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SUMMARY 

 

Crystallographic texture and its evolution are known to be major sources of 

anisotropy in polycrystalline metals. Highly simplified phenomenological models cannot 

usually provide reliable predictions of the materials anisotropy under complex 

deformation paths, and lack the fidelity needed to optimize the microstructure and 

mechanical properties during the production process. On the other hand, physics-based 

models such as crystal plasticity theories have demonstrated remarkable success in 

predicting the anisotropic mechanical response in polycrystalline metals and the 

evolution of underlying texture in finite plastic deformation. However, the use of crystal 

plasticity models is extremely computationally expensive, and has not been adopted 

broadly by the advanced materials development community. In particular, the integration 

of crystal plasticity models with finite element (FE) simulations tools (called CPFEM) 

requires very large computational resources because of the high computational time 

required to solve the highly nonlinear, numerically stiff, crystal plasticity constitutive 

equations at every integration point in the FE mesh. This makes the use of CPFEM 

impractical when the size of the polycrystalline aggregate is very large. 

Recently, our research group has established a new strategy to speed up the 

crystal plasticity computations at the crystal level through the use of a compact database 

of discrete Fourier transforms (DFTs). This new DFT database approach allows for 

compact representation and fast retrieval of crystal plasticity solutions, which is found to 

be able to speed up the calculations by about two orders of magnitude.  In this thesis, we 

present the first successful implementation of this spectral database approach in a 



 xviii 

commercial finite element code to permit computationally efficient simulations of 

heterogeneous deformations using crystal plasticity theories. More specifically, the 

spectral database approach to crystal plasticity solutions was successfully integrated with 

the implicit version of the commercial FE package ABAQUS through a user materials 

subroutine, UMAT, to conduct more efficient CPFEM simulations. Details of this new 

spectral database CPFEM are demonstrated and validated through a few example case 

studies for selected deformation processes on Face Centered Cubic (FCC) and Body 

Centered Cubic (BCC) metals. The evolution of the underlying crystallographic texture 

and its associated macroscale anisotropic properties predicted from this new approach are 

compared against the corresponding results from the conventional CPFEM. It is observed 

that implementing the crystal plasticity spectral database in a FE code produced excellent 

predictions similar to the classical crystal plasticity FE method, but at a significantly 

faster computational speed and much lower computational cost.  

Additionally, in an effort to extend the application of the proposed approach to 

other material systems, new spectral crystal plasticity databases have been established 

and validated for BCC and Hexagonal Close Packed (HCP) metals. The utility of these 

spectral databases has also been demonstrated through selected case studies that include 

computation of the yield surfaces and a new class of plastic property closures. 

Furthermore, an important application of the CPFEM for the extraction of crystal level 

plasticity parameters in multiphase materials has been demonstrated in this thesis. More 

specifically, CPFEM along with a recently developed data analysis approach for spherical 

nanoindentation and Orientation Imaging Microscopy (OIM) have been used in this 

thesis to extract the critical resolved shear stress of the ferrite phase in dual phase steels. 



 xix 

It should be noted that the lack of knowledge of crystal-level slip hardening parameters 

for many important multiphase polycrystalline materials is a major challenge in applying 

crystal plasticity theories for simulating the deformation behavior of these materials. This 

new methodology offers a novel efficient tool for the extraction of crystal level hardening 

parameters in any single or multiphase materials. 
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CHAPTER 1 

INTRODUCTION 

 

 The higher demand of producing fuel-efficient vehicles requires rapid evaluation 

of advanced new materials in the product design along with their manufacturing routes. 

The complex microstructures of these materials and their associated properties place 

more demands on using advanced numerical simulation analysis in the product design 

stage instead of the conventional experimental trial and error loops. Considerable 

attention has been paid to conducting accurate finite element (FE) simulations of sheet 

metal forming operations as they form one of the most widely used production processes 

in the automobile manufacturing industry. In particular, there have been significant 

efforts to improve the constitutive descriptions of the material’s elastic-plastic anisotropy 

during large strain metal forming operations. Most of these constitutive equations are 

based on phenomenological relations, mainly because of their relatively short 

computation times and easy access to the needed model parameters from standard testing 

methods. These models, however, do not account for the important details of material 

microstructure such as texture (Bunge, 1993a) and its evolution, which are known to be a 

major source of anisotropy in polycrystalline metals. Consequently, the simplified models 

cannot usually provide reliable predictions of the materials anisotropy under complex 

deformation paths, and lack the ability needed to optimize the microstructure and 

mechanical properties during the production process. The concept of integrating 

microstructure and property predictions with product design and manufacturing processes 

is one of the major goals of the Integrated Computational Materials Engineering (ICME) 
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(Allison, 2011; Panchal et al., 2013; Pollock et al.). In this context, physics-based models 

such as crystal plasticity theories have shown remarkable success in predicting the 

anisotropic mechanical response in polycrystalline metals and the evolution of underlying 

texture in finite plastic deformation. However, the use of crystal plasticity models is 

extremely computationally expensive, and has not been adopted broadly by the advanced 

materials development community. 

Significant numbers of studies have been devoted to integrate plastic anisotropy 

into finite element formulations. The simple and most widely approach is to use 

constitutive laws based on phenomenological descriptions of the anisotropic yield surface 

(referred as normality flow rules) in the FE analysis. The most commonly used 

description of the anisotropic yield surface was suggested by Hill in 1948 in the form of a 

quadratic function (Hill, 1948, 1990). Several improvements have been proposed in the 

last few decades (Barlat, 1987; Barlat and Lian, 1989; Cazacu et al., 2006; Lian et al., 

1989; Plunkett et al., 2007; Plunkett et al., 2006). The material parameters needed for the 

yield function expressions in these models are usually extracted from a small number of 

standard mechanical tests. The main advantage of using analytical expressions for the 

yield surface in the FE models is the short simulation times. This approach, however, 

neglects the effect of texture and its evolution during the deformation process. The fact 

that the same yield surface is used at every material point in the specimen makes the 

predictions from this approach questionable in forming operations that involve complex 

deformation paths. This is because the yield surfaces in different regions in the specimen 

are expected to evolve differently due to differences in texture evolution caused by the 

difference in local deformation histories. 
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In order to include the effect of initial texture on the shape of yield surfaces, Van 

Houtte and coworkers (Li et al., 2003; Van Houtte, 1994; Van Houtte and Van Bael, 

2004; Van Houtte et al., 1995; Van Houtte et al., 2009) have developed analytical 

expressions of the yield loci based on the initial crystallographic texture of the material. 

The large numbers of material parameters needed for the analytical expression of the 

plastic potential in this method are extracted from crystal plasticity models. The texture-

based yield surface approach can capture the effect of the initial texture on the plastic 

anisotropy, but it again neglects the effect of texture evolution during plastic deformation, 

which plays a prominent role in large strain metal forming operations.  

Instead of the yield surface concept, the direct application of crystal plasticity 

theories provides an alternative approach to predict the plastic anisotropy of 

polycrystalline materials by accounting for the fundamental mechanism of plastic 

deformation at the scale of the constituent single crystals. The crystal plasticity 

constitutive equations define the response of each crystal by taking into account the 

details of slip system geometry in each individual crystal. To predict the response of the 

overall polycrystalline aggregate, one needs to use one of the homogenization models 

that can be classified based on the assumed local interaction between grains, such as 

Taylor-type (also known as full constraints) (Taylor, 1938), relaxed constraints (Kocks 

and Mecking, 2003), LAMEL (Van Houtte et al., 2005), self-consistent (Lebensohn et al., 

2004; Lebensohn and Tomé, 1993; Lebensohn et al., 2007; Molinari et al., 1987), and 

crystal plasticity finite element models (Bachu and Kalidindi, 1998; Kalidindi and 

Anand, 1994; Kalidindi et al., 1992; Kalidindi and Schoenfeld, 2000; Needleman et al., 

1985; Peirce et al., 1982, 1983).  The simplest and most widely used approach is the 
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Taylor-type model. In this method, the applied velocity gradient tensor at the microscale 

is assumed to be the same as the one applied at the macroscale (on the polycrystal). The 

macroscopic stress for the polycrystal is obtained by volume averaging the stresses inside 

the polycrystal. The Taylor-type model usually provides good predictions of the overall 

anisotropic stress-strain response and the averaged texture evolution for single-phase 

cubic metals (Bronkhorst et al., 1992b). However, it usually lacks good predictions at the 

scale of individual crystal and it fails to show the development of heterogeneities within 

the grains (Bhattacharyya et al., 2001; Kalidindi, 2004; Van Houtte et al., 2005).  

The most sophisticated and successful model that takes into account the local 

interactions between all grains in the sample is the crystal plasticity finite element 

method (called CPFEM) (Bachu and Kalidindi, 1998; Kalidindi and Anand, 1994; 

Kalidindi et al., 1992; Kalidindi and Schoenfeld, 2000; Needleman et al., 1985; Peirce et 

al., 1982, 1983). This approach uses the finite element method to find the response of the 

polycrystal by placing a finite element mesh over the grains such that each element 

represents one grain or part of the grain. The crystal lattice orientations and material state 

variables are updated at every material point in the specimen by solving the crystal 

plasticity constitutive equations. In this approach, the equilibrium and compatibility 

conditions are satisfied using a weak form of the principle of virtual work in a given 

finite element. This model not only provides excellent predictions of the texture and 

anisotropic stress-strain response, but also predicts the local lattice rotations and 

heterogeneity of plastic deformation at the crystal level (Choi et al., 2011; Delaire et al., 

2000; Erieau and Rey, 2004; Héripré et al., 2007; Kalidindi et al., 2004a; Kanjarla et al., 

2010; Musienko et al., 2007; Raabe et al., 2002; Sachtleber et al., 2002; St-Pierre et al., 
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2008; Zhao et al., 2008). This approach, however, requires very large computational 

resources because of the high computational time required to solve the highly nonlinear, 

numerically stiff, crystal plasticity constitutive equations at every integration point. This 

makes the use of CPFEM impractical when the size of the polycrystalline aggregate is 

very large. 

Several other higher-order homogenization models have also been proposed to 

obtain the response of the polycrystal from the responses of constituent single crystals 

based on certain assumptions regarding grain interactions. The most widely used 

approach is the viscoplastic self-consistent model (Lebensohn et al., 2004; Lebensohn 

and Tomé, 1993; Lebensohn et al., 2007; Molinari et al., 1987). The self-consistent 

approach assumes that each crystal acts as an ellipsoidal inclusion embedded in a 

homogenous effective medium that has the average behavior of the polycrystal. 

Therefore, the local interaction between each crystal and the neighboring crystals is taken 

in an average sense over the complete polycrystal. On the other hand, the LAMEL model 

considers the local interactions between immediate neighboring grains by careful 

examination of the stress equilibrium at the grain boundaries (Kanjarla et al., 2010; Liu et 

al., 2002; Van Houtte et al., 2002; Van Houtte et al., 2006; Van Houtte et al., 2005). 

Numerous studies have been published to compare the predictions from the different 

homogenization methods (see for example (Bonilla et al., 2007; Lebensohn et al., 2003; 

Van Houtte et al., 2002; Van Houtte et al., 2005)). Van Houtte et al. (Van Houtte et al., 

2002; Van Houtte et al., 2005)) provided quantitative comparisons between different 

homogenization methods including full-constraints, relaxed constrains, LAMEL, visco-

plastic self-consistent, and CPFEM models. The CPFEM is usually used to validate any 
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other homogenization model because it accounts for both stress equilibrium and strain 

compatibility (although in a weak numerical sense). However, one should note that the 

predictions from the CPFEM depend on the mesh density of the FE model. It is believed 

that for higher anisotropic materials and/or complex deformation processes, higher mesh 

resolution would be necessary in order to describe the microstructure and capture the 

intergranular heterogeneous strain and stress fields. However, this would incur much 

higher computational cost. 

The homogenization approaches described above are usually applied to a single 

representative polycrystalline aggregate with a given initial texture subjected to particular 

boundary conditions. However, when using crystal plasticity constitutive equations in FE 

tools for simulating large-scale applications such as metal forming operations, a 

representative polycrystalline microstructure needs to be assigned to each integration 

point in the FE model. In this case, a suitable homogenization approach needs to be 

employed to obtain the mechanical behavior of the polycrystalline aggregate at each 

material point. The execution of such simulations becomes computationally prohibitive if 

the model consists of a large number of elements. Several approaches have been 

developed to improve the computational efficiency of these simulations. As an example, 

a texture component analysis is proposed by Raabe et al. (Raabe and Roters, 2004; Raabe 

et al., 2004; Tikhovskiy et al., 2007; Zhao et al., 2004) to decrease the number of discrete 

crystal orientations at each integration point in the FE model. In this approach, the 

orientation distribution function is decomposed into texture and background (random) 

components using texture component functions. The texture components are then fed into 

the FE mesh using a small number of discrete crystal orientations. The texture-
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component CPFEM significantly enhances the computation efficiency when simulating 

metal forming operations. However, the initial background (random) texture component 

is still not accurately incorporated into the FE mesh. This is mainly because the initial 

random components can evolve into preferred orientations during the simulation. It is 

important to note that the computational efficiency in this method comes only from the 

use of a small number of crystal orientations at every integration point instead of a large 

set of orientations that is usually needed to reproduce the crystallographic texture. In 

other words, the high computational time required to solve the highly nonlinear crystal 

plasticity constitutive equations for every crystal orientation is still not improved. 

Therefore, the texture-component CPFEM becomes inefficient if the FE model consists 

of a very large number of elements. Another promising approach called materials 

knowledge systems (MKS) has been recently developed based on the concept of 

statistical continuum theories (Kröner, 1977; Kroner E. In: Gittus J, 1986) to provide 

computationally efficient scale-bridging relationships between the macro- and micro-

length scales (Al-Harbi et al., 2012; Fast and Kalidindi, 2011; Kalidindi et al., 2008; 

Kalidindi et al., 2010; Landi and Kalidindi, 2010; Landi et al., 2010). The MKS 

framework has been shown to be well suited for conducting practical multi-scale 

simulations where every material point at the macroscopic level is associated with a 

representative microstructure. The MKS approach was applied to different problems 

involving non-linear material behavior such as spinodal decomposition and rigid-plastic 

deformation. However, the MKS formulation has not yet been applied to crystal plasticity 

framework. More details of the MKS framework and its implementation into FE tools to 

enable multiscale materials modeling are explained in Appendix A. 
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There is a critical need to speed up solving the crystal plasticity constitutive 

equations in order to use CPFEM within reasonable computation cost in a number of 

advanced metals development efforts. Knezevic et al. (Knezevic et al., 2009; Knezevic et 

al., 2008a) has recently established a new strategy to speed up the crystal plasticity 

computations at the crystal level through the use of a compact database of discrete 

Fourier transforms (DFTs). This spectral database is used to efficiently reproduce the 

solutions for the main functions of the crystal plasticity theory for any given crystal 

orientation subjected to arbitrary deformation mode. The spectral database approach has 

been successfully applied in face-centered cubic polycrystalline metals that deform by 

crystallographic slip. This approach was found to be able to speed up the crystal plasticity 

computations by two orders of magnitude compared to the conventional crystal plasticity 

model. Another special advantage of the spectral database is that trade-offs can be made 

by the user in terms of the desired accuracy and computation speed in any simulation 

through the selection of the truncation levels in the number of dominant DFTs used. The 

spectral database has been demonstrated only for rigid-viscoplastic deformation, and has 

not been incorporated into FE simulation tools.  

The current dissertation has mainly focused on addressing the challenges 

associated with integration of the DFT-based spectral crystal plasticity databases with a 

commercial FE tool to conduct more efficient CPFEM simulations on both FCC and 

BCC polycrystalline materials. The development of this new computationally efficient 

spectral database CPFEM (SD-CPFEM) is considered the main unique contribution of 

the current thesis. Additionally, in an effort to extend the application of the proposed 

approach to other material systems, new spectral crystal plasticity databases have also 
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been established and validated for BCC and HCP metals. Furthermore, an important 

application of the CPFEM for the extraction of crystal level plasticity parameters in 

multiphase materials has been demonstrated in this thesis. More specifically, CPFEM 

along with a recently developed data analysis approach for spherical nanoindentation and 

Orientation Imaging Microscopy (OIM) have been used in this thesis to extract the 

critical resolved shear stress in dual phase steels. It should be noted that the lack of 

knowledge of crystal-level slip hardening parameters for many important multiphase 

polycrystalline materials is a major challenge in applying crystal plasticity theories for 

simulating the deformation behavior of these materials. Below is a summary of the main 

results accomplished in the current thesis: 

1. A new spectral crystal plasticity database has been established and validated for 

BCC metals with 48 slip systems. Another new spectral database has also been 

developed for HCP metals for only two slip resistance ratios. These spectral 

databases are successfully applied to a rigid-viscoplastic polycrystal Taylor-type 

model to predict the texture evolution and stress-strain response for a few 

selected examples of deformation processes. The utility of these databases has 

been demonstrated through selected case studies that include computation of the 

yield surfaces and a new class of plastic property closures for both FCC and 

BCC metals. 

2. The DFT database approach for crystal plasticity computations has been 

integrated with the commercial FE package ABAQUS through a user materials 

subroutine, UMAT. This will allow the user to conduct more efficient CPFEM 
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simulations at dramatically reduced computational cost. For this purpose, the 

following two tasks were accomplished:  

2.1. The crystal plasticity calculations using spectral databases have been 

extended from rigid-viscoplastic behavior into elastic-viscoplastic 

deformation. A new modified Newton-Raphson scheme has been developed 

to decompose the total strain rate tensor into elastic and plastic parts. 

2.2. A new efficient analytical expression for the Jacobian required to 

implement the spectral databases with any implicit finite element code has 

been developed in this study. 

3. A combined application of nanoindentation, OIM, and CPFEM has been used to 

estimate the critical resolved shear stress of the ferrite phase in dual phase steels.  

 

The current thesis is structured as follows. We briefly review in Chapter 2 the 

classical and spectral crystal plasticity approaches used in this study. The chapter begins 

with a review of the crystal plasticity constitutive equations followed by a short summary 

of the fully implicit time-integration procedure to solve these constitutive equations as 

described by Kalidindi et al. in Ref. (Kalidindi et al., 1992). The spectral database 

approach to crystal plasticity computations is then reviewed. We then proceed to build 

and validate new DFT-based crystal plasticity databases for BCC and HCP metals in 

Chapter 3. We also demonstrate in this chapter some of the computational advantages of 

the DFT-based spectral databases in two important directions: (i) fast computation of 

yield surfaces in the five-dimensional deviatoric stress space predicted by the Taylor 

model for both FCC and BCC metals, and (ii) delineation of first-order plastic property 
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closures for both FCC and BCC metals without any simplifying assumptions of sample 

symmetry. In Chapter 4, we proceed to demonstrate the necessary steps to integrate the 

DFT database approach for crystal plasticity computations with the FE package 

ABAQUS. In particular, we illustrate how the crystal plasticity calculations using 

spectral databases are extended from rigid-viscoplastic behavior into elastic-viscoplastic 

deformation, and the details of the computation of the Jacobian required for 

implementing the spectral databases with any implicit FE tool. We also validate in 

Chapter 4 the predictions from the new spectral database CPFEM tools developed in this 

thesis against the corresponding predictions from the classical CPFEM tools using a few 

selected case studies. We present in Chapter 5, preliminary results from the application of 

a new methodology for extracting the critical resolved shear stress of the ferrite phase in 

dual phase steels using a combined application of nanoindentation, OIM, and CPFEM. 

We summarize our conclusions in Chapter 6 with some suggestions for future research. 
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CHAPTER 2 

BACKGROUND 

 

2.1 Crystal Plasticity Framework 

Crystal plasticity models are used in many applications because of their ability to 

relate the anisotropic behavior of polycrystalline materials to their microstructures (Asaro 

and Needleman, 1985b; Bridier et al., 2009; Bronkhorst et al., 1992a; Delannay et al., 

2002; Garmestani et al., 2002; Goh et al., 2003; Hosford and Caddell, 1993; Kalidindi et 

al., 1992; Mayeur and McDowell, 2007; Mayeur et al., 2008; McDowell, 2010; Raabe et 

al., 2005; Raabe et al., 2001; S. R. Kalidindi, 2004; Van Houtte et al., 2002). These 

physics-based constitutive equations not only provide better predictions of the anisotropic 

material response but can also capture the texture evolution in a polycrystalline sample 

subjected to finite plastic deformation. Furthermore, the integration of crystal plasticity 

models with FE simulation tools opens the path to a more reliable prediction of the 

material response when subjected to complex loading paths. However, the high 

computational time required to solve the highly nonlinear, numerically stiff, crystal 

plasticity constitutive equations makes the application of these theories impractical in 

simulating large scale applications.  

In this section, some of the main details of crystal plasticity modeling framework are 

summarized.  For finite deformations, the total deformation gradient tensor 𝐅  on a 

crystalline region can be decomposed into elastic and plastic components as (Asaro and 

Needleman, 1985a) 
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𝐅 = 𝐅∗𝐅p (2.1) 

where 𝐅∗contains deformation gradients due to elastic stretching and lattice rotation, 

while 𝐅p denotes the deformation gradient due to plastic deformation. The constitutive 

equation in the crystal can be expressed as 

𝐓∗ = 𝓛 𝐄∗ (2.2) 

where 𝓛 is the fourth-order elasticity tensor, 𝐓∗and 𝐄∗are a pair of work conjugate stress 

and strain measures defined using the elastic deformation gradient tensor as 

𝐓∗ = 𝐅∗−1[(det 𝐅∗) 𝐓] 𝐅∗−T ,  𝐄∗ =
𝟏

𝟐
 (𝐅∗T 𝐅∗ − 𝐈) (2.3) 

where 𝐓 is the Cauchy stress in the crystal and 𝐈 is the second-order identity tensor. The 

evolution of 𝐅𝐩 can be expressed as 

�̇�p = 𝐋p 𝐅p (2.4) 

where 𝐋p is the plastic velocity gradient tensor given by 

𝐋p = ∑γ̇α

𝛂

 𝐦0
α⨂𝐧0

α (2.5) 

where γ̇α is the shearing rate on the slip system α, and 𝐦0
α and 𝐧0

α denote the slip direction 

and the slip plane normal of the slip system , respectively in the initial configuration. In 

the rate dependent formulation (Hutchinson, 1976; Needleman et al., 1985; Pan and Rice, 

1983), the shearing rate on each slip system depends on the resolved shear stress 𝜏𝛼 and 

α
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the slip resistance 𝑠𝛼 of that slip system. It can be expressed in a power-law relationship 

as (Kalidindi et al., 1992) 

γ̇α = γ̇0 |
𝜏𝛼

𝑆𝛼
|

1

𝑚
sgn(τα), τα ≈ 𝐓∗ ⋅ 𝐦0

α⨂𝐧0
α (2.6) 

where γ̇0 is the reference value of the shearing rate, and 𝑚 is the strain rate sensitivity 

parameter. For most metals at room temperature, the value of m is usually taken to be 

very small (~ 0.01). The evolution of the slip resistance can be described 

phenomenologically by a saturation-type law as (Brown et al., 1989) 

�̇�𝛼 = ℎ𝑜 (1 −
𝑠𝛼

𝑠𝑠
)

𝑎

∑|γ̇𝛽|

𝛽

 (2.7) 

where ℎ𝑜, 𝑠𝑠 and 𝑎 denote the slip hardening parameters. It should be noted that the latent 

hardening is neglected in Eq. (2.7). Finally, the lattice spin tensor 𝐖∗ (and the related 

lattice rotation tensor, 𝐑∗) in the crystalline region is given by 

𝐖∗ = �̇�∗𝐑∗T = 𝐖−𝐖p,  𝐖p =
1

2
(𝐋p − 𝐋pT) (2.8) 

where 𝐖 is the applied spin tensor, and 𝐖p is the plastic spin tensor. 

 Various implicit and explicit time-integration schemes have been developed to 

solve the above constitutive equations (Cuitino and Ortiz, 1993; Delannay et al., 2006; 

Kalidindi et al., 1992; Li et al., 2006; Li et al., 2008; McGinty, 2001; Rossiter et al., 

2010). It should be noted that the small value of the strain rate sensitivity parameter in 

Eq. (2.6) makes the system of equations extremely stiff. The implementation of explicit 

integration scheme, where the state variables at the current time step are updated based 
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on the values from the previous time step, requires an extremely small time step to obtain 

the desired accuracy and stability. Thus, explicit time integration is not usually desirable 

for quasi-static deformation. On the other hand, the fully implicit time-integration scheme 

allows the use of much larger time step, but it requires the use of an iterative process, 

such as Newton-Raphson method, to solve the system of equations. The convergence of 

any iterative procedure used in the fully implicit time-integration scheme becomes an 

issue because of the stiff nature of these equations. The fully implicit time-integration 

procedure of the above crystal plasticity constitutive equations as described by Kalidindi 

et al. in Ref. (Kalidindi et al., 1992) is summarized in Table 2.1. This algorithm is used in 

this work to validate the spectral crystal plasticity approach. A more detailed description 

of the implementation of these equations with the implicit version of the FE package 

ABAQUS is described by Kalidindi et al. in Ref. (Kalidindi et al., 1992).  
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Table 2.1: A summary of the fully implicit time-integration scheme of the crystal 

plasticity constitutive equations as described by Kalidindi et al. in Ref. (Kalidindi et al., 

1992). 

 

1. At the beginning, the following quantities are assumed to be known, 

- Initial slip systems(𝐦0
α, 𝐧0

α) 

- Deformation gradients at the previous time step 𝐅(𝑡) and the current time 

step 𝐅(𝜏) where 𝜏 = 𝑡 + 𝛥𝑡 

- Plastic deformation gradient at time t, 𝐅p(𝑡) 

- Initial slip resistance so (for simplicity, the values of the slip resistance 𝑠𝛼 

are assumed to be constant here). 

2. Start with an initial guess of the second Piola-Kirchoff stress, 𝐓∗ 

3. Calculate the resolved shear stress, 

τα = 𝐓∗ ⋅ 𝐒0
α, 𝐒0

α = 𝐦0
α⨂𝐧0

α 

4. Compute the increment of the shearing rate on the slip system α, 

Δγα = 𝛥𝑡 (γ̇0 |
𝜏𝛼

𝑠𝛼
|

1
𝑚
sgn(τα)) 
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Table 2.1 (continued). 

5. Calculate the new second Piola-Kirchoff stress, 

�̃�∗ = 𝐓∗tr −∑Δγα 𝐂α

α

 

where 

𝐓∗tr = 𝓛 [
1

2
{𝐀 − 𝐈}] 

𝐂α =  𝓛 [
1

2
{𝐀 𝐒0

α + 𝐒0
α𝑇  𝐀}] 

𝐀 = 𝐅p
−𝑇
(𝑡) 𝐅T(𝜏)  𝐅(𝜏)  𝐅p

−1
(𝑡) 

6. Use Newton-Raphson scheme to correct the stress, 

𝐓𝑛+1
∗ = 𝐓𝑛

∗ − 𝐉𝑛
−1[𝐄𝐫𝐫𝑛]  

where 

𝐄𝐫𝐫 = 𝐓∗ − �̃�∗ 

𝐉 =
𝛛𝐄𝐫𝐫

𝛛𝐓∗
 

7. If 𝑚𝑎𝑥|(𝐓𝑛+1
∗ )𝑖𝑗 − (𝐓𝑛

∗)𝑖𝑗| > tolerance, go to step-2 and use 𝐓𝑛+1
∗  

where tolerance is taken as 10−4 so. 

8. Else (i. e. if error < tolerance), calculate the Cauchy stress and update the state 

variables, 

𝐅p
−1
(𝜏) = 𝐅p

−𝑇
(𝑡) [𝐈 −∑Δγα 𝐒0

α

α

] 

𝐅∗ = 𝐅  𝐅p
−1

 

𝐓 =
1

(det 𝐅∗)
 𝐅∗ 𝐓∗𝐅T 
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As mentioned earlier, the crystal plasticity constitutive equations described above 

are applied at the crystal level and therefore predict the response of each individual 

crystal. Different homogenization methods have been proposed to find the response of 

the overall polycrystalline aggregate. The most commonly used homogenization models 

include the Taylor-type (Taylor, 1938), relaxed constraints (Kocks and Mecking, 2003), 

LAMEL(Van Houtte et al., 2005), self-consistent (Lebensohn et al., 2004; Lebensohn and 

Tomé, 1993; Lebensohn et al., 2007; Molinari et al., 1987), and CPFEM models (Bachu 

and Kalidindi, 1998; Kalidindi and Anand, 1994; Kalidindi et al., 1992; Kalidindi and 

Schoenfeld, 2000; Needleman et al., 1985; Peirce et al., 1982, 1983). These models can 

be classified based on the assumptions made with regard to the local interactions between 

the constituent grains. For example, the Taylor-type model assumes that there is no local 

interaction between the grains. The self-consistent approach assumes that each crystal 

acts as an ellipsoidal inclusion embedded in a homogenous effective medium that has 

uniform property. Therefore, the local interaction between each crystal and the 

neighboring crystals is taken in an average sense over the complete polycrystal. 

Furthermore, the CPFEM takes into account the local interaction between each grain and 

their neighbors by satisfying the equilibrium and compatibility conditions between the 

grains. A large number of studies have been performed to compare the predictions from 

the different homogenization methods (see for example (Bonilla et al., 2007; Lebensohn 

et al., 2003; Van Houtte et al., 2002; Van Houtte et al., 2005)). It is commonly agreed 

that the CPFEM provides better predictions compared to the other homogenization 

models because it accounts for both stress equilibrium and strain compatibility.  

 



 19 

2.2 Crystal Plasticity Computations using Spectral Databases 

The crystal plasticity framework described earlier demands significant 

computational resources. The stiff behavior of the crystal plasticity constitutive equations 

is a direct consequence of the fact that most metals have a very weak dependence on 

strain rate at room temperature which demands the use of a small value for the strain rate 

sensitivity parameter in the flow rule relation in the rate-dependent crystal plasticity 

formulations (see Eq. (2.6)) (Hutchinson, 1976; Needleman et al., 1985; Pan and Rice, 

1983). Furthermore, the same set of equations are usually solved several times in most 

crystal plasticity simulations of various deformation processing operations. As an 

example, the implementation of the crystal plasticity equations in a finite element tool 

requires solving the same set of stiff equations for every crystal orientation at every 

integration point at every trial strain increment in the simulations. Therefore, the use of 

crystal plasticity models for simulating practical engineering problems requires extremely 

high computational effort.  

A number of strategies have been proposed to speed up the crystal plasticity 

calculations. Bunge and Esling (Bunge and Esling, 1984) proposed a new method for 

predicting the crystallographic texture evolution in polycrystalline materials based on 

conservation principles in the orientation space (Clément and Coulomb, 1979). In this 

approach, the evolution of texture in the sample is captured in a spectral representation 

using Generalized Spherical Harmonics (GSH) as the basis functions. Kalidindi and 

Duvvuru (Kalidindi et al., 2006b)  provided a detailed critical evaluation of the Bunge-

Esling approach for capturing texture evolution during large plastic strains in metals. In 

spite of the good capability of the Bunge-Esling approach for predicting the texture 
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evolution, it was found that higher order terms of the Fourier representation were 

required in order to obtain sufficient accuracy. The evaluation of higher order terms 

demanded high computational cost. 

Kalidindi et al. (Kalidindi et al., 2006b) developed another new formulation for 

performing more efficient crystal plasticity calculations using spectral database. The 

main idea of this new approach is based on building a spectral database that constitute 

efficient representations for the solutions of some important variables in crystal plasticity 

models. Then, one can use that database to perform all subsequent calculations without 

the need to solve the crystal plasticity equations. The main variables in this approach are 

selected such that they constitute the essential information needed for predicting the 

evolution of crystallographic texture and the anisotropic stress-strain behavior when 

solving the classical crystal plasticity equations.  These variables include  (i) the five 

independent components of the symmetric and deviatoric stress tensor σ′ij, (ii) the three 

independent component of the skew-symmetric lattice spin tensor Wij
∗, and (iii) the total 

shear rate ∑ |γ̇𝛼|𝜶 . In this approach, the orientation dependence of these variables under 

specified imposed deformation mode is captured in a spectral representation using 

generalized spherical harmonics as follow:  

 

Wij
∗(g) = ∑∑ ∑ 𝐴𝑖𝑗 𝑙

𝜇𝜈
 �̈�𝑙

𝜇𝜈(g)

2𝑙+1

𝜈=1

𝑀(𝑙)

𝜇=1

∞

𝑙=1

 (2.9) 

σ′ij(g) = ∑∑ ∑ 𝑆𝑖𝑗 𝑙
𝜇𝜈
 �̈�𝑙

𝜇𝜈(g)

2𝑙+1

𝜈=1

𝑀(𝑙)

𝜇=1

∞

𝑙=1

 
(2.10) 
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∑|γ̇α|

α

(g) = ∑∑ ∑  𝐺𝑙
𝜇𝜈
 �̈�𝑙

𝜇𝜈(g)

2𝑙+1

𝜈=1

𝑀(𝑙)

𝜇=1

∞

𝑙=1

 (2.11) 

where 𝐴𝑖𝑗 𝑙
𝜇𝜈

, 𝑆𝑖𝑗 𝑙
𝜇𝜈

, and 𝐺𝑙
𝜇𝜈

 represent the Fourier coefficients and �̈�𝑙
𝜇𝜈

denote the 

symmetrized generalized spherical harmonics, the two dots on the generalized spherical 

functions imply cubic crystal symmetry and triclinic sample symmetry. The independent 

variable g denotes the crystal lattice orientation defined using the Bunge-Euler angles 

which is a set of three orientations g = (φ1, ϕ, φ2)  that bring the crystal frame into 

coincidence with the sample frame (Bunge, 1993b). It should be noted that the 

development of the spectral database in this approach requires high computational cost 

but it is a one-time computational cost. In other words, once the above Fourier 

coefficients are established, they can be used directly in Eqs. ((2.9)-(2.11)) to capture the 

orientation dependence of the above important variables. 

  Although it is demonstrated that the spectral representations described above 

using generalized spherical harmonics can efficiently capture the orientation dependence 

of the selected important variables in the crystal plasticity calculations, it did not 

drastically improve the computational speed (Kalidindi et al., 2006b). This was mainly 

because of the high computational cost required for evaluating the generalized spherical 

harmonics. Knezevic et al. (Knezevic et al., 2008a) has developed another spectral 

database for the same important variables (i.e. deviatoric stresses, the lattice spins, and 

the total shear rates) using discrete Fourier transforms (DFTs) instead of using GSH. In 

this method, the solutions of these main variables predicted using the Taylor model are 

stored on a uniform grid in the orientation space and deformation mode space. Then, 
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these values are used in a local DFT-spectral interpolation to recover the values of these 

variables for any given orientation and deformation mode. It should be noted that the use 

of generalized spherical harmonics described earlier provides a more compact 

representation of the functional dependencies of interest (i.e. less number of terms are 

required to capture the orientation dependence of these variables) because the basis 

functions are already symmetrized for appropriate crystal and sample symmetries. On the 

other hand, the computation of the DFTs in this method is much faster compared to the 

GSH coefficients because of the availability of efficient Fast Fourier Transform (FFT) 

algorithm (Brigham, 1988a; Duhamel and Vetterli, 1990b; William H. Press, 2002; 

William L. Briggs, 1995). This method was applied to face-centered cubic (FCC) metals 

and found to speed up the crystal plasticity calculations by about an order of magnitude 

compared to the direct calculations (Knezevic et al., 2008a). 

