dose delivered from a CBCT system could be 

as high as 5~10 cGy per scan and 100~300 cGy per treatment course [37-42]. Although 

radiotherapy patients are being exposed to higher radiation doses for cancer treatment, 

the additional CBCT dose leads to skin burns, cataracts and increased risks of radiation-

induced cancer or genetic defects [37]. Moreover, the CBCT dose is particularly risky for 

radiation-sensitive groups [41]. For example, CBCT-guided radiation therapy is 

essentially prohibitive for pediatric patients, resulting in suboptimal treatment outcomes. 

Patient dose can be lowered by optimizing both hardware and software designs of the CT 

systems. Existing approaches include optimization of data acquisition protocols (e.g 

automatic exposure control), improvement of detector quantum efficiency, region-of-

interest (ROI) reconstruction [74] from reduced projections, and noise suppression with 

degraded spatial resolution. However, after continuous development of CT systems for 
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decades, further dose reduction from these techniques is limited or costly. Decreasing the 

total number of incident photons of each projection ray (i.e. mAs) and reducing the 

number of x-ray projections also lower the patient dose, but with degraded image quality 

in the conventional filtered back-projection (FBP) reconstruction [75]. Recent advances 

in compressed sensing (CS) enable accurate CT image recovery from under-sampled data 

[76]. Compared to analytical algorithms, total variation (TV)-based CS methods [53, 77] 

have demonstrated significant improvements in both fan-beam and cone-beam CT 

reconstruction especially when projection data are under-sampled with sparse views [54, 

77, 78] or with missing data in a single view [77]. These reconstruction algorithms 

minimize the TV of CT image constrained by data fidelity and image non-negativity, 

which show promise in reducing CT dose without significantly degrading image qualities.  

Besides excessive patient dose, CBCT images are also subject to severe 

contamination from scatter radiation. Scatter signals induce large image artifacts and CT 

number nonlinearity, which limit the applications of CBCT. For a middle-size human 

torso, the average scatter-to-primary ratio (SPR) is around 2~3, which leads to CT 

number errors up to 350 HU [13, 79-81]. Extensive studies have been conducted on 

scatter correction techniques. These published techniques can be divided into two major 

categories, based on whether scatter signals are directly measured or not. Non-

measurement-based methods either prevent scattered radiation from reaching the detector 

(for example, using an anti-scatter grid [32, 82], limiting the field of view (FOV), and 

increasing the air gap between the object and the detector [83]) or predict the scatter 

distribution (using, for example, analytical modeling [84], modulation methods [85-88], 

and Monte Carlo (MC) simulation [89, 90]). These methods improve the image quality to 

a certain extent, but their performances are limited in clinical applications [5]. An anti-

scatter grid results in primary signal loss, thus increases image noise and degrades image 

qualities [32, 82]. The air-gap between the object and the detector is limited by the size of 

operation room [83]. Monte Carlo simulation generates accurate scatter signals but is 
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computationally intensive [89, 90]. On the other hand, methods of direct scatter 

measurement conveniently obtain accurate scatter estimates with negligible 

computational cost [81]. In the measurement-based method, a beam blocker is typically 

inserted between the x-ray source and the object, and scatter signals are estimated inside 

the detector shadows of the beam blocker [22, 79, 91, 92], where primary signals are 

fully attenuated. The scatter distribution of the whole field is then obtained via 

interpolation/extrapolation on the scatter samples inside the shadows, since scatter 

distributions have dominant low-frequency components [79, 93, 94].  The method 

achieves accurate scatter estimation without prior knowledge of x-ray source, object, 

imaging geometry, and is easy to implement. Nonetheless, primary signal loss is 

inevitable due to the insertion of the beam blocker. As a result, severe image artifacts 

appear in the conventional reconstruction [95] if the missing primary signals are not 

compensated for [81]. Two projections per view, one with the blocker and the other 

without [13], or moving blockers during the scan [96], are designed to compensate for the 

primary loss. These hardware modifications complicate the data acquisition, and increase 

scan time and patient dose. Recently, our group developed a “crossing-finger”-shape 

beam blocker, which makes use of the data redundancy condition in a 360° full-fan CT 

scan. This method achieves accurate scatter estimation and reconstruction within one 

single scan, and thus is considered clinically more attractive. Though demonstrated 

promising, the “crossing-finger”-shape blocker is of complex structure, and the insertion 

of beam blocker complicates the FBP reconstruction algorithm.  

For years research has been developed independently on dose reduction and scatter 

correction. Nevertheless, little effort has been devoted to exploit the full potential of 

image improvement from a combination of the above two schemes. Scatter measurement 

accurately corrects for scatter but leads to primary loss, which makes most of the 

measurement-based correction methods unpractical. CS-based iterative algorithm lowers 

imaging doses and obtains accurate reconstruction even on the insufficient data from 
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sparse views or a reduced number of detector pixels. Considering the complimentary 

capabilities of these two approaches, we use an improved stationary beam blocker in the 

CBCT system for simultaneous dose reduction and scatter measurement, and an iterative 

algorithm for accurate reconstruction on the projections with missing data in a single scan. 

The new method explores the strengths of measurement-based scatter correction and 

iterative reconstruction while eliminating their shortcomings, and obtains low-dose and 

scatter-free CBCT images.  

In the new method, the lead strips of the blocker are placed in the longitudinal 

direction and located asymmetrically with respect to the central longitudinal line of the 

detector. If one ray is blocked by the strip, its conjugate is still measured after around 

180° rotation even if it is in the off-plane. The beam blocker is inserted between the x-ray 

source and the object, where scatter distribution is obtained by interpolation/extrapolation 

on the scatter samples inside the strip shadow. The insertion of blocker also reduces 

patient dose since x-ray primary signals are attenuated [97]. The patient dose is further 

reduced by decreasing the number of projections. Our recently developed CS-based 

iterative reconstruction, accelerated barrier optimization for compressed sensing [75], is 

carried out on the blocked data to obtain scatter-free and low-dose CBCT images. 

Simulation studies are designed on the Shepp-Logan phantom to optimize the lead strip 

geometry and the required number of projections for a certain dose reduction ratio, by 

comparing the CT image accuracy. The performance of the method is evaluated on the 

Catphan©600 phantom and an anthropomorphic head phantom. 

2.2. Method 

2.2.1 Blocker design 

In a circular CBCT scan, one projection ray can be specified by (θ,φ,α), where θ 

and φ are the angles of the ray in the transverse and axial directions respectively, and α is 
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the projection angle of the source. It can be easily verified that no projection rays are 

redundant in such geometry except those in the mid-plane (i.e. φ=0). Nevertheless, if a 

commonly-used approximation of small cone angle (i.e. φ≈0 for the whole projection) is 

used, the redundant rays have the following relationships:  

 1 2  
                                                Equation 2.1 

1 2 12     
                                        Equation 2.2 

With a full rotation and full object coverage, half of the CBCT projection data are 

considered to be redundant. Under the small-cone-angle approximation, each projection 

ray in a CBCT full scan has a corresponding redundant ray measured from the opposing 

direction. The two lines are referred to as a conjugate ray pair and this condition is 

referred to as data redundancy. Therefore, some of these redundant rays can be blocked 

for other purposes (e.g., scatter measurement) while still maintaining an accurate 

reconstruction [98]. No hardware compensation for the missing primary data is necessary 

and the data acquisition is complete with one single scan.  

Guided by this principle, lead strips are placed in the longitudinal direction, which 

is perpendicular to the rotation plane, to block only redundant rays for scatter 

measurement. One ray blocked by the strip is measured through its conjugate after around 

180° rotation. The beam blocker is designed to block less than 50% of full illuminated 

field and are placed asymmetrically with respect to the central longitudinal line of the 

detector, such that at least one ray from its conjugate ray pair can be measured on the 

detector. Note that, the central longitudinal line of the detector is always left unblocked to 

avoid the missing rays passing through the object center.  

Figure 2.1 shows the geometry of the proposed method and our experimental setup. 

The designed blocker is placed between the x-ray source and the object. The lead strips 

are placed along the longitudinal direction and uniformly distributed in the lateral 
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direction. The strips have a thickness of around 3 mm and attenuate more than 99.99% of 

incident x-ray photons. Only scatter samples are measured inside the shadows on the 

detector. Besides the strip placement, two more parameters are needed in the blocker 

design: sampling period (S) and strip width (W). The strip width cannot be too small 

since the penumbra effects on the strips limit scatter measurement accuracy [99]. 

Moreover, wider blocker contributes more to the dose reduction. In this study, we choose 

a conservative W value of about 44 pixels (~ 17 mm) on detector. S is optimized by 

comparing the CT image quality for a certain dose reduction ratio. 

 

 

Figure 2.1 The CBCT tabletop system and Catphan©600 phantom. The designed blocker 
is mounted in front of the collimator and shown in an enlarged inset. The lead blocker is 
sandwiched between two layers of thin steel, each with a thickness of 0.2 mm, to improve 
the mechanical strength. 

2.2.2 Scatter estimation and correction 

As shown in our previous studies [80, 81, 87] and the literature [100], the insertion 

of the beam blocker does not greatly perturb the spatial frequency spectrum of scatter in 

cone-beam projections and scatter is still predominantly low-frequency. The whole field 

scatter distribution is therefore accurately estimated using interpolation/extrapolation on 

the measured samples. To avoid the penumbra effect of the strips, only the measured data 

inside the central two-third of the strip shadows are used in the scatter estimation. Since 

the lead strips cover the whole blocker in the longitudinal direction, a 1D cubic 



 19

interpolation is carried out on each lateral line to estimate the scatter distribution over the 

whole detector area. The estimated scatter is then subtracted from the raw projection to 

generate the scatter-corrected CBCT projections.  

