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SUMMARY 

  

 Studies of the radiative properties of thin films and near-field radiation transfer in 

layered structures are important for applications in energy, near-field imaging, coherent 

thermal emission, and aerospace thermal management. A comprehensive study is 

performed on the optical constants of dielectric tantalum pentoxide (Ta2O5) and hafnium 

oxide (HfO2) thin films from visible to the far infrared using spectroscopic methods. 

These materials have broad applications in metallo-dielectric multilayers, anti-reflection 

coatings, and coherent emitters based on photonic crystal structures, especially at high 

temperatures since both materials have melting points above 2000 K. The dielectric 

functions of HfO2 and Ta2O5 obtained from this work may facilitate future design of 

devices with these materials. 

 A parametric study of near-field TPV performance using a backside reflecting 

mirror is also performed. Currently proposed near-field TPV devices have been shown to 

have increased power throughput compared to their far-field counterparts, but whose 

conversion efficiencies are lower than desired. This is due to their low quantum 

efficiency caused by recombination of minority carriers and the waste of sub-bandgap 

radiation. The efficiency may be improved by adding a gold mirror as well as by reducing 

the surface recombination velocity, as demonstrated in this thesis. The analysis of the 

near-field TPV and proposed methods may facilitate the development or high-efficiency 

energy harvesting devices. 

 Many near-field devices may eventually utilize metallo-dielectric structures which 

exhibit unique properties such as negative refraction due to their hyperbolic isofrequency 

contour. These metamaterials are also called indefinite materials because of their ability 

to support propagating waves with large lateral wavevectors, which can result in 

enhanced near-field radiative heat transfer. The energy streamlines in such structures are 



 xx 

studied for the first time. Energy streamlines illustrate the flow of energy through a 

structure when the fields are evanescent and energy propagation is not ray like. The 

energy streamlines through two semi-infinite uniaxially anisotropic effective medium 

structures, separated by a small vacuum gap, are modeled using the Green’s function. The 

lateral shift and penetration depth are calculated from the streamlines and shown to be 

relatively large compared to the vacuum gap dimension. The study of energy streamlines 

in hyperbolic metamaterials helps understand the near-field energy propagation on a 

fundamental level. 

 

 

 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

 By 2035 the worldwide demand for energy is projected to increase to 770 

quadrillion BTU, according to IEO2011 [1]. Furthermore, it is currently estimated that 

55.6% of energy in the US is lost as rejected energy [2]. The majority of that energy 

(26.6%) is from electrical power generation. While some energy loss is unavoidable 

because of 2
nd

 law limitations, waste heat may still have exergy, meaning that devices for 

recovering waste heat could have a large potential impact in reducing energy waste. 

Because of the projected increase in future energy demands, it is important to seek new 

devices and mechanisms to harvest waste heat that are more efficient and provide higher 

energy throughput. Many potential devices may operate on the concept of near-field 

radiation, where energy throughput can be larger than in classical devices limited by the 

Stefan-Boltzmann law. 

 In order to design devices that can be used to harvest waste energy there must be 

suitable materials with known properties and current device limitations must be well 

understand in order to devise methods to improve future performance. Near-field 

thermophotovoltaics (TPVs) are one device that could potentially be used to recover 

waste energy [3]. They rely on the enhanced radiation exchange between a heated surface 

(emitter) and a TPV cell (receiver) that can exceed the radiation energy exchange 

between two black surfaces [4]. While low throughput is a drawback of traditional TPVs, 

near-field effects allow the energy throughput to be increased for the same temperature 

difference between emitter and receiver. If the efficiency were as high as the best solar 

cells, around 40%, such a device may be very desirable in the future. Furthermore, higher 

efficiency often relies on high temperature sources and structures that exhibit special 

modes that enhance near-field heat transfer. Hyperbolic metamaterials with alternating 
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layers of dielectric and metal stacked on each other in alternating layers, like books on a 

desk, can exhibit hyperbolic modes that enhance near-field heat transfer, as well as 

guided-modes with interesting energy propagation characteristics that allow the 

penetration depth of radiation to become larger than expected. Suitable materials used in 

these hyperbolic structures and TPVs in general whether dielectric, semi-conductor, or 

metallic will need to be chemically stable and resistant to high temperature if there is 

going to be any application in waste heat recovery. The purpose of this thesis is therefore 

to investigate materials that may have potential use in high temperature metamaterials, 

understand the fundamental limitations of near-field TPVs, and investigate the properties 

and flow energy in multilayer metamaterials that may eventually be incorporated into 

near-field devices. In the following section we will introduce two potential materials   

that have excellent properties for high temperature energy applications. 

1.1 Optical Constants of Dielectric Films in the Infrared 

 Hafnium oxide (HfO2 or hafnia) and Tantalum Oxide (Ta2O5) are important 

optical coating materials with high refractive indices and broadband transparency from 

ultraviolet (UV) wavelengths to the mid-infrared (MIR). These materials may be useful 

for near-field devices and have many existing applications such as visible (VIS), near-

infrared (NIR) and MIR antireflection coatings [5,6], chirped mirrors and band pass 

filters [7], UV mirrors with a high damage threshold [8], heat mirrors for energy-efficient 

windows [9], thin-film capacitors [10], microelectronics [11], anti-reflection coatings 

[12], multilayer optical coatings [6,13], corrosion resistant protective coatings [13], and 

infrared (IR) emissivity modulating devices [14]. In addition, because of their high 

melting temperature (~ 2800 °C for HfO2 and 1,872 °C for Ta2O5) and excellent thermal 

stability [15], these materials hold promise as thermal barrier coatings for turbine blades 

operating in harsh and high-temperature environments [16,17]. The importance of 
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detailed knowledge of the optical constants of these materials for design purposes is thus 

essential. 

 Hafnia films have been deposited by a variety of techniques, including electron-

beam deposition [9,16–19], often with ion-assisted or plasma-ion-assisted deposition 

[8,18,20], magnetron sputtering [7,19,21,22], high-pressure reactive sputtering [23], 

plasma-assisted reactive pulsed-laser deposition [24], reactive ion plating [6], chemical 

vapor deposition [25,26], atomic layer deposition [27–30], chemical solution deposition 

[30], etc. A number of studies have reported the optical properties of HfO2 films in the 

UV/VIS/NIR region [5–8,19,20,23,24,27,28,31]. The refractive index of crystalline 

hafnia films is approximately 2.0–2.1 at λ=550 nm [7,8,18,19,24] and reduces somewhat 

for films with low packing density [32]. The deposition and post-annealing conditions 

also play an important role in the optical properties [6,23,28,33]. While good 

transparency of HfO2 films has been shown in the MIR up to λ=11.5 μm [5], data is not 

available for the optical constants of hafnia films in the MIR region, except for the 

tabulated values in Ref. [34] which gives a refractive index of HfO2 around 1.9 at 

wavelengths from 0.6 to 12 μm. The lattice vibration frequencies or optical active 

phonons for crystalline HfO2 are in the FIR region from about 100 to 800 cm
−1

 

[23,30,35,36]. The Raman spectra have been obtained for both the orthorhombic and 

monoclinic phases of HfO2 single crystals [36]. Some researchers have used FIR 

absorptance and Raman scattering spectra to demonstrate the annealing effect on the 

crystallinity of hafnia films [29,30,35]. The ab initio calculations using the local density 

approximation and the generalized gradient method have been carried out to predict the 

phonon contribution to the dielectric function of HfO2 [37,38], but without quantitative 

comparison with the transmission and absorption spectra. At present, a practical 

wideband dielectric function model does not exist for HfO2 films or crystals. For 

NIR/MIR applications, it is desirable to have a simple explicit dielectric function that can 

be used to compute the frequency-dependent optical constants of HfO2. 
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 Similar to HfO2, Ta2O5 dielectric films can be deposited by various methods of 

physical vapor deposition (PVD) or chemical vapor deposition (CVD) [11]. Different 

deposition methods may result in films that have an amorphous phase (a-Ta2O5) or two 

distinct crystal phases depending on the annealing, that is, an orthorhombic β-Ta2O5 and a 

hexagonal δ-Ta2O5 [11,39]. In addition, there is also a high-temperature tetragonal α-

Ta2O5 phase that forms at temperatures of approximately 1360 °C [40]. The majority of 

literature on the optical constants has concentrated on the UV, VIS, and NIR properties. 

[6,41–45] The optical constants for a variety of dielectric films, deposited using electron-

beam evaporation, have been determined and tabulated from 0.6 to 12 µm in Ref. [34]. It 

was shown that Ta2O5 has a refractive index around 2.0 with negligible absorption from 

0.6 up to 10 µm [34]. Chandrasekharan et al. [46] reported the MIR properties of Ta2O5 

films and studied the development of a SiO2 layer at the interface between the film and 

the Si substrate due to heat treatment. Franke et al.
 
[47,48]

 
investigated the optical 

properties of amorphous and crystalline Ta2O5 films from the deep-UV to FIR using SE. 

The dielectric function was modeled based on the line-shape analysis up to a wavelength 

of 40 m. However, strong phonon modes exist in Ta2O5 at wavenumbers between 200 

and 300 cm
1

 (or wavelengths from 50 to 33 m) [49]. In order to fully describe the FIR 

dielectric function of Ta2O5 films, it is imperative to consider these phonon modes in the 

dielectric function model. The study of the FIR properties of materials may be useful in 

designing absorption-based filters as well as in understanding the atomic bonding 

structures [49]. 

This thesis describes an investigation of HfO2 and Ta2O5 optical properties from 

the VIS to FIR with a focus on the NIR and MIR region, where phonon absorption is 

insignificant, for applications as a non-absorbing optical coating. Films were deposited 

on double-side polished Si substrates using DC magnetron sputtering and the films were 

characterized with X-ray diffractometry (XRD) and atomic force microscopy (AFM). A 

Fourier-transform infrared (FTIR) spectrometer measured the near-normal transmittance 
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and reflectance for incidence on both the film side and the substrate side from 1 to 20 m 

wavelengths. The thickness and optical constants of the films are obtained by modeling 

with various physical models of the dielectric function in different regions of the 

NIR/MIR/FIR spectrum. Both of these materials are good candidates for use on the high 

temperature side of TPV systems because of their stability and high melting point. After 

introducing some candidate materials the next topic of study in the present work are the 

limitations of near-field TPV efficiency. 

1.2 Near-field Thermophotovoltaics 

 

 Thermophotovoltaic (TPV) cells are semiconductor junctions that use infrared 

(IR) radiation from a thermal source (~1000-2000 K) to generate photocurrents. These 

devices have many desirable features such as silent operation and portability. TPV cells 

have been shown to achieve power densities orders of magnitude higher than commercial 

batteries [50]. However, traditional TPV devices suffer from low power throughput 

because of the limitation imposed by the blackbody limit of thermal radiation. Basu et al. 

[51] provided a thorough review of the applications of near-field TPV devices to energy 

conversion, including their advantages over current technologies [5]. 

 The blackbody limit can be overcome by near-field radiation enhancement where 

photons can tunnel across a gap that is on the order of the characteristic scale of the 

radiation. This allows near-field TPV systems to achieve power throughputs that exceed 

the blackbody limit because of evanescent modes that couple between the two surfaces. 

This additional energy flux also gives more room for potential efficiency enhancement 

with filters, while still maintaining higher heat transfer rates than traditional TPV devices. 

Despite their advantages over traditional TPV systems, the low predicted efficiency of 

near-field TPV cells is something that still needs to be addressed. 



 6 

 The performance of near-field TPV systems has already been investigated 

theoretically first by Pan et al. [52], between two identical dielectric materials, and 

subsequently assuming 100% quantum efficiency by Laroche et al. [3]. Narayanaswamy 

and Chen [53] studied enhancing near-field TPV performance with the presence of 

surface modes. Whale and Cravalho [54] modeled the performance of a cell constructed 

of the ternary alloy of InGaAs and considering the recombination losses by assuming a 

uniform photon flux with an effective active area determined by the carrier lifetimes, 

Park et al. [55] modeled the minority carrier diffusion to account for the recombination 

effect. Francouer et al. [56] expanded this to include the effect of temperature on the 

efficiency and determined the amount of cooling needed to maintain near-field TPV 

performance. In addition, there have been several experiments measuring heat flux and 

current generation; Ottens et al.[57] measure the heat transfer coefficient between two 

sapphire plates near room temperature separated by a 2-100 µm gap, Hu et al. [4] showed 

measured heat fluxes exceeded the blackbody limit using two glass plates separated by 

spherical polystyrene spacers with 1 µm diameter between two plates, Hanamura, et al. 

[58] demonstrated an increase in the current density as the separation gap spacing 

between an tungsten emitter and Si-TPV cell was decreased using a piezoactuator, and 

DiMatteo et al. [59] demonstrated an increase in the short circuit current generation at 

submicron spacings using a InAs TPV cell with micron sized spacers, and a piezo 

actuator to alter the gap spacing periodically. 

 Initial studies of the performance of near-field TPV systems either overlooked 

limitations in quantum efficiency [3] or, when considering recombination, reported 

efficiency values as a function of gap spacing that are around 20% or lower at smaller 

gap spacings [55,56,60]. A realistic performance limit for the efficiency of near-field 

TPV devices may be around 40% based on the current state of the art for solar cells [61], 

which would be a significant improvement over current estimates for near-field TPV 

devices. The values reported in previous studies do not consider any modern techniques 
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for optimizing cell efficiencies such as heterojunctions, windows, back-side reflectors, 

filters, etc. This study will use the fluctuation dissipation theorem to determine the spatial 

photocurrent generation inside of a near-field TPV cell and model the current generation 

and efficiency of the cell using the minority carrier diffusion equations. This will expand 

previous studies by showing the effect of reducing unusable radiation using a Au mirror 

on the backside of the cell and show a reversal in some of the trends observed in the 

efficiency for an imperfect cell with changing gap spacing, if the surface can be prepared 

to a suitable level so as to reduce surface recombination. Furthermore, the efficiency as a 

function of gap spacing will be shown to be much closer to the 100% quantum efficiency 

than previously shown after the structure is optimized, which may be accomplished using 

techniques that are similar to those applied to modern high efficiency solar cells. Finally, 

having looked at the limitations of current devices we move on to the study of energy 

flow in metallodielectric structures that may improve device performance even further. 

1.3 Metallodielectric Photonic Crystals 

 Another interesting near-field structure is the hyperbolic meta-materials, which 

may consist of multilayers of metallic and dielectric material or nano-rods with metallic 

properties [62–64]. These structures can often be treated as an effective medium which 

has anisotropic properties [62,65,66]. Furthermore, hyperbolic materials, which due to 

their anisotropic properties deviate from the usual elliptical dispersion, have the potential 

to image or guide evanescent waves [67,68] and offer unique possibilities for applications 

in near-field devices. This unique dispersion results in hyperbolic modes, which can 

enhance the heat transfer rate beyond the blackbody limit. In addition to the hyperbolic 

modes, if the metal filling fraction is large hyperbolic materials may also exhibit surface 

modes as well. 

 The energy exchange in the near-field between two semi-infinite isotropic and 

anisotropic media has been investigated [69–72]. The concept of energy streamlines, 
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which had previously been used in acoustics [73], was introduced to near-field radiation 

to show the direction of propagation of evanescent waves [74,75], which cannot be 

determined simply by ray optics. The energy streamlines trace the net direction of heat 

flux inside of the structure, and since there can be a large lateral shift in the energy 

streamlines associated with the large transverse component of wavevectors that are able 

tunnel through the vacuum gap, the energy streamlines through bulk isotropic media was 

studied in order to characterize the typical dimension of this lateral shift [74,76]. 

Furthermore, there is extra enhancement associated with surface modes, which can have 

an extremely large transverse component of the wavevector. This mechanism of energy 

transfer enhancement was studied in Ref. [53] and can result in large lateral shifts of 

energy.  

 In an investigation of energy transfer in the near-field the typically the parameters 

of interest are the total heat flux, penetration depth, and lateral displacement, as 

calculated from the energy streamlines. The heat flux has been studied for uniaxial 

anisotropic media and a simple expression for the heat flux across the vacuum gap has 

been introduced [69–72]. However, previous studies on lateral displacement focused on 

isotropic bulk or multilayer media, but did not consider bulk anisotropic media. 

Therefore, the lateral displacement and streamlines in such structures has not been 

investigated and the Green’s function method must be applied to determine both the 

perpendicular and lateral components of the Poynting vector inside of the uniaxial 

anisotropic media and vacuum gap. 

 This work will investigate the pertinent characteristic dimensions of such 

structures with a gap spacing between two metallodielectric photonic crystals of 10 nm, 

by solving for the energy streamlines using the Green’s function method. The 

characteristic dimensions are based on the overall lateral displacement of energy and the 

penetration depth of energy into the medium which are calculated at characteristic 

frequencies within the materials hyperbolic modes and elsewhere. A structure must have 
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dimensions which are much larger than the characteristic lateral displacement in order to 

remain one dimensional. If the lateral dimensions are too small near-field heat transfer 

may be limited because the presence of larger lateral wavevectors may be limited or 

altered by the dimensions of the structure. 

1.4 Outline 

 This thesis is divided into 8 chapters. Chapter 2 is an introduction to the theory of 

dielectric function models and the equations that model the transmittance and reflectance 

of thin films and multilayer structures. This chapter also covers the fundamentals of near-

field radiation between two bulk materials and multilayer structures. Chapter 3 covers the 

apparatus used to fabricate and measure the optical constants of the HfO2 and Ta2O5 thin 

films. chapters 4 and 5 present the characterization of the films of HfO2 and Ta2O5 

respectively. Chapter 6 looks is a parametric study of limiting factors in near-field TPV 

performance. Chapter 7 is a study of the energy propagation through multilayer 

metallodielectric photonic crystals. Finally, chapter 8 presents the overall conclusion of 

this work and potential for future continuation of this work. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

 

 This Chapter covers the basic models for the dielectric function used in the IR 

region, the equations for modeling transmission and reflection of film structures, provides 

and introduction to hyperbolic materials, and covers the fundamentals of isotropic near-

field radiation in 1D structures.  In section 2.1, the dielectric function models of  free 

electrons and phonons, as well as the dielectric function due to bandgap transitions at 

sub-bandgap frequencies, where the bandgap absorption has become negligibly small, are 

discussed. In section 2.2 the radiative properties of 1D structures, such as the 

transmittance and reflectance formula for free standing thin films and thin films on thick 

substrates are presented, as well as the transfer matrix method for multilayer structures 

are introduced.  Following in section 2.3 is a presentation of hyperbolic materials and the 

effective medium approximation of dielectric constants, which treats a non-homogenous 

material as a homogenous media. Finally, in section 2.4 the chapter is concluded with a 

presentation of the theory of near-field radiation, the Green’s function, and equations for 

multilayer and semi-infinite structures in the near-field. 

2.1 Dielectric Function Models 

2.1.1 The Dielectric Constant 

For a homogenous, isotropic material the relationship between the electric field 

and the displacement current is given by [77] 

 D E  (2.1) 
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where the factor   is the dielectric function, which is a property of the material that 

depends on the frequency of the exciting electric field, where the electric field is of the 

form 

 
 

0
·i t

e
 


rk

E E  (2.2) 

In general the dielectric function will be a complex number. For non-magnetic 

materials the dielectric function is related to the refractive index of the material, n, and 

the extinction coefficient,  , with following equation. 

  
2

n i    (2.3) 

The frequency dependence of the dielectric function is often modeled 

phenomenologically, by treating the interaction of vibrating atoms with the electric field 

as a mass spring damper system, or for free electrons as a damped system driven by the 

oscillating electrical field. 

2.1.2 The Lorentz Model of Atomic Vibrations 

 When the driving electric field is time harmonic as in Eq. (2.2) the equations of 

motion of an atom modeled as a mass spring damper system can be written for a single 

oscillator mode j as 

 j j j jm m K e  a v x E  (2.4) 

where jm  is the mass, a  is the acceleration vector, j is the damping factor, jK is the 

spring constant v  is the velocity vector, e is charge of the oscillator, and x  is the 

displacement from the equilibrium position. Assuming a time harmonic solution, the 

displacement of the particle can be found by solving the force balance equation to give 
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where j is the resonance frequency of the j
th

 mode. The resonance of the spring is 

related to the spring constant and mass by j j jK m  . The dipole moment per unit 

volume (polarization) depends on the number density, jn , of the oscillator mode and is 

given as 

 jn eP x  (2.6) 

Using the constitutive relations between the electric field and the materials polarization 

one can derive the Lorentz model for a single oscillator 

  
2
p

2 2

j

j i


  

  
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 
 (2.7) 

pj  is called the plasma frequency because of the similarity in form the variable has in 

the Lorentz model to the plasma frequency of the Drude model, to be discussed next. It is 

not related to a plasma phenomenon, but rather has to do with the strength of the 

oscillator mode. In terms of the parameters of our mass spring damper model the plasma 

frequency is  2
p 0j j jn e m  , where 0  is the permittivity of free space. The 

term is due to any contribution to the dielectric function from higher energy resonance 

terms, and is a real valued number. The Lorentz model obeys the Kramers-Kronig 

dispersion relation [78] between the real and imaginary parts of the dielectric function, 

which are constrained through causality. The Lorentz model is an effective and simple 

model for phonon modes in the IR region of the spectrum and is widely used to report the 

dielectric function of materials with phonon bands. 