Another similar but more efficient spectral computation scheme has been 

developed to solve the crystal plasticity constitutive equations using a compact database 

of DFTs (Knezevic et al., 2009). In this new approach, only a small number of the terms 

in the DFT is used to reconstruct directly the solutions for the main functions of the 

conventional crystal plasticity theory for any given crystal orientation under any applied 

deformation mode. It should be noted that the size of the DFT dataset is essentially equal 

to the size of the discretized function values in their respective domain. However, here 

only a small fraction of the DFTs (called dominant DFTs) were found sufficient to 

capture the orientation dependence of the main variables. The spectral representations are 

again established for the same three main functions: (i) the deviatoric stress tensor 

𝛔′(g, 𝐋), (ii) the lattice spin tensor 𝐖∗(g, 𝐋), and (iii) the total shear rate ∑ |γ̇𝛼|𝜶 (g, 𝐋). In 
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these functions, the independent variable g denotes the crystal lattice orientation defined 

using the Bunge-Euler angles (φ1, ϕ, φ2) (Bunge, 1993b), and 𝐋 represents the velocity 

gradient tensor applied at the crystal level. In any time step in the simulation of the 

deformation process, the stress function gives the values of the deviatoric stress 

components at the crystal level, the spin tensor predicts the crystal rotation, and the total 

shear rates determine the slip hardening rates as defined in Eq. (2.7). It should be noted 

that latent hardening is neglected in this formulation. 

 In the DFT-based spectral approach, the domain of the functions of interest (i.e. 

the domain of the deviatoric stress tensor 𝛔′(g, 𝐋), the lattice spin tensor 𝐖∗(g, 𝐋), and 

the total shear rate ∑ |γ̇𝛼|𝜶 (g, 𝐋)) is the product space of the orientation space and the 

deformation mode space. The crystal orientation may be described using any of the 

different parameterization methods such as Euler angles, Rodriguez vectors, angle-axis 

pairs, and quaternions. In this work, the crystal orientation is defined using the Bunge-

Euler angles (φ1, ϕ, φ2) (Bunge, 1993b). All possible distinct crystal orientations under 

specified combination of crystal and sample symmetries are exist in a subspace (referred 

to as the fundamental zone, FZ) within the entire orientation space. For example, the 

fundamental zone of the cubic-triclinic symmetry (in this notation the first symmetry 

refers to crystal symmetry and the second one refers to the sample symmetry) is defined 

as 

φ1 𝜖 [0, 2𝜋), ϕ ϵ [cos
−1 (

𝑐𝑜𝑠φ2

√1+ cos2φ2

) ,
𝜋

2
] , φ2 𝜖 [0,

𝜋

4
] (2.12) 
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Furthermore, the deformation mode space includes the complete set of all velocity 

gradient tensors which can be efficiently described as (Van Houtte, 1994)  

𝐋 = ε̇ 𝐃o +𝐖,  𝐃o = ∑ Dj
3
j=1  𝐞j

p
⨂𝐞j

p
, ε̇ =

1

2
|𝐋 + 𝐋T| 

D1 = √
2

3
cos (𝜃 −

𝜋

3
), D2 = √

2

3
cos (𝜃 +

𝜋

3
), D3 = −√

2

3
cos (𝜃)  

(2.13) 

where {𝒆𝑖
𝑝, 𝑖 = 1,2,3}  denotes the principal frame of  𝐃o , and the range of angular 

variable 𝜃 that defines all possible diagonal matrices is [
𝜋

6
,
𝜋

2
). The spectral databases are 

built in the {𝒆𝑖
𝑝} reference frame using two primary variables, g𝑝 and 𝜃, where g𝑝 denotes 

the crystal lattice orientation with respect to the {𝒆𝑖
𝑝} reference frame.  

The spectral representations of the functions of interest using the new DFT-based 

database are expressed (Knezevic et al., 2009) as 

𝐖rq
∗ = ε̇

1

Ngp  Nθ
∑∑𝐁kn e

2πikr
Ngp

n

 e
2πinq
Nθ

k

+𝐖 (2.14) 

𝛔′rq = s ε̇m  
1

Ngp  Nθ
∑∑𝐂kn e

2πikr
Ngp

n

 e
2πinq
Nθ

k

 (2.15) 

(∑|γ̇α|

α

)

rq

= ε̇
1

Ngp  Nθ
∑∑Gkn e

2πikr
Ngp

n

 e
2πinq
Nθ

k

 (2.16) 

where r and q enumerate the grid points in the orientation space g𝑝 and the deformation 

mode space 𝜃 , respectively. The corresponding total numbers of grid points in the 

periodic orientation and deformation mode spaces are denoted by 𝑁g𝑝  and 𝑁𝜃 , 
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respectively. The spectral databases for the function of interest described above are stored 

in the form of Fourier coefficients 𝐁𝑘𝑛, 𝐂𝑘𝑛, and 𝐺𝑘𝑛 (referred to as the DFTs). In order 

to compute the DFTs of interest, the values of the functions of interest need to be 

computed on a uniform grid in their respective periodic domains. As described above, it 

is found that only the dominant DFTs are needed to reconstruct the values of the 

functions of interest with a small error compared to the direct crystal plasticity 

computations (Knezevic et al., 2009). This new spectral approach was found to be able to 

speed up the crystal plasticity calculations by about two orders of magnitude. 
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CHAPTER 3 

CRYSTAL PLASTICITY DATABASES FOR BCC AND HCP 

METALS 

 

This chapter describes the development of two spectral databases for BCC and 

HCP metals. These spectral databases are successfully applied to the rigid-viscoplastic 

polycrystal Taylor-type model to predict the texture evolution and stress-strain response 

for a few selected examples of deformation processes. This chapter also demonstrates the 

utility of these spectral databases through selected case studies that include computation 

of the yield surfaces and a new class of plastic property closures.  

3.1 Spectral Databases for BCC Metals 

A new spectral database has been developed and validated for deformation of 

BCC metals with 48 slip systems. The families of potential slip systems for the BCC 

crystals are assumed to include {110}〈1̅11〉, {1̅12}〈11̅1〉 , and {123̅}〈111〉 . The 

components of the slip direction (𝐦0
α) and slip plane normal (𝐧0

α) in the initial crystal 

frame for these slip systems are shown in Table 3.1. The database for BCC metals 

includes the DFTs for the functions 𝛔′(gp, θ), 𝐖∗(gp, θ), and ∑ |γ̇𝛼|𝜶 (gp, θ) (see Eqs. 

(2.14)-(2.16)). These DFTs were computed using the same procedures that were used 

earlier for FCC metals (Knezevic et al., 2009). As previously mentioned, in order to 

compute these DFTs, the values of the functions of interest need to be computed in their 

entire complete respective domain. In this work, the values of the functions 𝛔′(gp, θ), 

𝐖∗(gp, θ), and ∑ |γ̇𝛼|𝜶 (gp, θ) have been computed on a three-degree uniform grid in the 
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crystal orientation space and deformation mode space using the classical crystal plasticity 

model described in Section 2.1. The crystal orientation space is identified as (φ1 ∈

[0,2π), ϕ ∈  [0,2π), φ2 ∈ [0,2π)) and the deformation mode space is identified as θ ∈

 [0,2π). It should be noted that there exist several redundancies in the space identified 

above. However, it is selected because the values of functions of interest are periodic in 

this space. Therefore this space allows efficient spectral representations for the function 

of interests.  
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Table 3.1: Slip systems for BCC crystals; 𝐦0
α and 𝐧0

α denote the slip direction and the 

slip plane normal of the slip system α, respectively in the initial configuration. 

 

α 𝐦0
α 𝐧0

α α 𝐦0
α 𝐧0

α 

1 -1     1     1 1     1     0 25 -1    -1     1 1     2     3 

2 1    -1     1 1     1     0 26 -1     1     1 1    -2     3 

3 1     1     1 -1     1     0 27 1     1     1 -1    -2     3 

4 1     1    -1 -1     1     0 28 1    -1     1 -1     2     3 

5 1    -1    -1 1     0     1 29 -1    -1     1 2     1     3 

6 1     1    -1 1     0     1 30 -1     1     1 2    -1     3 

7 1     1     1 -1     0     1 31 1     1     1 -2    -1     3 

8 -1     1    -1 -1     0     1 32 1    -1     1 -2     1     3 

9 -1    -1     1 0     1     1 33 -1     1    -1 2     3     1 

10 1    -1     1 0     1     1 34 1     1    -1 -2     3     1 

11 1     1     1 0    -1     1 35 1     1     1 -2     3    -1 

12 -1     1     1 0    -1     1 36 -1     1     1 2     3    -1 

13 -1    -1     1 1     1     2 37 -1     1    -1 1     3     2 

14 -1     1     1 1    -1     2 38 1     1    -1 -1     3     2 

15 1     1     1 -1    -1     2 39 1     1     1 -1     3    -2 

16 1    -1     1 -1     1     2 40 -1     1     1 1     3    -2 

17 1     1     1 -1     2    -1 41 1    -1    -1 3     2     1 

18 -1     1     1 1     2    -1 42 1    -1     1 3     2    -1 

19 -1     1    -1 1     2     1 43 1     1     1 3    -2    -1 

20 1     1    -1 -1     2     1 44 1     1    -1 3    -2     1 

21 -1     1     1 2     1     1 45 1    -1    -1 3     1     2 

22 1    -1     1 2     1    -1 46 1    -1     1 3     1    -2 

23 1     1     1 2    -1    -1 47 1     1     1 3    -1    -2 

24 1     1    -1 2    -1     1 48 1     1    -1 3    -1     2 
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After calculating the values of the functions of interest over their entire respective 

domain, the DFTs for these functions are computed using the Fast Fourier transform 

algorithm (Briggs and Henson, 1995; Brigham, 1988b; Cooley and Tukey, 1965; 

Duhamel and Vetterli, 1990a; Press et al., 2002) in the four-dimensional space of gp and 

θ. It should be underlined that the DFTs for these functions are independent of the values 

of gp and θ used in the initial calculation of the functions. In other words, these DFTs can 

be used to reconstruct the values of the above functions for any given crystal orientation 

and deformation mode. Figure 3.1 (a) shows the magnitude of the DFTs (not including 

the zero transform) for σ11
′ (gp, θ) , W12

∗ (gp, θ) , and ∑ |γ̇𝛼|𝛼 (gp, θ)  normalized by the 

largest transform for each component and sorted by the magnitude. It is clear from Figure 

3.1 (a) that it should be possible to represent any of the three functions shown with only a 

few dominant DFTs with only a tolerable loss of accuracy. The accuracy of the spectral 

representation of the functions using only a limited number of dominant transforms was 

evaluated using an error metric defined as 

e =
1

N
∑

|fi − fi
DFT|

fn

N

i=1

 X 100 (3.1) 

where fi  and fi
DFT

denote the values of the function of interest computed at N selected 

locations in the domain of the function using the classical crystal plasticity approach and 

the spectral approach described earlier (using Eqs. (2.14)-(2.16) and only the dominant 

DFTs), respectively, and fn is an appropriate normalization value. In the present work, 

the normalization value has been taken to be three times the initial slip resistance (3s𝑜) 
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for the deviatoric stress components, and (3ε̇) for the spin tensor components and the 

total shearing rate. The locations where the functions were evaluated included a total of 

100,000 distinct combinations of gp  and θ , distributed randomly in their respective 

fundamental zones. The errors computed from Eq. (3.1) for σ11
′ (gp, θ), W12

∗ (gp, θ), and 

∑ |γ̇𝛼|𝜶 (gp, θ)  are plotted against the number of dominant DFTs retained in the 

computation of fi
DFT

 in Figure 3.1 (b). The average error when using 500 dominant DFTs 

was less than 2% for all of these three components. Similar results were also obtained for 

all the five independent components of the deviatoric stress function and the three 

independent components of the spin function studied here. It was also observed that the 

errors noted here for the DFT-based spectral databases for BCC metals were lower than 

the corresponding errors for FCC metals (Knezevic et al., 2009). For example, when 

using 500 dominant DFTs for the deviatoric stress component σ11
′ (gp, θ) with the FCC 

database, the corresponding error was about 2.5%, while it is around 1.5% for the BCC 

database developed here.  The more compact representation of the functions for BCC 

crystals obtained here is attributed to the availability of many more potential slip systems, 

compared to the FCC crystals. The availability of the larger number of slip systems 

results in the functions of interest becoming more uniform in their respective domains, 

and therefore needs lesser numbers of dominant DFTs to achieve the desired accuracy.  
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(a) 

 
(b) 

 

Figure 3.1: (a) Magnitudes of dominant transforms (not including the zero transform) 

normalized by the largest value and sorted by magnitude for the components σ11
′ (gp, θ), 

W12
∗ (gp, θ) , and ∑ |γ̇𝛼|𝛼 (gp, θ) , where Akn  here indicates the dominant DFTs. (b) 

Average percentage error for the same three components computed using Eq. (3.1) for 

different numbers of dominant DFTs retained in the computations for 100,000 

combinations of selected orientations and deformation modes. 
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 The new BCC spectral database developed here was validated by comparing the 

predicted stress-strain curves and deformed textures against the corresponding results 

from the conventional crystal plasticity computations for different deformation processes 

with different initial textures. The predictions from the two approaches are based on the 

simple Taylor-type polycrystal model. The slip hardening parameters used in these 

simulations were those established previously for interstitial-free (IF) steel by curve 

fitting the Taylor predictions to experimental measurements (Peeters et al., 2001). The 

values of these slip hardening parameters were ho = 500 MPa, ss = 230 MPa, a = 2.80, 

and s0 = 50 MPa. As an example, the predicted texture and stress-strain curves for a 

polycrystalline IF steel deformed by simple shear to a shear strain of γ = 0.6 using the 

conventional computational approach and the new DFT spectral approach developed here 

are shown in Figure 3.2. The initial texture in the sample was captured using a set of 

1200 discrete crystal orientations (Peeters et al., 2001). The DFT-based predictions used 

500 dominant DFTs for the stress, the shearing rate, and the lattice spin components. It is 

clear that the DFT-based databases developed here for BCC crystals produce excellent 

predictions, and these are obtained at a significant faster computational speed. The 

simulation time was 130 seconds for the conventional calculations, and only 2.9 seconds 

for the spectral approach using dominant DFTs. The computations were performed on a 

Pentium 4 desktop PC. 
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Figure 3.2: Comparison of the predicted stress-strain curves (top) and pole figures 

(bottom) from the spectral database (using 500 DFTs for the stress, the shearing rate, and 

the lattice spin components) against the corresponding predictions from the conventional 

approach for simple shear of IF steel. 
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 Another validation of the BCC spectral database was carried out by simulating plane 

strain compression on polycrystalline IF-steel to a true strain of ε = -1.0. The initial 

texture was assumed to be random consisting of 1000 discrete crystal orientations. The 

stress-strain response and the deformed texture computed from the new DFT spectral 

approach, using only 300 dominant DFTs for the stress, the shearing rate, and the lattice 

spin components, are compared against the corresponding predictions from the traditional 

crystal plasticity approach as shown in Figure 3.3. It is clear that the two predictions are 

in excellent agreement with each other. For this case study, the simulation took 110 

seconds using the conventional calculations, but only 2.1 seconds using the spectral 

approach using dominant DFTs. 
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Figure 3.3: Comparison of the predicted stress-strain curves (top) and pole figures 

(bottom) from the spectral database (using 500 DFTs for the stress, the shearing rate, and 

the lattice spin components) against the corresponding predictions from the conventional 

approach for plane strain compression of IF steel. 
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3.2 Spectral Databases for HCP Metals 

Following the approach described earlier, new spectral databases have been 

developed for HCP metals assuming that the material deform solely by slip. Although 

twining is an important deformation mechanism and often observed in HCP metals such 

as magnesium and pure titanium (Christian and Mahajan, 1995; Chun et al., 2005; 

Knezevic et al., 2010; Levinson et al., 2013; Nemat-Nasser et al., 1999; Salem et al., 

2003; Salem et al., 2005; Zeng et al., 2009), some other important HCP metals like Ti-Al 

alloys are mainly deformed by slip (Conrad, 1981; Williams et al., 2002; Zaefferer, 

2003). The families of potential slip systems for HCP crystals are assumed to include the 

prismatic {101̅0}〈112̅0〉 , basal {0001}〈112̅0〉 , and pyramidal {101̅1}〈112̅3〉  slip 

systems as shown in Table 3.2. These families of slip systems can have different critical 

resolved shear stress values because of the low symmetry in HCP crystals. In this work, 

two different slip resistance ratios that are reported in the literature for Ti-6Al-4V were 

used to generate the spectral databases. The first slip resistance ratio was taken to be 

1:0.75:3.0 in the basal, prism, and pyramidal slip systems respectively (BIELER, 2001). 

The second slip resistance ratio was taken to be 1:1.5:2.0:1.8:1.3:1.3:3.0 in the prism 

(a1), prism (a2), prism (a3), basal (a1), basal (a2), basal (a3), and pyramidal (c+a) slip 

systems respectively (Salem and Semiatin, 2009). The spectral databases developed in 

this section for these two slip resistance ratios will be hereafter referred to as HCP slip 

ratio A database and HCP slip ratio B database, respectively. 
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Table 3.2: Slip systems for HCP metals used in this work for developing the HCP 

databases. 

 

No. Slip plane Slip direction Slip system ID 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

0     0     0     1 

0     0     0     1 

0     0     0     1 

0     1    -1     0 

1     0    -1     0 

1    -1     0     0 

0     1    -1     1 

0     1    -1     1 

1     0    -1     1 

1     0    -1     1 

1    -1     0     1 

1    -1     0     1 

0    -1     1     1 

0    -1     1     1 

-1     0     1     1 

-1     0     1     1 

-1     1     0     1 

-1     1     0     1 

-2     1     1     0 

1    -2     1     0 

1     1    -2     0 

-2     1     1     0 

1    -2     1     0 

1     1    -2     0 

-1     2    -1    -3 

1     1    -2    -3 

2    -1    -1    -3 

1     1    -2    -3 

2    -1    -1    -3 

1    -2     1    -3 

1    -2     1    -3 

-1    -1     2    -3 

-2     1     1    -3 

-1    -1     2    -3 

-1     2    -1    -3 

-2     1     1    -3 

Basal a1 

Basal a2 

Basal a3 

Prism a1 

Prism a2 

Prism a3 

Pyramidal <c+a> 

Pyramidal <c+a> 

Pyramidal <c+a> 

Pyramidal <c+a> 

Pyramidal <c+a> 

Pyramidal <c+a> 

Pyramidal <c+a> 

Pyramidal <c+a> 

Pyramidal <c+a> 

Pyramidal <c+a> 

Pyramidal <c+a> 

Pyramidal <c+a> 
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The spectral representations were established for the functions 𝛔′(gp, θ) , 

𝐖∗(gp, θ), and ∑ |γ̇𝛼|𝜶 (gp, θ) (se Eqs. (2.14)-(2.16)). It should be noted that the total 

shear rates here is the sum of the shearing rates on all basal, prism, and pyramidal slip 

systems. For simplicity, we assumed here that the ratio of the slip resistance between the 

different slip system families remains constant. In order to allow for different hardening 

on the different slip systems, one needs to keep track of the shearing rates on the different 

slip systems individually. The same procedure described earlier was followed to compute 

the DFTs for the functions of interest. Figures 3.4 shows the magnitude of the DFTs (not 

including the zero transform) for the components σ11
′ (gp, θ) , W12

∗ (gp, θ) , and 

∑ |γ̇𝛼|𝛼 (gp, θ) normalized by the largest transform and sorted by the magnitude for the 

two spectral HCP databases developed in this study (HCP slip ratios A and B databases). 

It can be seen from Figures 3.4 that the values of the functions of interest can be captured 

with only a few dominant DFTs. The average percentage error between the classical 

crystal plasticity and the spectral approach using HCP slip ratio A database based on 500 

dominant DFTs was about 3.4 % for the deviatoric stress component σ11
′ (gp, θ) using Eq. 

(3.1). Several other similar results were obtained for the other components using slip ratio 

A and B databases. 
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(a) 

 

(b) 

Figure 3.4: Magnitudes of dominant transforms (not including the zero transform) 

normalized by the largest value and sorted by magnitude for the components σ11
′ (gp, θ), 

W12
∗ (gp, θ), and ∑ |γ̇𝛼|𝛼 (gp, θ), where Akn here indicates the dominant DFTs: (a) HCP 

slip ratio A, and (b) HCP slip ratio B. 

 
 

 

 

In order to validate the HCP spectral databases developed in this work, we 

simulated plane strain compression on polycrystalline titanium alloy to a true strain of -

1.0 along the compression axis. The polycrystal was assumed to possess a random initial 

texture captured by a set of 1000 discrete crystal lattice orientations as shown in Figure 

3.5. We used two different ratios for the slip resistance to validate HCP slip ratio A 

database and HCP slip ratio B database. For the first material (called titanium alloy A), 

the values of the slip resistance for the basal, prism, and pyramidal slip systems were 

taken as 49.2 MPa, 36.9 MPa, 147.6 MPa, respectively (BIELER, 2001). On the other 

hand, titanium alloy B was assumed to have the following slip resistance values: 44.0 

MPa, 66.01 MPa, 88.0 MPa, 79.2 MPa, 57.2 MPa , 57.2 MPa, 132.0 MPa for the prism 
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(a1), prism (a2), prism (a3), basal (a1), basal (a2), basal (a3), and pyramidal (c+a) slip 

systems, respectively (Salem and Semiatin, 2009). It is assumed that there is no 

hardening prescribed in the material response for this simulation. The value of the strain 

rate sensitivity parameter was taken as 0.02.  

 

 

 

Figure 3.5: Initial random texture used in this case study for titanium alloy. 

 

 

The predictions from the spectral approach to crystal plasticity calculations using 

both HCP ratio A and B databases developed here were compared against the 

corresponding predictions from the classical crystal plasticity approach. The Taylor-type 

assumption is used here to obtain the response of the polycrystalline aggregate. The 

deformed texture and stress-strain curves for titanium alloy A using the conventional 

crystal plasticity and the spectral crystal approach (using HCP slip ratio A database based 

on 500 dominant transforms for the stress, the shearing rate, and the lattice spin 

components) are shown in Figures 3.6 and 3.7, respectively. The predicted results for 
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titanium alloy B using both HCP slip ratio B database (based on 500 dominant transforms 

for the stress, the shearing rate, and the lattice spin components) and the classical 

approach are shown in Figures 3.8 and 3.9. It is clear that the DFT-based approach 

provide excellent predictions at a significantly faster computational speed. The 

simulation took about 148 seconds on a regular PC for the conventional Taylor-type 

calculations, but only 11 seconds for the DFT-based spectral methods using 500 

dominant transforms. 

 

 

 

 

(a) 

 

(b) 

Figure 3.6: Predicted pole figures for plane strain compression of titanium alloy A after a 

true strain of -1.0 using (a) the conventional crystal plasticity approach, and (b) the 

spectral approach using HCP slip ratio A database based on 500 DFTs for the stress, the 

shearing rate, and the lattice spin components. 
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Figure 3.7: Comparison of the predicted stress-strain curves from the spectral method 

using HCP slip ratio A database (based on 500 dominant DFTs for the stress components, 

shearing rate, and the lattice spin components) against the corresponding result from the 

classical Taylor-type model for plane strain compression of titanium alloy A. 

 
 
 
 

 

(a) 

 

(b) 

Figure 3.8: Predicted pole figures for plane strain compression of titanium alloy B after a 

true strain of -1.0 using (a) the conventional crystal plasticity approach, and (b) the 

spectral approach using HCP slip ratio B database based on 500 DFTs for the stress, the 

shearing rate, and the lattice spin components. 
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Figure 3.9: Comparison of the predicted stress-strain curves from the spectral method, 

using HCP slip ratio B database based on 500 and 3000 dominant DFTs for the stress 

components, shearing rate, and the lattice spin components, against the corresponding 

predictions from the classical Taylor-type model for plane strain compression of titanium 

alloy B. 
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3.3 Applications of Spectral Databases: Fast Computation of Yield Surfaces and 

Plastic Property Closures 

This section demonstrates some of the computational advantages of the DFT-

based spectral databases in two important applications. First, a new efficient 

methodology for the fast computation of the yield surfaces in the five-dimensional 

deviatoric stress space for both FCC and BCC metals is developed based on the Taylor 

polycrystal plasticity models. Second, a new class of first-order plastic property closures 

for both FCC and BCC metals is produced for the first time without invoking any 

simplifying assumptions regarding sample symmetry. Both of these points are explained 

in more details next. 

3.3.1 Fast Computation of Yield Surfaces using Spectral Databases 

 It is computationally very expensive to establish the anisotropic yield surface for 

polycrystalline materials using crystal plasticity constitutive equations. For example, in 

order to evaluate the stress values on the yield surface, one needs to calculate the 

effective stress values of the polycrystalline aggregate for all possible deformation modes 

in the strain rate space. This entails extremely long computation times. A new efficient 

method has been developed to delineate the yield surface in the five-dimensional 

deviatoric stress space for both FCC and BCC metals based on the Taylor polycrystal 

plasticity models. The fast computation of the entire five-dimensional yield surface has 

been made possible due to the spectral representations of the stress function (see Eq. 

(2.15)) and the orientation distribution function (ODF) (Bunge, 1993a). A brief review of 

the ODF and its spectral representation is explained next. 
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 The ODF, also referred to as texture, is used to capture the distribution of the crystal 

lattice orientations in a polycrystalline sample. It reflects the normalized probability 

density associated with occurrence of the crystallographic orientation, g, in the sample. 

ODF, denoted as 𝑓(g), is formally defined as 

𝑓(g) 𝑑g =
𝑁g±dg/2

𝑁
, ∫ 𝑓(g) 𝑑g

𝐹𝑍

= 1 (3.2) 

where 𝑁  is the total number of orientations measured in the sample, 𝑁g±dg/2  is the 

number of orientations that lie within an invariant measure 𝑑g  centered about the 

orientation g, and 𝐹𝑍 denotes the fundamental zone of distinct orientations in a suitable 

defined orientation space. The orientation, g, is defined here using the three Bunge-Euler 

angles g = (φ1, ϕ, φ2) 
(Bunge, 1993b). The invariant measure is then defined as  

dg = sinϕ dφ1dϕ dφ2 (3.3) 

The spectral representation of the ODF was suggested first by Bunge (Bunge, 1993a) 

using Generalized Spherical Harmonics (GSH) functions as 

𝑓(g) = ∑∑ ∑𝐹𝑙
𝜇𝜐

𝑁(𝑙)

𝜈=1

𝑀(𝑙)

𝜇=1

∞

𝑙=0

�̇̈�𝑙
𝜇𝜐
(g) (3.4) 

where �̇̈�𝑙
𝜇𝜐
(g)  represent the symmetrized GSH functions and 𝐹𝑙

𝜇𝜐
denote the Fourier 

coefficients. The discrete representation of the ODF can be also established using DFT as 

(Kalidindi et al., 2009)  
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f𝑏 = ∑𝐹k e
2πikb
Ng

𝑘

 (3.5) 

where f𝑏  represents the value of ODF at the grid point in the orientation space 

enumerated by 𝑏, and 𝐹k denotes the DFTs for the ODF calculated as 

Fk = ∑f𝑏 sinϕ𝑏 e
−2πikb

Ng

𝑏

 (3.6) 

 The new approach developed here to efficiently compute the yield surface relies on 

the spectral representations of the ODF (Eq. (3.5)) and the stress function (Eq. (2.15)). 

The orthogonal property of the DFTs allows calculating the volume-averaged value of the 

local stress tensors via simple multiplications of the Fourier coefficients for the stress 

function and ODF.  Thus, the effective stress values of the polycrystalline aggregate 

based on the Taylor model can be efficiently calculated as 

�̅�q
′ = s ε̇m sgn(ε̇)

1

NgNθ
∑∑Fk  𝐂kn  e

2πinq
Nθ

nk

 (3.7) 

where �̅�q
′  denotes the components of the volume averaged deviatoric stress tensor for 

certain deformation mode θ, enumerated by q. 𝐂kn and Fk denote the DFTs for the stress 

function and ODF, respectively. Using this relation, the values of the deviatoric stresses 

on the yield surface for a selected choice of the principle frame of D can be computed by 

exploring all possible deformation modes using the angular variable θ. To establish the 

entire yield surface on the sample frame, one needs to explore the space of all possible 

principle frames. The space of all possible principle frames can be identified using a set 
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of three Euler angles that relate the sample frame to the principle frame. It should be 

noted that only a small number of DFTs for the stress function (𝐂kn) needs to be used in 

Eq. (3.7). This leads to a very efficient computation of the effective deviatoric stress 

tensor. 

This approach has been used successfully to construct the complete five-

dimensional yield surface for both FCC and BCC polycrystalline materials. For BCC 

metals, the families of 48 potential slip systems are assumed to include ,

, and . The spectral database described earlier for BCC metals is 

used in this example (Al-Harbi et al., 2010). Figure 3.10 (a) represents a selected 

projection of the five-dimensional yield surface computed here for IF-steel using 500 

dominant DFTs. The material was assumed to possess a random texture described by a 

set of 1000 discrete crystal orientations. The time required for computing the entire five-

dimensional yield surface (involving computations of the values of 7,200,000 stress 

tensors) was only 170 seconds.  In order to check the accuracy of the yield surface, the 

(σ11, σ22) section of the IF-steel yield surface computed using 500 dominant DFTs was 

compared against the one computed using the conventional approach as shown in Figure 

3.10 (b). It is clear that the DFT-based computations are in excellent agreement with the 

conventional computations. 

 

 

 110 111

 112 111  123 111
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Figure 3.10: (a) Three-dimensional projection of the yield surface computed using the 

DFT-based spectral method for IF-steel with a random texture; (b) plots of the predicted 

(𝛔𝟏𝟏, 𝛔𝟐𝟐) −yield locus for the same material comparing the spectral approach with the 

conventional Taylor approach. 

 

 

The new spectral approach described here for computing the yield surface is also 

applied to FCC metals. For FCC metals, the family of twelve {111}〈11̅0〉 slip systems 

are assumed to be the potential slip systems for plastic deformation. The components of 

the slip direction (𝐦0
α) and slip plane normal (𝐧0

α) in the initial crystal frame for these 

slip systems are shown in Table 3.3. In this example, the spectral database developed and 

validated in prior work for FCC metals is used (Knezevic et al., 2009). Figure 3.11 shows 

the yield loci in the π-plane for polycrystalline copper computed using 500 dominant 

DFTs from the FCC database and the corresponding predictions from the conventional 

calculations. In this example, the metal was assumed to possess a texture that is typically 
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observed in rolled FCC samples. This texture was described by a set of 1000 discrete 

orientations, which was obtained by simulating plane strain compression to a true strain 

of -1.0 on an initially random texture. It was seen once again that the DFT method can 

reproduce all of the features of the conventional computations for this strongly textured 

sample.  

 

Table 3.3: Slip systems for FCC crystals; 𝐦0
α and 𝐧0

α denote the slip direction and the slip 

plane normal of the slip system α, respectively in the initial configuration. 

 

α 𝐦0
α 𝐧0

α 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

1    -1     0 

1     0    -1 

0     1    -1 

1     0     1 

1     1     0 

0     1    -1 

1     0    -1 

0     1     1 

1     1     0 

1    -1     0 

1     0     1 

0     1     1 

1     1     1 

1     1     1 

1     1     1 

-1     1     1 

-1     1     1 

-1     1     1 

1    -1     1 

1    -1     1 

1    -1     1 

1     1    -1 

1     1    -1 

1     1    -1 
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Figure 3.11: Plots of yield surface on the π-plane (top) computed using the spectral 

methods and the conventional approach for polycrystalline FCC copper. The texture 

(bottom) in the sample was assumed to be representative of textures found in rolled 

FCC samples. 
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3.3.2 Plastic Property Closures for Cubic-Triclinic Textures 

Property closures define the complete space of all possible selected combinations 

of effective properties in a given material system for a selected homogenization theory 

(Adams et al., 2001; Adams et al., 2004; Fast et al., 2008; Fullwood et al., 2007; 

Houskamp et al., 2007; Kalidindi et al., 2006a; Kalidindi et al., 2004b; Knezevic and 

Kalidindi, 2007; Lyon and Adams, 2004; Proust and Kalidindi, 2006; Wu et al., 2007). 

The elastic-plastic property closures of polycrystalline materials are of great interest in 

the design of new materials with enhanced properties. The property closure is essentially 

obtained by mapping every possible microstructure in a given material system into the 

corresponding properties of interest in the property space. It is computationally very 

expensive to construct the property closures for polycrystalline materials using physics-

based models.  

The first-order property closures are established based on the first-order statistics 

of the material microstructure (Knezevic and Kalidindi, 2007; Knezevic et al., 2008b; 

Proust and Kalidindi, 2006; Wu et al., 2007). For polycrystalline materials, the first-order 

statistics of microstructure is generally described using the crystallographic texture (also 

called orientation distribution function or ODF), also referred to as texture. Thus, the 

first-order property closures in polycrystalline materials are essentially obtained by 

mapping all possible textures into the selected property spaces of interest. It should be 

noted that the complete set of all theoretically possible textures, referred to as texture 

hull, can be conveniently expressed using the Fourier representations of the texture (see 

Eqs. (3.4)-(3.6)) (Adams et al., 2001; Kalidindi et al., 2009; Proust and Kalidindi, 2006; 

Wu et al., 2007). Several optimization techniques have been used to construct the 
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property closures including the gradient methods (Proust and Kalidindi, 2006), Pareto-

front methods (Fullwood et al., 2007), and genetic-like algorithm (Knezevic et al., 

2008b).  