2.2.3 Reconstruction on incomplete data 

These corrected CBCT projections are incomplete due to the insertion of the 

blocker and the angular under-sampling. Severe artifacts therefore appear in the 

conventional FBP reconstruction. To improve the image quality, the missing primary 

signals in the blocked area are compensated for using their conjugate rays. As described 

by Equation 2.1 and 2.2, the two detector points corresponding to the conjugate ray pair 

are symmetric with respect to the detector central longitudinal line, and their projection 

angle has a difference of π-2|θ|. Due to the discretization of the data acquisition in both 

spatial and angular directions, the missing primary is compensated for using its conjugate 

point by interpolating on the scatter-corrected sinogram.  

An in-house CS-based iterative reconstruction is applied to further improve the 

image quality. The algorithm is referred to as the accelerated barrier optimization for 

compressed sensing (ABOCS) reconstruction algorithm, which minimizes the image TV 

term with data fidelity and non-negativity constraints [75]. ABOCS formulates the TV 

minimization constrained by the data fidelity into a form similar to that of the 

conventional TV regularization but with an automatically adjusted penalty weight. The 

automatic penalty weight is controlled by the data fidelity tolerance, which is estimated 

from the raw projections according to the Poisson statistics, and the data error in the 

current iteration. Consistent reconstruction performances are achieved using the same 

algorithm parameters on scans with different noise levels and/or on different objects. The 

problem is then solved efficiently by gradient projection with an adaptive Barzilai–

Borwein step-size selection scheme. Readers are referred to Ref. [75] for more details. 
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Note that, image noise increases significantly after scatter correction [13]. An additional 

penalized weighted least-squares (PWLS) algorithm [13] is performed to reduce the noise 

in the reconstructed images.  

2.2.4 Evaluation 

A small strip sampling period (S) increases the scatter estimation accuracy, but 

reduces the available data in a CT scan which may decrease the reconstruction accuracy. 

To balance the tradeoff, we first carry out simulation studies on the Shepp-Logan 

phantom to optimize S (therefore the projection number) for 80% dose reduction, by 

comparing the CT reconstruction accuracy with scatter correction. The image error is 

quantified as the percentage of root of mean square error (RMSE). The scatter is 

simulated using the Monte Carlo code (GEANT4 package) [101]. To save computation 

time, we use a uniform water ellipsoid with the same geometry as that of the Shepp-

Logan phantom to generate the scatter distribution.  

With the optimized S, we then evaluate the performance of the proposed method on 

the Catphan©600 phantom with a diameter of 200 mm (The Phantom Laboratory, Salem, 

NY) and an anthropomorphic head phantom on our CBCT table-top system. The 

geometry of this system exactly matches that of a Varian On-Board Imager (OBI) CBCT 

system on the TrueBeam radiation therapy machine. A detailed system configuration is 

described in Ref. [80]. The lead sheet of the designed blocker is first shaped using a 

waterjet cutting system. To improve the mechanical strength of the blocker, the lead is 

then sandwiched between two layers of thin steel (~ 0.2 mm) using J-B WELD epoxy 

adhesive (www.grainger.com).  

CBCT images are compared with and without the proposed method. A total of 655 

projections are acquired for the conventional FBP reconstruction. Few-view projection 

data are generated from the 655 projections with an evenly distributed angular spacing. 
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The estimated dose reduction ratio is calculated based on the number of measured 

projection lines [80]. The proposed method is compared with low-dose CBCT without 

scatter correction. Note that, the scatter estimation is also performed on the sparse 

projections. 

For a quantitative error analysis, an additional set of projections is acquired with a 

fan-beam geometry, which narrows the collimator open width to around 10 mm on the 

detector for inherent scatter suppression. The resultant images are used as references. 

Image quality metrics are used to quantitatively evaluate the performance of the proposed 

method. For the selected region of interest (ROI), the CT number error is calculated as 

the square root of the mean square error (RMSE) and defined as 

           
2

1

1
RMSE ( )

ROIN

i i
iROIN

 


                             Equation 2.3 

where i represents the index of ROI and i is the mean reconstructed value inside the 

ROIs, andi is the value in the reference image, and NROI is the total number of ROIs. 

The image contrast is calculated as 

r bcontrast                                        Equation 2.4 

where r is the mean reconstructed value inside the ROI and b is the mean reconstructed 

value in the surrounding area. 

 

2.3 Results 

2.3.1 Optimization of blocker sampling period 

Figure 2.2 shows RMSE of scatter estimation and reconstructed image with respect 

to different sampling period (S) on the detector. The imaging dose reduction is 80%, and 

the CT number error reaches the minimum when S is about 50 mm. Larger sampling 

period degrades the image quality due to the increased scatter estimation error. Smaller 

sampling period also deteriorates the image because of relatively more primary signal 
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loss in each projection. In the following studies, we choose a sampling period as about 52 

mm on the detector, and the W is chosen as about 17 mm on the detector, which blocks 

33% of the illuminated area. In both phantom studies, we use one third of total 655 

projections, which is 219 projections. By blocking 33% of illuminated area in each of 219 

projection, the proposed method achieves the dose reduction ratio of around 75%. 163 

projections are used in low-dose CBCT without scatter correction to obtain the same dose 

reduction. 

 

Figure 2.2 The reconstructed image and scatter estimation error for different sampling 
periods calculated on the projection of the Shepp-Logan phantom. 

2.3.2 Catphan©600 phantom results 

Figure 2.3 shows the 1D horizontal profiles of scatter signals, raw projections and 

line integrals of one projection on the Catphan©600 phantom. The reference scatter 

signals are obtained as the difference of the cone-beam and fan-beam projections. As 

seen in Figure 2.3 (a), the estimated scatter profile using our method matches well with 

the reference in the central region pixels (250-800) with an estimation error of less than 
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6.5%. Relatively large deviations are found around and outside the phantom boundary. 

However, the intensity of primary signals in these areas is high, which leads to a 

negligible estimation error of line integral. Figure 2.3 (b) shows the line integrals with 

and without the proposed method. The blue circles indicate the scatter corrected primary 

signals measured in the illuminated area. The missing primary signals due to the insertion 

of the beam blocker are compensated with their conjugate rays analytically and shown as 

the green triangles in Figure 2.3(b). Our method significantly enhances the intensities of 

the line integrals, which are close to those of the ground-truth, i.e., fan-beam CT.  

Figure 2.4 shows the reconstructed image with and without the proposed low-dose 

and scatter-free CBCT imaging scheme. Figure 2.5 shows the comparison of 1D profiles 

passing through two high contrast rods inside the phantom, as indicated by the red line in 

Figure 2.4(d). Without scatter correction, the ABOCS reconstruction reduces the dose by 

75%, however, severe shading artifacts are still observed (see Figure 2.4(b) and Figure 

2.5). Our proposed method significantly suppresses the shading artifacts (see Figure 

2.4(c)). After improvement, the image quality is comparable to that of the reference (i.e., 

fan-beam CT in Figure 2.4(d)).  For the quantitative evaluation of the performance using 

our method, the average CT numbers and contrasts are calculated for the contrast rods in 

one of the phantom slice. The results are summarized in Table 2.1 using those from the 

fan-beam CT as the references. In the selected ROIs, the proposed method reduces the 

mean CT number error from over 250 HU to around 24 HU, and increases the contrast by 

a factor of 2.1 on the average.  
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(a)                                                      

  

 (b) 

Figure 2.3 1D horizontal profiles of the scatter, projection and line integral signals 
acquired from the Catphan©600 phantom: (a) estimated and reference scatter, 
original projection signals; (b) line integrals of CBCT projections with and without 
the proposed correction and with a fan-beam geometry. Different markers are plotted 
to demonstrate the data acquired from direct measurement (circle) and primary 
compensation (triangle).  
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Figure 2.4 Axial views of the reconstructed Catphan©600 phantom. (a) CBCT 
without scatter correction using FBP algorithm and 655 projections; (b) low–dose 
CBCT without scatter correction using ABOCS and 163 projections (estimated 75% 
dose reduction); (c) CBCT using the proposed scatter correction and ABOCS 
reconstruction using 219 projections (estimated 75% dose reduction); (d) fan-beam 
CT as the ground-truth using FBP reconstruction and 655 projections. The selected 
uniform ROIs are marked with red circles in (d). Display windows: [-400 600] HU. 
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Figure 2.5 Comparison of 1D profiles of the CT images in Figure 2.4, taken along the 
straight line in Figure 2.4 (d). 
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Table 2.1 Comparison of the averaged CT numbers and contrasts inside the contrast rods 
of the Catphan©600 phantom. The CT number errors are also shown in parentheses. The 
numbers of the ROIs are marked in Figure 2.4 (d). All unites are in HU. 

 

 ROI 1 2 3 4 5 6 7 RMSE 

CT # Fan-beam CT 
-131 -84 -895 248 776 -889 -211  

(HU) CBCT with 

correction 
-148 -107 -933 227 780 -921 -234  

  
(-17) (-23) (-38) (-21) (4) (-32) (-23) 24 

 CBCT without 

correction 
-239 -217 -646 -48 202 -639 -281  

  
(-108) (-133) (249) (-296) (-574) (250) (-70) 250 

 CT # 

improvement 
91 110 211 275 570 218 47  

Contrast CBCT with 

correction 
169 118 934 201 753 933 253 

 

(HU) CBCT without 

correction 
88 55 452 112 322 456 126 

 

 Contrast 

improvement 
1.93 2.13 2.07 1.79 2.34 2.05 2.02 

 

2.3.3 Anthropomorphic head phantom results 

Figure 2.6 shows the axial views of the reconstructed head phantom images using 

the conventional FBP reconstruction, the low-dose ABOCS reconstruction, and the 

proposed method. The full-scan fan-beam CT image is generated as the ground-truth. 

