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SUMMARY 

 

In this dissertation, three different methods for solving the linear Boltzmann neutron 

transport equation (and its low-order approximations) are developed in general geometry 

and implemented in 1D slab geometry.  

 

The first method is for solving the fine-group diffusion equation by estimating the in-

scattering and fission source terms with consistent coarse-group diffusion solutions 

iteratively. This is achieved by extending the subgroup decomposition method initially 

developed in neutron transport theory to diffusion theory. Additionally, a new stabilizing 

scheme for on-the-fly cross-section re-condensation based on local fixed-source 

calculations is developed in the subgroup decomposition framework. The method is 

derived in general geometry and tested in 1D benchmark problems characteristic of 

Boiling Water Reactors (BWR) and Gas Cooled Reactor (GCR). It is shown that the 

method reproduces the standard fine-group results with 3-4 times faster computational 

speed in the BWR test problem and 1.5 to 6 times faster computational speed in the GCR 

core. 

 

The second method is a hybrid diffusion-transport method for accelerating multi-group 

eigenvalue transport problems. This method extends the subgroup decomposition method 

to efficiently couple a coarse-group high-order diffusion method with a set of fixed-

source transport decomposition sweeps to obtain the fine-group transport solution. The 

advantages of this new high-order diffusion theory are its consistent transport closure, 

straight forward implementation and numerical stability. The method is analyzed for 1D 



 xiii 

BWR and High Temperature Test Reactor (HTTR) benchmark problems. It is shown that 

the method reproduces the fine-group transport solution with high accuracy while 

increasing the computationally efficiency up to 16 times in the BWR core and up to 3.3 

times in the HTTR core compared to direct fine-group transport calculations. 

 

The third method is a new spatial homogenization method in transport theory that 

reproduces the heterogeneous solution by using conventional flux weighted homogenized 

cross sections. By introducing an additional source term via an “auxiliary cross-section” 

the resulting homogeneous transport equation becomes consistent with the heterogeneous 

equation, enabling easy implementation into existing solution methods/codes.  This new 

method utilizes on-the-fly re-homogenization, performed at the assembly level, to correct 

for core environment effects on the homogenized cross sections. The method is derived in 

general geometry and continuous energy, and implemented and tested in fine-group 1D 

slab geometries typical of BWR and GCR cores. The test problems include two single 

assembly and 4 core configurations. 

 

It is believed that the coupling of the two new methods, namely the hybrid method for 

treating the energy variable and the new spatial homogenization method in transport 

theory set the stage, as future work, for the development of a robust and practical method 

for highly efficient and accurate whole core transport calculations.  

 

 



 

1 

INTRODUCTION 

 

Neutron behavior in a nuclear system is governed by the linear Boltzmann equation. The 

steady state distribution of neutrons is a function of six variable phase space (space, 

energy and angle). For reactor core design and analysis, the accurate solution of the 

neutron distribution is required, and is typically determined using numerical methods. 

The complexity of the problem can be intractable even with modern computers and hence 

various approximations are applied to simplify the phase space. These approximations are 

utilized for each of the phase space elements independently. For the space variable, 

homogenization of the heterogeneous lattice cell is commonly used to reduce the 

complexity of the problem. For the energy treatment, the multi-group approximation is 

most commonly applied in which the energy variable is discretized leading to cross 

sections within an energy group. Widely used angular approximations are SN, PN, SPN and 

diffusion theory. 

 

Recent developments in nuclear core design have led to highly heterogeneous systems in 

which standard methods are incapable of predicting neutron behavior accurately. 

Standard energy condensation and spatial homogenization methods have been shown to 

introduce large errors for such systems requiring further improvements. The main source 

of error in both of these methods is due to the core environment effect. Spatial 

homogenization and energy condensation at the lattice cell (assembly level) are 

performed using approximate boundary conditions which do not represent the core 

environment accurately. Hence, the flux spectrum used for energy condensation and 
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spatial homogenization collapsing does not account for the effect of the adjacent lattices 

(assemblies). In this dissertation, a consistent spatial homogenization method that 

corrects for the core environment effect is developed. Additionally, a previously 

developed energy condensation method that consistently includes the core environment 

effect is accelerated using a new high-order diffusion theory. 

 

This dissertation is divided into 3 chapters. Chapters 2 and 3 extend the subgroup 

decomposition method to efficiently solve eigenvalue diffusion problems (Chapter 2) and 

eigenvalue transport problems (Chapter 3). Chapter 4 introduces a new method for spatial 

homogenization in transport theory which, unlike most homogenization methods, can 

reproduce the heterogeneous solution using standard flux weighted cross sections. 
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SUBGROUP DECOMPOSITION IN DIFFUSION THEORY 

 

2.1 Introduction 

 

Energy treatment of the Boltzmann equation is an ongoing area of research in 

computational reactor physics. The goal of this research is to develop methods capable of 

condensing cross sections (from continuous energy to ultra-fine groups, ultra-fine groups 

to fine-group and more importantly fine-group to coarse-group) without sacrificing 

accuracy in solution (flux and eigenvalue). The conventional cross-section condensation 

method preserves the reaction rates and the new cross-section library is generated by flux 

weighting the original cross-section library (with or without an additional weighting 

function). This condensation method suffers from two major errors; lack of correction for 

core environment and energy-angle coupling effects. The former error is caused by 

condensing the cross sections with an approximate spectrum. This flux spectrum is 

generally obtained by assembly calculations with approximate (e.g., specular reflective) 

boundary conditions. The latter error is a result of assuming the angular flux is separable 

in energy and angle. 

  

Recent developments such as the consistent generalized energy condensation (CGEC) 

method addressed the environmental and energy-angle coupling issues within the 

transport theory framework (Douglass and Rahnema, 2012a). In this method, fine-group 

flux at the core level is generated during the coarse-group calculation by preserving the 

detailed flux shape in the condensation process with a series of orthogonal expansion 
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moments. The resulting fine-group flux is a good approximation of the fine-group flux in 

the core, and has been shown to be valid with both continuous and discrete energy 

expansion functions (Douglass and Rahnema, 2011; Zhu and Forget, 2011). In order to 

improve issues associated with orthogonal expansion functions such as truncation error 

and computation time for generating expansion moments, the subgroup decomposition 

(SGD) method was subsequently introduced (Douglass and Rahnema, 2012b). The SGD 

method is comprised of iteratively solving a coarse-group transport equation and 

performing a set of fine-group transport decomposition sweeps to converge on the fine-

group flux in the core. 

 

In this chapter, the subgroup decomposition method which has been developed and tested 

in pure transport theory is extended to diffusion theory. The goal of this study is to 

develop a fast iterative method based on coarse-group diffusion with comparable 

accuracy to fine-group diffusion and highlight differences with traditional group 

collapsing in diffusion theory. Additionally, a different stabilizing scheme in the SGD 

framework is introduced in which embedded assembly level fixed-source diffusion 

calculations are carried out. The method is derived in its general form in section 2.2. In 

section 2.3, numerical results for a 1D Boiling Water Reactor (BWR) and a 1D High 

Temperature Test Reactor (HTTR) core are presented. Concluding remarks and future 

work are discussed in section 2.4. 
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2.2 Method 

 

Consider an eigenvalue fine-group diffusion equation with G number of energy bins {g | 

g=1, 2, 3,…, G} as shown in Eq. (2.1):  
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where the fission term is assumed isotropic with removal and transport cross sections 

defined as: 
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It should be noted the principle of detailed balance, i.e., Eq. (2.5), has been implicitly 

applied to Eq. (2.1) which is a common approximation for multi-group diffusion 

equation.  

 

∑    
    

   

 

    

 ∑    
    

  

 

    

    
 
   (2.5) 

 

Let C be the number of coarse groups where any fine-group h is fully contained in 

coarse-group c. In accordance with the reference work (Douglass and Rahnema, 2012b), 

the fine-group h is referred to as a “subgroup” of a coarse-group in which it is contained. 

The coarse-group diffusion/P1 equation is defined by starting from the fine-group 

transport equation, integrating/summing over the energy range contained in coarse-group 

c and taking the 0
th

 and 1
st
 angular moment of the coarse-group transport equation 

assuming coarse-group flux is linearly anisotropic. 

 

To be consistent with the fine-group diffusion equation in Eq. (2.1), the cross sections 

(total and scattering) in fine-group transport equation are transport corrected and fission 

term is assumed isotropic. The resulting transport equation is shown in Eq. (2.6).  
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where transport corrected cross sections are defined in Eqs. (2.7) and (2.8). 
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The coarse-group transport equation is obtained by summing over the fine groups within 

group c as shown below. 
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where the coarse-group coefficients are defined in the following equations. 



 8 

  ( ⃗  ̂)  ∑  ( ⃗  ̂)

 

   

 (2.10) 

 

 

   
 ( ⃗)  

∑    
 ( ⃗)  ( ⃗) 

   

∑   ( ⃗) 
   

 (2.11) 

 

 

 ̃ 
    ( ⃗)  

∑ ∑  ̃ 
    ( ⃗)   

( ⃗) 
     

 
   

∑    ( ⃗) 
     

 (2.12) 

 

 

   ∑  

 

   

 (2.13) 

 

 

   
  

( ⃗)  
∑    

  
( ⃗)   

( ⃗) 
     

∑    ( ⃗) 
     

 (2.14) 

 

and 

 

  ( ⃗  ̂)  
∑     

 ( ⃗)     
 ( ⃗)   ( ⃗  ̂) 

   

∑   ( ⃗) 
   

 (2.15) 

 



 9 

The 0
th

 and 1
st
 angular moments of Eq. (2.9) are derived by assuming linearly anisotropic 

coarse-group flux as shown in Eq. (2.16). 
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Using Eq. (2.15), the coarse group P1 equation is simplified to: 
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  is defined as: 
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  is a “perturbation cross-section” that is required to maintain the consistency of the 

coarse-group P1 equations with fine-group diffusion and it is commonly omitted from 

coarse-group diffusion calculation. It is worth noting that one might consider further 

simplifying Eq. (2.17) to remove the in-group scattering cross-section from the total 

cross-section. However, for coarse-group calculations using standard power iteration 

scheme this might result in numerical instabilities and/or longer convergence time. Thus 

for this chapter, Eq. (2.17) is used for coarse-group P1 calculations in which transport 

corrected cross sections are used instead of the conventional cross sections. 

 

In order to unfold the fine-group flux from the coarse-group solution, a “decomposition 

sweep” is required. In this process, fine-group diffusion is solved where the source term 

for any subgroup h is modified to take into account the newly calculated coarse-group 

flux. To this extent, the reaction rates (scattering and fission) in any subgroup h are 

represented through “subgroup decomposition cross sections” multiplied by respective 

coarse-group fluxes. The subgroup decomposition cross sections are calculated in the 

same manner as those found in Eqs. (2.10)- (2.15). Hence, the fine-group diffusion 

decomposition sweep is defined as: 

 

     ( ⃗)   ( ⃗)     
 ( ⃗)  ( ⃗)

 ∑      
    ( ⃗)   

( ⃗)

 

    

 
 

  
∑      

  
( ⃗)   

( ⃗)

 

    

 

(2.19) 

 

where the subgroup decomposition cross sections are: 
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The decomposition sweep is computationally cheap since its cross sections are already 

computed from the flux guess and the coarse-group flux and eigenvalue are calculated by 

solving Eq. (2.17). Therefore, no source iteration is involved and all terms on the RHS of 

Eq. (2.19) are known quantities.  

 

As explained, the cross sections in Eqs. (2.17) are dependent on the initial fine-group 

flux. If the fine-group flux guess is the solution to the fine-group diffusion equation, the 

coarse-group flux is consistent with the fine-group solution and only one decomposition 

sweep is required to unfold the detailed flux spectrum. However, this is not the case in 

practice and a re-condensation procedure is necessary to incorporate the correct core 

environment in the initial spectrum obtained by assembly calculations with approximate 

boundary conditions. The re-condensation procedure is comprised of solving Eqs. (2.17) 

and (2.19) iteratively and using the solution of Eq. (2.19) as a new subgroup flux guess. 

