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SUMMARY 

 

The propagation of premixed flames in turbulent flows is a problem of wide physical and 

technological interest, with a significant literature on their propagation speed and front 

topology. While certain scalings and parametric dependencies are well understood, a 

variety of problems remain. One major challenge, and focus of this thesis, is to model the 

influence of fuel/oxidizer composition on turbulent burning rates. This effect is due to 

local imbalances between molecular transport of species and heat caused by flow velocity 

gradients and flame front curvature which are generally referred to as “flame stretch”. 

The study of this type of phenomena is particularly crucial for understanding the 

propagation characteristics and structure of hydrogen turbulent premixed flames which 

are important for the development of several future combustion technologies.  

In most turbulent premixed flames of practical interest, chemical reactions that control 

heat release are confined to thin, wrinkled, convoluted and stretched reacting fronts that 

separate unburned reactants from burned products. Classical explanations for 

augmentation of turbulent burning rates by turbulent velocity fluctuations rely on global 

arguments - i.e., the turbulent burning velocity increase is directly proportional to the 

increase in flame surface area and mean local burning rate along the flame. However, the 

development of such global approaches is complicated by the abundance of phenomena 

influencing the propagation of turbulent premixed flames, such as unsteadiness and 

nonlinearity in the flame response to flow perturbations, turbulence generation due to gas 

expansion across the flame, and the fact that zones of intense burning are often 

accompanied by zones of extinction in high stretch sensitivity flames, making it difficult 

to clearly define a flame area. Emphasizing key governing processes and cutting-off 
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interesting but marginal phenomena appears to be necessary to make further progress in 

understanding the subject. 

An alternative approach to understand turbulent augmentation of burning rates is based 

upon so-called “leading points”, which are intrinsically local properties of the turbulent 

flame. Leading point concepts suggest that the key physical mechanism controlling 

turbulent burning velocities of premixed flames is the velocity of the points on the flame 

that propagate farthest out into the reactants. It is postulated that modifications in the 

overall turbulent combustion speed depend solely on modifications of the burning rate at 

the leading points since an increase (decrease) in the average propagation speed of these 

points causes more (less) flame area to be produced behind them. In this framework, 

modeling of turbulent burning rates can be thought as consisting of two sub-problems: 

the modeling of (1) burning rates at the leading points and of (2) the dynamics/statistics 

of the leading points in the turbulent flame. The main objective of this thesis is to 

critically address both aspects, providing validation and development of the physical 

description put forward by leading point concepts.  

To address the first sub-problem, a comparison between numerical simulations of one-

dimensional laminar flames in different geometrical configurations and statistics from a 

database of direct numerical simulations (DNS) is detailed. In this thesis, it is shown that 

the leading portions of the turbulent flame front display a structure that on average can be 

reproduced reasonably well by results obtained from model geometries with the same 

curvature. However, the comparison between model laminar flame computations and 

highly curved flamelets is complicated by the presence negative (i.e., compressive) strain 

rates due to of gas expansion across the flame. For the highest turbulent intensity 
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investigated, local consumption speed, curvatures and flame thicknesses approach the 

maximum values obtained by the laminar model geometries, while other cases display 

substantially lower values.  

To address the second sub-problem, the dynamics of flame propagation in simplified 

flow geometries is studied theoretically. Utilizing results for Hamilton-Jacobi equations 

from the Aubry-Mather theory, it is shown how the overall flame front progation under 

certain conditions is controlled only by discrete points on the flame. Based on these 

results, definitions of leading points are proposed and their dynamics is studied. These 

results validate some basic ideas from leading points arguments, but also modify them 

appreciably. For the simple case of a front propagating in a one-dimensional shear flow, 

these results clearly show that the front displacement speed is controlled by velocity field 

characteristics at discrete points on the flame only when the amplitude of the shear flow 

is sufficiently large and does not vary too rapidly in time. However, these points do not 

generally lie on the farthest forward point of the front. On the contrary, for sufficiently 

weak or unsteady flow perturbations, the front displacement speed is not controlled by 

discrete points, but rather by the entire spatial distribution of the velocity field. For these 

conditions, the leading points do not have any dynamical significance in controlling the 

front displacement speed. Finally, these results clearly show that the effects of flame 

curvature sensitivity in modifying the front displacement speed can be successfully 

interpreted in term of leading point concepts.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 
 

Combustion of fossil fuels currently supplies roughly 82% of the world’s total energy 

needs and most projections forecast that the expected increase in power production by 

other sources (renewables, nuclear, etc.) will cause this percentage to decrease only to 

about 75% by 2035 [1]. However, increasingly stringent emission requirements, concerns 

about the effect of carbon dioxide on climate change and ensuring the security/stability of 

the energy supply chain have created new technological challenges and opportunities.  

Most new combustion technologies tend to utilize turbulent lean premixed flames, 

especially for ground based power production, such as in gas turbine engines. Premixed 

flames occur when fuel and oxidizer are mixed homogenously before ignition while 

turbulent flows are common at the high flow rates needed to design combustion devices 

with sufficient power density. In appropriate circumstances, lean flames emit very low 

level of pollutants and thus provide an ideal candidate for environmentally friendly 

engines. 

The interaction of turbulence and premixed flames is characterized by a large range of 

length scales and timescales [2]. First of all, nonreacting constant-density turbulence is in 

itself a multiscale nonlinear phenomenon, which involves eddies of very different scales, 

ranging from the scales of the entire flow to much smaller Kolmogorov scales. Secondly, 

even a laminar flame is a multiscale nonlinear phenomenon because the rates of different 

reactions within the flame may differ by several orders of magnitudes and depend 
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exponentially on temperature. Thirdly, chemical reactions interact with molecular 

transport processes (mass diffusion and heat transfer), with each characterized by its own 

length and time scales. The richness and complexity of these physical phenomena explain 

why premixed turbulent flame theory is still an open problem despite the long history of 

industrial use, the knowledge of the underlying physical laws and balance equations, and 

the advancements in laser diagnostic techniques and computer hardware/software [3]. 

With the exception of the simplest cases, such multiscale nonlinear problems are not 

tractable either analytically or numerically even using the most powerful computers 

available today. Accordingly, simplified methods are required to evaluate the basic 

characteristics of a premixed turbulent flame. 

Problems related to the modeling of the multiscale nature of turbulent premixed flames 

are exacerbated for fuel/oxidizer mixtures characterized by high reactivity and widely 

different heat and species diffusivities, such as lean hydrogen/air flames. In fact, it is well 

known that the propagation of turbulent premixed flames is substantially affected not 

only by turbulence characteristics and laminar flame speed, 0Ls  (defined in detail in the 

next chapter), but also by the differences between the molecular diffusion coefficients of 

the fuel, FD , the oxidant, OD , and molecular thermal diffusivity, ( )pcλ ρ , of the 

mixture. Moverover, these effects are of importance not only at weak, but also at 

moderate and high turbulence intensities [4].  

The study of these phenomena has a renewed urgency since hydrogen combustion plays a 

substantial role in several future applications. The most obvious advantages of hydrogen 

as a fuel over hydrocarbons are its potential to be produced from water or renewable 

resources (e.g. biomass) and zero emissions of carbon dioxide from its combustion. 
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Furthermore, hydrogen combustion is characterized by high burning velocities at 

equivalence ratios far below the lean flammability limits of hydrocarbon-air mixtures [4]. 

This implies a relatively low flame temperature and, as a consequence, a drastic reduction 

in pollutant emissions (such as nitrogen oxides). These same features make H2 a very 

promising additive able to substantially improve the lean burning performance of 

conventional hydrocarbon. Finally, hydrogen combustion also plays a role in the 

development of “clean coal” technologies that rely on combustion of gasified coal, 

commonly referred to as “synthesis gas” or “syngas” [5].  

With these motivations in mind, this thesis studies some of the mechanisms behind the 

propagation and structure of turbulent premixed flames. In particular, the so called 

“leading point concept” approach is examined in detail; this approach was specifically 

devised in order to propose a description of the interaction of turbulence and premixed 

flames characterized by large differences between mass and heat transport coefficients, 

which is the focus of this thesis. 

The subsequent section of this chapter reviews relevant experimental data that exemplify 

the influence of molecular transport coefficients on turbulent premixed flames 

propagation and structure to further motivate this thesis work. This chapter then 

concludes outlining the scope and organization of this thesis. 
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1.2 Molecular transport effects on turbulent premixed flame propagation and 
structure: experimental evidence 

 

This section reviews a few experimental studies that illustrate the influence of molecular 

transport coefficients on turbulent flame propagation and structure. For simplicity, two 

categories of experiments are distinguished: turbulent flame speed measurements and 

investigations of the small scale structure of turbulent flames. 

Turbulent flame speed Ts  can be defined as the average rate of propagation of a turbulent 

premixed flame. More precise and physically meaningful definitions of turbulent flame 

speed depend on the geometrical configuration of the experiment [6, 7], but, since the 

following discussion is restricted only to qualitative trends in the behavior of Ts , these 

issues are not described here. The effects of differences between molecular transport 

coefficients on Ts  have been known for a long time, since the mid-1950s [8], and in the 

literature there are several databases that clearly show these effects. It is possible to 

distinguish two different types of experimental Ts  measurements that show the effect of 

molecular transport.  