Similar to the Catphan©600 phantom results, the shading artifacts in Figure 2.6 (a) and (b) 

are significantly suppressed with the proposed method. The mean CT number error is 
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reduced from over 220 HU (Figure 2.6 (a) and (b)) to 10 HU (Figure 2.6 (c)) in the 

central uniform area as indicated by the white circle in Figure 2.6 (d). The overall image 

uniformity of our result (Figure 2.6 (c)) is close to that in the fan-beam result (Figure 2.6 

(d)), with only 25% radiation dose of a routine CBCT scan. The comparison of 1D 

profiles passing through the central horizontal line, as indicated by the red line in Figure 

2.6 (d), is shown in Figure 2.7. 

 

 

Figure 2.6 Axial views of the reconstructed head phantom. (a) CBCT without scatter 
correction using FBP algorithm and 655 projections; (b) low–dose cone-beam CT 
without scatter correction using ABOCS algorithm and 163 projections (estimated 
75% dose reduction); (c) CBCT using the proposed scatter correction and ABOCS 
reconstruction with 219 projections (estimated 75% dose reduction); (d) fan-beam CT 
using FBP reconstruction and 655 projections. Display windows: [-500 900] HU. 
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Figure 2.7 Comparison of 1D profiles along the central horizontal line as shown in 
Figure 2.6 (d). 

 

2.4 Conclusion and discussions 

In this work, a practical CBCT imaging method for dose reduction and scatter 

correction using a stationary blocker in a single scan is proposed. In the tabletop phantom 

studies, our method reduces the overall CT number error from over 220 HU to less than 

25 HU, and increases the image contrast by a factor of 2.1 in the selected ROIs with only 

25% dose of a conventional CBCT scan.  

For demonstration purposes, only 2D images are reconstructed in this work. In the 

future, the author will extend our method to 3D reconstruction. Due to the huge size of 

system matrix, it is not practical to store the whole matrix in the computer memory for 

iterative CT reconstruction. Instead, the multiplication of system matrix will be 
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formulated as a forward projection operation and speed up the calculation using hardware 

acceleration technique, e.g., on a graphics processing unit (GPU) [54, 102]. The other 

issue with the 3D extension is that the cone angle can be as large as 6°in the off-planes 

of the OBI system [18], which makes the small cone-angle approximation less accurate. 

Nevertheless, the artifacts stemming from a large cone angle are generic issues in circular 

CBCT [103, 104]. For example, the small-cone-angle approximation is also used in 3D 

FDK reconstruction [95], the current standard algorithm implemented on commercial 

systems. For the applications of scatter correction with reduced projection measurement, 

previous studies have shown that the enlarged cone angle leads to negligible image 

quality degradation on clinical CBCT systems [81]. A similar performance of off-plane 

imaging is expected with the proposed method in this work. Low-frequency artifacts can 

be observed on the scatter-corrected images, which result from the insertion of the beam  

blocker. In the future, we will look into other possible blocker designs to suppress these 

artifacts.   
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CHAPTER 3 

COMBINED ITERATIVE RECONSTRUCTION AND  

IMAGE-DOMAIN DECOMPOSITION FOR DUAL ENERGY CT 

USING TOTAL-VARIATION REGULARIZATION 

3.1 Introduction 

Since the development of the dual-energy imaging theory [59], dual-energy CT 

(DECT) has been increasingly used for its capabilities of material decomposition and 

energy-selective imaging. Due to its advantages on differentiating materials that are 

indistinguishable on conventional CT images, DECT has shown great promises on more 

accurate diagnosis for different disease sites, including head and neck [105-107], thoracic 

[108, 109], cardiac [110] and abdomen [111-113]. One generic problem of current DECT, 

however, is that the signal decomposition process is unstable, leading to severe noise 

boost in the resultant images [50, 68, 114, 115] . The purpose of this study is to propose 

an iterative approach that combines the reconstruction and the signal decomposition 

procedures to minimize the DECT image noise without noticeable resolution loss. 

In the diagnostic energy range, the linear attenuation coefficient of any material 

can be approximated as a weighted summation of two different actual or even virtual 

materials, referred to as basis images [59, 60]. In DECT, two CT scans with different 

spectra are performed on the same object so that the basis images can be computed from 

the measured projections by solving an inverse problem. The inversion process is referred 

to as decomposition, which is implemented with either a linear model typically on the 

image data [117, 118], or a nonlinear model on projection data [116]. Since the linear 

decomposition model is easy to implement, and also capable of providing material 

decomposition information, it is more commonly used in clinical environment. This study 

is focused on DECT with image-domain decomposition. 
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In DECT, the estimated compositions of materials are mainly determined by the 

signal difference of the two CT scans. The decomposition, therefore, involves signal 

cancellation [115]. On the other hand, the noise of the two CT datasets is independent. 

The direct decomposition reduces signal magnitude and propagates image noise, leading 

to significantly degraded signal-to-noise ratios (SNR) on resultant images [50, 64, 68, 

114]. Many methods have been proposed in the literature to improve the SNR of DECT 

images. Based on whether noise suppression is performed during reconstruction, these 

methods are divided into two categories. The first type typically suppresses noise of the 

reconstructed images of basis materials as an auxiliary step independent from the signal 

decomposition. A smoothing filter can be applied before or after the image reconstruction, 

with noise suppressed at the cost of reduced spatial resolution [114, 119, 120]. For 

example, Macovski et al. proposed a sophisticated noise suppression technique, which 

reduces image noise via low-pass filtering on the selective image and restores the 

structure information via high-pass filtering on the non-selective image [115, 121]. 

Researchers also proposed noise suppression techniques based on the statistics of x-ray 

projections and/or CT images. Kalender et al. developed a novel noise suppression 

technique by implicitly assuming exact negative linear correlation on the noise of 

decomposed images [50]. The method alleviates the problem of spatial resolution loss 

compared to the filtering methods, with increased computation time and edge artifacts. 

The other category of algorithms suppresses image noise by incorporating the 

decomposition into the reconstruction process. Zhang et al. and Fessler et al applied a 

model based iterative reconstruction algorithm which combines the decomposition and 

reconstruction [122, 123]. An edge-preserving regularization is often included in the 

formulation to suppress the noise while maintaining the spatial resolution [123]. Recently, 

Compressed sensing (CS) reconstruction algorithms, including iterative reconstruction 

using total-variation (TV) regularization, show promise in recovering faithful signals 

with superior SNR from noisy projection data [53, 75, 117, 124]. The TV regularization 
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method proposed in this study combines the reconstruction and decomposition steps of 

DECT in order to minimize the noise propagation during the signal decomposition 

without significant loss of high-frequency information. The proposed algorithm is 

formulated as an optimization framework, which balances the data fidelity of CT 

reconstruction and TV of decomposed images, and the decomposition step is carried out 

iteratively. The noise in the CT images reconstructed by the proposed algorithm becomes 

well correlated even though the noise of the raw projections is independent on the two 

CT scans. Due to this feature, the proposed algorithm avoids noise accumulation during 

the decomposition process and well preserves the image spatial resolution. The method 

performance is evaluated on the Catphan©600 phantom and an anthropomorphic head 

phantom. 

3.2 Method 

3.2.1 Noise propagation in image decomposition of DECT 

In the image-domain decomposition with a linear model, the linear attenuation 

coefficient of a CT image is approximated as a weighted summation of two images of 

basis materials [117], i.e.: 

, , 1, ,1 2

1 2, , 2, ,

H i j i jH H

L LL i j i j

x dx x

x xx d

    
           

                                 Equation 3.1 

where xH/L is the reconstructed CT image at high or low tube energies in the unit of mm-1, 

d1/2 is the basis material image (or the decomposed image) and unitless, and i, j are the 

image pixel indices. The composition matrix consists of elements, xkH/L (k =1 or 2), which 

are the CT values of basis material measured at high and low tube energies. Conventional 

methods obtain decomposed images from the two CT scans via direct matrix inversion, 

i.e.:  
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           Equation 3.2 

where, a, b, c, d denote the elements of the decomposition matrix, and a =x2L/(x1Hx2L-

x2Hx1L)， b =-x2H/(x1Hx2L-x2Hx1L), c =-x1L/(x1Hx2L-x2Hx1L), d =x1H/(x1Hx2L-x2Hx1L).  

Equation 3.2 results in severely degraded SNRs on the decomposed images. The 

reason is two-fold. xkH/L is always positive since it represents the attenuation coefficient of 

basis material. The elements in each row of the decomposition matrix have opposite signs, 

i.e. a·b<0, c·d<0. Therefore, the relative magnitude of decomposed images is reduced due 

to signal cancellation. On the other hand, the noise variance of one pixel on the 

decomposed images is calculated as,  
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       Equation 3.3 

where n1/2 denotes the noise of the pixel on the decomposed image, and nH/L denotes the 

noise of the same pixel on the CT image. var(.) calculates the variance and corr(.) 

calculates the correlation.  

If the two CT images are reconstructed independently, their noise correlation is 

zero. Ignoring the third terms of Equation 3.3, we find that the noise of each decomposed 

image accumulates from the noise of both CT images. The above two facts jointly lead to 

reduced SNRs on the decomposed images, which significantly lowers the clinical merits 

of the direct decomposition approach via matrix inversion.  