Nonetheless, this scheme would be unstable for most problems and would not lead to a 

converged solution. Therefore, an additional step is added to stabilize the re-condensation 

procedure. Two “stabilizing schemes” are presented in this chapter and their performance 

and accuracy are demonstrated in section 2.3.  
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The first stabilizing scheme, core sweeping, is similar to that developed in Douglass and 

Rahnema, 2012b. During core sweeping, a single diffusion sweep for each subgroup is 

carried out where the multi-group flux with subscript “p” is the solution to Eq. (2.19) and 

k
c
 is the coarse-group eigenvalue from Eq. (2.17). The updated flux is denoted with 

subscript “p+1/2”. The subscript refers to the number of times the coarse-group diffusion 

is solved and the flux update is performed to correct for the core environment. Therefore, 

subscript p+1/2 refers to an intermediate step between p and p+1 where the stabilization 

is performed to ensure convergence. 
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(2.22) 

 

The second stabilizing scheme is an embedded assembly level fixe- source diffusion 

calculation. During this scheme, a fixed-source problem at the assembly level is solved 

using the coarse-group eigenvalue from Eq. (2.17) and incoming currents calculated from 

the solution of Eq. (2.19) at the interface of the assemblies.  
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The boundary condition for the fixed-source diffusion problem is defined in Eq. (2.24). 
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Regardless of the stabilizing scheme performed, the updated flux is used as a fine-group 

flux guess for the next iteration. In summary, the re-condensation scheme is described as 

below. 

 

1. Perform fine-group assembly calculations with approximate boundary conditions 

to generate the initial flux spectrum and apply this spectrum to Eqs. (2.11)-(2.14), 

(2.18), (2.20) and (2.21) to generate coarse-group and decomposition cross 

sections. 

2. Solve the coarse-group whole-core diffusion equation using the cross sections 

generated in step (1). 

3. Perform a diffusion decomposition sweep for each subgroup using the 

decomposition cross sections generated in step (1) with the coarse-group 

eigenvalue and scalar flux in step (2). 

4. Perform the stabilizing scheme (i.e., core sweeping or assembly level fixed-source 

calculations) using the subgroup flux obtained from step (3). The updated fine-
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group flux spectrum is used to update the coarse-group and decomposition cross 

sections.  

5. Repeat steps (2) - (4) until the user defined successive iteration criteria for coarse-

group flux and eigenvalue of Eqs. (2.25) and (2.26) are met where the subscript 

“ ” is the iteration number. 
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A flowchart of the SGD method in diffusion theory is presented in Figure 2.1 to 

demonstrate the re-condensation procedure. 
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Figure 2.1. Flowchart of SGD re-condensation in diffusion theory 

 

2.3 Numerical Results 

 

In this section, the method is benchmarked for a 1D BWR core (Douglass and Rahnema, 

2010a) and a 1D HTTR core (Douglass and Rahnema, 2010c). The reference solution is 

obtained by solving a 47-group diffusion problem with the flux and eigenvalue 

convergence criteria of      and      , respectively. In the re-condensation method, a 2-
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chosen as (  )             and (  )            . As discussed previously in 

section 2.2, the re-condensation method is demonstrated for two different stabilizing 

schemes, i.e., core sweeping and assembly level fixed-source calculations. Furthermore, a 

standard 2-group/6-group diffusion solution with cross sections obtained from 47-group 

single assembly calculations with specular reflection is also included for comparison. The 

flux spectrum for blocks with non-fissionable material is assumed to be the same as the 

boundary flux spectrum of the adjacent block with fissionable material. The spatial 

discretization is kept same for all problems with a resolution of half mean free path in 

every mesh. 

 

For the numerical results, the average, mean relative and maximum errors are defined as: 

 

     
∫     ( ) 

∫   
 (2.27) 

 

 

     
∫     ( )         

 ( )

∫      
 ( )

 (2.28) 

 

 

         (   ( ) ) (2.29) 

 

where 
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  ( )      
    

 ( )          
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 (2.30) 

 

and  

 

    
  ∑    

 

 

   

 (2.31) 

 

2.3.1 1D BWR Core 

 

A GE9 BWR lattice (Kelly, 1995) was chosen as representative of BWR assemblies, 

which consists of 12 fuel types, including four pins that possess 5.84 at% Gd. It was 

modeled in half symmetry with full heterogeneity and a 47-group calculation was 

performed to deplete the assembly to 17 GWD/THM for three void parameters (0%, 40% 

and 70%). The lattice depletion code HELIOS (Simeonov, 2003) was used to perform 

transport calculations for 2D fuel assembly problem and generate 1D region-wise cross-

section by performing a flux-weighted transverse integration of the cross sections over 

slab regions of the 2D model. The 1D core is composed of 20 assemblies of width 15.24 

cm, modeled with half symmetry for two control configurations: All-Rods-out (ARO) 

and Some-Rods-in (SRI). Assemblies labeled “A” are fresh and the ones labeled “B” are 

depleted to 17 GWD/THM and the “+” refers to controlled assemblies. The benchmark is 

specified at operating temperature, wherein all non-fuel materials are evaluated at a 

temperature of 600 K, and fuel materials are evaluated at a temperature of 833 K. Each 
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assembly is composed of 11 macroscopic cross-section regions, laid out as in Figure 

2.2(a). 
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Figure 2.2. 1D Assembly layout (a), 1D BWR core layout for: ARO configuration (b), 

SRI configuration (c) 

 

The cores were modeled with specular and vacuum boundary conditions on the left and 

right sides, respectively. The outer assembly labeled “MOD” is a uniform moderator 

comprised of un-voided moderator with cross sections from the fresh assembly. The 

commonly used 2-group structure for BWRs (Douglass and Rahnema, 2010b) with 

thermal (E<0.625 eV) and fast range (E>0.625 eV) is used for condensation and 

presentation. 
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Fast and thermal flux errors in addition to eigenvalue errors for ARO configuration are 

presented in Table 2.1. The eigenvalue of standard 2-group diffusion has an error of 600 

pcm. The flux error is a result of the approximate flux spectrum obtained from assembly 

calculations and neglecting the coarse-group perturbation cross-section. However, the 

SGD re-condensation is capable of accounting for both core environment and energy-

angle coupling effects. Both stabilizing schemes in the SGD method show negligible 

error compared to standard coarse-group diffusion and their relative flux errors are 

plotted in Figure 2.3. Small discontinuities are seen at the interface of the assemblies for 

AFC stabilizing scheme. This is due to the nature of the scheme that assembly 

calculations are performed independently based on the incoming currents evaluated from 

the decomposition sweep and flux continuity is not forced at the interfaces.  

 

Table 2.1. Eigenvalue and flux error in ARO configuration for standard 2-group and 2-

group SGD re-condensation 

 
         =1.065746 AVG(%) MAX(%) MRE(%) 

         (   ) Fast Thermal Fast Thermal Fast Thermal 

2g Std 1.071794 -604.8 6.77 7.61 30.88 25.67 5.98 6.67 

2g SGD- CS
b 

1.065745 0.1 0.09 0.10 0.25 0.21 0.07 0.08 

2g SGD- AFC
c 1.065749 -0.3 0.09 0.11 0.19 0.27 0.07 0.09 

a    (            )      

b 
Core Sweeping 

c 
Assembly level Fixed-source Calculations 
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(a) Relative flux error in fast spectrum for CS and AFC 

 

 

(b) Relative flux error in thermal spectrum for CS and AFC 

 

Figure 2.3. Relative flux error 2- group spectrum (in percent) in ARO configuration of 

1D BWR core  

Core sweeping 

Assembly level fixed 

source  

Core sweeping 

Assembly level fixed 

source  
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(a) Fast spectrum 

 

 

(b) Thermal spectrum 

 

Figure 2.4. Flux spectrum for 47-group (reference) and standard 2-group solution in ARO 

configuration  

 

Figure 2.4 demonstrates the 47-group reference solution and the standard 2-group 

solution. The maximum error is seen close to the vacuum boundary where the initial flux 

spectrum based on approximate boundary conditions is less accurate and the energy-

angle coupling effect is dominant. 

47-group 

Standard 2-group  

47-group 

Standard 2-group  
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Table 2.2. Eigenvalue and flux error in SRI configuration for standard 2-group and 2-

group SGD re-condensation 

 
         =1.001783 AVG(%) MAX(%) MRE(%) 

        (   ) Fast Thermal Fast Thermal Fast Thermal 

2g Std 1.007194 -541.1 15.43 14.61 37.05 34.25 14.62 16.23 

2g SGD- CS
 

1.001785 -0.2 0.19 0.20 0.39 0.39 0.16 0.19 

2g SGD- AFC
 

1.001791 -0.8 0.17 0.19 0.33 0.41 0.15 0.18 

 

It is noted from Tables 2.1 and 2.2 that the standard 2-group exhibits higher flux error for 

the SRI configuration compared to ARO. The core environment effect is more prominent 

in the controlled case and the cross sections condensed from approximate assembly 

boundary conditions result in higher flux error. Similar to ARO configuration, both 

stabilizing schemes in SGD re-condensation method improve the accuracy significantly 

by two orders of magnitude. Figure 2.5 demonstrates the relative flux errors for fast and 

thermal spectra while the reference and standard 2-group flux are compared in Figure 2.6. 

The maximum error for standard 2-group condensation is seen close to the vacuum 

boundary where the flux behaves anisotropically (i.e., linearly anisotropic in the diffusion 

limit) and therefore the perturbation cross-section in the coarse group P1 equations has a 

significant impact. 
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(a) Relative flux error in fast spectrum for CS and AFC 

 

 

 

(b) Relative flux error in thermal spectrum for CS and AFC 

 

Figure 2.5. Relative flux error 2- group spectrum (in percent) in SRI configuration of 1D 

BWR core  
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source  
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(a) Fast spectrum 

 

 

 

(b) Thermal spectrum 

 

Figure 2.6. Flux spectrum for 47-group (reference) and standard 2-group solution in SRI 

configuration  

 

 

 

 

 

47-group 
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47-group 

Standard 2-group  
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Table 2.3. Computation time comparison of 1D BWR core for 47-group and 2-group 

SGD re-condensation 

 
1D BWR 

Core 

 NCT
a 

c-iteration s-iteration l-iteration 

 

ARO 

47g- Reference 1 1214 - - 

2g SGD- CS 0.260 16 16 - 

2g SGD- AFC 0.261 7 - 533 

 

SRI 

 

47g- Reference 1 1751 - - 

2g SGD- CS 0.306 16 16 - 

2g SGD- AFC 0.269 8 - 707 
a
 Normalized Computation Time 

 

Table 2.3 compares the computation times for two configurations of the BWR core 

utilizing two stabilizing schemes in SGD re-condensation. All computation times are 

normalized to the reference 47-group computation time to emphasize the method and 

demonstrate the efficiency of the proposed re-condensation method. The c-iteration in 

SGD method refers to the number of iterations the coarse-group cross sections is updated. 

The s-iteration for CS is the same as c-iteration because after every decomposition sweep, 

a core sweeping is carried out to update the flux. However, different mechanics are 

involved in AFC. During each c-iteration, different assemblies require different number 

of iterations in order to converge on the fixed-source problem. The l-iteration shown in 

Table 2.3 for the AFC stabilizing scheme is the maximum cumulative local iterations per 

assembly to ensure convergence of the fixed-source problem during the re-condensation. 

For the uncontrolled case, stabilizing schemes have similar performance with the 

computation time being 1/4 of the reference time. On the other hand, the AFC stabilizing 

scheme has a slightly superior performance over CS for the controlled case. The majority 

of the computation time in SGD re-condensation is consumed by coarse-group 
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calculations and flux update (decomposition sweep and stabilizing scheme) is relatively 

quick. 

 

2.3.2 1D HTTR Core 

 

The selected 1D benchmark problem is characteristic of gas cooled prismatic block 

reactor systems. The 2D 47- group cross sections were generated by performing three 

different calculations in HELIOS (Simeonov, 2003) for 1/6 fuel block, 1/6 control block 

with half fuel block and 1/6 reflector block with half fuel block (Zhang et al., 2011). The 

1D geometry was obtained by preserving the volume of different materials and the 

number densities were generated by performing volume-weighted homogenization over 

the hexagonal rings of the 2D HTTR core. The detailed parameters and the method of 

development of the benchmark problem are found in (Douglass and Rahnema, 2010c), 

The core consists of eight blocks of 4 types: Fuel 1, Fuel 2, Fuel 3, Control Rod Block 

(CRB), and Reflectors, laid out as in Figure 2.7, with specular reflective boundary 

conditions on the left, vacuum boundary conditions on the right. Two configurations are 

considered for this dissertation: All-Rods-Out (ARO) and All-Rods-In (ARI). The center 

control rods are only used for core loading and are disassembled after the startup. Hence, 

the ARI configuration includes presence of control rods in Fuel Block 2 and in the Outer 

Control assembly. Note the heterogeneity in the fuel and control block are not shown in 

Figure 2.7. Each fuel block consists of 6 fuel pins, a center graphite region, and outer 

graphite regions. Each control-rod block consists of 2 control rods, surrounded by tube 

regions, with center and outer graphite slabs. In the ARO configuration, the tube material 
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(graphite + helium gas) fills the control regions. For the ARI configuration, the number 

densities of the control blocks have been smeared into the graphite of fuel 2. 