The delineation of plastic property closures for polycrystalline materials using 

crystal plasticity theories, which take into account the effect of texture, entails long 

computation times. Therefore, all of the previously reported plastic property closures 

have been established for polycrystalline materials that exhibit orthorhombic sample 

symmetry. This is mainly because of the high computational cost associated with 

evaluating the effective plastic properties using crystal plasticity theories without the 

simplifying assumption of sample symmetry. To illustrate this point, consider the 

evaluation of the typical plastic properties of interest, such as uniaxial yield strength, 

using crystal plasticity models. In order to establish these plastic properties, it is 

necessary to guess the imposed deformation mode that would correspond to the stress 

state of interest. Without any simplifying assumption of sample symmetry, this search has 

to take place over the entire domain of the deformation mode. This is essentially 

equivalent to the computation of the entire yield surface. However, it will become much 

easier to evaluate some of the plastic properties of interest under the assumption of 

orthorhombic sample symmetry. For example, in evaluating the uniaxial yield strength 

with the assumption of orthorhombic sample symmetry, the following macroscopic 

velocity gradient is commonly imposed 

𝐋 = ε̇ [

1 0 0
0 −q 0
0 0 −(1 − q)

] (3.8) 
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where the single parameter q can take any value between 0 and 1. The effective tensile 

yield strength is calculated by adjusting the value of q (denoted as q∗) such that the 

lateral deviatoric stresses over the polycrystal are equal to each other (i.e. 𝜎22
′ (q∗) =

𝜎33
′ (q∗)). Then, the tensile yield strength in the e1 direction is simply given by 

σy1 = 𝜎11
′ (q∗) − 𝜎22

′ (q∗) (3.9) 

For cubic-triclinic textures (in this notation the first symmetry refers to crystal symmetry 

and the second one refers to the sample symmetry), the typical plastic properties of 

interest are most conveniently computed by establishing the yield surface. However, the 

computation of the yield surface for polycrystalline materials using crystal plasticity 

constitutive equations is computationally very expensive.  

The new efficient methodology for the fast computation of the yield surface 

described in the previous section has been utilized to construct the first-order plastic 

property closures for cubic polycrystalline materials without assuming any sample 

symmetry (i.e. cubic-triclinic symmetry). It is emphasized here that the highly efficient 

computation of the yield surface is obtained by using the DFT databases. Several plastic 

property closures have been constructed for cubic-orthorhombic and cubic-triclinic 

textures for both FCC and BCC metals based on the Taylor-type model. The genetic-like 

algorithm (Knezevic et al., 2008b) has been followed here for building the first-order 

plastic closures. In the genetic-like algorithm, the property combinations of interest are 

first evaluated for a set of crystal orientations that are uniformly distributed over the 

crystal orientation space. Then, weighted combinations of crystal orientations located on 
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the boundary are used to expand the property closure. The process is repeated until the 

closure does not expand any more. 

One of the goals of this study is to quantify the expected increase in the plastic 

property closures, and the potential design spaces, by relaxing the assumption of 

orthorhombic sample symmetry. In this work, two plastic property closures were 

computed for both FCC copper and BCC IF-steel. Figure 3.12 shows the first-order 

closures delineating all of the feasible combinations of the normalized yield strengths in 

the sample e1 and e2 directions (i.e. and ) for copper and IF-steel computed 

assuming both orthorhombic and triclinic sample symmetries. Figure 3.12 clearly 

indicates that some combinations of and cannot be attained with the cubic-

orthorhombic textures. Comparison of the closures in Figure 3.12 (a) and Figure 3.12 (b) 

reveals that the difference between the cubic-orthorhombic and the cubic-triclinic 

property closures is considerably larger for FCC metals compared to BCC metals. This 

observation is attributed to the availability of the higher number of slip systems in the 

BCC metals (48 slip systems in BCC compared to only 12 in the FCC crystals). The 

higher number of slip systems are expected to lower the degree of anisotropy in the 

response of the BCC metals, and should therefore reduce the difference between cubic-

orthorhombic and cubic-triclinic closures for these metals compared to the FCC metals.  

 

y1 y2

y1 y2
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Figure 3.12: First-order cubic-triclinic and cubic-orthorhombic plastic closures for 

 computed using the DFT-based methods developed in this work. (a) 

OFHC Copper, (b) IF-steel. 
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Textures corresponding to the highest values of the tensile yield strengths in 

Figure 3.12 (a) and Figure 3.12 (b) are depicted in Figure 3.13. It is seen that the highest 

tensile strength for copper was obtained for a single crystal oriented close to the 

(111)[11̅1̅]  orientation. However, this single crystal is not represented in the cubic-

orthorhombic closure. The highest tensile yield strength in the cubic-orthorhombic 

closure, based on the Taylor model used here, is obtained by a crystalline aggregate 

comprising of four equi-volume crystals that are close to the (110)〈111〉 orientations. 

Note that the highest possible tensile yield strength in the orthorhombic closure (for the 

aggregate comprising four equi-volume crystals) is 7% lower than the corresponding 

optimum solution in the triclinic closure (for the single crystal). For IF-steel, the 

orientation corresponding to the highest yield strength was found to be the (132)[1̅11̅] 

orientation, whereas the highest yield strength with orthorhombic sample symmetry 

corresponded to a texture that may be visualized as (111) fiber texture with the (111) 

direction parallel to the tensile loading direction. The difference in their yield strengths 

was only 3%, somewhat lower than the corresponding difference noted earlier for FCC 

copper. As noted earlier, the imposition of the orthorhombic sample symmetry had a 

larger effect on FCC closures compared to the BCC closures. Nevertheless, the results 

presented here do indicate that relaxing the assumption of orthorhombic sample 

symmetry increases the design space and identifies new solutions for optimized 

performance of materials.  
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Figure 3.13: Predicted textures at salient points of interest in Figure 3.12 corresponding 

to the highest values of tensile yield strength, 𝛔𝐲𝟏. 
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As another example, we show the first-order cubic-orthorhombic and cubic-

triclinic plastic closures for ( , ) for both copper and IF steel in Figure 3.14. Once 

again the imposition of the orthorhombic sample symmetry was seen to produce a bigger 

effect on the FCC closure compared to the BCC closure. The fact that the difference is 

consistently larger with a lower number of slip systems (i.e. a higher degree of 

anisotropy) suggests that the effect will be even larger in the case of other lower 

symmetry crystal structures such as HCP metals.  

 

 

(a) (b) 

Figure 3.14:  First-order property closures for polycrystalline materials 

computed using DFT methods based on cubic-triclinic and cubic-orthorhombic 

symmetries. (a) OFHC Copper, (b) IF-steel. 
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CHAPTER 4 

INTEGRATING THE SPECTRAL CRYSTAL PLASTICITY 

DATABASES INTO FE SIMULATION TOOLS  

 

The remarkable savings in the computational time involved in solving the crystal 

plasticity constitutive equations using the new spectral database scheme described in 

Chapter 3 provide a significant incentive for incorporating it with FE simulation tools. 

This will allow the user to conduct more efficient CPFEM simulations at dramatically 

reduced computational cost. This chapter explains how the crystal plasticity DFT 

databases were integrated with the commercial finite element package ABAQUS through 

a user materials subroutine (UMAT); this approach will be hereafter referred to as 

spectral database CPFEM or simply SD-CPFEM. To use the new spectral database 

scheme in the FE analysis, two tasks must be accomplished. First, the crystal plasticity 

computations using spectral databases should be extended from rigid-viscoplastic into 

elastic-viscoplastic deformation. Second, the fourth-rank Jacobian matrix (defined as the 

derivative of the stress tensor with respect to the increment in strain tensor) needs to be 

computed efficiently to facilitate integration of the spectral databases with any implicit 

finite element code. Both of these developments are discussed in more detail next. 

4.1 Including Elastic Deformation in the DFT Database Approach 

 The crystal plasticity calculations using spectral databases need to be extended from 

rigid-viscoplastic behavior to elastic-viscoplastic deformation. Although the elastic 

deformation in most metals subjected to finite plastic deformation is indeed very small 

and can be neglected, it is essential to include elasticity for implementing crystal 
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plasticity computations with most commercial FE codes. This is mainly because most FE 

simulation tools, such as ABAQUS (ABAQUS, 2010), provide the total deformation 

gradient at each integration point as an input to the user-defined material constitutive 

response (through subroutines such as UMAT in ABAQUS), and expect to be returned 

the full stress tensor (not just the deviatoric stress tensor). Furthermore, elasticity plays an 

important role in phenomena such as the springback effect, which is an elasticity driven 

change in the shape of a part upon unloading.  

The following constitutive relations are used to include the elastic deformation 

with the spectral crystal plasticity approach:  

𝛕𝛁∗ = �̃� 𝐃∗   (4.1) 

where 𝐃∗ is the elastic stretching tensor, �̃� is the 4th-rank elasticity tensor, and 𝛕𝛁∗ is the 

Jaumann rate of the Kirchoff stress seen by an observer who rotates with the lattice and is 

defined as 

𝛕𝛁∗ = �̇� −𝐖∗𝛕 + 𝛕𝐖∗    (4.2) 

The Jaumann rate of the Kirchoff stress can be related to the Jaumann rate of the Cauchy 

stress 𝛔𝛁∗ as follow:  

𝛕𝛁∗ = 𝛔𝛁∗ + tr(𝐃∗)𝛔  (4.3) 

where 𝛔𝛁∗ is the Jaumann rate of the Cauchy stress based on the axes that spin together 

with the lattice and is defined as 
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𝛔𝛁∗ = �̇� −𝐖∗𝛔+ 𝛔𝐖∗ (4.4) 

 

In order to use the above relations, the total stretching tensor 𝐃 (symmetric part of 

the velocity gradient tensor) needs to be decomposed into elastic and plastic parts. This 

decomposition must be accomplished such that the deviatoric stresses computed from 

both the crystal plasticity DFT databases (see Eq. (2.15), denoted here as 𝛔′DFT(𝐃𝑝)) and 

the above Jaumann rate relations (denoted as 𝛔′Jmn(𝐃∗,𝐖∗, △t)) are equal to each other 

within an acceptable tolerance. It should be noted that the trace of the stretching tensor 

contributes exclusively to the elastic deformation (assuming that the plastic deformation 

in metals is isochoric). In other words, only the five independent components of the 

deviatoric stretching tensor need to be decomposed into elastic and plastic parts. The 

following modified Newton-Raphson scheme has been developed to accomplish this 

decomposition:  

[𝐃′∗]𝑛+1 = [𝐃′∗]𝑛 − λ  [𝐉]𝑛
−1[𝐄𝐫𝐫]𝑛  (4.5) 

where 

𝐄𝐫𝐫 = 𝛔′DFT(𝐃𝑝) − 𝛔′Jmn(𝐃∗,𝐖∗, △t)  (4.6) 

𝐉 =
𝜕𝐄𝐫𝐫

𝜕𝐃′∗ = −
𝜕𝛔′

DFT
(𝐃𝑝)

𝜕𝐃𝑝 −
𝜕𝛔′

Jmn
(𝐃∗,𝐖∗,△t)

𝜕𝐃∗       (4.7) 

In Eq. (4.5), the subscripts 𝑛  and 𝑛 + 1  refer to the estimates of 𝐃′∗  at 𝑛  and 𝑛 + 1 

iterations, respectively. The value of the scalar parameter λ in Eq. (4.5) is selected such 
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that the magnitude of the step correction ‖∆𝐃′∗‖ = ‖[𝐃′∗]𝑛+1 − [𝐃′∗]𝑛‖   ≤ η  εyield , 

where 𝜀𝑦𝑖𝑒𝑙𝑑 denotes the magnitude of the total strain at yielding and 𝜂 is a numerical 

constant taken as 0.1.  

It was observed that the initial guess of 𝐃′∗  strongly affected the number of 

iterations required to reach convergence in the iterative procedure presented in this work. 

The following strategy was found to give good results for the initial guess of 𝐃′∗. First, 

the values of the deviatoric stress components and the lattice spin tensor are calculated 

using the spectral crystal plasticity approach assuming rigid-viscoplastic behavior, i.e. 

𝐃′p = 𝐃′ . These values are then used in (Eqs. (4.1)-(4.4)) to calculate the deviatoric 

elastic stretching tensor, 𝐃′∗ . If ‖𝐃′∗‖ < 0.1‖𝐃′‖, use the computed 𝐃′∗  as the initial 

guess to start the iterations. Else, the deviatoric stretching tensor, 𝐃′, is used as an initial 

guess for 𝐃′∗. A flow diagram illustrating the strategy of finding the initial guess of 𝐃′∗ is 

given in Figure 4.1. The iterations are carried out until the maximum of the absolute 

difference in all components of 𝐃′∗  between two successive iterations is less than 

10−4 ‖𝐃′‖. Convergence is typically obtained within two iterations; a higher number of 

iterations are generally required near the elastic-plastic transition zone or during any 

loading path change.  

 

 

 

 

 



 63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Flow diagram that illustrate the strategy followed in this work to find the 

initial guess of 𝐃′∗ 
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To verify the stability and accuracy of the above iteration scheme, we have 

simulated a reverse shearing process using both the spectral database CPFEM approach 

described in this work and compared the results with those obtained from the classical 

CPFEM approach (Kalidindi et al., 1992). The FE model is a single cuboid-shaped three-

dimensional eight-noded solid element (C3D8) in ABAQUS (ABAQUS, 2010) with the 

same initial crystal orientation assigned to all eight integration points. The single element 

is sheared up to a shear strain of γ=0.5 followed by shearing in the opposite direction. 

The elastic and plastic property parameters in this model are listed in Table 4.1 (these 

correspond to OFHC copper reported in literature (Kalidindi et al., 1992)). The single 

crystal is assumed to exhibit the twelve {111}〈11̅0〉 slip systems characteristic of FCC 

metals (see Table 4.1). Figure 4.2 shows the predicted stress-strain responses from both 

the spectral database CPFEM (using 500 dominant DFTs for the stress, the shearing rate, 

and the lattice spin components) and the classical CPFEM for a selected crystal lattice 

orientation. Several other similar results are obtained for other random crystal 

orientations. It is clear that the new iteration algorithm described above can accurately 

capture the elastic response during loading and unloading cycles, and the predictions 

from both approaches are in excellent agreement with each other. 
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Table 4.1: Elastic and plastic parameters of the OFHC Copper used in this work 

(Kalidindi et al., 1992) 

 

C11 

(MPa) 

C12 

(MPa) 

C44 

(MPa) 

𝑚 

So 

(MPa) 

ho 

(MPa) 

ss  

(MPa) 

𝑎 

168400 121400 75400 0.01 16 180 148 2.25 

 

 

 

 

Figure 4.2: Stress-strain curves of reverse shearing process using both the spectral 

database CPFEM (SD-CPFEM) and the classical CPFEM of copper single element. 
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4.2 Computation of the Jacobian 

The implementation of UMAT in ABAQUS (ABAQUS, 2010) requires the 

computation of the Jacobian defined as 

𝓙 =
𝜕Δ𝛔

𝜕Δ𝛆
≡

𝜕𝛔

𝜕𝐄𝑡
 (4.8) 

where Δ𝛔 and Δ𝛆  are the increments in the stress and strain tensors in a given time 

increment, respectively, and 𝐄𝑡 is the relative strain tensor in the same time increment. 

The Jacobian matrix of Eq. (4.8) is used in the Newton-Raphson iterative method for 

revising the estimated displacements such that the corresponding stresses are likely to 

better satisfy the principal of virtual work at the end of the increment. It should be noted 

that the Jacobian matrix plays an important role in the rate of convergence of the solution 

to the global equilibrium equations, but has no effect on the accuracy of the solution. For 

the present work, the following analytical expression for the Jacobian is developed  

 

𝓙 =
𝜕𝛔

𝜕𝐄𝑡
=
𝜕𝛔′

𝜕𝐄𝑡
+ 𝐈⊗

𝜕𝑝

𝜕𝐄𝑡
=

𝜕𝛔′

𝜕𝐃′

𝜕𝐃′

𝜕𝐄𝑡
+ 𝐈⊗

𝜕𝑝

𝜕𝐄𝑡
 (4.9) 

with 

∂𝛔′

∂𝐃′
=

∂𝛔′

∂𝐃p

∂(𝐃′ − 𝐃′∗)

∂𝐃′
=

∂𝛔′

∂𝐃p
 (𝕝 −

∂𝐃′∗

∂𝛔′

∂𝛔′

∂𝐃′
)  

∂𝛔′

∂𝐃′
+

∂𝛔′

∂𝐃p
 
∂𝐃′∗

∂𝛔′

∂𝛔′

∂𝐃′
=

∂𝛔′

∂𝐃p
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𝜕𝛔′

𝜕𝐃′
= [𝕝 +

𝜕𝛔′

𝜕𝐃𝑝

𝜕𝐃′∗

𝜕𝛔′
]

−𝟏
𝜕𝛔′

𝜕𝐃𝑝
 (4.10) 

where 𝑝 denotes the pressure, and 𝐈 and 𝕝 are the second-rank and fourth-rank identity 

tensors, respectively. The term in Eq. (4.10) that requires long computations is 
𝜕𝛔′

𝜕𝐃𝑝
.  This 

term is evaluated analytically using the chain rule as follow: 

 

𝜕𝛔′

𝜕𝐃𝑝
= [(

∂𝛔′

∂ε̇
|
θ,φ1

D,ΦD,φ2
D

  
∂ε̇

∂𝐃𝑝
) + (

∂𝛔′

∂θ
|
ε̇,φ1

D,ΦD,φ2
D

  
∂θ

∂𝐃𝑝
) + (

∂𝛔′

∂φ1
D
|
θ,ε̇,ΦD,φ2

D

  
∂φ1

D

∂𝐃𝑝
)

+ (
∂𝛔′

∂ΦD
|
θ,ε̇,φ1

D,φ2
D

  
∂ΦD

∂𝐃𝑝
) + (

∂𝛔′

∂φ2
D
|
θ,ε̇,φ1

D,ΦD

  
∂φ2

D

∂𝐃𝑝
)] 

 

(4.11) 

where (φ1
D, ΦD, φ2

D)  denotes the set of three Bunge-Euler angles that describe the 

orientation matrix [Q𝐷] used to transform the deviatoric stress tensor from the principle 

frame of 𝐃𝑝 {𝒆𝑖
𝑝} into the sample frame {𝒆𝑖

𝑠}: 

𝒆𝑖
𝑠 = ∑Qij

D

𝒋

𝒆𝑗
𝑝
 (4.12) 

For simplicity of notation, Eq. (4.11) will be expressed in a condensed form as 

𝜕𝛔′

𝜕𝐃𝑝
= [(

∂𝛔′

∂ε̇
|
θ,gD

  
∂ε̇

∂𝐃𝑝
) + (

∂𝛔′

∂θ
|
ε̇,gD

  
∂θ

∂𝐃𝑝
) + (

∂𝛔′

∂gD
|
ε̇,θ

  
∂gD

∂𝐃𝑝
)] (ِ4.13) 

where gD = (φ1
D, ΦD, φ2

D).  
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Analytical expressions for each of the terms in Eq. (ِ4.13) have been derived and 

validated by comparing the values produced from these expressions with the 

corresponding values computed numerically by slightly perturbing the independent 

variable in each expression. It should be noted that, in any time step in the simulation, the 

term 
𝜕𝛔′

𝜕𝐃𝑝 will be already calculated as a part of the iteration scheme to decompose the 

stretching tensor into elastic and plastic part (see Eq. (4.7)). Consequently, there is 

tremendous computational advantage in formulating the Jacobian computation as 

described in this section. The derivations of the terms in Eq. (ِ4.13) are discussed in more 

details next. 

Recall that the deviatoric stress tensor is calculated using the spectral approach 

(see Eq.(2.15)) as 

𝛔′
𝑟𝑞
(𝑝𝑟)(θ, ε̇, gp)  = 𝑠 ε̇𝑚   

1

𝑁g𝑝  𝑁𝜃
∑∑𝐂𝑘𝑛 𝑒

2𝜋𝑖𝑘𝑟
𝑁g𝑝

𝑛

 𝑒
2𝜋𝑖𝑛𝑞
𝑁𝜃

𝑘

 (ِ4.14) 

where the superscript (pr) indicates that the stress values are defined in the principal 

frame of 𝐃𝑝. This stress tensor can be transformed to the sample frame using the second-

rank transformation  

𝛔′(𝐃𝑝, g) = [Q𝐷]    [ 𝛔′(Pr)(θ, ε̇, gp)]    [Q𝐷]T (ِ4.15) 

where g  denotes the crystal lattice orientation defined using the Bunge-Euler angles 

(φ1, ϕ,φ2) (Bunge, 1993b). It should be noted that the Bunge-Euler angles g𝑝, g, and g𝐷 

are not independent of each other. In fact, one can readily show (see Figure 4.3) 
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[Q𝑝] =    [Q𝐷]T [Q] (ِ4.16) 

where [Q𝑝] is the orientation matrix that brings the crystal frame {𝒆𝑖
𝑐} into coincidence 

with the principal frame of 𝐃𝑝, 𝑖. 𝑒.  {𝒆𝑖
𝑝
}, and [Q]  is the rotation matrix that relates the 

crystal frame {𝒆𝑖
𝑐} to the sample frame {𝒆𝑖

𝑠}. These orientation matrices can be calculated 

using their respective three Bunge-Euler angles. For example, the rotation matrix [Q] is 

given by 

[Q]   =    [

cosφ1 cosφ2 − sinφ1 sinφ2 cosФ    − cosφ1 sinφ2 − sinφ1 cosφ2 cosФ    sinφ1 sinФ  
sin φ1 cosφ2 + cosφ1 sinφ2 cosФ  − sinφ1 sin φ2 + cosφ1  cos φ2 cosФ     −cosφ1 sinФ

sinφ2  sinФ                                                  cos φ2  sinФ                                          cosФ
 

]  

 (ِ4.17) 

 
Figure 4.3: A schematic that shows the relations between the sample frame, the principal 

frame of 𝐃𝑝, and the crystal lattice frame. 

[Q𝐷] 

[Q𝑝] 
[Q] 

Sample frame 

Principal frame 

Crystal frame 
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Using the above relations (Eqs. (4.14)-(4.17)), the analytical expressions for the 

terms in Eq. (ِ4.13) can be derived as follows (for simplicity, assume that there is no 

strain hardening, i.e. 𝑠 is constant in Eq. (4.14)): 

 

1) The term 
∂𝛔′

∂ε̇
|
θ,gD

 in Eq. (ِ4.13) is simply evaluated as 

 
∂𝛔′

∂ε̇
|
θ,gD

=
m 𝑠

ε̇
 [Q𝐷]    [ 𝛔′(Pr)]    [Q𝐷]T (ِ4.18) 

 

2) The term 
∂𝛔′

∂θ
|
ε̇,gD

 in Eq. (4ِ.13) is calculated as 

 
∂𝛔′

∂θ
|
ε̇,gD

= [Q𝐷]    [
𝜕 𝛔′(Pr)

𝜕θ
]    [Q𝐷]T (ِ4.19) 

where 

∂𝛔′
rq
(pr)

∂θ
= s  ε̇m   

1

Ngp  Nθ
∑∑�̃�kn e

2πikr
Ngp

n

 e
2πinq
Nθ

k

  , 

�̃�𝑘𝑛 = 2πin 𝐂𝑘𝑛 

(ِ4.20) 

It is clear that the spectral representation presented in this work allows efficient 

calculation of the term 
∂𝛔′rq

(pr)

∂θ
. 

 

3) The term 
∂θ

∂𝐃p
 in Eq. (ِ4.13) is calculated as 
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∂θ

∂𝐃𝑝
=

∂θ

∂D1

∂D1

∂𝐃𝑝
 (ِ4.21) 

where D1 is the first eigenvalue of 𝐃o defined as (see Eq. (2.13)): 

𝐃p = ε̇ 𝐃o,  𝐃o = ∑ Dj
3
j=1  𝐞j

p
⨂𝐞j

p
 

D1 = √
2

3
cos (𝜃 −

𝜋

3
), D2 = √

2

3
cos (𝜃 +

𝜋

3
), D3 = −√

2

3
cos (𝜃) 

(4.22) 

 

The term 
∂θ

∂D1
 in Eq. (4.21) can be calculated directly from the above expression of D1. 

However, the term 
∂D1

∂𝐃𝑝 is derived analytically using the determinant of 𝐃o defined as 

det(𝐃o) = det (
1

ε̇
𝐃𝑝) = D1D2D3 = D1

3 −
1

2
D1  (4.23) 

 

4) The computation of the term 
∂𝛔′

∂gD
|
ε̇,θ

 in Eq. (4.13) involves the calculations of the 

derivatives 
∂[QD]

∂gD
 and 

∂ σ′
(Pr)

∂gD
 (see Eq. (4.15)): 

 
∂𝛔′

∂gD
|
ε̇,θ

= 𝑓 (
𝜕[Q𝐷]

𝜕gD
,
𝜕 σ′

(Pr)

𝜕gD
) (4.24) 

where  

𝜕 σ′
(Pr)

𝜕gD
 = 

𝜕 σ′
(Pr)

𝜕gp
𝜕gp

𝜕gD
 (4.25) 
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The term 
𝜕 σ′

(Pr)

𝜕gp
 is calculated using an expression similar to Eq. (4.20) given as 

𝜕𝛔′
𝑟𝑞
(𝑝𝑟)

𝜕gp
= 𝑠  ε̇𝑚   

1

𝑁g𝑝  𝑁𝜃
∑∑�̃�𝑘𝑛 𝑒

2𝜋𝑖𝑘𝑟
𝑁g𝑝

𝑛

 𝑒
2𝜋𝑖𝑛𝑞
𝑁𝜃

𝑘

  , 

�̃�𝑘𝑛 = 2πik 𝐂𝑘𝑛 

(ِ4.26) 

Furthermore, the terms 
𝜕gp

𝜕gD
 and 

𝜕[Q𝐷]

𝜕gD
 are derived using Eq. (4.16) and the 

following relations obtained from Eq. (4.17): 

cos(Φp) = [Q𝑝]33 

cos(φ1
p
) =

[Q𝑝]13
−[Q𝑝]23

 

cos(φ2
p
) =

[Q𝑝]31
−[Q𝑝]32

 

(ِ4.27) 

where the subscripts 𝑖𝑗 in [Q𝑝]𝑖𝑗  indicate the ijth component of the orientation 

matrix [Q𝑝]. 

 

5) The term 
∂gD

∂𝐃p in Eq. (4.13) is calculated using the relation 

𝐃𝑝 N(𝑖) = λ  N(𝑖) (4.28) 

where N(𝑖)  denotes the 𝑖th  column of [Q𝐷] , which represents the eigenvector of 𝐃𝑝 

corresponding to the eigenvalue λ. To avoid the additional calculations of evaluating the 

derivative of the eigenvalues with respect to 𝐃𝒑, we use the orthogonality property of the 

eigenvectors and rewrite Eq. (4.28) as 
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𝐃𝑝 N(𝑖) ⋅ N(𝑗) = λ  N(𝑖) ⋅ N(𝑗) = 0 for 𝑖 ≠ 𝑗   (4.29) 

More specifically, the following system of linear equations is used to find analytical 

expressions for the term 
∂gD

∂𝐃𝑝 along with using Eq. (4.17): 

𝐃𝑝 N(1) ⋅ N(2) = 0 

𝐃𝑝 N(1) ⋅ N(3) = 0 

𝐃𝑝 N(2) ⋅ N(3) = 0 

(4.30) 

For completeness, the analytical expression for the term 
𝜕𝐃

𝜕𝐄𝑡
 in Eq. (4.9) is derived 

using the following relations 

�̇� = 𝐋 𝐅 (ِ4.31) 

𝐅(t + Δt) = exp(Δt  𝐋)  𝐅(t) (ِ4.32) 

𝐅t = 𝐅(t + Δt) 𝐅(t)−𝟏 = exp(Δt  𝐋) ≃ 𝐈 + Δt  𝐋 (ِ4.33) 

where 𝐅t is the relative deformation gradient tensor. Since the total stretching 

tensor is the symmetric part of the velocity gradient tensor, then 

𝐃 =
1

2
(𝐋 + 𝐋T) ≃

1

2Δt
[(𝐅t − 𝐈) + (𝐅t − 𝐈)𝑇] (ِ4.34) 

𝐃 ≃
1

2Δt
[(𝐑t𝐔t − 𝐈) + (𝐑t𝐔t − 𝐈)𝑇] (ِ4.35) 
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where 𝐑t and 𝐔t are the relative rotation and stretch tensors, respectively. Now, assume 

that the relative strain tensor is defined as: 

𝐄t = ln(𝐔t) ≃ (𝐔t − 𝐈) −
1

2
(𝐔t − 𝐈)2 +⋯ (ِ4.36) 

By ignoring the higher order terms, we can rewrite Eq. (4.35) as 

𝐃 ≃
1

2Δt
(𝐑t𝐄t + 𝐑t + 𝐄t 𝐑𝑡

𝑇 + 𝐑𝑡
𝑇) −

1

Δt
𝐈 (ِ4.37) 

which is used to derive the analytical expression for the term 
𝜕𝐃

𝜕𝐄𝑡
. 
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4.3 Case Studies 

The formulations described above for including the elastic deformation with the 

spectral database approach and computing the analytical expressions of the Jacobian were 

coded in a customized user material subroutine UMAT to perform crystal plasticity 

computations in ABAQUS. A flow diagram that describes the sequence of calculations in 

this UMAT is shown in Figure 4.4. The main subroutines of this UMAT are also shown 

in Appendix B. In order to demonstrate the viability and computational advantages of the 

new spectral database CPFEM developed in this work, we compare the stress-strain 

responses and the evolution of crystallographic texture in polycrystalline aggregates of 

OFHC copper and interstitial-free (IF) steel predicted from the new spectral approach 

with the corresponding results from the classical CPFEM for selected deformation 

processes, including non-monotonic loading histories. The predictions from the two 

approaches reported here are produced using the commercial FE package ABAQUS 

(ABAQUS, 2010) and specially developed user material subroutines (described in this 

work and those in Ref. (Kalidindi et al., 1992)). 
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Figure 4.4: Flow diagram for user material subroutine UMAT to perform crystal 

plasticity computations in the FE package ABAQUS using spectral databases. 

𝑡𝑟𝑎𝑐𝑒 (𝐃), Δ𝑡 → p   

Inputs: 
 𝐅(t), 𝐅(t + Δt), Δt, 
g, state variables 

Start UMAT 

 𝐅(t), 𝐅(t + Δ𝑡), Δ𝑡 → 𝐋,𝐃,𝐖 

Decompose 𝐃′ into 𝐃p & 𝐃′∗ 

using Newton-Raphson scheme 

Databases, ε̇, θ, gp → 𝛔′(pr),𝐖∗(pr), ∑ |γ̇𝛼|𝜶  
 

p, 𝛔′, 𝐋 → 𝛔,
𝜕Δ𝛔

𝜕Δ𝛆
 

Exit UMAT 

𝛔′(pr),𝐖∗(pr), g𝐷 ,𝐖 → 𝛔′,𝐖∗ 

𝐃p, g → g𝐷 , ε̇, θ, gp 

𝐖∗, Δ𝑡 → new g 
Update state variables 
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4.3.1 Plane Strain Compression of Copper 

 We first simulated plane strain compression of a polycrystalline aggregate of 

OFHC copper. For FCC metals, the family of twelve  {111}〈11̅0〉  slip systems are 

assumed to be the potential slip systems for plastic deformation (see Table 3.3).  The 

three-dimensional FE model consisted of 500 C3D8 elements. In this model, the top 

surface was subjected to a displacement boundary condition, which resulted in a 65% 

reduction in height corresponding to an axial true strain of about 1.0. The displacements 

of nodes on the two lateral faces are constrained such that these nodes remain on their 

respective planes as shown in Figure 4.5. The initial texture was assumed to be random 

consisting of 4000 different crystal orientations. It should be noted that the random 

texture is selected because it produces the most heterogeneous microscale stress and 

strain fields in the sample, and therefore offers an excellent opportunity to validate the 

SD-CPFEM approach. Each integration point inside each element was assigned a single 

crystal orientation chosen randomly from the set of 4000 crystal orientations. The elastic 

and plastic parameters of the OFHC copper used in this case study are shown in Table 

4.1. 
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Figure 4.5: FE model of the plane strain compression case study showing the initial mesh 

(left) and deformed mesh with superimposed initial geometry (right). 

 

 

We compared in Figure 4.6 the stress-strain responses and deformed texture produced 

from the SD-CPFEM (for clarity, only few points are shown in the plot), based on 500 

dominant DFTs for the stress, the shearing rate, and the lattice spin components, against 

the corresponding predictions from the conventional CPFEM (Kalidindi et al., 1992). It is 

clear that the SD-CPFEM produced excellent predictions but at a significantly faster 

computational speed. In this case study, the simulation took 8964 seconds (~2.5 hr) using 

the classical CPFEM, and only 602 seconds (~10 min) for the SD-CPFEM based on 500 

dominant DFTs. It is underlined that the simulation speed of the SD-CPFEM can be 

controlled through the selection of the appropriate number of DFTs. The user can select a 

small number of DFTs to increase the computational speed of the simulation but at the 

expense of accuracy. For example, in this case study the same simulation required only 

231 seconds (~ 4 min) when using 150 DFTs. The predictions from the SD-CPFEM 
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based on 150 dominants DFTs are also compared against those obtained from the 

classical CPFEM in Figure 4.7. It is clear that the predictions from the SD-CPFEM using 

a small number of dominant DFTs are still in reasonable agreement with the predictions 

from the conventional CPFEM. 
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(a) 

 

 
 

(b) 
 

Figure 4.6: Comparison of the predictions from the SD-CPFEM based on 500 dominant 

DFTs against the corresponding predictions from the conventional CPFEM for plane 

strain compression of OFHC copper: (a) pole figures, and (b) stress-strain curves. 
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(a) 

 

 
 

(b) 

 
 

Figure 4.7: Comparison of the predictions from the SD-CPFEM based on 150 

dominant DFTs, against the corresponding predictions from the conventional 

CPFEM for plane strain compression of OFHC copper: (a) pole figures, and (b) 

stress-strain curves. 
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To better quantify the computational efficiency of the SD-CPFEM, we repeated the 

simulations described above for different number of elements including 500, 4000, and 

10976 C3D8 elements. We again assigned a single crystal orientation chosen randomly 

from a set of large crystal orientations to each integration point inside each element. The 

sample is subjected to plane strain compression up to an axial strain of 1.0 (~65% 

reduction in height). Table 4.2 compares the simulation time between the classical 

CPFEM and the SD-CPFEM based on 500 DFTs and 150 DFTs for different number of 

elements. It is seen that the SD-CPFEM can speed up the computation time by about 40 

times compared to the classical CPFEM when using a small set of dominant DFTs. 

 

 

 

Table 4.2: Comparison of the simulation time between the classical CPFEM and the 

spectral database CPFEM (SD-CPFEM) based on 500 and 150 dominant DFTs for 

different number of elements for plane strain compression of OFHC copper up to an axial 

strain of 1.0 (~65% reduction in height). Each integration point inside each element was 

assigned a single crystal orientation chosen randomly from a set of large crystal 

orientations. 