3.2.2 Combined iterative reconstruction using TV regularization 

Equation 3.3 shows that noise in decomposed images can be reduced via noise 

suppression on CT images. Even if the noise suppression algorithm is applied directly on 

the decomposed images, an equivalent noise suppression algorithm on CT images for the 
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same performances can always be obtained, since the decomposition has a one-to-one 

mapping relationship. To suppress noise in decomposed images, most existing methods, 

including image filtering [119, 120] and iterative CT reconstruction methods [117], aim 

to lower the values of the first two terms in Equation 3.3, i.e. to reduce the noise in the 

reconstructed CT images. These approaches result in inevitable resolution loss due to the 

general tradeoff between noise suppression and preservation of spatial resolution.  

In this work, a distinct method is proposed to suppress noise in decomposed images 

via reducing the third term in Equation 3.3. The noise in the CT images (i.e. the first two 

terms in Equation 3.3) is kept as intact as possible to maintain the high spatial resolution 

of the decomposed images. As a·b<0 and c·d<0, an equivalent goal is to increase the 

noise correlation between the CT images. This task is seemingly impossible, since CT 

image noise of two independent scans is believed to be always uncorrelated. If the two 

images are jointly reconstructed, the noise correlation of CT images can be increased. An 

optimization framework is therefore proposed for DECT, which combines the iterative 

reconstruction of CT images and the decomposition process. The reconstruction of two 

CT images becomes dependent via the decomposition process performed at each iteration, 

resulting in increased noise correlation of the final CT images. The algorithm is 

developed from our previous work on iterative reconstruction for single-energy CT [75]. 

The proposed optimization framework is formulated as: 

2 2

1 22 2

1 1
[ *, *] arg min[ ( ) ( )]

2 2

s.t.  0,  0

H L H H L L H L H L

H L

x x Ax m Ax m R ax bx R cx dx

x x

          

 

       

   

Equation 3.4 

where A is the system matrix that models the forward projection process using Siddon’s 

ray tracing algorithm [125]. /H Lx


 is the vectorized reconstructed CT image at high or low 

energy, and /H Lm


 is the vectorized measured projection. R is image regularization term, 
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and β1/2 is the weighting on the regularizations of the decomposed images. The 

commonly used TV is employed as the image regularization term to suppress 

decomposed image noise and preserve the edges sharpness. For a 2D image, TV of the 

decomposed images is calculated as, 

2 2
, , 1, , , 1

, ,

( ) ( ) ( )i j i j i j i j i jTV
i j i j

R d d d d d d d


                    Equation 3.5 

The proposed algorithm combines reconstruction of CT images at two energies into 

one framework and applies the regularization on the decomposed images, a distinct 

feature compared to existing iterative reconstruction algorithms for conventional CT [53, 

75, 117, 124]. An equivalent formulation of Equation 3.4 is to use the decomposed 

images as the control variables in the objective and to apply the regularization directly on 

the control variables. This formulation, however, may change the computation 

complexity, since the non-negativity constraint cannot be enforced on the decomposed 

images.  

The quality of image obtained by Equation 3.4 is mainly controlled by the weights 

on TV regularization, β1 and β2. When β increases from a small value, the noise 

correlation between the two reconstructed CT images increases from 0 towards 1. At the 

same time, the noise variances of CT images gradually decrease, which is typically 

accompanied with image blurring artifacts. While both effects contribute to noise 

reduction on decomposed images (see Equation 3.3), we aim to avoid the latter for 

preservation of image spatial resolution. In this study, a phantom study is performed to 

find the range of optimal β values, which produces noise correlation of CT images close 

to one, while minimally suppresses their individual noise variance. Mathematically, a 

proper β value depends not only on the data fidelity error but also on the TV value of the 

true image. For example, β needs to be increased when the image noise increases. Even if 

the image noise is unchanged, the optimal β value changes for different object geometries 

due to different TV values. 
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3.2.3 Implementation details 

The proposed algorithm is solved efficiently by gradient projection with an 

adaptive Barzilai–Borwein (GP-BB) step-size selection scheme which was proposed in 

our recent publication [75]. The decomposition is to perform a linear transformation on 

the reconstructed CT images; therefore the combined reconstruction problem is still 

convex, which guarantees a global solution of the optimization problem. The pseudo code 

of the proposed combined reconstruction algorithm with TV regularization is shown 

below. The symbol := means assignment. Both image and data space variables are 

denoted by a vector sign. Ni is the total number of CT image pixels, which is 5122 in this 

study. 

κ = 0.3; tol = 10-9 mm-1; Niter = 100000; 

for i = 1:Niter do 

: [ ; ];H Lx x x
  
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; 

for l = 1: 2×Ni, do  

if g(l) ≤ 0 or x(l) > 0 , then p(l):=g(l), else p(l):=0; end if; 

end for; 

if{1st iteration}, then   

8
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If 2 1/   , then 1:  , else 2:  ; end if; 
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 ; ;old oldx x p p 
   

 

end if; 

: ;x x p 
  

 

for l = 1: 2×Ni, do  

if x(l) <0, then x(l):=0; end if; 

end for; 

if 
2

2
- oldx x tol
 

 

    break; 

end if; 

end for; 

1 2: ; : ;H L H Ld ax bx d cx d x   
     

 

return 1 2; ; ; .H Ld d x x
   

 

3.2.4 Evaluation 

The experimental data are taken on our x-ray tabletop system at Georgia Institute 

of Technology. Projections are acquired at x-ray tube energies of 75 kVp and 125 kVp. 

Both scans take 655 projections over 360°. The geometry of this system exactly matches 

that of a Varian On-Board Imager (OBI) CBCT system on the TrueBeam radiation 

therapy machine. More details of the system setup can be found in our previous 

publication [81]. To evaluate the performance of the proposed method in the absence of 

scatter, a fan-beam geometry is used in all the studies [79, 81, 85, 99]. The x-ray beam 

collimator has a longitudinal width of around 10 mm on the detector for inherent scatter 

suppression. Therefore, each projection measures a one-dimensional vector of 1024 

elements, with a pitch size of 0.388 mm. The size of reconstructed image and 

decomposed image is 512-by-512, with a pixel size of 0.5-by-0.5 mm2. 
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An evaluation phantom, Catphan©600 (The Phantom Laboratory, Salem, NY) and 

an anthropomorphic phantom are used in our studies. On the Catphan©600 phantom, we 

first find the range of optimal β values by evaluating our method with different β and 

investigating its effect on the noise characteristics of the reconstructed CT images. With 

the optimized β values, the performances of the method on noise suppression as well as 

other aspects of image quality are assessed. As discussed in detail later, the proposed 

method is compared with several existing approaches. Since these methods use different 

frameworks of signal processing, the relative noise levels on the two decomposed images 

are different as well. It is difficult to obtain the same ratio of noise magnitudes on 

decomposed images in the comparison of different methods. The average noise standard 

deviation (STD) of the decomposed images is used to quantify the noise level achieved 

by each method. The slices of line pairs and contrast rods on the Catphan©600 phantom 

are used for studies of spatial resolution and decomposition accuracy, respectively. In 

particular, two vials of iodine solutions with different concentrations, 5 mg/ml and 10 

mg/ml, are inserted into the contrast module of Catphan©600 phantom to simulate the 

diluted iodine solution in patient veins [126]. This study mimics the clinical scenario of 

contrast-enhanced CT scans, and DECT is used to obtain iodine/bone separation [64, 

127]. The errors of electron density on the contrast rods are used as the quality metric of 

decomposition accuracy. The electron density distribution is calculated from the 

decomposed images, and compared to the values of ground-truth provided in the 

Catphan©600 phantom manual. The “true” electron densities of the iodine solutions are 

calculated based on their iodine concentrations. The estimation error of electron density 

is calculated as the root of the mean square error (RMSE): 
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where i is the index of ROI and ei is the estimated electron density inside the ROI.ei is 

the ground-truth value, and NROI is the total number of ROIs. Finally, the proposed 

method is evaluated on an anthropomorphic head phantom with complex structures. 

Our approach is compared with both direct and iterative decomposition methods. 

The direct decomposition (i.e. Equation 3.2) is performed on the FBP reconstruction 

without and with apodization (i.e. by applying a Hamming window in ramp filtration 

with a cutoff frequency) and a CS-based iterative reconstruction [75]. The CS-based 

iterative reconstruction algorithm was previously developed in our group and referred to 

as the accelerated barrier optimization for compressed sensing (ABOCS) reconstruction. 

ABOCS minimizes the image TV term with data fidelity and non-negativity constraints, 

and the optimization is solved using the GP-BB method in a similar way as described in 

section 2.3 [75]. The proposed method is also compared with iterative decomposition 

approaches using the combined iterative reconstruction framework as shown in Equation 

3.4 but with different forms of regularization, including quadratic and q-generalized 

Gaussian Markov random field (q-GGMRF) regularizations [123, 128, 129]. The q-

GGMRF regularization term is written as: 

   
 





Cki

kiki xxbxR
,

,                       Equation 3.7 

where kib , are directional weighting coefficients defined as the inverse of the distance 

between the center pixel i and the elements k in its neighborhood. The potential function 

   is given by: 

 
qp

p

c





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/1
                            Equation 3.8 

where Δ is the adjacent pixel value difference, and constant c determines the approximate 

threshold of transition between low and high contrast regions. Constants p and q 

determine the powers near and distant from the origin, respectively. Note that, the 
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quadratic regularization term is a special case of Equation 3.8 with p=q=2. In this work, 

the two noise suppression methods are implemented by replacing the regularization term 

in our algorithm (Equation 3.4) with Equation 3.7 and choose p=2.0, q=1.2, c=10.0 as 

suggested in Ref. [128] for the q-GGMRF scheme and p=q=2 for the quadratic 

regularization. 