2.1.3 The Drude Model of Free Electrons 

 The Drude model is a dynamic analog to the Lorentz model but describes the 

contribution of free electrons to the dielectric function of a material. Essentially, free 

electrons are damped by scattering, but are not confined to a lattice position by a spring 
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constant, as in the case of the lattice vibration modes. Thus, very similar to Eq. (2.4) the 

system has the dynamical equation 

 e e em m e a v E  (2.8) 

The terms are again the same definitions as in the Lorentz model, but pertaining to 

electrons rather than atoms. Again, assuming a time harmonic electric field, such as in 

Eq. (2.2), the solution for the velocity vector can be written as 

 ee m

i 



v E  (2.9) 

Since the current is related to the electron drift velocity by en e J v , the conductivity is 

related by complex Ohm’s law to the current by J E , and the complex conductivity is 

related to the dielectric function of the material by [78] 

 i     (2.10) 

It can be shown that this systems dielectric function is given by  

  
 

2
p

i


  
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 


 (2.11) 

where p  is the plasma frequency, which for most metal falls somewhere in the UV 

range of the spectrum. The plasma frequency is related to the conductivity of the metal 

according to 0 0pj    , where 0  is the DC electrical conductivity of the material 

and 0  is again the permittivity of free space. The plasma frequency is called such 

because of the similarity between free electrons in a crystal and an ionized gas. The 

plasma frequency gives the frequency scale at which electrons are able to relocate 

quickly enough in response to the oscillations of the driving electric field, and thus 

effectively cancel out the electric field inside of the medium. Around the plasma 

frequency metals will be highly reflecting, at lower frequencies the metal is highly 
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absorbing, and at higher frequencies the electrons cannot respond rapidly enough to the 

oscillations and the waves are relatively unaffected.  

 In this work we are concerned with modeling the dielectric properties of films that 

poses defects that lead to a small free electron concentration, as well as modeling the 

radiative properties of doped semiconductors and metals, which both have free electron 

Drude terms.  

2.1.4 The Cauchy Equation 

 In the VIS and NIR region of the spectrum there can still remain some dispersion 

of the dielectric function due to bandgap transitions. In the spectrum from 370 to 1000 

nm, bandgap and lattice absorption in the dielectric materials of interest can be neglected. 

Therefore, the imaginary part of the dielectric function in this region is very small. It is 

typical to model the frequency (or wavelength) dependence of the dielectric function in 

this region with the Cauchy model. The Cauchy dispersion is one of the simplest optical 

constant formulas with only two adjustable parameters, and it gives the refractive index 

as a constant with a correction term that is inversely proportional the wavelength 

squared[79] 

 2
1 2

( )
C

n C 


    (2.12) 

Sometimes and additional term of 4  [7,18,19]  is introduced to achieve a better 

agreement with experimental data. The effect of this higher-order term will negligible at 

wavelengths greater than 370 nm for the materials considered in this thesis. While the 

physical basis for the Cauchy dispersion is incorrect, e.g. it is based on an outdated model 

and it does not meet the Kramers-Kronig relations, the Cauchy equation remains common 

in optical constant modeling because of its accuracy and simplicity. 
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2.2 Radiative Properties of Thin Films 

2.2.1 Transmittance and Reflectance of Thin Films 

 If the dielectric function is known, the transmittance and reflectance of film 

structures can be calculated from ray tracing models. If the coherence length of the film is 

comparable to the wavelength of light, phase information will be preserved by 

electromagnetic waves upon multiple reflections within the film. For a free standing film, 

such as shown in Fig. 2.1, the transmittance and reflectance are given by the Airy formula 

which has a complex reflection and transmission coefficients given by [78] 
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The definition of the ijt  and ijr  are the ratio of the magnitude of the incident electric field 

to the transmitted or reflected electric field for TE waves, and correspondingly the 

magnetic field for TM waves, at an interface between two semi-infinite media, i and j, 

and are known as the Fresnel coefficients. The Fresnel coefficients between non-

magnetic materials i and j can be determine using 
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where the lzk  is the z-component of the wavevector in media l when the electric field is 

decomposed into the form of Eq. (2.2), the l  is the relative dielectric constant in this 

media, and the magnetic permeability is absent from the equations since it is taken to be 

that of free space (or relative permeability of 1). From Fig. 2.1 it can be recognized that 

Eqs. (2.13) and (2.14) follow from the sum of the geometric series that results by adding 

all of the transmitted or reflected components.  

 The coherence length of a film can be quite complicated to calculate because it 

depends on the light source, film, and the detector. Since we are dealing with IR radiation 

anything on the order of microns or thinner may display interference fringes in the 

transmittance and reflectance because of the exponential terms in Eqs. (2.13) and (2.14). 

The transmittance and reflectance of the free standing film structure (assuming that 

medium 1 is lossless) are 

 
 
Figure 2.1 Ray tracing in a thin film with multiple reflection. The total transmittance or 

reflectance is the sum of all of the rays after multiple reflections. 
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*R rr  (2.19) 
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where 3zk  and 1zk  are the z-component (perpendicular to the film surface) of the 

wavevector from Eq. (2.2) in medium 3 and 1 respectively and 1  and 3  are the 

dielectric function.  Note that star denotes the complex conjugate. 

2.2.2 Thin Films on Thick Substrates 

 In the case where there is a thin (coherent) film or multilayer stack of films on a 

substrate, and the substrate has a coherence length that is shorter than the wavelength of 

light, the phase information will be lost upon multiple reflections of light in the substrate 

 
Figure 2.2 Schematic of coherent 1D structure made of one of more layer on top and bottom of an 

incoherent substrate. 



 18 

layer. A thin film, or stack of thin films, deposited on this substrate will still have 

interference effects due to the multiple reflections inside. Figure 2.2 shows a schematic 

with a generic stack of thin films on the top and bottom of a thick (incoherent) substrate. 

 Following is an explanation of the definitions of all the variables shown in the 

figure. The effective reflectance coefficient for incident rays from the ambient top side 

through the film stack to a semi-infinite substrate is a , and a is the corresponding 

transmittance of this structure. The reflectance coefficient between the substrate and film 

interface, b , is the reflectance calculated when the incidence is from inside a semi-

infinite substrate layer to a semi-infinite ambient through the film stack, and b is the 

transmittance of this structure. The transmittance through the film is independent of the 

direction and thus b  is equal to a . On the bottom side of the reflectance, s , is the 

reflectance of a film stack with incidence from semi-infinite substrate to a semi-infinite 

air and the transmission, s , is the transmittance of the same structure. Finally, the 

internal transmittance of the film is  ,exp 2 z sk d   , where ,z sk   is the imaginary 

component of the z-component (perpendicular to the interface in Fig. 2.2) of the 

wavevector in the substrate. Notice that this is squared, and hence it is already based on 

the power decay so that no phase information of the real component of the wavevector is 

carried. In the case of a single film on top or bottom all of the transmittance and 

reflectance values can be calculated with the Airy formulas of Eqs. (2.13) and (2.14). In 

the alternative case that there is no film(s) on the top or bottom of the substrate at all, the 

transmittance and reflectance are just those of an interface, which is simply based on the 

Fresnel coefficients from earlier in the chapter. Once the individual components are 

calculate the overall reflectance and transmittance of the film can be calculated from the 

following formula for a thin film on thick substrate. 
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The transmittance is independent of the incident direction because of the symmetry in Eq. 

(2.23) that occurs when the b and s subscripts are flipped. The reflectance, however, 

depends on which side the light is incident, and can be found for the backside by 

applying Eqs. (2.22) and (2.23) to the reverse structure in Fig. 2.2. Energy conservation 

also implies that the absorptivity of the film(s) on substrate structure will also change 

depending on the side that light is incident from. 

2.2.3 The Transfer Matrix Method 

 The transfer matrix method is a convenient method to calculate the transmittance 

and reflectance of multilayer films. It separates the electric field in each layer into a 

forward and backward propagating component, as shown in Fig 2.3. The amplitude of the 

forward component in layer i is iA  and the amplitude of the backward component is iB . 

For TE waves is it more convenient to use the electric field in each layer thus the electric 

field is given by for TE waves 
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For TM waves the same relation can be obtained by replacing for the electric field  with 

the magnetic field and the magnetic permeability with the dielectric function. Because of 

the continuity of the tangential component of the electric and magnetic field in each layer 

the amplitude in layer i can be related to the amplitude in layer i+1 by a transfer matrix 

, 1i iM . 

 
1 11 1

1 , 1
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 

     
      

     
P D D M  (2.25) 
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where the propagating matrix is given by 
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0

iz z

iz z

ik d

i ik d

e

e

 
  
  

P  (2.26) 

in any of the layers except for the semi-infinite first layer where the propagation matrix is 

simply the identity matrix. The propagating matrix captures the change in phase that 

wave undergoes traversing the ith layer. The dynamical matrix for TE waves, on the other 

hand, captures the properties of the layer and is given by 

 
1 1

i
iz i iz ik k 

 
  

 
D  (2.27) 

Essentially, combining the dynamical matrix from layer i+1 and the dynamical matrix i 

 

Figure 2.3 Schematic of a multilayer structure for the transfer matrix method, waves incident 

from a semi-infinite layer propagate through the structure. Every layer except the last has a 

forward and backward wave, the amplitude in layer l is related to the forward and backward 

amplitude at the surface by a transfer matrix. 
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captures the scattering of the electric field due to the abrupt change in layer properties at 

the interface. For any arbitrary number of layers the total transfer matrix can be 

calculated as well, and the following equation can be applied to find the field amplitude 

in relative to the incident amplitude layer. 
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The field amplitude in any layer can of course be found by 
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P D D M  (2.29) 

For TM waves, the reciprocity between electric field and magnetic field can be used to 

find to find the corresponding transfer matrix. The magnetic field in each layer will take 

the form 

      1 1iz i i iz i i
ik z z ik z z

i i iH z A e B e 
  

    (2.30) 

where iA  and iB  are the forward and backward amplitude of the magnetic field, which 

can be evaluated from the TMM if the dynamical matrix for TM waves is modified to be 

 

 
1 1

i
iz i iz ik k 

 
  

 
D  (2.31) 

The TMM can also apply to a uniaxial anisotropic media, as discussed later in chapter 7. 

2.3 Hyperbolic Metamaterials 

 For multilayered structures with alternating layers of dielectric material with a 

positive refractive index, and negligible absorption, and a dispersive layer, where the real 

part of the dielectric function is less than zero, can exhibit unique properties. Typically in 

the IR these dispersive materials will be doped semi-conductor or metal, which have a 

Drude term that can lead to a negative refractive index, see Fig. 2.4. The properties of 
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these multilayer structures can be determined from TMM or they can be treated as a 

uniaxial homogenized medium with anisotropic properties, with the optical axis in the 

vertical z-direction. Under the effective medium approximation the dielectric function 

becomes a tensor and has the form. 

 

0 0

0 0

0 0

t

t

z



 



 
 


 
  

 (2.32) 

where x y t    . For a multilayer laminar structure based on the Wiener formula [80] 

the dielectric functions are given by 

  m d1t f f      (2.33) 

 
Figure 2.4 Multilayer structure consisting of alternating layers of metal and dielectric which form 

a metallodielectric photonic crystal. 
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d m1
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 


 


 
 (2.34) 

here the subscripts m and d refer to “metal” and “dielectric”, but this is a rather loose 

term since metal can refer to any dispersive material with the properties that make the 

real part of one of the equations above exclusively negative. An effect known as 

screening occurs in a perfect conductor where charges reposition on the surface to cancel 

the electric field inside. Essentially, these effective formula result from the case where 

the electric fiend is parallel to the layers and there is no screening (uniform electric field) 

of the field, Eq. (2.33), and perpendicular to the layer where there is maximal screening 

(uniform electric displacement), Eq. (2.34) [80]. The coefficient f  is the volume filling 

fraction of the “metal” component.  

 The dispersion relation for a uniaxial isotropic media is given by the following 

equations [62] 

 
2 2 2
o 0z t tk k k   (2.35) 

 

2 2
2ez
0

t

t z

k k
k

 
   (2.36) 

where 2 2 2
t x yk k k  , 0 0k c  is the magnitude of the wavevector in vacuum ( 0c  is the 

speed of light in vacuum), ozk  is the z-component of the ordinary wavevector, and ezk  is 

the z-component of the extraordinary wavevector. The first equation is for ordinary 

waves (TE) and is like an effective isotropic media because only one dielectric function is 

present. The second equation for extraordinary waves (TM) is for an ellipse if both the 

dielectric functions have the same sign. If the dielectric functions have the opposite signs, 

then the dispersion becomes a hyperbola. An illustration of the a hyperbolic dispersion is 

shown in Fig. 2.5. These types of materials are of interest in near-field heat transfer 

because they have allowed modes with infinite lateral component of the wavevector. It is 
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these modes, which are normally evanescent in the far-field, that contribute to the 

enhanced heat flux associated with near-field radiation. 

 The first type of hyperbolic mode (hyperbolic I) has 0t   and 0z   and results 

in the dispersion shown in Fig 2.5 (a). In a non-absorbing media the group velocity and 

Poynting vector are perpendicular to the dispersion curve 

 
1

Ŝ 




 k

k

 (2.37) 

 The Poynting vector S shown in (a) exhibits an interesting phenomenon known as 

negative refraction that has potential applications in near-field imaging where evanescent 

modes can be imaged allowing the resolution limit of traditional lenses to be exceeded 

and results in the formation of an image from a flat lens, rather than requiring a curved 

lens. In negative refraction the vacuum Poynting vector, which is coincident with 0k , is 

initially pointing to the right in the figure, but is bent backwards to the left when it enters 

the medium. 

 The second type of hyperbolic mode (hyperbolic II) has 0t   and 0z  , and 

also is a so called indefinite material that can support very large lateral components of the 

wavevector. However, for small lateral components there will be a forbidden since xk  

must be continuous inside of the medium (and there is a region that is disconnected 

between the hyperbola in the dispersion curve). This material will not exhibit negative 

refraction but has another interesting property, in that wavevector inside of the medium 

will have a flipped z-component, since the Poynting vector must point downward as 

shown in the figure. 

 Metallic films can exhibit negative refraction since single negative materials (e.g. 

the magnetic permeability is still positive unlike a double negative material) only require 

a negative real part of the dielectric function [81]. However, real materials must obey the 

Kramers-Kronig relations mentioned earlier and will only have a negative real part of the 
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refractive index if there is some non-zero imaginary component. This means that single 

negative materials will be naturally lossy in the region of the spectrum where they exhibit 

hyperbolic behavior. This shortcoming can be overcome by using multilayer metallo-

dielectric photonic crystals or semi-conductor dielectric photonic crystals, which can 

have a total thickness of the single negative material component that would exceed the 

bulk skin depth of that material alone. 

 Finally, noting that the effective medium approximation only applies for certain 

conditions [82,83] such as the projected wavelength being much larger than the period of 

 
Figure 2.5 The iso-frequency dispersion diagram for hyperbolic materials with: (b) ⊥ > 0 and 

 < 0 the circle represents the dispersion of light incident from vacuum and the hyperbolic 

curve inside of the anisotropic slab note that the Poynting vector is refracted negatively  and 

(c) ⊥ < 0 and  > 0, in this case the pointing vector is not negatively refracted. 
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the structure. The hyperbolic dispersion is not the only interesting phenomenon of such 

structures. There is also another phenomenon in these structures, which is Fabry-Perot 

like resonance if the dielectric layer thickness is a multiple of the projected wavelength. 

This work is concerned only with the effective medium and dispersive phenomenon of 

MDPCs. 

2.4 Theory of Near-Field Radiative Heat Transfer 

2.4.1 Green’s Function and Fluctuation Dissipation Theorem 

 For radiative transfer in the near field, the time-harmonic Ampere’s law needs to 

be modified to account for random thermal current fluctuations in a dispersive medium 

[84] 

      r, , ,i      H r E r J r  (2.38) 

where rJ  represents random current density fluctuations caused by thermal excitation 

inside of the media. The other Maxwell’s equations retain their usual form [77]. This new 

set of equations is known as the stochastic Maxwell’s equations. The random current 

sources emit radiation that is distributed across the frequency spectrum according to 

Rytov [85], who used the fluctuation dissipation theorem to derive the spectral density of 

current fluctuations, for an isotropic media: 

          * 0
r, r,, , , , njn jJ TJ


   


      r rr r r  (2.39) 

where  ,T  is the mean energy of the plank oscillator at temperature T, 0  is the 

permittivity of free space,    is the imaginary component of the dielectric function at 

spatial coordinate r, nj  is the Kronecker delta, and   r r  is the Dirac delta function 

[84]. The mean energy of a Plank oscillator is of course  

  
 B

,
exp 1

T
k T





 


 (2.40) 
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where  is Plank’s constant divided by 2  and Bk  is the Boltzmann constant. Since 

these fluctuations represent random perturbations that occur even in the absence of 

temperature gradients, there is no net time-averaged current. Once the spectral density of 

the fluctuating current is known, the stochastic Maxwell’s equations can be solved by 

considering a random current source in the form of Eq. (2.39). 

 For planar multilayered 1D structures the Green’s function solution to the 

stochastic Maxwell’s equations is found by considering the forward and backward 

scattered waves generated at interfaces by a current source, as well as direct waves from 

the source if it is inside of the medium of the receiver [86]. For convenience, the effect of 

scattering at interfaces is expressed in terms of the coefficients of the traditional transfer 

matrix for multilayer thin-film optics using the optics formalism introduced by Sipe [86]. 

In cylindrical coordinates we can expresses the Green’s function in terms of the wave 

vectors   and  , which are the radial component and z-component respectively. These 

are related to the Cartesian wave vectors used previously according to 2 2 2
x yk k    and 

zk  . Following the work of Francouer et al. [87], the dyadic Green’s function for the 

electric field, G , and magnetic field, Γ , can be decomposed into an integration over the 

radial wavevector as 

  s, , ,d z z 



 G βg β  (2.41) 

  s, , ,d z z 



 Γ βh β  (2.42) 

where β  is the radial component of the wave vector in cylindrical coordinates, which lies 

in the plane of the interfaces, sz  is the current source location, z  is the receiver location, 

and g  and h  are the Weyl representation of the Dyadic Green’s functions. Here for the 

1D media, z is defined into the depth of the cell as shown in Fig. 2.6, and the radial or x 
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and y components would be parallel to the surface of the cell. The electric and magnetic 

fields are related to the Green’s function solution and fluctuating current by 

      
s

3
s sr s, , · ,,

V
i d    E r G r rrr J  (2.43) 

      
s

3
s sr s, , , · ,

V
d    J rH r Γ r r r  (2.44) 

where the integration is over all of the volume containing fluctuating current sources. 

These equations of course give the magnetic and electric field at an observation point  

located at r  , due to a random current source, rJ , at sr . The integration is over the entire 

volume where the current sources are located, sV . The Green’s function for the electric 

and magnetic field are related by Maxwell’s equations and thus Γ G , the full 

expressions of the dyadic Green’s function are given in the following section, and can be 

found in ref. [87] , where it is evaluated in terms of the solutions of the transfer matrix 

method (TMM) [78] for a layered media.  

2.4.2 Multilayer Green’s Function 

 Consider an arbitrary multilayer structure shown in Fig 2.6, the random current 

sources of the fluctuation dissipation theory may be embedded in any arbitrary layer, s. 

The electric and magnetic field in any other layer, l, of the structure can then be found 

from the Green’s function for a current source embedded in stratified earth. This problem 

has been solved previously, but one of the most convenient solution is that of Sipe [86] 

who applied surface optics to solve the problem. The electric field behaves very much 

like classical plane wave radiation which emanates from the current source location r  

and the boundary conditions determined by the Fresnel coefficients and phase change 

under multiple reflections are all similar to classical optics. However, in the case of Near-

field radiation the electric field propagation and energy propagation are not necessarily 
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coincident, which will be a subject of chapter 7. Inside of the layer there will be a portion 

of the electric field that emanated from the source current that has not been influenced by 

the boundaries. This is termed the primary component of the Green’s function and the 

Weyl component of Eq. (2.41) is given by [87] 

      
P,

ˆ ˆ ˆ ˆ
2

, , , s s
i z z i z z

s s
s

s

i
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 
 



       
 


 

g oo p p  (2.45) 

where l  is the z-component of the wavevector in layer l and   is the radial component 

of the wavevector in layer l. The superscripts  indicates that the wave is traveling 

forward (source located below the receiver) from the source point and  indicates that it 

is traveling backward (source located above the receiver) from the source point. The + or 

– superscript indicate whether to use the forward or backward TM component of the 

electric field. The appropriate term must be selected when performing the integration of 

Eq. (2.41), since if z z  the forward primary term must be used, and if z z  the 

 
Figure 2.6 Current source imbedded in layer s of a multilayer structure and the electric field it 

creates  in layer l are related by the Green’s function. 
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backward primary wave term must be used. For an isotropic medium the TM vector is 

given in cylindrical coordinates by 

 
2 2

ˆ ˆ
ˆ l l
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and the TE vector is 

 ˆˆ  o θ  (2.47) 

 

 This electric field undergoes reflection and refraction as in classic optics. This reflection 

and refraction results in the following expression in any layer l 
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Where the + or – superscript on the coefficients lA  and lB  indicate whether the term is 

due to a forward or backward emitting current source as explained in more detail in Ref. 