 
500  

C3D8 elements 

4000  

C3D8 elements 

10976  

C3D8 elements 

Classical CPFEM 
8964 sec 

(~2.5 hr) 

98507 sec 

(~27.4 hr) 

325161 

(~ 3.8 days) 

SD-CPFEM  

(500 DFTs) 

602 sec 

(~10 min) 

5781 sec 

(~1.6 hr) 

21725 sec 

(~6 hr) 

SD-CPFEM  

(150 DFTs) 

231 sec 

(~4 min) 

2752 sec 

(~46 min) 

8769 sec 

(~2.4 hr) 
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4.3.2 Simple Shear of IF Steel 

In the next case study, we compared the stress-strain curves and texture evolution 

produced from the SD-CPFEM against the corresponding results from the conventional 

CPFEM for a simple shear deformation of a polycrystalline interstitial free (IF) steel. For 

BCC metals, the families of 48 potential slip systems are assumed to include 

{110}〈1̅11〉, {1̅12}〈11̅1〉, and {123̅}〈111〉(see Table 3.1). For the SD-CPFEM simulations 

discussed in this case study, the spectral database developed for BCC metals in Section 

3.1 were used. It was shown before that because of the availability of a higher number of 

slip systems in BCC metals (48 slip system in BCC compared to 12 in FCC metals), the 

spectral database for BCC metals was more compact compared to the one obtained for 

FCC metals. In other words, a smaller number of dominant DFTs can be used for BCC 

metals to achieve the desired accuracy. 

The FE model is discretized into 500 three-dimensional solid elements (C3D8). A 

simple shear deformation is applied up to a shear strain γ = 1.0 as shown in Figure 4.8. 

To produce the most heterogeneous stress and strain fields in the model and therefore 

allow better opportunity to validate the spectral approach described in this work, each 

integration point is assigned a single crystal orientation chosen randomly from a set of 

4000 crystal orientations that produce a random texture. The values of the elastic and 

plastic parameters of the IF steel used in this case study are shown in Table 4.3 (Al-Harbi 

et al., 2010). Figure 4.9 shows a comparison of the stress-strain responses and final 

texture predicted by both the spectral and conventional CPFEM codes. As can be clearly 

seen in this figure, the two predictions are in excellent agreement with each other. It 

should be noted that the predictions from the SD-CPFEM are obtained with significantly 
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less computational cost compared to the classical CPFEM. For this case study, the 

classical CPFEM required 4380 seconds, whereas the SD-CPFEM took only 336 seconds 

when using 500 DFTs for the stress, the shearing rate, and the lattice spin components.  

 

 

 

 

Figure 4.8: FE model of the simple shear case study showing the initial mesh (left) and 

deformed mesh with superimposed initial geometry (right). 

 

 

Table 4.3: Elastic and plastic parameters of the interstitial-free (IF) steel (Al-Harbi et al., 

2010). 

C11 

(MPa) 

C12 

(MPa) 

C44 

(MPa) 

m 

So 

(MPa) 

ho 

(MPa) 

ss 

(MPa) 

a 

228000 132000 116500 0.01 50 500 230 2.8 
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(a) 

 

 
 

(b) 

 

 
Figure 4.9: Comparison of the predictions from the SD-CPFEM against the 

corresponding predictions from the conventional CPFEM for simple shear of interstitial-

free (IF) steel: (a) pole figures, and (b) stress-strain curves. 
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4.3.3 Plane Strain Compression Followed by Simple Shear 

To validate the spectral database CPFEM for the case of non- monotonic loading, we 

simulated a plane strain compression followed by simple shear of a polycrystalline OFHC 

copper. The FE model consisted of 500 C3D8 elements with one crystal orientation per 

integration point. The initial texture is assumed to be random. The first step in this 

simulation involved an imposed displacement boundary condition on the top surface of 

the model, which resulted in a 35% reduction in height corresponding to an axial true 

strain of about 0.4. All faces of the sample are constrained to remain planar in this step. 

In the second step, an imposed simple shear deformation is applied up to a shear strain of 

γ = 0.5 as shown in Figure 4.10 (a) and (b). The elastic and plastic parameters of the 

OFHC copper used in this case study are similar to the one shown in Table 4.1. The 

effective stress-strain response from the SD-CPFEM is compared against the 

corresponding predictions from the classical CPFEM in Figure 4.10 (c). The predicted 

textures from the two approaches after each deformation step are shown in Figure 4.11. It 

was seen once again that the predictions from the spectral database approach matched 

very well with the corresponding predictions from the conventional CPFEM at a 

dramatically reduced computation cost. This prediction took 6380 seconds for the 

classical CPFEM and only 527 seconds for the SD-CPFEM when using 500 DFTs for the 

stress, the shearing rate, and the lattice spin components. 
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Figure 4.10: Comparison of the predicted effective stress-strain curves from the SD-

CPFEM against the corresponding results from the conventional CPFEM for plane strain 

compression followed by simple shear deformation of OFHC copper: (a) mesh after plane 

strain compression, (b) mesh after simple shear deformation, (c) effective stress-strain 

curves. 
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Figure 4.11: Comparison of the predicted texture from the SD-CPFEM against the 

corresponding predictions from the conventional CPFEM for plane strain compression 

followed by simple shear deformation of OFHC copper: (a) pole figures after plane strain 

compression, (b) pole figures after simple shear deformation. 

 

 

 

 

 

 

 

Classical CPFEM  SD-CPFEM 
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Classical CPFEM    SD-CPFEM 
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CHAPTER 5 

APPLICATION OF CPFEM FOR ESTIMATING THE CRITICAL 

RESOLVED SHEAR STRESS IN DUAL PHASE STEELS USING 

SPHERICAL NANOINDENTATION 

   

This chapter presents an important application of the CPFEM for the extraction of 

crystal level plasticity parameters in multiphase materials. More specifically, we describe 

a new methodology for extracting the critical resolved shear stress of the ferrite phase in 

dual phase steels by combining spherical nanoindentation, OIM, and CPFEM. It should 

be noted that the lack of knowledge of crystal-scale plasticity parameters (e.g. slip 

hardening parameters) for many important multiphase polycrystalline materials is a major 

challenge in applying crystal plasticity theories for simulating the deformation behavior 

of these materials.  This mainly arises from the difficulty of measuring the local 

mechanical response in each individual phase in these materials. After a short literature 

review, the experimental and computational procedures for this new approach are 

explained.  

5.1 Introduction 

Dual phase steels are widely used in automotive applications due to their 

combination of high strength and good formability. The microstructure of dual phase 

steel consists mainly of soft ferrite matrix and about 10-30 vol. % of hard martensite 

particles (Grushko and Weiss, 1989; Korzekwa et al., 1980; Nagorka et al., 1987; Paruz 

and Edmonds, 1989; Sakaki et al., 1983; Watt and Jain, 1984). There have been 
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numerous attempts in literature to characterize the local mechanical response of the 

constituent ferrite and martensite phases in dual phase steels (Calcagnotto et al., 2010; 

Choi et al., 2013; Kadkhodapour et al., 2011a; Kadkhodapour et al., 2011b; Korzekwa et 

al., 1984; Sarosiek and Owen, 1984; Woo et al., 2012; Yoshida et al., 2011). The 

quantification of the local plasticity parameters (e.g. slip hardening parameters) in each 

individual phase is necessary for the application of physics-based models such as crystal 

plasticity theories for simulating the deformation behavior of these materials. For single-

phase polycrystalline materials, the slip hardening parameters are commonly extracted by 

calibrating the predicted overall stress-strain responses in multiple loading conditions 

against the corresponding measurements. However, this approach is unlikely to work as 

well for multiphase materials such as dual phase steels, where the constituents typically 

exhibit a higher contrast in their response. 

Different strategies have been used to estimate the slip hardening parameters in 

dual phase steels. Yoshida et al. (Yoshida et al., 2011) estimated the crystal plasticity 

hardening parameters of the ferrite and martensite phases by fitting the stress-strain curve 

of a polycrystalline aggregate comprised of both ferrite and martensite grains to the 

measured macroscopic stress-strain response of dual phase steel. It should be noted that 

several different sets of slip hardening parameters for the ferrite and martensite phases 

can produce the same overall stress-strain response. Instead of calibrating the predictions 

from the crystal plasticity model to the overall measured response, Kadkhodapour et al. 

(Kadkhodapour et al., 2011a) estimated the hardening parameters of the ferrite phase by 

fitting the predicted stress-strain curve of the ferrite phase to the corresponding calculated 

one of the ferrite phase from an empirical model based on the chemical composition of 
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the material. In another recent strategy, Woo et al. (Choi et al., 2013; Woo et al., 2012) 

determined the crystal plasticity hardening parameters of the ferrite and martensite phases 

in the commercial dual phase steels DP980 by calibrating the predictions from CPFEM 

based on representative volume elements (RVE) to the measured macroscopic stress and 

measured lattice strains during uniaxial tension. The lattice strains were measured using 

neutron diffraction experiment. It should be noted that the measured lattice strains 

represent the behavior of all grains (including ferrite and martensite) within the beam 

resolution that satisfy Bragg’s law for the prescribed diffraction angle and lattice plane of 

interest. The overlapped diffraction peaks of the ferrite and martensite were separated 

using Gaussian functions. Table 5.1 summarizes the values of the critical resolved shear 

stress for the ferrite and martensite phases in dual phase steels from the above methods. It 

is clear that the difficulty of measuring the local mechanical response in each individual 

phase has contributed to the large variance in the reported values of the critical resolved 

shear stress for the ferrite and martensite phases in dual phase steels. 

There is a need to develop efficient experimental and numerical tools for studying 

microscale grain and phase interactions and extracting crystal-level slip hardening 

parameters for multiphase materials such as dual phase steels. Nanoindentation has 

shown to be an efficient tool for characterizing the local mechanical behavior in different 

material systems. Most of the previous traditional work in this field has focused on 

characterizing the local hardness using sharp indenters. However, Pathak et al. (Kalidindi 

and Pathak, 2008; Pathak et al., 2008; Pathak et al., 2009b) has recently developed a new 

data analysis method for spherical nanoindentation that converts the measured 

indentation load-displacement data into indentation stress-strain curves. These stress-
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strain curves have produced more reliable estimates of the local elastic and plastic 

properties (such as indentation modulus and indentation yield strength) in the sample. In 

order to use this technique for extracting grain-scale slip hardening parameters, it is 

necessary to simulate nanoindentation using CPFEM. This chapter presents preliminary 

results from the application of this new data analysis approach for extracting the critical 

resolved shear stress of the ferrite phase in dual phase steels using a combined application 

of spherical nanoindentation, OIM, and CPFEM. This new methodology offers a novel 

efficient tool for the extraction of crystal level hardening parameters in any single or 

multiphase materials. 
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Table 5.1. Some values of the critical resolved shear stress (τ𝑐𝑟𝑠𝑠 ) reported in the 

literature for the ferrite and martensite phases in dual phase steels. 

 

Yield 

strength* 

(MPa) 

Ferrite 

τ𝑐𝑟𝑠𝑠 

 (MPa) 

Martensite 

τ𝑐𝑟𝑠𝑠 

 (MPa) 

Approach Reference 

~ 380 135 950 

Calibration to the measured 

macroscopic stress-strain response 

of the dual phase steel. 

(Yoshida 

et al., 

2011) 

~ 550 198, 228 NA 

Calibration to the predicted stress-

strain response of the ferrite phase 

obtained from an empirical model. 

(Kadkhod

apour et 

al., 2011a) 

~ 700 170 435 

Calibration to the measured 

macroscopic stress and measured 

lattice strains. 

(Choi et 

al., 2013; 

Woo et al., 

2012) 

 

* The values of the yield strength is roughly estimated here from the given macroscopic 

stress-strain curves.  
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5.2 Materials and Method 

The dual phase steel samples used in this study were produced from low carbon 

steels (SAE 1018) using intercritical annealing. A low carbon steel rod measuring 12.5 

mm diameter x 100 mm height was first put in a vacuumed glass tube and austenitized at 

1100oC for 8 hours and then furnace cooled to room temperature. Cylindrical 

compression samples were machined from the rod with dimensions of 12.5 mm diameter 

x 20 mm height. The cylindrical samples were then heated to the ferrite/austenite region 

in a salt bath furnace at 745oC for 4 minutes followed by quenching in water. This 

heating process produces the typical ferrite/martensite structure of dual phase steels. The 

microstructure of the produced dual-phase steel samples consisted of about 25% volume 

fraction of martensite and the remaining was assumed to be mainly ferrite. The volume 

fraction of the martensite phase was estimated by means of point counting method 

(ASTM-E562-02, 2002). The average grain size of the ferrite phase was about 90 μm. 

Figure 5.1(a) shows the stress-strain responses of the initial low carbon steel and the 

produced dual-phase steel under simple compression. The yield strength of the dual-

phase steel is estimated to be 500 MPa using the 0.2% offset strain method (Popov, 

1998). The optical micrograph of the dual-phase steel sample is shown in Figure 5.1 (b). 
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            (a) 

 

 

 

 
                (b) 

 

 

Figure 5.1: (a) True stress-true strain responses of low carbon and dual-phase steel 

samples in simple compression; (b) an optical micrograph of the dual-phase steel sample 

used in this study.  
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 The samples were carefully prepared for nanoindentation testing and OIM 

measurements. After grinding using silicon carbide papers with different particle sizes 

from 320 to 2400 mesh, the samples were polished using 9 μm, 3 μm, and 1 μm diamond 

suspensions in conjunction with several intermediate etches by 2% Nital. The samples 

were subsequently electropolished using 5% perchloric acid and 95% acetic acid for 90 

seconds at 15 oC and 65 volts. The last electropolishing step was found essential to 

produce a high-quality surface finish that is especially required for nanoindentation 

experiment. Nanoindentations were carried out using a nanoindenter (G200 Nano 

Indenter equipped with the continuous stiffness measurement (CSM) system) with 20 μm 

radius spherical diamond tip. The indentation tests were carried out under load control 

condition. The locations of the indents were chosen in the middle of ferrite grains in the 

dual phase steel samples to reduce the chances of any possible effect from grain 

boundaries or phase interfaces on the measurements. The fact that the indentation yield 

points in most of our tests on the ferrite phase were observed to occur after only a few 

nanometers (20-30 nm) of indentation depth reduces the effect of grain boundary on the 

measurements when indenting in the middle of the ferrite grain. This is justified by 

realizing that the value of the contact radius at the indentation yield points was estimated 

to be less than 1 μm (0.6-0.8 μm), which is much smaller than the average grain size of 

the ferrite phase (~90 μm). However, it should be noted that there is still a chance for the 

existence of a grain boundary just below the surface at the indentation site. Finally, the 

crystal orientations of the indented grains were measured using OIM technique based on 

electron backscatter diffraction (EBSD) analysis. 
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5.3 Review of Data Analysis Method for Spherical Nanoindentation 

The measured load-displacement data are converted to indentation stress-strain 

curves following the approach described in Ref. (Kalidindi and Pathak, 2008). The main 

two steps in this data analysis protocol are briefly summarized below. The first step is an 

accurate estimation of the initial point of effective contact between the indenter and the 

sample such that Hertz theory (Hertz, 1896; Johnson, 1985) is satisfied for the initial 

elastic loading segment. This can be obtained from the measured load signal (P̃) , 

measured displacement signal (h̃e), and CSM signal (S) using the following relation: 

S =
3 P

2 he
=

3 (P̃ − P∗)

2 (h̃e − h∗)
 (5.1) 

where P∗ and h∗ are the load and displacement at the initial point of effective contact, 

respectively. A least square fit between (P̃ −
2 

3 
h̃e S) and S  for the data in the initial 

loading segment produces the best estimates of P∗  and h∗ . In the second step, the 

indentation stress σind and indentation strain εind are calculated by recasting Hertz theory 

as 

σind = E∗   εind,         σind =
P

π a2
,            εind =

4

3π 

h𝑒
a
≃

h𝑒
2.4 a

         (5.2) 

where P and h𝑒  are the measured indentation load and measured elastic displacement 

corrected for the initial point of contact, E∗ is the effective Young’s modulus, and a is the 

contact radius defined as 
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  a = (
3 P R∗

4 E∗
)
1/3

=
S

2 E∗
,                      

1

E∗ 
=
1 − ν𝑠

2

Es
+
1 − ν𝑖

2

Ei
 (5.3) 

where ν and E are Poisson’s ratio and Young’s modulus, and the subscripts s and i refer 

to the sample and the indenter, respectively. The estimation of the contact radius, a, 

requires the knowledge of the effective Young’s modulus E∗ . The value of E∗  can be 

determined experimentally from the initial elastic loading segment using Hertz theory as 

h𝑒 = (
3 P

4 E∗ √R∗
)
2/3

,                     
1

R∗ 
=

1

Rs
+

1

Ri
 (5.4) 

where R∗ is the effective radius, which is equal to the indenter radius Ri for purely elastic 

indentation since the sample radius 𝑅s  approaches infinity. Then, a least square fit 

between h𝑒 and P2/3 for the initial elastic loading portion of the data produces the best 

estimate of E∗. 

 

 

5.4 Finite Element Model of Spherical Nanoindentation 

A three-dimensional FE model was developed to simulate the spherical indentation 

process using the commercial FE package ABAQUS (ABAQUS, 2010). The size of the 

sample was assumed to be 20 m x 20 m x 15 m consisting of 91,512 cuboid-shaped 

three dimensional eight-noded solid elements (C3D8). To accurately capture the 

heterogeneous stress and strain fields in the indentation zone, the highest mesh densities 

of the FE mesh were obtained in the region under the indenter tip. For this reason and to 
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reduce the total number of elements and computational cost, the sample was discretized 

into five regions with an extremely fine mesh resolution under the indenter tip as shown 

in Figure 5.2. The mesh refinement from one region to another was achieved using the 

bilinear multi-point constraint (MPC) option in ABAQUS on the boundaries between the 

regions of different mesh densities. The size of the element under the indenter tip was 4.8 

nm x 4.8 nm x 5.9 nm. The indenter (not shown in Figure 5.2) was modeled using an 

analytical rigid hemi-spherical surface with a radius of 20 m (same as the size of the 

indenter used in the experiments). It should be noted that in real experiment the indenter 

is not rigid and has a finite Young's modulus. In our experiment, the indenter tip is made 

of diamond with a Young’s modulus of ~ 1.2 GPa. However, the elasticity of the indenter 

is accounted for by using the effective Young's modulus (see Eq. (5.3)), which includes 

the elastic properties of both the indenter and the sample. In other words, by using the 

effective Young's modulus in the analysis of the indentation data, we can relate the 

predicted results from the FE model (here the Young's modulus of the indenter is Ei =

∞) with the corresponding measured values form the experiments (here Ei ≈ 1.2 GPa). A 

hard surface-to-surface, frictionless contact was assumed between the sample and the 

indenter. A vertical displacement boundary condition was imposed on the indenter. The 

bottom surface of the sample was constrained along the z-direction (indentation 

direction). The displacement of the indenter and the total force applied on the sample are 

reported from the simulation at every time increment. 
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                           (a) 

  

 

                      (b) 

 

 

 

 

Figure 5.2: (a) FE mesh of the sample in the spherical nanoindentation model, (b) close-

up view of the region under the indenter tip. 

 

 

 

The FE model developed in this study was validated by comparing the predicted load-

displacement curve against the corresponding theoretical result from Hertz theory for 

purely elastic deformation of an isotropic material (see Eq. (5.4)). The prediction from 

the FE model was in excellent agreement with the Hertzian result as shown in Figure 5.3. 

The Young’s modulus and Poisson’s ratio of the sample for this example were assumed 

to be 200 GPa and 0.3, respectively. 
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Figure 5.3: Comparison of the predicted load-displacement response from FE simulation 

against the corresponding prediction from Hertz theory. 

 

 

In this work, the predicted indentation stress and strain from the FE simulations 

were also calculated using Eq. (5.2). However, once the plastic deformation initiates 

under the indenter, the value of the effective radius R∗ needs to be computed in order to 

calculate the contact radius a (see Eq. (5.3)). The value of R∗ can be estimated from an 

elastic unloading segment by rewriting Eq. (5.4) as 

h𝑒 = h𝑡 − h𝑟 = (
3 P

4 E∗ √R∗
)
2/3

 (5.5) 
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where h𝑡 denotes the total displacement, and h𝑟 refers to the residual displacement upon 

unloading. The value of R∗ that corresponds to the peak load just before unloading can 

then be determined from a least square fit between h𝑡 and P2/3. Since the contact radius 

evolves continuously with deformation, a large number of unloading segments at several 

points on the loading segment need to be applied. Note that experimentally, one can 

directly estimate the value of the contact radius from Eq. (5.3) with the aid of CSM 

signal.  

Since the value of the indentation yield strength from the FE simulations is the main 

variable that affects the predicted critical resolved shear stress value in this work, we 

carefully studied the effect of mesh densities on the predicted FE results. This was 

achieved by comparing the predicted indentation yield points from the current FE model 

with two other FE models with different mesh densities. The sizes of the element under 

the indenter tip for the two new FE models were (3.0 nm x 3.0 nm x 3.1 nm) and (2.2 nm 

x 2.2 nm x 2.4 nm). The corresponding numbers of elements were 133,616 and 199,864, 

respectively. Note that these two FE models have higher mesh densities under the 

indenter tip compared to the original model that consists of 91,512 elements. An isotropic 

elastic-plastic spherical indentation deformation was simulated using these three different 

FE models. The inputs to the FE simulations include the yield strength, Young’s 

modulus, and Poisson’s ratio, which were assumed to be 0.045 GPa, 70 GPa, and 0.3, 

respectively. A non-hardening behavior of the sample in plastic deformation was 

assumed in these simulations. The predicted stress-strain responses from the three FE 

models are shown in Figure 5.4. It is clear that that increasing the mesh densities has 

negligible effect on the predicted results. 
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Figure 5.4: Comparison of the predicted stress-strains responses from three FE models 

with different mesh densities. 

 

 

 

5.5 Results and Discussions 

As described earlier, nanoindentation measurements were conducted in the middle 

of the ferrite phase in a dual phase steel sample using 20 μm radius spherical diamond tip. 

The orientations of the indented grains were measured using OIM technique. The 

indentation load-displacement curves were converted to indentation stress-strain curves 

using the recently developed data analysis approach described in Section 5.3. In the 

present study, the occurrence of large displacement bursts or “pop-ins” were observed in 
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all of the measurements. These pop-ins are commonly attributed to the difficulty of 

activating dislocation sources in the indentation zone as explained in more detail by 

Pathak et al. in Ref. (Pathak et al., 2009a). The occurrence of these large pop-ins makes it 

difficult to extract reliable values of the indentation yield points. As an example, it would 

be very difficult to extract the values of the indentation yield points from the indentation 

stress-strain curves shown in Figure 5.5. For this reason, only few number of 

measurements that have relatively small pop-ins were considered in this study. The 

indentation stress-strain curves and OIM scans for some of these measurements are 

depicted in Figure 5.6. It is observed that the measurements in each grain are consistent 

with each other after the occurrence of the pop-ins. 

The values of the measured indentation yield points were estimated using a back-

extrapolation method as shown in Figure 5.7. Table 5.2 summarizes the values of the 

effective indentation modulus E∗  and indentation yield points for the measurements 

shown in Figure 5.6. It is observed that the indentation yield point for grain #3 (~1.05 

GPa) is slightly higher than those obtained for grains #2 and 3 (~ 0.93 GPa). In general, 

the values of the indentation yield points for the grains studied in this work are close to 

each other. This can be explained by the small difference in the values of orientations 

between these grains. In order to extract more reliable values of the critical resolved shear 

stress, more indentation measurements should be conducted in the ferrite phase on a 

wider range of orientations.  
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(a)  

(b) 

 

Figure 5.5: (a) Inverse pole figure map obtained on a sample of dual phase steel showing 

the location of an indented grain in the ferrite phase, (b) the measured indentation stress-

strain curve showing large displacement bursts or “pop-ins”. 
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Figure 5.6: (a) OIM scan and (b) (001) inverse pole figure map obtained on a sample of 

dual phase steel showing the location of three indented grains in the ferrite phase. The 

measured indentation stress-strain curves on these grains are shown in (c), (d), and (e).  

 

Grain#1 

 

Grain #2 

Grain #3 

Grain #1 
Grain#2 Grain#3 

Grain #3 Grain #2 

Grain #1 

(c) 

(d) (e) 

(a) 
(b) 
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Figure 5.7: The back-extrapolation method used in the current study to estimate the range 

of the indentation yield points [Ylower -Yupper] from the indentation stress-strain curves. 

 

 

 

 

Table 5.2: An estimation of the effective indentation stiffness and the indentation yield 

points for the measurements shown in Figure 5.6. The values of the measured 

orientations for the grains are also shown in terms of Bunge-Euler angles (φ1, ϕ, φ2). 

Grain # 
Orientation 

(φ1, ϕ,φ2) 
Effective modulus E∗ (GPa) 

Indentation yield 

range (GPa) 

1 (53.58, 37.26, 351.02) ~ 180 0.8-1.05 

2 (269.6, 36.9, 67.4) ~ 182 0.85-1.05 

3 (32.23, 40.16, 302.83) ~ 190  0.93-1.1 
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In order to extract the values of the critical resolved shear stress for the ferrite 

phase from the measurements shown in Figure 5.6, spherical nanoindentation was 

simulated using CPFEM. The classical crystal plasticity constitutive equations described 

in Section 2.1 were used in the current work. In the FE model described earlier, all 

integration points were assigned a single crystal orientation. It is assumed that there is no 

hardening prescribed in the material response for this simulation. The value of the strain 

rate sensitivity parameter was taken as 0.01. The three elastic constants of the ferrite 

phase was assumed to be similar to those obtained in pure Fe: C11 = 231.4 GPa, C12 =

134.7 GPa, and C44 = 116.4 GPa. 

The indentations of the three crystal orientations listed in Table 5.2 were 

simulated in this work. The indentation stress-strain curves calculated from the outputs of 

the FE simulations were calibrated against the corresponding measurements shown in 

Figure 5.6. More specifically, the value of the initial slip resistance was modified until 

the predicted indentation yield points matched the corresponding measured values. In the 

current study, the values of the predicted indentation yield points from the CPFEM 

simulations were assumed to occur when the curves started to deviate from the initial 

elastic segment. It should be noted that this method for estimating the predicted 

indentation yield point is different from the back-extrapolation method used earlier to 

estimate the indentation yield points from the measured stress-strain curves. As explained 

earlier, the reason for using the back-extrapolation method in the indentation 

measurements is because of the occurrence of pop-ins, which makes it impossible to find 

the stress points at which the curves started to deviate from linearity. Thus, caution 

should be exercised when interpreting the values of the initial slip resistance reported in 
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this study. Figure 5.8 shows the predicted indentation stress-strain curves from CPFEM 

for the three grains shown in Figure 5.6 (a). The corresponding predicted values of the 

effective indentation stiffness and the indentation yield points are shown in Figure 5.6 

(b). The value of the initial slip resistance used in the CPFEM was 330 MPa. This value 

is assumed to be the critical resolved shear stress of the ferrite phase in the dual phase 

steel sample used in this study. Two important points need to be noted. First, it is 

emphasized here that the value of the initial slip resistance was estimated based on the 

indentation measurements conducted on three grains only (see Figure 5.6). It is clear that 

more indentation measurements are required to extract a more reliable value of the 

critical resolved shear stress. Second, the value of the extracted initial slip resistance from 

nanoindentation is very high compared to the reported values in Table 5.1, which were 

obtained using different methods. This can be attributed to the effect of indentation size 

effect which results in a higher indentation yield strengths (Elmustafa and Stone, 2003; 

Nix and Gao, 1998; Qu et al., 2006). This will affect the estimated value of the initial slip 

resistance since it is extracted based on the direct calibration of the predicted stress-strain 

curves from the FE model against the corresponding indentation measurements. 

Therefore, the value of the initial slip resistance reported here cannot be used directly in 

the simulation of the bulk sample. An additional study would be required to take the 

effect of indentation size effect on the extracted slip hardening parameters from 

nanoindentation before using these values in the crystal plasticity models for simulating 

the mechanical behavior of the bulk sample. 
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(a) 

 
 

 

(b) 
Grain # 

Orientation 

(φ1, ϕ,φ2) 

Effective modulus 

E∗ (GPa) 

Indentation yield 

points (GPa) 

1 (53.58, 37.26, 351.02) 182 ~ 1.0 

2 (269.6, 36.9, 67.4)  186 ~ 1.05 

3 (32.23, 40.16, 302.83)  192 ~ 1.12 

 

Figure 5.8: (a) The predicted indentation stress-strain curves from CPFEM for the three 

indented grains shown in Figure 5.6. (b) The predicted values of the effective indentation 

stiffness (estimated from the first unloading segment) and the indentation yield points 

(corresponding to the stress values at which the curves started to deviate from linearity) 

for the same grains. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1    Conclusions  

This thesis has mainly focused on addressing the high computational cost associated 

with implementing crystal plasticity models in a FE simulation tool. This has been 

tackled by integrating the recently developed DFT-based spectral crystal plasticity 

databases with a commercial FE tool to conduct more efficient CPFEM simulations. 

These recently developed computationally efficient DFT representations were found to 

speed up the crystal plasticity computations by several orders of magnitude in FCC 

metals. The new spectral database CPFEM developed in this thesis has shown to be able 

to speed up the computation time by about 40 times compared to the classical CPFEM 

when using a small set of dominant DFTs.  Furthermore, an important application of 

CPFEM for the extraction of the initial slip resistance in dual phase steels has been 

demonstrated in this thesis. More specifically, a combined application of CPFEM, 

spherical nanoindentation, and OIM has been used to estimate the critical resolved shear 

stress of the ferrite phase in dual phase steel. In summary, the following results have been 

accomplished in the current thesis:  

 

1. The recently developed spectral crystal plasticity databases have been extended 

to other material systems. In particular, a new spectral crystal plasticity database 

using discrete Fourier transforms (DFTs) was established and validated for BCC 

metals with 48 slip systems. It was seen that a small number of dominant DFTs is 
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enough to capture the dependence of the stresses, the lattice spins, and the total 

slip rate in individual crystals on their lattice orientation and the applied 

deformation modes. Another new spectral crystal plasticity database was also 

developed for HCP metals for only two slip resistance ratios. It was assumed that 

the HCP crystals deform solely by slip. These spectral databases were 

successfully applied to a rigid-viscoplastic polycrystal Taylor-type model to 

predict the texture evolution and stress-strain response for a few selected 

examples of deformation processes. As previously reported, the DFT-based 

spectral approach was found to be able to speed up the crystal plasticity 

computations by about two orders of magnitude compared to the classical 

approach. As a specific application of these novel databases, a new efficient 

approach was developed for the fast computation of the yield surfaces in the 

five-dimensional deviatoric stress space for both BCC and FCC metals using 

the Taylor polycrystal plasticity models. This new approach was validated 

by comparing the stress values on some selected projections of the yield 

surface produced using the new spectral approach against the 

corresponding results from the conventional crystal plasticity approach. As 

another application of these novel databases, a new class of first-order 

cubic-triclinic plastic property closures were delineated for both FCC and 

BCC metals. It was observed that the assumption of orthorhombic sample 

symmetry reduces the design space and eliminates some of the optimal 

solutions in the design of materials with improved performance 

characteristics.  
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2. The spectral database approach was successfully implemented in a commercial 

finite element code to permit computationally efficient simulations of 

heterogeneous deformations using crystal plasticity theories. More specifically, 

the spectral database approach to crystal plasticity solutions was successfully 

integrated with the commercial finite element package ABAQUS through a user 

materials subroutine, UMAT. Details of this new spectral database CPFEM were 

demonstrated and validated through a few example case studies for selected 

deformation processes on FCC and BCC metals. The evolution of the underlying 

crystallographic texture and its associated macroscale anisotropic properties 

predicted from this new approach were compared against the corresponding 

results from the conventional CPFEM. It was observed that implementing the 

crystal plasticity spectral database in a FE code produced excellent predictions 

similar to the classical CPFEM, but at a significantly faster computational speed 

and much lower computational cost. It has been shown that the new spectral 

database CPFEM developed in this thesis can speed up the simulation time by 

about 40 times compared to the traditional CPFEM.  

For integrating the spectral databases with the FE tool, the following two tasks 

were accomplished: 

 

2.1. A new computational scheme was developed for extending the crystal 

plasticity calculations using spectral databases from rigid-viscoplastic into 

elastic-viscoplastic behavior. This was accomplished through the 
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development of a new efficient modified Newton-Raphson scheme that 

decomposed the total stretching tensor into elastic and plastic parts at each 

integration point for every crystal orientation. This decomposition was 

typically obtained within 2-4 iterations; a higher number of iterations were 

generally required near the elastic-plastic transition zone or during any 

loading path change. The stability and accuracy of the this new iteration 

scheme were verified by simulating a reverse shearing process using both 

the spectral database CPFEM approach and comparing the results with 

those obtained from the classical CPFEM approach (Kalidindi et al., 

1992). 

2.2. A new analytical expression for the Jacobian matrix required to implement 

the spectral databases with any implicit finite element code was 

developed. The derived analytical expressions for each of the terms in the 

Jacobian were validated by comparing the values produced from these 

expressions with the corresponding values computed numerically by 

slightly perturbing the independent variable in each expression. 

 

3. The viability of the recently developed data analysis approach of spherical 

nanoindentation for extracting the crystal plasticity slip parameters in 

multiphase materials was demonstrated in this thesis. More specifically, a 

combined application of spherical nanoindentation, OIM, and CPFEM was 

used for extracting the critical resolved shear stress of the ferrite phase in dual 

phase steels.  
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6.2    Recommendations for Future Work  

The main contribution of the current thesis is the development of a new user 

materials subroutine, UMAT, for conducting more efficient CPFEM simulations using 

the spectral crystal plasticity databases. The remarkable savings in the FE simulation time 

observed in the case studies presented in this thesis provide a significant incentive for 

applying the spectral database CPFEM to large-scale applications such as metal forming 

operations. Several enhancements can be made to further speed up the calculations in the 

current spectral database UMAT. For example, a spectral representation of the Jaumann 

rate elasticity relation used in this work to include the elastic deformation can enhance 

the computational efficiency of the iteration scheme for decomposing the strain rate 

tensor into elastic and plastic parts at every integration point in the finite element mesh. 

In particular, the dependence of the fourth-rank elasticity tensor on the crystal lattice 

orientation can be efficiently computed using a spectral database approach. Also, several 

expressions in the Jacobian matrix depend on the crystal lattice orientations and can be 

efficiently computed using spectral databases. Furthermore, in the current version of the 

spectral database UMAT, the crystallographic texture is updated after every time 

increment in the FE simulation regardless of the amount of plastic strain increment at that 

time step. However, the updated texture would not change much if the imposed plastic 

strain increment were very small. Therefore, one can save significant computational time 

by avoiding updating the texture after every plastic strain increment. It would then be 

necessary to keep track of the plastic strains after every time increment and update the 

texture only when the accumulated plastic strains reach a critical value.  
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The spectral database CPFEM described in this thesis has been applied to FCC 

and BCC metals that are assumed to be solely deformed by slip. It would be highly 

valuable to extend the application of this approach to HCP metals in which both slip and 

twining can occur. The spectral representations described in Chapter 3 for HCP metals 

have only been applied to two slip resistance ratios and without including twining. 