 

The 2-group boundaries used for SGD method correspond to appropriate boundaries in 

the 6-group structure commonly used in VHTR analysis (Zhang et al., 2011). 

 

        

Center 

Control 

Fuel 

Block 1 

Fuel 

Block 2 

+Control 

Fuel 

Block 3 

Outer 

Control 

Reflector Reflector Reflector 

 

Figure 2.7. 1D HTTR core layout – The cross sections are different for fuel block 2 and 

outer control in ARO and ARI configurations. 

 

The results from the 2-group methods and the 6-group standard methods are compared to 

the reference 47-group results in Table 2.4. The 2-group SGD methods differ only in the 

stabilizing scheme and aside from the fast spectrum maximum error, their results are very 

similar. The error in the standard 6-group increases within the reflector region due to the 

large error in the initial flux spectrum utilized for cross-section condensation. In addition, 

the effect of energy-angle coupling captured by the perturbation cross-section in the SGD 

method is ignored in the standard coarse-group calculations and it is more pronounced in 

the fast spectrum.  
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Table 2.4. Eigenvalue and flux error in ARO configuration for standard 6-group and 2-

group SGD re-condensation 

 
         =1.101010 AVG(%) MAX(%) MRE(%) 

            (   ) Fast Thermal Fast Thermal Fast Thermal 

6g Std 1.116887 -1587.7 450.54 4.44 3308.6 13.25 2.30 3.16 

2g SGD- CS 1.100947 6.3 0.01 0.02 1.63 0.07 0.01 0.01 

2g SGD- AFC
 

1.100994 1.6 0.01 0.02 0.03 0.08 0.01 0.01 

a    (               )      

 

 

(a) Relative flux error in fast spectrum for CS and AFC 

 

Figure 2.8. Relative flux error 2- group spectrum (in percent) in ARO configuration of 

1D HTTR core  

 

Core sweeping 

Assembly fixed source 

calculations  
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(b) Relative flux error in thermal spectrum for CS and AFC 

 

Figure 2.8 continued 

 

Figure 2.8 demonstrates the relative flux error for the SGD method using two stabilizing 

schemes; CS and AFC. The AFC scheme shows a slightly better performance in the fast 

spectrum in which independent assembly calculations are carried out based on fixed 

incoming currents. Hence, the continuity of the flux at the assembly interface is not 

forced and as a result small discontinuities can be observed.  

 

In Figure 2.9, the fast and thermal fluxes for the reference solution along with the 

standard 6-group is plotted. As predicted, the fast spectrum flux peaks in the fuel blocks 

in the ARO configuration where the control rods are not present and local flux 

depressions are noticeable in the thermal spectrum at points where the fuel pins are 

located.  

 

Core sweeping 

Assembly fixed source 

calculations  
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(a) Fast spectrum 

 

(b) Thermal spectrum 

 

Figure 2.9. Flux spectrum for 47-group (reference) and standard 6-group solution in ARO 

configuration  

 

Similarly, the relative flux errors and eigenvalue errors for ARI configuration are 

presented in Table 2.5. Due to presence of control rods in this configuration, higher errors 

are noticed for the standard 6-group in thermal flux and hence the eigenvalue of the 

standard coarse-group is off by 1700 pcm. On the other hand, lower error is seen in the 

fast flux which is a result of smaller energy-angle coupling effect in ARI configuration.  

47-group 

Standard 6-group  

47-group 

Standard 6-group  
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Table 2.5. Eigenvalue and flux error in ARI configuration for standard 6-group and 2-

group SGD re-condensation 

 
         =0.828501 AVG(%) MAX(%) MRE(%) 

           (   ) Fast Thermal Fast Thermal Fast Thermal 

6g Std 0.845540 -1703.9 31.48 8.74 178.30 21.83 1.76 3.67 

2g SGD- CS
 

0.828371 13 0.10 0.09 0.46 0.31 0.01 0.05 

2g SGD- AFC
 

0.828495 0.6 0.01 0.06 0.03 0.26 0.01 0.01 

 

Figure 2.10 demonstrates the relative flux errors for both SGD methods and the standard 

coarse-group. Both SGD methods decrease the flux error by at least two orders of 

magnitude through consistent correction of the core environment effect. The reference 

fast and thermal fluxes are plotted in Figure 2.11. 

 

 

(a) Relative flux error in fast spectrum for CS and AFC 

 

Figure 2.10. Relative flux error 2- group spectrum (in percent) in ARI configuration of 

1D HTTR core  

 

 

Core sweeping 

Assembly fixed source 

calculations  
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(b) Relative flux error in thermal spectrum for CS and AFC 

 

 

 

(c) Relative flux error in fast and thermal spectra for standard 6g 

 

Figure 2.10 continued 
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Fast spectrum 

Thermal spectrum 
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Figure 2.11. 47-group (reference) fast and thermal flux spectra 

 

Table 2.6 compares the computation times for SGD method using CS and AFC 

stabilizing schemes. The computation times are normalized to the reference (47-group) 

computation time. The c-iteration refers to the number of iterations the coarse-group 

cross sections is updated. The s-iteration for CS scheme is the same as c-iteration since 

after every decomposition sweep an additional core sweeping is performed. However, the 

l-iteration for AFC scheme refers to maximum cumulative local iterations per assembly 

to ensure convergence of the fixed-source problem during the re-condensation. It is seen 

that the AFC scheme has a superior performance compared to CS while achieving 

improved accuracy. Hence, AFC is chosen to be a preferred stabilizing scheme in SGD 

framework for reactors with harder spectra. 

 

 

 

 

Fast spectrum 

Thermal spectrum 
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Table 2.6. Computation time comparison of 1D HTTR core for 47-group and 2-group 

SGD re-condensation 

 
1D HTTR 

Core 

 NCT c-iteration  s-iteration l-iteration 

 

ARO 

47g- Reference 1 3787 - - 

2g SGD- CS 0.618 77 77 - 

2g SGD- AFC 0.151 14 - 907 

 

ARI 

 

47g- Reference 1 3294 - - 

2g SGD- CS 0.524 73 73 - 

2g SGD- AFC 0.124 14 - 948 

 

2.4 Concluding Remarks 

 

In this chapter, the subgroup decomposition transport method has been extended to 

diffusion theory. This method improves the computational efficiency of fine-group 

whole-core diffusion solution by estimating the in-scattering and fission source terms 

with consistent coarse-group diffusion solutions iteratively. The coarse-group to fine-

group iteration is stabilized by two different methods, one of which is new and the other 

is similar to that introduced initially in the transport theory framework.   

 

This method can be also viewed as a significant improvement in accuracy of the coarse-

group methods used by the industry to perform routine whole-core analyses. The gain in 

accuracy is achieved by removing the effect of core environment on the energy collapsed 

cross sections at the expense of computational efficiency, nevertheless, more efficient (by 

a factor of 4 for BWR and a factor of 6 for the HTTR) than fine-group whole-core 

calculation as seen in the benchmark problems.  
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In the 1D GCR core, it is noted that the standard 6-group calculation has significant 

errors in both the core eigenvalue and the local solution (e.g., flux and fission density) 

because the standard method, which uses single lattice cross sections without energy 

angle correction, does not account for the effect of core environment. It is therefore 

concluded that the subgroup decomposition method is an excellent candidate as an 

efficient and highly accurate tool for neutronic analysis of gas cooled reactors (e.g., 

VHTR) in which non-fuel block are dominant.  

 

In this chapter the method’s accuracy and numerical stability has been verified for a 

BWR and HTTR benchmark problems in 1D slab geometry. The results show that the 

assembly level fixed-source calculation is computationally more efficient than the core 

sweeping stabilizing scheme for the HTTR problem.  This is mainly due to neutron’s 

longer mean free path in GCRs which decreases the convergence time for fixed-source 

calculations and localizes the error to individual assemblies. However, the core sweeping 

stabilizing scheme was the preferred scheme for the BWR core. 

 

The original subgroup decomposition method was developed in transport theory 

framework in which even coarse group transport calculations can be quite expensive in 

3D configurations. It would be interesting to consider accelerating the fine-group whole-

core transport calculations using coarse-group high-order diffusion theory. This is 

discussed in the following chapter.  
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A High-order Diffusion Theory Subgroup Decomposition Method for 

Accelerating Eigenvalue Transport Solutions 

 

3.1 Introduction 

 

Recently, Douglass and Rahnema (2012) developed a new Subgroup Decomposition 

method (SGD) for treating the energy variable in the linear Boltzmann equation. This 

method can be viewed as a consistent re-condensation scheme that efficiently solves the 

fine-group flux by iterating on the coarse-group calculation. The SGD method has been 

developed and implemented within transport theory (Douglass and Rahnema, 2012) and 

diffusion theory (Chapter 2), separately. The Transport theory SGD (TSGD) method 

utilizes coarse-group transport calculations and a set of transport decomposition sweeps 

to unfold the fine-group transport flux spectrum. The key feature of the SGD method is 

its ability to correct for spectral core environment effects which is an eminent source of 

error in re-condensation methods. Consistent multi-group formulations (i.e., energy-angle 

coupling) and on-the-fly cross-section re-condensation at the core level are the reason for 

high accuracy of the SGD method independent of the coarse-group structure. 

 

Anistratov and Gol’din (2011) have developed a multi-level method in 1D slab 

geometries for solving multi-group eigenvalue transport problems. In this work a 

combination of effective one-group low order quasi-diffusion equation and multi-group 

low order equation are utilized to accelerate the multi-group k-eigenvalue transport 

problems. In the multi-level approach, the Multi-group Low Order Quasi-Diffusion 
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(MLOQD) is used to accelerate the multi-group transport in the first layer and an 

effective Grey (one-group) Low Order Quasi-Diffusion (GLOQD) is utilized to 

accelerate the multi-group low order equation in the second layer by evaluating the 

eigenvalue and one-group flux. In a different work by Anistratov (2011), Nonlinear 

Diffusion Acceleration (NDA) method is presented as a fast iterative algorithm for 

solving multi-group eigenvalue transport problems. This work demonstrates that an 

effective one-group low order NDA consistent with eigenvalue transport problems 

accelerates the multi-group low order NDA equations. 

 

The TSGD method can be viewed as an acceleration scheme for solving multi-group 

eigenvalue transport problems by using coarse-group transport calculation iteratively. 

Since decomposition sweep (a step in the SGD method that unfolds the flux spectrum 

from the coarse-group flux) depends on coarse-group flux and eigenvalue, coarse-group 

diffusion is an efficient candidate for replacing the coarse-group transport calculation. 

However, this would require development of a high-order diffusion theory which 

incorporates the angular details for the coarse-group calculation. In this chapter, the 

TSGD method is combined with a new high-order diffusion theory resulting in a Hybrid 

SGD (HSGD) method to increase computational efficiency while maintaining transport 

accuracy for the fine-group flux. We believe this method is simpler to implement than 

other hybrid high-order diffusion transport methods. This is because, as can be seen later, 

the high-order diffusion theory developed in section 2 can be easily implemented in 

existing diffusion codes by introducing only one additional term while retaining the 

standard (P1) definition of diffusion coefficient. 
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The new HSGD method is derived in its general form in section 3.2. Its accuracy in a 1D 

BWR benchmark problem is investigated in section 3.3. Concluding remarks and future 

work are found in section 3.4. 

 

3.2 Method 

 

For an eigenvalue problem, the fine-group transport angular flux is governed by Eq. (3.1) 

in which G is the total number of fine groups {g | g=1, 2, 3,…, G}. 
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(3.1) 

 

Standard notation (Douglass and Rahnema, 2012) is used in Eq. (3.1). The fission and 

scattering kernels are assumed isotropic and linearly anisotropic, respectively. These 

assumptions are common in lattice depletion methods used in thermal reactor systems. It 

is noted that inclusion of higher scattering anisotropy will not be captured by the high-

order diffusion method to be derived below.   
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Let C be the number of coarse groups where any fine-group h is fully contained in 

coarse-group c. By integrating/summing over the energy range contained in coarse-group 

c, the coarse-group transport equation is obtained as shown in Eq. (3.2). 
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where the coarse-group coefficients are defined in the following equations. 
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 (3.10) 

 

Taking the 0
th

 and 1
st
 angular moment of Eq. (3.2) will result in Eqs. (3.11) and (3.12). 
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 ̂  
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where 
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and  
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( ⃗)            
    

( ⃗)  ( ⃗)   
    

∑   ( ⃗) 
   

 (3.15) 

 

In the above equations, the vector symbol for current, gradient and current weighted cross 

sections has been omitted for simplicity. The double sided arrow ( ) is used as a symbol 

for tensor. For the ease of implementation, Eq. (3.12) is modified as below to resemble 

the standard coarse-group diffusion equation while maintaining higher order transport 

effects (beyond 1
st
 order in angle).  