[87]. The coefficients lA  and lB  correspond to the wave amplitudes of the forward and 

backward waves respectively, as can be found by TMM, but the exponential (phase) 

terms have been absorbed into them to keep Eq. (2.48) compact. The coefficients are 

defined by first solving the following two matrix equations 
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this gives the value of NA  and 0B  in terms of the transfer matrices given in section 2.1.7. 

Finally, in any layer l 
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 

 

 11

1

1, 0,
0,TE,TE

,TE
0,

0,TE

0 0
,

0
,

sl l

l l

s l s l si z zi z z
l

i z z
l

l l s

z z
B eA e

B e
z z

B









   





     
      

              
      

   

M M

M

 (2.52) 

Similarly for TM waves you can use the above formalism but the transfer matrix will 

give you the amplitudes of the forward and backward magnetic field, which does not 

change direction in each layer. In order to find the amplitude in terms of the electric field 

you must scale the coefficients by l s    to account for the different directions of ˆ lp  

and ˆ sp  between layers, for example if the electric field in layer l due to a forward or 

backward source is given by 
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Has coefficients lA  and lB  that are found using the TMM for TM waves, but the 

coefficients ,TMlA  in Eq. (2.48) would be for example 
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   (2.54) 

to find the electric field magnitude from the magnetic field. The total Weyl Green’s 

function in a non-source layer is given by (2.48) but for a source layer the total Weyl 

Green’s function is found by adding Eqs. (2.45) and (2.48). The magnetic green’s 

function can be found by taking the curl of Eqs. (2.45) and (2.48) to give. 
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where the coefficients are the exact same as previously mentioned in the electric Green’s 

function. Once the Green’s function components are known the electric field and 

magnetic field can be found from Eqs. (2.43)and (2.44). 

 The heat flux can be evaluated from the Green’s function solutions by finding the 

time-averaged Poynting vector from the cross product of the electric and magnetic fields 

in the usual way.  
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Once the z-component of the Poynting vector as a function of depth is determined, the 

distribution of absorption and penetration depth can be determined from the Poynting 

vector. Expressing the Poynting vector in the i j direction in terms of the Green’s 

functions gives 
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thus in an arbitrary laminar structure the heat flux in the z or radial direction comes from 

Eq. (2.58) by choosing i to be r and j to be  or i to be z and j to be  , respectively. 

2.4.3 Heat Transfer between Two Semi-Infinite Layers in the Near-Field 

 For two semi-infinite media, as shown in Fig. 2.7, which are separated by a 

vacuum gap d  the z-component of the heat flux (Poynting vector) can be expressed as a 

function of the vacuum Fresnel coefficients and mean energy of a Planck oscillator only 

[69,87]. 
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where the first term in the brackets is the propagating component in the vacuum ( 0k  ) 

and the second is purely evanescent in vacuum ( 0k  ).  To solve the above term for 

either polarization of light the appropriate Fresnel equation ijr  between medium i and j 

should be used. The expression will also apply for uniaxial anisotropic media so long as 

the reflection coefficients are replaced with their anisotropic counterparts, and the 

appropriate wave vector z-component for ordinary or extraordinary waves.  For reference 

the Fresnel coefficients for a uniaxial medium with vertical optical axis are given by 
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where lt  is the transverse dielectric function in the lth layer, see Eq. (2.32) for the 

dielectric tensor of a uniaxial anisotropic media. At small gap spacings the magnitude of 

the TM contribution to the heat flux will become much larger than the TE wave 

contribution, so that it may be neglected at very small gap spacings.  
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2.4.4 Energy Streamlines in Near-Field Radiation 

 Energy streamlines are a convenient method for visualizing energy propagation 

inside of a media. In the far-field, the energy streamlines (ESLs) can be calculated from 

the electromagnetic field calculated based on the TMM [78]. The electric field or 

magnetic field in each layer of a 1D multilayer structure is expressed in terms of a 

forward and backward propagating component as described previously 
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 (2.64) 

where l is the index of the lth layer and klz is the z-component of the wavevector in the lth 

layer and Al and Bl are the amplitudes of the forward and backward propagating waves. 

The ESLs are calculated from the electric and magnetic field of a solution of the 

Maxwell’s equations found using the TMM. The ESLs for TM waves in a 1D structure 

 

Figure 2.7 Two semi-infinite media labeled 0 and 2 separated by a vacuum gap by a distance of d 

the components of the wavevector in vacuum are shown. The media are held at temperature 0T  

and 2T  respectively. 
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can be calculated by determining the components of the Poynting vector in x and z 

direction using the following equations [78]. 
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the ESLs are formed by tracing the streamlines with slope or propagation angle 
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respectively. The ESLs are then generated by tracing curves in the direction of the slope, 

similar to ESLs in fluid mechanics. 

 In near field heat transfer the Poynting vector in an arbitrary multilayer structure 

can be found using Eq. (2.58) and the energy streamlines can be determined from (2.67). 

In most cases, the fields can be expressed in the near-field as in Eqs. (2.65) and (2.66) 

since the solutions of the electromagnetic field can still be treated as forward and 

backward waves. However, in an emitting layer there will be a source term in the Green’s 

function equation leading to an additional field term that is not due to multiple reflections 

that needs to be considered in the calculation of the energy streamlines in a source layer 

[75]. Note that Eq. (2.67) is general and will apply for an anisotropic or isotropic media 

once the Poynting vector is known. More details about the calculation of energy 

streamlines in isotropic media in the near-field can be found in Refs. [74–76]. The ESLs 

for a uniaxial anisotropic MDPC are the topic of chapter 7 where the calculation will be 

discussed in more detail. 



 36 

CHAPTER 3 

SPECTROSCOPIC TECHNIQUES 

 

 Chapter 3 describes the basic characterization equipment used to measure the 

transmittance and reflectance of the films in order to determine the optical constants of 

HfO2 and Ta2O5 films on Si substrates presented in both chapters 4 and 5, respectively. 

3.1 Fourier Transform Infrared Spectrometry  

The NIR/MIR transmission and reflectance of each sample were measured with 

an ABB FTLA 2000 FTIR from 500-10000 cm
1

 (wavelengths from 1 to 20 m). The 

FTIR chamber was purged with nitrogen gas to minimize the absorption by carbon 

dioxide and water vapor. A resolution of 4 cm
1

 was used to remove the interference 

fringes in the Si substrate. A 10º incidence reflectance accessory was used along with the 

FTIR to measure the near-normal reflectance. The reflectance measurements were made 

for radiation incident on either the film side (Rf) or the substrate side (Rs) as illustrated in 

 
Figure 3.1 Measurement setup for transmittance (T), film reflectance (Rf), and substrate 

reflectance (Rs) of the films using FTIR. Note that the transmittance is shown near normal but is 

actually measured normal to the film while reflectance is taken at near normal incidence. 



 37 

Fig. 3.1. The equations for the case of a thin film on thick substrate are presented here for 

convenience. The transmittance and reflectance for a thin film on a thick substrate can be 

expressed as follows [88]: 
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where the subscript f or s in the reflectance R signifies the film-side or substrate-side 

incidence. In Eqs. (3.1) – (3.3), i  is the internal transmissivity of the substrate, 

a a and    are the transmittance and reflectance at the air-film interface when the 

substrate is semi-infinite, b is the reflectance for incidence from the substrate at the 

interface between the substrate-air interface assuming that the substrate is non-absorbing 

and semi-infinite, and s s and    are the transmittance and reflectance at the air-substrate 

interface when both media are semi-infinite [78,88,89]. Most of the fitting in the 

subsequent chapters is based on the transmittance only and the reflectance model is 

compared with the reflectance data to confirm the fitting results. The reason for using 

transmittance only is because the reflectance measurements are subject to a larger relative 

uncertainty of around 5%. 

 A gold mirror was used as the reference for the reflectivity measurements, the 

reflectivity of the mirror can be obtained from the handbook values [90] with an 

assumption that the reflectivity remains the same beyond 10 m. The procedures of 

measurement and data reduction can be found from previous studies [91,92]. The 

estimated measurement uncertainties are 0.01 in transmittance and 0.02 in reflectance, are 

based on Ref. [93].  
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 A higher resolution of 1 cm
1

 was also used to measure the transmittance of a bare 

Si substrate cut from the same batch of 432 m thick wafers. The interference effects are 

revealed by the oscillations in the spectrum, which allow the determination of the 

substrate thickness using the optical constants of Si tabulated in the handbook [90]. Note 

that the Si substrate is lightly boron-doped with an electric resistivity close to 10 ·cm 

with a crystalline orientation (100). The transmittance was used to determine the 

substrate thickness dSi, based on the equation  = (2nSidSi)
1

 [78], where  is the free 

spectral range (i.e., spacing between adjacent interference maxima) and nSi is the 

refractive index of Si. This results in dSi = 432±5 m, which is needed for the calculation 

of radiative properties of the film-substrate composites. The calculated transmittance and 

reflectance of the Si substrate based on the incoherent formula [78] agrees well with the 

lower-resolution (4 cm
1

) measurements from the FTIR, except in the region from 1000-

1400 cm
1

, where absorption of interstitial oxygen becomes important. To account for the 

interstitial oxygen absorption in the Si wafer, the extinction coefficient is increased 

(without changing the refractive index) until the calculated transmittance spectrum 

matches the FTIR measurements. This procedure is adopted from the previous work by 

Basu et al. [91].  Note that the 750 m thick wafers were manufactured by the same 

Czochralski growth process and by the same manufacturer (Virginia Semiconductor), so 

that the same optical constants determined from the 432 m wafers may also be applied 

to these wafers with good agreement. 

 Figure 3.2(a) shows the measured and calculated transmittance of a bare Si 

substrate from 500 to 10000 cm
1

, with a detailed view of spectra from 500 to 2000 cm
1

 

in Fig. 3.2(b). The cutoff in transmittance near 10000 cm
1

 is due to bandgap absorption 

[78]. Absorption due to lattice vibrations and impurities lies in the region from 500 and 

1500 cm
1

 as shown on Fig. 3.2(b), where the calculation using optical constants from 

Palik [90] over predicts the transmittance around 1100 cm
1

. By modifying the extinction 



 39 

coefficient   from 1000 to 1400 cm
1

, good agreement is achieved between the 

measured and calculated transmittance. Figure 3.2 also demonstrates the accuracy of the 

FTIR measurements, which correlate well to the calculated values. It should be noted that 

the effect of 2-4 nm thick native oxide, SiO2, on the surfaces of the wafer has a negligible 

effect on the transmittance and reflectance. This statement remains true even in chapters 

4 and 5, where some of the samples studied are annealed, because the time and 

 
Figure 3.2 Comparison of measured and calculated transmittances for a bare Si substrate of 

thickness dSi = 432 m: (a) from 500 to 10000 cm
1

; (b) zoomed in region from 500 to 2000 cm
1

 

showing lattice and impurity absorption. 
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temperatures are low enough for the increase in oxide thickness to remain negligible. 

 The transmittance was measured in the far-infrared range using a Bruker 113v 

FTIR spectrometer with a beam divergence of 8.3° (half cone angle) and a resolution of 2 

cm
1

. The interference effect in the Si substrate is inevitable in the measured far-IR 

spectrum. To reduce the interference effect, the transmittance of each sample was 

normalized to that of a bare Si substrate (TSi). For the FIR setup the whole system must 

be vacuum sealed and evacuated to eliminate vapor absorption. The sample holder 

contains a rotatable wheel that allows multiple samples to be measured in succession 

without having to re-pump the system. Four of the samples were deposited on 432±5 m 

thick Si substrates with a resistivity of 20 Ω·cm (measured by fitting the FIR 

transmittance spectrum), and the remaining two were deposited on 750±25 m thick Si 

substrates with a resistivity between 10 and 100 Ω·cm as specified by the manufacturer. 

The resistance of the thinner Si substrate was determined by fitting the well-known 

Drude model for boron-doped Si to the transmittance of the Si in the far-IR spectrum 

according to Fu and Zhang [94] and references therein. The doping level was thus 

estimated to be 14 36.67 10  cm .  The transmittance spectrum of Si calculated from the 

incoherent formula based on the Drude model was used to deduce the transmittance data 

of the samples in the far-IR region from the relative measurements. The Drude model is 

also used to calculate the radiative properties of the film-substrate composite in the far-IR 

region ( > 20 m) in the line-shape analysis. The effect of the Drude term is negligible 

at wavelengths shorter than 20 m. It is shown by comparison with the transmittance of a 

bare Si substrate that the optical constants from Ref. [90,95] are suitable for modeling the 

near- and mid-IR radiative properties with the thicker substrate, whose resistivity does 

not need to be precisely determined. 
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3.2 Ellipsometry 

 Ellipsometry is a reflectance measurement of a ray with known polarization, and 

differs from a normal reflectance measurement in that it measures not only the amplitude 

of the reflected light from a structure, but the change polarization upon reflection as well. 

The fundamental equation of ellipsometry is [47,48]: 

 
p

s

tan( ) i
r

e
r

     (3.4) 

where pr  and sr  are the complex reflection coefficients for p polarization (TM wave) and 

s polarization (TE wave), respectively. For this work we are only concerned with films on 

an opaque substrate of Si only. The coefficients in Eq. (3.4) can be found from Eq. (2.13) 

for each of the polarizations respectively. From the ellispometry measurement, the 

quantities   and   are typically obtained and then used to determine the optical 

constants as well as the film thickness. Note that the first variable  tan   contains 

information about the relative amplitude and the term ie   contains phase information. 

Because phase information is retained in ellipsometry measurements it helps eliminates 

potential redundancy when determining the optical constants of a film. The following 

quantities are usually introduced, by definition, to facilitate the fitting of ellipsometry 

data: 

 cos2N   , sin 2 sinS    , and sin 2 cosC     (3.5) 

The magnitude of 
2 2 2 1N S C    implies that the quantities N, S, and C scale similar 

to the transmittance and reflectance. In an ideal case for which
2 2 2 1N S C   , only 

two quantities are necessary in the fitting.  

 A simple schematic of an ellipsometry system is shown in Fig. 3.3. A J.A. 

Woollam M2000 spectroellipsometer (SE) was used to study the optical properties at 

wavelengths from 370 to 1000 nm at four incidence angles (60°, 65°, 70°, and 75°). The 
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M2000 is more complicated than the basic setup in Fig. 3.3, because it has some 

additional components such as a rotating compensator added into the beam path, which 

allow more accurate measurement of the ellipsometry parameters. However, the basic 

operating principle is still the same, the polarizer before the detector (called the analyzer) 

is rotated to determine the polarization of the reflected light. The additional rotating 

compensator component allows the handedness of the reflected light to be deduced as 

well, which cannot be determine in the traditional setup. The M2000 also uses a CCD 

array detector and can do a broad range of wavelengths simultaneously; it is capable of 

being configured to measure from 190 nm to 1.7 m. Once obtained, the experimentally 

obtained parameters ( and ) were then fit with the software package CompleteEASE 

associated with the Woollam SE. The SE data can also provide the thickness values and 

the surface roughness information as discussed in the following chapters.  

 

 

Figure 3.3 Schematic of a basic ellipsometry which consists of a light source, a linear polarizer 

that gives the incident light a known polarization, and a rotating polarizer (analyzer) with a 

detector that measures the elliptical shape of the polarization of reflected light. 
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CHAPTER 4 

DIELECTRIC FUNCTION OF MAGNETRON SPUTTERED HFO2 

THIN FILMS 

 

 This chapter describes an investigation of HfO2 optical properties from the VIS to 

FIR with a focus on the NIR and MIR region, where phonon absorption is insignificant, 

for applications as a non-absorbing optical coating. HfO2 films were deposited on double-

side polished Si substrates using DC magnetron sputtering and the films were 

characterized with X-ray diffractometry (XRD) and atomic force microscopy (AFM). A 

Fourier-transform infrared (FTIR) spectrometer measured the near-normal transmittance 

and reflectance for incidence on both the film side and the substrate side from 1 to 20 m 

wavelengths. By comparison of the experimental results with those calculated from a 

Lorentz oscillator model, the thicknesses and oscillator parameters in the Lorentz model 

were obtained. The optical constants from 370 to 1000 nm wavelengths were obtained 

from spectroellipsometry (SE) and fitted to a Cauchy formula. Furthermore, the ratio of 

the FIR transmittance with film and without film was measured with another FTIR at 

frequencies from 20 to 650 cm
1

 to reveal phonon vibration bands. A hafnia dielectric 

function, which combines the Cauchy formula and the multiple-oscillator model, is 

proposed for use in the wavelength region from 370 nm to about 500 m. 

4.1 Film Characterization 

 HfO2 films of different thicknesses were prepared on silicon (Si) substrates using 

DC magnetron sputtering. A 100 mm diameter Si wafer, polished on both sides, was 

diced with a diamond stylus to square pieces with approximately 18 mm × 18 mm. The 

wafer’s thickness is approximately 430 µm. Prior to insertion into the processing 

chamber, which had a base pressure less than 1.3  10
6 

Pa, the Si wafers were cleaned in 
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solvent. They were then cleaned by Ar
+
 ion bombardment for removal of adsorbed 

hydrocarbons and the native oxide layer of 1-2 nm thickness.  After cleaning, a 2.5 cm 

diameter, 99.9% pure Hf target was sputtered in an Ar-O2 background. Input power was 

held at a constant 30 W with an Ar flow rate of 22 sccm and O2 flow rate of 2.5 sccm and 

total pressure of 1.3 Pa. All process gases used in the deposition were > 99.999% pure. 

The substrates were maintained at 300 ºC during deposition. A picture of the deposition 

chamber, located at the Air Force research lab in Dayton, OH, is included in Fig. 4.1. The 

substrate is on a rotating stage at the bottom of the figure. Underneath the stage (not 

shown) is a tungsten filament that heat the sample up to the desired temperature, the 

 

Figure 4.1 Picture of inside of deposition chamber. The sample substrate sits on a rotating stage 

that is heated from the backside with a tungsten filament.  
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sample temperature is measured with a radiometer to ensure constant substrate 

temperature during the deposition. The sputtering gun and a target can be seen in the 

image as well. 

 In order to determine crystal structure and phase, X-ray diffraction (XRD) 

measurements of annealed and unannealed samples were performed using Rigaku D-Max 

diffractometer in a Bragg-Brentano configuration. Due to the small thickness of the films, 

grazing incidence XRD was also measured at an inclination angle of 8°, using a 

PANalytical X’Pert PRO Alpha-1 X-ray diffractometer (XRD) with Cu Ka radiation 

(0.154 nm). Surface topography was measured using a Veeco Dimension 3100 AFM in 

tapping mode over a 2 µm  2 µm scan area. The AFM probe was an uncoated n-type Si 

probe of 10 nm in radius. 

Throughout this chapter, the analyzed films are labeled HAF01, HAF02, HAF03, 

and HAF04a, in the order of decreasing deposition time. Films HAF03 and HAF04a had 

the same deposition time, with the difference between the two being HAF04a was 

Table 4.1 Sample deposition conditions and characteristic parameters obtained from different 

methods. HAF04a is annealed in air after the deposition for 1 hr at 800 C, while the rest are as-

deposited. Here, A and B are parameters in the Cauchy dispersion obtained from fitting the 

ellipsometry measurements. The average values for A and B are 1.956±0.009 and 0.0172±0.0024 

m
2
, respectively. 

 

Sample label HAF01 HAF02 HAF03 HAF04a 

Deposition time (min) 554 375 188 188 

Post-processing No No No Annealed 

Roughness,  (AFM) (nm) 7.2 6.4 4.8 4.8 

Thickness, d (FTIR) (nm) 516 354 184 197 

Thickness, d (Ellipsometry) (nm) 498 347 168 176 

Roughness,  (Ellipsometry) (nm) 15.5 11.8 9.6 9.5 

Dispersion constant, A 1.963 1.959 1.955 1.948 

Dispersion constant, B (m
2
) 0.0153 0.0189 0.0162 0.0183 
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Figure 4.2 XRD patterns for samples of different thickness with the polycrystalline 

monoclinic phase of HfO2 identified. 

annealed in air at 800 ºC for 1 hr, and HAF03 and the other samples remained in the as-

deposited state for all characterizations. Some characteristic parameters of the prepared 

films are listed in Table 4.1 together with the processing parameters, which are described 

in detail in subsequent sections. As can be seen from Table 4.1, the deposition rate is 

approximately 1.0 nm/min for all samples. The nominal HfO2 thicknesses are 500 nm, 

350 nm, and 180 nm for HAF01, HAF02, and HAF03, respectively, although the 

tabulated thickness exhibits some dependence on the method used for measurement. 

The grazing angle XRD profiles are stacked in Fig. 4.2 for the three thinner 

samples. The intensity peaks are matched using the powder diffraction file for monoclinic 

HfO2 from the International Centre for Diffraction Data (ICDD PDF: 04-004-9021) [96] 

to identify various crystalline orientations. The broad intensity peaks suggest a 

polycrystalline monoclinic hafnium oxide in all three films. There is no detectible 
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difference in the crystallinity of the annealed and unannealed films with comparable 

thicknesses (HAF04a and HAF03). From Fig. 4.2, there is a slight change in the preferred 

crystallite orientation as the sample thickness increases. All films were nanocrystalline 

and the average grain size was estimated to be around 12 nm based on the Scherrer 

formula [37] using the Rigaku XRD data because the grazing angle XRD causes 

additional broadening.  