However, it is known that twining is an important deformation mechanism in most HCP 

metals such as pure magnesium. Several modifications need to be applied to the current 

spectral database approach depending on the selected formulations for incorporating 

twining in the crystal plasticity models. For example, it would be necessary to establish 

additional spectral representations for the twin volume fractions and the total shearing 

rates on the different slip systems (prism, basal, and pyramidal) when using the 

constitutive framework described by Kalidindi et al. in Ref. (Kalidindi, 1998; Salem et 

al., 2005). In this case, the spectral representations for the functions of interest depend on 

the crystal lattice orientation, applied deformation mode at the crystal level, and the 

values of slip and twin resistance, i.e. the domain of the functions increase from four-

dimensional space in the case of cubic system to eight-dimensional space for HCP 

crystal. This clearly requires significant additional computational effort to build the 

spectral databases but it is a one-time computational cost. 

The last part of this thesis has focused on applying spherical nanoindentation, 

CPFEM, and OIM for extracting the critical resolved shear stress of the ferrite phase in 

dual phase steels. Most of the indentation tests discussed in this thesis were conducted on 

grains that have similar crystal orientations. In order to extract reliable values of the slip 

resistance, additional tests should be conducted on a wider range of orientations. In 
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addition, all of the indentation test points reported in this thesis were chosen at the middle 

of the ferrite grains far from the grain boundaries or the ferrite/martensite interfaces. It 

would be extremely valuable to perform indentations at different regions in the ferrite 

phase and at different deformation levels. This will help to quantitatively examine the 

microscale heterogeneities present in this complex two-phase material by measuring the 

local mechanical response at different regions in the ferrite matrix. It should be noted that 

a higher dislocation density has already been observed by transmission electron 

microscopy (TEM) and high resolution electron backscattered diffraction (EBSD) close 

to the ferrite/martensite interface in dual phase steel samples (Calcagnotto et al., 2010; 

Kadkhodapour et al., 2011b; Korzekwa et al., 1984; Sarosiek and Owen, 1984). This is 

commonly attributed to the austenite-martensite transformation that is associated with 2-

4% volume change (Grushko and Weiss, 1989; Korzekwa et al., 1980; Nagorka et al., 

1987; Paruz and Edmonds, 1989; Sakaki et al., 1983; Watt and Jain, 1984). However, it is 

not yet clear how these dislocations evolve with deformations and how they contribute to 

the observed excellent mechanical properties in dual phase steels such as high work 

hardening rates. 
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APPENDIX A 

MULTI-SCALE FE SIMULATIONS USING MATERIAL 

KNOWLEDGE SYSTEMS 

 

 

This appendix describes the first implementation of the novel localization 

relationships, formulated in the recently developed mathematical framework called 

materials knowledge systems (MKS) (Fast and Kalidindi, 2011; Fast et al., 2011; 

Kalidindi et al., 2010; Landi and Kalidindi, 2010; Landi et al., 2009), into the commercial 

FE package ABAQUS to enable hierarchical multiscale materials modeling (Al-Harbi et 

al., 2012). The viability and computational advantages of this new approach, called 

MKS-FE approach, are demonstrated through a simple case study involving the elastic 

bending of a cantilever beam made from a composite material by including the 

microstructure features at each material point in the FE model. Below is a brief review of 

the MKS framework (Binci et al., 2008; Kalidindi et al., 2008) and its integration with 

the FE package ABAQUS through a user material subroutine, UMAT. 

Let 〈𝐩〉 denote the macroscale imposed variable (e.g. local stress, strain or strain rate 

tensors) that needs to be spatially distributed in the microstructure as 𝐩𝐬 for each spatial 

cell indexed by s. For many physical quantities of interest, 〈𝐩〉 is indeed equal to the 

volume averaged value of 𝐩s  over the microscale. In the MKS framework, the 

localization relationship, extended from Kroner’s statistical continuum theories (Kroner, 

1986; Kröner, 1977), captures the local response field in the microstructure using a set of 

kernels and their convolution with higher-order descriptions of the local microstructure. 
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The localization relationship can be expressed as a series sum (Fast and Kalidindi, 2011; 

Fast et al., 2011; Kalidindi et al., 2010; Landi and Kalidindi, 2010; Landi et al., 2009): 

𝐩s = (∑∑𝜶t
h m𝐬+𝐭

h

𝐭∈𝐒

H

h=1

+∑ ∑ ∑∑𝜶
𝐭𝐭′
hh′

 m𝐬+𝐭
h m

𝐬+𝐭+𝐭′
h′

S

𝐭′∈𝐒

+⋯

S

𝐭∈𝐒

H

h′=1

H

h=1

) 〈𝐩〉 (A.1) 

where m𝐬
h is the microstructure function defined as the volume fraction of each distinct 

local state h in the spatial cell s, the kernels 𝜶t
h and 𝜶

𝐭𝐭′
hh′

 are referred to as the first-order 

and second-order influence coefficients, respectively, that are assumed to be completely 

independent of m𝐬
h . The influence coefficients capture the contributions of various 

microstructure features in the neighborhood of the spatial position s to the local response 

field at that position. The first-order influence coefficients 𝜶t
h capture the influence of the 

placement of the local state h in a spatial location that is t away from the spatial cell of 

interest denoted by s. Likewise, the second-order influence coefficients 𝜶
𝐭𝐭′
hh′

 capture the 

combined effect of placing local states h and h′ in spatial cells that are 𝐭 and 𝐭′  away, 

respectively, from the spatial cell of interest s. In this notation, t enumerates the bins in 

the vector space used to define the neighborhood of the spatial bin of interest (Adams et 

al., 2005), which has been tessellated using the same scheme that was used for the spatial 

domain of the material internal structure, i.e. 𝐭 ∈ 𝐒 . A salient feature of the MKS 

approach is that the influence functions are established such that they are independent of 

the microstructure topology (Fast and Kalidindi, 2011; Fast et al., 2011; Kalidindi et al., 

2010; Landi and Kalidindi, 2010; Landi et al., 2009).  

The numerical values of the influence coefficients can be estimated by calibrating 

the series expansions of Eq. (A.1) to results obtained from micro-mechanics FE models 
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(Landi et al., 2009). It has been shown that Eq. (A.1) can be transformed into the discrete 

Fourier transform (DFT), where it can be recast as: 

𝐏𝐤 = [(∑(𝛃𝐤
h)

∗
M𝐤

h

H

h=1

)] 〈𝐩〉    

𝛃𝐤
h = ℑ𝐤(α𝐭

h),       𝐏𝐤 = ℑ𝐤(𝐩𝐬),       M𝐤
h = ℑ𝐤(m𝐬

h)     (A.2) 

where ℑ𝐤( ) denotes the DFT operation with respect to the spatial variables s or t, and the 

superscript star denotes the complex conjugate. Note that the number of coupled first-

order coefficients in Eq. (A.2) is only H, although the total number of first order 

coefficients still remains as |𝐒|*H. This simplification is a direct consequence of the well-

known convolution properties of DFTs (Oppenheim et al., 1999). Because of this 

dramatic uncoupling of the first-order influence coefficients into smaller sets, it becomes 

trivial to estimate the values of the influence coefficients 𝛃𝐤
h by calibrating them against 

results from FE models. It is emphasized here that establishing 𝛃𝐤
h  is a one-time 

computational task for a selected composite material system because these coefficients 

are implicitly assumed to be independent of the morphology of the microstructure. Once 

the influence coefficients are established for a given composite material system, Eq. 

(A.2) can be used to compute the spatial distribution of the selected response variables of 

interest for any microstructure dataset. The procedures for establishing the influence 

coefficients were discussed in prior work (Fast and Kalidindi, 2011; Fast et al., 2011; 

Kalidindi et al., 2010; Landi and Kalidindi, 2010; Landi et al., 2009).  

The MKS framework described above was integrated with the commercial finite 

element package ABAQUS through a user materials subroutine. In this MKS-FE 
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simulation, each material point in the macroscopic FE model is associated with a 

representative three-dimensional microstructure at that location. In this novel approach, 

information is consistently exchanged between the microscale and macroscale in a fully 

coupled manner. In other words, the MKS approach is used to compute the microscale 

spatial distribution of the stress and strain fields at each material point in the macroscopic 

FE model, and the homogenized (volume-averaged) stress field from the microscale is 

transferred to the macroscale FE analyses at the component scale. The microscale stress 

and strain tensors in each spatial cell s are calculated using the MKS approach as: 

𝛆𝐬 = 𝓛𝐬〈𝛆〉 = ℑ𝐤
−1(∑  M𝐤

hH
h=1 𝛃𝐤

∗h)〈𝛆〉 (A.3) 

𝛔𝐬 = ∑  m𝐬
h

H

h=1

ℂh𝛆𝐬 (A.4) 

where 〈𝛔〉  and 〈𝛆〉  denote the macroscale stress and strain tensors defined at an 

integration point in the FE mode, ℂh  represents the 4th-order elasticity tensor for the local 

state h, 𝓛𝐬 is the 4th-rank localization tensor, and ℑ𝐤
−1 denotes the inverse DFT operator 

that transforms from the Fourrier space (k)  to the real space (s). The implementation of 

UMAT in ABAQUS also requires the computation of the Jacobian defined as 

𝐉 =
∂(Δ〈𝛔〉)

∂(Δ〈𝛆〉)
=

1

|𝐒|
∑∑  m𝐬

h

H

h=1

ℂh𝓛𝐬

𝐬ϵ𝐒

 (A.5) 

The microscale stress and strain distributions predicted from the MKS-FE 

approach were compared with the corresponding predictions from a direct FE simulation 

with an extremely fine mesh resolution (i.e. a very large number of elements in the FE 
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model) that allows explicit incorporation of the microstructural details. A simple case 

study involving the elastic bending of a cantilever beam made from a composite material 

was selected for this evaluation. Figure A.1 illustrates the main features of the MKS-FE 

and the direct-FE simulations for the elastic bending of a composite cantilever beam. In 

the MKS-FE model, the cantilever beam is discretized into 637 cuboid-shaped three 

dimensional eight-noded solid elements (C3D8) (ABAQUS, 2010). At each integration 

point inside each element of the mesh, the microstructure is represented by a spatial 

domain comprising 9261 (21x21x21) cubical voxels that are occupied by one of the two 

different phases colored black and white in the figure. In this simulation, the macroscale 

strain tensor provided by ABAQUS at each integration point is used to calculate the 

microscale strain and stress tensors at each cell in the microstructure. Then, the volume-

averaged stress tensor along with the Jacobian matrix is passed up to the macroscale FE 

analyses. In the direct-FE simulation, each element in the MKS-FE model is further 

discretized into 21x21x21 elements as shown in Figure A.1 (b) resulting in a total of 

5,899,257 3-D solid elements (C3D8). The elements in each 21x21x21 block of elements 

are assigned the same 3-D microscale structure and local properties as the microscale 

RVEs used in the MKS-FE simulation. 
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Figure A.1: FE model of the cantilever beam bending problem: (a) a schematic of how 

the MKS approach is integrated with the FE package ABAQUS in the form of a user 

material subroutine (UMAT), referred to as MKS-FE approach, and (b) a direct FE model 

of the cantilever beam used to validate the MKS-FE approach. Each element in the MKS-

FE model shown in (a) is discretized into 21x21x21 elements in the direct FE model 

shown in (b). The elements in each 21x21x21 block of elements are assigned the same 3-

D microscale structure and local properties as the microscale RVEs used in the MKS-FE 

model. 

 

A two-phase composite material was selected for the present study. The two 

phases are assumed to exhibit isotropic elastic behaviour with Young’s moduli of 200 

GPa and 300 GPa, respectively. The value of the Poisson’s ratio is assumed to be 0.3 for 

both phases. In this case study, two different microstructures were selected to validate the 

MKS-FE approach. The first microstructure was constructed by random placement of the 
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individual phases in the microstructure as depicted in Figure A.2 (a), and is referred to as 

the random-microstructure. The random-microstructure with its rich diversity of local 

neighborhoods produces the most heterogeneous microscale stress and strain fields in the 

composite, and offers an excellent opportunity to validate the MKS-FE approach. The 

second microstructure is made of rods (or short fibers) placed randomly in the 

microstructure and oriented along the sample x-direction as shown in Figure A.2 (b), and 

is referred to as the rod-microstructure. The volume fraction of both phases in both 

microstructures was kept about 50%. For simplicity, the microstructure is assumed to be 

the same at each integration point in the MKS-FE model.   

 

Figure A.2: Details of the two different microstructures used to validate the MKS-FE 

approach: (a) random, (b) rods (or short fibers) oriented along the x-direction. 

 

The goal in the present study is to critically validate the MKS-FE approach by 

comparing the spatially resolved microscale stress or strain fields in the MKS-FE model 

with the stress or strain fields of the corresponding block in the direct FE model. 

Elements A and B in Figure A.1 (a) have been selected for these comparisons as they 

represent some of the highest stress locations in the beam. In order to make a meaningful 
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direct comparison between the MKS-FE results and the direct FE results obtained in this 

study, the following interpolation scheme is applied for the results obtained from the 

MKS-FE results. In the MKS-FE model, each material point is assumed to correspond to 

a 21x21x21 microscale RVE. However, the microscale strain (and stress) distributions 

are output from the simulation only at each of the eight integration points in the C3D8 

elements used in this model. The output microscale distributions at the eight integration 

points were interpolated using linear shape functions consistent with the C3D8 elements 

to obtain the microscale distributions at spatial locations corresponding to the centroids of 

each element in the corresponding block of the direct FE model as shown schematically 

in Figure A.3. It is important to recognize that this procedure results in the use of 

different weights for each of the eight integration points for each selected spatial location. 

Consequently, thee are 9261 microscale distributions for each element of the MKS-FE 

model. A composite 21x21x21 microscale distribution was assembled from this large set 

by accepting one value from each microscale distribution as shown in Figure A.3, and 

used in the direct comparisons with the results from the direct FE model. As an example, 

the MKS-FE prediction for the microscale strain tensor in spatial cell s = 100 for element 

A is taken from the spatial cell s = 100 in the interpolated microscale strain distribution at 

the corresponding spatial cell (i.e. s = 100) in the element A, as shown in Figure A.3. 
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Figure A.3: Illustration of the interpolation scheme used in this work to compare the 

microscale spatial strain and stress fields predicted from the MKS-FE approach with the 

corresponding predictions from the direct FE simulation. 

 

Figure A.4 shows a comparison of the contour plots for the microscale (εs)11 

component of strain for mid-planes through the random-microstructure (shown in Figure 

A.2 (a)) at elements A and B predicted by both the MKS-FE model (using the 

interpolation scheme described above) and the direct FE model. It is seen that the two 

predictions are in excellent agreement with each other.  
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Figure A.4: Comparison of contour maps of the local 𝛆𝟏𝟏  component of strain 

(normalized by the macroscopic applied strain) for the mid-plane of the random 

microstructure (Figure A.2 (a)), calculated using the MKS-FE against the corresponding 

predictions from the direct FE model at (a) location A and (b) location B in the cantilever 

beam model shown in Figure A.1. 

 

Figure A.5 compares the frequency distributions of the microscale σ11 component of 

stress in each phase in the random-microstructure at elements A and B in the MKS-FE 

model with the corresponding frequency distributions of the elements of blocks A and B 

in the direct FE model. In this figure, the stress distributions from the MKS-FE approach 

are shown using solid lines, while the stress distributions from the direct FE model are 

shown using dotted lines. It is seen that the predictions from the MKS-FE method 
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matched very well with the corresponding predictions from the direct FE model. It is also 

observed that the difference in the stress distributions between the two approaches is 

slightly higher at element A compared to element B, especially in the tails of the 

distributions. It should be noted that the predictions from the MKS-FE approach are 

obtained with very minimal computational effort. Specifically, for the case study 

discussed here, the direct FE simulation involving about 6 million elements required 15 

hr when using 64 processors on a supercomputer (using National Center for 

Supercomputing Applications, NCSA, UIUC, IL), whereas the MKS-FE simulation took 

only 55 s on a standard desktop computer (2.6 GHz CPU and 4 GB RAM). It is therefore 

clear that there is tremendous gain in computational efficiency in using the MKS 

approach for conducting practical multi-scale FE simulations. 

 

 

 

Figure A.5: Comparison of the microscale stress distributions predicted from the MKS-

FE model against the corresponding predictions from the direct FE model at (a) location 

A and (b) location B in the cantilever beam model shown in Figure A.1. Results are for 

the random-microstructure shown in Figure A.2 (a). 
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The predictions of the MKS-FE model and the direct FE model were also 

compared for the rod-microstructure shown in Figure A.2 (b). Because the random and 

the rod microstructures are distinctly different from each other, this comparison attests to 

the versatility of the MKS-FE approach for a broad range of potential microstructure 

topologies. Note that the influence coefficients 𝛃𝐤
h  of the MKS approach have been 

shown to be independent of the microstructure topology in prior studies (Fast and 

Kalidindi, 2011; Fast et al., 2011; Kalidindi et al., 2010; Landi and Kalidindi, 2010; 

Landi et al., 2009). In other words, the same set of influence coefficients were utilized for 

both microstructure topologies. The microscale distributions of the σ11  component of 

stress in each phase in the rod microstructure at elements A and B in both the MKS-FE 

and direct FE models are compared against each other in Figure A.6. Furthermore, the 

spatial distributions of the local (σs)11 component of stress for a mid-plane through the 

rod microstructure at element B from the MKS-FE were compared with the results from 

the direct FE models in Figure A.7. It is seen once again that the two predictions are once 

again in excellent agreement with each other for the case of rod-microstructure. This 

result demonstrates the versatility of the MKS-FE approach in its broad applicability to a 

wide range of microstructure topologies. 
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Figure A.6: Comparison of the microscale stress distributions predicted from the MKS-

FE model against the corresponding predictions from the direct FE model at (a) location 

A and (b) location B in the cantilever beam model shown in Figure A.1. Results are for 

the rod-microstructure shown in Figure A.2 (b). 

 

 

 

Figure A.7: Comparison of contour maps of the local σ11  component of stress 

(normalized by the macroscopic effective stress component 〈σ11〉 ) for the mid-plane of a 

3-D rod microstructure (Figure 2(b)), calculated using the MKS-FE against the 

corresponding predictions from the direct FE model at location B in the cantilever beam 

model shown in Figure A.1. 
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APPENDIX B 

SPECTRAL CRYSTAL PLASTICITY UMAT 

 

 

  MODULE CommonModule 

      IMPLICIT NONE 

C     ---------------------- 

      REAL*8,  PARAMETER  :: TOL = 0.0001 

      INTEGER, PARAMETER  :: NCOEFF =6874     

      INTEGER, PARAMETER  :: MFINE  = 3000000 

      INTEGER, PARAMETER  :: isoflag= 1       

C     --------------------- 

      REAL*8, PARAMETER   :: C11=168400      

      REAL*8, PARAMETER   :: C12=121400     

      REAL*8, PARAMETER   :: C44=75400     

      REAL*8, PARAMETER   :: Yng=200000  

      REAL*8, PARAMETER   :: pois=0.34  

      REAL*8, PARAMETER   :: SO=16     

      REAL*8, PARAMETER   :: HO=180   

      REAL*8, PARAMETER   :: SS=148      

      REAL*8, PARAMETER   :: AEXP=2.25   

C     -------------------- 

      INTEGER, PARAMETER  :: NCRYSINITIAL =1   

      INTEGER, PARAMETER  :: MAXCRYS = 4000     

      INTEGER, PARAMETER  :: KELMFLAG = 0         

      INTEGER, PARAMETER  :: NELEM = 500         

      INTEGER, PARAMETER  :: NINTG = 8          

      INTEGER, PARAMETER  :: LRIGID = 0        

C     ------------------- 

      INTEGER             :: I,J,K,L,M,N 

      INTEGER             :: NCRYS,INIT,JFLAG 

      REAL*8, PARAMETER   :: GDO= 0.001            

      REAL*8, PARAMETER   :: XM= 0.01             

      REAL*8, PARAMETER   :: SPACESIZE=(120.0)**4.0 

C 

      COMPLEX*8,PARAMETER :: COMPLXI=(0.0D0,1.0D0) 

C 

      REAL*8, PARAMETER   :: PI=DACOS(-1.0D0) 

      REAL*8, PARAMETER   :: DEGRAD=PI/180.0D0  

      REAL*8, PARAMETER   :: RADDEG=180.0D0/PI 

      REAL*8, PARAMETER   :: ZERO = 0.0D0 

      REAL*8, PARAMETER   :: ONE  = 1.0D0 
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      REAL*8, PARAMETER   :: TWO  = 2.0D0 

      REAL*8, PARAMETER   :: THREE= 3.0D0 

      REAL*8, PARAMETER   :: HALF = ONE/TWO 

C 

      REAL*8              :: Bulk,TFLAG 

C     ------------------ 

      COMPLEX*8, DIMENSION(NCOEFF) :: FS11,FS22,FS12,FS13,FS23, 

     .                                FWS12,FWS13,FWS23,FGD       

C 

      INTEGER, DIMENSION(NCOEFF)   :: SUPER1,SUPER2,SUPER3,SUPER4 

C 

      COMPLEX*8, DIMENSION(NCOEFF) :: thetaFS11,thetaFS22,thetaFS12, 

     .                                thetaFS13,thetaFS23 

      COMPLEX*8, DIMENSION(NCOEFF) :: phi1FS11,phi1FS22,phi1FS12, 

     .                                phi1FS13,phi1FS23 

      COMPLEX*8, DIMENSION(NCOEFF) :: phiFS11,phiFS22,phiFS12, 

     .                                phiFS13,phiFS23 

      COMPLEX*8, DIMENSION(NCOEFF) :: phi2FS11,phi2FS22,phi2FS12, 

     .                                phi2FS13,phi2FS23 

      COMPLEX*8, DIMENSION(NCOEFF) :: phi1GD,phiGD,phi2GD,thetaGD 

C     ---------------------- 

      REAL*8, DIMENSION(MAXCRYS)   :: phi1,phi,phi2 

C     ---------------------- 

      REAL*8, DIMENSION(6,6)       :: ELASiso, ELASisoINV 

      REAL*8, DIMENSION(5,5)       :: ELASiso55, ELASiso55inv 

C     ---------------------- 

      CONTAINS 

C     ---------------------- 

C     Load Spectral databases 

      SUBROUTINE LOADDATABASE() 

      IMPLICIT NONE 

      INTEGER ::I,J,K,L,M,N 

C 

      OPEN(UNIT=101,FILE='/nv/hp22/halharbi3/scratch/CRYSP/ 

     .COEFF_NoSpace.inp',STATUS ='OLD') 

      OPEN(UNIT=102,FILE='/nv/hp22/halharbi3/scratch/CRYSP/ 

     .SUPERSET_NoSpace.inp',STATUS ='OLD') 

      OPEN(UNIT=103,FILE='/nv/hp22/halharbi3/scratch/CRYSP/ 

     .thetaderiv_NoSpace.inp',STATUS ='OLD')      

      OPEN(UNIT=104,FILE='/nv/hp22/halharbi3/scratch/CRYSP/ 

     .phi1deriv_NoSpace.inp',STATUS ='OLD') 

      OPEN(UNIT=105,FILE='/nv/hp22/halharbi3/scratch/CRYSP/ 

     .phideriv_NoSpace.inp',STATUS ='OLD') 

      OPEN(UNIT=106,FILE='/nv/hp22/halharbi3/scratch/CRYSP/ 

     .phi2deriv_NoSpace.inp',STATUS ='OLD') 

      OPEN(UNIT=107,FILE='/nv/hp22/halharbi3/scratch/CRYSP/ 
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     .Gammaderiv_NoSpace.inp',STATUS ='OLD') 

C 

      DO J=1,NCOEFF 

         READ(101,*) FS11(J),FS22(J),FS12(J),FS13(J),FS23(J),FWS12(J), 

     .             FWS13(J),FWS23(J),FGD(J)        

         READ(102,*) SUPER1(J),SUPER2(J),SUPER3(J),SUPER4(J) 

         READ(103,*) thetaFS11(J),thetaFS22(J),thetaFS12(J), 

     .             thetaFS13(J),thetaFS23(J) 

         READ(104,*) phi1FS11(J),phi1FS22(J),phi1FS12(J), 

     .             phi1FS13(J),phi1FS23(J) 

         READ(105,*) phiFS11(J),phiFS22(J),phiFS12(J), 

     .             phiFS13(J),phiFS23(J) 

         READ(106,*) phi2FS11(J),phi2FS22(J),phi2FS12(J), 

     .             phi2FS13(J),phi2FS23(J) 

         READ(107,*)phi1GD(J),phiGD(J),phi2GD(J),thetaGD(J) 

      END DO 

C 

      CLOSE(101) 

      CLOSE(102) 

      CLOSE(103) 

      CLOSE(104) 

      CLOSE(105) 

      CLOSE(106)  

      CLOSE(107)      

      END SUBROUTINE 

C     ---------------------------- 

C     Load Texture (in terms of Bunge-Euler Angles given in degree) 

      SUBROUTINE LOADDATEXTURE() 

      IMPLICIT NONE 

      INTEGER ::I,J,K,L,M,N 

C 

      OPEN(UNIT=108,FILE='/nv/hp22/halharbi3/scratch/CRYSP/ 

     .euler_NoSpace.inp',STATUS ='OLD') 

C 

      DO J=1,MAXCRYS  

         READ(108,*)phi1(J),phi(J),phi2(J) 

      ENDDO 

      CLOSE(108) 

      RETURN 

      END SUBROUTINE 

C     --------------------------- 

      END MODULE CommonModule 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCC 

C     SPECTRAL CRYSTAL PLASTICITY UMAT FOR CUBIC MATERIALS 

C     AUTHOR: HAMAD F. ALHARBI, GEORGIA TECH, ME DEPT.  
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C     EMAIL: ALHARBIHAMAD@GMAIL.COM 

C     NOTE: NOT ALL SUBROUTINES INCLUDIED IN THIS VERSION  

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCC 

      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1  RPL,DDSDDT,DRPLDE,DRPLDT, 

     2  STRAN,DSTRAN,TIM,DTIME,TEMP,DTEMP,PREDEF,DPRED, CMNAME, 

     3  NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4  CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)        

C     ----------------------------------- 

      USE CommonModule 

C     ---------------------------------- 

      IMPLICIT NONE 

      CHARACTER*8 CMNAME 

      INTEGER                       :: NDI, NSHR, NTENS, NSTATV, NPROPS, 

     .                                 NOEL, NPT, LAYER,KSPT,KSTEP,KINC 

      REAL*8                        :: SSE,SPD,SCD,RPL,DTIME,TEMP,DTEMP, 

     .                                 PNEWDT,CELENT,DRPLDT,PREDEF 

      REAL*8, DIMENSION(1)          :: REDEF,DPRED 

      REAL*8, DIMENSION(2)          :: TIM,TIME 

      REAL*8, DIMENSION(3)          :: COORDS 

      REAL*8, DIMENSION(3,3)        :: DROTTRANS, DFGRD0,DFGRD1, DROT 

      REAL*8, DIMENSION(NTENS)      :: 

STRESS,DDSDDT,DRPLDE,STRAN,DSTRAN 

      REAL*8, DIMENSION(NPROPS)     :: PROPS 

      REAL*8, DIMENSION(NSTATV)     :: STATEV 

      REAL*8, DIMENSION(NTENS,NTENS):: DDSDDE 

C     --------------------------------- 

      CHARACTER*14                    FLAG_DECOMP  

      INTEGER                      :: ICRYS, ITERFLAG,IND, INITIALGUESS, 

     .                                NRmodFLAG, NRFLAG, II, NOITER_ALL, 

     .                                NRFLAG_ALL,NR_FLAG 

      REAL*8                       :: CHK,PT,DHYD,DDEVNORM,DtauNORM, 

     .                                SLIPHARDt,SLIPHARD,PTAU 

      REAL*8, DIMENSION(3)         :: WSTARS, W_TEMP 

      REAL*8, DIMENSION(5)         :: SumDevStress,SIGDFT,SIGDEVT, 

     .                                DSDEV1,DDEVV,ElasDevStrain_t, 

     .                                ElasDevStrain_tau 

      REAL*8, DIMENSION(3,3)       :: QCRSA, QCRSA_NEW, RSTART, FDOT, 

     .                                FTAUINV,HLTAU,DTAU,WTAU,DDEV 

      REAL*8, DIMENSION(5,5)       ::dDFTSIGdDP,ELAS55INV,XMAT55,XMATINV 

      REAL*8, DIMENSION(6,6)       :: SumJAC, OLDJAC,dSIGdEt,ELAS  

C     -------------------------------- 

      INTEGER                      :: LnewJacob 

      REAL*8, DIMENSION(5,5)       :: dDstardSig, 

     .                                AAjac, AAjacinv, 

mailto:ALHARBIHAMAD@GMAIL.COM
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     .                                dDevSIGdDevD 

      REAL*8, DIMENSION(5,6)       :: dDevDdEt56, dDevDdD 

      REAL*8, DIMENSION(6,5)       :: dDevSIGdDevD65 

      REAL*8, DIMENSION(6,6)       :: dDdEt, dpdEt, dDevSIGdEt, 

     .                                dpdD, dDevSIGdD 

C     ================================ 

!     Read user's inputs from ABAQUS input file: 

      NCRYS = PROPS(1)       ! No. of crystals per integration point 

C      

C     COMPUTE FDOT 

      DO J = 1,3 

        DO I = 1,3 

           FDOT(I,J)=(DFGRD1(I,J)-DFGRD0(I,J))/DTIME 

        ENDDO 

      ENDDO  

C 

C     COMPUTE FTAU INVERSE 

      CALL MAT3INV(DFGRD1,FTAUINV)     

C  

C     COMPUTE L 

      CALL MULTIP(FDOT,FTAUINV,HLTAU)  

C 

C     COMPUTE D 

      DTAU(1,1)=HLTAU(1,1) 

      DTAU(2,2)=HLTAU(2,2) 

      DTAU(3,3)=HLTAU(3,3) 

      DTAU(1,2)=HALF*(HLTAU(1,2)+HLTAU(2,1)) 

      DTAU(1,3)=HALF*(HLTAU(1,3)+HLTAU(3,1)) 

      DTAU(2,3)=HALF*(HLTAU(2,3)+HLTAU(3,2))       

      DTAU(2,1)=DTAU(1,2) 

      DTAU(3,1)=DTAU(1,3) 

      DTAU(3,2)=DTAU(2,3) 

C 

C     COMPUTE NORM OF D 

      DtauNORM=DSQRT(DTAU(1,1)*DTAU(1,1) + 2.0*DTAU(1,2)*DTAU(1,2)+  

     .               2.0*DTAU(1,3)*DTAU(1,3) + DTAU(2,2)*DTAU(2,2)+  

     .               2.0*DTAU(2,3)*DTAU(2,3) + DTAU(3,3)*DTAU(3,3)) 

C 

C     COMPUTE W 

      WTAU(1,1)=ZERO 

      WTAU(2,2)=ZERO 

      WTAU(3,3)=ZERO 

      WTAU(1,2)=HALF*(HLTAU(1,2)-HLTAU(2,1)) 

      WTAU(1,3)=HALF*(HLTAU(1,3)-HLTAU(3,1)) 

      WTAU(2,3)=HALF*(HLTAU(2,3)-HLTAU(3,2))       

      WTAU(2,1)=-WTAU(1,2) 
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      WTAU(3,1)=-WTAU(1,3) 

      WTAU(3,2)=-WTAU(2,3) 

C 

C     COMPUTE DEVATORIC PART OF DTAU (TRACELESS D)      

      DHYD=(DTAU(1,1)+DTAU(2,2)+DTAU(3,3))/THREE 

      DDEV(1,1)=DTAU(1,1)-DHYD  

      DDEV(2,2)=DTAU(2,2)-DHYD  

      DDEV(3,3)=DTAU(3,3)-DHYD  

      DDEV(1,2)=DTAU(1,2) 

      DDEV(1,3)=DTAU(1,3) 

      DDEV(2,3)=DTAU(2,3) 

      DDEV(2,1)=DDEV(1,2) 

      DDEV(3,1)=DDEV(1,3) 

      DDEV(3,2)=DDEV(2,3) 

C      

C     COMPUTE NORM OF D' 

      DDEVNORM=DSQRT(2*(DDEV(1,1)*DDEV(1,1)+DDEV(2,2)*DDEV(2,2)+ 

     .               DDEV(1,1)*DDEV(2,2)+DDEV(1,2)*DDEV(1,2)+ 

     .               DDEV(1,3)*DDEV(1,3)+DDEV(2,3)*DDEV(2,3))) 

C      

C     Calculate pressure and stress at time t 

      PT=(STRESS(1)+STRESS(2)+STRESS(3))/THREE   ! Pressure at time t 

      SIGDEVT(1)=STRESS(1)-PT                    ! Devatoric stress at time t, 11 

      SIGDEVT(2)=STRESS(2)-PT                    ! Devatoric stress at time t, 22 

      SIGDEVT(3)=STRESS(4)                       ! Devatoric stress at time t, 12 

      SIGDEVT(4)=STRESS(5)                       ! Devatoric stress at time t, 13 

      SIGDEVT(5)=STRESS(6)                       ! Devatoric stress at time t, 23 

C      

C     COMPUTE THE PRESSURE AT TIME TAU  

      PTAU=Bulk*DHYD*THREE*DTIME+PT 

C      

C     RETRIEVE THE PREVIOUS DEVIATORIC ELASTIC STRAIN 

      ind=(1+9)*NCRYS+36+1 

      ElasDevStrain_t(1)=STATEV(ind)   

      ElasDevStrain_t(2)=STATEV(ind+1) 

      ElasDevStrain_t(3)=STATEV(ind+2) 

      ElasDevStrain_t(4)=STATEV(ind+3) 

      ElasDevStrain_t(5)=STATEV(ind+4) 

C     

C      

C     Start Loop over all crystals for each integration point 

      DO J=1,5 

         SumDevStress(J)=ZERO     !Initialize the sum of devatoric stress 

      ENDDO 

      DO J = 1,6 

         DO K = 1,6 
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            SumJAC(K,J) = ZERO   !Initialize the sum of Jacobian 

         ENDDO 

      ENDDO 

C     --------------------------------- 

      ind=1 

      CrystalLoop: DO II=1,NCRYS 

            SLIPHARDt=STATEV(ind)    

            QCRSA(1,1)=STATEV(ind+1) 

            QCRSA(1,2)=STATEV(ind+2) 

            QCRSA(1,3)=STATEV(ind+3) 

            QCRSA(2,1)=STATEV(ind+4) 

            QCRSA(2,2)=STATEV(ind+5) 

            QCRSA(2,3)=STATEV(ind+6) 

            QCRSA(3,1)=STATEV(ind+7) 

            QCRSA(3,2)=STATEV(ind+8) 

            QCRSA(3,3)=STATEV(ind+9) 

C           ======================== 

C           DECOMPOSE D' INTO ELASTIC (D*') AND PLASTIC (Dp') PARTS 

C            

C           Modified Newton-Raphson 

            NR_FLAG=0 

            CALL DECOMPDNR(SLIPHARDt,DTIME,DDEV,WTAU,SIGDEVT,  

     .                     QCRSA,DDEVNORM,ElasDevStrain_t,     

     .                     SIGDFT, RSTART, SLIPHARD,NOITER_ALL, 

     .                     ElasDevStrain_tau,ELAS55INV,XMAT55,  

     .                     dDFTSIGdDP,NR_FLAG)                 