 



 44 

 

 
   ( ⃗)     

 ( ⃗)  ( ⃗)

 {  
 ( ⃗)  ∫  ̂

 

  

 ̂  
 ( ⃗  ̂)}   ( ⃗)    

 ( ⃗)  ( ⃗) 

(3.16) 

 

where the new term is defined as: 

 

  
 ( ⃗)  

∑   
   

 
    ( ⃗)     ⃡ ⃗  ( ⃗) 

∑   ( ⃗) 
   

 (3.17) 

 

Combining Eqs. (3.11)- (3.17) yields the following coarse-group high-order diffusion 

equations. 
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(3.18) 

 

where  
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(3.19) 

 

It is noted that the first term in the definition of    accounts for the effect of energy-angle 

coupling due the energy collapsing of the total/transport cross-section. The second term is 

a result of linearly anisotropic scattering kernel and the third term ensures that the coarse-

group high-order diffusion equations capture the transport effects while maintaining 

numerical stability. The    term is indeed a coarse-group coefficient and depends on the 

flux spectrum used in the energy collapsing process. 

 

For boundary condition, since the degree of anisotropy of the angular flux is not limited 

by any approximation, the generalized boundary condition originally developed in quasi-

diffusion (Anistratov, 2005) is used.  
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(3.20) 

 

In the SGD method, the fine-group flux spectrum corresponding to the newly calculated 

coarse-group flux is attained through “decomposition sweep”. During a decomposition 

sweep, the fine-group transport equation is solved at the core level with a pre-defined 

source term (fission and scattering) using decomposition cross sections, coarse-group 

eigenvalue and scalar flux, as given below. 
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(3.21) 

 

The decomposition cross sections in the above equation are defined as: 
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and  

 

     
  

( ⃗)   
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( ⃗)   

( ⃗) 
     

∑    ( ⃗) 
     

 (3.24) 

 

The SGD method iterates on the fine-group flux spectrum until convergence is obtained. 

As explained in Douglass and Rahnema (2012), to guarantee convergence, the method 

requires an additional step, hereon referred to as “a stabilizing scheme.” Two stabilizing 

schemes, similar to those introduced in Chapter 2, are described below and evaluated for 

computational efficiency and accuracy in section 3.3. 

 

The first scheme, referred to as core sweeping (CS), is a single transport sweep at the 

core level using the fine-group flux obtained from the decomposition sweep. This is 

shown in Eq. (3.25). 
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(3.25) 

 

The second scheme, named “Assembly level Fixed-source Calculations” (AFC), as the 

name implies, are fixed-source transport calculations performed at the assembly level 

with the eigenvalue determined by the coarse-group high-order diffusion and incoming 

angular fluxes determined from the decomposition sweep, i.e., Eq. (3.21). This is shown 

in Eq. (3.26). 
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(3.26) 

 

To summarize, the following steps are followed in the new HSGD method. 
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1. Perform fine-group assembly calculations with approximate boundary conditions 

(e.g., specular reflective) to generate coarse-group and decomposition cross 

sections in Eqs. (3.4)- (3.8), (3.19), (3.22) and (3.23) using the approximate flux 

spectrum.  

2. Solve the coarse-group whole-core high-order diffusion equations, Eq. (3.18), 

using the cross sections generated in step (1). 

3. Perform a transport decomposition sweep for each subgroup by solving Eq. (3.21) 

using the decomposition cross sections generated in step (1) with the coarse-group 

eigenvalue and scalar flux obtained in step (2). 

4. Perform stabilizing scheme (i.e., CS or AFC) using the decomposed flux spectrum 

obtained from step (3). The updated fine-group flux is used to update the coarse-

group and decomposition cross sections.  

5. Repeat steps (2) - (4) until the user defined successive iteration criteria for coarse-

group flux and eigenvalue of Eq. (3.27) is met where the subscript “ ” is the 

iteration number. 
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3.3 Numerical Results 

 

In this section, the new HSGD method is tested in the 1D BWR and HTTR benchmark 

problems described in Chapter 2 (Douglass and Rahnema, 2010). The reference solution 

is obtained by solving a 47-group transport problem with the flux and eigenvalue 

convergence criteria of      and      , respectively. The problem is solved using HSGD 

and TSGD methods (high-order diffusion equations in HSGD or transport in TSGD) in 

which a 2-group problem (6-group in HTTR) is solved iteratively with the coarse-group 

flux and eigenvalue convergence criteria set to      and      while the successive 

iteration criteria were chosen as (  )             and (  )            . For 

consistent comparison, the spatial discretization is kept the same for the fine-group and 

coarse-group problems with a resolution of half mean free path (in thermal energy) in 

every mesh. Transport corrected cross sections are used for this problem. This would 

simplify the definition of    in Eq. (3.19) to Eq. (3.28). 
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For the numerical results, the average, mean relative and maximum errors are defined as: 
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where,  

 

  ( )      
    

 ( )          
 ( )
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and 

 

    
  ∑    

 

 

   

 (3.33) 

 

3.3.1 1D BWR Problem 

 

As seen in Table 3.1, the 2g HSGD and TSGD methods are able to predict the fine-group 

flux and eigenvalue with high accuracy in the ARO configuration. The relative flux error 

is comparable for both methods and this is a confirmation of replacing the TSGD method 

with the HSGD method while increasing its computational efficiency. Figures 3.2 and 3.3 

demonstrate the relative fast and thermal flux errors for CS and AFC stabilizing schemes. 

Small error oscillations are noticed in Figure 3.3 for the HSGD method. This is due to 

rapid sign change of    for adjacent meshes in Eq. (3.19) since this term includes the first 
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moment of energy-angle coupling and the high-order angular effect. Nonetheless, the 

high-order diffusion equations are able to track the transport solution in a numerically 

stable pattern. Figure 3.1 shows the thermal and fast scalar flux in the ARO 

configuration. 

 

Table 3.1. Relative flux error and eigenvalue error of 2g HSGD and TSGD using CS and 

AFC stabilizing schemes in ARO configuration 

 
         =1.066813 AVG(%) MAX(%) MRE(%) 

         (   ) Fast Thermal Fast Thermal Fast Thermal 

2g TSGD-CS
b 

1.066815 -0.2 0.02 0.03 0.04 0.11 0.02 0.02 

2g HSGD- 

CS
 

1.066805 0.8 0.01 0.02 0.05 0.08 0.01 0.02 

2g TSGD- 

AFC
c 

1.066821 -0.8 0.08 0.09 0.14 0.16 0.07 0.08 

2g HSGD-

AFC 

1.066811 0.2 0.07 0.07 0.13 0.19 0.07 0.07 

a    (            )      

b 
Core Sweeping 

c 
Assembly level Fixed-source Calculations 
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(a) Fast spectrum 

 

 

(b) Thermal spectrum 

 

Figure 3.1. Scalar flux profile in ARO configuration of 1D BWR core. The vertical lines 

represent the interface of assemblies. 
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(a) Relative fast flux error 

 

 

(b) Relative thermal flux error 

 

Figure 3.2. Relative flux error of 2-group (in percent) HSGD and TSGD using AFC 

scheme in ARO configuration of 1D BWR core  

 

HSGD 

 

TSGD 

HSGD 

 

TSGD 
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(a) Relative fast flux error 

 

(b) Relative thermal flux error 

 

Figure 3.3. Relative flux error of 2-group (in percent) HSGD and TSGD using CS 

scheme in ARO configuration of 1D BWR core  

 

Table 3.2 compares the eigenvalue and relative flux errors for the HSGD and TSGD 

methods using two different stabilizing schemes in the SRI configuration. From the 

relative flux error it is noticed that the CS stabilizing scheme has superior performance 

compared to AFC. The HSGD method has reproduced the fine-group flux in SRI 

configuration with comparable accuracy to the TSGD method. Figure 3.4 demonstrates 

HSGD 

 

TSGD 

HSGD 

 

TSGD 
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the fast and thermal flux in SRI configuration while Figures 3.5 and 3.6 show the relative 

flux error for the HSGD and TSGD methods using CS and AFC schemes. 

 

Table 3.2. Relative flux error and eigenvalue error of 2g HSGD and TSGD using CS and 

AFC stabilizing schemes in SRI configuration 

 
         =1.003437 AVG(%) MAX(%) MRE(%) 

        (   ) Fast Thermal Fast Thermal Fast Thermal 

2g TSGD-CS 1.003438 -0.1 0.01 0.01 0.03 0.02 0.01 0.01 

2g HSGD- CS
 

1.003426 1.1 0.01 0.02 0.03 0.08 0.01 0.02 

2g TSGD- AFC 1.003463 -2.6 0.22 0.23 0.41 0.50 0.19 0.23 

2g HSGD-AFC 1.003434 0.3 0.17 0.18 0.34 0.37 0.14 0.18 

 

 

 

(a) Fast spectrum 

 

Figure 3.4. Scalar flux profile in SRI configuration of 1D BWR core. The vertical lines 

represent the interface of assemblies. 
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(b) Thermal spectrum 

 

Figure 3.4 continued 

 

 

 

(a) Relative fast flux error 

 

Figure 3.5. Relative flux error of 2-group (in percent) HSGD and TSGD using AFC 

scheme in SRI configuration of 1D BWR core 

HSGD 

 

TSGD 
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(b) Relative thermal flux error 

 

Figure 3.5 continued 

 

 

 

   (a) Relative fast flux error 

 

Figure 3.6. Relative flux error of 2-group (in percent) HSGD and TSGD using CS 

scheme in SRI configuration of 1D BWR core  
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   (b) Relative thermal flux error 

 

Figure 3.6 continued 

 

 

Computational efficiency of the HSGD and TSGD methods are shown in Table 3.3. The 

computation times are normalized to the transport reference (47-group) computation time 

to highlight the method. The c-iteration index refers to the number of iterations the 

coarse-group cross sections are updated. The s-iteration in CS scheme is the number of 

times the stabilizing scheme is applied which is equal to the c-iteration. However, the l-

iteration for AFC scheme refers to the maximum cumulative local iterations per assembly 

to ensure convergence of the fixed-source problem during re-condensation. In addition, 

the c-iteration for the reference case specifies the number of source iterations without any 

acceleration scheme. It is seen that the HSGD method is 12 and 16 times faster using CS 

scheme in the ARO and SRI configurations, respectively. Although the TSGD method 

increases computational speed 5 times compared to the reference fine-group case, its 

efficiency is amplified 2-3 times using high-order diffusion equations for coarse-group 

calculations. 

HSGD 

 

TSGD 
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Table 3.3. Computational efficiency of HSGD and TSGD versus fine-group transport for 

two configurations of 1D BWR core 

 
1D BWR 

Core 

 NCT
a 

c-iteration s-iteration l-iteration 

 

ARO 

47g- Reference 1 3267 - - 

2g HSGD-CS 0.080 20 20 - 

2g HSGD-

AFC 

0.279 6 - 2354 

2g TSGD-CS 0.195 17 17 - 

2g TSGD-AFC 0.352 6 - 2365 

 

SRI 

 

47g- Reference 1 5829 - - 

2g HSGD- CS 0.059 20 20 - 

2g HSGD-

AFC 

0.179 6 - 2515 

2g TSGD-CS 0.152 20 20 - 

2g TSGD- 

AFC 

0.242 6 - 2570 
a
 Normalized Computation Time 

 

3.3.1 1D HTTR Problem 

 

In the HTTR benchmark problem, the coarse-group problem is solved in 6 coarse groups 

using HSGD and TSGD with the coarse-group flux and eigenvalue convergence criteria 

set to      and      while the successive iteration criteria were chosen as 

(  )             and (  )            . 

 

As seen from Table 3.4, the HSGD and TSGD reproduce the fine-group solution with 

comparable accuracy in ARO configuration. However, the magnitude of error for HSGD 

is larger in the HTTR core compared to the BWR core. 
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(a) Fast spectrum 

 

(b) Thermal spectrum 

 

Figure 3.7. Scalar flux profile in ARO configuration of 1D HTTR core. The vertical lines 

represent the interface of assemblies. 