To speed up the calculation, the evaluated algorithms are implemented on an Amax 

GPU workstation (www.amax.com) using CUDA C (NVIDIA, Santa Clara, CA) to 

utilize the massive parallel computational capability of the GPU. A single TESLA C2075 

card is installed on the workstation, which consists of 448 processing cores with 1.15 

GHz clock speed and 6 GB memory.  

To evaluate the performance of retaining spatial resolution using different noise 

suppression schemes, the modulation transfer function (MTF) is calculated using the 

image region around a steel wire (with a diameter of 0.15 mm) on Catphan©600 phantom. 

As described earlier in the work, our algorithm achieves a superior performance on noise 

suppression via increasing noise correlation of CT images. To support the argument, the 

noise correlation on the reconstructed CT images is calculated: 

[( ( ))( ( ))]

std( ) std( )
H H L L

H L

E x E x x E x
corr

x x

 



                           Equation 3.9 

where E(.) calculates the mean value, and std(.) calculates the standard deviation.  

3.3 Results 

3.3.1  selection  

Figure 3.1 shows the noise variance and correlation of the CT images of the 

Catphan©600 phantom (contrast slice) reconstructed by the proposed algorithm with 

different penalty weights. The basis materials used in this study are iodine and bone 

(Teflon). A uniform area of the image is used to calculate the noise variance and 
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correlation. The noise variance of CT images shown in Figure 3.1 is calculated as the 

average of noise variance on the 75 kVp and 125 kVp CT images. In this study, β1 and β2 

are set to be the same value for the clarity of illustration. In practical implementations of 

the proposed algorithm, including other studies presented in this work, β1 and β2 have 

different values. It is seen that as the β value increases, the noise correlation of the two 

CT images increases toward 1. The noise variance decreases for large β values, indicating 

possible loss of spatial resolution. To reach a balance between high spatial resolution and 

strong noise suppression, the optimal values of β1 and β2 are chosen in the range of 0.005 

to 0.02, where the noise correlation starts to reach 1 (as enclosed by the two dashed lines 

in Figure 3.1). The β1 and β2 values used in the following phantom studies are listed in 

Table 3.1.  

3.3.2 MTF measurement 

Figure 3.2 shows the MTF curves obtained by different algorithms. The MTF 

curves are measured on the Catphan©600 phantom images shown in Figure 3.4 in a later 

section, around one of the steel wires (indicated by the arrow in Figure 3.4 (a1)). The 

basis materials used in this study are iodine and Teflon, The proposed method produces 

better spatial resolution, compared to other methods. The improvement is more 

significant when strong noise suppression is applied to obtain smaller background noise 

(Figure 3.2 (a)). The decomposed image value represents the relative weight of basis 

materials, thus decomposed image as well as its noise standard deviation are unitless. 
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Figure 3.1 Average noise variance of reconstructed CT images using the proposed 
algorithm and their correlation for different  values. The two dashed lines enclose the 
area of optimal  values. 
  

 

Table 3.1 The  values used in the phantom studies 

 Catphan 

slice of line pairs 

Catphan 

slice of contrast rods 

Anthropomorphic 

head phantom 

β1 0.018 0.015 0.006 

β2 0.015 0.010 0.008 
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(a)                                                              (b)               

Figure 3.2 MTF curves measured on images generated by different algorithms, including 
the proposed method, the combined iterative reconstruction method with quadratic and q-
GGMRF regularizations, and the CS-based iterative reconstruction (ABOCS) and the 
FBP with apodization followed by direct decomposition. The noise standard deviations 
are (a) 0.01 and (b) 0.06 on the decomposed image. 

3.3.3 Catphan©600 phantom results 

Figure 3.3 shows the CT images and the decomposed images of the Catphan©600 

phantom on the slice of line pairs using different algorithms. Al and solid water are 

chosen as the two basis materials of decomposition. The noise STD achieved by one 

algorithm is calculated as the average of noise standard deviations on the Al and solid 

water images. Direct decomposition on the FBP reconstruction results in images with 

excessive noise (see Figure 3.3 (a)). The cut-off frequency of the Hamming window in 

the ramp-filtration step of the FBP reconstruction (Figure 3.3 (b)) and the penalty weight 

in the CS-based iterative reconstruction (Figure 3.3 (c)) are adjusted, such that direct 

decomposition on the CT images reconstructed by these two algorithms achieves the 

same noise reduction on the decomposed images as the proposed method (Figure 3.3(d)). 

As seen in the comparison of Al images, especially enlarged images of line pairs, among 

the images at the same noise level, our algorithm has the best performance on spatial 

resolution and preserves the structural details contained in the decomposed images with 
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no noise suppression. This superior performance can be explained by the noise statistics 

of images, as discussed in section 3.2.1. The correlation of the reconstructed CT images 

and the noise standard deviation of the decomposed images are summarized in Table 3.2. 

Apodization and CS-based iterative reconstruction reduces the noise of the CT images by 

a factor of ~ 30, causing blurs on the CT images. The proposed algorithm generates CT 

images with noise strongly correlated, and the noise in the decomposed images is 

significantly suppressed, as shown in Equation 3.3. The strong noise correlation of the 

high and low energy images is introduced by applying regularization on a linear 

combination of these images, i.e. the decomposed image. Combined iterative methods 

with quadratic and q-GGMRF regularization both achieve similar noise correlation and 

spatial resolution around high-contrast objects to TV regularization. However, the 

proposed TV regularization obtains better edge preservation in the low-contrast region, as 

shown in Figure 3.3 (d4).  

Similar performance of the proposed method is seen in Figure 3.4, the results on 

the contrast slice of the Catphan©600 phantom. Teflon (with the attenuation similar to 

bone) and the iodine solution with a concentration of 10mg/ml are used as the basis 

materials in this study. Similarly, the noise standard deviation achieved by one algorithm 

is calculated as the average of noise standard deviations on the iodine and Teflon images. 

All three noise suppression methods reduce the noise standard deviation in the 

decomposed images by a factor of ~90. The proposed method, however, successfully 

achieves the highest spatial resolution as demonstrated by the clear visualization of the 

four small steel wires in the bone image (indicated by the white arrows in Figure 3.4 (e1)). 

The small wires are excessively smoothed out in the images generated by the other 

algorithms and cannot be distinguished. Electron densities of the contrast rods measured 

from the decomposed images and their estimation errors are shown in Table 3.3. All three 

noise reduction methods obtain slightly more accurate electron density measurement than 

the FBP without apodization, and our method achieves the best decomposition accuracy.  



 46

3.3.4 Anthropomorphic head phantom results 

Figure 3.5 shows the CT, the bone and the tissue images of the anthropomorphic 

head phantom. The average of noise standard deviations on the bone and tissue images is 

used to quantify the noise performance. Compared to the direct decomposition on the 

FBP reconstruction, our method reduces the noise standard deviation on the decomposed 

images by a factor of ~14 while still keeping the spatial resolution of fine structures.  

 

Table 3.2 The noise correlation of CT images, and the noise standard deviation of 
decomposed images in Figure 3.3. The average noise standard deviations of decomposed 
images are calculated as the average of Al and water image noise standard deviations 
inside the solid rectangle (shown in Figure 3.3(a1)). 
 

 Noise correlation Noise STD 

FBP 0.002 0.480 

FBP w/ apodization 0.648 0.016 

CS-based method 0.669 0.016 

Combined method w/ TV 0.997 0.016 

Combined method w/ quadratic regularization 0.998 0.016 

Combined method w/ q-GGMRF regularization 0.998 0.016 
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Figure 3.3 CT and decomposed images of the Catphan©600 phantom on the slice of line 
pairs using (a) FBP and direct decomposition, (b) FBP with apodization and direct 
decomposition, (c) the CS-based iterative reconstruction and direct decomposition, and (d) 
the proposed combined iterative reconstruction method with TV regularization (e) the 
combined iterative reconstruction method with quadratic regularization (f) the combined 
iterative reconstruction method with q-GGMRF regularization. Columns: (1) CT image at 
75 kVp, (2) CT image at 125 kVp, (3) Al image (the zoom-in insets show the line pairs) 
and (4) Water image. Display window: (1-2): [-500 1000] HU, (3): [0 1], (4): [0 2].  
 

 
Table 3.3 Measurement of electron densities inside the contrast rods of the Catphan©600 
phantom. The electron density estimation errors are shown in parentheses. The numbers 
of the ROIs are marked in Figure 3.4(a1). The ground-truth electron density values of the 
contrast rods (except the iodine solutions) are obtained from Catphan©600 phantom 
manual. The electron density of iodine solutions is calculated based on iodine 
concentrations. 
 

 

ROI 1 

Teflon 

2 

Delrin 

3 

Iodine 

solution 

(10mg/ml) 

4 

Polystyrene 

5 

LDPE 

6 

PMP 

7 

Iodine 

solution 

(5mg/ml) 

 

RMSE 

Ground-truth 6.240 4.525 3.368 3.400 3.155 2.851 3.356  

FBP 6.303 4.963 3.100 3.792 3.569 3.217 3.248  

 (1.0%) (9.7%) (8.0%) (11.5%) (13.1%) (12.8%) (3.2%) 9.5% 

FBP w/ 

apodization 
6.045 4.722 3.105 3.680 3.464 3.204 3.171 

 

 (3.1%) (4.4%) (7.8%) (8.2%) (9.8%) (12.4%) (5.5%) 7.9% 

CS-based 

iterative 

reconstruction 

6.076 4.745 3.064 3.655 3.429 3.170 3.089 

 

 (2.6%) (4.9%) (9.0%) (7.5%) (8.7%) (11.2%) (8.0%) 7.9% 

Proposed 6.271 4.778 3.605 3.606 3.432 3.178 3.521  

 (0.5%) (5.6%) (7.0%) (6.1%) (8.8%) (11.5%) (4.9%) 7.1% 
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Figure 3.4 Results of the Catphan©600 phantom on the slice of contrast rods. CT images 
(a1) at 75 kVp, (a2) at 125kVp and decomposed images of Catphan©600 phantom using 
(b) FBP and direct decomposition, (c) FBP with apodization and direct decomposition, (d) 
the CS-based iterative reconstruction and direct decomposition, and (e) the proposed 
method. (b1-e1) decomposed Iodine image, (b2-e2) decomposed bone (Telfon) image. 
The arrows in (e1) indicate the small objects that are preserved by the proposed method. 
The arrow in (a1) indicates the dot object used in the MTF measurements shown in 
Figure 3.2. The average noise STDs of decomposed images (calculated as the average of 
iodine and bone image noise standard deviations) are (b) 1.11, (c) 0.012, (d) 0.012, (e) 
0.012. Display window (a): [-500 700] HU, (b1-e1): [0 0.2], (b2-e2): [0 1]. 
 