            FLAG_DECOMP='DECOMPDNR' 

            NRFLAG_ALL=NR_FLAG 

            IF (NR_FLAG .EQ. 1) GO TO 300  

C           ----------------------------------  

            WRITE(*,*)'******************************************' 

            WRITE(*,*) 'ERROR, MANY ITERATIONS FOR DECOMPOSING D' 

            WRITE(*,*) 'CHECK ERROR FILE ' 

            WRITE(*,*)'******************************************' 

            CALL XIT  

C            

300         CONTINUE 

C           UPDATE JACOBIAN IF REQUIRED 

C           ------------------------------------- 

            IF (isoflag .EQ. 1) THEN  

              DO 5 I=1,5 

                 DO 5 J=1,5 

                 dDstardSig(I,J) = ZERO 

                 DO 5 K=1,5 

5                   dDstardSig(I,J)=dDstardSig(I,J)+ 

     .                              ELASiso55inv(I,K)*XMAT55(K,J) 
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            ELSE  !for anisotropic                

                 DO 10 I=1,5 

                 DO 10 J=1,5 

                   dDstardSig(I,J) = ZERO 

                   DO 10 K=1,5 

10                 dDstardSig(I,J)=dDstardSig(I,J)+ 

     .                             ELAS55INV(I,K)*XMAT55(K,J) 

            ENDIF        

C            

            CALL dDdEtboth(DTIME, DFGRD0, DFGRD1,   

     .                     dDdEt,dDevDdEt56)       

C           ---------------------------------- 

            DO 15 J=1,6  

15             dpdEt(1,J)=Bulk*DTIME*(dDdEt(1,J)+dDdEt(2,J)+dDdEt(3,J)) 

            DO 20 J=2,3  

               DO 20 K=1,6 

20                dpdEt(J,K) = dpdEt(1,K) 

            DO 25 J=4,6  

               DO 25 K=1,6 

25                dpdEt(J,K) = ZERO 

C            

C            

            DO 35 I=1,5 

               DO 35 J=1,5 

               AAjac(I,J) = ZERO 

               DO 35 K=1,5 

35                AAjac(I,J)=AAjac(I,J)+dDFTSIGdDP(I,K)*dDstardSig(K,J)  

            AAjac(1,1)=AAjac(1,1)+ONE 

            AAjac(2,2)=AAjac(2,2)+ONE 

            AAjac(3,3)=AAjac(3,3)+ONE 

            AAjac(4,4)=AAjac(4,4)+ONE 

            AAjac(5,5)=AAjac(5,5)+ONE 

            CALL MATINV55(AAjac,AAjacinv)                             

C           

C           

            DO 40 I=1,5 

               DO 40 J=1,5 

                  dDevSIGdDevD(I,J)=ZERO 

                  DO 40 K=1,5 

40                   dDevSIGdDevD(I,J)=dDevSIGdDevD(I,J)+ 

     .                                 AAjacinv(I,K)*dDFTSIGdDP(K,J) 

C          

C          

            DO 45 J=1,5 

               dDevSIGdDevD65(1,J)=dDevSIGdDevD(1,J) 

               dDevSIGdDevD65(2,J)=dDevSIGdDevD(2,J) 
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               dDevSIGdDevD65(3,J)=-dDevSIGdDevD(1,J)-dDevSIGdDevD(2,J) 

               dDevSIGdDevD65(4,J)=dDevSIGdDevD(3,J) 

               dDevSIGdDevD65(5,J)=dDevSIGdDevD(4,J) 

45             dDevSIGdDevD65(6,J)=dDevSIGdDevD(5,J) 

C             

            DO 60 I=1,6 

              DO 60 J=1,6 

                 dDevSIGdEt(I,J) = ZERO 

                 DO 50 K=1,5 

50                  dDevSIGdEt(I,J)=dDevSIGdEt(I,J)+ 

     .                              dDevSIGdDevD65(I,K)*dDevDdEt56(K,J) 

                 dSIGdEt(I,J) = dDevSIGdEt(I,J)+dpdEt(I,J) 

60          CONTINUE 

C      

C           COMPUTE SUM OF DEVATORIC STRESS AND JACOBIAN 

            DO J = 1,5 

                  SumDevStress(J)=SumDevStress(J)+SIGDFT(J) 

            ENDDO 

            DO J = 1,6 

               DO K = 1,6 

                  SumJAC(K,J) = SumJAC(K,J)+dSIGdEt(K,J) 

               ENDDO 

            ENDDO 

C     ------------------------------ 

C     UPDATE STATE VARIABLES: SLIPHARDt & QCRSA 

            STATEV(ind)=SLIPHARD 

            CALL MULTIPT(RSTART,QCRSA,QCRSA_NEW)   

            STATEV(ind+1)=QCRSA_NEW(1,1) 

            STATEV(ind+2)=QCRSA_NEW(1,2) 

            STATEV(ind+3)=QCRSA_NEW(1,3) 

            STATEV(ind+4)=QCRSA_NEW(2,1) 

            STATEV(ind+5)=QCRSA_NEW(2,2) 

            STATEV(ind+6)=QCRSA_NEW(2,3) 

            STATEV(ind+7)=QCRSA_NEW(3,1) 

            STATEV(ind+8)=QCRSA_NEW(3,2) 

            STATEV(ind+9)=QCRSA_NEW(3,3) 

!     ------------------------------------ 

222         CONTINUE 

            ind=ind+10 

      ENDDO CrystalLoop   

C 

450   CONTINUE 

C 

C     COMPUTE AND PASS THE FINAL STRESS AND JACOBIAN TO ABAQUS 

      STRESS(1)=SumDevStress(1)/NCRYS+PTAU            

      STRESS(2)=SumDevStress(2)/NCRYS+PTAU           
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      STRESS(3)=-STRESS(1)-STRESS(2)+THREE*PTAU     

      STRESS(4)=SumDevStress(3)/NCRYS              

      STRESS(5)=SumDevStress(4)/NCRYS             

      STRESS(6)=SumDevStress(5)/NCRYS            

      DO J = 1,6 

         DO K = 1,6 

            OLDJAC(K,J) = SumJAC(K,J)/NCRYS  

         ENDDO 

      ENDDO 

C     

600   CONTINUE 

C     

      ind=(1+9)*NCRYS+1 

      DO I = 1,6 

          DO J = 1,6 

             DDSDDE(J,I) = OLDJAC(J,I) 

C 

             STATEV(ind)  = OLDJAC(J,I) 

             ind=ind+1   

          ENDDO 

      ENDDO 

C     

      ind=(1+9)*NCRYS+36+1 

      STATEV(ind)  =ElasDevStrain_tau(1) 

      STATEV(ind+1)=ElasDevStrain_tau(2) 

      STATEV(ind+2)=ElasDevStrain_tau(3) 

      STATEV(ind+3)=ElasDevStrain_tau(4) 

      STATEV(ind+4)=ElasDevStrain_tau(5) 

C    

      RETURN   ! END OF UMAT SUBROUTINE 

      END   

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

      SUBROUTINE DECOMPDNR(SLIPHARDt,DTIME,DEVD,WAPP,SIGDEVT,    

     .              QCRSA,DDEVNORM,ElasDevStrain_t,                    

     .              DFTSIG, RSTART, SLIPHARD,NOITER,ElasDevStrain_tau, 

     .              ELAS55INV,XMAT55,dDFTSIGdDP,NR_FLAG)          

C     ----------------------------- 

      USE CommonModule 

C     ----------------------------- 

      IMPLICIT NONE 

      INTEGER                   :: NR_FLAG, NOITER,LFLAG1 

      REAL*8                    :: SLIPHARD, SLIPHARDt,eps_incr,  

     .                             check, DDEVNORM,DTIME,eps,lambda, 

     .                             VM_DFTSIG,eps_Max,eta,eps_incr_Max, 

     .                             alpha,DSDEV_NORM,VM_HPRSIG,Beta,gamm 

      REAL*8, DIMENSION(3)      :: WSTARS 
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      REAL*8, DIMENSION(5)      :: DFTSIG, SIGDFT1, SIGDEVT, SIGJM, 

     .                             DSDEV, DSDEV1,Gfun,HPRSIG, 

     .                             delDstar,gradf,ElasDevStrain_t, 

     .                             ElasDevStrain_tau,ElasDevStrain_incr 

     .                              

      REAL*8, DIMENSION(3,3)    :: DP, DP1,QCRSA,DEVD, 

     .                             WAPP, RSTART, QCRDEF 

      REAL*8, DIMENSION(5,5)    :: ELAS55, ELAS55INV, XMAT55,XMATINV, 

     .                             dDFTSIGdDP,dSIGdDstar,DSJACOB, 

     .                             DSJACOBINV 

      REAL*8, DIMENSION(6,6)    :: ELAS 

C      

C     INITIAL GUESS: D'* 

C 

      LFLAG1=0 

      CALL FFT_STRESS_JAC(LFLAG1,DTIME,DEVD,WAPP,SLIPHARDt,QCRSA,   

     .                    DFTSIG,SLIPHARD,WSTARS,dDFTSIGdDP)       

C      

      VM_DFTSIG=DSQRT(3*(DFTSIG(1)**2+DFTSIG(2)**2+DFTSIG(1)*DFTSIG(2) 

     .            + DFTSIG(3)**2+DFTSIG(4)**2+DFTSIG(5)**2)) 

      eps_Max=VM_DFTSIG/Yng 

      eta=0.1 

      eps_incr_Max=eta*eps_Max 

C      

C      

      SIGJM(1)=-2*DFTSIG(3)*WSTARS(1)/DTIME-2*DFTSIG(4)* 

     .          WSTARS(2)/DTIME+ 

     .          (DFTSIG(1) - SIGDEVT(1))/DTIME          

C      

      SIGJM(2)=-2*DFTSIG(5)*WSTARS(3)/DTIME+2*DFTSIG(3)* 

     .         WSTARS(1)/DTIME+ 

     .         (DFTSIG(2) - SIGDEVT(2))/DTIME          

C                                  

      SIGJM(3)=-DFTSIG(2)*WSTARS(1)/DTIME + DFTSIG(1)* 

     .          WSTARS(1)/DTIME - DFTSIG(4)*WSTARS(3)/DTIME- 

     .          DFTSIG(5)*WSTARS(2)/DTIME+(DFTSIG(3) - 

     .          SIGDEVT(3))/DTIME                     

C                              

      SIGJM(4)=-DFTSIG(5)*WSTARS(1)/DTIME + DFTSIG(3)* 

     .          WSTARS(3)/DTIME + DFTSIG(2)*WSTARS(2)/DTIME+ 

     .          2*DFTSIG(1)*WSTARS(2)/DTIME+(DFTSIG(4)- 

     .          SIGDEVT(4))/DTIME                    

C    

      SIGJM(5)=(DFTSIG(5) - SIGDEVT(5))/DTIME + 

     .         DFTSIG(4)*WSTARS(1)/DTIME +DFTSIG(1)*WSTARS(3)/DTIME+ 

     .         2*DFTSIG(2)*WSTARS(3)/DTIME + DFTSIG(3)* 
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     .         WSTARS(2)/DTIME                      

C      

C      

      IF (isoflag .EQ. 1) THEN     

        DO 49 J=1,5 

           DSDEV(J)=0.0 

           DO 49 K=1,5 

49            DSDEV(J)=DSDEV(J)+ELASiso55inv(J,K)*SIGJM(K) 

      ELSE                        

        CALL ROTMAT(-WSTARS(1),-WSTARS(2),-WSTARS(3),RSTART)   

        CALL MULTIPT(RSTART,QCRSA,QCRDEF)                     

        CALL ELAST(QCRDEF,ELAS)                              

        CALL ELAST55(ELAS,ELAS55)                           

        CALL MATINV55(ELAS55,ELAS55INV)                    

        DO 50 J=1,5 

           DSDEV(J)=0.0 

           DO 50 K=1,5 

50            DSDEV(J)=DSDEV(J)+ELAS55INV(J,K)*SIGJM(K)        

      ENDIF                       

C      

      DSDEV_NORM=DSQRT(2.0*(DSDEV(1)**2+DSDEV(2)**2+DSDEV(1)* 

     .         DSDEV(2)+DSDEV(3)**2+DSDEV(4)**2+DSDEV(5)**2)) 

C     

      alpha=0.1 

      IF (DSDEV_NORM .LT. alpha*DDEVNORM) GO TO 570       

C      

      WSTARS(1)= WAPP(1,2)*DTIME         

      WSTARS(2)= WAPP(1,3)*DTIME        

      WSTARS(3)= WAPP(2,3)*DTIME       

      CALL ElastEqn(DTIME,DEVD,WSTARS,QCRSA,SIGDEVT,           

     .              RSTART,HPRSIG,XMATINV)                    

C 

      

VM_HPRSIG=DSQRT(3*(HPRSIG(1)**2+HPRSIG(2)**2+HPRSIG(1)*HPRSIG(2) 

     .            + HPRSIG(3)**2+HPRSIG(4)**2+HPRSIG(5)**2)) 

C     ---------------------------------------- 

      IF (VM_DFTSIG .GT. VM_HPRSIG) THEN    

         DSDEV(1)=DEVD(1,1) 

         DSDEV(2)=DEVD(2,2) 

         DSDEV(3)=DEVD(1,2)                 

         DSDEV(4)=DEVD(1,3) 

         DSDEV(5)=DEVD(2,3)  

      ELSE                                 

         Beta=VM_DFTSIG/VM_HPRSIG 

         DSDEV(1)=Beta*DEVD(1,1) 

         DSDEV(2)=Beta*DEVD(2,2) 
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         DSDEV(3)=Beta*DEVD(1,2)                 

         DSDEV(4)=Beta*DEVD(1,3) 

         DSDEV(5)=Beta*DEVD(2,3) 

      ENDIF 

C     ----------------------------------- 

      DO I=1,5 

         ElasDevStrain_tau(I)=ElasDevStrain_t(I)+DSDEV(I)*dtime 

      ENDDO 

      eps=DSQRT(2.0*(ElasDevStrain_tau(1)**2+ElasDevStrain_tau(2)**2+ 

     .ElasDevStrain_tau(1)*ElasDevStrain_tau(2)+ElasDevStrain_tau(3)**2+ 

     .ElasDevStrain_tau(4)**2+ElasDevStrain_tau(5)**2)) 

C 

      IF (eps .GT. eps_Max) THEN 

         gamm=eps_Max/eps 

         DO I=1,5 

            DSDEV(I)=gamm*DSDEV(I) 

         ENDDO 

      ENDIF 

C 

570   CONTINUE 

C      

C     Start NR method 

      NR_FLAG=1 

      NOITER=1 

400   CONTINUE       

C     

      DSDEV1(1)=DSDEV(1) 

      DSDEV1(2)=DSDEV(2) 

      DSDEV1(3)=DSDEV(3) 

      DSDEV1(4)=DSDEV(4) 

      DSDEV1(5)=DSDEV(5) 

C     CALCULATE DP  

      DP(1,1)=DEVD(1,1)-DSDEV(1) 

      DP(2,2)=DEVD(2,2)-DSDEV(2) 

      DP(3,3)=-DP(1,1)-DP(2,2) 

      DP(1,2)=DEVD(1,2)-DSDEV(3) 

      DP(1,3)=DEVD(1,3)-DSDEV(4) 

      DP(2,3)=DEVD(2,3)-DSDEV(5)  

      DP(2,1)=DP(1,2) 

      DP(3,1)=DP(1,3) 

      DP(3,2)=DP(2,3)      

C    

C     1] Calculate the function G 

      LFLAG1=1 

      CALL FFT_STRESS_JAC(LFLAG1,DTIME,DP,WAPP,SLIPHARDt,QCRSA,     

     .                    DFTSIG,SLIPHARD,WSTARS,dDFTSIGdDP)       
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C 

      CALL ElastEqn(DTIME,DSDEV,WSTARS,QCRSA,SIGDEVT,       

     .              RSTART,HPRSIG,XMATINV)                 

C 

      Do 30 K=1,5 

30    Gfun(K)=DFTSIG(K)-HPRSIG(K)       

C      

C     2] CALCULATE THE JACOBIAN: J=d(GFUN)/d(D*') 

C 

C     2.1] d(DFTSIG)/d(Dp)                

C          ALREADY CALCULATED ABOVE IN SUBROUTINE FFT_STRESS_JAC 

C     2.2] d(HPRSIG)/d(D*')  

      DO 40 I=1,5 

        DO 40 J=1,5 

         dSIGdDstar(I,J) = ZERO 

         DO 40 K=1,5 

           IF (isoflag .eq. 1) then 

             dSIGdDstar(I,J)=dSIGdDstar(I,J)+XMATINV(I,K)*ELASiso55(K,J) 

           ELSE 

             dSIGdDstar(I,J)=dSIGdDstar(I,J)+XMATINV(I,K)*ELAS55(K,J)  

           ENDIF 

40    CONTINUE   

      DO 70, J=1,5 

        DO 70, K=1,5 

70        DSJACOB(J,K)=-dDFTSIGdDP(J,K)-dSIGdDstar(J,K) 

C      

C     3] MODIFY D*':  [D*'](n+1)=[D*'](n)-inv[DSJACOB]*G  

C       

      CALL MATINV55(DSJACOB,DSJACOBINV) 

C 

      DO J=1,5 

         delDstar(J)=ZERO 

         DO K=1,5 

            delDstar(J)=delDstar(J)-DSJACOBINV(J,K)*Gfun(K) 

         ENDDO 

         DSDEV(J)=DSDEV1(J)+delDstar(J)  

      ENDDO 

C      

C      

      DO I=1,5 

         ElasDevStrain_incr(I)=DSDEV(I)*dtime 

         ElasDevStrain_tau(I)=ElasDevStrain_t(I)+ElasDevStrain_incr(I) 

      ENDDO 

      eps_incr=DSQRT(2.0*(ElasDevStrain_incr(1)**2+ 

     .         ElasDevStrain_incr(2)**2+ElasDevStrain_incr(1)* 

     .         ElasDevStrain_incr(2)+ElasDevStrain_incr(3)**2+ 
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     .         ElasDevStrain_incr(4)**2+ElasDevStrain_incr(5)**2)) 

C 

      IF (eps_incr .GE. eps_incr_Max) THEN 

         lambda=eps_incr_Max/eps_incr 

         DO J=1,5 

            DSDEV(J)=DSDEV1(J)+lambda*delDstar(J)  

         ENDDO 

      ENDIF 

C      

C     CONVERGENCE CRITERION BASED ON D*'     

      check=DMAX1(    DABS(DSDEV(1)-DSDEV1(1)), 

     &                DABS(DSDEV(2)-DSDEV1(2)), 

     &                DABS(DSDEV(3)-DSDEV1(3)), 

     &                DABS(DSDEV(4)-DSDEV1(4)), 

     &                DABS(DSDEV(5)-DSDEV1(5)))/DDEVNORM 

C 

      IF (check .LE. TOL) THEN  

            IF (isoflag .EQ. 1) THEN         

              CALL ROTMAT(-WSTARS(1),-WSTARS(2),-WSTARS(3),RSTART)   

            ENDIF       

            GO TO 500 

      ENDIF 

C 

      IF (NOITER .GT. 50) THEN 

            NR_FLAG=0 

            RETURN 

      ENDIF  

C 

      NOITER=NOITER+1 

      GO TO 400    

500   CONTINUE 

C 

      NR_FLAG=1 

      RETURN 

      END      

CCCCCCCCCCCCCCCCCCCCCCCCCCCC 

      SUBROUTINE 

FFT_STRESS_JAC(LFLAG1,DTIME,DP,WAPP,SLIPHARDt,QCRSA,  

     .                          DFTSIG,SLIPHARD,WSTARS,dDFTSIGdDP)      

      USE CommonModule 

      IMPLICIT NONE 

      INTEGER                      :: LFLAG1, indTHETA,  

     .                                indphi1, indphi, indphi2 

      REAL*8                       :: DPNORM,THETA,ABSSTRRATE,SLIPHARDt, 

     .                                SP11,SP22,SP12,SP13,SP23,SLIPHARD, 

     .                                WPPRIN12,WPPRIN13,WPPRIN23, 
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     .                                TEMP1, TEM1, TEM2, TEM3, TEM4, 

     .                                TEM5, phi1D, phiD, phi2D,CONST, 

     .                                ZA,ZB,ZC,ZD,ZE,ZF,ZG,ZH,ZI, 

     .                                Z0,Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9,Z10, 

     .                                Z11,Z12,Z13,Z14,Z15,Z16,Z17,Z18, 

     .                                Z19,Z20,Z21,Z22,Z23,Z24,Z25,Z26, 

     .                                Z27,Z28,Z29,Z30,Z31,Z32,Z33,Z34, 

     .                                C1,C2,C3,S1,S2,S3,C1C1,C2C2,C3C3, 

     .                                S1S1,S2S2,S3S3,C1C3,C2C3,C2C1, 

     .                                S2S1,S1S3,S2S3,TOTGAMMA,SS1,SS3, 

     .                                SS5,SS6,SS7,SS9,SS10,SS11,DTIME, 

     .                                phi1p,phip,phi2p 

      REAL*8, DIMENSION(3)         :: EIGDP, TEMP3, dgDdD11, dgDdD22, 

     .                                dgDdD12, dgDdD13, dgDdD23,WPSA, 

     .                                WSTARS 

      REAL*8, DIMENSION(5)         :: AA1, DFTSIG, AA2, CC3, dSIGTHETA,  

     .                                CC1, CC2, DD1, DD2, DD3, DD6,  

     .                                DD7, DD8, DD5, EE1, FF1,SSFINAL, 

     .                                ZZ 

      REAL*8, DIMENSION(6)         :: DD4 

      REAL*8, DIMENSION(3,3)       :: DP,WAPP,EIGVDP,QCRSA,QCRPR,TEMP33 

      REAL*8, DIMENSION(5,5)       :: AAFINAL, CCFINAL,DDFINAL,ZZFINAL, 

     .                                EEFINAL, FFFINAL, dDFTSIGdDP 

      COMPLEX*8, DIMENSION(NCOEFF) :: SUPERMAT 

C      

      TEMP33(1,1)=DP(1,1) 

      TEMP33(2,1)=DP(2,1) 

      TEMP33(3,1)=DP(3,1) 

      TEMP33(1,2)=DP(1,2) 

      TEMP33(2,2)=DP(2,2) 

      TEMP33(3,2)=DP(3,2) 

      TEMP33(1,3)=DP(1,3) 

      TEMP33(2,3)=DP(2,3) 

      TEMP33(3,3)=DP(3,3) 

      CALL JACOBI(TEMP33,EIGDP,EIGVDP)                   

      CALL EIGSORT(EIGDP,EIGVDP)                        

      CALL COLNORM(EIGVDP)                             

      DPNORM=DSQRT(EIGDP(1)**2+EIGDP(2)**2+EIGDP(3)**2) 

C 

      THETA=DATAN2((-TWO*EIGDP(1)-EIGDP(3))/DPNORM,    

     .      DSQRT(THREE)*EIGDP(3)/DPNORM) 

       IF (THETA .LT. ZERO) THETA=THETA+PI 

C 

      CALL MULTIPT(EIGVDP,QCRSA,QCRPR)                

C 

      CALL MATEUL1(QCRPR,phi1p,phip,phi2p)           
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C 

      indphi1=IDNINT(phi1p*RADDEG*MFINE/THREE) 

      indphi=IDNINT(phip*RADDEG*MFINE/THREE) 

      indphi2=IDNINT(phi2p*RADDEG*MFINE/THREE) 

      indTHETA=IDNINT(THETA*RADDEG*MFINE/THREE) 

C      

C     USE THE SPECTRAL APPROACH TO COMPUTE STRESS, WSTAR, TOTAL 

SHEAR RATE 

      ABSSTRRATE=DABS(DPNORM/GDO) 

      SUPERMAT=TWO*CDEXP(TWO*PI*COMPLXI/(120*MFINE)*                   

     . ((SUPER1-ONE)*indphi2+ 

     . (SUPER2-ONE)*indphi+ 

     . (SUPER3-ONE)*indphi1+ 

     . (SUPER4-ONE)*indTHETA)) 

  

C     COMPUTE THE TOTAL SHEAR RATE      

      TOTGAMMA=ABSSTRRATE*sum(FGD*SUPERMAT)/SPACESIZE 

C      

C     COMPUTE THE SLIP HARDENING       

      SLIPHARD=SLIPHARDt+HO*(1-

(SLIPHARDt/SS))**AEXP*TOTGAMMA*DTIME 

C 

C     COMPUTE THE STRESS IN THE PRINCIPAL FRAME  

      SP11=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .          sum(FS11*SUPERMAT)/SPACESIZE 

      SP22=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .          sum(FS22*SUPERMAT)/SPACESIZE 

      SP12=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .          sum(FS12*SUPERMAT)/SPACESIZE 

      SP13=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .          sum(FS13*SUPERMAT)/SPACESIZE 

      SP23=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .          sum(FS23*SUPERMAT)/SPACESIZE 

C       

C     TRANSFER THE STRESS INTO THE SAMPLE FRAME 

      CALL RANK2TRANS(EIGVDP,SP11,SP22,SP12,SP13,SP23,DFTSIG)           

C     -----------------------------------------------------------------------------------     

C     CALCULATE WSTAR IN THE SAMPLE FRAME  

C     STEP-A] USE SPECTRAL APPROACH TO CALCULATE WP IN THE 

PRINCIPLE FRAME 

      WPPRIN12=(DPNORM/GDO)*sum(FWS12*SUPERMAT)/SPACESIZE 

      WPPRIN13=(DPNORM/GDO)*sum(FWS13*SUPERMAT)/SPACESIZE 

      WPPRIN23=(DPNORM/GDO)*sum(FWS23*SUPERMAT)/SPACESIZE 

C 

C     STEP-B] TRANSFORM WP FROM THE PRINCIPLE FRAME TO THE SAMPLE 

FRAME                   
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      CALL MULTIPWS(EIGVDP,WPPRIN12,WPPRIN13,WPPRIN23,WPSA) 

C   

C     STEP-C] GET WSTAR IN THE SAMPLE FRAME 

      WSTARS(1)= (WAPP(1,2)-WPSA(1))*DTIME        !W*(1,2) 

      WSTARS(2)= (WAPP(1,3)-WPSA(2))*DTIME        !W*(1,3) 

      WSTARS(3)= (WAPP(2,3)-WPSA(3))*DTIME        !W*(2,3) 

C 

C     CALCULATE: d(DFTSIG)/d(Dp)  

      IF (LFLAG1 .EQ. 1) THEN 

C      

C     [d(SIGMA)/d(NORMDP)] 

      AA1(1)=XM/DPNORM*DFTSIG(1) 

      AA1(2)=XM/DPNORM*DFTSIG(2) 

      AA1(3)=XM/DPNORM*DFTSIG(3) 

      AA1(4)=XM/DPNORM*DFTSIG(4) 

      AA1(5)=XM/DPNORM*DFTSIG(5) 

C 

C     [d(NORMDP)/d(DP)] 

      AA2(1)=(TWO*DP(1,1)+DP(2,2))/DPNORM 

      AA2(2)=(TWO*DP(2,2)+DP(1,1))/DPNORM 

      AA2(3)=TWO*DP(1,2)/DPNORM 

      AA2(4)=TWO*DP(1,3)/DPNORM 

      AA2(5)=TWO*DP(2,3)/DPNORM   

C      

      DO 10 J=1,5 

      DO 10 K=1,5     

10    AAFINAL(J,K)= AA1(J)*AA2(K)       

C   

C    [d(SIGMA)/d(THETA)] 

        

CC3(1)=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .           sum(thetaFS11*SUPERMAT)/SPACESIZE 

        

CC3(2)=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .           sum(thetaFS22*SUPERMAT)/SPACESIZE 

        

CC3(3)=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .           sum(thetaFS12*SUPERMAT)/SPACESIZE 

        

CC3(4)=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .           sum(thetaFS13*SUPERMAT)/SPACESIZE 

        

CC3(5)=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .           sum(thetaFS23*SUPERMAT)/SPACESIZE 

C      

C      
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      CALL RANK2TRANS(EIGVDP,CC3(1),CC3(2),CC3(3),CC3(4),CC3(5), 

     .                dSIGTHETA) 

      CC1(1)=dSIGTHETA(1) 

      CC1(2)=dSIGTHETA(2) 

      CC1(3)=dSIGTHETA(3) 

      CC1(4)=dSIGTHETA(4) 

      CC1(5)=dSIGTHETA(5) 

C      

C     [d(THETA)/d(DP)] 

      TEMP1=-1/(DSQRT(TWO/THREE)*DSIN(THETA-PI/3))*180.0/PI 

      TEM1=DP(1,1)*(DP(1,2)**2-DP(2,2)**2-DP(1,1)*DP(2,2)- 

     &     DP(2,3)**2)+DP(2,2)*(DP(1,2)**2-DP(1,3)**2)+    

     &     2*DP(1,2)*DP(1,3)*DP(2,3) 

      TEM2=(2*(DP(1,1)**2+DP(1,2)**2+DP(1,3)**2+DP(2,2)**2+ 

     &     DP(2,3)**2+DP(1,1)*DP(2,2)))**(HALF) 

      TEM3=TEM2**3 

      TEM4=1/TEM3**2 

      TEM5=THREE*(EIGDP(1)/DPNORM)**TWO-HALF 

C 

      CC2(1)=TEMP1*TEM4*((DP(1,2)**2-DP(2,2)**2-2*DP(1,1)*DP(2,2)- 

     &      DP(2,3)**2) *TEM3 - (6*DP(1,1)+3*DP(2,2))*TEM2*TEM1)/TEM5 

C 

      CC2(2)=TEMP1*TEM4*((DP(1,2)**2-DP(1,1)**2-2*DP(1,1)*DP(2,2)- 

     &     DP(1,3)**2) *TEM3 - (6*DP(2,2)+3*DP(1,1)) *TEM2*TEM1)/TEM5 

C 

      CC2(3)=TEMP1*TEM4*((2*DP(1,1)*DP(1,2)+2*DP(2,2)*DP(1,2)+ 

     &      2*DP(1,3)*DP(2,3)  ) *TEM3 - 6*DP(1,2) *TEM2*TEM1)/TEM5 

C 

      CC2(4)=TEMP1*TEM4*((-2*DP(2,2)*DP(1,3)+ 

     &      2*DP(1,2)*DP(2,3)) *TEM3 - 6*DP(1,3) *TEM2*TEM1)/TEM5 

C 

      CC2(5)=TEMP1*TEM4*((-2*DP(1,1)*DP(2,3)+ 

     &      2*DP(1,2)*DP(1,3))*TEM3 - 6*DP(2,3) *TEM2*TEM1)/TEM5 

C      

C      

      DO 14 J=1,5 

      DO 14 K=1,5     

14    CCFINAL(J,K)= CC1(J)*CC2(K) 

C      

C     dSIGMA/dgD 

C          

      CALL MATEUL1(EIGVDP,phi1D,phiD,phi2D)  

C  

      DO 77 J=1,6 

77    DD4(J)=ZERO       

      TEMP3(1)=DCOS(phiD)*DSIN(phi1D); 
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      TEMP3(2)=-DCOS(phiD)*DCOS(phi1D); 

      TEMP3(3)=-DSIN(phiD); 

C 

      TEMP1= -EIGVDP(2,1)*QCRSA(1,3) +  

     &EIGVDP(1,1)*QCRSA(2,3) 

      TEMP33(1,1)= -EIGVDP(2,2)*QCRSA(1,3) +  

     &EIGVDP(1,2)*QCRSA(2,3) 

      TEMP33(1,2)=DSIN(phiD)*DSIN(phi1D)* 

     &DSIN(phi2D)*QCRSA(1,3)-DCOS(phi1D)* 

     &DSIN(phiD)*DSIN(phi2D)*QCRSA(2,3)+DCOS(phiD)* 

     &DSIN(phi2D)*QCRSA(3,3) 

      TEMP33(1,3)=DCOS(phi2D)*DSIN(phiD)*DSIN(phi1D)* 

     &QCRSA(1,3)-DCOS(phi1D)*DCOS(phi2D)*DSIN(phiD)* 

     &QCRSA(2,3)+DCOS(phiD)*DCOS(phi2D)* 

     &QCRSA(3,3);           

      TEMP33(2,1)=-EIGVDP(2,3)*QCRSA(1,3)+ 

     &EIGVDP(1,3)*QCRSA(2,3) 

      TEMP33(2,2)=TEMP3(1)*QCRSA(1,3)+TEMP3(2)*QCRSA(2,3)+ 

     &TEMP3(3)*QCRSA(3,3) 

      TEMP33(2,3)=-EIGVDP(2,3)*QCRSA(1,1)+ 

     &EIGVDP(1,3)*QCRSA(2,1) 

      TEMP33(3,1)=-EIGVDP(2,3)*QCRSA(1,2)+ 

     &EIGVDP(1,3)*QCRSA(2,2) 

      TEMP33(3,2)=TEMP3(1)*QCRSA(1,1)+TEMP3(2)*QCRSA(2,1)+ 

     &TEMP3(3)*QCRSA(3,1) 

      TEMP33(3,3)=TEMP3(1)*QCRSA(1,2)+TEMP3(2)*QCRSA(2,2)+ 

     &TEMP3(3)*QCRSA(3,2) 

C     

      DD4(1)=-DCOS(phi1p)**2*(TEMP1/QCRPR(2,3)-TEMP33(1,1)* 

     &QCRPR(1,3)*1/QCRPR(2,3)**2)  

      DD4(2)=-DCOS(phi1p)**2*(TEMP33(1,2)/QCRPR(2,3)- 

     &TEMP33(1,3)*QCRPR(1,3)*1/QCRPR(2,3)**2) 

      DD4(3) = -TEMP33(2,1)/DSIN(phip) 

      DD4(4) = -TEMP33(2,2)/DSIN(phip) 

      DD4(5)= DCOS(phi2p)**2*(TEMP33(2,3)/QCRPR(3,2)- 

     &TEMP33(3,1)*QCRPR(3,1)*1/QCRPR(3,2)**2)  

      DD4(6) = DCOS(phi2p)**2*(TEMP33(3,2)/QCRPR(3,2)- 

     &TEMP33(3,3)*QCRPR(3,1)*1/QCRPR(3,2)**2)  

C     

C     [d(SIGMA_P)/d(phi1p)] 

        

DD1(1)=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM*   

     .           sum(phi1FS11*SUPERMAT)/SPACESIZE                       

        

DD1(2)=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM*   

     .           sum(phi1FS22*SUPERMAT)/SPACESIZE                      
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DD1(3)=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .           sum(phi1FS12*SUPERMAT)/SPACESIZE                      

        

DD1(4)=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .           sum(phi1FS13*SUPERMAT)/SPACESIZE                     

        

DD1(5)=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .           sum(phi1FS23*SUPERMAT)/SPACESIZE                    

C     

C       PART-D2: [d(SIGMA_P)/d(phip)] 

        

DD2(1)=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .           sum(phiFS11*SUPERMAT)/SPACESIZE                       

        

DD2(2)=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .           sum(phiFS22*SUPERMAT)/SPACESIZE                      

        

DD2(3)=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .           sum(phiFS12*SUPERMAT)/SPACESIZE                     

        

DD2(4)=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .           sum(phiFS13*SUPERMAT)/SPACESIZE                    

        

DD2(5)=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .           sum(phiFS23*SUPERMAT)/SPACESIZE                   

C      

C     [d(SIGMA_P)/d(phi2p)] 

        

DD3(1)=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .           sum(phi2FS11*SUPERMAT)/SPACESIZE                    

        

DD3(2)=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .           sum(phi2FS22*SUPERMAT)/SPACESIZE                   

        

DD3(3)=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .           sum(phi2FS12*SUPERMAT)/SPACESIZE                  

        

DD3(4)=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .           sum(phi2FS13*SUPERMAT)/SPACESIZE                 

        

DD3(5)=DSIGN(ONE,ABSSTRRATE)*SLIPHARD/100.0D0*ABSSTRRATE**XM* 

     .           sum(phi2FS23*SUPERMAT)/SPACESIZE                

C      

C     [d(SIGMA_P)/d(gD)] 

      DO 78,K=1,5   
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      DD6(K)=(DD1(K)*DD4(1)+DD2(K)*DD4(3)+DD3(K)*DD4(5))*RADDEG  

      DD7(K)=(DD1(K)*DD4(2)+DD2(K)*DD4(4)+DD3(K)*DD4(6))*RADDEG  

78    DD8(K)=-DD1(K)*RADDEG                                     

C      

C     [d(SIGMA)/d(gD)] 

      ZA=DSIN(phiD)*DSIN(phi1D)*DSIN(phi2D) 

      ZB=DCOS(phi2D)*DSIN(phiD)*DSIN(phi1D) 

      ZC=DCOS(phiD)*DSIN(phi1D) 

      ZD=-DCOS(phi1D)*DSIN(phiD)*DSIN(phi2D) 

      ZE=-DCOS(phi1D)*DCOS(phi2D)*DSIN(phiD) 

      ZF=-DCOS(phiD)*DCOS(phi1D) 

      ZG= DCOS(phiD)*DSIN(phi2D) 

      ZH= DCOS(phiD)*DCOS(phi2D) 

      ZI=-DSIN(phiD) 

      Z0=(Sp11+Sp22) 

      Z1=(Sp11*EIGVDP(1,1)*2.0+Sp12*EIGVDP(1,2)*2.0+Sp13*EIGVDP(1,3)*2.) 