The first type consists in measuring turbulent flame speeds of selected fuel/oxidizer 

mixtures characterized by equal laminar flame speeds 0Ls , but with different molecular 

transport properties. For example, Venkateswaran et al. [9-11] measured turbulent flame 

speeds, shown in Figure 1-1, in a turbulent Bunsen burner for different H2/CO/air 

mixtures, where equivalence ratios φ and percentages of H2 and CO were controlled 

independently to obtain mixtures characterized by the same laminar flame speed, 

0 34Ls cm s= . Since hydrogen is much more diffusive than carbon monoxide, varying the 
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concentration of H2 in the fuel substantially alters its molecular diffusivity FD . Figure 

1-1 shows that this substantially affects measured turbulent flame speeds. In particular, 

turbulent flame speeds rise monotonically with increasing H2 concentration in the fuel, 

and this effect persists even at the highest measured turbulence intensities u′ . Another 

example of this typology of measurements is represented by the data collected by Kido 

and Nakahara [12-15] in spherical bomb experiments. In Figure 1-2, Ts  values are shown 

for H2/CH4/O2/N2 mixtures, where different blends with the same laminar flame speed, 

0 15Ls cm s= , are obtained by adjusting the O2/N2 ratio in the oxidizer and the H2/CH4 

ratio in the fuel at constant equivalence ratio 0.8φ = . Similarly to Figure 1-1, these data 

show that turbulent flame speeds rise monotonically with increasing concentration of H2 

in the fuel, since methane, like carbon monoxide, is less diffusive than hydrogen. Other 

examples of these typology of measurements can be found in Ref. [4]. 

 

 
Figure 1-1. Dependence of turbulent flame speed sT on turbulence intensity u’  measured in 
the turbulent Bunsen burner facility of Venkateswaran et al. [11]. Different symbols refer to 
different H 2/CO/Air mixtures with equal laminar flame speed sL0 = 34cm/s: molar 
concentrations (by percentage) of hydrogen/carbon monoxide in the fuel and equivalence 
ratios φ of the different mixtures are listed in the legend on the right. Different colors refer 
to different mean flow exit jet velocities U0 in the Bunsen burner.     
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Figure 1-2. sT as a function of the turbulent intensity u’  for CH 4/H2/O2/N2 mixtures 
measured in spherical bombs experiments. Laminar flame speed sL0 is kept equal to 15cm/s 
across the different mixtures with constant equivalence ratio φ = 0.8 by varying the O2/N2 
ratio in the oxidizer [15]. Different symbols refer to different CH4/H2 fuel blends: molar 
concentration of hydrogen and methane in the fuel are equal to 1-δ and δ, respectively. 

 

The second type of experimental Ts  measurements that show the effect of molecular 

transport compare the equivalence ratio associated with the maximum laminar flame 

speed, ( )0max Lsφ  , and the equivalence ratio associated with the maximum turbulent flame 

speed, ( )max Ts
φ , for mixtures characterized by large differences among FD , OD  and 

( )pcλ ρ .  As an example, Figure 1-3 shows experimentally measured values of laminar 

flame speeds and turbulent flame speeds (measured in spherical bomb experiments at 

constant turbulence intensity 2.5u m s′ = ) at different equivalence ratios for propane/air 

mixtures (Figure 1-3a) and hydrogen/air mixtures (Figure 1-3b), with data taken from 

Ref. [4]. For propane/air, the maximum turbulent flame speed is reached at a richer 

equivalence ratio than the maximum laminar flame speed, and vice versa for 

hydrogen/air. In general, experimental data show that all mixtures characterized by 
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F OD D<  display a behavior similar to C3H8/air, with ( ) ( )0 maxmax TL ssφ φ< , while mixtures 

characterized by F OD D>  display a behavior similar to H2/air, with ( ) ( )0 maxmax TL ssφ φ> . 

 

   

Figure 1-3. Experimentally measured values of laminar and turbulent flame speeds vs 
equivalence ratio φ  for C3H8/Air (a) and H2/Air (b). Turbulent flame speeds are measured 
at constant turbulent intensity u’  = 2.5m/s in spherical bomb experiments. Flame speed data 
are normalized by the maximum value. Data adapted from Ref. [4].  
 

Finally, experimental investigations of molecular diffusion effects on the small scale 

structure of turbulent premixed flames are generally more recent than turbulent flame 

speed measurements, since in this type of study it is necessary to employ modern laser 

diagnostics. Here only a few relevant examples are mentioned. Figure 1-4 shows a set of 

planar laser induced OH fluorescence (OH PLIF) images [16] taken in the low swirl 

burner (LSB) of Bedat and Cheng [17], for propane/air, methane/air and hydrogen/air 

turbulent premixed flames propagating in similar turbulent flow fields. The three flames 

have markedly different appearance, especially the H2/air flame. Taking the intensity of 

the OH PLIF signal as an approximate measure of the local burning rate, it is clear that 

the hydrogen/air flame tends to burn very intensely at positions where the flame front is 

convex toward the reactants while the flame is effectively extinguished where the flame 
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front is convex toward the products. On the contrary the methane/air flame tends to burn 

uniformly along the flame front and the propane/air flame displays somewhat enhanced 

burning rates along flame front elements that are convex toward the products. 

 

 

Figure 1-4. OH PLIF images of C3H8/Air at φ = 0.7 (a), CH4/Air at φ = 0.8 (b) and H2/Air at 
φ = 0.27 (c) turbulent premixed flames taken in a LSB burner at turbulent intensity 
u’=18.5cm/s and integral length scale l t =3.0mm (corresponding to u’/sL0~1 and l t/δT0~5) [16]. 
Fresh reactants are flowing upward from below. The image width corresponds to 3cm in 
physical dimensions.    
 

To illustrate in more detail the structure of turbulent lean hydrogen/air flames, Figure 1-5 

shows iso-contours of temperature based progress variable ( ) ( )u u
T adC T T T T= − −  and 

of OH mole fraction OHX  measured in the turbulent Bunsen burner of Chen and Bilger 

[18] utilizing two-sheet Rayleigh scattering and OH PLIF. From these data it can be seen 

that at bulges convex toward the reactants, TC  and OHX  iso-contours remain close to 

each other, indicating a strong local heat release rate and intense chemical reactions. At 

points convex toward the products, instead, TC  and OHX  iso-contours are contorted by 

turbulence and display distorted features, indicating a low local heat release rate.   

The simplest explanation of these different flame appearances is as follows: for lean 

mixtures, if F OD D>  (H2/air),  the local composition at flame front elements that are 
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curved toward the reactants tends to stoichiometric and the local burning rate increases, 

and vice versa if F OD D<  (C3H8/air). These different local behaviors are a manifestation 

of so called “preferential diffusion” and “Lewis number” effects, which are responsible 

for the Ts  trends shown at the beginning of this paragraph and are described in detail in 

Chapter 2. 

 

 

Figure 1-5. Instantaneous grayscale images of the temperature-based combustion progress 
variable, CT = (T-Tu)/(Tb,0-Tu), and the mole fraction, XOH, of OH radicals in a lean (φ = 
0.325) hydrogen–air turbulent Bunsen flame [18].  The CT image is overlaid with 
isocontours of CT = 0.1, 0.2, 0.3, 0.5, 0.7, and 0.9. The XOH image is overlaid with isocontours 
of XOH  = 0.0005, 0.0010, 0.0015, and 0.0020. 

 

 

1.3 Scope and organization of the thesis 
 

To summarize the previous sections, it is quite apparent that although the propagation 

characteristics and structure of turbulent premixed flames have been studied for many 

years, there are still a number of unresolved issues. In particular, modeling the influence 

of fuel/oxidizer composition on turbulent flame propagation and structure represents a 
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major challenge. This issue has received increasing attention in the last few years because 

of new technologies related to hydrogen combustion.   

The main objective of this thesis is to critically investigate and develop ideas put forward 

by so called “leading point concepts”. As described in detail in Section 2.4, this concept 

stresses the importance of particular structures (leading points) in determining the overall 

rate of propagation of turbulent premixed flames. Two sub-problems are fundamental for 

understanding this concept:  

1) What is the burning rate and structure of leading points?  

2) What is the role of these structures in determining the turbulent flame speed? 

This thesis describes a theoretical and numerical study exploring the answers to these two 

main questions. Chapter 2 provides background on literature relevant to this thesis work. 

Chapter 3 investigates the burning rate and structure of leading points detailing a 

numerical study in which statistics obtained from a DNS database of turbulent premixed 

flames are compared to a series of model laminar flame computations. Chapter 4 

investigates the role of these structures in determining the turbulent flame speed detailing 

a theoretical study based on the so called G-equation. Chapter 5 presents conclusions and 

recommendations for future work.  
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CHAPTER 2 

BACKGROUND 

 

This chapter provides background on literature relevant to this thesis work. Section 2.1 

briefly reviews preferential diffusion and Lewis number effects in laminar premixed 

flames as a starting point to understand their influence in turbulent flames. Section 2.2 

provides a general overview of turbulent premixed modeling with a focus on the 

“flamelet” paradigm. Section 2.3 reviews past direct numerical simulations (DNS) studies 

that investigated the role played by preferential diffusion and Lewis number effects in 

turbulent premixed flames. Finally Section 2.4 describes in detail the leading points 

concept. 

 
 
 

2.1 Preferential diffusion and Lewis number effects 
 

Laminar premixed flames are deflagration waves (i.e. with little change in pressure 

between unburnt and burnt side) propagating in homogeneous mixtures of fuel and 

oxidizer. Put simply, the physical mechanism of premixed flame propagation consists of 

the following steps: chemical reactions produce heat and new chemical species; a part of 

the produced energy diffuses toward the fresh mixture due to molecular diffusion of heat 

and species; local temperature and radical concentrations increase and trigger new 

chemical reactions which then move more toward the fresh mixture. Therefore, the flame 

propagation is controlled by molecular transport processes and chemical reactions.  