 

As seen from Figures 3.8 and 3.9, larger error exhibits for the fast spectrum and the 

magnitude of the error increases away from the fissionable block toward the reflector, 

confirming that the error is pronounced in the reflector region in which no fission is 

present and hence the net current for each mesh mainly determines the magnitude of the 

scalar flux. This error is due the constant assumption of the    while in fact it is a 
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function of space in each mesh. By decreasing the mesh size in the reflector region, it is 

verified that the magnitude of error decreases and the spatial error in    is the main 

reason for the errors shown in Tables 3.4 and 3.5. However, since this error is more 

pronounced in the fast flux in ARO configuration, the eigenvalue error is negligible. 

Figure 3.8 shows the error for HSGD and TSGD using AFC scheme in ARO 

configuration while Figure 3.9 shows the error of CS scheme. 

 

Table 3.4. Relative flux error and eigenvalue error of 6g HSGD and TSGD using CS and 

AFC stabilizing schemes in ARO configuration 

 
         =1.102972 AVG(%) MAX(%) MRE(%) 

         (   ) Fast Thermal Fast Thermal Fast Thermal 

6g TSGD-CS 1.102976 -0.4 0.03 0.01 0.15 0.05 0.01 0.01 

6g HSGD- 

CS
 

1.102981 -0.9 0.14 0.01 0.43 0.34 0.02 0.01 

6g TSGD- 

AFC 

1.102971 0.1 0.01 0.01 0.03 0.04 0.01 0.01 

6g HSGD-

AFC 

1.102980 -0.8 0.12 0.04 0.46 0.10 0.03 0.03 
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(a) Relative fast flux error 

 

 

(b) Relative thermal flux error 

 

Figure 3.8. Relative flux error (in percent) of 6-group HSGD and TSGD using AFC 

scheme in ARO configuration of 1D HTTR core  
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TSGD 



 64 

 

(a) Relative fast flux error 

 

 

(b) Relative thermal flux error 

 

Figure 3.9. Relative flux error (in percent) of 6-group HSGD and TSGD using CS 

scheme in ARO configuration of 1D HTTR core  

 

 

In Table 3.5, the eigenvalue and flux error for HSGD and TSGD in ARI configuration is 

shown. Due to the presence of control rods, the magnitude of the thermal flux error is 

increased and the HSGD exhibits larger error in the eigenvalue compared to the ARO 
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TSGD 

HSGD 

 

TSGD 
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configuration. Figure 3.11 demonstrates the fast and thermal flux error using AFC 

scheme in the ARI configuration while the flux error using CS scheme is shown in Figure 

3.12. 

 

Table 3.5. Relative flux error and eigenvalue error of 6g HSGD and TSGD using CS and 

AFC stabilizing schemes in ARI configuration 

 
         =0.829591 AVG(%) MAX(%) MRE(%) 

         (   ) Fast Thermal Fast Thermal Fast Thermal 

6g TSGD-CS 0.829591 0.0 0.01 0.08 0.10 0.36 0.00 0.00 

6g HSGD- 

CS
 

0.829645 -5.4 0.09 0.09 0.30 0.52 0.01 0.03 

6g TSGD- 

AFC 

0.829598 -0.7 0.01 0.10 0.07 0.39 0.02 0.02 

6g HSGD-

AFC 

0.829629 -3.8 0.10 0.08 0.40 0.36 0.02 0.03 
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(a) Fast spectrum 

 

 

 

(b) Thermal spectrum 

 

Figure 3.10. Scalar flux profile in ARI configuration of 1D HTTR core. The vertical lines 

represent the interface of assemblies. 
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(a) Relative fast flux error 

 

 

 

(b) Relative thermal flux error 

 

Figure 3.11. Relative flux error (in percent) of 6-group HSGD and TSGD using AFC 

scheme in ARI configuration of 1D HTTR core  
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(a) Relative fast flux error 

 

 

(b) Relative thermal flux error 

 

Figure 3.12. Relative flux error (in percent) of 6-group HSGD and TSGD using CS 

scheme in ARI configuration of 1D HTTR core  

 

 

Computational efficiency of the HSGD and TSGD methods are shown in Table 3.6. It is 

seen that TSGD increases the computational speed by a factor of 2 while HSGD 

amplifies this efficiency by a factor of 3. The AFC scheme is a preferred scheme for 

HSGD 
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HSGD 

 

TSGD 



 69 

TSGD method in the HTTR core. However, from Table 3.6, it can be inferred that CS 

scheme is a preferred stabilizing scheme for HSGD and it will be used for future work.  

 

Table 3.6. Computational efficiency of HSGD and TSGD versus fine-group transport for 

two configurations of 1D HTTR core 

 
1D HTTR 

Core 

 NCT
 

c-iteration s-iteration l-iteration 

 

ARO 

47g- Reference 1 5900 - - 

6g HSGD-CS 0.302 40 40 - 

6g HSGD-AFC 0.291 9 - 2163 

6g TSGD-CS 0.714 40 40 - 

6g TSGD-AFC 0.498 9 - 2143 

 

SRI 

 

47g- Reference 1 5294 - - 

6g HSGD- CS 0.291 39 39 - 

6g HSGD-AFC 0.303 9 - 2383 

6g TSGD-CS 0.685 40 40 - 

6g TSGD- 

AFC 

0.535 9 - 2261 

 

3.4 Concluding Remarks and Future work 

 

In this chapter, a new hybrid method (HSGD) for accelerating multi-group eigenvalue 

transport problems has been developed. This method in essence is an extension of the 

subgroup decomposition method which directly couples a consistent coarse-group 

criticality calculation with a set of fixed-source transport decomposition sweeps to obtain 

the fine-group spectrum. Here, a consistent high-order diffusion method is developed to 

more efficiently perform the coarse-group criticality calculation. 

 

The new method’s accuracy and computational efficiency were determined in 1D BWR 

and HTTR benchmark problems. It was found that the method is highly accurate and 
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efficient, producing results close to those obtained from a direct fine group transport 

calculation with 12-16 times faster speed in the BWR core (depending on the control rod 

configuration) and 3 times faster speed in the HTTR problem. It was also found that the 

core sweeping scheme is a more efficient stabilizing scheme than the assembly level 

fixed-source calculations for 4 configurations. Hence, core sweeping is recommended as 

the preferred stabilizing scheme. 

 

It has been observed that the accuracy and computational efficiency of the subgroup 

decomposition method using core sweeping stabilizing scheme is highly dependent on 

the number of coarse groups due to the assumption of constant perturbation cross section. 

In the problems considered, increasing the number groups improves the accuracy of the 

results. This increases the impact of problem dependency and requires optimization. 

However, the subgroup decomposition method using the assembly fixed-source 

stabilizing scheme is almost independent of the number of coarse groups and thereby 

reducing the need for optimization for various reactor systems. Thus, in the extension of 

this method to 2D and 3D geometries, assembly level fixed-source calculation is believed 

to be a better choice as the stabilizing scheme is less problem dependent. Nonetheless, 

this stabilizing scheme requires detailed flux shape (space and angle) at the interface of 

each assembly which would increase the computational burden. The angular details can 

be omitted by incorporating the high-order diffusion theory for the fine-group fixed-

source calculation and hence, accelerating the stabilizing scheme particularly for 3D 

geometries. 
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As future work, implementation of the method in 3D geometry is highly desirable for 

practical application in addition to increased computational efficiency. The hybrid 

subgroup decomposition method in its current form does not accommodate spatial 

homogenization. Therefore, a method that couples hybrid subgroup decomposition with 

spatial homogenization would be an interesting study. 
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CONSISTENT SPATIAL HOMOGENIZATION IN TRANPORT 

THEORY 

 

4.1 Introduction 

 

Current standard homogenization techniques are based on a two-level approach: 

heterogeneous transport calculations performed at the assembly level with approximate 

boundary conditions (i.e., specular reflection) followed by a nodal (homogeneous) 

diffusion theory calculation at the core level. The accuracy of these methodologies 

deteriorates with increased core and assembly heterogeneities resulting from the desire to 

increase fuel utilization. Recent works (Aragones and Ahnert, 1986; Mondot and 

Sanchez, 2003; Nichita and Rahnema, 2003; Joo et al., 2002; Smith, 1994; Roberts et al., 

2010) in the context of dynamic hybrid transport-diffusion homogenization have 

attempted to improve this methodology by iterating on the assembly interface (boundary) 

condition within the core calculations.
 
In this framework, it is customary to use the 

modulation technique for recovering the detailed angular and spatial shapes of the 

incoming angular flux for assembly calculations. As described in Mondot and Sanchez 

(2003), this technique introduces large local flux errors (pronounced at the assembly 

interfaces) in full assembly homogenization. In most of these works in dynamic 

homogenization either the core or assembly averaged errors are reported (Joo et al., 2002; 

Roberts et al., 2010). These are generally not a good measure of local (e.g., flux or pin 

power) errors due to many factors including cancellation of errors resulting from 

simultaneous (Mondot and Sanchez, 2003; Roberts et al., 2010) energy condensation and 
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homogenization of assembly cross-sections. It is well known nodal diffusion theory at the 

core level lacks the spatial and angular resolution that is necessary for a robust dynamic 

transport homogenization. Although, both standard and dynamic homogenization 

methods predict the eigenvalue relatively accurately, especially in optically thick systems 

as a result of error cancelation, large local errors in the flux or pin power profile are 

inevitable due to the effect of core environment and inconsistent homogenization (i.e., 

neglecting the effect of space and angle coupling).  

 

A fully transport theory based homogenization method can be found in Dorning et al 

(1997). This work presents a multi-scales systematic theory for simultaneous 

homogenization of pin cells and fuel assemblies in addition to a self-consistent de-

homogenization theory for the reconstruction of the heterogeneous transport solution.  In 

this method an asymptotic expansion of the heterogeneous transport equation using 

spatial scales leads to a set of equations that involve the following main steps for 

implementation: “the homogenization of the heterogeneous lattice; the homogenization of 

the lattice-cell-homogenized fuel assembly; the fuel-assembly-homogenized coarse-mesh 

global nodal diffusion calculation; and the local heterogeneous flux reconstruction with 

the fuel assemblies and lattice cells.”(Dorning et al, 1997) This work was developed for 

one-speed eigenvalue problems where the heterogeneous core is comprised of a 2D near-

periodic array of fuel assemblies. The rigorous derivation of this work has not been 

extended to multi-group eigenvalue problems. 
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Homogenization via perturbation theory was initially introduced in the context diffusion 

theory by Rahnema, 1989.
 
In this work, cross sections can be re-homogenized on-the-fly 

within the core calculation by using the coarse-mesh interface/boundary condition. This 

work was later extended to    -order in transport theory for eigenvalue problems 

(Mckinley and Rahnema, 2002). In particular, using an unperturbed (known) solution, 

formalisms are developed to determine the solution to the neutron transport equation 

when the boundary condition of the system is perturbed. Additionally, it was shown that 

high-order cross-section homogenization (Rahnema and Mckinley, 2002) based on 

boundary condition perturbation in diffusion theory
 
(Mckinley and Rahnema, 2000) 

improves the accuracy of nodal methods for coarse-mesh eigenvalue calculations. The 

implementation of this method in three dimensional geometries can be cumbersome as it 

requires computation of adjoint Green’s functions. 

 

One major concern with hybrid (e.g., standard and dynamic) homogenization methods is 

the lack of adequate phase-space resolution in the low order transport approximation 

(e.g., homogenized diffusion theory) that leads to significant degradation in accuracy 

with increasing heterogeneity. To the author’s knowledge, there is only one 

homogenization method in pure transport that overcomes the issues associated with 

dynamic hybrid homogenization. However, this method
 
(Dorning et al., 1997) is limited 

to one-speed eigenvalue problems consisting near periodic arrays of assemblies.  

 

In this chapter, by introducing an auxiliary cross-section, a new Consistent Spatial 

Homogenization (CSH) method in transport theory is developed that reproduces the 
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heterogeneous solution in its full phase-space resolution. The method is derived in 

general geometry and continuous energy. The new method is described in section 4.2 and 

its implementation in 1D slab geometry is found in section 4.3. In section 4.4, two 1D 

BWR assemblies, a 1D BWR core and an HTTR core are solved to test the method’s 

accuracy and efficiency.  Concluding remarks are given in section 4.5.  

 

4.2 Method 

 

For an eigenvalue problem, the fine-mesh heterogeneous angular flux within a 

homogenized region is governed by Eq. (4.1) shown below. 