      Z2=(Sp12*EIGVDP(1,1)*2.0+Sp22*EIGVDP(1,2)*2.0+Sp23*EIGVDP(1,3)*2.) 

      Z3=(Sp13*EIGVDP(2,1)*2.0+Sp23*EIGVDP(2,2)*2.0-EIGVDP(2,3)*Z0*2.0) 

      Z4=(Sp11*EIGVDP(2,1)*2.0+Sp12*EIGVDP(2,2)*2.0+Sp13*EIGVDP(2,3)*2.) 

      Z5=(Sp12*EIGVDP(2,1)*2.0+Sp22*EIGVDP(2,2)*2.0+Sp23*EIGVDP(2,3)*2.) 

      Z6=(Sp13*EIGVDP(1,1)+Sp23*EIGVDP(1,2)-EIGVDP(1,3)*Z0) 

      Z7=(Sp13*EIGVDP(2,1)+Sp23*EIGVDP(2,2)-EIGVDP(2,3)*Z0) 

      Z8=(Sp13*EIGVDP(3,1)+Sp23*EIGVDP(3,2)-EIGVDP(3,3)*Z0) 

      Z9=(Sp13*EIGVDP(1,1)*2.0+Sp23*EIGVDP(1,2)*2.0-EIGVDP(1,3)*Z0*2.0) 

      Z10=(Sp11*EIGVDP(1,1)+Sp12*EIGVDP(1,2)+Sp13*EIGVDP(1,3)) 

      Z11=(Sp12*EIGVDP(1,1)+Sp22*EIGVDP(1,2)+Sp23*EIGVDP(1,3)) 

      Z12=(Sp11*EIGVDP(2,1)+Sp12*EIGVDP(2,2)+Sp13*EIGVDP(2,3)) 

      Z13=(Sp12*EIGVDP(2,1)+Sp22*EIGVDP(2,2)+Sp23*EIGVDP(2,3)) 

      Z14=(Sp12*EIGVDP(3,1)+Sp22*EIGVDP(3,2)+Sp23*EIGVDP(3,3)) 

      Z15=(Sp11*EIGVDP(3,1)+Sp12*EIGVDP(3,2)+Sp13*EIGVDP(3,3)) 

      Z16=(EIGVDP(1,2)*EIGVDP(2,3)+EIGVDP(1,3)*EIGVDP(2,2)) 

      Z17=(EIGVDP(1,2)*EIGVDP(3,3)+EIGVDP(1,3)*EIGVDP(3,2)) 

      Z18=(EIGVDP(2,2)*EIGVDP(3,3)+EIGVDP(2,3)*EIGVDP(3,2)) 

      Z19=(EIGVDP(1,1)*EIGVDP(2,2)+EIGVDP(1,2)*EIGVDP(2,1)) 

      Z20=(EIGVDP(1,1)*EIGVDP(2,1)-EIGVDP(1,3)*EIGVDP(2,3)) 

      Z21=(EIGVDP(1,1)*EIGVDP(2,3)+EIGVDP(1,3)*EIGVDP(2,1)) 

      Z22=(EIGVDP(1,2)*EIGVDP(2,2)-EIGVDP(1,3)*EIGVDP(2,3)) 

      Z23=(EIGVDP(1,1)*EIGVDP(3,2)+EIGVDP(1,2)*EIGVDP(3,1)) 

      Z24=(EIGVDP(1,1)*EIGVDP(3,1)-EIGVDP(1,3)*EIGVDP(3,3)) 

      Z25=(EIGVDP(1,1)*EIGVDP(3,3)+EIGVDP(1,3)*EIGVDP(3,1)) 

      Z26=(EIGVDP(1,2)*EIGVDP(3,2)-EIGVDP(1,3)*EIGVDP(3,3)) 

      Z27=(EIGVDP(2,1)*EIGVDP(3,2)+EIGVDP(2,2)*EIGVDP(3,1)) 

      Z28=(EIGVDP(2,1)*EIGVDP(3,1)-EIGVDP(2,3)*EIGVDP(3,3)) 

      Z29=(EIGVDP(2,1)*EIGVDP(3,3)+EIGVDP(2,3)*EIGVDP(3,1)) 

      Z30=(EIGVDP(2,2)*EIGVDP(3,2)-EIGVDP(2,3)*EIGVDP(3,3)) 

      Z31=(EIGVDP(1,1)**2-EIGVDP(1,3)**2) 
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      Z32=(EIGVDP(1,2)**2-EIGVDP(1,3)**2) 

      Z33=(EIGVDP(2,1)**2-EIGVDP(2,3)**2) 

      Z34=(EIGVDP(2,2)**2-EIGVDP(2,3)**2) 

C 

C     dStressDij_dphi1D 

      DD5(1) = DD6(1)*Z31+DD6(2)*Z32-EIGVDP(2,3)*Z9-EIGVDP(2,1)*Z1- 

     &      EIGVDP(2,2)*Z2+DD6(3)*EIGVDP(1,1)*EIGVDP(1,2)*2.0+DD6(4)* 

     &      EIGVDP(1,1)*EIGVDP(1,3)*2.0+DD6(5)*EIGVDP(1,2)*EIGVDP(1,3)*2.0 

      DD5(2) = DD6(1)*Z33+DD6(2)*Z34+EIGVDP(1,3)*Z3+EIGVDP(1,1)*Z4+ 

     &      EIGVDP(1,2)*Z5+DD6(3)*EIGVDP(2,1)*EIGVDP(2,2)*2.0+DD6(4)* 

     &      EIGVDP(2,1)*EIGVDP(2,3)*2.0+DD6(5)*EIGVDP(2,2)*EIGVDP(2,3)*2.0   

      DD5(3) = EIGVDP(1,3)*Z6-EIGVDP(2,3)*Z7+EIGVDP(1,1)*Z10+ 

     &      EIGVDP(1,2)*Z11-EIGVDP(2,1)*Z12-EIGVDP(2,2)*Z13+DD6(3)* 

     &      Z19+DD6(1)*Z20+DD6(4)*Z21+DD6(2)*Z22+DD6(5)*Z16      

      DD5(4)=-EIGVDP(2,3)*Z8-EIGVDP(2,1)*Z15-EIGVDP(2,2)*Z14+DD6(3)*Z23+ 

     &      DD6(1)*Z24+DD6(4)*Z25+DD6(2)*Z26+DD6(5)*Z17 

      DD5(5)= EIGVDP(1,3)*Z8+EIGVDP(1,1)*Z15+EIGVDP(1,2)*Z14+DD6(3)*Z27+ 

     &      DD6(1)*Z28+DD6(4)*Z29+DD6(2)*Z30+DD6(5)*Z18 

C 

C     dStressDij_dphiD 

      EE1(1) = DD7(1)*Z31+DD7(2)*Z32+ZC*Z9+ZA*Z1+ZB*Z2+DD7(3)* 

     &      EIGVDP(1,1)*EIGVDP(1,2)*2.0+DD7(4)*EIGVDP(1,1)*EIGVDP(1,3)* 

     &      2.0+DD7(5)*EIGVDP(1,2)*EIGVDP(1,3)*2.0 

      EE1(2) = DD7(1)*Z33+DD7(2)*Z34+ZF*Z3+ZD*Z4+ZE*Z5+DD7(3)* 

     &      EIGVDP(2,1)*EIGVDP(2,2)*2.0+DD7(4)*EIGVDP(2,1)*EIGVDP(2,3)* 

     &      2.0+DD7(5)*EIGVDP(2,2)*EIGVDP(2,3)*2.0 

      EE1(3) = ZF*Z6+ZC*Z7+ZD*Z10+ZE*Z11+ZA*Z12+ZB*Z13+DD7(3)* 

     &      Z19+DD7(1)*Z20+DD7(4)*Z21+DD7(2)*Z22+DD7(5)*Z16 

      EE1(4) = ZI*Z6+ZC*Z8+ZG*Z10+ZH*Z11+ZA*Z15+ZB*Z14+DD7(3)*Z23+ 

     &      DD7(1)*Z24+DD7(4)*Z25+DD7(2)*Z26+DD7(5)*Z17 

      EE1(5) = ZI*Z7+ZF*Z8+ZG*Z12+ZH*Z13+ZD*Z15+ZE*Z14+DD7(3)*Z27+ 

     &      DD7(1)*Z28+DD7(4)*Z29+DD7(2)*Z30+DD7(5)*Z18 

C 

C     dStressDij_dphi2D 

      FF1(1) = DD8(1)*Z31+DD8(2)*Z32+EIGVDP(1,2)*Z1-EIGVDP(1,1)* 

     &      Z2+DD8(3)*EIGVDP(1,1)*EIGVDP(1,2)*2.0+DD8(4)*EIGVDP(1,1)* 

     &      EIGVDP(1,3)*2.0+DD8(5)*EIGVDP(1,2)*EIGVDP(1,3)*2.0 

      FF1(2) = DD8(1)*Z33+DD8(2)*Z34+EIGVDP(2,2)*Z4-EIGVDP(2,1)* 

     &      Z5+DD8(3)*EIGVDP(2,1)*EIGVDP(2,2)*2.0+DD8(4)*EIGVDP(2,1)* 

     &      EIGVDP(2,3)*2.0+DD8(5)*EIGVDP(2,2)*EIGVDP(2,3)*2.0 

      FF1(3)=EIGVDP(2,2)*Z10-EIGVDP(2,1)*Z11+EIGVDP(1,2)*Z12-EIGVDP(1,1) 

     &      *Z13+DD8(3)*Z19+DD8(1)*Z20+DD8(4)*Z21+DD8(2)*Z22+DD8(5)*Z16 

      FF1(4)=EIGVDP(3,2)*Z10-EIGVDP(3,1)*Z11+EIGVDP(1,2)*Z15-EIGVDP(1,1) 

     &      *Z14+DD8(3)*Z23+DD8(1)*Z24+DD8(4)*Z25+DD8(2)*Z26+DD8(5)*Z17 

      FF1(5)=EIGVDP(3,2)*Z12-EIGVDP(3,1)*Z13+EIGVDP(2,2)*Z15-EIGVDP(2,1) 

     &      *Z14+DD8(3)*Z27+DD8(1)*Z28+DD8(4)*Z29+DD8(2)*Z30+DD8(5)*Z18 
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C      

C     [dgD/dD]  

      C1=DCOS(phi1D) 

      C2=DCOS(phiD) 

      C3=DCOS(phi2D) 

      S1=DSIN(phi1D) 

      S2=DSIN(phiD) 

      S3=DSIN(phi2D)            

      C1C1=C1**2 

      C2C2=C2**2 

      C3C3=C3**2 

      S1S1=S1**2 

      S2S2=S2**2 

      S3S3=S3**2 

      C1C3=C1*C3 

      C2C3=C2*C3 

      C2C1=C2*C1 

      S2S1=S2*S1 

      S1S3=S1*S3 

      S2S3=S2*S3 

C    

      TEMP33(1,1) = DP(1,2)*(C2C1*S1*4.0+C3*S3*2.0-C2C1*C3C3*S1*8.0- 

     &C1C1*C3*S3*4.0+C2C2*C3*S3*2.0-C1C1*C2C2*C3*S3*4.0)-DP(1,3)* 

     &(-S2S1+C3C3*S2S1*2.0+C1C3*C2*S2S3*2.0)-DP(2,3)*(C1*S2-C1*C3C3*S2* 

     &2.0+C2C3*S2S1*S3*2.0)+DP(1,1)*(-C2+C1C1*C2*2.0+C2*C3C3*2.0+ 

     &C1C3*S1S3*2.0-C1C1*C2*C3C3*4.0+C1C3*C2C2*S1S3*2.0)-DP(2,2)* 

     &(-C2+C1C1*C2*2.0+C2*C3C3*2.0+C1C3*S1S3*2.0-C1C1*C2*C3C3*4.0+ 

     &C1C3*C2C2*S1S3*2.0) 

C      

      TEMP33(1,2)= -DP(1,3)*(C2C1-C2C1*C3C3*2.0-C3*S1S3*2.0+ 

     &C2C2*C3*S1S3*4.0)-DP(2,3)*(C2*S1+C1C3*S3*2.0-C2*C3C3*S1*2.0- 

     &C1C3*C2C2*S3*4.0)-DP(1,1)*(C1*S2S1+C2C3*S2S3*4.0-C1*C3C3*S2S1*2.0 

     &-C1C1*C2*C3*S2S3*2.0)-DP(2,2)*(-C1*S2S1+C2C3*S2S3*2.0+ 

     &C1*C3C3*S2S1*2.0+C1C1*C2*C3*S2S3*2.0)+DP(1,2)*(-S2+C1C1*S2*2.0+ 

     &C3C3*S2*2.0-C1C1*C3C3*S2*4.0+C1C3*C2*S2S1*S3*4.0) 

C      

      TEMP33(1,3)= DP(1,1)*(C1C1-C2C2*2.0-C3C3*2.0+C1C1*C2C2-C1C1*C3C3* 

     &2.0+C2C2*C3C3*4.0-C1C1*C2C2*C3C3*2.0+C1C3*C2*S1S3*4.0+1.0)+ 

     &DP(1,2)*(C1*S1*2.0+C2C3*S3*4.0+C1*C2C2*S1*2.0-C1*C3C3*S1*4.0- 

     &C1*C2C2*C3C3*S1*4.0-C1C1*C2*C3*S3*8.0)-DP(1,3)*(C1C3*S2S3*4.0- 

     &C2*S2S1*2.0+C2*C3C3*S2S1*4.0)-DP(2,3)*(C2C1*S2*2.0-C2C1*C3C3*S2* 

     &4.0+C3*S2S1*S3*4.0)-DP(2,2)*(C1C1+C2C2+C3C3*4.0+C1C1*C2C2- 

     &C1C1*C3C3*2.0-C2C2*C3C3*2.0-C1C1*C2C2*C3C3*2.0+ 

     &C1C3*C2*S1S3*4.0-2.0) 

C 

      TEMP33(2,1)= DP(1,2)*(C1C3*S2S1*4.0-C2*S2S3*2.0+C1C1*C2*S2S3*4.0) 
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     &-DP(1,3)*(C2C3*S1-C1*S3+C1*C2C2*S3*2.0)-DP(1,1)*(C3*S2- 

     &C1C1*C3*S2*2.0+C2C1*S2S1*S3*2.0)+DP(2,2)*(C3*S2-C1C1*C3*S2*2.0+ 

     &C2C1*S2S1*S3*2.0)+DP(2,3)*(S1S3+C1C3*C2-C2C2*S1S3*2.0) 

C      

      TEMP33(2,2)= -DP(1,3)*(C1C3*S2-C2*S2S1*S3*4.0)-DP(2,3)* 

     &(C2C1*S2S3*4.0+C3*S2S1)+DP(1,1)*(S3*2.0-C1C1*S3-C2C2*S3*4.0+ 

     &C1C3*C2*S1+C1C1*C2C2*S3*2.0)+DP(1,2)*(C2C3-C1*S1S3*2.0-C1C1*C2* 

     &C3*2.0+C1*C2C2*S1S3*4.0)-DP(2,2)*(-S3-C1C1*S3+C2C2*S3*2.0+ 

     &C1C3*C2*S1+C1C1*C2C2*S3*2.0) 

C      

      TEMP33(2,3)= DP(1,2)*(-S2S3+C1C1*S2S3*2.0+C1C3*C2*S2S1*2.0)- 

     &DP(1,3)*(-C3*S1+C2C1*S3+C2C2*C3*S1*2.0)-DP(2,2)*(C2C3*S2- 

     &C1*S2S1*S3+C1C1*C2*C3*S2)-DP(2,3)*(C1C3-C1C3*C2C2*2.0+C2*S1S3)- 

     &DP(1,1)*(C2C3*S2*2.0+C1*S2S1*S3-C1C1*C2*C3*S2) 

 

      TEMP33(3,1)= -DP(1,1)*(-S2S3+C1C1*S2S3*2.0+C1C3*C2*S2S1*2.0)+ 

     &DP(2,2)*(-S2S3+C1C1*S2S3*2.0+C1C3*C2*S2S1*2.0)-DP(2,3)*(-C3*S1+ 

     &C2C1*S3+C2C2*C3*S1*2.0)+DP(1,3)*(C1C3-C1C3*C2C2*2.0+C2*S1S3)- 

     &DP(1,2)*(C2C3*S2*2.0+C1*S2S1*S3*4.0-C1C1*C2*C3*S2*4.0) 

C      

      TEMP33(3,2)= DP(2,3)*(S2S1*S3-C1C3*C2*S2*4.0)-DP(1,2)*(C1C3*S1* 

     &2.0+C2*S3-C1C3*C2C2*S1*4.0-C1C1*C2*S3*2.0)+DP(1,3)*(C1*S2S3+C2C3* 

     &S2S1*4.0)-DP(1,1)*(C3*-2.0+C1C1*C3+C2C2*C3*4.0+C2C1*S1S3-C1C1* 

     &C2C2*C3*2.0)+DP(2,2)*(C3+C1C1*C3-C2C2*C3*2.0+C2C1*S1S3-

C1C1*C2C2* 

     &C3*2.0) 

C      

      TEMP33(3,3)=  DP(2,2)*(C1C3*S2S1+C2*S2S3+C1C1*C2*S2S3)-DP(2,3)* 

     &(C2C3*S1-C1*S3+C1*C2C2*S3*2.0)-DP(1,2)*(C3*S2-C1C1*C3*S2*2.0+ 

     &C2C1*S2S1*S3*2.0)-DP(1,1)*(C1C3*S2S1-C2*S2S3*2.0+C1C1*C2*S2S3)- 

     &DP(1,3)*(S1S3+C1C3*C2-C2C2*S1S3*2.0) 

C 

      TEMP1 = TEMP33(1,1)*(TEMP33(2,2)*TEMP33(3,3)- 

     &                  TEMP33(2,3)*TEMP33(3,2))- 

     &       TEMP33(1,2)*(TEMP33(2,1)*TEMP33(3,3)- 

     &                  TEMP33(3,1)*TEMP33(2,3))+ 

     &       TEMP33(1,3)*(TEMP33(2,1)*TEMP33(3,2)- 

     &                  TEMP33(3,1)*TEMP33(2,2)) 

C 

      CALL MAT3INV(TEMP33,TEMP33) 

C     dgDdD11   

      TEMP3(1)= C1C1*C3*S3+C3*S2S2*S3+C2C1*C3C3*S1-C2C1*S1*S3S3- 

     &          C2C2*C3*S1S1*S3 

      TEMP3(2)= C2*S2S3+C2*S2*S1S1*S3-C1C3*S2S1 

      TEMP3(3)= C2C3*S2+C2C3*S2*S1S1+C1*S2S1*S3  

      DO 15 J=1,3 
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15    dgDdD11(J)=(TEMP33(J,1)*TEMP3(1)+TEMP33(J,2)*TEMP3(2)+ 

     &           TEMP33(J,3)*TEMP3(3)) 

C   

C     dgDdD22  

      TEMP3(1) =C3*S2S2*S3+C3*S1S1*S3-C2C1*C3C3*S1+C2C1*S1*S3S3- 

     &       C2C2*C1C1*C3*S3 

      TEMP3(2)=  C2*S2S3+C2*C1C1*S2S3+C1C3*S2S1 

      TEMP3(3)= C2C3*S2+C2*C1C1*C3*S2-C1*S2S1*S3                   

      DO 16 J=1,3 

16    dgDdD22(J)=(TEMP33(J,1)*TEMP3(1)+TEMP33(J,2)*TEMP3(2)+ 

     &           TEMP33(J,3)*TEMP3(3))      

C  

C     dgDdD12  

      TEMP3(1)=-C2*C1C1*C3C3+C2*C1C1*S3S3+C2*C3C3*S1S1-C2*S1S1*S3S3+ 

     &          C1C3*S1S3*2.0+C2C2*C1C3*S1S3*2.0 

      TEMP3(2)=C1C1*C3*S2-C3*S2*S1S1-C2C1*S2S1*S3*2.0 

      TEMP3(3)=-C1C1*S2S3+S2*S1S1*S3-C2*C1C3*S2S1*2.0      

       DO 18 J=1,3 

18     dgDdD12(J)=(TEMP33(J,1)*TEMP3(1)+TEMP33(J,2)*TEMP3(2)+ 

     &           TEMP33(J,3)*TEMP3(3)) 

C  

C     dgDdD13  

      TEMP3(1) =-C1*C3C3*S2+C1*S2*S3S3+C2C3*S2S1*S3*2.0 

      TEMP3(2)=  C2C2*S1S3-S2S2*S1S3-C2*C1C3 

      TEMP3(3)=  C2C2*C3*S1-C3*S2S2*S1+C2C1*S3          

       DO 21 J=1,3 

21     dgDdD13(J)=(TEMP33(J,1)*TEMP3(1)+TEMP33(J,2)*TEMP3(2)+ 

     &           TEMP33(J,3)*TEMP3(3)) 

C  

C     dgDdD23   

      TEMP3(1) =-C3C3*S2S1+S2S1*S3S3-C2*C1C3*S2S3*2.0 

      TEMP3(2)=-C2C2*C1*S3+C1*S2S2*S3-C2C3*S1 

      TEMP3(3)= -C2C2*C1C3+C1C3*S2S2+C2*S1S3          

      DO 22 J=1,3 

22    dgDdD23(J)=(TEMP33(J,1)*TEMP3(1)+TEMP33(J,2)*TEMP3(2)+ 

     &           TEMP33(J,3)*TEMP3(3))         

C     

C     

      DO 23 J=1,5  

      DDFINAL(J,1)= DD5(J)*dgDdD11(1)  

      DDFINAL(J,2)= DD5(J)*dgDdD22(1)  

      DDFINAL(J,3)= DD5(J)*dgDdD12(1)  

      DDFINAL(J,4)= DD5(J)*dgDdD13(1)  

      DDFINAL(J,5)= DD5(J)*dgDdD23(1)  

C       

      EEFINAL(J,1)= EE1(J)*dgDdD11(2)  
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      EEFINAL(J,2)= EE1(J)*dgDdD22(2)  

      EEFINAL(J,3)= EE1(J)*dgDdD12(2)  

      EEFINAL(J,4)= EE1(J)*dgDdD13(2)  

      EEFINAL(J,5)= EE1(J)*dgDdD23(2)  

C 

      FFFINAL(J,1)= FF1(J)*dgDdD11(3)  

      FFFINAL(J,2)= FF1(J)*dgDdD22(3)  

      FFFINAL(J,3)= FF1(J)*dgDdD12(3)  

      FFFINAL(J,4)= FF1(J)*dgDdD13(3)  

23    FFFINAL(J,5)= FF1(J)*dgDdD23(3) 

C      

C     DERIVATIVES OF Slip resistance W.R.T DP 

      IF (DABS(HO-0.0) .GE. 1.0D-8) THEN   !(i.e. with hardening, HO .NE. ZERO) 

C 

         SS1=TOTGAMMA/DPNORM 

C         

         SS3=ABSSTRRATE*sum(thetaGD*SUPERMAT)/SPACESIZE 

C        

C        d(gammaddot)/d(gp) 

         SS5=ABSSTRRATE*sum(phi1GD*SUPERMAT)/SPACESIZE         

         SS6=ABSSTRRATE*sum(phiGD*SUPERMAT)/SPACESIZE         

         SS7=ABSSTRRATE*sum(phi2GD*SUPERMAT)/SPACESIZE       

C         

C        d(gammaddot)/d(gD) 

         SS9 = (SS5*DD4(1)+ SS6*DD4(3)+ SS7*DD4(5))*RADDEG   

         SS10 =(SS5*DD4(2)+ SS6*DD4(4)+ SS7*DD4(6))*RADDEG  

         SS11 =-SS5*RADDEG                                 

C 

         CONST=HO*(1-(SLIPHARDt/SS))**AEXP*DTIME 

C       

         SSFINAL(1) = CONST*(SS1*AA2(1) + SS3*CC2(1) +    

     .             SS9*dgDdD11(1)+ SS10*dgDdD11(2) + SS11*dgDdD11(3)) 

         SSFINAL(2) = CONST*(SS1*AA2(2) + SS3*CC2(2) +   

     .             SS9*dgDdD22(1)+ SS10*dgDdD22(2) + SS11*dgDdD22(3)) 

         SSFINAL(3) = CONST*(SS1*AA2(3) + SS3*CC2(3) +  

     .             SS9*dgDdD12(1)+ SS10*dgDdD12(2) + SS11*dgDdD12(3)) 

         SSFINAL(4) = CONST*(SS1*AA2(4) + SS3*CC2(4) + 

     .             SS9*dgDdD13(1)+ SS10*dgDdD13(2) + SS11*dgDdD13(3)) 

         SSFINAL(5) = CONST*(SS1*AA2(5) + SS3*CC2(5) +  

     .             SS9*dgDdD23(1)+ SS10*dgDdD23(2) + SS11*dgDdD23(3)) 

C 

         ZZ(1)=DFTSIG(1)/SLIPHARD 

         ZZ(2)=DFTSIG(2)/SLIPHARD 

         ZZ(3)=DFTSIG(3)/SLIPHARD 

         ZZ(4)=DFTSIG(4)/SLIPHARD 

         ZZ(5)=DFTSIG(5)/SLIPHARD 
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C 

C     

         DO 35,I=1,5 

         DO 35,J=1,5 

35       dDFTSIGdDP(I,J)=AAFINAL(I,J)+CCFINAL(I,J)+DDFINAL(I,J)+ 

     .                   EEFINAL(I,J)+FFFINAL(I,J)+  

     .                   SSFINAL(I)*ZZ(J) 

C      

      ELSE  

         DO 36,I=1,5 

         DO 36,J=1,5 

36       dDFTSIGdDP(I,J)=AAFINAL(I,J)+CCFINAL(I,J)+DDFINAL(I,J)+ 

     .                   EEFINAL(I,J)+FFFINAL(I,J)  

C 

      ENDIF 

C      

      RETURN 

      END  

CCCCCCCCCCCCCCCCCCC 

      SUBROUTINE ROTMAT(WS12,WS13,WS23,rot)  

      IMPLICIT REAL*8(A-H,O-Z) 

      DIMENSION tmp(3),rot(3,3),axis2(3) 

C    

      tmp(1)=WS23           !This is ws32 and not ws23 

      tmp(2)=-WS13          !This is ws31 and not ws13 

      tmp(3)=WS12           !This is ws21 and not ws12 

      rnorm=dsqrt(tmp(1)**2+tmp(2)**2+tmp(3)**2) 

C 

      do 55, i=1,3 

        tmp(i)=tmp(i)/rnorm 

        axis2(i)=tmp(i)**2 

55      continue 

C 

        cc=dcos(rnorm) 

        ss=dsin(rnorm) 

        rot(1,1)=axis2(1)+cc*(1-axis2(1)) 

        rot(2,2)=axis2(2)+cc*(1-axis2(2)) 

        rot(3,3)=axis2(3)+cc*(1-axis2(3)) 

        rot(1,2)=(1.-cc)*tmp(1)*tmp(2)+ss*tmp(3) 

        rot(2,1)=(1.-cc)*tmp(1)*tmp(2)-ss*tmp(3) 

        rot(2,3)=(1.-cc)*tmp(2)*tmp(3)+ss*tmp(1) 

        rot(3,2)=(1.-cc)*tmp(2)*tmp(3)-ss*tmp(1) 

        rot(3,1)=(1.-cc)*tmp(1)*tmp(3)+ss*tmp(2) 

        rot(1,3)=(1.-cc)*tmp(1)*tmp(3)-ss*tmp(2) 

C  

        RETURN 
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        END 

CCCCCCCCCCCCCCCCCC 

        SUBROUTINE MATEUL1(AA,pphi1,pphi,pphi2)  

        IMPLICIT REAL*8(A-H,O-Z) 

        REAL*8 AA,pphi1,pphi,pphi2 

        DIMENSION AA(3,3) 

      PI = 4.0*DATAN(1.0D0) 

      SMALL=1.0D-12 

      IF (DABS(DABS(AA(3,3))-1.0D0).LT. SMALL) THEN       

        pphi1=DATAN2(AA(2,1),AA(1,1)) 

        pphi=0.0D0 

        pphi2=0.0D0 

        IF (AA(3,3).LT. ZERO) pphi=PI 

        IF (pphi1 .LT. ZERO) pphi1=2*PI+pphi1 

        RETURN 

        ENDIF 

C   

        pphi=DACOS(AA(3,3)) 

        pphi1=DATAN2(AA(1,3)/DSIN(pphi), 

     &  -AA(2,3)/DSIN(pphi))      

        pphi2=DATAN2(AA(3,1)/DSIN(pphi), 

     &  AA(3,2)/DSIN(pphi)) 

        if (pphi .lt. ZERO) pphi=2*PI+pphi 

        if (pphi1 .lt. ZERO) pphi1=2*PI+pphi1 

        if (pphi2 .lt. ZERO) pphi2=2*PI+pphi2 

C 

54      CONTINUE 

        RETURN 

        END 

CCCCCCCCCCCCCCCCCC 

        SUBROUTINE EULMAT(ANG1,ANG2,ANG3,QQ) 

C 

        IMPLICIT NONE 

        REAL*8           :: SOM, COM, STH, CTH, SPH, CPH, ANG1,ANG2,ANG3 

        REAL*8, DIMENSION(3,3)         :: QQ 

C      

      SPH = DSIN(ANG1) 

      CPH = DCOS(ANG1) 

      STH = DSIN(ANG2) 

      CTH = DCOS(ANG2) 

      SOM = DSIN(ANG3) 

      COM = DCOS(ANG3) 

C  

      QQ(1,1) = CPH*COM-SPH*SOM*CTH 

      QQ(1,2) = -CPH*SOM-SPH*COM*CTH  

      QQ(1,3) = STH*SPH 
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      QQ(2,1) = SPH*COM+SOM*CPH*CTH 

      QQ(2,2) = -SPH*SOM+CPH*COM*CTH 

      QQ(2,3) = -STH*CPH   

      QQ(3,1) = STH*SOM 

      QQ(3,2) = STH*COM 

      QQ(3,3) = CTH 

C 

      RETURN 

      END 

CCCCCCCCCCCCCCCCCC 

      SUBROUTINE SDVINI(STATEV,COORDS,NSTATV,NCRDS,NOEL,NPT, 

     1  LAYER,KSPT) 

      USE CommonModule 

      IMPLICIT NONE 

      INTEGER                        :: NSTATV,NCRDS,NOEL,NPT,LAYER,KSPT 

      REAL*8, DIMENSION(NSTATV)      :: STATEV 

      REAL*8, DIMENSION(NCRDS)       :: COORDS  

      INTEGER                        :: ICRYS, IND 

      REAL*8, DIMENSION(3,3)         :: QCRSA 

      REAL*8, DIMENSION(6,6)         :: SumJAC, OLDJAC,ELAS  

C      

C     INITIALZE STATE VARIABLES  

C     FIRST, SET SumJAC(:,:)=0  

      DO J = 1,6     

         DO K = 1,6 

            SumJAC(K,J) = ZERO 

         ENDDO  

      ENDDO   

      ind=1  

      InitialCrystalLoop: DO K=1,NCRYSINITIAL 

         ICRYS=K 

         IF (KELMFLAG .EQ. 1) THEN   

            ICRYS =(NOEL-1)*NINTG+NPT 

         ENDIF 

!         

         CALL EULMAT(phi1(ICRYS)*DEGRAD, 

     .               phi(ICRYS)*DEGRAD, 

     .               phi2(ICRYS)*DEGRAD, 

     .               QCRSA) 

         STATEV(ind)=SO    

         STATEV(ind+1)=QCRSA(1,1) 

         STATEV(ind+2)=QCRSA(1,2) 

         STATEV(ind+3)=QCRSA(1,3) 

         STATEV(ind+4)=QCRSA(2,1) 

         STATEV(ind+5)=QCRSA(2,2) 

         STATEV(ind+6)=QCRSA(2,3) 
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         STATEV(ind+7)=QCRSA(3,1) 

         STATEV(ind+8)=QCRSA(3,2) 

         STATEV(ind+9)=QCRSA(3,3) 

!         