The first level of idealization of laminar, premixed flames is one where the flame and 

flow are one-dimensional and steady. This is known as the “unstretched laminar flame”, 
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and the associated burning rate is called the “unstretched laminar flame speed”, 0Ls . As 

an example, the typical structure of a one-dimensional unstretched laminar methane/air 

flame is shown in Figure 2-1 [19]. Its structure consists of three layers: (1) the upstream 

chemically inert preheat zone, (2) a thin, fuel consumption layer, also called the reaction 

zone or inner layer and (3) another thin, oxidation layer. Downstream of the oxidation 

layer is the equilibrium, fully reacted state of the mixture. 

 

 

Figure 2-1. Schematic illustrating the typical structure of a methane/air laminar premixed 
flame. Adapted from Ref. [19] 
 

When premixed flames propagate in non-uniform flow fields or are curved, this one-

dimensional flame structure can change substantially. Theoretical studies of perturbed 

laminar premixed flames have shown that a useful quantity to parametrize modifications 

in flame structure is the so called stretch rate κ . In the following, a brief overview of 

stretched premixed flames is presented with a focus on phenomena relevant for this thesis 

and mostly drawn from Clavin’s review of early asymptotic studies [20], Law and Sung’s 

review of integral methods [21] and the flamelet formalism of de Goey et al. [22].  

In the limit of an infinitesimally thin flame, the local stretch rate is defined as the 

fractional rate of increase in surface area TA : 
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1 T

T

dA

A dt
κ =   (2.1) 

 

This quantity is also important in turbulent non-reacting diffusion processes since in 

isotropic homogeneous turbulence the mean stretch rate controls the rate of area increase 

of material surfaces [23]. Through the use of vector geometry (see for example Ref. [24, 

25]), an expression for stretch rate can be written as  

 

 ( ) ( )Lu s u n nκ = ∇ ⋅ + − + ⋅ ∇ ⋅� � � �
t t   (2.2) 

 

where (see Figure 2-2) u
�

 represents the flow velocity, Ls  is the flame self-propagation 

speed, n
�

 represents a unit vector normal to the flame surface pointing toward the product 

side, CK n= −∇ ⋅ �  represents the flame sheet mean curvature (the sum of the inverses of 

the principal radii of curvature of the surface) and 

 

   (   )u n u n∇ ⋅ = − ⋅∇ × ×� � � �
t t   (2.3) 

 

By convention, the sign of CK  is defined as positive when the center of curvature of the 

flame surface is situated in the product side (flame element convex toward the reactants). 

For cylindrical and spherical flame surfaces, the absolute value of  CK  is equal to 1 R 

and 2 R, respectively, where R  represents the radius of curvature. The first term in 

equation (2.2) is known as “hydrodynamic stretch” and represents the stretching of the 
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flame sheet by the tangential flow velocity component u
�

t . The second term, instead, 

represents stretch rate due flame curvature CK  in combination with flame motion. 

 

 

Figure 2-2. Schematic showing flame coordinate system used to derive flame stretch 
expressions. Adapted from Ref. [26]. 
 

Equation (2.2) can also be rearranged into other terms that more explicitly illustrate the 

role of flow non-uniformity and flame curvature: 

 

 : n
L L C

u
nn u u s n u s K

n
κ ∂= − ∇ + ∇⋅ − ∇⋅ = − + ∇⋅ +

∂
�� � � � �

  (2.4) 

 

where nu n∂ ∂  is the derivative of the flow velocity normal component nu  in the direction 

normal to the flame surface n . The term 

 

 :SK nn u u= − ∇ + ∇ ⋅�� � �
 (2.5) 
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is known as “tangential strain” and represents the contribution of flow velocity spatial 

gradients to flame stretch. In particular, the first term :nn u− ∇�� �
 represents the effect of 

flow velocity gradients normal to the flame surface, while the second term u∇ ⋅ �  is zero 

for isodensity flows, but inside the flame is non-zero due to heat release which brings 

about gas expansion. Equation (2.5) can also be rewritten as  

 

 ( )( ) ( )S CK u u n n u u n K= ∇ ⋅ + ⋅ ∇ ⋅ = ∇ ⋅ − ⋅� � � � � � �
t t t t  (2.6) 

 

This expression stresses the fact that SK  is not independent from curvature CK .  

To understand the physical process through which the hydrodynamic stretch rate affects 

the structure of premixed flames, let us consider a flat flame in a divergent flow field, 

depicted in Figure 2-3. This geometry can be realized experimentally by stagnating a 

premixed reactant stream against a wall. The resulting flame is flat ( 0CK n= −∇ ⋅ =� ) 

and, thus, it is only subject to hydrodynamic stretch since 0u ≠�t . In Figure 2-3, 

convective transport, depicted by streamlines, and diffusive transport of heat and mass 

are clearly indicated; a control volume can be drawn as shown, where the sides are bound 

by streamlines across which diffusive transfer can occur but not convective transfer. The 

physical manifestations of hydrodynamic stretch, which are described below, are a result 

of the misalignment between the convective and diffusive directions. Since the flame is a 

source of heat and a sink for reactants, heat diffuses normal to the flame out of the control 

volume, while reactants diffuse into the control volume towards the flame from exterior 

streamtubes.  
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Figure 2-3. Illustration of the internal structure of a hydrodynamically stretched flame 
showing misalignment of convective and diffusive fluxes. Grey region denotes the control 
volume. 
 

The relative importance of these two processes can be assessed by considering the Lewis 

number defined as ( )pLe c Dλ ρ= , where ( )pcλ ρ  is the mixture thermal diffusivity 

and D  is a reference mass diffusivity, often taken as that of the deficient reactant. Lewis 

number effects can be understood by considering the energy balance in the control 

volume illustrated in Figure 2-3, which can be written as 

 

 Tu hρ ⋅∇ = −∇⋅� �
q   (2.7) 

 

where Th  is the total enthalpy per unit mass, ρ  represents the density and �q  is the local 

heat flux. This equation describes the balance between convective (left side) and 

diffusive (right side) fluxes. Neglecting radiative heat transfer and the DuFour effect, and 

assuming Fickian diffusion, the heat flux vector is given by 

 

 
1

N

i i i
i

T h D Yλ ρ
=

= − ∇ − ∇∑
�
q   (2.8) 
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where T  is the temperature, pc represents the specific heat capacity and iY , iD , ih  are 

the mass fraction, mass diffusivity and enthalpy of the i-th species, respectively. Equation 

(2.8) shows that energy flux occurs through both heat and mass diffusion. Thus, for the 

flame of Figure 2-3, energy flows in through the sides of the control volume through heat 

transfer, but also flows out through the sides through mass transfer of chemical energy 

associated with the reactants. If the heat and mass diffusion coefficients are the same, i.e., 

1Le= , then these effects cancel for weakly curved flames and the energy balance in the 

control volume is not disturbed by these diffusive fluxes. These effects do not balance, 

however, if 1Le≠  leading to an increase or decrease in thermal energy in the control 

volume. 

Another diffusion-based phenomenon associated with stretch, known as preferential 

diffusion, occurs when the reactant constituents have large variations in mass 

diffusivities. To illustrate, consider Figure 2-3 for a lean H2/air mixture. Both H2 and air 

will diffuse into the control volume, but since H2 is lighter than air, it will diffuse faster. 

Consequently, this causes the local equivalence ratio to increase towards stoichiometric, 

resulting in a higher flame temperature and flame speed. For a rich H2/air mixture, similar 

arguments can be made to show that the local equivalence ratio will become even richer 

resulting in a lower flame temperature and flame speed. Similar lines of reasoning can 

also be employed for C3H8/air flames, which experience opposite effects since C3H8 is 

now heavier than air.  

The physical mechanism through which curvature modifies the structure of premixed 

flames can be explained in a way analogous to hydrodynamic stretch. Figure 2-4 shows 

the mass and heat diffusive fluxes of a curved flame and, for comparison, of a planar 



18 
 

flame. From these two figures it is clear that in curved flames heat and mass fluxes are 

focused/defocused depending on the sign of the mean curvature CK . If there is an 

imbalance due to non-unity Lewis number or preferential diffusion effects, then the 

energy balance at the reaction zone can be affected in ways similar to the energy balance 

of the control volume depicted in Figure 2-3. 

 

 

Figure 2-4. . Illustration of the internal structure of a curved flame and a planar flame 
showing focusing/defocusing of diffusive fluxes in curved flames. 
 

Early studies which analyzed the effects of stretch on flames utilizing irreversible, one-

step chemistry and asymptotic analysis methods, found the following linear relation for 

the flame speed of stretched flames in the limit of weak stretch [20]: 

 

 0L Ls s κ= − ℓ   (2.9) 

 

where ℓ  is the Markstein length, which can take on both positive and negative values. 

Equation (2.9) can be non-dimensionalized using the un-stretched laminar flame speed, 

0Ls , and the associated flame thickness, 0Fδ , to obtain: 

 

 0 1L Ls s Ma Ka= −   (2.10) 



19 
 

 

where Ma is the Markstein number, defined as 0FMa δ= ℓ , and Ka  represents the 

Karlovitz number, defined as 0 0F LKa sκδ= . The previous discussion on Lewis number 

and preferential diffusion effects suggests that Ma should be a function of Lewis 

number, relative diffusivities of fuel and oxidizer, and fuel/air ratio.  For example, the 

differential diffusion arguments described in this section suggest that lean mixtures of 

lighter than air fuels, such as methane or hydrogen, should have enhanced flame speeds 

for positively stretched flames (i.e., that Ma < 0). These arguments also suggest that Ma > 

0 for rich fuel/air blends with these fuels, and that these trends should be inverted for 

fuels that are heavier than air, such as propane.  