 AFM scans with 512  512 array of data were performed in two locations on each 

sample and the difference was negligible. The average value of the root-mean-square 

(RMS) roughness  is listed in Table 4.1 for all samples. Film HAF01 was thicker and 

had a relatively larger RMS roughness than that of film HAF04a. For a bare Si substrate, 

the RMS roughness measured by the AFM gives a value less than 2 nm. Typical surface 

 
Figure 4.3 AFM images of two HfO2 films deposited on Si substrates: (a) HAF01; (b) 

HAF04a. 
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images are shown in Fig. 4.3 for HAF01 and HAF04a films. Overall, the films are very 

smooth with an RMS roughness of 5-7 nm based on the AFM measurements. It should be 

noted that films with slightly different thicknesses would appear in different colors. 

Observation of the color uniformity with naked eyes suggests that the film thickness is 

very uniform on each sample. 

4.2 Optical Measurements of Thin Films 

 The spectrometric results in the NIR/MIR region are presented in Sec. 4.2.1, 

followed by a detailed analysis in Sec. 4.2.2. The SE results and dispersion in the 

VIS/NIR region are described in Sec. 4.2.3. The FIR data are presented in Sec. 4.2.4 with 

the multiple-oscillator model, which also incorporate the dispersion in the VIS/NIR 

region.  

4.2.1 NIR/MIR Results 

 The radiative properties (T, Rf, and Rs) in the NIR/MIR are plotted in Fig. 4.4. The 

spectra of the annealed HAF04a film are very similar to those of HAF03 film, and are 

therefore not shown. The reflectance is measured for incidence from either the film side 

or the substrate side. In order to clearly display the effect of absorption, the spectrum is 

divided according to the wavenumber () regions from 500 to 1500 cm
1

 (left) and from 

1500 to 8500 cm
1

 (right). The large noise in the reflectance spectra at  > 6500 cm
1

 is 

due to a low signal-to-noise ratio. The purge with nitrogen gas did not completely remove 

the water vapor and CO2 absorption in the sample compartment, causing some artifacts 

around 1500, 2350, and 3800 cm
1 

[78,91]. There are two transmittance maxima and one 

minimum for HAF01 film; one maximum and one minimum for HAF02 film; and one 

maximum for HAF03 film. It can be inferred that the zero frequency is a transmittance 

minimum or reflectance maximum if absorption did not occur. In the non-absorbing 

region, the reflectance should be independent of which side the radiation is incident from. 
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The disagreement between Rf and Rs is mainly caused by measurement uncertainty, 

especially for HAF02 film for which Rs is obviously too high. When the transmittance 

and reflectance are added, the results are close to 100% within 2-3% deviation. However, 

an additional absorption feature appears in the T and Rf spectra between 2800 and 3700 

cm
1

, but not in the Rs spectrum. This can be explained by moisture adsorbed in the 

hafnia film due to O-H stretching vibrations [30,47].  

 At longer wavelengths, absorption bands in Si can be distinguished by 

comparison with Fig. 3.2(b). Although HfO2 possesses lattice vibration bands between 

500 and 800 cm
1

 [30,35], their effect on the radiative properties is largely screened by 

the substrate absorption. Note that measurements close to the cutoff frequency of 500 

cm
1

 are also subject to large uncertainties. In general, the absorption in HfO2 increases 

toward longer wavelengths. This is evident since the transmittance of the samples is 

lower and decreases quicker (toward smaller wavenumbers) than that of a bare Si 

substrate. Furthermore, the transmittance at  < 850 cm
1 

is lower for thicker samples. 

Moreover, the absorption by HfO2 films gives rise to an increased Rf. Interestingly, if the 

absorptance of film and substrate is calculated according to f = 1 – T – Rf and s = 1 –

 T – Rs, then s > f  when  < 650 cm
1

. The larger absorptance for substrate-side 

incidence than for film-side incidence has been also reported before for absorbing films 

such as superconducting thin films [97].  

4.2.2. Single-oscillator Model 

 Interference effects in the Si substrate do not appear in the spectra of Fig. 4.4, due 

to the relatively low resolution. The RMS roughness measured from AFM suggests that 

the surfaces (Table 4.1) can be treated as perfectly smooth in the NIR/MIR region. 

Therefore, the hafnia film can be modeled as coherent while the substrate can be assumed 

as incoherent without considering interference effects. The model for thin film(s) on a 

thick substrate can be applied to predict the spectral transmittance and reflectance 
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Figure 4.4 Measured mid-infrared radiative properties of three HfO2 film-substrate composites: 

(a) transmittance, T; (b) reflectance for incidence on the HfO2 film side, Rf ; (c) reflectance for 

incidence on the Si substrate side, Rs . The wavenumber scales are different between the left and 

right regions in order to show the spectra from 500 and 1500 cm
1

 clearly. 
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[78,89,91], giving f s,   and T R R  as functions of the optical constants and thicknesses of 

the film(s) and substrate. Detailed expressions and algorithms can be found from Zhang 

[78] and was discussed previously in chapter 3. 

 In the region where absorption in both the film and substrate is negligible, 

corresponding to wavenumbers greater than 2000 cm
1

 in the present study, the 

interference fringes in the transmittance spectrum provide quantitative information of 

both film thickness (d) and refractive index (n) for known refractive index of substrate 

(nSi).  Note that the refractive index of Si changes by merely 1% from 2000 to 8000 cm
1

. 

Since the refractive index of HfO2 is less than that of Si, the film acts as an antireflective 

coating [78,89]. Assuming n does not change, then the fringe spacing (free spectral 

range)  
1

2nd


   can be used to estimate the product of n and d, if there exist 

sufficient number of fringes. Thus a thicker film is preferred and this method is not 

suitable for very thin films. On the other hand, the envelope method [98] can be used 

based on the maxima or minima in T. It can be shown that without absorption, the 

maxima in T can be expressed as 

 

 

2
Si

max Si4 2 2 2
Si Si

4
,   for 

1

n n
T n n

n n n n
 

  
 (4.1) 

while the minima in T only depend only on the refractive index of Si given by 

 Si
min Si2

Si

2
,   for 

1

n
T n n

n
 


 (4.2) 

If the refractive index of the film is greater than that of the substrate, Eqs. (4.1) and (4.2) 

gives the transmittance minima and maxima, respectively [98]. Eq. (4.1) has two 

reasonable solutions with n < nSi. For max0.690 0.695T  , it can be shown that n 

should be about 1.9 with 10% relative variation. Considering the measurement 
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uncertainty, the envelope method can give a rough estimate of the refractive index and 

thus the film thickness.  

 When 11000 cm  , absorption by HfO2 film increases toward longer 

wavelengths due to absorption by IR phonons. One can use the known optical constants 

and thickness of Si to extract n and the extinction coefficient,  , of the film at each 

measured wavenumber. Multiple solutions exist but a careful selection can be made to 

obtain reasonable values of the optical constants of HfO2 using the sample HAF01 with 

the thickest film. However, the optical constants obtained from such point-by-point 

solution fluctuate due to measurement uncertainty and noise, as well as other artifacts 

such as the residual CO2 gas, water vapor in the sample compartment and water adsorbed 

on the film surface. Nevertheless, the guidance gained from the envelope method 

approximation and point-by-point solution helps to understand the behavior of the optical 

properties of HfO2 for more accurate modeling described below. 

 Due to the low-frequency cutoff of the FTIR at about 500 cm
1

, the exact phonon 

vibration frequencies cannot be determined. However, a lumped oscillator model is 

developed for the prediction of the optical constants. In the IR region, the dielectric 

function of an insulator is often described by the Lorentz oscillator model [78,99]: 

  
2
p

2 2
0

i
i


    

  
    

 
 (4.3) 

where   describes the high-frequency contributions, p  is the plasma frequency, 0  is 

the resonance frequency, and   is the damping coefficient, all of them are in terms of 

wavenumber . It should be noted that the dielectric function is related to the complex 

refractive index by 2 2( )n n ik    , where the refractive index (n) and extinction 

coefficient (k) are called optical constants although they are frequency interdependent.  
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 A regression analysis is performed to match the predicted and measured radiative 

properties (T, Rf, and Rs). The standard error of estimate (SEE) defined below is used as 

the figure of merit in the estimation of the parameters described in Eq. (4.3):  

 
 

2

cal, mea,i i

i

y y
SEE

N


   (4.4) 

where the subscripts “mea” and “cal” refer correspondingly to the measured data and the 

calculated values from the formulation for a coherent film on an incoherent substrate, 

using the dielectric function model given in Eq. (4.3). The simplex algorithm [100] is 

employed to find the best fit parameters in Eq. (4.3) that minimize SEE for a given set of 

experimental data. In the present study, the transmittance and reflectance (for incidence 

from both sides) spectra of HAF01 film are used in the range from 510 to 8000 cm
1

 (the 

data points below 510 cm
1

 and above 8000 cm
1

 are removed due to low signal-to-noise 

ratio) to determine the parameters in the single-oscillator model as well as the film 

thickness. The results are 3.58  , 
1

0 398 cm  , 
1

p 1049 cm  , and 

1147 cm  . Note that the oscillator parameter does not actually correspond to a 

vibrational band and additional oscillators are needed to capture the actual phonon 

spectra, which will be discussed in Sec. 4.2.4. After the oscillator parameters are 

determined based on HAF01 film spectra fitting, the simplex algorithm is applied to other 

films to find their thicknesses and results are listed in Table 4.1. The assumption is that 

the optical constants are independent of the film thickness, which was verified through 

ellipsometry and FIR studies to be discussed later. The resulting SEE in the radiative 

properties is generally less than 0.01, except for HAF04a films with a SEE value of 

0.015. It is estimated that the (relative) uncertainty is 5 % in thickness and refractive 

index, and 10 % in 0 p,  ,  ,  and     .  
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 To illustrate the fitting agreement with experiments, the measured transmittance 

and film-side reflectance for HAF01 and HAF03 films are plotted in Fig. 4.5, where the 

wavenumber is shown in log scale. The error bars are for 0.01 in T and 0.02 in Rf. It 

 
Figure 4.5 Comparison of the measured and calculated transmittance and film-side reflectance of 

(a) HAF01 and (b) HAF03 samples. Experimental data has an uncertainty of 0.01 in transmittance 

and 0.02 in reflectance. For the single-oscillator model, the dielectric function is calculated from 

the four-parameter model with 3.58  , 1
0 398 cm  , 

1
p 1049 cm  , and 

1147 cm  . 

The parameters for the multi-oscillator model are shown in Table 3.2, using the thicknesses 

determined from FTIR. 
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should be noted that the results for a multiple-oscillator model, to be elaborated in Sec. 

4.2.4, are also plotted for comparison. In Fig. 4.5, the single-oscillator model refers to the 

dielectric function calculated from Eq. (4.3) with the fitting parameters and film thickness 

obtained solely based on the radiative properties of HAF01 film in this region. The 

agreement is very good except in the region where Si absorption is strong and in the 

region where absorption by moisture becomes significant. 

 As mentioned previously, in the region from 2800 cm
-1

 to 3700 cm
-1

, there is an 

absorption feature that is not due to HfO2 but rather the moisture or O-H bonds present in 

the film voids and on the film surface. This absorption feature results in a dip in the 

transmittance as well as film-side reflectance, especially for HAF01 film. To model 

moisture inside the film, the Bruggeman effective medium approximation (EMA) can be 

used by assuming a certain volume fraction of each material [47,101], which can be 

expressed as follows: 

 A eff B eff
A B

A B

0
2 2

f f
   

   

 
 

 
 (4.5) 

where f and  are the volume fraction and the dielectric function, respectively, for each 

material, the subscripts A and B refers to component A and B (here, A is for HfO2 and B 

is for H2O, and the subscript “eff” denote the properties of the effective homogeneous 

medium. The optical properties of liquid water can be obtained from Refs. [102,103]. An 

additional regression analysis was performed with fixed film thickness as well as the 

dielectric functions of HfO2 and water; however, the film’s optical constants are based on 

eff  calculated from Eq. (4.5). By adjusting fA and noting that fB = 1 – fA, a better 

agreement can be obtained that matches well for the radiative properties in the O-H 

absorption region (graphs are not shown). It is found that fA ranges from 0.94 to 0.96, 

suggesting that the film may contain approximately 5% of moisture. Similar amount were 

found for Ta2O5 films in a previous study [47] and the O-H absorption has been discussed 

in detail in Ref. [30]. 
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4.3.3 Spectroellipsometry Results 

 Spectroscopic ellipsometry (SE) data in Fig. 4.6 were fit using the ellipsometry 

equation from chapter 2. At short wavelengths, such as in the SE spectrum between 370 

and 1000 nm, the surface roughness may affect the measurement. The typical method 

used in analysis of SE data is to assume an ultrathin layer that consists of a homogeneous 

 
Figure 4.6 Spectroellipsometry data and fitting results: (a) measured SE parameters and fitting 

results for HAF02 film at 75° incidence angle; (b) Cauchy’s formula of the refractive index 

determined with the best fit parameters listed in Table 4.1. The dispersion based on average A and 

B values is also plotted. Error bars indicate the standard deviations from the mean. 
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medium made of air and the film material. The EMA given in Eq. (4.5) can be used to 

model the optical constants of this layer [38,47,49]. Usually, the volume fraction is 

assumed to be 50% and the refractive index of air can be assumed to be nair = 1. The 

thickness of this layer is called roughness , which is different from the RMS roughness. 

Hence, in the formulation of the reflection coefficient for incident on the film side, one 

needs to consider two layers of thin films with a roughness parameter  and a film 

thickness df. Fortunately in this region, the Si substrate is opaque and can be treated as a 

semi-infinite medium. The standard matrix formulation for multilayered thin films can be 

applied to calculate the reflection coefficients for each polarization [35,47]. An attempt to 

include SiO2 thin layer in the analysis of the SE data were made but did not result in 

improved agreement, suggesting that the effect native oxide layer is negligibly small.  

 The four-layer model (air, roughness, film, and substrate) is used in the 

CompleteEASE software accompanied with the SE. The software uses a figure of merit 

according to the mean square error based on chi-square test [104,105]. It is an unbiased 

estimator that gives data points with larger standard deviation lower weight. In order to 

obtain reliable fitting, the SE measurements were taken at four incidence angles with 60º, 

65º, 70º, and 75º. The typical fitting result for quantities   and   is illustrated in Fig. 

4.6(a). The obtained parameters A and B, roughness, and thickness for all samples are 

listed in Table 4.1. Figure 4.6(b) plots the refractive index as a function of wavelength in 

the VIS/NIR region. The average values of A and B from all four samples are computed 

and the resulting dispersion is also shown in Fig. 4.6(b). It can be seen that within 

experimental uncertainty, the optical constants are the same for all four samples. The 

agreement in these values gives a reliable dispersion at short wavelength. When the 

refractive index is calculated at  = 1 m using Eq. (4.3) using the fitting parameters in 

NIR/MIR, it gives n = 1.89, which is 4% less than the value of 1.97 obtained from SE.  

 As shown in Table 4.1, the agreement in film thickness from FTIR and SE is 

3.6% for HAF01 film, 2.0% for HAF02 film, and increases to around 10% for HAF03 
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and HAF04a films. The thinnest films may result in a relatively large uncertainty in both 

methods. Furthermore, if (  + fd ) is taken as the film thickness from SE, then the 

agreement with FTIR thickness will be around 1% for HAF01 and HAF02 films, and 

better than 6% for the two thinnest samples. The good agreement between two 

independent method suggest that either one can be used with confidence. The high 

refractive index and low absorption in the VIS/NIR region, along with the small grain 

size, suggest that the quality of the HfO2 film is high.  

 Interestingly, the roughness  obtained from SE also increases with the film 

thickness, similar to the trend shown with AFM measurements. However, the  value 

from SE is about two times that from AFM for all samples. Koh et al. [106] studied the 

correlation of the RMS roughness from AFM and the roughness from SE and found a 

factor of about 1.5 for amorphous semiconductors. On the other hand, the SE roughness 

obtained by Franke et al. [47] is 3-4 times that from AFM for Ta2O5 films. It can be 

inferred that the roughness values obtained from this study are reliable and consistent 

with the method used. 

4.2.4 Far-infrared Spectroscopy and Multiple-oscillator Model 

 The ratio of transmittance of the sample to that of the Si substrate measured with 

the vacuum spectrometer is plotted in Fig. 4.7(a) from 20 to 650 cm
1

. Several lattice 

absorption bands show up and the transmittance decreases as the film thickness increases. 

Again, the transmittance is almost the same for HAF03 and HAF04a films, suggesting 

that annealing has essentially no effect on the phonon modes. Interference effects inside 

Si substrate are noticeable below 100 cm
1

 as well as above 550 cm
1

 where absorption is 

weak.  The wavenumber corresponding to the minima of transmittance agree with the 

phonon absorption spectra of HfO2 in previous studies [30,35]. The transmittance minima 

are located at 260, 340, 405, 510, and 600 cm
1

. Some weak phonon modes may exist 

between 380 and 400 cm
1

 but is not considered in the modeling. Another oscillator may 



 59 

 
Figure 4.7 Comparison of the measured and calculated transmittance and film-side reflectance of 

(a) HAF01 and (b) HAF03 samples. Experimental data has an uncertainty of 0.01 in 

transmittance and 0.02 in reflectance. For the single-oscillator model, the dielectric function is 

calculated from the four-parameter model with 3.58  , 
1

0 398 cm  , 11049 cmp  , and 

1147 cm  . The parameters for the multi-oscillator model are shown in Table 4.2, using the 

thicknesses determined from FTIR. 
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be assigned on the shoulder near 190 cm
1

 in order to fit the FIR spectrum. Hence six 

oscillators are needed to fit the FIR spectrum, in addition to a high-frequency constant.  

 In order to develop a broadband dielectric function model to cover from the 

visible all the way to the FIR spectral region, the Cauchy formula is incorporated to the 

multiple Lorentz oscillator model with 

 

2
p,2 2

2 2
( )

j

j j j

A C
i


  

   
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 
  (4.6) 

where the first two terms are calculated from the Cauchy formula after omitting the 

fourth-power term, which makes negligible contribution. Therefore, A = 1.956 is fixed 

according to the average of the fitted values from the ellipsometry data, and 

10 20.5, 6.73 10  cmC B     (since  is in cm
1

). Note that p,,  ,  and j j j    are the 

resonance frequency, plasma frequency, and damping coefficient of the jth phonon 

oscillator. The simplex algorithm is used to minimize the SEE for HAF01 film in the 

region from 20 to 650 cm
1

 based on the transmittance ratio measured with the FIR 

spectrometer.  

Table 4.2 lists the fitted phonon oscillator parameters and the resonance 

frequencies are close to the transmittance minimum. The SEE with the best fitting 

parameters is 0.013, which is comparable to the measurement uncertainty in the FIR 

spectrometer. The fitted results are compared with the measured in Figs. 4.7(b) for 

HAF01 and 4.7(c) for HAF04a using the thickness obtained from NIR/MIR spectrometer. 

The calculated transmittance ratio from the single-oscillator model is also plotted for 

comparison. It can be seen that the simplified model cannot capture the phonon 

frequencies but does give a broad absorption band that is slightly shifted toward large 

wavenumbers. It is expected that the parameters in the multiple-oscillator model have a 

smaller uncertainty that those for the single-parameter model, because the fit directly 
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Table 4.2  Far-infrared phonon parameters obtained by fitting the Lorentz model with the far-IR 

absorption spectrum of HAF01 using  d= 516 nm. The fitting parameters obtained from the 

Cauchy formula are  A = 1.956 and 
10 26.73 10  cmC    (based on B = 0.0172 m

2
). 

 

Phonon 

number 
j  

(cm
1

) 

pj  

(cm
1

) 

j  

(cm
1

) 

1 187.3 247.1 215.9 

2 254.9 373.1 45.1 

3 336.9 683.3 62.4 

4 402.9 537.8 56.6 

5 506.0 371.1 54.1 

6 594.8 118.4 26.2 

 

against the phonon resonances. The uncertainties are therefore estimated to be about 2% 

in j and 5% in p,j and .  

Furthermore, as shown in Fig. 4.5, the multiple-oscillator model can be used to 

predict the radiative properties in the NIR/MIR regions as well. Due to the fixed value of 

A from the ellipsometry and fixed thickness from FTIR, the agreement of experiments 

with the multiple-oscillator model is not as good as that with the single-oscillator model. 

A better agreement can be obtained by reducing the film thickness by 4%. Another 

feature is that the multiple-oscillator model seems to over predict the transmittance 

between 650 and 800 cm
1

; this is probably due to limited spectral region of the FIR data. 

Because of the incorporation of the Cauchy dispersion in the Lorentz oscillator model 

and the negligible contributions of the oscillators in the VIS/NIR spectrum, Eq. (4.6) 

gives the refractive index from 370 to 1000 nm essentially the same as Eq. (2.12). In the 

region up to  = 1500 nm, this dispersion is still valid. Therefore, the expression given in 

Eq. (4.6), with parameters specified in Table 4.2, gives a broadband dielectric function 

model of HfO2 films for 370 nm ≤  ≤ 500 m,  
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4.3 Dielectric Function and Optical Constants 

 The real part (  ) and imaginary part (  ) of the dielectric function are plotted in 

Figs. 4.8(a) and (b), respectively, using the single-oscillator and multiple-oscillator 

models described previously. The FIR phonon contributions are shown as five peaks in 

   in addition to the rapid change of the slope near 200 cm
1

. This is because of the large 

damping coefficient for this phonon. As expected, the single oscillator model gives a 

broad absorption band as evidenced by the broad peak in    centered around 400 cm
1

 

with a large damping coefficient, which corresponds to the width of the peak in    [99]. 