 

 

Figure 3.5 Results on the anthropomorphic head phantom. CT images (a1) at 75 kVp, (a2) 
at 125kVp and decomposed images of the head phantom using (b) FBP and direct 
decomposition, (c) the proposed method. (b1-c1) decomposed tissue image, (b2-c2) 
decomposed bone image. The zoom-in bone images of the nasal area are shown as insets. 
The box in (b2) indicates where the zoom-in images are taken. The average noise 
standard deviation of decomposed images (calculated as the average of bone and tissue 
image noise standard deviations) are (b)1.30, (c) 0.09, Window level (a): [-500 700] HU, 
(b)&(c): [0 1]. 
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3.4 Conclusion and discussions  

An algorithmic approach to suppress noise of DECT images is proposed in this 

study. The algorithm combines iterative reconstruction and material decomposition into 

one optimization framework. Although the projection data are taken in two independent 

scans, the noise of the two CT images reconstructed by the proposed method becomes 

strongly correlated. This feature endows the method an attractive capability of significant 

noise suppression on the decomposed images. Phantom results show that our method 

achieves superior performance on DECT imaging, with respect to decomposition 

accuracy, noise reduction and spatial resolution. A side effect of the improved correlation 

of the CT images, however, is that measurement errors in one CT scan may be introduced 

into the other dataset of CT scan. The CT images reconstructed by the proposed 

algorithm share a similar pattern of artifacts. 

Future work is needed to further improve the performance of our method. The 

design of the proposed iterative algorithm is inspired from the CS-based iterative CT 

reconstruction algorithms. The combination of CT reconstruction and image 

decomposition increases the computational complexity of the problem and the algorithm 

takes a large number of iterations to converge (around 20,000-50,000 in our 

implementations). Different approaches will be investigated to improve the convergence 

of the algorithm. Despite low noise, the decomposed images obtained by our method 

show residual errors, especially around dense objects. The accuracy of electron density 

measurement also needs improvements. A major source of these errors is the linear model 

used in the image-domain decomposition method. The beam-hardening effects stemming 

from the poly-energetic spectrum of the x-ray source are more precisely described by a 

non-linear formulation. Projection-domain methods based on non-linear models therefore 

obtain more accurate decomposition [116, 130]. Projection-domain decomposition will 

be implemented to improve the algorithm. However, the method design could be 
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complicated due to the nonlinearity of the signal processing. Finally, the proposed 

method is based on the same physical principle of the conventional DECT, and therefore 

has similar requirements on the data acquisition. For example, it requires an exact 

alignment of geometries in the low and high energy scans.  
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CHAPTER 4 

A GENERAL FRAMEWORK OF NOISE SUPPRESSION IN 

MATERIAL DECOMPOSITION FOR DUAL-ENERGY CT 

4.1 Introduction 

In Chapter 3, we propose a combined iterative reconstruction and decomposition 

method for noise suppression in DECT. However, this method employs a linear 

decomposition model, which does not exploit the benefit of dual energy CT on beam-

hardening correction. Furthermore, the combined method implements the reconstruction 

process iteratively, which is computational intensive.  In this chapter, we propose a 

general framework of iterative noise suppression algorithms for DECT, which uses non-

linear decomposition for beam-hardening correction, and avoids reconstruction in the de-

noising process to speed up the calculation. 

A critical procedure of DECT is the signal decomposition from two sets of 

projection data acquired at two different x-ray spectra. The raw projections are converted 

into line integrals of basis materials (e.g. soft tissue and bone) using an analytical or 

numerical decomposition function, which is either measured during system calibration 

[133] or estimated using x-ray spectrum simulation [134].  For DECT in the diagnostic 

energy range, the decomposition function is non-linear in nature, but with a dominant 

linear component. The decomposed CT images are reconstructed from the line integrals 

of basis materials using CT reconstruction algorithms. In general, the decomposition step 

cannot commute with the reconstruction in the signal processing chain, due to its non-

linearity. If the decomposition function is approximated as linear and a linear 

reconstruction algorithm (e.g. the standard filtered back-projection (FBP) reconstruction) 

is used, the projection-domain decomposition plus reconstruction of decomposed material 

images is equivalent to the conventional CT reconstruction followed by linear image-
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domain decomposition. Such an image-domain decomposition approach has an advantage 

of directly operating on conventional CT images. It is therefore considered to be more 

convenient on clinical CT scanners, where raw projections are not always readily 

extractable for advanced users. Nonetheless, by ignoring non-linear components in the 

decomposition function, the image-domain decomposition methods cannot correct for 

beam-hardening errors and therefore do not fully gain the benefits of DECT on energy-

selective imaging.  

The signal decomposition of DECT implemented on clinical CT systems is very 

sensitive to the noise in the two sets of dual-energy projection data, since the distributions 

of linear attenuation coefficients of basis materials have significant overlapping in the 

diagnostic x-ray energy range [132]. The decomposed images therefore have severely 

degraded signal-to-noise ratios (SNR), which entails prominent dose increase on the CT 

scans to retain the clinical values of DECT. Many methods have been proposed in 

literature to alleviate the noise boost problem [50, 114, 115, 135], and they have been 

reviewed in Chapter 3 of this dissertation. These existing algorithms suppress image 

noise either before or after the decomposition, and do not fully explore the statistical 

properties of the decomposition process. We have previously developed an iterative 

decomposition method for DECT [131]. The method combines the noise suppression and 

material decomposition into an iterative process and achieves both goals simultaneously. 

Using a formulation of best linear unbiased estimator, we estimate the full variance-

covariance matrix of the decomposed images and achieve superior performance on noise 

suppression of DECT without losing image spatial resolution. Nonetheless, a linear 

model is used for the decomposition function in the previously proposed method. 

Although the computation is greatly simplified and the decomposition is conveniently 

performed in the image domain, the algorithm lacks the capability of beam-hardening 

correction from non-linear decomposition and thus loses one main advantage of DECT.  
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In this work, we expand the previously developed iterative algorithm to include a 

non-linear decomposition model for noise suppression in DECT. The method is 

formulated as a general framework of optimization, with no assumptions on the 

decomposition functions. A general form of the noise variance-covariance matrix, which 

is directly calculated from the measured projections and the decomposition function, is 

derived for use in the iterative algorithm. As a demonstration of algorithm 

implementation, we employ an existing method of empirical polynomial fitting for non-

linear decomposition in the projection domain [61]. The proposed approach is evaluated 

using phantom studies, on the performance of noise suppression, spatial resolution and 

beam-hardening correction. 

 

4.2 Methods 

4.2.1 A general framework of noise suppression in DECT 

We formulate the noise suppression algorithm in the form of least-square 

estimation with smoothness regularization. Based on the design principles of a best linear 

unbiased estimator, we include the inverse of the estimated variance-covariance matrix of 

the decomposed images as the penalty weight in the least-square term. The regularization 

term enforces the image smoothness by calculating the square sum of neighboring pixel 

value differences. The general framework of noise suppression is written as:  

1
0 0min( ) ( ) ( )T

x
x x W x x R x  

    
                                   Equation 4.1 

where 0x


is the basis material image reconstructed with FBP from decomposed signals. 

The decomposition can be carried out using a linear or a non-linear model, in the image 

or the projection domain. x


 is the basis material image with noise suppression to be 

estimated. ( )R x


 is regularization term to enforce the smoothness. β is the weighting on 

the image regularization. W is the noise variance-covariance matrix of the observations to 
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be included in the optimization framework based on Gauss–Markov theorem and the 

design principles of a best linear unbiased estimator [136].  

We choose  xR  in the form of quadratic smoothness penalty function that 

penalizes the square sum of the differences between one pixel and its nearest horizontal 

and vertical neighbors. The penalty function is defined as: 

  21
( ( ) ( ))

2
k

ik
i k N

R x e x i x k


  


                         Equation 4.2 

where Nk is the set of the four neighbors of the i-th pixel in the image. ike  is the edge-

detection weight, which equals zero if either i or k is the index of an edge pixel in the 

image and one otherwise. The edges on the CT images can be detected using standard 

edge detection algorithms, as shown in our previous work [131]. 

For a superior noise suppression performance, it is critical to include an accurate 

matrix W in the proposed framework. We have previously derived the matrix W when the 

decomposition has a simple linear form [131]. In this chapter, we aim to find the 

calculation formula of W for any general-form decomposition used in DECT. 