Linear expressions, such as equations (2.9) and (2.10), have limited applicability and 

more quantitative discussions about the influence of Lewis number and preferential 

diffusion effects on premixed flames structure require a more detailed discussion of flame 

speed definitions, nonlinear effects and unsteady effects, which are discussed next.   

 

2.1.1 Flame speed definitions 

The “speed” of premixed flames is a central element in combustion theory: there are 

multiple definitions and multiple ways to measure them. The main difficulty in defining a 

flame speed arises from the fact that a real flame has a finite thickness, yet a propagation 

velocity asserts the presence of a combustion front. Generally, a contour Fc  of a reaction-

progress indicator c  (like a temperature isosurface or a mass fraction isosurface of either 

the fuel or the oxidizer) is chosen to represent the flame front. 
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Arguably, the most natural physical definition should be tied closely to the rate of 

reactants mass consumption (or, conversion to combustion products). Unfortunately, 

reaction rates are difficult to measure experimentally and this type of definition is mostly 

applied in computational studies. Poinsot et al. [27] defined the consumption speed ,c Ps  

as the speed corresponding to the mass flow rate of fresh gases consumed through the 

flame front and is defined by 

 

 ,

1
c P Fu u

F

s dn
Y

ω
ρ

+∞

−∞

= ∫ ɺ   (2.11) 

 

where Fωɺ  is the mass of fuel consumed per unit volume and unit time, uρ  is the density 

of the unburnt gases and uFY  is the mass fraction of fuel in the reactants. The integration 

in (2.11) is performed along the normal n to the flame front defined by the isosurface 

Fc c= .  

 

 

Figure 2-5. Prism shaped volume, Ω , constructed using curves locally normal to the 
temperature isotherms. The inset plot shows a typical variation of ɺFω normal to the flame 

surface. Reproduced from Day and Bell [28]. 
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An alternative definition of consumption speed, more numerically robust and less 

sensitive to the particular choice of Fc , was proposed by Day et al. [28]. This definition 

starts with the tessellation of the flame front Fc , and the construction of normal vectors 

by extending them along integral curves of temperature gradient. A prism, Ω, can then be 

built as shown in Figure 2-5. The consumption speed cs  is calculated integrating the fuel 

mass consumption rate Fωɺ  over the Ω volume and normalizing by the area Aref, 

intersection between Ω and the flame surface, multiplied by the initial fuel density 

contained in the reactants u u
FYρ : 

 

 
F

c u u
F ref

d
s

Y A

ω
ρ

Ω
Ω

= ∫
ɺ

 (2.12) 

 

Another definition for flame propagation speed is the “displacement speed” ds  of a 

contour of a reaction-progress indicator Fc . An expression for the displacement speed of 

an isoscalar surface relative to the flow field was developed by Poinsot et al. [29, 30] and 

Echekki et al. [31]. The analysis is based on tracking a surface on which the mass 

fraction, Y , of the deficient reactant is fixed to a value. The governing transport equation 

for Y  is: 

 

 ( )1Y
u Y D Y

t

ωρ
ρ ρ

∂ + ⋅∇ = ∇⋅ ∇ +
∂

ɺ�
  (2.13) 
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The left-hand side of the equation is the convective derivative where u
�

  is the gas 

velocity at the surface. This term balances the sum of diffusion and reaction terms on the 

right-hand side of the equation. The velocity of Y  isocontours, Fv
�

, is the sum of both the 

convective component, u
�

, and its propagation relative to the gas, ds n− �
: 

 

 F dv u s n= −� � �
  (2.14) 

 

In this expression, ds  is the magnitude of the propagation velocity of the isocontour 

normal to itself and n
�

 is the unit normal vector of the isocontour of Y  directed toward 

the burnt gas which may be expressed in terms of the normalized local gradient vector of 

Y : 

 

 
Y

n
Y

∇= −
∇

�
  (2.15) 

 

Equation (2.14) also forms the basis for experimental measures of flame speeds from 

particle image velocimetry (PIV) data, such as in the study of Sinibaldi et al. [32, 33], 

who studied displacement speed of premixed laminar flames encountering toroidal vortex 

rings, and Renou et al. [34, 35], who studied weakly turbulent premixed flames. By 

fixing the value of Y  at the surface, the following expression is obtained: 

 

 0F

Y
v Y

t

∂ + ⋅∇ =
∂
�

  (2.16) 



23 
 

 

By substitution of Eq. (2.13) into (2.16), an expression for the displacement speed, ds , is 

obtained: 

 

 
( )

d

D Y
s

Y Y

ρ ω
ρ ρ

∇⋅ ∇
= − −

∇ ∇
ɺ

  (2.17) 

 

This expression shows that the value of the displacement speed is a result of the balance 

between reaction and diffusion, and is modulated by the value of the gradient of the 

scalar at the location where it is measured. Many analyses [36] have also shown that it is 

convenient to split the diffusive term into a normal and a tangential component as  

 

 

t

r n

d C

s

s s

Y
D

n n
s DK

Y Y

ρ
ω

ρ ρ

∂ ∂ 
 ∂ ∂ = − − −

∇ ∇
ɺ

���
������������

  (2.18) 

 

where n  is the normal coordinate across the flame and CK  is the mean curvature defined 

as in Eq. (2.2). This expression shows that ds  is determined by the contributions of three 

terms: (i) reaction rs , (ii) normal diffusion ns , and (iii) curvature (tangential diffusion) 

.ts  Both reaction and normal diffusion are essential components of any normal flame 

propagation, while the third term, curvature, is only present when the flame is curved. 

Equation (2.18) also shows that the explicit contribution of curvature is linear, with the 

slope corresponding to the local molecular diffusion coefficient. However, there is 
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curvature dependence in the remaining terms, and especially reaction, through the 

coupling of differential and preferential diffusion effects with curvature.  

Because of gas expansion through the flame, the displacement speed with respect to the 

unburned, u
ds , and burned, bds , flow is different. These definitions can be generalized to 

refer to the speed of the flow with respect to any chosen temperature or concentration iso-

surface in the flame. This dependence of flame speed upon chosen flame iso-surface is 

not too problematic for weakly stretched flames since the approach flow velocity varies 

weakly upstream of the flame and these effects may be largely eliminated by using the 

density-weighted displacement speed, *
ds  

 

 * d
d u

s
s

ρ
ρ

=   (2.19) 

 

In fact in a flat, unstretched flame, the mass burning rate is constant ,0 ,0
u u b b

d ds sρ ρ=  and 

represents a well defined quantity, invariant for any choice of reference surfaces through 

the flame. Instead in highly stretched flames, the mass flux through the flame itself varies 

significantly through the flame and the definition of displacement speed becomes 

ambiguous. In highly stretched flames, the flow velocity gradients occur over length 

scales that are on the order of the flame thickness.  Therefore, slight changes in choice of 

iso-surface can yield very different values of flame speed. An example of this 

phenomenon is provided in Figure 2-6, where the mass burning rate dm sρ=  is plotted 

for a series of numerical computations of stationary spherical CH4/air flames (φ = 1.0, 

300uT K=  and 1p atm= ) at different radii, in which burnt gases are present in the 
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center [37]. This figure shows the mass burning rate calculated at several isotherms, 

where the one corresponding to ~1640 K (inner layer) is the one closest to the reaction 

zone. The mass burning rate varies with the radius of the flame at all isotherms except at 

the inner layer where hardly any influence of the radius is observed. At the other 

isotherms, almost no reactions take place, while convective and diffusive processes play 

the most important role. Since the flames are curved, the surface area through which the 

gases flow changes and, as a consequence, the burning velocities change. From this 

notion, it can be concluded that the mass burning rate of curved flames is best defined at 

the inner layer instead of defined at the other positions in the flame. For this reason in 

most numerical analyses, like the direct numerical simulations described in Section 2.3, 

isosurfaces (of temperature or mass fraction) close the reaction zone are chosen to 

represent the flame front position. This choice is also motivated by the fact that turbulent 

eddies penetrate in the reaction zone with more difficulty than in the preheat zone (see 

“thin reaction zone regime” described in the Section 2.2).  

 

 
Figure 2-6. The mass burning rate m = ρsL for stationary spherical flames of different radii 
r, with burnt gasses at the center. CH4/Air, Tu = 300K, p=1atm: temperature at the inner 
layer is 1640K. Reproduced from Ref. [37] 
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Moreover, the displacement speed definition for flame speed can lead to counterintuitive 

results such as local negative displacement speeds, 0ds < , in highly strained flows [36]. 

This situation occurs in flames with very high concentration gradients where the flame is 

supplied with reactants by diffusive fluxes strong enough to counteract the bulk flow 

convection in the opposite direction. This situation can be simulated with a counterflow 

burner, by stagnating premixed reactants against hot products/inert. At very high strain 

rates the flame moves across the stagnation surface into the products/inert side and is 

supplied fuel/oxidizer by diffusive fluxes; then, the displacement speed ds  becomes 

negative as shown experimentally by Sohrab et al. [38] (see also Section 2.3). 

In general, consumption velocity and displacement speed have different values and also 

depend differently on stretch rate. For this reason it is important to always specify the 

exact definition utilized to study flame speed. For instance, for weakly stretched flames (

1Ka≪  ), asymptotic theories predict a linear dependence of ,c Ps  and ds  on the stretch 

rates, but with different Markstein numbers as shown by the following expressions (see 

Ref. [4, 39] for the specific assumptions), 

 

 ,

0

1c P
c

L

s
Ma Ka

s
= −   (2.20) 
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where Ze is the Zeldovich number, u bϑ ρ ρ=  is the density ratio between unburnt and 

burnt gasses, and ds  is evaluated at the reaction zone. Comparing equation (2.22) and 

(2.23) it can be observed that in this linear limit displacement and consumption speed 

respond differently to stretch and may also have opposite signs. 