Note that    is somewhat smaller with the multiple-oscillator model than with the single-

oscillator model between 600 and 800 cm
1

, which may be the reason for the over 

prediction of the transmittance by the multiple-oscillator model. Beyond 1200 cm
1

, 

absorption becomes very weak and    is very similar between the two models, except the 

different constant and the additional dispersion resulting from the second term in the 

multiple-oscillator model.  

 The optical constants are calculated from Eq. (4.6) and plotted in Fig. 4.9 for the 

wavenumber range from 20 to 26000 cm
1

, i.e., over three orders of magnitude. It can be 

seen along with the Fig. 4.8(a) that the dielectric constant in the low frequency region 

approaches 14, which is somewhat smaller than the measured value of 22-25 at 1 MHz 

[25,107]. The reason for this disagreement needs further investigation. In the NIR/VIS 

region, n is near 2 and increase slightly with , in agreement with Fig. 4.6(b) which is 

plotted in terms of wavelength.  



 63 

 

 
Figure 4.8 MIR and FIR dielectric functions of HfO2 calculated from both the single oscillator 

and multiple oscillator models: (a) real part; (b) imaginary part. 
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Figure 4.9 Optical constants of HfO2 calculated from the multiple-oscillator model, in a broad 

spectral region from 20 to 26000 cm
1

. The wavenumber is plotted in log scale. 
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CHAPTER 5 

DIELECTRIC FUNCTION OF MAGNETRON SPUTTERED TA2O5 

THIN FILMS 

 

 In this chapter, the dielectric functions of amorphous and nanocrystalline Ta2O5 

films are determined, at wavenumbers from 10 to 20,000 cm
1

, by analyzing 

ellipsometric measurements in the visible and near-IR regions and by fitting the 

transmittance and reflectance measured with Fourier-transform infrared (FTIR) 

spectrometers from the near- to far-IR regions. Thin Ta2O5 films are deposited on Si 

substrates using reactive magnetron sputtering. The phase and structure of the as-

deposited and annealed samples are also characterized. The location and strength of 

individual phonon bands are determined in the mid- and far-infrared regions. The effect 

of cracking in the annealed films is considered using a volume-scattering model. The 

effects of free carriers and adsorbed water moisture in the amorphous films are also 

considered in the development of the dielectric function model. 

5.1. Film Characterization 

 A magnetron sputtering system described in chapter 4 and in Ref. [95] was used 

to deposit thin Ta2O5 films on Si substrates. The deposition conditions were the same 

with the exception of the substrate temperature, which was 100 °C. Detailed parameters 

of the six samples used for the present study are listed in Table 5.1. Two of them were 

left as-deposited and the rest were annealed in air at 800 °C for one hour. The deposition 

parameters such as gas flow rates and substrate temperature were chosen according to the 

literature [108–113] in order to obtain high-quality Ta2O5 films. It should be noted that 
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the far-IR measurements were not performed for the last two samples listed in Table 5.1, 

which had the thicker Si substrates. The same XRD and AFM described in the previous 

chapter were also used to characterize the film structures. 

A test film was annealed at various temperatures in air. Annealing in air at 800 °C 

for one hour yielded well-defined XRD patterns; therefore, all the annealed samples were 

treated under the same annealing condition. Figure 5.1 shows the XRD profile for TaO-

3a that matches well with the orthorhombic -phase (JCPDS: 25-0922), although some 

closely spaced peaks appear to be merged due to broadening [39,114,115]. The 

prominent peak in the (001) plane suggests anisotropic crystalline orientation due to the 

stress effect. Similar results were obtained for other annealed samples, but are not shown. 

It should be noted that there exists a hexagonal -phase of Ta2O5 (JCPDS: 19-1299) that 

has a diffraction pattern nearly overlapping that of the -phase Ta2O5 [39,40]. Both of 

these crystal phases are reported to occur in the literature at annealing temperatures close 

Table 5.1 Sample identification (ID) and parameters. In the sample ID, the last letter “u” indicates 

that it was unannealed (or as-deposited) and “a” indicates that it was annealed at 800 ºC in air for 

one hour. The unannealed Ta2O5 samples TaO-1u and TaO-2u are amorphous. The annealed four 

samples are nanocrystalline Ta2O5. The RMS roughness of the film is obtained from AFM. 

Sample ID 

Substrate 

thickness 

(m) 

RMS 

roughness 

(nm) 

Film thickness 

(Ellipsometry) 

(nm) 

Film thickness 

(FTIR) 

(nm) 

TaO-1u 432 4.1 1588 1589 

TaO-2u 432 2.6 492 506 

TaO-3a 432 14.5 1017 1035 

TaO-4a 432 20.4 462 478 

TaO-5a 750 3.6 347 353 

TaO-6a 750 3.3 174 179 
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to that used in the present study [11,39,40,114,115]. Hence, it is possible that both phases 

exist in the annealed films. The identification of the -phase is confirmed by the 

broadness of the peaks and the existence of several minor peaks in the XRD pattern. 

Therefore, it is presumed that the annealed samples are primarily orthorhombic -phase. 

The XRD peak associated with (001) plane in Fig. 5.1 is used to estimate the crystalline 

size, which is about 40 nm, according to Scherrer’s formula [116]. Hence the annealed 

films are identified as containing nanocrystalline Ta2O5. Note that the peaks at 2 = 29° 

 

Figure 5.1 X-ray diffraction profile of an annealed Ta2O5, sample TaO-3a, also shown are the pdf 

files for -Ta2O5 and -Ta2O5. Other annealed samples show nearly identical XRD profiles. Note 

that the as-deposited samples do not show any peaks in their XRD profiles, which are therefore 

not shown here.  
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and 37° are broadened due to the merging of multiple diffraction orders. The unannealed 

or as-deposited samples are amorphous as there are no distinct peaks in the XRD profiles, 

which are not shown here. To verify the composition of the fabricated films, X-ray 

photoelectron spectroscopy (XPS) was performed for an annealed and an unannealed 

sample after all the spectroscopic measurements. The samples were heated to 200 °C in 

ultrahigh vacuum to remove surface water. The analysis of the XPS of the Ta 4f peak 

reveals close to stoichiometric Ta2O5 in both the annealed and unannealed samples. 

 The AFM topography of two samples is shown in Fig. 5.2. The unannealed 

sample TaO-2u, shown in Fig. 5.2(a), does not contain any cracks. The presence of 

 

Figure 5.2 AFM topographies of (a) sample TaO-2u and (b) sample TaO-3a. 
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cracks can clearly be seen in Fig. 5.2(b) for the annealed sample TaO-3a. As can be seen 

from the AFM images and Table 5.1, the cracks have increased the root-mean-square 

(RMS) roughness that significantly exceeds the actual local surface roughness. Similar 

cracks in annealed Ta2O5 films have been reported by other researchers [40]. The crack 

development is mainly due to the considerable mismatch between the thermal expansion 

coefficients of Ta2O5 (4.68×10
−6

 K
−1

) and the Si substrate (1.10×10
−6

 K
−1

). The mismatch 

was reported in the literature as the main contributor to both stress and refractive index 

variation for the Ta2O5 films [117]. The compressive stress develops as the sample is 

heated to the annealing temperature, while the tensile stress develops during the sample 

cooling. For the two thinnest films, samples TaO-5a and TaO-6a, the stress may not be 

significant enough and hence the RMS roughness is on the same order of that of the 

amorphous films. 

 In addition, images of the surfaces were taken with an Olympus LEXT 3D 

Material Confocal Microscope over a larger surface area of 43×43 µm
2
. Two microscope 

images are displayed in Fig. 5.3. Figure 5.3(a) shows the unannealed sample, TaO-2u, 

which has a much smoother surface and no cracking. Figure 5.3(b) shows the surface of 

an annealed sample TaO-3a. The scaly appearance is due to cracking that occurs during 

annealing. Cross-sectional images of two films were also taken using scanning electron 

microscopy (SEM) at an inclined angle of approximately 45° to study their 

microstructure, as shown in Fig. 5.4. The unannealed sample TaO-1u, shown in Fig. 

5.4(a), does not display significant cracking or roughness. It can be seen in Fig. 5.4(b) 

that the annealed sample TaO-4a contains cracks that penetrate through the film. These 

cracks contribute to volumetric scattering and optical losses in the sample and need to be 

included in the modeling of the radiative properties that will be discussed in the following 

section.  
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Figure 5.3 Confocal microscope images of (a) sample TaO-2u and (b) sample TaO-3a. 
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Figure 5.4 SEM cross section images of (a) sample TaO-1u and (b) sample TaO-4a. 
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5.2 Film Analysis 

5.2.1 Dielectric Function Model 

 The optical constants of the Ta2O5 films are determined by the line-shape analysis 

using the description of the dielectric function given as [78] 

 

2
p,2 2

2 2
( )

j

j j j

A C
i


  

   
  

 
  (5.1) 

Usually, the first term on the right hand side of Eq. (1) is taken as a constant to reflect 

high-frequency contributions. In the present study,   is calculated from the refractive 

index following the Cauchy dispersion: 
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where  is the wavelength in vacuum and constants A and B can be obtained from 

ellipsometry data [95]. Note that band gap absorption is not considered since the band 

gaps of Ta2O5 are greater than 4 eV [41,48]. This treatment allows Eq. (5.1) to represent 

the dielectric function from 500 nm   all the way to the far-IR. The second term is a 

Drude free-electron term, which is included only for the unannealed samples due to the 

residual broadband absorption. The Drude term contains two adjustable parameters, 

namely, the plasma frequency p,0  and scattering rate 0 . The third term in Eq. (5.1) is 

the sum of N Lorentz oscillators, which correspond to the phonon absorption bands in the 

far-IR region. Each individual oscillator j has a center frequency ωj, a plasma frequency 

ωp,j, and a damping coefficient γj. Due to the practical limitations caused by the 

uncertainty in the data, the oscillators in the model may not correspond to all of the 

infrared-active phonon modes present in the material, especially if modes are very close 

in frequency or very weak. Stronger and broader phonon bands may mask some weaker 

phonon modes. The phonon modes can be predicted by ab initio simulation according to 
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the crystalline structure for similar materials [118];
 
however, not all of the modes may 

manifest in experimental measurements [49].
 
In addition, defect modes may arise from 

impurities present in the films [47,48]. Note that impurity modes are not distinguished 

from the actual phonon modes of Ta2O5 in the experimentally determined dielectric 

function. Thus, the oscillators obtained by fitting the IR spectra should be considered as 

effective phonon modes and represent the overall lattice vibration contributions. The 

dielectric function model does however provide an accurate description of the optical 

properties of the material in a broad spectral region and captures well the behavior of 

major phonon resonances. 

 The unannealed samples also have absorption band around the wavenumber of 

3400 cm
1

, which is characteristic of moisture absorption [47]. In order to account for the 

existence of moisture in the unannealed samples, the Bruggeman effective medium 

approximation (EMA), described in Eq. (4.5) in the previous chapter, is used to 

determine the effective dielectric function of the film, eff , assuming that a small amount 

of water is randomly dispersed in Ta2O5 [47,119]. The dielectric function of material A in 

Eq. (4.5) is of course that of Ta2O5 rather than HfO2. The value of eff is taken as the 

dielectric function of the moist Ta2O5 film, and is used to calculate the radiative 

properties of the film-substrate composite.  

5.2.1 Scattering Model 

 For the annealed samples with cracks, the transmittance and the film-side 

reflectance of the FTIR data exhibit some attenuation towards the near-IR end of the 

spectra. Attempts were initially made to include a surface roughness term according to 

the scalar scattering theory [78,93]. The predicted results also showed an attenuation in 

the substrate-side reflectance that contradicts with the experimental observation. In 

addition, when the ellipsometry data were analyzed, accounting for roughness did not 

improve the fitting. Therefore, the cracking effect cannot be well described by surface 
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scattering. A careful examination of Eqs. (3.1) – (3.3) reveals that a  is the only term that 

appears in T and Rf but not Rs. A volumetric scattering model is considered in the final 

analysis to better model the observed trends due to cracking of the thick annealed 

samples, i.e., TaO-3a and TaO-4a. It is assumed that scattering results in a reduction only 

in the transmission through the film, and the attenuation is wavelength dependent 

according to 
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 (5.3) 

Here, Sf is a fitting parameter that is related to the scattering cross-sectional area and the 

defect density, assuming independent scattering by small particles that follow Rayleigh 

scattering [93,120]. When a  in Eqs. (3.1) and (3.2) are substituted by a   from Eq. (5.3), 

both the transmittance and reflectance of the film side of the sample are reduced, while 

the substrate-side reflectance given in Eq. (3.3) is unaffected. This gives a reasonable 

interpretation of the experimental results to be discussed in the next section. It should be 

noted that volume scattering may also arise due to relatively large grains in the film. 

Hence, Sf may be considered as an effective lump sum of the volume scattering 

contribution. 

 The predicted radiative properties are fitted to the measured FTIR transmittance 

spectra using a simplex optimization algorithm that minimizes the standard error of 

estimate (SEE) [100,121]. It is assumed that   is the same as the average value obtained 

for either the unannealed or annealed samples from the ellipsometry data according to Eq. 

(5.2). The film thickness is related to the interference fringes and determined by fitting 

the FTIR data in the near- to mid-IR region. The obtained thickness is then used to fit the 

parameters in Eqs. (5.1) and (5.3) using far-IR transmittance. 

 The transmittance data agree well in the overlapping region between the purged 

FTIR and the vacuum far-IR spectrometer results. The reflectance measurement by the 



 75 

far-IR spectrometer is more reliable and allows the identification of some offset in the 

mid-IR measurements in some samples. The measured reflectance spectra are used to 

check the reasonableness of the model predictions. the classical Lorentz oscillator model 

discussed in the next section. 

5.3 Dielectric Function and Optical Constants 

5.3.1 Ellipsometric Results 

 The optical constants at wavelengths from 500 to 1000 nm are determined from 

the ellipsometry data. Each sample was fit individually to obtain the parameters A and B 

in the Cauchy dispersion, Eq. (5.2), and the film thickness. The absorption is neglected 

because the interband transitions occur at photon energies greater than 4 eV [41,47,48]. 

The resulting A and B values change little from sample to sample; therefore, only the 

averages of all A and B values for the two unannealed samples and those for the annealed 

samples are reported here. For the unannealed samples the average A and B are 2.06 and 

0.025 μm
2
, respectively. For the annealed samples the average values of A and B are 2.10 

and 0.024 μm
2
, respectively. All of the uncertainties in A and B are less than 0.02 and 

0.001 µm
2
, respectively.

 
Table 5.1 shows the thickness obtained from fitting the 

ellipsometry data with the Cauchy model. The agreement between the ellipsometry data 

and the model is very good for the unannealed samples as well as for the thinnest 

annealed samples. The average mean squared error (MSE) for the two annealed samples 

TaO-3a and TaO-4a with cracks is about five times larger than the rest. However, the 

coefficients A and B are all very close. The resulting refractive indices of n = 2.16 and 

2.20 for unannealed and annealed Ta2O5 films, respectively, agree with the typical values 

reported in the literature at  = 500 nm [6,43–45,47]. 
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5.3.2  Comparison of the Measured and Calculated Radiative Properties 

 While   in Eq. (5.1) can be fitted using the FTIR data, for consistency, it is 

taken instead from the Cauchy dispersion from Eq. (5.2) based on ellipsometry 

measurements. The film thickness is also fitted using near- and mid-IR transmittances, 

which are sensitive to the film thickness due to the interference effect. Despite the 

existence of cracking, the film thicknesses obtained from the ellipsometry are quite 

consistent with those from the FTIR measurements as shown in Table 5.1. The far-IR 

transmittance is used to fit the phonon oscillator parameters and the results are listed in 

Table 5.2. For the unannealed samples, the transmittance measured by FTIR is compared 

to the best fit curves as shown in Fig. 5.5. The agreement is generally satisfactory 

throughout the concerned spectral region. The dips in the far-IR transmission shown in 

Fig. 5.5(a) are due to interaction of light with phonon vibration modes in Ta2O5. Each of 

these dips is represented by an oscillator in the dielectric model. Some of the dips may 

also be caused by the Si substrate especially around 610 cm
1

, where there is a dip due to 

Si absorption. Due to the uncertainty of the data very weak phonon features are difficult 

to resolve.  

 The Drude term results in broad absorption and the plasma frequency and 

scattering rate are found to be p,0 6490   cm
1

 and 5
0 6.5 10    cm

1
 from the fitting. 

This extreme broadness can be attributed to the fact that the samples are amorphous and 

thus have a very large electron scattering rate. Based on the Drude parameters, the 

resistivity of the sample can be estimated to be 0.9 Ω·cm, which would be typical of a 

lightly doped material. The existence of free electrons in the unannealed samples is 

presumably due to a slight oxygen deficiency or sub-stoichiometry during the growth 

process, although other possibilities also exist [11,14,46]. According to Kulisch et al. 

[122], suboxides of Ta can contribute to a broadband absorption around  900 cm
1

, which 

is evident from Fig. 5.5(a). However, the XPS analysis does not show any apparent 
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suboxides of Ta in both the annealed and unannealed samples, suggesting that the oxygen 

deficiency is insignificant (see Appendix A for details). 

 The presence of moisture in the film is apparent from the dip in the transmittance 

around 3400 cm
1

. It is found using the EMA analysis from Eq. (4.5) that a volume 

fraction of water of 5% works best to model the moisture contribution to the dielectric 

 

Figure 5.5 Transmittance of samples TaO-1u and TaO-2u: (a) far-IR region from 10 to 1000 

cm
1

; (b) mid-IR region from 1000 to 10,000 cm
1

. 
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function. The addition of water matches the dip well at 3400 cm
1

, but is not broad 

enough to match the valley in transmittance. Therefore, another weak oscillator is added 

around 3000 cm
1

 to the dielectric function model (j = 6 in Table 5.2). This results in 

satisfactory agreement between the model prediction and the transmittance in the mid-IR 

region as shown in Fig. 5.5(b).  

 The thicker film sample, TaO-1u, exhibits more interference fringes than the 

thinner film sample, TaO-2u. The free spectral range or wavenumber interval between the 

interference maxima can be approximated by 1/ (2 )nd , where d is the film thickness. 

Due to absorption around 3000 cm
1

, the transmission of the thicker sample drops quite a 

bit in this region. It should be noted that the minimum transmittance can be estimated 

from the refractive indices of the film and substrate if absorption is negligible [95]. The 

introduction of the Drude term is necessary to predict the broadband absorption, allowing 

the prediction to match the data at the transmittance minima at 4700, 6250, and 7800 

Table 5.2 Parameters for the Lorentz oscillators. Note that the parameters that determine   from 

the ellipsometric measurements are (A = 2.06, B = 0.025 µm
2
 for amorphous Ta2O5; A = 2.10, B = 

0.024 µm
2
 for nanocrystalline Ta2O5).  

 

 Amorphous Nanocrystalline 

 

j 
j 

(cm
1

) 

ωp,j 

(cm
1

) 

j 

(cm
1

) 

 j 

(cm
1

) 

ωp,j 

(cm
1

) 

j 

(cm
1

) 

1 266 1040 188  91 260 74 

2 500 573 112  214 844 61 

3 609 634 88  324 391 73 

4 672 408 43  530 1019 142 

5 868 277 113  842 372 114 

6 3020 373 652     
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cm
1

. Note that the drop in transmittance close to 10000 cm
1

 is caused by the absorption 

of the substrate associated with the indirect band gap of Si near 1.1 eV. 

 The transmittance for two of the annealed samples is shown in Fig. 5.6. There is 

no need to include the Drude term in the dielectric function model, since the samples 

were annealed in air: the reaction with oxygen during the annealing process apparently 

 

Figure 5.6 Transmittance of samples TaO-3a and TaO-4a: (a) far-IR region from 10 to 1000 cm
-1

; 

(b) mid-IR region from 1000 to 10,000 cm
1

. 
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has improved the stoichiometry. The annealing has removed the absorbed moisture as 

well. After annealing, the low frequency phonon mode at 266 cm
1

 shifts to the lower 

frequencies at 214 cm
1

 and becomes narrow due to a reduction in the damping 

coefficient as shown in Table 5.2. This absorption band becomes much narrower and 

deeper as shown in Fig. 5.6(a). Another phonon mode is needed to model the small dip 

around 90 cm
1

. From Fig. 5.6(b), it is evident that there exists a gradual reduction in the 

transmittance from 3000 to 10,000 cm
1

 and this reduction is attributed to light scattering 

due to cracks or grain boundaries inside of the films. The scattering factor fS  for 

samples TaO-3a and TaO-4a is determined to be 5.3 and 5.1 nm, respectively.  

 Only the two thicker samples require the addition of volume scattering into the 

modeling, since cracking was not as significant in the two thinner samples. As shown in 

Fig. 5.7, the transmittance calculated for TaO-5a and TaO-6a using the dielectric function 

model determined for the two thicker annealed samples agrees well with the measured 

 

Figure 5.7 Transmittance of samples TaO-5a and TaO-6a. Note that the scale is zoomed from 500 

to 1500 cm
1

 to show features in the far-IR region more clearly. 
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spectra without introducing any volume scattering. The far-IR measurements were not 

performed on samples TaO-5a and TaO-6a. Strong absorption in the Si substrate near 

1100 cm
1

 can be clearly seen in Fig. 5.7. 