Denote pH/L as polychromatic CT raw data (line integrals) with high/low x-ray 

energies, and l1/2 as decomposed material line integrals. The decomposition function is 

written as,  

1/2 1/2= ( , )H Ll f p p                                        Equation 4.3 

As shown in the Appendix, W can be simplified as:  

1 3

4 2

w I w I
W

w I w I

  
  

  
                                   Equation 4.4 

where W has a size of 2Nx2N, and N is the number of pixels in decomposed images. We 

define nH/L as the statistical noise in CT images. var(.) calculates the variance.  w1, w2, w3, 

w4 are calculated as, 



 57

2 21 1
1 [ ( , )] var( ) [ ( , )] var( )H L H H L L

H L

f f
w p p n p p n

p p

 
 

 
                                          

2 22 2
2 [ ( , )] var( ) [ ( , )] var( )H L H H L L

H L

f f
w p p n p p n

p p

 
 

 
                                          

1 2 1 2
3 4 ( , ) ( , ) var( ) ( , ) ( , ) var( )H L H L H H L H L L

H H L L

f f f f
w w p p p p n p p p p n

p p p p

   
      

   
                   

 

4.2.2 Non-linear decomposition of DECT 

To correct for the beam-hardening artifacts, we employ an empirical dual energy 

calibration method, which applies the decomposition on the projection data with a 

polynomial function [61]:  

1/2 1/2 , 1/2
, 0,...,

= ( , ) ( )
f

i j
H L i j H L

i j N

l f p p c p p


                      Equation 4.5 

In this study, we find that Nf = 3, third-order polynomial function, is adequate for our data. 

Therefore, the total number of coefficients ci,j in each decomposition function is 16, 

which makes 32 unknown coefficients in total.  

The empirical dual energy calibration method relies on a calibration phantom that 

must provide path length variations through two basis materials, and combinations of 

path lengths through both materials [61]. To get an accurate estimation of the 32 

unknown coefficients, we design a calibration phantom, where all the thickness 

combinations of the two basis materials are measured with one single projection. In this 

study, we use water and Al as the two basis materials. The phantom is designed as shown 

in Figure 4.1, where the Al wedge changes its thickness vertically, and the Lucite (solid 

water) wedge changes its thickness horizontally. The calibration phantom’s dimension 

should be of the same order of magnitude as the test object. For the target application on 

Catphan and head phantoms, we use BE = 8 cm and AD = 25 cm in our design. The 

phantom height, AB, is properly set to make full use of the flat-panel detector. The 
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proposed method is designed for on-board CBCT systems, where the imager-to-source 

distance is 150 cm. We place the calibration phantom at 75 cm to the source and use AB 

=15 cm. Four markers, made of lead, are placed between the two wedges to determine the 

position of the calibration phantom from projections, as seen in Figure 4.1 (b). 

With the knowledge of phantom position, we can calculate the line integral of basis 

material, l1/2 in Equation 4.5, via a forward projection technique. With the measured dual 

energy projections, we generate 16 sinograms whose entries are i j
H Lp p . Equation 4.5 can 

be seen as a set of linear functions with 32 unknown variables. With the knowledge of 

i j
H Lp p  and l1/2, we solve the linear functions with a Matlab-based modeling system for 

convex optimization, CVX. DECT projection data are decomposed simply through the 

polynomial function with the pre-calculated 32 decomposition coefficients. The 

reconstructed basis material images are then synthesized for a given single energy, which 

is free of beam-hardening artifacts. 

Decomposition using Equation 4.5 generates basis material line integrals with 

dramatically increased noise, thus decomposed image with severely degraded SNR. 

Similar to image-domain decomposition with a linear model, the estimated compositions 

of materials with projection-domain decomposition are mainly determined by the signal 

difference of the two CT scans. And image noise from the two CT scans is propagated 

and accumulated through the decomposition process. Therefore, the projection-domain 

decomposition leading to significantly degraded SNR on resultant images. 
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(a)                                                        (b) 

Figure 4.1 Calibration phantom design. The Al wedge changes its thickness vertically, 
and the Lucite (solid water) wedge changes its thickness horizontally. Four lead markers 
are inserted between the two wedges to determine the position of calibration phantom.  
 

4.2.3 Evaluation 

All the data were acquired on our tabletop CBCT system at Georgia Institute of 

Technology. An evaluation phantom, Catphan©600, and an anthropomorphic head 

phantom are used in our studies. The phantoms were scanned using two x-ray source 

energies of 125 kVp and 75 kVp, with a tube current of 80 mA and a pulse width of 13 

ms. The reconstructed image has a dimension of 512×512 with a pixel size of 0.5×0.5 

mm2.  

We first perform a phantom study on the line pair slice of an evaluation 

Catphan©600 phantom to evaluate the noise suppression performance of the proposed 

method. The results are compared with those obtained with the conventional formulation 

of least square estimation with smoothness regularization, i.e.: 

0 0min( ) ( ) ( )T

x
x x x x R x  

    
                                   Equation 4.6 

In the contrast slice of Catphan©600 phantom, we insert six Al rods, and evaluate 

the performance of the iterative noise suppression scheme with linear and non-linear 

decomposition methods. On the head phantom, we choose a slice with the sinus 
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structures to observe the performance of maintaining the spatial resolution. We use noise 

standard deviation (STD) of a selected uniform region of interest (ROI) and spatial 

nonuniformity (SNU) as image quality metric. The beam-hardening artifacts caused 

nonuniformity in the reconstructed image. We measured the SNU as [137], 

max min-
SNU 100%

1000

HU HU
                                Equation 4.7 

Different ROIs are selected in the CT and synthesized images at both the center and 

periphery. maxHU  and minHU  in Equation 4.7 are the maximum and the minimum of the 

mean CT number values of these ROIs.  

The penalty parameter, β, was empirically chosen based on a comparable noise 

variance on the decomposed material images using the proposed. The details of the 

algorithm implementation is elaborated in [131]. 

4.3 Results 

4.3.1 Catphan©600 phantom results 

We first evaluate the performance of the proposed algorithm on maintaining the 

spatial resolution after material decomposition in the line pair slice. The CT images of the 

slice are shown in Figure 4.2, and the decomposed images as well as the synthesized 

monoenergetic images are shown in Figure 4.3. The noise STDs are calculated inside the 

solid rectangle as shown in Figure 4.3 (a1) and summarized in Table 4.1. Without noise 

suppression, the non-linear decomposition method results in high noise level in the 

decomposed images (Figure 4.3 (a2) and (a3)). The STDs are as high as 0.822 and 0.207 

in the water and Al images. After iterative noise suppression, the STDs in the two 

decomposed images are reduced to 0.008 and 0.017, respectively. The noise in 

synthesized images is also suppressed due to the noise reduction on the decomposed 

images, where the noise STD is reduced from 230 HU to 61 HU. With the highly reduced 

noise level, we still keep the high spatial resolution as shown in Figure 4.3 (b2) and (b3). 
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Under the comparable noise levels, the iterative noise suppression method maintains the 

spatial resolution of the CT images and outperforms the de-noising scheme with 

conventional formulation of least square estimation with smoothness regularization 

(Figure 4.3 (c)). To better visualize the improvement, we enlarge the resolution structures 

and show the zoom-in displays. As indicated by the white arrows, with proposed method, 

the line pair can be separated clearly with significant suppressed noise level. The 

conventional formulation suppresses the image noise on the decompose images as well as 

synthesized images. However, the line pairs indicated by the white arrow are blurred thus 

cannot be distinguished. 

To evaluate the performance of the iterative noise suppression method with linear 

and non-linear decomposition, we carry out another study on the Catphan©600 phantom 

with six Al rods. Figure 4.4 shows the CT images, and Figure 4.5 shows the decomposed 

images as well as the synthesized images. As shown in Figure 4.4, due to the insertion of 

Al rods, CT images show severe streaking artifacts resulting from beam-hardening effects. 

The non-linear decomposition model generates two basis material images, and corrected 

for beam-hardening artifacts. As seen in Figure 4.5 (a1) and (b1), with non-linear 

decomposition method, the synthesized images are free of streaking artifacts and is more 

uniform. Linear decomposition method is also capable of providing material 

decomposition information, however, cannot correct for beam-hardening artifacts (Figure, 

4.5 (c1) and (d1)). Table 4.2 lists the SNU of CT and synthesized images calculated with 

11 ROIs indicated by the dashed squares in Figure 4.4 (a). After noise suppression, the 

SNU error calculated on the synthesized images is decreased from 24.3% with linear 

decomposition model, to 4.0% with non-linear decomposition model. Note that without 

noise suppression, the synthesized images show higher level of SNU, since noise also 

decreases image uniformity.  

As listed in Table 4.3, the propose noise suppression method suppress the noise in 

both decomposed images by one order of magnitude. With both linear and non-linear 
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decomposition models, the iterative noise suppression method achieves the superior 

spatial resolution as demonstrated by the clear visualization of the four small steel wires 

in the Al image as well as the synthesized images, as indicated by the arrows in Figure 

4.5.  

 

Table 4.1 The noise STD of the pixel values inside the ROI indicated by the solid 
rectangle as shown in Figure 4.3 (a1).  
 

Algorithm Synthesized image Water image Al image 

Without noise suppression 230 HU 0.822 0.207 

Proposed method 61 HU 0.008 0.017 

Convectional de-noising 53 HU 0.008 0.017 

 

 

 

Figure 4.2 CT images of the resolution line pair slice using (a) 75 kVp and (b) 125 kVp 
tube voltage. Display window: [-500 500] HU. 
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Figure 4.3 Synthesized and decomposed images of the resolution line pair slice (a): 
without noise suppression; (b): using the proposed iterative noise suppression method; (c): 
using conventional formulation of least square estimation with smoothness regularization. 
Column (1): Synthesized image at 74 keV; (2): Al images; (3): Water images. The solid 
rectangle in (a1) indicates the ROI where the STDs are calculated. Display window: (a) [-
500 500] HU; (b-c): [0 1.2]. 
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Figure 4.4 CT images of the contrast rods slice using (a) 75 kVp and (b) 125 kVp tube 
voltage. Display window: [-500 500] HU.  
 