 

2.1.2 Nonlinear and unsteady effects 

The response of premixed flames to finite stretch rate values is generally nonlinear. The 

study of nonlinear effects represents a very active field of research in the combustion 

community since a comprehensive theory of these effects is still lacking. The non-linear 

dependencies of premixed flame speed and structure on perturbation magnitude have 

been documented experimentally [29, 40, 41], numerically [29, 42-45], and predicted 

theoretically [43, 46-48], just to cite a few examples. For instance, Figure 2-7 plots 

several theoretical expressions for the dependence of flame speed on Karlovitz number, 

obtained by asymptotic analysis of single-step chemistry expanding spherical flames in 

Ref. [41, 48]. In this figure the “LM” curves refer to the linear model of equation (2.23), 

while “DM” and “SM” are obtained from more detailed models taking into account 

nonlinearities in the flame response. The curves collapse onto each other only at very low 

stretch rates (low Karlovitz number) and the effect of nonlinearities is stronger for 1Le≠  

(i.e. the linear model LM diverge more quickly from the detailed model DM with 

increasing Karlovitz  number).  
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Figure 2-7. Theoretical dependence of normalized flame speed ,0

b b
d dU s s=  on Karlovitz 

number 2Ka U R=  for expanding spherical flames (of radius R ) with different Lewis 
number, obtained by asymptotic analysis in Ref. [41]. “LM” refers to the linear model of 
equation (2.10), “DM” is a more detailed model taking into account nonlinearities and 
“SM” refers to a simplified version of “DM”. 
 

There are several nonlinear effects that are not captured by expressions like equation 

(2.20)-(2.23) and that are of interest in this thesis: 

• different response of premixed flames to curvature and hydrodynamic stretch; 

• response to unsteady stretch; 

• “critical” stretch rates. 

The different response of curved and hydrodynamically stretched flames has been 

documented numerically [49] and theoretically [50, 51]. Figure 2-8b shows the 

numerically computed dependence of flame temperature on stretch rate for tubular and 

planar counterflow flames (shown in Figure 2-8a) of a very lean H2/air mixture, 

reproduced from Ref. [52]. As it can be observed, for the same value of stretch rate κ  the 

two geometrical configurations display a very different flame temperature and, as a 

consequence, burning rate (not shown here). For the very lean hydrogen air mixture 

considered in this figure, the flame responds more strongly to curvature rather than 
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hydrodynamic stretch and for the same value of κ  the tubular flame display a much 

higher flame temperature.  

 

  

(a) (b) 

Figure 2-8. (a) Sketch of a planar counterflow premixed flame (left) and tubular 
counterflow premixed flame (right), where V is the inflow velocity of the incoming 
reactants. (b) Numerical computations [52] of flame temperature (temperature calculated at 
the axis of symmetry) dependence on stretch rate (κ = 2V/R and κ = 2V/L for planar and 
tubular counterflow flame, respectively [53]) for H2/Air flames, φ = 0.175, Tu = 298K, 
p=1atm, L = 1.26cm, R = 1.5cm.  

 

The different response of premixed flames to curvature and hydrodynamic stretch is also 

particularly important for the study of premixed flames response to unsteady stretch [54, 

55]. As pointed out at the beginning of this chapter, hydrodynamic stretch (Figure 2-3) 

and curvature (Figure 2-4) depend on two distinct phenomena that are characterized by 

different time scales: competition between convection and diffusive fluxes for 

hydrodynamic stretch and focusing/defocusing of diffusive mass and heat fluxes for 

curvature. The time scale associated with hydrodynamic strain is roughly equal to the 

time necessary for a fluid particle in the reactants to move from the beginning of the 

preheat zone to the reaction zone 0 0F Lsτ δ= . Premixed flames respond as low-pass 

filters and phase shifters to unsteady hydrodynamic stretch perturbation at frequencies 
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higher than 1 τ , since the internal flame structure cannot adjust fast enough to external 

perturbations. To illustrate, Figure 2-9 plots the numerically computed dependence of the 

instantaneous consumption speed ,c Ps  on instantaneous stretch rate κ  for a planar 

counterflow flame where the reactants flow at the inlet is forced harmonically at different 

frequencies. Note that at low frequencies, the flame behaves much like the steady-state 

case. However, as the frequency of oscillation is increased, the flame’s stretch response 

decreases, due to the inability of the diffusive processes to keep up with the time-varying 

strain rate. In fact it is evident that at a frequency of 1000 Hz, the flame is essentially 

insensitive to the stretch rate.  

 

 

Figure 2-9. Dependence of instantaneous flame consumption speed, sc,P, on the 
instantaneous stretch rate, κ, at several frequencies of oscillation from 0Hz (Steady curve) 
to 1000Hz. Here δF0 = 0.1mm and sL0 = 22.15cm/s Image reproduced from Ref. [56] (H2/Air 
flame φ = 0.4 with reactants at standard temperature and pressure) 
 

The sensitivity of premixed flames to unsteadiness in flame curvature is quite different. 

The theoretical study of Clavin and Joulin [54, 55] based on high activation energy 

asymptotics and single-step chemistry suggests that the frequency response of the 
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displacement speed ds  to unsteady curvature (1) remains invariant even at high 

frequencies and (2) becomes independent of preferential diffusion of species and heat as 

frequency increases (i.e. Lewis number effects tend to disappear at high frequencies). 

These two effects have been observed in direct numerical simulations of turbulent 

premixed flames [57, 58] but in the literature these results have not been studied in a 

manner as detailed as the response of premixed flames to unsteady hydrodynamic stretch, 

mainly because an experimental configuration as simple as the counterflow flame to 

study hydrodynamically stretched flames is not available for curved flames. In particular, 

it is not clear whether analogous considerations are valid also for flame speed definitions 

based on consumption (,c Ps  and cs ), since direct numerical simulations of turbulent 

premixed flames show that ,c Ps  generally correlates better with local flame front 

curvature CK  rather than strain rate SK  [59, 60].  

Finally, in many situations there is an upper limit to the response of premixed flames to 

external perturbations: depending on the geometry and time scale of flame stretching, 

there might be a maximum or minimum burning rate, depending on the Markstein 

number, that a premixed flame can sustain before transitioning to a non-burning state 

(extinction). In this thesis, this condition is loosely referred to as “critical” stretch, 

following Ref. [4, 61]. Here we mention only the cases of counterflow flames and curved 

expanding flames as they will be utilized later in Chapter 3; possibly related limit 

phenomena, which are not described here, are premixed flame quenching by vortices [27, 

62, 63], premixed flames propagating along vortex tubes [4, 64] and stationary flame 

balls [4, 65].  
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The classical example of a critically stretched premixed flame is represented by planar 

counterflow twin premixed flames (see sketch in Figure 2-8a) close to extinction. In this 

geometrical configuration, for low flow velocities the flame is far from the stagnation 

surface. If the stretch rate is increased, the movement of the flame is unrestrained. In this 

condition, the flame responds to stretch rate as described at the beginning of this chapter, 

i.e., the reaction rate and the flame temperature will either decrease or increase, 

depending on whether 0cMa >  or 0cMa < , as shown in Figure 2-10. For 0cMa > , it is 

apparent that there exists a critical stretch rate extκ  at which the flame temperature will be 

reduced to such an extent that burning is not possible and a minimum burning rate is 

achieved. On the other hand, since increasing stretch elevates the flame temperature for 

the 0cMa <  flame, extinction cannot occur until the downstream boundary of the 

reaction zone is pushed onto the stagnation surface and the flame movement becomes 

restrained. With further stretching, chemical reactions cannot be completed because of 

the reduced residence time. Only then will the reaction rate and, hence, the flame 

temperature start to decrease as shown in Figure 2-10. This creates an absolute maximum 

in the burning rate (a critically stretched flame) at a stretch rate close toextκ . 
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Figure 2-10. Effect of stretch and reaction incompleteness on the extinction mechanism for 
flames characterized by different Markstein numbers [66]. Small circles indicate extinction 
strain rate extκ   which is turning point in the flame temperature profile.  

 

However, if the stagnation surface is permeable as in the case of impinging the 

combustible mixture against a hot product gas stream of temperature bT , then the 

reaction zone can actually migrate across the stagnation surface in the product side of the 

counterflow. In this situation, the flame speed assumes a negative value, as pointed out in 

Section 2.1.1. Combustion is now supported by diffusion of the reactants across the 

stagnation surface against convection from the product stream and since there is no loss 

mechanism involved in such a situation, for sufficiently high temperature of the hot 

product gas stream extinction is not possible and no critical stretch rate exists. Figure 

2-11 delineates this phenomenon showing results from numerical computations of 

counterflow flames for impinging lean C3H8/air ( 0cMa > ) at standard temperature and 

pressure against combustion products at temperature bT  [67]. For 1530bT K> , the total 

heat release rate of the flame display a monotonic behavior with increasing stretch rate 

and there is no turning point in the flame response; in this case the burning rate gradually 

decreases to zero with increasing stretch, and there is no critical stretch rate. 
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Figure 2-11. Total heat release rates 
b

hu
q dx∫  plotted as a function of “applied stress” ae  (a 

quantity similar to stretch rate) for counterflow f lames formed impinging C3H8/Air, φ = 0.75 
at standard temperature and pressure against combustion products at temperature Tb. 
Curves are monotonic when Tb>1530K, S-shaped below this value: for Tb>1530K no sudden 
extinction occurs with increasing stretch rate and no critical stretch exists. Reproduced 
from Ref. [67]. 