 Figure 5.8 compares the measured and calculated reflectance for TaO-3a for both 

film-side incidence and substrate-side incidence. There is a gradual attenuation in Rf as 

shown in Fig. 5.8(a), but not in Rs as shown in Fig. 8(b). The substrate-side reflectance 

 

Figure 5.8 Reflectance of sample TaO-3a: (a) film-side; (b) substrate-side. Note that the film-side 

reflectance decreases toward shorter wavelengths due to scattering, while the substrate-side 

reflectance is unaffected. 
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does not show any decrease toward short wavelengths and this is not typical with surface 

roughness or absorption. The volumetric scattering model captures the phenomenon 

reasonably well, especially considering the simplicity in the model and its assumption of 

a spherical geometry and Rayleigh-type independent scattering. The model may break 

down in the short wavelength end of the spectrum, resulting in large disagreement in T 

and Rf as shown in Figs. 5.6(b) and 5.8. 

 It is worth noting that additional reflectance data was also collected but not used 

in the fitting. Since the reflectance data in the mid-IR region is less reliable than the 

transmittance data, including them in the fitting would increase the uncertainty. The 

largest SEE between the model and the experimental data for the transmittance of all the 

samples was 0.023 and the average was 0.014. The agreement between the reflectance 

data and the model prediction is good with an average SEE of 0.024. 

5.3.3 Comparison with Available Constants 

 The dielectric function obtained for the amorphous Ta2O5 films is plotted in Fig 

5.9 in comparison with that obtained from Franke et al [47]. The results are shown from 

10 to 1500 cm
1

 since there is little variation beyond 1500 cm
1

, although there are some 

features due to moisture and the oscillator near 3000 cm
1

. Note that the resulting 

dielectric function is the effective dielectric function expressed in Eq. (4.5). However, in 

the spectral region shown in the plots, the effect of 5% water content is negligible, i.e., 

eff  . Toward large wavenumbers, the real part approaches A
2
 and the imaginary part 

becomes very small. The residual    is largely due to the free-electron contribution. The 

phonon features can be clearly seen from the peaks in the imaginary part [78,99]. The 

Drude term also increases the imaginary part of the dielectric function toward the smaller 

wavenumbers. The agreement in the dielectric function obtained from this work and from 

Ref. [47] is reasonable at wavenumbers exceeding 600 cm
1

. However, the phonon 
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Figure 5.9 Fitted dielectric function of the amorphous Ta2O5, in comparison with the values from 

Ref. [47]: (a) Real part; (b) Imaginary part. 

modes below 500 cm
1

 were not resolved in Ref. [47], resulting in a large deviation at 

smaller wavenumbers.  

 Figure 5.10 shows the real and imaginary part of the dielectric function for the 

annealed samples, compared with those from Ref. [48]. A distinction from the amorphous 

Ta2O5 is the sharp peak at the phonon resonance of 214 cm
1

 in the imaginary part. While 
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the oscillator strength defined as 2 2
, /j p j jS    is similar to the mode in the amorphous 

film at 266 cm
1

, the reduction in the damping coefficient j  gives rise to a narrow band 

in    [99]. This results in the stronger absorption observed in the transmittance spectrum 

shown in Fig. 5.6(a). Without the Drude term, the imaginary part is negligible at 

wavenumbers exceeding 1000 cm
1

. Hence, the nanocrystalline Ta2O5 has negligible 

 

Figure 5.10 Fitted dielectric function of the annealed Ta2O5, in comparison with the values from 

Ref. [48]:  (a) Real part; (b) Imaginary part. 
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absorption in the visible to about 10 m wavelengths. Towards small wavenumbers, the 

imaginary part of the dielectric function drops quickly without free-electron absorption, 

as shown in Fig. 5.10(b). The real part approaches a dielectric constant of 33 for the 

annealed films and 23 for the amorphous films. These values are within the range 

reported for the low-frequency (1 MHz) dielectric constants [11,114]. 

 

  

 

 

 



 86 

CHAPTER 6 

ANALYSIS OF A NEAR-FIELD THERMOPHOTOVOLTAIC WITH 

A BACKSIDE REFLECTOR 

 

 In this chapter the fluctuation dissipation theorem is used to determine the 

absorption of radiant energy inside of a TPV cell due to direct emission from a tungsten 

emitter. The gap spacing between the cell and emitter is close enough that near-field 

enhancement of the heat flux is significant. Once absorbed energy is known as a function 

of depth into the cell, the spatial photocurrent generation inside and the efficiency of the 

cell can be modeled using the minority carrier diffusion equations. The efficiency 

improvement effects of adding a backside mirror to reduce subbandgap radiation and 

improving the surface recombination rates are investigated. 

6.1 Current Generation and Transport 

 The thermal radiation enhancement caused by the tunneling of electromagnetic 

waves across the vacuum gap from a hot thermal emitter can result in an enhancement of 

the energy throughput beyond the black body limit, and as long as the photon energy 

exceeds the band gap energy it will be absorbed and generates electron-hole pairs. Note 

that in solar cells the top layer of the cell is sometimes referred to as the emitter; 

however, for this work we refer to the emitter specifically as the high temperature source 

of thermal radiation, which is a semi-infinite tungsten half space.  Because of the small 

penetration depth of near-field thermal radiation the majority of the radiation may be 

absorbed very non-uniformly throughout the depth of the cell [123]. It is thus important 

to model the minority carrier recombination as realistically as possible, such as in ref. 

[55]. In order to model current generation and recombination inside the cell, the cell 

structure is divided into N discrete layers as shown in Fig. 6.1. The same number of 
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layers is used for the Poynting vector and current generation calculations. Each layer is 

assumed to be homogenous, isotropic, and isothermal, and the governing equations of 

current transport are solved within the cell using a finite difference method. For the 

purposes of our calculations the entire cell is taken to be isothermal at 300 K. The 

governing equation for minority carrier transport, including the recombination, 

generation, and diffusion of minority carriers, is given by 

  
2

2
, 0

d n n
D g z

dz




 
    (6.1) 

where n is difference between the number of minority carriers and the equilibrium level, 

which is based on the temperature and doping concentration at each location; D  is the 

diffusion coefficient based on the carrier mobility; g is the local photo-generation rate of 

 
Figure 6.1 TPV schematic showing the p on n configuration of the TPV cell. The cell itself is 

divided into N discrete and the minority carrier diffusion model is solved with a finite difference 

method. 
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minority carriers; and   is the minority carrier recombination rate. The minority carrier 

generation rate is the ratio of absorbed energy flux over the photon energy or thus the 

photon flux per unit volume for a discrete layer l is given by 

   ,l
l

l

Q
g

t E





   (6.2) 

 where ,lQ  is the spectral heat flux absorbed in layer l that has photon energies above 

the bandgap, lt  is the thickness of the discrete layer l, and E  is the photon energy. The 

minority carrier equation can be solved along with Poisson’s equations for the electrical 

potential in the TPV cell. Bulk recombination is simplified under a relaxation 

approximation using an effective relaxation time , and the surface recombination due to 

defect bands is combined into an effective recombination velocity represented by the 

following boundary condition. 

 surf
surf

d n
D S n

dz


   (6.3) 

where S is the surface recombination velocity. However, to simplify the calculation we 

apply the depletion region approximation to the Poisson’s equations and assume an 

abrupt junction between the p and n layers of the TPV cell. Under this approximation the 

depletion region thickness is given by 

 A D
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where the built in voltage is given by 
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 (6.5) 

The new variables introduced in Eqs. (6.4)  and  (6.5) are the acceptor concentration AN , 

donor concentration DN , dielectric constant of the cell  , and the intrinsic carrier 
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concentration in , and q is the fundamental charge of an electron. This study utilizes the 

same parameters used in ref. [55], where the p-layer is doped with a concentration of 10
19

 

cm
-3

 and the n-layer has a doping concentration of 10
17

 cm
-3

. All of the other properties 

of the In0.18Ga0.82Sb ternary alloy are taken from Gonzalez-Cuevas et al. [124]. The 

values used in ref. [55] are taken as the reference parameters. The bandgap of the alloy of 

choice, In0.18Ga0.82Sb, is 0.56 eV (2.22 m). Some of these parameters are varied to study 

their effect on the efficiency. The minority diffusion of electrons in p-region is described 

by the following parameters 2 1
e 125 cm  sD  , e 9.75 ns  , 4

e
110  m s7.4S  and 

has a width of  p 400 nmW  . In the n-region, hole minority diffusion is described by the 

following parameters 2 1
h 31.3 cm  sD  , h 30.8 ns  , 1

h  m0  sS  and has a width of  

n 10 μmW  . Finally, the width of the depletion region is dp 100 nmW  . The emitter 

temperature reference value is H 2000 KT  and the TPV cell is at L 300 KT  . 

 Under the depletion region approximation any minority carriers that reach the 

depletion region will be swept away by the built-in electric field generated in this narrow 

region. Thus in the depletion region, by neglecting recombination, the current density due 

to absorption in the depletion region is given by  

 
g

dp dp dp0
J qg W d


   (6.6) 

Since under the depletion region approximation we have neglected the electric field in the 

quasi-neutral regions of the TPV cell the current in the n and p regions of the cell are 

given by the diffusion current density 

 
d

J qD
d

n

z
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
 (6.7) 

The total photo-generation current density in the cell due to photogeneration in the n and 

p regions is given by integrating the photon flux over all wavelengths up to the 

wavelength at the bandgap, at the depletion region boundary. 
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  g

p p0
J J z W d



    for p region (6.8) 

  g

n p dp0
J J z W W d



    for n region (6.9) 

where the current density is determined from the minority carrier diffusion equations and 

thus accounts for the bulk and surface recombination. The total photocurrent generation 

is thus the sum of all three currents 

 ph dp n pJ J J J    (6.10) 

In order to determine the maximal power output of the cell the dark current density of the 

cell must be taken into account, which for an ideal diode the saturation current is given 

by 
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where e and h refer to electron and hole minority carriers and indicate the properties of 

the p and n doped regions, respectively. Equation (6.11) implicitly assumes that the 

recombination velocity at the top of the cell does not affect the dark current or 

specifically that the diffusion length, L D , is much larger than the width of the 

quasi-neutral region of the cells p,nL W . In general the surface recombination velocity 

may need to be considered in the dark saturation current calculation [125]. Furthermore, 

Laroche et al. [3] discussed the effect of carrier density on the relaxation time and 

showed that near-field effects can be neglected. In order to stay consistent with Park et al. 

[55], Eq. (6.11) was used and it was confirmed that the error in the maximal power output 

associated with Eq. (6.11) would be less than 5% for all the gap distances when 

compared to the maximal power with the exact solution for the dark current, even though 

the dark current itself may change significantly, it remains small compared to the 

generated photocurrent. Under a forward bias, the cell will generate a dark current when 
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it is not illuminated. The total current of the cell operating under a forward bias will be 

the photocurrent minus the detrimental dark current, the total current is therefore 

  ph 0 Bexp 1J J J qV k T      (6.12) 

where it is assumed the dark current generation due to recombination in the depletion 

region is negligible, and is calculated using the Shockley equation for an ideal diode 

[126]. The maximal output power can then be calculated from the current voltage 

characteristics of the cell by setting the derivative of the expression for power to zero, in 

the usual way resulting in an optimal power given by 

 
 

 
 

ph 0

E ph oc

ph 0 ph 0

ln ln /1
1 1

ln / ln /

J J
P J V

J J J J

   
      

      

 (6.13) 

The open circuit voltage is given by setting the current to zero and finding 

   oc B ph 0ln 1V k T q J J  . Finally the efficiency of the TPV cell is defined as the 

ratio of the generated electric power to the radiative flux at the surface of the cell 
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which even for near-field, must still be governed by the second law of thermodynamics 

and will never exceed the Carnot efficiency which for our case of an emitter at 2000 K 

and TPV cell at 300 K is 85%. The described procedure is the same general calculation 

procedure following Ref. [55] and thus some of the less important details about the 

calculation are left out, but can found within that reference and those therein. 

6.2 Results and Discussion 

6.2.1 Minimizing Sub-Bandgap Radiation 

 Park et al. [55] mentioned that a large amount of sub-bandgap radiation is lost in 

their analysis because the cells are assumed to be semi-infinite. Because of the large 
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penetration depth of sub-bandgap radiation a large portion of this radiation can be 

reduced by simply adding a back side reflector. In order to realistically estimate the 

enhancement in the efficiency by reducing the sub-bandgap radiation, an Au layer is 

added to the backside of the In0.18Ga0.82Sb cell (See “Gold Reflector” in Fig. 6.1). Au is 

chosen because of the high reflectivity in the IR region of the spectrum which is below 

the bandgap of the TPV cell. For modeling purposes, the optical constants of Au are 

taken from Palik [90]. For an emitter at 2000 K the change in the 100% quantum 

efficiency curve and the efficiency modeling carrier recombination is shown in Fig. 6.2.  

Because of the reduction in sub-bandgap wasted heat the 100% quantum efficiency is 

 
Figure 6.2 The efficiency of a TPV cell with a tungsten emitter at 2000 K with and without mirror 

on the backside to reduce sub-bandgap radiation. The mirror increases both the ideal and actual 

efficiency of the TPV based on the current generation calculated from the minority diffusion 

equation. 
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higher for the cell with the reflector. For similar reasons the efficiency in the cell with 

recombination is also higher, but the current cell still suffers from poor performance at 

small gap distances even with the mirror. The performance enhancement at 2000 K peaks 

around ~15% relative to the original efficiency. The efficiency curve is fairly smooth 

function of gap distance without a mirror except, at larger gap spacing where there are 

interference effects. The presence of a mirror causes the efficiency curve to be less 

smooth due to additional interference effects. 

 At lower temperatures, the characteristic wavelength of light is red-shifted and the 

importance of a reflector becomes increasingly important in relative terms. The 

temperature dependence of the efficiency enhancement is shown in Figs. 6.3(a) and (b). 

Figure 6.3(a) shows the absolute efficiency as a function of gap spacing for different 

emitter temperatures. In general the overall efficiency is worse at lower temperatures. 

The relative efficiency improvement by adding the mirror is calculated by taking the ratio 

of the difference in efficiency with and without the mirror over the efficiency without the 

mirror, Au( )   , and is displayed in Fig. 6.3(b). In Fig. 6.3(b) it is shown that at 

lower emitter temperatures, around 1250 K, the relative performance enhancement is 

much higher, peak around ~35%. Furthermore, because of the mirror interference effects 

are observed. The interference effect is the cause of the jaggedness of the curves in Fig. 

6.3(b). Because of the red-shifting of the characteristic frequency a mirror or filter 

becomes an essential component of any high performance near-field TPV systems. Since 

2000 K is on the high end for the temperature of the potential sources, mirrors and filters 

specially designed for near-field are extremely important for most available temperature 

sources. At extremely small gap (<10 nm) tunneling of high frequency radiation is more 

significant and the mirror is not as effective; however, such small gap spacings may not 

be realistic to construct with current technology. 



 94 

  

 
Figure 6.3 A study of the efficiency improvement of the mirror at different tungsten emitter 

temperatures: (a) the absolute efficiency with and without the mirror at various temperatures and 

(b) the relative improvement in efficiency. 
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The effect of the mirror on the heat flux is discussed next. Figure 6.4 shows the z-

component Poynting vector as a function of wavelength and depth into the solar cells. 

The emitter temperature is set at 1500 K and the vacuum gap spacing is d = 10 nm. The 

results without the Au mirror are shown in Fig. 6.4(a) and that with mirror are in Fig. 

6.4(b). From this figure one can deduce the peak wavelength as well as get a general idea 

of the penetration depth of near-field thermal radiation. The corresponding reduction in 

radiation can be seen in the sub-bandgap region where the penetration depth is clearly 

very high in Fig. 6.4(a) because the intensity does not change with depth by any 

significant amount. However, for frequencies below the bandgap energy the penetration 

depth is much smaller and most of the energy is absorbed in the vicinity of the surface. 

Figure 6.5 shows the overall Poynting vector at the surface of cell as a function of 

wavelength for TH = 1500 K and d = 10 nm It can be seen that the heat flux is reduced at 

longer wavelengths when the mirror is present. A reduction to the right of the vertical line 

showing the band gap location is desired because this is wasted energy. The mirror also 

reduces some of the radiation with energy above the band gap which has a larger 

penetration depth, although undesirable this does not have a significant negative effect on 

the efficiency of the cell. Given the geometry of the cell and the small penetration depth 

of near-field radiation there are not many down sides to including a mirror directly 

attached to the backside of the cell, which can also be used as an electrical contact. Since 

the base of the cell is longer than the diffusion length, which is ~9 µm, the large surface 

recombination velocity associated with an Ohmic contact does not seem to be an issue to 

the overall efficiency of the cell. For small cells it may be desirable to consider the 

analysis with a back side field. Similar results can be achieved with filters, but the 

addition of a mirror is a much simpler solution. 
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Figure 6.4 Contour plot showing the Poynting vector as a function of depth for various 

wavelengths with a 1500 K emitter and a gap spacing of 10 nm: (a) without a backside reflector 

and (b) with a backside reflector, showing the reduction in Poynting vector beyond the bandgap. 
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6.2.2 Minimizing Recombination Effects.  

 Because of the ultra-small penetration depth of near-field radiation the 

recombination effect near the surface is extremely important. By reducing the effective 

recombination velocity at the top surface and recombination with the cell, the efficiency 

of the cell will approach the quantum efficiency limit. The trend shown by Park et al. [55] 

was that the efficiency will decrease toward smaller gap spacing. This trend is primarily 

due to surface recombination effects since the penetration depth of evanescent waves is 

characteristically p 1 (2 )xk   [123]. Thus, at a smaller gap spacing the carrier 

concentration is higher at the surface, because radiation with a larger xk  and smaller 

penetration depth can tunnel across the gap causing the efficiency to become dominated 

by the surface recombination losses. The importance of the small penetration depth and 

 

Figure 6.5 Poynting vector at the TPV surface at varying wavelength. Beyond the bandgap the 

reduction in the Poynting vector can be seen. 
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recombination velocity at the surface were pointed out by Park et al. [55], but the effect 

of reducing surface recombination was not analyzed in detail in that work. When not 

considering the recombination at surface contacts, the recombination velocity of Se = 

7×10
4
 m/s used in that work may be on the high end for some III-V semiconductors, 

which can have notably lower surface recombination velocities than Si solar cells.  

The effect of altering the recombination velocity at the top surface is shown in 

Figs. 6.6 (a) and (b). The calculation is based on the properties given in Section 2 at an 

emitter temperature of 2000 K where (a) has and (b) does not have the mirror. It appears 

from the figure that below a value of Se of approximately 1,000 m/s the efficiency does 

not improve much with further reducing surface recombination velocity, this value of 

surface recombination velocity could be achieved with a passivated surface. When the 

recombination velocity becomes this low, the reduction below the 100% quantum line 

efficiency line is due to bulk diffusion recombination limitations. The difference between 

the mirror and no mirror configuration is an efficiency offset at larger gap spacings, but 

the two become the same at smaller gap spacings where the long wavelength radiation is 

relatively less significant.  

Figure 6.7 (a) shows the carrier concentration at the surface of the cell, which is 

proportional to the surface recombination rate under our model. The surface 

recombination rate can be found from 

  surf e 0R S n z   (6.15) 

On the left vertical axis of the figure is the total bulk minority carrier recombination rate 

in the p-layer given by 

 bulk

1

M
l

l

l

n
R t




  (6.16) 

where M is the number of layers in the p-region. Note that bulkR  represents the 

integration of the recombination rate per unit volume over the p-region. From Fig. 6.7(a) 
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i

t can be seen that for small recombination velocities bulk recombination is dominant and 

remains fairly constant as the recombination velocity increases until surface 

recombination takes over as the dominant mechanism. Eventually, the overall carrier 

concentration and bulk recombination rate drops with increasing surface recombination 

velocity, because of the large carrier losses at the surface. Figure 6.7(a) can be 

 

Figure 6.6 Efficiency improvement by reducing recombination at the top surface with an emitter 

of at 2000K: (a) with a mirror and (b) without a mirror. If a low enough recombination velocity 

can be achieved the trend of efficiency toward smaller gap spacing reverses. 
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Figure 6.7 For an emitter at 2000 K and backside mirror: (a) Surface minority carrier 

concentration and bulk recombination rate at different Se and (b) ratio of bulk recombination rate 

to surface recombination rate with the transition point between the dominant mechanism shown 

as the critical surface recombination velocity, Se,c. 

understood in conjunction with Fig. 6.7(b), which shows the ratio of Eq. (6.16) to Eq. 

(6.15) at different surface recombination velocities with a gap spacing of 10 nm. In Fig. 

6.7(b), the critical surface recombination velocity, e,cS , is shown and is defined as when 

the ratio, bulk surfR R , becomes equal to one. At lower surface recombination velocities 

this ratio will be larger than one and surface recombination will not be the dominant 
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source of recombination losses. Below this recombination velocity the majority of 

recombination will be due to diffusion and will depend on the thickness of the top layer 

and the relaxation time of minority carriers.  