 

 ̂   ( ⃗    ̂)   ( ⃗  ) ( ⃗    ̂) 

 ∫  ̂ ∫     ( ⃗  
     ̂  ̂ ) ( ⃗     ̂ )

 

  

 

 
 ( )

   
∫  ̂ ∫      ( ⃗  

 ) ( ⃗     ̂ )

 

  

 

   ⃗       

(4.1) 

 

In this equation, V
hom

 is the volume of the homogenized region, the scattering kernel is 

assumed to depend on the scattering angle cosine     ̂  ̂ , and the fission term is 

assumed isotropic (not a necessary but common assumption)  We postulate that the fine-

mesh solution to the homogeneous transport equation with an auxiliary source term as 

presented in Eq. (4.2), yields the same solution as that of Eq. (4.1).  
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(4.2) 

 

In this equation, the superscript “hom” refers to the homogeneous values,     
     

represents the average scalar flux in the homogenized region and the cross sections are 

constant in space.  In order to calculate the last term in Eq. (4.2) i.e., the auxiliary cross-

section Eqs. (4.1) and (4.2) are subtracted from each other while forcing the fine-mesh 

homogeneous flux to be equal to its fine-mesh heterogeneous counterpart, i.e., 

    ( ⃗    ̂)   ( ⃗    ̂) and preserving the core/problem eigenvalue,       . This 

leads to the following definition of     ( ⃗    ̂).  
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(4.3) 

 

where, 
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       ( ⃗)        ( ⃗)        
    (4.4) 

 

The subscripts t,s,f in Eq. (4.4) are for total (which is suppressed for simplicity), 

scattering and fission cross sections, respectively. In order to separate the angular and 

spatial discretization of the homogeneous problem from the heterogeneous one, the 

auxiliary cross-section should be expanded in a basis function for both angle and space. 

Applying spherical harmonics in the angular domain and a set of orthogonal basis 

function in the spatial domain defined as    ( ⃗) with a weighting function  ( ⃗)  and a 

normalizing factor   , the auxiliary cross-section is simplified to: 
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(4.5) 

 

Here, the expansion coefficients are defined as: 
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In order to be consistent with the spatial basis function, the denominator is defined as: 
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The extra degree of freedom gained by the introduction of the auxiliary term in Eq. (4.2) 

is used to ensure that the auxiliary reaction is zero in which the integral over the mesh, all 

energies and solid angle is zero. This choice is achieved by Eq. (4.10). 
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In order to define the three terms in      independently (not a necessary assumption but 

simplifies the definitions), Eq. (4.10) should be valid for each of them which leads to the 

following equations since    
 ( ̂)          ( ⃗)   . 

 

     ( )     

∫   ∫  ̂ 

 

  

∫  ̂

 

  

∫   ⃗  ( ⃗)
 

  

   ( ⃗  
     ̂  ̂ ) ( ⃗     ̂ )    

(4.11) 



 80 

     ( )   

 ∫   ∫  ̂ 

 

  

∫  ̂

 

  

∫   ⃗  ( ⃗)
 

  

 ( )    ( ⃗  
 ) ( ⃗     ̂ )    

(4.12) 

     ( )    ∫  ̂

 

  

∫   ⃗  ( ⃗)
 

  

   ( ⃗    ̂)    (4.13) 

  

Equations (4.11) - (4.13) lead to the following definitions for the homogenized cross 

sections. 
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(4.16) 

 

As seen from Eq. (4.16), the above procedure only defines the homogenized total 

differential scattering cross-section. If the scattering cross sections of the heterogeneous 

and homogeneous problem are expanded in spherical harmonics, then the definitions of 

the angular moments of scattering become arbitrary. However, it is conventional from the 

numerical point of view to define the angular moments as below (Sanchez, 2009). 
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 (4.20) 

 

Recall that the CSH method assumes a priori knowledge of the heterogeneous flux. 

However, the heterogeneous flux can be approximated by performing single assembly 

transport calculations with specular reflective boundary condition as is done in standard 

homogenization methods. Since the CSH method is in pure transport theory, re-

homogenization at the core level is expected to be robust and unlike the dynamic 

homogenization method the spatial and angular resolution is not an issue.  The re-

homogenization (i.e., on-the-fly homogenization) produces the exact heterogeneous 

solution within the truncation errors. The homogenization procedure is described below. 
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1. Perform heterogeneous calculations at the single assembly level and generate 

initial homogenized and auxiliary cross sections for each assembly using Eqs. 

(4.5) – (4.8) and Eqs. (4.14) – (4.16). The initial eigenvalue in the auxiliary 

cross-section is set to 1. 

2. Solve the homogeneous whole-core transport equation (inner iteration) using the 

homogenized cross sections generated in step (1).  

3. Expand the core level incoming flux at the surface of each assembly in angle and 

space as show below. If basis functions are defined as     
 

 where    is the 

order of expansion,   is the distinctive surface and the minus sign represents 

the incoming direction i.e.,  ̂  ̂   , then the incoming flux can be written as: 
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The basis function should have the following property: 
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4. Perform heterogeneous fixed-source calculations at the assembly level with the 

core eigenvalue from step (2) and incoming flux computed in step (3) using 

expansion coefficients and the surface basis functions. The key point for 

expanding the incoming flux in a set of pre-defined basis functions is to 

separate the angle and spatial discretization at the core level from the 

assembly calculations. Using the flux distribution from the single assembly 

calculations and the core eigenvalue, the homogenized and auxiliary cross 

sections are updated. The updated values include the effect of the core 

environment due to the improved assembly boundary conditions. 

5. Repeat steps (2) - (4) until the user defined successive iteration criteria for flux 

and eigenvalue of Eqs. (4.24) and (4.25) are met (outer iteration) where the 

subscript “p” is the iteration index. 
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4.3 Implementation in 1D Slab Geometry 

 

The CSH method has been derived in general case. However for the purpose of initial 

verification and illustration, it is implemented in 1D. Thus it is instructive to highlight the 

derivation in 1D. For the sake of simplicity, the scattering kernel is treated as isotropic 
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and transports corrected cross sections are applied. Multi-group approximation is used for 

the rest of the chapter. 

 

In 1D geometries, the Legendre polynomials are substituted for spherical harmonics. The 

auxiliary cross-section over a homogenized region         is defined as: 
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If   ( ) is an orthonormal basis function over a finite interval i.e.,         with  ( )  

 , the auxiliary cross-section can be simplified to: 
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where 
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If the expansion has an infinite order, no truncation error is introduced into the auxiliary 

cross-section. However this is not practical and all expansions must have a cut off order. 

The truncation error can be minimized by the choice of basis function. For a square-

integrable function, the Fourier series forms an orthonormal basis with respect to l2-norm 

and has the least root mean squared (RMS) error. Hence the Generalized Fourier series is 

used as the expansion function and   ( )      (       ) where   refers to the 

imaginary number. 

 

Expanding a non-periodic function with periodic basis function such as Fourier series 

requires further attention. Due to the discontinuity of the non-periodic function at the 

boundaries, spurious oscillations known as Gibbs phenomenon are inevitable. To this 

extent it is desirable to use either a modified Fourier spectral or a Fourier-Gegenbauer (F-

G) method to expand the non-periodic function. The author has chosen the former 

technique which includes modifying the non-periodic function into a periodic function 
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and expanding the modified version in a periodic expansion basis. By applying Fourier 

series Eqs. (4.27) – (4.30) are reduced to: 
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4.4 Numerical Results 

 

The premise of the CSH method is to reproduce the heterogeneous solution from the 

homogenized transport equation by including an auxiliary cross-section that contains the 

deviation from the average (homogenized) cross sections.  However, the dependence of 

the auxiliary source term on the flux shape within each assembly (homogenized region) 

necessitates iteration between the core and assembly solvers.  
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The auxiliary cross-section in 1D is expanded by using Legendre polynomial in angle and 

Generalized Fourier series in space. In the    approximation, the order of Legendre 

polynomials is limited to (   ) and in Generalized Fourier series the highest order due 

to Nyquist Theorem is limited to   
 

 (  )   
 where a is the length of the homogenized 

region and (  )    is the maximum spatial mesh size in the homogenized region. 

 

In section 4.4.1 two 1D BWR assemblies will be compared against the heterogeneous 

solution with different expansion orders of the auxiliary cross-section. In section 4.4.2 

with the choice of expansion orders obtained from the assembly result, the accuracy of a 

1D BWR core and a 1D HTTR core (described in Chapter 2) will be presented using the 

CSH method. Section 4.4.3 demonstrates the computation time normalized to the 

reference solution for the benchmark problems. For the example problems, with the 

correct choice of spatial discretization, the critical value of     (     ) was kept 

constant throughout the heterogeneous (reference) and homogeneous problems. This 

choice would keep the effect of numerical error for both heterogeneous and homogeneous 

problems consistent. 

 

4.4.1 1D Single Assembly Test Problem 

 

Two bundle types from a recently published 1D BWR benchmark (Douglass and 

Rahnema, 2011) are selected to test the new method. Each bundle is composed of 10 

material regions (8 fuel-pin regions + moderator region on both sides). The fuel regions 

are each 1.6256 cm in width, and the outside moderator regions are 1.1176 cm in width, 
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leading to 15.24 cm total bundle width (typical of BWR bundles). The two bundle types 

are laid out in Figure 4.1. Bundle 1 is composed of low-enriched fuel pins (‘‘L’’), high-

enriched fuel pins (‘‘H’’), and moderator (‘‘M’’). Bundle 2 is composed of both low-

enriched fuel pins and gadded fuel pins (‘‘G’’). A 47-group cross-section library was 

generated with the lattice depletion transport code HELIOS (Simeonov, 2003) using a 

GE9 pin-cell model (Kelly, 1995), homogenized over the pin cells as described in 

Douglass and Rahnema (2011). 

 

M L L H H H H L L M 

(a) Bundle 1 

      

M L L G G G G L L M 

(b) Bundle 2 

 

Figure 4.1. Bundle layout for bundles 1 and 2 

 

Both bundles were modeled with vacuum boundary condition on both sides and the 47-

group heterogeneous (reference) solution was calculated with     approximation using 

diamond differencing scheme. Although the vacuum boundary condition is not 

representative of the core environment, it was purposely used since the resulting sharp 

gradients and high anisotropy in the neutron flux challenges any method in general. This 

in particular would be a good test of the robustness of any expansion method. The 

reference eigenvalue and flux profile were used to homogenize cross sections over the 

assembly and to generate the auxiliary cross-section. In order to determine the error 
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between the solutions, the spatial discretization of both the homogeneous and 

heterogeneous problems should be the same. Two techniques can be used: discretize the 

homogeneous problem exactly the same as the heterogeneous problem; or discretize the 

homogeneous problem based on the homogenized cross-section and carryout fixed-

source calculations based on the calculated eigenvalue and boundary conditions. Due to 

Gibbs phenomena in the auxiliary cross-section, the former technique is expected to have 

larger errors in the flux while the Gibbs phenomena are averaged out in the latter. 

Therefore, the effect of expansion order is more pronounced using the first technique and 

it is chosen to demonstrate the effect of expansion orders. However, in a realistic 

problem, assemblies are discretized based on the homogenized cross sections and the 

magnitude of the error is decreased. 

 

For the remainder of this chapter, the average, mean and maximum relative error 

(difference) between the heterogeneous (reference) and homogeneous solutions are 

defined as: 
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where  
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 (4.39) 

 

In order to gain a feasible understanding of the difference between the homogeneous and 

heterogeneous flux distribution, the value of error is demonstrated for 2-group flux 

condensed from a 47-group flux spectrum. 