 

For curved expanding premixed flames, a critical stretch rate can also be identified but in 

this case the mechanism that causes the presence of a maximum/minimum burning rate 

depends on the competition between ignition transients and stretch by curvature. To 

illustrate, Figure 2-12 shows results from single-step chemistry numerical computations 

[3, 42] of a lean H2/air mixture ignited by equilibrium adiabatic products. In these 

simulations, a spherical kernel of small radius ir  filled with equilibrium adiabatic 

combustion products is set at 0t =  to simulate ignition and, subsequently, the time 

history of the consumption velocity ,c Ps  is calculated. For this 0Ma <  flame, the 

maximum in consumption speed that is observed for each curve plotted in Figure 2-12 is 

generated by the competition between the initial quick rise of the burning rate from zero 

immediately after ignition and the decrease brought about by the reduction of flame 

curvature as the flame expand to larger radii. These numerical results also show that the 
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maximum consumption velocity is obtained when the ignition radius is equal to its 

critical value, crr , such that the initial kernel shrink if i crr r< . 

 

 

Figure 2-12. Single step chemistry numerical simulation of normalized consumption speed 

, 0c P Ls s  versus normalized time 0 0L Fts δ  for spherical expanding H2/Air flames (with φ = 

0.26, and reactants at standard temperature and pressure) ignited by pockets of adiabatic 
product gasses with initial radius r i [3, 42]. The maximum consumption speed for the 
spherical flame is indicated by an arrow and represents the critically stretched value.  
 

 

2.2 Turbulent premixed combustion modeling 
 

As stated in Chapter 1, premixed turbulent combustion is characterized by the interaction 

of flames and turbulent flows over a wide range of length and time scales. A useful 

diagram to classify various burning modes resulting from the interaction of these 

different scales was first presented by Borghi in terms of the turbulence intensity 

normalized by unstretched laminar flame speed 0Lu s′ , and the ratio of the integral 

length scale to the flame thickness 0t Tl δ  [68]. A slightly modified version of this 

diagram known as the Peters-Borghi diagram [57] is given in Figure 2-13. The 

boundaries between different regimes indicated in this figure should not be interpreted as 
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sharp and precise transitions between flame burning modes, but as an order of magnitude 

estimate of complex transitions which are likely to depend on a larger set of parameters. 

  

 

Figure 2-13. Peters-Borghi diagram. ( ) ( )0 0t T LDa l u sδ ′= is the Damköhler number, 

( )( )0 0L t TRe u s l δ′=  is the Reynolds number and 1/2 1Ka Re Da−=  is the Karlovitz 

number. 
 

For this thesis, the primary region of interest is the “thin reaction zone”, which is 

representative of the conditions at which many combustion system of practical interest 

operate [69] and most of the experiments described in Chapter 1 were performed. In this 

region the turbulent Kolmogorov eddy is smaller than the thickness of the preheat zone 

allowing it to enter the preheat zone and alter the diffusive processes while the laminar 

structure of the reaction zone tends to be preserved. This has been speculated to lead to 

flame thickening: this is yet to have been experimentally demonstrated conclusively [7], 

although some recent studies seem to indicate that this is actually possible [70-72]. In 

fact, the structure of the reaction zone is rather resistant to turbulent perturbations mostly 

because as the reactant gases get heated by chemical reactions (1) the viscosity increases 

(typically the dynamic viscosity of a gas is proportional to the square root of the 
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temperature) causing smaller eddies to be dissipated more quickly and (2) the size of 

turbulent eddies increases due to gas expansion. Furthermore, the high stretch rates 

associated with this regime cause the local flame structure response to flow perturbations 

to be highly nonlinear and can also lead to localized extinction events.  

By contrast, in the region labeled as “wrinkled flamelets” and “corrugated flamelets” all 

the turbulent length scales of the flow are larger than the laminar flame thickness; as a 

result, the turbulence serves to wrinkle the flame front, while locally the flame preserves 

its laminar structure. In the “distributed reaction zone”, all the turbulent length scales are 

smaller than the laminar flame thickness and a propagating front is no longer 

recognizable.  

The fact that in most situations of interest turbulent premixed flames are characterized by 

the presence of a front and that the length and time scales of turbulent flows are, to a 

certain extent, larger than those at which reactions occur is the basis of the so called 

“flamelet” concept [73]. This concept represents the classical paradigm utilized in 

turbulent premixed combustion modeling [74] and may be briefly characterized as 

follows. In premixed turbulent flames, chemical reactions that control heat release are 

confined to thin, wrinkled, convoluted and stretched reacting fronts that separate 

unburned reactants from burned products. Such fronts, commonly called “flamelets”, are 

typically assumed to have the same local structure as perturbed laminar flames. Then, the 

basic physical mechanisms of the influence of turbulence on combustion consist of  

1. flame surface area production by turbulent stretching and wrinkling (an effect first 

highlighted by Damköhler [75]); 
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2. modification of local burning rates per unit front surface brought about by Lewis 

number/preferential diffusion effects and by small-scale turbulent eddies.  

In particular, the latter mechanism has been utilized to explain the dependence of 

turbulent flame speed Ts  on fuel/oxidizer compositions as described in Chapter 1. This 

interpretation is justified by the fact  that Ts  trend can generally be scaled with the stretch 

sensitivity of the mixture (e.g., the Markstein length) as verified by several investigators 

[76-78]. A key goal of modeling approaches based on this paradigm has been to scale the 

dependence of the surface area weighted burning rate upon turbulence intensity and scale 

size [79].  

For example, the “flamelet library” method models these variations (1) by simulating the 

response of laminar flames to simple, well-defined stretching such as in planar 

counterflow flames (results of these simulations constitute the so-called ‘flamelet 

library’), and (2) by averaging the library with a PDF (presumed or modeled by an 

additional transport equation) for the perturbations in a turbulent flow, as for example in 

recent RANS [80, 81] and LES [82, 83] studies.  

Instead, other methods, such as “G-equation” [84] and “Flame Speed Closure” models 

[85], track the propagation of the average position of the turbulent flame front and 

capture the combined effects of flame wrinkling and local burning rates modifications 

using correlations for the turbulent flame speed Ts . An equation widely utilized in the 

combustion literature that relates the turbulent burning velocity to the flamelet structure is 

one that has been discussed by Bray and Cant [86] 

 

 0 0T L T Ls s I A A=  (2.24) 
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where TA  is the total area of the turbulent flame, LA  is the area of the “unwrinkled” flame 

(usually taken as the area of the 0.5c =  isocontour, see Figure 2-14) and 0I  is the so 

called “stretch factor”, which is defined as the ratio between the averaged consumption 

speed along the turbulent flame cs  and unstretched laminar flame speed 0Ls  ( 0I = 0c Ls s ). 

 

 

Figure 2-14. Schematic illustrating the various terms in equation (2.24), adapted from Ref. 
[7]. TA  represents the wrinkled area, while LA  is the area of the 0.5c =  contour. Also 

labeled are the flamelet consumption speed cs  and the turbulent brush local consumption 

speed Ts . 

 

Finally, a transport equation for the flame surface or scalar dissipation rate [87] may be 

employed to model turbulent premixed flame propagation, but it is only very recently that 

studies on how to include the effect of preferential diffusion and non-unity Lewis number 

in this type of models have been undertaken.  

The development of scaling laws describing stretch effects for the turbulent combustion 

modeling approaches described in this section is complicated by several factors. First, the 

nonlinear and unsteady phenomena described in Section 2.1.2 as well as the inherent 

complexity of turbulent flows make it difficult to parametrize the burning rates of the 
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large variety of structures present in a turbulent flame. In particular, the use of Markstein 

lengths, which describe the linearized flame response to small and steady flow 

perturbations, to correlate turbulent flame speed data does not seem entirely justified [4]. 

The abundance of phenomena occurring in a turbulent premixed flame substantially 

hampers the identifications of key physical factors for estimating the influence of 

fuel/oxidizer composition on flame propagation and structure. Second, Lewis number and 

preferential diffusion effects can create alternating zones of intense burning followed by 

extinction, making it difficult to clearly define a flame surface area: this is evident simply 

observing Figure 1-4 and Figure 1-5 or Figure 2-16 in the next section. Third, interaction 

between local burning rates and flame area wrinkling and stretching processes makes it 

difficult to study separately between these two effects i.e. TA  and 0I  in equation (2.24) 

may be correlated and depend on each other [11].  

Finally, it is worth mentioning that other modeling approaches not directly related to the 

“flamelet” paradigm have been proposed to model Lewis number and preferential 

diffusion effects in turbulent premixed flames, such as the “Conditional Moment 

Closure” (CMC) [88]. This approach, which is perhaps more useful to model flames 

close to the distributed reaction zone [74], is derived by methods utilized in turbulent 

non-premixed combustion modeling and focuses on modeling mixing rates rather than 

area production. The accuracy of this type of methods relies strongly on the quality of the 

micro-mixing model used, and the analysis of differential diffusion remains an open 

research question [89]. 
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2.3 Lewis number and preferential diffusion effects: direct numerical simulations of 
turbulent premixed flames 

 

Since part of this thesis work deals with analyses of a DNS database, in this section direct 

numerical simulations (DNS) studies of turbulent premixed flames are briefly reviewed. 

The focus of this review is on those studies that investigated Lewis number and 

preferential diffusion effects in turbulent flames; a list of the works that meet this 

criterion is provided in Table 1 at the end of this section. For this reason, in the 

discussion below we do not explicitly mention results from laminar flame-vortex 

interaction computational studies [62] and DNS of turbulent flames that focus on single-

step chemistry with 1Le=  (like the recent DNS of Poludnenko and Oran [72, 90]) or 

complex chemistry but at equivalence ratios for which Lewis number and preferential 

diffusion are not leading order effects or are not discussed (like the recent DNS of a slot 

burner of Bell et al. [91] and of a low swirl burner of Day et al. [92]). 