 It is obviously desirable to prepare the surface of the TPV cell, or choose 

materials, so that the effective recombination velocity is smaller than this number (Se,c 

approximately 40 m/s), such that the performance will not be drastically altered by the 

small penetration depth associated with near-field enhanced radiation. This gives an 

additional criterion that the surface preparation must meet for near-field TPV devices 

which will differ from traditional TPV cells because of the difference in the penetration 

depths associated with evanescent waves in the near-field and propagating waves in the 

far-field. Furthermore, the choice of contacts and preparation of the contacts on the front 

surface must be chosen so that the effective average surface recombination velocity, such 

as estimated in Ref. [125], is smaller than this critical value. Below this value 

enhancement of the cell will depend on other factors such as reducing bulk recombination 

or changing the spectral distribution of the source. 

 A thin window layer could potentially be used to reduce the surface 

recombination velocity but the tradeoff in heat flux must be considered. Fu and Tan [127] 

considered adding a thin layer of SiC to the top surface to one of two half-spaces and 

determined that there would be significant reduction of the near-field heat flux at small 

gap spacing for a 10 nm layer. It is expected that the effect would be similar for a suitable 

passivation layer, this reduction in heat flux is similar to the reduction in flux associated 

increasing the gap spacing and therefore if the layer is non-participating a high refractive 

index may be desirable.  

 A suitable layer would need the following characteristics: a higher bandgap 

energy, superior minority carrier mobility, low defect density, and a suitably higher 

conduction band potential in order to prevent minority carrier diffusion to the surface of 

the cell [125]. The layer would need to remain sufficiently thin, because a thin layer will 
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not have a less significant effect on the electric field generated by fluctuating currents in 

the emitter, to not adversely affect the heat flux. There is some flexibility with 

semiconductor material choice, as long as lattice matching condition is met. The critical 

thickness can be found from the lattice mismatch, f s ff a a a  , where fa  is the film 

(window) lattice constant and sa  is the substrate (TPV cell) lattice constant. The critical 

thickness of a film is approximately the lattice constant of the substrate divided by twice 

the mismatch, s 2a f . Conveniently for a thickness less than the critical thickness, the 

lattice will conform to the lattice structure to some extent meaning that there are a 

broader number of semiconductor materials that may work as layer that reduces the 

surface recombination velocity.  

The combined effect of improved surface recombination and sub-wavelength 

reflection were illustrated in Figs. 6.6 (a) and (b). In addition to reducing the surface 

recombination we consider how altering the p-region thickness, Wp, affects the efficiency 

of the cell. Park et al. [55] and Francouer et al. [56] considered a thickness of 400 nm for 

the top (p-layer) region. High efficiency cells might have thinner layers than 400 nm, a 

smaller top layer thickness will improve the efficiency slightly by reducing the amount of 

diffusion losses in the top layer where most of the radiation is absorbed in the near-field 

case. The efficiency improvement with changing thickness of the top layer is shown in 

Figs. 6.8 (a) and (b), with and without the mirror, at an emitter temperature of 2000 K. 

Under the current model decreasing the top layer thickness has resulted in more 

photocurrent generation closer to the depletion region. This will lead to lower diffusion 

losses, but the performance will still suffer from the effects of the large surface 

recombination rate. Additionally for the thinner p-layer the effect from surfaces on the 

dark current may be more significant, it may also be more important to avoid some of the 

simplifications made in this study for small p-layers. One may also notice that for the 

small p-layer thickness of 100 nm, the efficiency trend appears different with and without 
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the mirror toward smaller gap spacings. This is because the mirror enhances at larger gap 

spacings but has no effect at smaller gap spacings where the two figures will have the 

same efficiency value in the limiting case of zero gap spacing. Thus the mirror efficiency 

 

Figure 6.8 Efficiency improvement for varying thicknesses of the p-region with a 2000 K emitter: 

(a) with mirror and (b) without mirror. Improvement is due to reduction in bulk recombination. 
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curve appears to go down because the mirror is no longer helping improve efficiency 

toward 1 nm gap spacing. 
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CHAPTER 7 

ENERGY STREAMLINES IN UNIAXIAL ANISOTROPIC 

HYPERBOLIC METAMATERIALS 

 

 In the present chapter the flow of energy through metallodielectric photonic 

crystals (MDPCs) is studied. MDPCs have the potential to image or guide evanescent 

waves [67,68], and offer unique possibilities for applications in near-field devices. 

Hyperbolic modes associated with uniaxial anisotropic materials, which are predicted by 

EMA in MDPCs, can result in further enhancement of the heat flux of near-field 

radiation. Section 7.1 introduces some fundamental equations that extend the Green’s 

function method to uniaxial anisotropic media. In section 7.2 the lateral displacement of 

energy as it flows between two uniaxial anisotropic structures is determine from the 

energy streamline method. The Poynting vector inside the media and vacuum is 

calculated by applying the Green’s function method and fluctuation dissipation theorem. 

Two anisotropic structures with hyperbolic modes in the infrared region of the spectrum 

are considered. One structure with alternating layers of doped Si and Ge and a second 

structure with alternating layers of SiC and Ge are investigated. The average lateral 

displacement, penetration depth, and heat transfer rate are determined. From the lateral 

displacement and penetration depth, characteristic dimensions of the structure necessary 

for the plane wave 1D semi-infinite media assumption to remain valid are estimated. 

Finally, in section 7.3 some observations about the agreement between energy 

streamlines calculated by EMA and by TMM in MDPCs made of Ag and a dielectric are 

made. 
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7.1 Green’s Function for an Uniaxial Anisotropic Multilayer Structure 

 The Green’s function for multilayer uniaxial anisotropic structures with an 

arbitrary number of layers is calculated following the same procedure as the isotropic 

multilayer structure in chapter 2, with some necessary modifications. The dielectric 

function for a uniaxial anisotropic media with a vertical optical axis (in the z-direction) 

becomes a tensor of the form 
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 (7.1) 

The transverse dielectric function, t , is the same in the x or y direction for a uniaxial 

medium with a vertical optical axis. Because the dielectric function is a tensor, the 

electric displacement and electric field may no longer be in the same direction. The 

primary and reflected Green’s functions for a uniaxial anisotropic media become 

[128,129] 
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where e,sk  is the magnitude of the extraordinary wavevector in layer s,  e,s  and o,s  are 

the z-components of the wavevector for extraordinary and ordinary waves in layer s, and 
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0k  is the vacuum wavevector magnitude. The symbols  and  indicate whether the 

qprimary wave is traveling forward or backwards, respectively. A forward primary wave 

means that the receiver location is at a larger z coordinate than the source located at z , a 

backward primary wave would be the reverse situation. This distinction between forward 

and backward waves should be carefully noted when performing the integration over the 

source volume when the receiver is located in the source layer, the appropriate integrand 

of the primary Green’s function should be used depending on whether z z  or z z . 

The rest of the coefficients in Eq. (7.3) are discussed next, but first note that the ordinary 

component of the Green’s function for a uniaxial media with a vertical optical axis is 

calculated using the same procedure as TE waves in an isotropic medium, given in 

 

Figure 7.1 A multilayer structure which is composed of layers with a uniaxial anisotropic 

dielectric tensor. A source embedded in layer s located at the source location r  will generate an 

electric field in layer l at location r . 
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chapter 2. However, for extraordinary waves the calculation is different from isotropic 

TM waves. The extraordinary vector is now defined by 
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For this type of medium the dispersion relations for the wavevector components are 
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While the coefficients for ordinary waves, lA  and lB , remain unchanged from the 

isotropic TE wave amplitudes, for extraordinary waves the TM case needs a few 

modifications. The dynamical matrix used in the TMM in layer i is redefined as 
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Applying this change will give the correct magnetic field amplitude in each layer when 

using the TMM. The magnetic field amplitudes for extraordinary waves are found by 

solving the following equations 
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where ,i jM  is the transfer matrix between layers i and j using the new dynamical 

matrices in Eq. (7.7). Once 0,TMB  is solved the coefficient in any layer can be found 

from 
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Finding the amplitudes of the electric field from the magnetic field amplitudes for 

extraordinary waves is also different from the TM case for an isotropic media. For the 

extraordinary wave you must now multiply the primed coefficients, representing the 

magnetic field amplitudes, by        
2 2 2 2

e , , e , ,l t l z l s t s z s          , which 

accounts for the difference between the magnetic field and electric field amplitudes in 

layers l and s, to find the amplitude of the electric fields for use Eq. (7.3). From the 

electric Green’s function, the magnetic Green’s function can be evaluated from the curl 

of the electric Green’s function in the usual way, i.e. Γ G . 

 Finally, in the heat flux calculation the dielectric function must be treated as a 

tensor in the fluctuation dissipation theory. The Poynting vector equation should be 

modified as follows 
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which now accounts for the fact that the dielectric function is a diagonal tensor and not a 

constant ,with the addition of the tensor index ll to the imaginary part. 

 In the vacuum gap between two uniaxial anisotropic media, as shown in Fig. 7.2, 

the heat flux is given by Eq. (2.59), but the uniaxial Fresnel coefficients must be used. 
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This equation can be re-expressed in terms of the power transmission coefficient, j , 

after integrating over the frequency the heat flux in the z-direction, and is given by 
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where the j indicates the power transmission coefficient for either s or p polarization. The 

power transmission coefficient between two identical media, is given by  
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Figure 7.2 Geometry for two semi-infinite uniaxial anisotropic media used to represent two 

multilayer structures that are semi-infinite and can be represented by and effective medium with a 

dielectric tensor  . 



 111 

where jr  are the reflection coefficients for p and s polarization for the interface between 

the uniaxial media and the vacuum gap, using the anisotropic Fresnel coefficients from 

Eqs. (2.60)- (2.63). The  z-component of the wavevector in vacuum is represented as 0  

and is related to the radial component of the wavevector by 2 2
0 0k   . When 

0k   the waves become evanescent in the vacuum region, and only carry energy in the 

near-field. The power transmission coefficient of Eq. (7.14) has already been divided into 

the power transmission coefficient for propagating (top) and evanescent (bottom) waves 

in Eq. (7.14) .  

7.2 Energy Streamlines in Near-Field Uniaxial Materials 

 Consider two semi-infinite multilayer structures consisting of alternating layers of 

“metal” and “dielectric” separated by a vacuum gap d, as shown in Fig. 7.3. It was 

mentioned in chapter 2 that the terms are interpreted rather loosely. In this case the 

“metal” layer will refer to either doped Si (D-Si) or SiC, which in fact has negative 

refraction due to phonon modes and not free electrons. The dielectric layer is Ge. For this 

section, the period of the layers is taken to be infinitely small but the ratio of the layers 

will remain fixed. Ultimately, if the period is infinitely small each slab can be represented 

as a homogenous effective medium with a uniaxial dielectric function as shown in Fig. 

7.2. The temperature of each half space is indicated on the figure, one of the media is at 

300 K and the other taken to be at 0 K, so that we are only concerned with the emission 

in one direction. We can determine the optical dispersion of the effective structure for 

TM (extraordinary waves) from the Eq. (2.36). We chose the metal volume filling 

fraction and materials such that there will be hyperbolic modes in the IR region.  

 The real part of the effective optical constants, determined from the EMT by Eqs. 

(2.33) and (2.34), for an effective medium of n-doped doped Si (D-Si) and Ge with a 

volume filling fraction of D-Si of 50%, is shown in Fig. 7.4 (a). The D-Si is taken to have 
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doping concentration of 20 110  cmN  , and the optical constants of n-doped Si are 

calculated by the Drude model from the work by Basu on the optical properties of D-Si at 

room temperature [91]. Note that we used both slabs as having the room temperature 

properties, even though one of them is set to 0 K. Ge is taken to have a constant dielectric 

function in the region of interest, Ge 16  . In Fig. 7.4 (b) the real part of the components 

of the dielectric tensor of an effective medium of SiC and Ge are shown, with a SiC 

volume filling fraction of 30%. The optical properties of SiC are the handbook values 

[90]. The inset of Fig. 7.4 shows two multilayer stacks, one of D-Si/Ge in (a) and SiC/Ge 

in (b), which are represented by the effective homogenized media. The two hyperbolic 

modes of the effective structure are indicated in blue (I) and red (II). Recall that type I 

 

Figure 7.3 The structure under consideration consists of two infinitely repeating multilayer stacks 

of alternating “metal”, either D-Si or SiC, which are not metal but exhibit negative refraction due 

to a free electron Drude term and a Restrahlen band, respectively. The “dielectric” layer is Ge 

which is approximated with a constant dielectric function. 
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exhibits negative refraction, or a bending backwards of the Poynting vector, whereas type 

II has a negative z-component of the wavevector inside of the medium. The hyperbolic 

bands in the D-Si are due to free electron absorption, and thus the type II band appears 

fairly broad because of the long wavelength free electron absorption in the D-Si. The 

hyperbolic modes of SiC are narrow by comparison, due to the fact that the hyperbolic 

modes are caused by a narrow phonon mode in the IR associated with the Restrahlen 

band of SiC [90].  

 
Figure 7.4 (a) Real part of the EMA dielectric function of doped Si and Ge with f = 0.5 (b) and 

for doped SiC and Ge with f = 0.3. The inset shows a schematic of the structure of interest. 
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 Figure 7.5 shows the power transmittance of TM waves, p , as a function of 

wavevector and frequency for two semi-infinite D-Si/Ge (a) and two semi-infinite 

SiC/Ge (b) effective media, separated by a 10 nm vacuum gap. Note that the power 

transmission coefficient for the type II region, shown in Fig. 7.4 (a), is broad but is not 

nearly as high at large radial wavevectors like the peaks in SiC/Ge. Also note that D-

Si/Ge only has a large power transmission in the type II region around the area where the 

z-component of the wavevector inside of the D-Si/Ge structure becomes zero. For smaller 

 

Figure 7.5 Power transmission coefficient between (a) two semi-infinite EMA structures of doped 

Si and Ge with f = 0.5 and a gap spacing of 10 nm, (b)  between EMA structures of SiC and Ge 

with f = 0.3 and a gap spacing of 10 nm. (c) Spectral heat flux between two semi-infinite EMA 

structures of doped Si and Ge with f = 0.5 and a gap spacing of 10 nm, (d) two semi-infinite EMA 

structures of SiC and Ge with f = 0.3 and a gap spacing of 10 nm. 
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radial components of the wavevector around this location, the waves are forbidden by the 

band structure, and thus the power transmission coefficient is small. This same feature is 

observable in Fig. 7.5 (b) for SiC/Ge, the peaks are obviously sharper due to the 

sharpness of the phonon resonance that SiC has at 12 μm  [78]. Figures 7.5 (a) and (b) 

show the corresponding heat flux across the vacuum gap calculated from Eq. (7.13). In 

Fig. 7.5 (a) and (c) the broadness of the D-Si/Ge and the narrow feature of SiC/Ge are 

reinforced. The large peaks in SiC/Ge heat flux correspond the two hyperbolic bands. 

 In order to study the lateral displacement, several characteristic frequencies were 

selected in the region of interest 140.5 10 - 143 10  rad/s (37 – 6 μm ). The chosen 

frequencies correspond to representative frequencies in the different dispersion regimes. 

For the D-Si/Ge structure two of the chosen frequencies are 140.5 10  rad/s and 141 10  

rad/s, and fall in the type II hyperbolic region. The third frequency, 141.8 10  rad/s, has 

an x   that is near-zero. The fourth frequency of choice, 142.7 10  rad/s, falls in the type I 

hyperbolic region and thus we expect this frequency to exhibit negative refraction. The 

fifth and final frequency for the D-Si/Ge effective medium is 142.9 10  which has z   

that is near zero. These frequencies were chosen because they will have different and 

unique energy propagation characteristics. Figure 7.6 shows the heat flux evaluated as 

several of these frequencies as a function of the lateral component of the wavevector 

normalized by the vacuum wavevector magnitude for the D-Si/Ge structure. The 

normalized lateral wavevector is defined as 

 
*

0k


   (7.15) 

When the critical wavevector is larger than 1 the waves in the vacuum region will be 

purely evanescent. Some of the curves (type II hyperbolic modes) show a sharp peak in 

the curve at the critical wavevector, defined as 
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 c ek   (7.16) 

where the lateral component of the wavevector is equal to the extraordinary wavevector 

magnitude. At this critical wavevector there is a sharp decrease in the imaginary part of 

the z-component of the wavevector for some frequencies. The critical wavevector can be 

 

Figure 7.6 (a) Heat flux per unit frequency per unit wavevector versus the normalized 

wavevector at four select frequencies for D-Si/Ge multilayer f = 0.5. (b) Integration of the total 

heat flux over the wavevector space. The horizontal line shows where 50% of the heat flux falls 

above and below the median wavevector for each frequency. 
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seen clearly in Fig. 7.5 (a) from the contour plot around as the narrow red strip at the type 

II region. The power transmittance factor increases sharply because the lateral 

wavevector becomes large enough to satisfy the dispersion, i.e. when   becomes equal 

to the critical value. Comparison with the cumulative heat flux shows that there is only a 

small amount of energy contributed by smaller wavevectors. The median wavevector, the 

wavevector at which half of the energy is contribute by smaller, and half by larger 

wavevectors, is indicated by the crossing of the cumulative curve with the horizontal 

black 50% line.  

 The same diagram for the SiC/Ge effective medium is presented in Fig. 7.7 (a) 

and (b). The heat flux at several frequencies is shown in (a); the frequencies are listed in 

the legend of the figure. Only three typical frequencies are chosen since SiC has a much 

narrower spectral region where the heat flux is high, as was shown in Fig. 7.5 (d). Two of 

the frequencies, 141.82 10  and 141.54 10  rad/s, fall in the type I and II region, 

respectively. The third frequency, 141.59 10  rad/s, is an elliptical mode that lies in 

between the two bands in a region where the spectral heat flux is much smaller. The 

sudden drop in heat flux at 1.59 [10
-14

 rad/s] corresponds to the lateral component of the 

wavevector moving beyond the dispersion ellipse, since there are no hyperbolic or 

surface modes supported at this frequency the heat flux drops significantly. At smaller 

lateral wavevectors the SiC/Ge structure is more optically dense than air and has some 

propagating modes at this frequency that fall within the dispersion ellipse when * 1  . 

For the type II modes there is always a forbidden band inside of the hyperbola, this is 

why the heat flux remains small below the critical wavevector, c . For the type I modes 

there is no forbidden band and the heat flux increases continuously beyond the critical 

wavevector c . The cumulative heat flux of Fig. 7.7 (b) is similar to the cumulative heat 

flux plot for D-Si/Ge, and again shows the 50% line to indicate the median wavevectors 

above and below which 50% of the heat is transferred. The most noticeable difference 
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from the D-Si/Ge curves is the shape of the cumulative heat flux for the elliptical mode, 

which still has a significant contribution from modes that are evanescent in the vacuum 

but propagating in the SiC/Ge structure because it is more optical dense than the vacuum 

region. About 15% of the radiation at this frequency is still attributed to non-propagating 

 

Figure 7.7 Heat flux per unit frequency per unit wavevector versus the normalized wavevector at 

four select frequencies for SiC/Ge multilayer f = 0.3. (b) Integration of the total heat flux over the 

wavevector space. The horizontal line shows where 50% of the heat flux falls above and below 

the median wavevector for each frequency. 
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modes, and it is more spread out over a larger range of wavevectors. This explains the 

strange and sudden decrease in the slope of the cumulative curve for this frequency.  

 The penetration depth of each of the chosen frequencies for the D-Si/Ge structure 

is shown in Fig. 7.8. The penetration depth is found from the z-component of the 

wavevector, e.g. extraordinary waves according to 

 p
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2 e







 (7.17) 

A sharp peak in some of the curves corresponds to the same critical wavevector 

mentioned earlier, where the imaginary part of the z-component of the wavevector 

becomes small so that the penetration depth becomes relatively large at that particular 

wavevector. For large lateral wavevector components the distance that energy might 

travel in the medium may be very large because the slab acts as a waveguide, but since 

the medium is not without losses a large lateral displacement in the medium will result in 

a smaller penetration depth in the z-direction into the medium. In order to get 

characteristic z-dimension of the D-Si/Ge structure we define an average penetration 

depth according to the equation 
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where j is either s or p polarization. The average penetration depth as a function of 

wavelength is plotted in Fig. 7.8 (b). In Fig. 7.8 (a), it is clear that the power penetration 

depth remains small for the type II modes below the critical wavevector ( c  ), where 

there are no supported modes. The penetration depth increases sharply at the critical 

value. It will eventually decrease linearly for all modes, since at large   the power 

penetration depth is *
e 2 Rez x z           

. This penetration depth for uniaxial 

media is different from the isotropic penetration depth, which is given by  1 2   
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[75]. In theory, the penetration depth could be infinite for a hyperbolic media because of 

the opposite sign of the dielectric functions associated hyperbolic modes, but this is only 

if the dielectric functions were purely real. However, for real materials a small amount of 

loss will result in a small penetration depth for the very large   associated with small 

gap spacings. For type I modes there exists no critical wavevector, because the mode has 

no forbidden band, and the penetration depth simply decreases at 

 

Figure 7.8 (a) Normalized penetration depth of D-Si/Ge multilayer f = 0.5 with a gap spacing of 

10 nm at select frequencies. (b) Normalized average penetration depth of Si/Ge multilayer f = 0.5 

with a gap spacing of 10 nm.  
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higher  . The ENZ mode has a nearly constant penetration depth at smaller  , but 

decreases at larger values. Finding the median   from Fig. 7.6 (b), and comparing the 

average penetration depth integrated over all wavevectors with the penetration depths 

from Fig. 7.8 (a) at this wavevector, one may note that the values are very similar in 

magnitude. 