Table 4.2 The SNU of CT and synthesized images. 11 ROIs are selected to calculate the 
SNU, as indicated by the dashed rectangles as shown in Figure 4.4 (a).  
 

Algorithm SNU 

75 kVp CT 28.9% 

125 kVp CT  16.4% 

 w/o de-noising w/de-noising 

Non-linear decomposition 11.2% 4.0% 

Linear decomposition 39.1% 24.3% 

 

Table 4.3 The noise STD of the pixel values inside the ROI indicated by the solid 
rectangle as shown in Figure 4.5 (a1). The noise STD of decomposed image is calculated 
as the average of Al and Water image noise STDs. 
 

Algorithm Merged image Decomposed image 

Non-linear 

decomposition 

w/o noise suppression 235 HU 0.385 

w/ noise suppression 85 HU 0.019 

Linear  

decomposition 

w/o noise suppression 193 HU 1.259 

w/ noise suppression 74 HU 0.019 
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Figure 4.5 Synthesized and decomposed images of the contrast rods slice using (a): non-
linear decomposition without noise suppression; (b): the proposed iterative noise 
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suppression method with non-linear decomposition; (c) linear decomposition without 
noise suppression; (d) linear decomposition with iterative noise suppression method. 
Column (1): Synthesized image at 74 keV; (2): Water images; (3): Al images. Display 
window: (1): [-500 500] HU; (2): [0 2]; (3): [0 0.6]. 
 

4.3.2 Anthropomorphic head phantom results 

We further carry out a study on an anthropomorphic head phantom with 

complicated sinus structures. Similar to Catphan results, the non-linear decomposition 

method suppresses the streaking artifacts resulting from beam-hardening effect, as seen in 

Figure 4.6 (c). Without noise suppression, the material decomposed images are noisy, and 

the fine structures in the sinus area are not distinguishable. With the proposed iterative 

de-noising method, the image noise is suppressed, and these fine structures are clearly 

visualized in Figure 4.7 (b2). The zoom-in displays are shown in Figure 4.8. The 

proposed method suppresses the noise by a factor of 22 while maintains higher spatial 

resolution. 

 

 

Figure 4.6 CT images of the head phantom using (a) 75 kVp and (b) 125 kVp tube 
voltage, and (c) merged image at 74 keV. Display window: [-150 200] HU. 
 



 67

 

Figure 4.7 Decomposed images of the head phantom. Row (a): without noise suppression; 
(b): with the proposed iterative noise suppression method. Column (1): water images; (2): 
Al images. The rectangle indicates the area where the zoom-in displays are shown in 
Figure 4.8. Display window: [0.1 0.8]. 
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Figure 4.8 The zoom-in displays of the sinus structures of the head phantom. (a) without 
noise suppression; (b)with the proposed iterative noise suppression method. Display 
window: [0.1 0.8]. 

4.4 Conclusion and discussions  

We derive a general framework of iterative de-noising for material decomposition 

of DECT. This method expands the application of the iterative noise suppression method 

from a linear decomposition model to a more complex, non-linear decomposition. With 

this expansion, the proposed method fully explores the benefits of dual energy imaging 

on beam-hardening artifacts correction. Using the proposed method, we reduce the 

decomposed image noise standard deviation by one order of magnitude on both 

Catphan©600 phantom and the head phantom, while still keeping a high spatial 

resolution. Compared to the conventional formulation of least square estimation with 

smoothness regularization, the proposed method improves the spatial resolution under the 

comparable background noise level. The non-linear decomposition model corrects for the 

beam-hardening artifacts, improves spatial uniformity, and obtains better image quality 

compared to the linear decomposition model. 

The polynomial function used in this study is an empirical dual energy calibration 

method. It relies on a calibration phantom that must provide path length variations 

through the two basis material and combinations of path lengths through both materials. 
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Residual streaking artifacts can still be observed on the decomposed images. Future 

investigation on different calibration phantom designs is encouraged. The two CT images 

used in this study are reconstructed using standard FBP algorithm on the projections 

acquired with two scans of different spectra. To reduce the exposure to the patients, we 

will design the low-dose data acquisition schemes. For example, we can perform two 

scans, one with the normal x-ray exposure protocol while the other with a much lower 

tube current. Or we can keep the tube current the same for the two scans while reducing 

the number of projection views in each scan.  
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CHAPTER 5 

SUMMARY AND FUTURE DIRECTIONS 

 

In this dissertation, the limitations of x-ray kV CBCT imaging were investigated. A 

low-dose and scatter-free CBCT imaging method was studied in Chapter 2. This method 

uses a stationary beam blocker for scatter measurement, and an iterative reconstruction 

method to recover signals from incomplete primary signals. The beam blocker geometry 

was optimized using a simulation study, and the performance of the proposed method 

was evaluated using physical experiments. Chapter 3 and 4 investigated the noise boost 

problem in DECT. Iterative noise suppression algorithms using linear and non-linear 

decomposition models were proposed to improve image quality. The methods incorporate 

the decomposition function in the iterations of algorithm optimization such that spatial 

resolution is maintained with significantly reduced image noise. These algorithms were 

verified using phantom studies on the table-top system.  

In Chapter 2, lead strips in the longitudinal direction are used as the beam blocker 

for scatter measurement. Other possible designs, like crossing-figure [81], or moving 

blockers [100], could achieves similar scatter correction performance. In the future, we 

will look into other possible beam blocker designs, and compare the resultant image 

quality. Dual energy imaging requires two projection measurements with different x-ray 

energies. To reduce the imaging dose, we can insert a half-field beam filter between the 

x-ray source and the object, such that any ray passing through the object is filtered once 

from one of the opposite directions in a single full scan. Projection measurements 

therefore are acquired with two different x-ray spectra without changing the tube energy. 

This method is based on the redundancy on the projection data. However, the central 

longitudinal line of the detector is measured only once, thus projection measurement with 

two different x-ray spectra is not possible in this region. Furthermore, the finite value of 
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focal spot size and beam filter thickness lead to penumbra effects, and measurement 

points that fall into the penumbra area cannot be used since the x-ray energy spectra is 

not consistent. Therefore, we cannot get sufficient dual energy data in a single scan. To 

alleviate this problem, we can compensate for the missing data with the data measured 

with another spectrum, for example, using polynomial fitting method.  
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APPENDIX 

DEVIATION OF THE NOISE VARIANCE-COVARIANCE MATRIX OF DECOMPOSED IMAGES 

WITH A NON-LINEAR DECOMPOSITION MODEL 

Since the noise of decomposed images at different pixels is independent, we have the variance-covariance matrix of the 

observation as, 

1, 1, 1, 2,

2, 1, 2, 2,

cov( , ) cov( , )

cov( , ) cov( , )
m m m m

m m m m

d d I d d I
W

d d I d d I

  
  

  
                                                     Equation A1 

where d1/2,m is a pixel in basis material image. cov(.) calculates covariance. 

If a linear reconstruction method is implemented, e.g. FBP, a pixel in the reconstructed image is a weighted summation of the 

line integrals, 

1/2, , 1/2, , 1/2 , ,( , )
p pN N

m i m i i m H i L i
i i

d c l c f p p                                                         Equation A2 

where ci,m is the coefficients of linear function which is determined by the system geometry and the reconstructed pixel position. Np is 

pixel number of CT projections or basis material line integrals. Since the noise at different pixels of raw projections is also 

independent, the elements in the noise variance-covariance matrix are calculated as, 
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To obtain the noise variance-covariance matrix, we need to derive the covariance in the basis material line integrals. 
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Using Taylor expansion and ignoring the high-order terms, we have 
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            Equation A7 

Similarly,  
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Denote npH/Li, as the statistical noise of pixels in CT raw data, and the noise variance in the CT raw data is calculated as 
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, we can further simplify the above function as, 
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               Equation A9 

With Taylor expansion and ignoring the high order terms, we have  
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     Equation A10 

By substituting Equation A9 and Equation A10 into Equation A6, we have 
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Equation A11 

Similarly, we have   

  2 21 1
1 , , 1 , , , , , , , ,cov ( , ), ( , ) [ ( , )] var( ) [ ( , )] var( )H i L i H i L i H i L i pH i H i L i pL i

H L

f f
f p p f p p p p n p p n

p p

 
 

 
                  Equation A12 
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By substituting Equation A11-A13 into Equation A3-A5, we have, 
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 76

To simplify the calculation, we approximate 1/2
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, and 

/ ,var( )pH L in  to the average value /var( )pH Ln . Since the noise variance on the projection data is difficult to obtain, we calculate the noise 

variance of a uniform area on the CT images to approximate the noise variance on the projection data. Equation A14-A16 can be 

simplified as,  
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         Equation A17 
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Equation A19 

where var(nH/L) calculates the noise variance on the CT images at high/low x-ray tube energies. 

Equation A3, Equation A4 and Equation A5 are rewritten as, 
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                                 Equation A20 
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 Equation A22 

where  
2

,

pN

i m
i

C c   

By substituting Equation A20, Equation A21 and Equation A22 into Equation A1, and approximating the value of C to be the 

same for different pixels, we have 
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                                                                             Equation A23 

The size of W is 2Nx2N, and N is the pixel numbers in CT/decomposed images. And w1, w2, w3, w4 are calculated as, 
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The noise suppression algorithm incorporates a regularization to enforce image smoothness, and the balance between data 

fidelity and image regularization is controlled by the regularization weighting β. Therefore, we ignore the constant C in the noise 

variance-covariance function, and further simplify W as, 
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                                                                             Equation A24 
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