 

In Tables 4.1- 4.3 the effect of spatial expansion order on the new method’s error is 

demonstrated while the angular expansion order was kept at L=15. Note that the case 

M=0, L=0 represents the homogeneous solution without the auxiliary cross-section. As 

expected, it is seen that the transport solution of the homogeneous problem without the 

use of auxiliary cross-section introduces large errors in the scalar flux and eigenvalue. As 

seen from Tables 4.1- 4.3, increasing the angular expansion order has negligible effect on 

the results when M=0, e.g., compare M=0, L=0 and M=0, L=15 results. That is, the 

space-angle effect resulting from the total cross-section term embedded in the auxiliary 

cross-section is insignificant when the spatial moments are neglected. Increasing the 

spatial expansion order will result in more accurate homogeneous solution. However, the 

magnitude of error decreases slowly after M=20 which implies that the error is mainly 

due to Gibbs phenomena within the homogenized region and it is well known that this 

error decreases linearly with the expansion order. 
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Table 4.1. Flux error in bundle 1, L=15 

 
 AVG(%)  MAX(%)  MRE(%)  

M Fast Thermal  Fast Thermal  Fast Thermal  

0 3.42 18.61  8.25 42.24  3.52 15.81  

5 0.41 2.20  1.39 9.99  0.35 1.67  

10 0.14 0.89  0.55 4.81  0.10 0.69  

15 0.09 0.47  0.37 2.77  0.06 0.37  

20 0.06 0.29  0.27 1.90  0.04 0.23  

25 0.04 0.20  0.20 1.39  0.03 0.16  

30 0.03 0.15  0.16 1.06  0.02 0.12  

35 0.02 0.12  0.13 0.84  0.02 0.10  

40 0.02 0.09  0.12 0.68  0.01 0.07  

45 0.02 0.08  0.09 0.57  0.01 0.06  

M=0,L=0 3.42 18.60  8.26 42.21  3.52 15.80  

 

 

 

 

Table 4.2. Flux error in bundle 2, L=15 

 
 AVG(%)  MAX(%)  MRE(%)  

M Fast Thermal  Fast Thermal  Fast Thermal  

0 9.39 76.84  18.70 160.18  7.31 91.93  

5 1.05 6.76  2.67 20.44  1.02 6.06  

10 0.39 2.57  1.02 9.07  0.37 2.33  

15 0.21 1.34  0.58 5.35  0.19 1.22  

20 0.13 0.84  0.37 3.74  0.12 0.76  

25 0.09 0.58  0.26 2.77  0.08 0.53  

30 0.06 0.43  0.19 2.29  0.06 0.39  
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Table 4.2 (continued) 

 AVG(%)  MAX(%)  MRE(%)  

M Fast Thermal  Fast Thermal  Fast Thermal  

35 0.05 0.33  0.16 1.94  0.04 0.30  

40 0.04 0.27  0.13 1.66  0.04 0.25  

45 0.03 0.22  0.11 1.45  0.03 0.21  

M=0,L=0 9.38 76.87  18.69 160.19  7.31 91.94  

 

 

Table 4.3. Eigenvalue error in bundles 1 and 2 

 

      Bundle 1 

0.614213 

Bundle 2 

0.265508 

           (   )         (   ) 

M=0,L=15  0.611434 277.9 0.288672 -2316.4 

M=5,L=15  0.614898 -68.5 0.265578 -7.0 

M=10,L=15  0.614281 -6.8 0.265514 -0.6 

M=15,L=15  0.614228 -1.5 0.265509 -0.1 

M=20,L=15  0.614216 -0.3 0.265507 0.1 

M=25,L=15  0.614212 0.1 0.265508 0.0 

M=30,L=15  0.614212 0.1 0.265508 0.0 

M=35,L=15  0.614212 0.1 0.265508 0.0 

M=40,L=15  0.614212 0.1 0.265508 0.0 

M=45,L=15  0.614212 0.1 0.265508 0.0 

M=0,L=0  0.611587 262.6 0.288715 -2320.7 

a   (         )      
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In Tables 4.4- 4.6, the effect of angular expansion order of the auxiliary cross-section are 

presented for the case when the spatial expansion order is kept constant at M=35. For 

both bundles, it is noticeable that including only the first term of the angular expansion 

decreases the error to 10 pcm. Also from Tables 4.4 and 4.5, it can be observed that 

increasing the angular expansion order beyond L=1 does not improve the error indicating 

the accuracy is limited by the spatial expansion order kept constant at M=35. This is 

clearly seen when L=15 which is the order at which the entire angular effect is captured. 

Further, it seems that a    approximation captures the majority of the angular effect of the 

auxiliary cross-section. 

 

Table 4.4. Flux error in bundle 1, M=35 

 
L AVG(%)  MAX(%)  MRE(%)  

 Fast Thermal  Fast Thermal  Fast Thermal  

0 2.27 3.50  3.69 10.37  2.72 3.02  

1 0.05 0.09  0.28 0.59  0.04 0.08  

2 0.05 0.16  0.16 1.04  0.05 0.12  

4 0.03 0.12  0.18 0.86  0.02 0.09  

6 0.02 0.12  0.17 0.84  0.02 0.09  

8 0.02 0.12  0.16 0.84  0.02 0.09  

10 0.02 0.12  0.15 0.84  0.02 0.09  

12 0.02 0.12  0.14 0.84  0.02 0.09  

14 0.02 0.12  0.13 0.84  0.02 0.09  

15 0.02 0.12  0.13 0.84  0.02 0.09  
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Table 4.5. Flux error in bundle 2, M=35 

 
L AVG(%)  MAX(%)  MRE(%)  

 Fast Thermal  Fast Thermal  Fast Thermal  

0 1.64 4.61  2.86 7.83  1.82 4.12  

1 0.06 0.40  0.33 1.53  0.04 0.36  

2 0.05 0.41  0.25 1.85  0.05 0.37  

4 0.04 0.34  0.22 1.92  0.04 0.31  

6 0.05 0.34  0.19 1.93  0.04 0.31  

8 0.05 0.33  0.17 1.94  0.04 0.31  

10 0.05 0.33  0.15 1.94  0.04 0.31  

12 0.05 0.33  0.15 1.94  0.04 0.31  

14 0.05 0.33  0.15 1.94  0.04 0.30  

15 0.05 0.33  0.16 1.94  0.04 0.30  

 

 

 

 

Table 4.6. Eigenvalue error in bundles 1 and 2, M=35 

 

      Bundle 1 

0.614213 

Bundle 2 

0.265508 

          (   )         (   ) 

L=0  0.601153 1306.0 0.262515 299.3 

L=1  0.614307 -9.4 0.265614 -10.6 

L=2  0.614164 4.9 0.265577 -6.9 

L=4  0.614211 0.2 0.265531 -2.3 

L=6  0.614210 0.3 0.265516 -0.8 

L=8  0.614210 0.3 0.265511 -0.3 

L=10  0.614210 0.3 0.265509 -0.1 
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Table 4.6 (continued) 

      Bundle 1 

0.614213 

Bundle 2 

0.265508 

          (   )         (   ) 

L=12  0.614210 0.3 0.265508 0.0 

L=14  0.614211 0.2 0.265508 0.0 

L=15  0.614211 0.2 0.265508 0.0 

 

From Table 4.6, it can be seen that the angular effect on the eigenvalue is very large in 

Bundle 1 as compared to Bundle 2 (i.e., compare case L=0 to L=1). This is expected 

because of the large angular anisotropy resulting from a much higher fast to thermal flux 

ratio in Bundle 1 as compared to Bundle 2.  As seen in Table 4.3, this phenomenon is 

reversed in that spatial effects dominate because of the presence of gadolinium resulting 

in large flux gradient in Bundle 2.  

From the above analysis, it is clear that the homogenized transport solution agrees very 

well with the heterogeneous solution using a low order (L=1) expansion in angle and 

high order (M=35) expansion in space.  

 

4.4.2 1D Core Problems 

 

In this section two 1D core problems (described in Chapter 2) are used to test the CSH 

method.  The only difference between the process carried out for the example problems 

and the procedure described at the end of the method section (section 4.2) is that step (3) 

is skipped for the example problems because both assembly calculations and core 
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calculations are done using same    approximation and the use of surface expansion 

function is redundant. Therefore, the flux from the core calculation is used to update the 

incoming angular flux at the surface of each homogenized region for on-the-fly assembly 

calculations. The iteration flux error is the difference between the reference solution and 

the flux resulting from assembly calculations. The successive iteration criteria for the 

CSH method were chosen as (  )            and (  )           . The 1D core 

problems (homogeneous and heterogeneous) are solved using     , 47-group 

approximation and diamond differencing scheme with the flux and eigenvalue 

convergence criteria of      and      , respectively. Furthermore, a fine-mesh transport 

homogenization using the standard homogenization method (i.e., assembly calculation 

with specular reflective boundary condition without the auxiliary cross-section, 

designated as FMTHIM) and a highly accurate nodal diffusion (ANOD) method 

(Rahnema and Mckinley, 2002) are added to the tables for comparison. The ANOD 

model uses fine-mesh inside each assembly with standard Generalized Equivalence 

Theory (GET) homogenized cross sections (Smith, 1986) and infinite medium 

discontinuity factor at the assembly interfaces. The FMTHIM model is obtained by 

homogenizing every assembly with the infinite medium flux and solving the core 

problem using fine-mesh within each assembly.  

 

4.4.2.1 1D BWR Core Problem 

 

In Table 4.7, the eigenvalue and flux error for FMTHIM, ANOD and CSH methods are 

demonstrated. It is seen that the CSH method without iteration is capable of reducing the 
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eigenvalue error to less than 30 pcm mainly by decreasing the thermal flux error. By 

increasing the iteration order, the core environment effect on the homogenized cross-

section is corrected and after 3 iterations the homogeneous solution is converged to the 

heterogeneous one. Additionally, the ANOD method has lower thermal flux error 

compared to FMTHIM and it predicts the heterogeneous eigenvalue more accurately. 

 

Table 4.7. Eigenvalue and flux error in ARO configuration for CSH method 

 
     =1.066815 AVG(%) MAX(%) MRE(%) 

iteration         (   ) Fast Th. Fast Th. Fast Th. 

0
th
 1.067086 -27.1 4.70 4.76 11.78 11.41 3.22 3.81 

1
st
 1.067011 -19.6 0.41 0.40 1.27 1.01 0.28 0.33 

2
nd

 1.066780 3.5 0.04 0.12 0.13 0.58 0.04 0.13 

3
rd

 1.066816 -0.1 0.04 0.12 0.11 0.58 0.03 0.12 

        1.065385 143.0 3.47 21.62 12.38 62.66 2.79 21.78 

      1.066426 38.9 4.09 20.88 13.27 59.97 3.63 21.36 

   Fine-Mesh Transport Homogenization using Infinite Medium flux 

   Accurate Nodal Diffusion method  

 

Table 4.7 demonstrates the eigenvalue and flux error for SRI configuration. The 

FMTHIM and ANOD methods exhibit higher flux errors due to presence of control rods 

and the core environment effect is more pronounced. However, the CSH method is 

capable of correcting for core environment consistently and converges after 3 iterations. 

Nonetheless, the CSH method without iteration has less error in flux and eigenvalue 

compared to ANOD and FMTHIM methods. 
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Table 4.8. Eigenvalue and flux error in SRI configuration for CSH method 

 
     = 1.003437 AVG(%) MAX(%) MRE(%) 

iteration         (   ) Fast Th. Fast Th. Fast Th. 

0
th
 1.002972 46.5 4.46 4.47 10.81 11.37 3.45 4.17 

1
st
 1.003474 -3.7 0.38 0.38 1.19 0.92 0.28 0.37 

2
nd

 1.003389 4.8 0.08 0.14 0.23 0.65 0.07 0.14 

3
rd

 1.003409 2.8 0.08 0.14 0.21 0.64 0.06 0.14 

       1.000689 274.8 3.21 17.00 11.71 56.35 3.05 16.86 

     1.002047 139.0 3.94 16.77 12.98 56.21 3.49 16.80 

 

Figures 4.3(a) and 4.5(a) demonstrate the flux error for the CSH method after the 3
rd

 

iteration. As expected, the error peaks are located at the assembly interfaces. This is due 

to the flux discontinuity at the boundaries resulting from the Gibbs phenomena at 

assembly interfaces. By using higher spatial expansion order (M=2 35) it has been 

verified that the maximum error seen at the boundaries, decreases to less than half of its 

value. It is noted that the outer iteration convergence criterion (10
-3

) is looser than then 

inner iteration convergence criterion (10
-5

). It has been verified using an inconsistent set 

of criteria (e.g., 10
-3

 versus 10
-5

) does not affect the magnitude of the maximum error.  

 

As seen from Figures 4.3(b), 4.3(c) , 4.5(b) and 4.5(c) the maximum error in scalar flux 

using FMTHIM and ANOD methods can be as large as 50 percent while the error in 

eigenvalue is small (e.g., a few hundred pcm). The low error in the eigenvalues in these 

cases is common due to error cancelation.  In particular, the leakage is not a big 

contributor to the neutron balance in this problem; however, the infinite medium 
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(standard) homogenized cross sections result in underestimated reactions (i.e. absorption 

and fission) for the interior assemblies and overestimated reactions for the exterior 

assemblies. Because of the alternating signs (errors) the net error in the neutron balance is 

small.  It is noted that local over and underestimation in the local reaction rates lead to the 

observed large errors in the local flux estimated by the FMTHIM and ANOD methods. 