         DO I = 1,6 

            DO J = 1,6       

               IF (isoflag .EQ. 1) THEN 

                  OLDJAC(I,J)=ELASiso(I,J)  

               ELSE 

               CALL ELAST(QCRSA,OLDJAC)   

               ENDIF 

               IF(I.GT.3)THEN 

                 OLDJAC(I,J) = OLDJAC(I,J)*HALF 

               ENDIF 

            SumJAC(I,J) = SumJAC(I,J)+OLDJAC(I,J) 

            ENDDO 

         ENDDO 

         ind=ind+10 

      ENDDO InitialCrystalLoop   

!      

      DO J = 1,6  

         DO K = 1,6 

            STATEV(ind)  = SumJAC(K,J)/NCRYSINITIAL 

            ind=ind+1    

         ENDDO 

      ENDDO 

C     

      RETURN 

      END 

CCCCCCCCCCCCCCCCCC 

      SUBROUTINE UEXTERNALDB(LOP,LRESTART,TIME,DTIME,KSTEP,KINC) 

      USE CommonModule 

      IMPLICIT NONE 

      INTEGER                        :: LOP, LRESTART,KSTEP,KINC  

      REAL*8                         :: DTIME 

      REAL*8, DIMENSION(2)           :: TIME 

C     ----------- 

C     LOAD SPECTRAL DATABASES AND TEXTURE AT THE BEGINNING OF 

THE ANALYSIS (LOP=0) 

      IF(LOP.EQ.0)THEN 

        CALL LOADDATABASE()     

        CALL LOADDATEXTURE()   

C     ---------- 

      RETURN 

      END 

 



 162 

REFERENCES 

 

ABAQUS, 2010. © Dassault Systèmes Simulia Corp., Providence, RI, USA. 

Adams, B.L., Gao, X., Kalidindi, S.R., 2005. Finite approximations to the second-order 

properties closure in single phase polycrystals. Acta Materialia 53, 3563-3577. 

Adams, B.L., Henrie, A., Henrie, B., Lyon, M., Kalidindi, S.R., Garmestani, H., 2001. 

Microstructure-sensitive design of a compliant beam. Journal of the Mechanics and 

Physics of Solids 49, 1639-1663. 

Adams, B.L., Lyon, M., Henrie, B., 2004. Microstructures by design: linear problems in 

elastic-plastic design. Int J Plasticity 20, 1577-1602. 

Al-Harbi, H.F., Knezevic, M., Kalidindi, S.R., 2010. Spectral Approaches for the Fast 

Computation of Yield Surfaces and First-Order Plastic Property Closures for 

Polycrystalline Materials with Cubic-Triclinic Textures. Cmc-Computers Materials & 

Continua 15, 153-172. 

Al-Harbi, H.F., Landi, G., Kalidindi, S.R., 2012. Multi-scale modeling of the elastic 

response of a structural component made from a composite material using the materials 

knowledge system. Modelling and Simulation in Materials Science and Engineering 20. 

Allison, J., 2011. Integrated Computational Materials Engineering: a Perspective on 

Progress and Future Steps. Jom 63, 15-18. 

Asaro, R.J., Needleman, A., 1985a. Overview no. 42 Texture development and strain 

hardening in rate dependent polycrystals. Acta Metallurgica 33, 923-953. 



 163 

Asaro, R.J., Needleman, A., 1985b. Texture development and strain hardening in rate 

dependent polycrystals. Acta Metallurgica et Materialia 33, 923-953. 

ASTM-E562-02, 2002. Standard Test Method for Determining Volume Fraction by 

Systematic Manual Point 

Count. ASTM International, 100 Barr Harbor Dr. P.O. box C-700 West Conshohocken, 

Pennsylvania 19428-2959, United States. 

Bachu, V., Kalidindi, S.R., 1998. On the accuracy of the predictions of texture evolution 

by the finite element technique for fcc polycrystals. Materials Science and Engineering a-

Structural Materials Properties Microstructure and Processing 257, 108-117. 

Barlat, F., 1987. Crystallographic texture, anisotropic yield surfaces and forming limits of 

sheet metals Materials Science and Engineering - 91, - 72. 

Barlat, F., Lian, K., 1989. Plastic behavior and stretchability of sheet metals. Part I: A 

yield function for orthotropic sheets under plane stress conditions International Journal of 

Plasticity - 5, - 66. 

Bhattacharyya, A., El-Danaf, E., Kalidindi, S.R., Doherty, R.D., 2001. Evolution of 

grain-scale microstructure during large strain simple compression of polycrystalline 

aluminum with quasi-columnar grains: OIM measurements and numerical simulations. 

International Journal of Plasticity 17, 861-883. 

BIELER, S.L.S.a.T.R., 2001. Effect of Texture Changes on Flow Softening during Hot 

Working of Ti-6Al-4V. METALLURGICAL AND MATERIALS TRANSACTIONS A 

32A, 1871-1875. 



 164 

Binci, M., Fullwood, D., Kalidindi, S.R., 2008. A new spectral framework for 

establishing localization relationships for elastic behavior of composites and their 

calibration to finite-element models. Acta Materialia 56, 2272-2282. 

Bonilla, L.L., Carpio, A., Plans, I., 2007. Dislocations in cubic crystals described by 

discrete models. Physica A: Statistical Mechanics and its Applications 376, 361-377. 

Bridier, F., McDowell, D.L., Villechaise, P., Mendez, J., 2009. Crystal plasticity 

modeling of slip activity in Ti–6Al–4V under high cycle fatigue loading. International 

Journal of Plasticity 25, 1066-1082. 

Briggs, W.L., Henson, V.E., 1995. The DFT : an owner's manual for the discrete Fourier 

transform. Society for Industrial and Applied Mathematics, Philadelphia. 

Brigham, E.O., 1988a. The fast Fourier transform and applications. Prentice Hall, 

Englewood Cliffs, NJ. 

Brigham, E.O., 1988b. The fast Fourier transform and its applications. Prentice Hall, 

Englewood Cliffs. 

Bronkhorst, C.A., Kalidindi, S.R., Anand, L., 1992a. POLYCRYSTALLINE 

PLASTICITY AND THE EVOLUTION OF CRYSTALLOGRAPHIC TEXTURE IN 

FCC METALS. Philosophical Transactions of the Royal Society of London Series a-

Mathematical Physical and Engineering Sciences 341, 443-477. 

Bronkhorst, C.A., Kalidindi, S.R., Anand, L., 1992b. Polycrystalline plasticity and the 

evolution of crystallographic texture in FCC metals. Philosophical Transactions of the 

Royal Society of London Series A –Mathematical Physical and Engineering Sciences 

341, 443–477. 



 165 

Brown, S.B., Kim, K.H., Anand, L., 1989. An internal variable constitutive model for hot 

working of metals. International Journal of Plasticity 5, 95-130. 

Bunge, H.-J., 1993a. Texture Analysis in Materials Science. Mathematical Methods, 

Cuvillier Verlag, Göttingen. 

Bunge, H.-J., 1993b. Texture analysis in materials science. Mathematical Methods. 

Cuvillier Verlag, Göttingen. 

Bunge, H.J., Esling, C., 1984. Texture development by plastic deformation. Scripta 

Metallurgica 18, 191-195. 

Calcagnotto, M., Ponge, D., Demir, E., Raabe, D., 2010. Orientation gradients and 

geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D 

and 3D EBSD. Materials Science and Engineering: A 527, 2738-2746. 

Cazacu, O., Plunkett, B., Barlat, F., 2006. Orthotropic yield criterion for hexagonal 

closed packed metals International Journal of Plasticity - 22, - 1194. 

Choi, S.H., Kim, D.W., Seong, B.S., Rollett, A.D., 2011. 3-D simulation of spatial stress 

distribution in an AZ31 Mg alloy sheet under in-plane compression. International Journal 

of Plasticity 27, 1702-1720. 

Choi, S.H., Kim, E.Y., Woo, W., Han, S.H., Kwak, J.H., 2013. The effect of 

crystallographic orientation on the micromechanical deformation and failure behaviors of 

DP980 steel during uniaxial tension. International Journal of Plasticity 45, 85-102. 

Christian, J.W., Mahajan, S., 1995. Deformation twinning. Progress in Materials Science 

39, 1-157. 



 166 

Chun, Y.B., Yu, S.H., Semiatin, S.L., Hwang, S.K., 2005. Effect of deformation twinning 

on microstructure and texture evolution during cold rolling of CP-titanium. Materials 

Science and Engineering: A 398, 209-219. 

Clément, A., Coulomb, P., 1979. Eulerian simulation of deformation textures. Scripta 

Metallurgica 13, 899-901. 

Conrad, H., 1981. Effect of interstitial solutes on the strength and ductility of titanium. 

Progress in Materials Science 26, 123-403. 

Cooley, J.W., Tukey, J.W., 1965. Algorithm for the machine computation of complex 

Fourier series. Mathematics of  Computation 19, 297-301. 

Cuitino, A.M., Ortiz, M., 1993. Computational modelling of single crystals. Modelling 

and Simulation in Materials Science and Engineering 1, 225. 

Delaire, F., Raphanel, J.L., Rey, C., 2000. Plastic heterogeneities of a copper multicrystal 

deformed in uniaxial tension: experimental study and finite element simulations. Acta 

Materialia 48, 1075-1087. 

Delannay, L., Jacques, P.J., Kalidindi, S.R., 2006. Finite element modeling of crystal 

plasticity with grains shaped as truncated octahedrons. International Journal of Plasticity 

22, 1879-1898. 

Delannay, L., Kalidindi, S.R., Van Houtte, P., 2002. Quantitative prediction of textures in 

aluminium cold rolled to moderate strains. Materials Science and Engineering A 336, 

233-244. 

Duhamel, P., Vetterli, M., 1990a. Fast Fourier Transforms: A Tutorial Review and a State 

of the Art. Signal Processing 19, 259-299. 



 167 

Duhamel, P., Vetterli, M., 1990b. Fast fourier transforms: A tutorial review and a state of 

the art. Signal Processing 19, 259-299. 

Elmustafa, A.A., Stone, D.S., 2003. Nanoindentation and the indentation size effect: 

Kinetics of deformation and strain gradient plasticity. Journal of the Mechanics and 

Physics of Solids 51, 357-381. 

Erieau, P., Rey, C., 2004. Modeling of deformation and rotation bands and of 

deformation induced grain boundaries in IF steel aggregate during large plane strain 

compression. International Journal of Plasticity 20, 1763-1788. 

Fast, T., Kalidindi, S.R., 2011. Formulation and calibration of higher-order elastic 

localization relationships using the MKS approach. Acta Materialia 59, 4595-4605. 

Fast, T., Knezevic, M., Kalidindi, S.R., 2008. Application of microstructure sensitive 

design to structural components produced from hexagonal polycrystalline metals. 

Computational Materials Science 43, 374-383. 

Fast, T., Niezgoda, S.R., Kalidindi, S.R., 2011. A new framework for computationally 

efficient structure-structure evolution linkages to facilitate high-fidelity scale bridging in 

multi-scale materials models. Acta Materialia 59, 699-707. 

Fullwood, D.T., Adams, B.L., Kalidindi, S.R., 2007. Generalized Pareto front methods 

applied to second-order material property closures. Computational Materials Science 38, 

788-799. 

Garmestani, H., Kalidindi, S.R., Williams, L., Bacaltchuk, C.M., Fountain, C., Lee, E.W., 

Es-Said, O.S., 2002. Modeling the evolution of anisotropy in Al–Li alloys: application to 

Al–Li 2090-T8E41. International Journal of Plasticity 18, 1373-1393. 



 168 

Goh, C.-H., Neu, R.W., McDowell, D.L., 2003. Crystallographic plasticity in fretting of 

Ti–6AL–4V. International Journal of Plasticity 19, 1627-1650. 

Grushko, B., Weiss, B.Z., 1989. Yield behaviour of dual-phase steel. Scripta Metallurgica 

23, 865-870. 

Héripré, E., Dexet, M., Crépin, J., Gélébart, L., Roos, A., Bornert, M., Caldemaison, D., 

2007. Coupling between experimental measurements and polycrystal finite element 

calculations for micromechanical study of metallic materials. International Journal of 

Plasticity 23, 1512-1539. 

Hertz, 1896. Miscellaneous papers. New York: Macmillan & Co. Ltd. 

Hill, R., 1948. A Theory of the Yielding and Plastic Flow of Anisotropic Metals. 

Proceedings of the Royal Society of London. Series A, Mathematical and Physical 

Sciences 193, 281-297. 

Hill, R., 1990. Constitutive modelling of orthotropic plasticity in sheet metals. Journal of 

the Mechanics and Physics of Solids 38, 405-417. 

Hosford, W.F., Caddell, R.M., 1993. Metal forming mechanics and metallurgy. Prentice-

Hall, Inc. 

Houskamp, J.R., Proust, G., Kalidindi, S.R., 2007. Integration of microstructure-sensitive 

design with finite element methods: Elastic-plastic case studies in FCC polycrystals. 

International Journal for Multiscale Computational Engineering 5, 261-272. 

Hutchinson, J.W., 1976. Bounds and Self-Consistent Estimates for Creep of 

Polycrystalline Materials. Proceedings of the Royal Society of London. A. Mathematical 

and Physical Sciences 348, 101-127. 



 169 

Johnson, K.L., 1985. Indentation contact mechanics. Cambridge University Press, 

Cambridge. 

Kadkhodapour, J., Butz, A., Ziaei-Rad, S., Schmauder, S., 2011a. A micro mechanical 

study on failure initiation of dual phase steels under tension using single crystal plasticity 

model. International Journal of Plasticity 27, 1103-1125. 

Kadkhodapour, J., Schmauder, S., Raabe, D., Ziaei-Rad, S., Weber, U., Calcagnotto, M., 

2011b. Experimental and numerical study on geometrically necessary dislocations and 

non-homogeneous mechanical properties of the ferrite phase in dual phase steels. Acta 

Materialia 59, 4387-4394. 

Kalidindi, S.R., 1998. Incorporation of deformation twinning in crystal plasticity models. 

Journal of the Mechanics and Physics of Solids 46, 267-290. 

Kalidindi, S.R., Anand, L., 1994. MACROSCOPIC SHAPE CHANGE AND 

EVOLUTION OF CRYSTALLOGRAPHIC TEXTURE IN PRE-TEXTURED FCC 

METALS. Journal of the Mechanics and Physics of Solids 42, 459-490. 

Kalidindi, S.R., Bhattacharyya, A., Doherty, R.D., 2004a. Detailed analyses of grain–

scale plastic deformation in columnar polycrystalline aluminium using orientation image 

mapping and crystal plasticity models. Proceedings of the Royal Society of London. 

Series A: Mathematical, Physical and Engineering Sciences 460, 1935-1956. 

Kalidindi, S.R., Bhattacharyya, A.,Doherty, R.D., 2004. Detailed analysis of grain-scale 

plastic deformation in columnar polycrystalline aluminum using orientation image 

mapping and crystal plasticicty models. Proc. R. Soc. A 460, 1935-1956. 



 170 

Kalidindi, S.R., Binci, M., Fullwood, D., Adams, B.L., 2006a. Elastic properties closures 

using second-order homogenization theories: Case studies in composites of two isotropic 

constituents. Acta Materialia 54, 3117-3126. 

Kalidindi, S.R., Bronkhorst, C.A., Anand, L., 1992. Crystallographic texture evolution in 

bulk deformation processing of FCC metals. Journal of the Mechanics and Physics of 

Solids 40, 537-569. 

Kalidindi, S.R., Duvvuru, H.K., Knezevic, M., 2006b. Spectral calibration of crystal 

plasticity models. Acta Materialia 54, 1795-1804. 

Kalidindi, S.R., Houskamp, J.R., Lyons, M., Adams, B.L., 2004b. Microstructure 

sensitive design of an orthotropic plate subjected to tensile load. Int J Plasticity 20, 1561-

1575. 

Kalidindi, S.R., Knezevic, M., Niezgoda, S., Shaffer, J., 2009. Representation of the 

orientation distribution function and computation of first-order elastic properties closures 

using discrete Fourier transforms. Acta Materialia 57, 3916-3923. 

Kalidindi, S.R., Landi, G., Fullwood, D.T., 2008. Spectral representation of higher-order 

localization relationships for elastic behavior of polycrystalline cubic materials. Acta 

Materialia 56, 3843-3853. 

Kalidindi, S.R., Niezgoda, S.R., Landi, G., Vachhani, S., Fast, T., 2010. A Novel 

Framework for Building Materials Knowledge Systems. Cmc-Computers Materials & 

Continua 17, 103-125. 

Kalidindi, S.R., Pathak, S., 2008. Determination of the effective zero-point and the 

extraction of spherical nanoindentation stress–strain curves. Acta Materialia 56, 3523-

3532. 



 171 

Kalidindi, S.R., Schoenfeld, S.E., 2000. On the prediction of yield surfaces by the crystal 

plasticity models for fcc polycrystals. Materials Science and Engineering a-Structural 

Materials Properties Microstructure and Processing 293, 120-129. 

Kanjarla, A.K., Van Houtte, P., Delannay, L., 2010. Assessment of plastic heterogeneity 

in grain interaction models using crystal plasticity finite element method. International 

Journal of Plasticity 26, 1220-1233. 

Knezevic, M., Al-Harbi, H.F., Kalidindi, S.R., 2009. Crystal plasticity simulations using 

discrete Fourier transforms. Acta Materialia 57, 1777-1784. 

Knezevic, M., Kalidindi, S.R., 2007. Fast computation of first-order elastic-plastic 

closures for polycrystalline cubic-orthorhombic microstructures. Computational 

Materials Science 39, 643-648. 

Knezevic, M., Kalidindi, S.R., Fullwood, D., 2008a. Computationally efficient database 

and spectral interpolation for fully plastic Taylor-type crystal plasticity calculations of 

face-centered cubic polycrystals. International Journal of Plasticity 24, 1264-1276. 

Knezevic, M., Kalidindi, S.R., Mishra, R.K., 2008b. Delineation of first-order closures 

for plastic properties requiring explicit consideration of strain hardening and 

crystallographic texture evolution. International Journal of Plasticity 24, 327-342. 

Knezevic, M., Levinson, A., Harris, R., Mishra, R.K., Doherty, R.D., Kalidindi, S.R., 

2010. Deformation twinning in AZ31: Influence on strain hardening and texture 

evolution. Acta Materialia 58, 6230-6242. 

Kocks, U.F., Mecking, H., 2003. Physics and phenomenology of strain hardening: the 

FCC case. Progress in Materials Science 48, 171-273. 



 172 

Korzekwa, D.A., Lawson, R.D., Matlock, D.K., Krauss, G., 1980. A consideration of 

models describing the strength and ductility of dual-phase steels. Scripta Metallurgica 14, 

1023-1028. 

Korzekwa, D.A., Matlock, D.K., Krauss, G., 1984. Dislocation substructure as a function 

of strain in a dual-phase steel. MTA 15, 1221-1228. 

Kroner, E., 1986. Statistical Modelling, in: Gittus, J., Zarka, J. (Eds.), Modelling Small 

Deformations of Polycrystals. Elsevier Science Publishers, London, pp. 229-291. 

Kröner, E., 1977. Bounds for effective elastic moduli of disordered materials. Journal of 

the Mechanics and Physics of Solids 25, 137-155. 

Kroner E. In: Gittus J, Z.J., editors., 1986. Statistical modelling. Modelling small 

deformations of polycrystals, 229-291. 

Landi, G., Kalidindi, S.R., 2010. Thermo-Elastic Localization Relationships for Multi-

Phase Composites. Computers, Materials, & Continua 16, 273-294. 

Landi, G., Niezgoda, S.R., Kalidindi, S.R., 2009. Multi-scale modeling of elastic 

response of three-dimensional voxel-based microstructure datasets using novel DFT-

based knowledge systems. Acta Materialia 58, 2716-2725. 

Landi, G., Niezgoda, S.R., Kalidindi, S.R., 2010. Multi-scale modeling of elastic 

response of three-dimensional voxel-based microstructure datasets using novel DFT-

based knowledge systems. Acta Materialia 58, 2716-2725. 

Lebensohn, R.A., Dawson, P.R., Kern, H.M., Wenk, H.-R., 2003. Heterogeneous 

deformation and texture development in halite polycrystals: comparison of different 

modeling approaches and experimental data. Tectonophysics 370, 287-311. 



 173 

Lebensohn, R.A., Liu, Y., Ponte Castañeda, P., 2004. On the accuracy of the self-

consistent approximation for polycrystals: comparison with full-field numerical 

simulations. Acta Materialia 52, 5347-5361. 

Lebensohn, R.A., Tomé, C.N., 1993. A self-consistent anisotropic approach for the 

simulation of plastic deformation and texture development of polycrystals: Application to 

zirconium alloys. Acta Metallurgica et Materialia 41, 2611-2624. 

Lebensohn, R.A., Tome, C.N., Castaneda, P.P., 2007. Self-consistent modelling of the 

mechanical behaviour of viscoplastic polycrystals incorporating intragranular field 

fluctuations. Philosophical Magazine 87, 4287-4322. 

Levinson, A., Mishra, R.K., Doherty, R.D., Kalidindi, S.R., 2013. Influence of 

deformation twinning on static annealing of AZ31 Mg alloy. Acta Materialia 61, 5966-

5978. 

Li, H.-w., Yang, H., Sun, Z.-c., 2006. Explicit incremental-update algorithm for modeling 

crystal elasto-viscoplastic response in finite element simulation. Transactions of 

Nonferrous Metals Society of China 16, Supplement 2, s624-s630. 

Li, H.W., Yang, H., Sun, Z.C., 2008. A robust integration algorithm for implementing 

rate dependent crystal plasticity into explicit finite element method. International Journal 

of Plasticity 24, 267-288. 

Li, S., Hoferlin, E., Bael, A.V., Houtte, P.V., Teodosiu, C., 2003. Finite element 

modeling of plastic anisotropy induced by texture and strain-path change. International 

Journal of Plasticity 19, 647-674. 



 174 

Lian, J., Barlat, F., Baudelet, B., 1989. Plastic behaviour and stretchability of sheet 

metals. Part II: Effect of yield surface shape on sheet forming limit. International Journal 

of Plasticity 5, 131-147. 

Liu, Y.S., Delannay, L., Van Houtte, P., 2002. Application of the Lamel model for 

simulating cold rolling texture in molybdenum sheet. Acta Materialia 50, 1849-1856. 

Lyon, M., Adams, B.L., 2004. Gradient-based non-linear microstructure design. J Mech 

Phys Solids 52, 2569-2586. 

Mayeur, J.R., McDowell, D.L., 2007. A three-dimensional crystal plasticity model for 

duplex Ti-6Al-4V. International Journal of Plasticity 23, 1457-1485. 

Mayeur, J.R., McDowell, D.L., Neu, R.W., 2008. Crystal plasticity simulations of fretting 

of Ti-6Al-4V in partial slip regime considering effects of texture. Computational 

Materials Science 41, 356-365. 

McDowell, D.L., 2010. A perspective on trends in multiscale plasticity. International 

Journal of Plasticity 26, 1280-1309. 

McGinty, R.D., 2001. Crystallographic multiscale representation of polycrystalline 

inelasticity. Ph.D. Thesis. Georgia Institute of Technology. 

Molinari, A., Canova, G.R., Ahzi, S., 1987. A self consistent approach of the large 

deformation polycrystal viscoplasticity. Acta Metallurgica 35, 2983-2994. 

Musienko, A., Tatschl, A., Schmidegg, K., Kolednik, O., Pippan, R., Cailletaud, G., 

2007. Three-dimensional finite element simulation of a polycrystalline copper specimen. 

Acta Materialia 55, 4121-4136. 



 175 

Nagorka, M.S., Krauss, G., Matlock, D.K., 1987. The effect of microstructure and strain 

rate on the stage III strain hardening and ductility of dual-phase steels. Materials Science 

and Engineering 94, 183-193. 

Needleman, A., Asaro, R.J., Lemonds, J., Peirce, D., 1985. Finite element analysis of 

crystalline solids. Computer Methods in Applied Mechanics and Engineering 52, 689-

708. 

Nemat-Nasser, S., Guo, W.G., Cheng, J.Y., 1999. Mechanical properties and deformation 

mechanisms of a commercially pure titanium. Acta Materialia 47, 3705-3720. 

Nix, W.D., Gao, H., 1998. Indentation size effects in crystalline materials: A law for 

strain gradient plasticity. Journal of the Mechanics and Physics of Solids 46, 411-425. 

Oppenheim, A.V., Schafer, R.W., Buck, J.R., 1999. Discrete time signal processing. 

Prentice Hall, Englewood Cliffs, NJ. 

Pan, J., Rice, J.R., 1983. Rate sensitivity of plastic flow and implications for yield-

surface vertices. International Journal of Solids and Structures 19, 973-987. 

Panchal, J.H., Kalidindi, S.R., McDowell, D.L., 2013. Key computational modeling 

issues in Integrated Computational Materials Engineering. Computer-Aided Design 45, 

4-25. 

Paruz, H., Edmonds, D.V., 1989. The strain hardening behaviour of dual-phase steel. 

Materials Science and Engineering: A 117, 67-74. 

Pathak, S., Kalidindi, S.R., Klemenz, C., Orlovskaya, N., 2008. Analyzing indentation 

stress-strain response of LaGaO3 single crystals using spherical indenters. Journal of the 

European Ceramic Society 28, 2213-2220. 



 176 

Pathak, S., Stojakovic, D., Doherty, R., Kalidindi, S.R., 2009a. Importance of surface 

preparation on the nano-indentation stress-strain curves measured in metals. Journal of 

Materials Research 24, 1142-1155. 

Pathak, S., Stojakovic, D., Kalidindi, S.R., 2009b. Measurement of the local mechanical 

properties in polycrystalline samples using spherical nanoindentation and orientation 

imaging microscopy. Acta Materialia 57, 3020-3028. 

Peeters, B., Seefeldt, M., Teodosiu, C., Kalidindi, S.R., Van Houtte, P., Aernoudt, E., 

2001. Work-hardening/softening behaviour of b.c.c. polycrystals during changing strain 

paths: I. An integrated model based on substructure and texture evolution, and its 

prediction of the stress-strain behaviour of an IF steel during two-stage strain paths. Acta 

Materialia 49, 1607-1619. 

Peirce, D., Asaro, R.J., Needleman, A., 1982. An analysis of nonuniform and localized 

deformation in ductile single crystals. Acta Metallurgica 30, 1087-1119. 

Peirce, D., Asaro, R.J., Needleman, A., 1983. Material rate dependence and localized 

deformation in crystalline solids. Acta Metallurgica 31, 1951-1976. 

Plunkett, B., Cazacu, O., Lebensohn, R.A., Barlat, F., 2007. Elastic-viscoplastic 

anisotropic modeling of textured metals and validation using the Taylor cylinder impact 

test. International Journal of Plasticity 23, 1001-1021. 

Plunkett, B., Lebensohn, R.A., Cazacu, O., Barlat, F., 2006. Anisotropic yield function of 

hexagonal materials taking into account texture development and anisotropic hardening. 

Acta Materialia - 54, - 4169. 

Pollock, T.M., Allison, J.E., Backman, D.G., Boyce, M.C., Gersh, M., Holm, E.A., Lesar, 

R., Long, M., A.C.Powell, Schirra, J.J., D.D.Whitis, C.Woodward, Integrated 



 177 

computational materials engineering: A transformational discipline for improved 

competitiveness and national security. 

Popov, E.P., 1998. Engineering Mechanics of Solids, 2 edition ed. Prentice Hall, 

Englewood Cliffs, New Jersey, USA. 

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 2002. Numerical Recipes 

in C++. 

Proust, G., Kalidindi, S.R., 2006. Procedures for construction of anisotropic elastic-

plastic property closures for face-centered cubic polycrystals using first-order bounding 

relations. Journal of the Mechanics and Physics of Solids 54, 1744-1762. 

Qu, S., Huang, Y., Pharr, G.M., Hwang, K.C., 2006. The indentation size effect in the 

spherical indentation of iridium: A study via the conventional theory of mechanism-based 

strain gradient plasticity. International Journal of Plasticity 22, 1265-1286. 

Raabe, D., Roters, F., 2004. Using texture components in crystal plasticity finite element 

simulations. International Journal of Plasticity 20, 339-361. 

Raabe, D., Wang, Y., Roters, F., 2005. Crystal plasticity simulation study on the 

influence of texture on earing in steel. Computational Materials Science 34, 221-234. 

Raabe, D., Zhao, Z., Mao, W., 2002. On the dependence of in-grain subdivision and 

deformation texture of aluminum on grain interaction. Acta Materialia 50, 4379-4394. 

Raabe, D., Zhao, Z., Roters, F., 2001. A finite element method on the basis of texture 

components for fast predictions of anisotropic forming operations. Steel Research 72, 

421-426. 



 178 

Raabe, D., Zhao, Z., Roters, F., 2004. Study on the orientational stability of cube-oriented 

FCC crystals under plane strain by use of a texture component crystal plasticity finite 

element method. Scripta Materialia 50, 1085-1090. 

Rossiter, J., Brahme, A., Simha, M.H., Inal, K., Mishra, R., 2010. A new crystal plasticity 

scheme for explicit time integration codes to simulate deformation in 3D microstructures: 

Effects of strain path, strain rate and thermal softening on localized deformation in the 

aluminum alloy 5754 during simple shear. International Journal of Plasticity 26, 1702-

1725. 

S. R. Kalidindi, A.B., and R. Doherty, 2004. Detailed Analysis of  Plastic Deformation in 

Columnar Polycrystalline Aluminum Using Orientation Image Mapping and Crystal 

Plasticity Models. Proceedings of the Royal Society of London: Mathematical, Physical 

and Engineering Sciences. 

Sachtleber, M., Zhao, Z., Raabe, D., 2002. Experimental investigation of plastic grain 

interaction. Materials Science and Engineering A 336, 81-87. 

Sakaki, T., Sugimoto, K., Fukuzato, T., 1983. Role of internal stress for continuous 

yielding of dual-phase steels. Acta Metallurgica 31, 1737-1746. 

Salem, A.A., Kalidindi, S.R., Doherty, R.D., 2003. Strain hardening of titanium: role of 

deformation twinning. Acta Materialia 51, 4225-4237. 

Salem, A.A., Kalidindi, S.R., Semiatin, S.L., 2005. Strain hardening due to deformation 

twinning in α-titanium: Constitutive relations and crystal-plasticity modeling. Acta 

Materialia 53, 3495-3502. 

Salem, A.A., Semiatin, S.L., 2009. Anisotropy of the hot plastic deformation of Ti-6Al-

4V single-colony samples. Materials Science and Engineering: A 508, 114-120. 



 179 

Sarosiek, A.M., Owen, W.S., 1984. The work hardening of dual-phase steels at small 

plastic strains. Materials Science and Engineering 66, 13-34. 

St-Pierre, L., Héripré, E., Dexet, M., Crépin, J., Bertolino, G., Bilger, N., 2008. 3D 

simulations of microstructure and comparison with experimental microstructure coming 

from O.I.M analysis. International Journal of Plasticity 24, 1516-1532. 

Taylor, 1938. Plastic Strain in Metals. 

Tikhovskiy, I., Raabe, D., Roters, F., 2007. Simulation of earing during deep drawing of 

an Al–3% Mg alloy (AA 5754) using a texture component crystal plasticity FEM. Journal 

of Materials Processing Technology 183, 169-175. 

Van Houtte, P., 1994. Application of plastic potentials to strain rate sensitive and 

insensitive anisotropic materials. International Journal of Plasticity 10, 719-748. 

Van Houtte, P., Delannay, L., Kalidindi, S.R., 2002. Comparison of two grain interaction 

models for polycrystal plasticity and deformation texture prediction. International Journal 

of Plasticity 18, 359-377. 

Van Houtte, P., Kanjarla, A.K., Van Bael, A., Seefeldt, M., Delannay, L., 2006. 

Multiscale modelling of the plastic anisotropy and deformation texture of polycrystalline 

materials. European Journal of Mechanics - A/Solids 25, 634-648. 

Van Houtte, P., Li, S., Seefeldt, M., Delannay, L., 2005. Deformation texture prediction: 

from the Taylor model to the advanced Lamel model. International Journal of Plasticity 

21, 589-624. 

Van Houtte, P., Van Bael, A., 2004. Convex plastic potentials of fourth and sixth rank for 

anisotropic materials. International Journal of Plasticity 20, 1505-1524. 



 180 

Van Houtte, P., Van Bael, A., Winters, J., 1995. The Incorporation of Texture-Based 

Yield Loci Into Elasto-Plastic Finite Element Programs. Textures and Microstructures 24, 

255-272. 

Van Houtte, P., Yerra, S.K., Van Bael, A., 2009. The Facet method: A hierarchical 

multilevel modelling scheme for anisotropic convex plastic potentials. International 

Journal of Plasticity 25, 332-360. 

Watt, D.F., Jain, M., 1984. Effect of martensite morphology on the strength differential 

effect in dual phase steels. Scripta Metallurgica 18, 1379-1382. 

William H. Press, S.A.T., William T. Vetterling, and Brian P. Flannery, 2002. Numerical 

recipes in C++. Cambridge University Press, Cambridge. 

William L. Briggs, V.E.H., 1995. The DFT: an owner’s manual for the discrete Fourier 

transform. Society for Industrial and Applied Mathematics, Philadelphia, PA  

Williams, J.C., Baggerly, R.G., Paton, N.E., 2002. Deformation behavior of HCPTi-Al 

alloy single crystals. Metallurgical and Materials Transactions a-Physical Metallurgy and 

Materials Science 33, 837-850. 

Woo, W., Em, V.T., Kim, E.Y., Han, S.H., Han, Y.S., Choi, S.H., 2012. Stress–strain 

relationship between ferrite and martensite in a dual-phase steel studied by in situ neutron 

diffraction and crystal plasticity theories. Acta Materialia 60, 6972-6981. 

Wu, X., Proust, G., Knezevic, M., Kalidindi, S.R., 2007. Elastic-plastic property closures 

for hexagonal close-packed polycrystalline metals using first-order bounding theories. 

Acta Materialia 55, 2729-2737. 



 181 

Yoshida, K., Brenner, R., Bacroix, B., Bouvier, S., 2011. Micromechanical modeling of 

the work-hardening behavior of single- and dual-phase steels under two-stage loading 

paths. Materials Science and Engineering: A 528, 1037-1046. 

Zaefferer, S., 2003. A study of active deformation systems in titanium alloys: dependence 

on alloy composition and correlation with deformation texture. Materials Science and 

Engineering: A 344, 20-30. 

Zeng, Z., Jonsson, S., Roven, H.J., 2009. The effects of deformation conditions on 

microstructure and texture of commercially pure Ti. Acta Materialia 57, 5822-5833. 

Zhao, Z., Mao, W., Roters, F., Raabe, D., 2004. A texture optimization study for 

minimum earing in aluminium by use of a texture component crystal plasticity finite 

element method. Acta Materialia 52, 1003-1012. 

Zhao, Z., Ramesh, M., Raabe, D., Cuitiño, A.M., Radovitzky, R., 2008. Investigation of 

three-dimensional aspects of grain-scale plastic surface deformation of an aluminum 

oligocrystal. International Journal of Plasticity 24, 2278-2297. 

 

 