In general, DNS data of turbulent premixed flames in the thin reaction zone regime 

confirm that there exist correlations between local flame speed and flame strain/curvature 

consistent with the laminar flame theory presented in Section 2.1, but data in the 

literature are rather scattered (see section 5.2 in Ref. [4]). As an example, Figure 2-15 

plots the local consumption speed ,c Ps  computed from the 2D DNS of Chen and Im [93] 

against either flame curvature CK , flame strain rate SK  or stretch rate κ : in Figure 2-16 

the isocontours of H2 consumption rate utilized to calculate ,c Ps  are shown to better 

understand the trends in Figure 2-15. As it can be observed from these figures, ,c Ps  is 

positively correlated with CK , SK  and κ  as it is expected for a lean hydrogen/air flame 
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(for which 0cMa < ). The correlation between ,c Ps  and CK  is also evident in Figure 2-16, 

where it is clearly shown that positively curved portions of the flame (convex toward the 

reactants) are characterized by higher consumption rates of hydrogen than negatively 

curved portions of the flame (convex toward the reactants). However, data in Figure 2-15 

are rather scattered presumably because of nonlinear and unsteady effects described in 

Section 2.1.2, and a direct application of the results obtained from laminar flame theory is 

difficult.  

 

 

Figure 2-15. Scatter plot of local consumption speed ,c Ps  dependence on flame curvature 

CK (a) strain rate SK (conditioned on CK  being smaller than 10% of its maximum value) 

(b) and stretch rate κ  (c) from the 2D DNS of Chen and Im [93] (H2/air, φ = 0.4, Tu=300K, 
p=1atm, sL0=22.4cm/s, δT0 = 0.61mm, δF0 = DO2 /sL0 = 0.1mm, u’/sL0 = 5.0, l t/δT0 = 3.18).  
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Figure 2-16. Isocontours of H2 consumption rate (red corresponds to zero consumption rate, 
blue corresponds to the maximum calculated consumption rate) from the DNS of Chen and 
Im [93], corresponding to the data shown in Figure 2-15. Reactants are on the left, products 
on the right. 

 

 

 
Figure 2-17. Scatter plot of the three contributions (see equation (2.18)) to the displacement 
speed ds  as a function of the curvature normalized by flame thickness 0C TK δ   for the lean 

CH4/air flame of Ref. [94] (φ = 0.7, Tu = 800K, p = 1atm, u’/sL0 = 10, l t/δT0 = 2.77, δT0 = 
0.31mm). 
 

Also trends in displacement speed ds  obtained from DNS are qualitatively consistent 

with the theory of laminar flames but are generally even more difficult to reconcile 
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quantitatively with it [95], mostly because of the complications that arise in the definition 

of ds  described in Section 2.1.1. Besides, DNS data show that ds  trends are dominated by 

curvature effects, represented by the ts  term in equation (2.18), especially in flames 

strongly wrinkled by turbulence [58]. To illustrate, Figure 2-17 presents a scatter plot of 

the different contributions to ds  as a function of flame curvature CK  for the lean 

methane/air flame of Ref. [94]: clearly the ts  contribution displays the largest sensitivity 

to flame curvature and partially hides possible Lewis number and preferential diffusion 

effects influencing the reaction rate rs  and normal gradient ns  contributions to ds . 

However, correlation between curvature and rs  or ns  is responsible for the different 

propagation characteristics of turbulent flames with different Lewis numbers [96]. 

More quantitatively, a few studies have also attempted to compare local flame speeds 

calculated in DNS of turbulent flames with laminar flame calculations. For example, 

Baum et al. [97] compared local heat release rates calculated in their H2/Air flames 

database to calculations obtained from laminar planar counterflow twin flames at the 

same strain rate SK : they reported that the laminar flame calculations did a poor job in 

predicting the structure of the turbulent flame, as shown in Figure 2-18a for one of the 

highest turbulence intensities they investigated. Hawkes and Chen [98, 99], instead, 

reported that for CH4/air and CH4/H2/air flames the average displacement speed ds  of 

flame elements with the same strain rate SK  is well predicted by computations of laminar 

planar counterflow flames formed stagnating reactants against hot products. Finally, 

Sankaran et al. [100] showed that in their DNS of a CH4/air slot burner the average 

structure of the reaction zone can be well represented by laminar planar counterflow twin 
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flames computations. A subset of their results is shown in Figure 2-18b, which compares 

averaged profiles of methane and hydroxyl radical production rate ωɺ  (computed at 

different heights in the flame) to laminar computations at different strain rates. 

 

 

Figure 2-18.  
(a) Scatter plot of integrated heat release rate q′′′  along vectors normal to the flame surface 

and strain rate SK  for H 2/air, φ = 0.5, Tu=300K, p=1atm,u’/sL0=30.6, l t/δT0=1.26 [97]. 

Integrated heat release is normalized by the same quantity calculated for an 
unstretched planar flame 0q′′′ . The dashed line superimposed to the scatterplot 

represent values calculated in a laminar planar counterflow twin flame  
(b) Rate of production of CH4 and OH plotted against progress variable 

( ) ( )
2 2 2 2

u b u
O O O Oc Y Y Y Y= − −  for CH 4/air flames at φ = 0.7, Tu=800K, p=1atm. Colored 

lines refer to average profiles calculated in the turbulent slot burner of Sankaran et al. 
[100] at different heights (¼, ½ and ¾ of the total flame length).Dotted and dotted-
dashed lines refer to values calculated in a laminar planar counterflow twin flame at 
two different strain rates 

SK . 

 

To compare laminar and DNS results, flame strain rather than curvature has traditionally 

been utilized to parametrize burning rate variations. In fact, it is well known that the 

curvature PDFs of turbulent premixed flames are roughly symmetrical with respect to 

zero, while strain rate PDFs have non-zero positive mean [101]. Based on this 
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observation, it has been often assumed that zones of enhanced and diminished burning 

rate due to flame curvature cancel out in the mean, leaving only the influence of strain 

rates to explain Lewis number and preferential diffusion effects on the global 

consumption rate of turbulent flames [60, 99]. Neglecting curvature effects may have 

some justification for weakly wrinkled flames (such as in the wrinkled/corrugated 

flamelets regime) with ~ 1Le  and negligible preferential diffusion of species, but 

otherwise it does not seem an appropriate assumption [4]. First of all, nonlinearity and 

unsteadiness in the flame response (see Section 2.1.2) may prevent the effect of 

positively and negatively curved flames from canceling out, even in the mean.  

Secondly, the mentioned PDFs of flame curvature and strain have been obtained for the 

whole turbulent flame brush, but different portion of the flame brush are characterized by 

different mechanisms of flame propagation [30, 96]. For example, at the leading edge of 

the turbulent flame brush more positively curved flame elements are present than at the 

trailing edge, by geometric necessity, and this implies that Lewis number and preferential 

diffusion effects act differently in different portion of the turbulent flame brush. This 

aspect is especially important for the leading point concept discussed in the next section.  

Thirdly, inside the flame front SK  and CK  are not independent from each other, as 

pointed out while discussing equation (2.5). DNS studies [102-106] as well as 

experiments [35] show that near the reaction zone their correlation is negative, especially 

at low and moderate Damköhler numbers, and their correlation coefficient tend to 

become more negative with decreasing Lewis number. To illustrate, Figure 2-19 shows 

the joint PDFs of tangential strain rate 
SK  and mean curvature 

CK  for three turbulent 
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premixed flames with different Lewis number but propagating in the same turbulent flow 

field, as obtained from the single-step chemistry DNS of Ref. [105, 106].  

 

 

Figure 2-19. Joint PDFs of tangential strain rate 
SK  and mean curvature 

CK  on the 

( ) ( ) 0.8u u b
D D D Dc Y Y Y Y= − − =  isosurface, where DY  is the mass fraction of the deficient 

reactant: (a) Le = 0.8; (b) Le = 1.0; (c) Le = 1.2. Single-step chemistry u’/sL0=7.19, 
l t/δT0=1.92. Adapted from Ref. [105, 106].  
 

The explanation for this behavior is primarily due to defocusing (focusing) of heat in the 

positively (negatively) curved regions of the flame which gives rise to a lower (higher) 

value of dilatation u∇⋅ �  leading to smaller (larger) values of tangential strain rate 

:SK nn u u= − ∇ + ∇⋅�� � �
. This trend is demonstrated in Figure 2-20, which plots joint PDFs 

of dilation u∇ ⋅ �  and mean curvature 
CK  for the same data shown in Figure 2-19. Note 

that the negative values of dilatation rate shown in Figure 2-20 at high values of 
CK  are 

not a compressibility effect since all this flows are at low Mach number, but represent the 

effect of relative motions between fluid and c-isosurface [107]. In fact, according to the 

continuity equation the dilatation is equal to density change following the fluid element 

 

 
1 1D

u u
Dt t

ρ ρ ρ
ρ ρ

∂ ∇⋅ = − = + ⋅∇ ∂ 

� �
 (2.25) 
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but this equation can also be expressed following a c-isosurface as 

 

( )1 1 1

F

c
d d d

v

DD
u u s n s n s n

Dt t Dt

ρρ ρ ρ ρ ρ
ρ ρ ρ

=

  ∂    ∇⋅ = − = − + − ⋅∇ + ⋅∇ = − + ⋅∇   ∂   
  

�

� � � � �

�����
 (2.26) 

 

where ds  is the displacement speed of the c-isosurface (defined as in equation (2.17)) and  

Fv
�

 is the total speed at which the c-isosurface moves (defined as in equation (2.14)). For 

low Mach number flows and unity Lewis number flames cD Dtρ  is equal to zero while 

the term n ρ⋅∇�  is negative, since, generally, the density decreases moving toward the 

products. Then, the dilation can become negative in highly positively curved or highly 

strained portions of the flame where the displacement speed ds  is negative (see Section 

2.1.1). Lewis number and preferential diffusion of species can either hinder (if 1Le<  i.e. 