 

 

(a) Fast spectrum 

 

(b) Thermal spectrum 

 

Figure 4.2. Scalar flux profile in ARO configuration of 1D BWR core. The vertical lines 

represent the interface of assemblies. 
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(a) Relative fast and thermal flux error after 3
rd

  iteration in CSH method 

 

 

(b) Relative fast flux error in ANOD and FMTHIM methods 

 

Figure 4.3. Relative flux error profile (in percent) in ARO configuration of 1D BWR core  

 

 

 Thermal spectrum 

  

 Fast spectrum 

 FMTHIM 

  

 ANOD 
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(c) Relative thermal flux error in ANOD and FMTHIM methods 

 

Figure 4.3 continued 

 

 

 

(a) Fast spectrum 

 

Figure 4.4. Scalar flux profile in SRI configuration of 1D BWR core. The vertical lines 

represent the interface of assemblies. 

 

 FMTHIM 

  

 ANOD 
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(b) Thermal spectrum 

 

Figure 4.4 continued 

 

 

 

(a) Relative fast and thermal flux error after 3
rd

 iteration in CSH method 

 

Figure 4.5. Relative flux error profile (in percent) in SRI configuration of 1D BWR core  

 

 

 Thermal spectrum 

  

 Fast spectrum 
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(b) Relative fast flux error in ANOD and FMTHIM methods 

 

 

(c) Relative fast flux error in ANOD and FMTHIM methods 

 

Figure 4.5 continued 

 

 

 

 

 FMTHIM 

  

 ANOD 

 FMTHIM 

  

 ANOD 
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4.4.2.2 1D HTTR Core Problem 

 

From Tables 4.9 and 4.10 it is seen that the 0
th

 iteration flux profile and eigenvalue 

exhibit larger error when compared to BWR core results. This is expected since unlike 

the BWR core the spatial and energy spectrum in each block is driven by its neighboring 

blocks because of the larger neutron mean free path. This implies that core environmental 

effect on cross-section homogenization is even more pronounced in these cores. The 

effect becomes even more pronounced when the control rods are inserted as a result of 

harder spectrum. Additionally, as seen from Figures 4.7(b), 4.7(c), 4.9(b) and 4.9(c) the 

ANOD and FMTHIM methods result in similar solutions confirming the higher 

sensitivity of the homogeneous solution on homogenized cross sections and the necessity 

to correct for core environment.  

 

Table 4.9. Eigenvalue and flux error in ARO configuration for CSH method 

 
     =1.102972 AVG(%) MAX(%) MRE(%) 

iteration         (   ) Fast Th. Fast Th. Fast Th. 

0
th
 1.141348 -3837.6 5.68 3.51 14.24 9.30 5.69 3.66 

1
st
 1.100438 253.4 0.50 0.35 1.83 0.99 0.59 0.37 

2
nd

 1.103150 -17.8 0.05 0.04 0.25 0.12 0.05 0.04 

3
rd

 1.102971 0.1 0.03 0.02 0.08 0.06 0.01 0.01 

4
th
 1.102978 -0.6 0.03 0.02 0.08 0.06 0.01 0.01 

       1.141116 -3814.4 10.33 5.53 22.72 17.17 7.18 6.19 

     1.141342 -3837.0 15.94 4.33 62.36 18.81 6.19 4.94 
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Table 4.10. Eigenvalue and flux error in ARI configuration for CSH method 

 
     = 0.829591 AVG(%) MAX(%) MRE(%) 

iteration         (   ) Fast Th. Fast Th. Fast Th. 

0
th
 0.895213 -6562.2 31.92 33.04 48.25 61.81 12.87 17.13 

1
st
 0.822762 682.9 5.60 5.68 10.74 10.08 1.55 1.59 

2
nd

 0.830297 -70.6 0.36 0.27 0.58 0.93 0.13 0.10 

3
rd

 0.829510 8.1 0.03 0.14 0.08 0.48 0.03 0.04 

4
th
 0.829613 -2.2 0.05 0.17 0.10 0.46 0.03 0.04 

5
th
 0.829601 -1.0 0.05 0.17 0.09 0.46 0.03 0.04 

       0.889602 -6001.1 29.13 36.98 44.76 84.42 13.28 18.49 

     0.889329 -5973.8 38.88 39.01 78.77 85.14 12.20 15.59 

 

Figures 4.6 and 4.8 demonstrate the fast and thermal flux profile of the reference case in 

ARO and SRI configurations. In Figures 4.7(a) and 4.9(a) the relative flux error using the 

CSH method in ARO and ARI configurations are shown, respectively. It is noted that the 

magnitude of thermal flux error in the CSH method is smaller in the ARO configuration 

as compared to that in the ARI configuration because of the sharp gradients introduced by 

the control rods. In order to achieve higher accuracy if necessary, higher spatial 

expansion order for the auxiliary cross-section and tighter flux convergence criteria in the 

homogeneous solution should be used. 
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(a) Fast spectrum 

 

 

(b) Thermal spectrum 

 

Figure 4.6. Scalar flux profile in ARO configuration of 1D HTTR core. The vertical lines 

represent the interface of assemblies 
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(a) Relative fast and thermal flux error after 4
th

 iteration in CSH method 

 

 

(b) Relative fast flux error in ANOD and FMTHIM methods 

 

Figure 4.7. Relative flux error profile (in percent) in ARO configuration of 1D HTTR 

core  
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(c) Relative thermal flux error in ANOD and FMTHIM methods 

 

Figure 4.7 continued 

 

 

 

(a) Fast spectrum 

 

Figure 4.8. Scalar flux profile in ARI configuration of 1D HTTR core. The vertical lines 

represent the interface of assemblies 
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(b) Thermal spectrum 

 

Figure 4.8 continued 

 

 

 

(a) Relative fast and thermal flux error after 5
th

 iteration in CSH method 

Figure 4.9. Relative flux error profile (in percent) in ARI configuration of 1D HTTR core  
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(b) Relative fast flux error in ANOD and FMTHIM methods 

 

 

 

 

(c) Relative thermal flux error in ANOD and FMTHIM methods 

 

Figure 4.9 continued 
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4.4.3 Computational Efficiency Analysis 

 

This section briefly discusses the computational efficiency of the new CSH method. In 

this method, the heterogeneous transport equation (4.40) is homogenized by embedding 

the material heterogeneities in an auxiliary cross-section that is representative of variation 

of the cross sections from the average (homogenized value) as seen in Eq. (4.41).  

 

      
 

 
   (4.40) 

 

            
 

    
            (4.41) 

 

Since the last term in Eq. (4.41) depends on the solution itself, it is computationally 

beneficial to relax the convergence criteria initially and tighten as the iteration 

progresses.  In the progressive convergence scheme, in the HTTR core, the convergence 

criteria are initially set to         and         and then decreased an order after 

each iteration, up to the 3
rd

 iteration. Given that the neutron MFP in the BWR problem is 

smaller than in the HTTR problem, the initial convergence criteria were set to         

and        . Note that no attempt was made to optimize the progressive convergence 

scheme in this chapter but an extension to adaptive convergence scheme would be an 

interesting future work.  
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Tables 4.11 and 4.12 demonstrate computation times in two configurations of BWR and 

HTTR cores. In each configuration, two cases are reported: One is associated with the 

progressive convergence scheme and the other corresponds to a fixed convergence 

scheme. In the latter, the eigenvalue and flux convergence criteria in each iteration are set 

to         and        . Computation times are normalized to computation time of 

the reference problem. 

 

Table 4.11. Computation time comparison of homogeneous and heterogeneous 1D BWR  

 
   AVG(%) MAX(%) MRE(%) 

        (   ) Fast Th. Fast Th. Fast Th. 

ARO 
     0.721 -0.1 0.04 0.12 0.11 0.58 0.03 0.12 

     0.603 -0.5 0.04 0.12 0.10 0.62 0.04 0.12 

SRI 
    0.596 2.8 0.08 0.14 0.21 0.64 0.06 0.14 

    0.539 3.0 0.06 0.13 0.21 0.63 0.05 0.13 

   Normalized Computation Time  

   Fixed Convergence Scheme 

   Progressive Convergence Scheme 

 

Table 4.12. Computation time comparison of homogeneous and heterogeneous 1D HTTR 

  
   AVG(%) MAX(%) MRE(%) 

         (   ) Fast Th. Fast Th. Fast Th. 

ARO 
    0.817 -0.6 0.03 0.02 0.08 0.06 0.01 0.01 

    0.677 -1.5 0.02 0.02 0.06 0.05 0.01 0.02 

SRI 
    1.654 -1.0 0.05 0.17 0.09 0.46 0.03 0.04 

    0.846 -0.3 0.05 0.16 0.09 0.38 0.03 0.04 
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4.5 Concluding Remarks and Future work 

 

In this chapter, a new consistent spatial homogenization method in transport theory has 

been developed that utilizes the conventional flux weighted cross sections and reproduces 

the heterogeneous transport solution with 1.8 to 1.2 times faster computational speed. By 

introducing an auxiliary source term that corrects the homogenized cross sections for 

deviation from the heterogeneous counterparts, the resulting solution is consistent with 

the heterogeneous solution both in phase space resolution and accuracy. The new 

consistent spatial homogenization method automatically corrects for the core 

environment effect with on-the-fly local re-homogenization.  

 

The method’s accuracy was verified for stylized BWR and GCR benchmark problems 

in1D slab configurations. The effect of spatial and angular expansion orders was 

investigated and it was shown that the effect of angular expansion order without adequate 

spatial expansion order is negligible especially for cases with control rods and high 

absorbing material. Further, it was shown that the number of iterations required for 

solution convergence is higher for optically thin reactors (GCR) than thick systems 

(BWR).   

 

The fine-mesh fine-group heterogeneous fixed-source transport calculations can be 

expensive in 3D geometries. The need for angular details for the fixed-source problem 

can be relaxed by incorporating high-order diffusion theory derived in Chapter 3. 

Additionally, the whole-core problem can be solved in coarse groups and the subgroup 



 114 

decomposition method can be utilized to unfold the fine-group flux spectrum for 

acceleration of the homogenized problem. This would require coupling of the hybrid 

subgroup decomposition method with the consistent spatial homogenization to increase 

the computational efficiency especially for 3D geometries. 

 

In this chapter, only the homogenization of cross sections was considered. It would be 

interesting and necessary, as future work, to extend the method to include simultaneous 

collapsing of the energy and space for efficient and practical core calculation. This can be 

achieved by coupling the consistent spatial homogenization method with the hybrid 

subgroup decomposition method (Chapter 3), to accelerate the eigenvalue transport 

problem while homogenizing the heterogeneous problem without loss in accuracy. 
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APPENDIX A 

 

A 1D SN code was developed to demonstrate the numerical results for Chapters 2, 3 and 

4. The SN code has been benchmarked against MCNP. Two benchmark problems shown 

in Figure A.1 are included for comparison. The first configuration is an eigenvalue 

calculation for a 1D HTTR assembly with specular reflective boundary conditions. The 

second configuration is also an eigenvalue problem comprised of a 1D HTTR assembly 

and a graphite block with specular boundary condition on the left side and vacuum 

boundary condition on the right side.  The same 47-group cross-section library that was 

discussed in Chapter 2 is used for benchmarking.  

 

Fuel Block 1 

(a) 

Fuel Block 1 Reflector 

(b) 

 

Figure A.1. (a) 1D HTTR assembly with specular boundary conditions on both sides, (b) 

1D HTTR assembly with a graphite block, specular and vacuum boundary conditions on 

the left and right side, respectively. 

 

The SN results are calculated using S16 approximation with diamond differencing scheme 

and the discretization was chosen to be half mean free path (thermal energy) for all 

materials. The MCNP solution is obtained using 100,000 particle histories per cycle and 

3000 active cycles after the initial 300 cycles were skipped. 
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The average, maximum, mean and root mean square relative errors for pin fission 

densities are presented in Table A.1 and eigenvalues are show in Table A.2. The 

uncertainties in pin fission density for the MCNP run are 0.01%. 

 

Table A.1. Pin Fission Density (PFD) relative error of MCNP and SN  

 

  AVG(%) MAX(%) MRE(%) RMS(%) 

 

PFD 

FB1 0.01 0.01 0.00 0.01 

FB1+graphite 0.01 0.03 0.00 0.02 

 

Table A.2. Eigenvalue results for MCNP and SN 

 

 kMCNP(±σ) kSN 

FB1 1.18165(±0.00004) 1.18143 

FB1+graphite 0.99954(±0.00004) 0.99934 

 

 

 