 The penetration depth diagram presented in Fig. 7.9 is for the SiC/Ge structure. 

The penetration depth curves are consistent with those of D-Si/Ge since for the type II 

mode (1.54×10
14

 rad/s) is forbidden below the critical wavevector, and then spikes at the 

critical wavevector. The type I mode (1.82×10
14

 rad/s) has a penetration depth that 

decays continuously. Finally, for the elliptical mode (1.54×10
14

 rad/s), there are some 

propagating modes when *
c1    . Since the SiC/Ge is optically denser than vacuum 

these modes are still propagating inside of the medium, but they are evanescent in the 

vacuum. However, a   beyond the critical value falls outside the dispersion ellipse, 

where there are no propagating modes, and the penetration depth falls significantly at 

larger wavevectors. Recall that at large   all the curves decrease linearly as in Fig. 7.8, 

since e Re z t z      
 

 [75]. The two hyperbolic modes have been chosen to 

correspond to the peak spectral heat fluxes in each region. At these frequencies more 

energy is carried by large lateral wavevectors, and the average penetration depth drops 

sharply at these locations, as shown in Fig. 7.9 (b). The penetration depth is still 

relatively large in parts of the hyperbolic medium as high as 10-100  the vacuum gap 

size of 10 nm. 

 Observing the energy streamlines for these characteristic frequencies at the 

median wavevector, we can estimate how large the lateral shift of energy is. This is an 

estimate of the other characteristic dimension of the structure, the lateral dimension, 

which is important for the validity of the 1D approximation of the Green’s function. 

Using Eq. (7.12) to find the components of the time average Poynting vector in the z-
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direction and in the radial direction, zS  and rS , the net heat flux in the normal and 

lateral directions can be determined. The energy streamlines are evaluated by tracing the 

slope from Eq. (2.67). The energy streamlines are shown at several different frequencies 

for D-Si/Ge in Fig. 7.10. From Fig. 7.10 (a) we can observe the streamlines of first three 

frequencies, which are listed in the legend, along with the chosen (median) wavevector of 

the streamline. The lateral displacement for each of these streamlines at two penetration 

 

Figure 7.9 (a) Normalized penetration depth of SiC/Ge multilayer f = 0.3 with a gap spacing of 10 

nm at select frequencies. (b) Normalized average penetration depth of SiC/Ge multilayer f = 0.3 

with a gap spacing of 10 nm. 
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depths inside of the source medium (bottom) are 194, 23, and 3.72 times the vacuum gap 

distance for the frequencies 1.8, 2.7 and 2.9 [10
-14

 rad/s], respectively. The last frequency 

is an ENZ mode and thus has a small lateral displacement. Note that the first and second 

frequencies are not plotted all the way to two penetration depths in the figure. The type I 

mode (2.9 [10
-14

 rad/s]) undergoes a negative refraction (the wavevector points left which 

is negative), which can be seen clearly from the figure. In order to facilitate heat transfer 

from these modes the lateral dimensions of the structure must be much larger than the 

 

Figure 7.10 (a) and (b) energy streamlines for median normalized wavevector at different select 

frequencies in D-Si/Ge multilayer structure with f = 0.5 at 10 nm gap spacing 
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combined lateral displacement in the source layer and vacuum. Usually, the lateral 

displacement will be largest inside of the source layer, but this will not always be the 

case, especially for an ENZ mode. Figure 7.10 (b) shows the energy streamlines at two 

other frequencies as indicated in the figure legend, the total lateral displacement inside of 

the source layer at two times the penetration depth are 3728 and 1604 times the vacuum 

gap for the frequencies 0.5 and 1  [10
-14

 rad/s], respectively. This indicates that inside of 

these medium the lateral displacements can be extremely large when compared to the 

penetration depths of Figs. 7.8 and 7.9.  

 Similar results are shown for the energy streamlines of the SiC/Ge structure in 

Fig. 7.11(a) and (b). In (a) the energy streamlines have an overall lateral displacement of 

321 and 99 times the vacuum gap at two penetration depths inside of the medium for 1.54 

and 1.82 [10
-14

 rad/s], respectively. The penetration depth of the 1.54 [10
-14

 rad/s] 

frequency is large compared to the others, so it appears to have a relatively small 

curvature until the depth inside of the medium gets very large, where it does eventually 

curve significantly (not shown in the figure). The 1.82 [10
-14

 rad/s] frequency streamline 

shows the negative refraction in the type I hyperbolic mode, as the direction of lateral 

displacement is in the opposite direction of the lateral wavevector (which when positive 

points right in the figure). Fig 7.11 (b) shows the 1.59 [10
-14

 rad/s] energy streamline. The 

overall lateral displacement at two penetration depths inside of the medium is 4001 times 

the vacuum gap spacing. However, this frequency does not carry as much energy as the 

other two, and is therefore less important.  

 The choice of using two penetration depths to represent the lateral displacement is 

because beyond two penetration depths only approximately 14% of the energy flux 

remains in the z-direction. Energy streamlines will begin to show a larger curvature as the 

z-component of the heat flux becomes zero. For this reason we do not care about the large 

lateral displacements when the z-component of the heat flux has become negligible since 

the energy streamlines are not carrying as much forward energy. Should the streamlines 
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become truncated by the finite structure of a real MDPC at a larger depth the energy 

reduction would not be as significant, (e.g. at 3 penetration depths very little energy is 

being carried in the z-direction). It is the z-component of heat flux that is important for 

engineering applications, thus the energy averages of the variables are computed with a 

weight based on this component. For most variables of interest, the average and median 

value are usually similar in magnitude (as observed with the penetration depth). It is 

therefore expected that the values reported for the lateral displacement inside of the 

 

Figure 7.11 (a) and (b) energy streamlines for median normalized wavevector at different select 

frequencies in SiC/Ge multilayer structure with f = 0.3 at 10 nm gap spacing. 
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source layer from the streamline of the median   will be a good representation of the 

average lateral displacement in the source layer. 

 The energy average lateral displacement inside of the vacuum gap can be 

calculated from the energy streamlines. At each lateral wavevector component the lateral 

displacement for polarization j is defined as 

    0j r r d    (7.19) 

where  0r  is the radial location the streamline has at the first interface between the 

emitter  and the vacuum gap, which is defined to be the origin, and  r d  is the lateral 

dimension it has at the second interface between the vacuum gap and the receiver. The 

energy average lateral displacement across the vacuum gap is then calculated from  
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This gives the characteristic lateral shift in energy across the vacuum gap.  

 The energy averaged lateral displacement across the vacuum gap is plotted in Fig. 

7.12 (a) for the D-Si/Ge structure. The lateral displacement in the vacuum gap is lower 

when the power transmission coefficient is large. The majority of the heat flux at 10 nm 

in the vacuum layer is purely evanescent. While the electric field is reflected and 

refracted according to complex Snell’s law [78], the energy streamlines are refracted 

according to different rules [73,130], and the direction of energy propagation is not 

simply coincident with the wavevector. If the transmission is large there is a large zS  

relative to rS  and the vacuum lateral displacement is actually lower, as in the 

hyperbolic region where the power transmission coefficient is clearly much larger despite 

the large lateral component of the wavevector. However, the vacuum lateral displacement 

may still remain 10 times larger, or more, than the gap separation distance. Figure 7.12 
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(b) shows the lateral displacement for the SiC/Ge structure, where the large transmission 

coefficient regions are actually dips in the lateral displacement across the vacuum gap. 

For the most important spectral regions, it is likely that the critical lateral dimensions of 

the structure are determined by the lateral displacement of the streamlines in the source 

layer rather than inside of the vacuum gap. 

 In general, the large lateral displacement inside of the media can be hundreds, or 

even thousands of times the vacuum gap at 10 nm. For any near-field MDPC structure to 

 

 

 
Figure 7.12 Average lateral gap displacement for (a) D-Si/Ge structure with f = 0.5 at 10 nm gap 

spacing and (b) for SiC/Ge with f = 0.3 at 10 nm gap spacing. 
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be considered one dimensional, the structure should be at least one or more orders 

magnitude larger than the typical characteristic lateral dimension calculated from the 

energy streamlines. A very conservative estimate, based on the lateral displacements of 

some of the typical streamlines in this work, would be that the lateral of the structures of 

interest should be larger than 100 m with a 10 nm gap. It may become important to 

consider 3D effects for smaller lateral structures and the validity of the 1D model should 

be confirmed first. Under these conditions, a 1D model may provide an incorrect estimate 

of the energy flux. This characteristic lateral dimension will vary from structure to 

structure, and will be smaller with a larger gap spacing, but the reported lateral dimension 

is probably reasonable for most cases involving MDPCs with hyperbolic modes at 10 nm 

gap spacing. 

 In the following section the validity of the energy streamlines when the period is 

not infinitely small is briefly considered in a far-field MDPC structure. It is shown that 

the energy streamlines may vary significantly even when the period is much smaller than 

the projected wavelength. 

7.3 Validity of EMA Energy Streamlines in Far-Field Uniaxial Anisotropic 

Materials 

 In order to compare the energy streamlines in an effective medium and the true 

multilayer structure, the ESLs of a steady plane wave of light in structures with 30 layers 

of 20 nm thickness, 300 layers of 2 nm thickness, and a 600 nm thick EMA slab are 

shown in Fig. 7.13. The layers are an alternating dielectric with a constant dielectric 

function of = 16 and Ag approximated as a Drude model with p,0 =1.39×10
-6

 rad/s and 

 = 2.7 × 10
13

 rad/s. The incidence angle in the Fig. 7.13 (a)-(b) is 60 degrees from the 

surface normal and the selected wavelengths of light are 400 nm, 593.7 nm, and 800 nm. 

The x and y axis are normalized by the thickness of the entire structure, D, which is 600 

nm.  
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Figure 7.13 ESLs for positive refraction at an incidence angle of 60° for the uniaxial effective 

medium and multilayer structures with 300 and 30 layers of the same total thickness, d in (a) 

Negative refraction (type I) regime, (b) Epsilon near zero regime, and (c) Positive refraction 

regime. 
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 Negative refraction of the ESLs can be seen in Fig. 7.13 (a). For the case of the 

EMA slab and the 300 layer structure the ESLs are shown to be almost exactly the same, 

while the transmittance of the EMA model and 300 layered structure is 0.89 for both, the 

relative difference being less than 1%. While for the case of the 30 layer structure the 

ESLs have extra lateral displacement for the TMM solution. The transmittance, however, 

agrees quite well still with a 4% difference (0.89 vs. 0.85). This means that in terms of 

the optical properties EMA still works well, but the focusing properties of the media will 

be affected significantly, since the net flow of energy will be diffracted differently in the 

30 layer structure within the individual layers. The overall result is still negative 

refraction, but the negative bending in the metallic layers and the positive refraction in 

the dielectric layers is obvious. The 30 layer structure with 20 nm is beginning to show 

cavity effects in the streamlines, while the 300 layer structure is a waveguide with very 

little diffraction [131]. This is confirmed in the agreement between the ESLs, because of 

the lack of diffraction within the slab it is reasonable to expect that the ESL can be used 

to calculate a pseudo-image that would be useful for determining the lensing properties of 

the structure. However, if the transmission is low the reflection at the front surface must 

be considered, as it distorts the ESLs by adding in some additional lateral displacement. 

Fortunately a lens with a low transmittance is usually not a good lens, and therefore it is 

expected that a good lenses will have nice smooth energy streamlines that reflect the true 

image of a source. Complications begin to arise when the layers are thick, as illustrated 

by the energy streamlines; a calculation of a Gaussian beam or point source image should 

be used to confirm the agreement. When the energy streamlines in the actual structure do 

not match the streamlines for the EMA, the EMA should not be used for the image 

calculation.   

 The second case, shown in Fig. 7.13(b), is a nearly zero refraction of the incident 

light, which is similar to super-guiding [132]. In this case, however, the transmitted 

energy is quite low and the reflectance is quite high. In the EMA and 300 layer structure 



 131 

the resulting streamlines are similar. In the 30 layer structure the negative refraction and 

positive refraction in individual layers is noticeable, but the ESLs balance each other in 

their lateral displacement so that the net effect is almost no lateral displacement. For 

reference, the reflectance of the structures is 0.98 for all three cases (less than 1% 

difference in all conditions). The agreement in lateral displacement is also good since all 

structures result in near zero displacement, but the structure is less useful in imaging 

application because the transmittance is small. 

 The third case, shown in Fig. 7.13 (c), is normal refraction. The transmittance is 

again low, 0.016 for the EMA, 0.018 for the 300 layer structure, and 0.009 for the 30 

layer structure, as expected outside of the propagation band of the MDPC structure. 

However, the EMA and 300 layer structure have close reflectance values of 0.71 and 

0.70, respectively. For the 300 layer case, the choice of first or last layer will not matter, 

because the structure will be in the EMA regime. However, for the 30 layer structure the 

choice to make the first layer metallic or dielectric will cause disparity in the optical 

properties, because a dielectric first layer can have an anti-reflection effect. Since at this 

wavelength we do not fall in the wave-guiding regime, it means more light can be 

absorbed, and the reflectance may be lower than what is predicted by EMA. In our case 

the reflectance is only 0.26 for the 30 layer structure, and a significant amount of energy 

is lost. 

 The limitations of EMA in predicting the properties of multilayer structures have 

been discussed in Refs. [82,83], when considered large lateral wavevectors or structures 

with larger periods one must also considered whether or not the energy streamlines will 

actually agree between the EMA and the exact TMM. In many cases where the heat flux 

or transmission and reflection are accurately predicted, the lateral displacement and foci 

of the energy streamline may still have significant differences. 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

 

 This dissertation is divided into three main contributions. Firstly, it has conducted 

an experimental investigation of the optical constants of two dielectric film materials 

Ta2O5 and HfO2 in from the FIR to the NIR region of the spectrum. It is intended that 

these material properties will provide useful for modeling infrared devices for use in 

near-field applications such as thermophotovoltaic cells. The second part is a parametric 

study of an In0.18Ga0.82Sb near-field TPV cell. Finally, the third part is a study of energy 

flow in MDPC structures. The three parts of this study will facilitate the use of MDPC 

structures in TPV and other near-field applications as well as the use of the high 

temperature dielectric materials Ta2O5 and HfO2 in near-field devices and MDPCs. 

In part one of this dissertation Hafnia, films of thicknesses from about 180 to 500 

nm were deposited using magnetron sputtering onto Si substrates and analyzed with 

XRD, AFM, SE, and FTIR spectrometry. The results indicate that the films are 

polycrystalline as deposited. Their annealing at 800 
o
C has little effect on the crystallinity 

and optical properties. A Cauchy dispersion was developed based on the SE data for 370 

nm ≤  ≤ 1000 nm and a single-oscillator model was developed for 1.25 m <  < 20 m 

based on NIR/MIR spectrometry data. The film thicknesses obtained from the two 

methods are in good agreement. Furthermore, the roughness obtained from fitting SE data 

is about twice the RMS roughness obtained from AFM. In general, thicker films possess 

rougher surfaces but the RMS roughness from AFM is no more than 7.2 nm. The FIR 

spectra are analyzed to elucidate phonon absorption. The combination of the Cauchy 

formula with the multiple Lorentz oscillators allowed development of a dielectric 

function of HfO2 for the wavelength region from 370 nm to 500 m. The results from this 

study help gain a better understanding of the optical and radiative properties of HfO2 
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films for a number of optical and infrared device applications, from thermal control to 

energy harvesting.  

The dielectric functions are then obtained for amorphous and nanocrystalline thin 

film samples of Ta2O5 deposited by magnetron sputtering. These sputtered films are 

smooth and of good structural quality and uniform thickness. Samples are amorphous as 

deposited at the substrate temperature used during deposition. Upon annealing at 800 °C, 

the samples become nanocrystalline with an orthorhombic phase being dominant. This 

induces a drastic change in the far-IR optical properties of the film. The low-frequency 

phonon modes become much sharper in the nanocrystalline samples. The frequencies of 

the effective phonon modes are determined by a line-shape analysis to quantitatively 

show the optical phonons in sputtered Ta2O5 films. Thermal stresses in the thicker 

samples after annealing were significant enough to cause cracking and the effect 

contributes to volume scattering in the sample thus affecting the near-IR transmittance. A 

simple model is introduced to account for the volumetric scattering in the thin film 

samples.  

The second part investigates the performance of a TPV cell with a backside 

reflector (mirror) and under different surface preparation conditions. Based on the 

parametric study of In0.18Ga0.82Sb cells, it is shown that a mirror or filter to reduce sub-

bandgap radiation is an essential component with efficiency improvements as high as 

35% at a lower emitter temperature of 1250 K. Furthermore, reducing the surface 

recombination velocity below a certain critical value changes the efficiency trend such 

that the efficiency would increase with decreasing gap spacing. This finding should make 

near-field TPV systems more appealing. Furthermore, decreasing the top p-layer 

thickness can improve performance by reducing diffusion losses. Because of the small 

penetration depth, it is important to investigate methods of surface passivation that are 

compatible with near-field heat transfer and that will not adversely affect the heat transfer 

rates associated with the near-field enhancement. This work has conducted a quantitative 
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study of the important parameters limiting the performance of a simple near-field TPV 

cell, which would facilitate the realization of near-field TPV systems for practical 

applications. 

Finally, in the third part of this dissertation the lateral displacement of energy and 

penetration depth of MDPCs was studied for two potential IR device MDPCs made of 

alternating layers of doped Si and Ge and another of alternating layers SiC and Ge. The 

MDPCs are treated as a homogenized medium using the effective medium theory. It is 

shown that the lateral displacement can be 100’s or 1000’s of times the gap spacing in the 

near-field using a gap spacing of 10 nm. To be sure that a structure will behave as a one 

dimensional structure it is recommended that lateral dimensions of at least 100 m be 

used to ensure that the heat flux will be close to the 1D limit. Should smaller lateral 

dimensions be required some 3D modeling may be necessary to confirm that the limited 

geometry does not limit the heat transfer between structures. Additionally, it was shown 

that despite the layer thickness and period being smaller than the wavelength of incident 

light energy streamlines in an effective medium and the actual medium may not agree 

perfectly, even when the properties of the medium such as transmission and reflection 

may agree quite well. Further study of the difference between energy propagation in 

homogenized and structures with finite periods by the energy streamline method may be 

of interest in area of near-field imaging. 

This dissertation has enhanced the understanding of near-field heat transfer in 

anisotropic structures and the performance of near-field TPV cells. It is hoped that the 

material properties of HfO2 and Ta2O5 will be used in the future to model MDPC devices 

for high temperature applications. These MDPCs may then be included in studies on the 

efficiency enhancement by acting as emitters/filters with tunable hyperbolic bands that 

can be used to simultaneously enhance near-field heat transfer and further improve the 

efficiency of near-field devices. It has been shown that once the surface recombination 

issue has been suitably addressed, the potential for near-field TPVs coupled with MDPCs 
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and other novel structures will be more promising than ever. Additionally, it is hoped that 

the concept of near-field energy streamlines in MDPCs will provide useful information 

for design of near-field devices as well as imaging systems.  
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APPENDIX A 

XPS DATA AND ANALYSIS 

 The XPS data has been corrected for the presence of SiO2 by isolating the Ta2O5 and 

SiO2 contributions to the O 1s peak, shown in Fig. A.1. Only the Tantalum oxide portion 

is used in the ratio calculation. The ratio of O:Ta for the unannealed samples is 3.5 with 

the stage at room temperature, and 3.0 when the XPS stage has been held at 200 °C for 1 

hr. For the annealed samples, the ratio is 3.2 and 2.9 for the sample stage at room 

 

Figure A.1 XPS curves for and unannealed sample showing the O 1s peak. The SiO2 peak is used 

to correct the Ta:O ratio. 

 

Figure A.1 XPS curves for an unannealed sample showing the O 1s peak. The SiO2 peak is used 

to correct the Ta:O ratio. 



 137 

temperature and after the sample stage is held at 200 °C for 1 hr, respectively. The O:Ta 

atom ratios are much closer to what is expected for Ta2O5. It is unlikely that there is any 

chemical composition with more oxygen than the stoichiometric ratio of 2:5, the 

remaining O is likely due to O that accompanies adventitious carbon contamination. It is 

possible to sputter away the carbon contamination layer in the XPS system, however for 

compounds such as Ta2O5, this approach often gives erroneous results as the oxygen 

sputters at a higher rate than the tantalum, suggesting a reduced oxygen content.  A better 

approach is to examine the Ta peak positions, which are correlated to the oxidation state. 

 

Figure A.2 XPS curves for an annealed Ta2O5 sample showing the Ta 4f peak. Note the peak 

location of 25.85 is consistent with the peak location from literature (26-27 ev). 
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According to the NIST XPS database [133], for Ta metal the Ta 4f 7/3 peak would be 

around 22 eV, while for Ta2O5 the peak should fall between 26 and 27 eV. The Ta 4f 7/3 

peak position observed in Figs. A.2 and A.3, for annealed and unannealed samples 

respectively, is as expected for nearly stoichiometric Ta2O5. 

 

 

Figure A.3 XPS curves for Ta 4f from the unannealed samples. Note the peak location of 25.85 is 

consistent with the peak location from literature (26-27 ev). 
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