0cMa < ) or promote (if 1Le>  i.e. 0cMa > ) the defocusing (focusing) of heat at 

positively (negatively) curved portions of the flame front. Thus, for 1Le<  the correlation 

between u∇ ⋅ �  and 
CK  is weakened, while it is strengthened for 1Le> . This trend is 

recognizable in Figure 2-20, where for the same value of positive (negative) mean 

curvature, the 1.2Le=  flame achieves higher (lower) values of dilatation u∇ ⋅ �  than the 

0.8Le=  flame. 

Comparing Figure 2-20 and Figure 2-19 it can also be noticed that the joint PDF 
S CK K−  

is more scattered than the joint PDF 
Cu K∇ ⋅ −�  especially at negative curvatures. This can 

be explained by investigating the term :nn u− ∇�� �
 which can be rewritten as: 
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 ( )2 2 2
1 1 2 2 3 3:nn u n S n α ψ α ψ α ψ− ∇ = − ⋅ ⋅ = − + +�� � � �

 (2.27) 

 

where ( )( )1 2
T

S u u= ∇ + ∇� �
 is the strain rate tensor, 1 2 3α α α≥ ≥  are its eigenvalues and 

i in eψ = ⋅� �  is equal to the cosine of the angle formed by the normal to the flame surface 

and the eigenvector ie
�

 associated to the eigenvalue iα . Equation (2.27) shows that the 

term :nn u− ∇�� �
  depends on the alignment between the strain rate tensor and the flame 

surface. Turbulent fluctuations of this alignment are responsible for weakening the 

correlation 
S CK K−  relative to the correlation 

Cu K∇ ⋅ −� . Besides, in regions where the 

dilation u∇ ⋅ �  is high (such as at negative CK ) it has been shown [108] that the flame 

normal tends to align with the most extensive strain rate (i.e. 2
1 ~1ψ ) thereby decreasing 

SK  contrary to the increasing trend brought about by u∇ ⋅ � .  

 

 
Figure 2-20. Joint PDFs of dilation u∇ ⋅ �  and mean curvature 

CK  on the same isosurface as 

Figure 2-19 for different Lewis numbers. Adapted from Ref.  [105].  
 
 

Finally, contrary to the trends shown in Figure 2-19 and Figure 2-20, it should be noted 

that DNS studies of turbulent premixed flames without heat release did not find any 
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correlation between tangential strain rate and curvature [109] while DNS studies of 

surfaces propagating at constant speed in constant density turbulent flows found that 

highly curved shapes (both negatively and positively curved) are probable only in regions 

of almost zero strain rate [110]. The relative importance of the effects brought about by 

dilatation relative to turbulence straining can be scaled as [108]: 

 

 ( ) ( )0

0

~
u u

t L
b b

S T

l su
f Le f Le Da

K u

ρ ρ
ρ δ ρ

   ∇ ⋅ =   ′   

�

 (2.28) 

 

where ( )f Le  is a function which increases with decreasing Le. Equation (2.28) shows 

that the contribution of heat release effects to strain rates cannot be neglected for flames 

with high gas expansion ratio u bρ ρ , high Damköhler numbers and low Lewis numbers. 

The negative correlation of strain and curvature implies that SK  and CK  affect the local 

flame front structure in two opposite directions [4]. A noticeable consequence of these 

conflicting effects is that in the thin reaction zone regime the local flame thickness does 

not depend monotonically on curvature and both negatively and positively curved 

flamelets tend to be thicker than unstrained laminar flamelets [100, 107]. This 

phenomenon is illustrated in Figure 2-21, which shows the joint PDFs of progress 

variable gradient c∇  and mean curvature CK  for the same flames of Figure 2-19 and 

Figure 2-20. The progress variable gradient c∇  is inversely proportional to the local 

flame thickness i.e. an high value of c∇  implies a thin flame ( ~ 1 cδ ∇ ). For 1Le=  

two branches in the joint PDF can be observed: low values of c∇  (i.e. thick flames) are 
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associated with high values of CK , both positive and negative. For non-unity Lewis 

number the non-monotonic dependence of c∇  on CK  is somewhat suppressed since for 

0.8Le= , the flamelet thickening for 0CK >  and vice versa for 1.2Le= . 

 

 

Figure 2-21. Joint PDFs of mean curvature 
CK  and magnitude of the progress variable c 

gradient c∇  on the same isosurface as Figure 2-19 for different Lewis numbers. Adapted 

from Ref. [106].  
 

 

 
Figure 2-22. Joint PDFs of tangential strain rate 

SK  and magnitude of the progress variable 

c gradient c∇  on the same isosurface as Figure 2-19 for different Lewis numbers. Adapted 

from Ref. [106].  
 
 

This non-monothonic dependence of flame thickness on curvature is also to the fact that 

c∇  tend to correlate strongly with strain rate SK  as shown in Figure 2-22 [106]. A more 
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precise explanations of these trends, requires the study of a transport equation for the 

progress variable gradient c∇ , as described in Ref. [107].   

Finally, DNS studies indicate that the most probable local flame geometry is cylindrical 

and the most highly curved regions on the flame surface correspond to cylindrical shapes, 

while the probability of finding spherically curved flame fronts is low especially at high 

turbulent intensities [28, 59]. This indicates that a two-dimensional description of 

turbulent flame fronts geometry is acceptable in first approximation and partially justifies 

the use of 2D direct numerical simulations to study turbulent flames (see Table 1). In 

Chapter 3 this observation is utilized to justify a comparison between cylindrical laminar 

flames and statistics obtained from DNS of turbulent flames. 

In summary, nonlinearity and unsteadiness in the flame response, the different response 

of the flame to strain and curvature as well as the different behavior of the flame at 

different positions in the turbulent flame bush make it difficult to apply the quasi-steady 

flamelet paradigm described in Section 2.2. This consideration is especially valid for lean 

hydrogen turbulent flames for which these effects are particularly important as will 

shown in Chapter 3.  

 

 

 

 

 

 

 

 



53 
 

Table 1. Methods and conditions of DNS of turbulent premixed flames associated with 
Lewis number and preferential diffusion effects. 

Reference Dimension Chemistry Mixture Density Transport 
Properties 

Turbulence 

Ashurst et al. 
[111] 

2D Single-step Le = 0.5, 2.0 Constant Constant Random flow field, 
l t/δT0=10  

Haworth and 
Poinsot [102] 

2D Single-step Le = 0.8, 1.0, 1.2 Variable Temperature 
dependent 

Decaying, u’/sL0 = 
5.8-6.6, l t/δT0=3.6-
4.3 

Rutland and 
Trouve’ [59] 

3D Single-step Le = 0.8, 1.0, 1.2 Constant Constant Decaying, u’/sL0 = 3-
5, l t/δT0~1 

Baum et al. [97]; 
Swaminathan and 
Bilger [88, 112] 

2D Complex H2/O2/N2,Tu =298K or 
700K, φ = 0.35-1.3 

Variable Mixture averaged 
[113] 

Decaying, u’/sL0 = 
1.2-3.2 and 31, 
l t/δT0~1.26-4.34 

Trouve’ and 
Poinsot [30] 

3D Single-step Le = 0.3, 0.8, 1.0, 1.2 Variable Temperature 
dependent 

Decaying, u’/sL0 = 
10, l t/δT0~1 

Echekki and Chen 
et al. [31, 94, 114-
117] 

2D Complex CH4/Air, φ = 0.7 and 1, 
Tu =800K 

Variable Temperature 
dependent  

Decaying, u’/sL0 = 4-
10, l t/δT0~2.7-10 

Chen and Im [93, 
118] 

2D Complex H2/Air, φ = 0.4, 0.6, 2.0 
and 6.5, Tu = 300K 

Variable Temperature 
dependent 

Decaying, u’/sL0=5 
and 10, l t/δT0~2.3-4.1 

Hawkes and Chen 
[98, 99], 
Chakraborty et al. 
[119] 

2D Complex H2/Air, φ = 0.6, 
CH4/Air, φ = 0.52 and 
CH4/H2 mixtures, Tu = 
300K 

Variable Temperature 
dependent 

Decaying, 
u’/sL0=9.5-28.5 
(CH4/air) u’/sL0=3-
30 (H2/air) 
l t/δT0~0.28-10 

de Charentenay 
and Ern  [120] 

2D Complex H2/Air, φ = 0.5, 1.0 and 
5.0, Tu = 300K and 
800K 

Variable Multicomponent 
and thermal 
diffusion 

Decaying, u’/sL0=1-
10 lt/δT0~2-9 

Tanhashi et al. 
[121, 122] 

3D Complex H2/Air, φ = 1.0, Tu = 
700K 

Variable Mixture averaged 
[113] 

Decaying, 
u’/sL0=0.85-3.41 
l t/δT0~0.85-3.38 

Shim et al. [123, 
124] 

3D Complex H2/Air, φ = 0.6 and 1.0, 
Tu = 700K 

Variable Mixture averaged 
[113] 

Decaying, 
u’/sL0=0.85-7 
l t/δT0~20-170 

Chakraborty and 
Cant [96, 105, 
106, 108, 125-
127]  

3D Single-step Le = 0.34, 0.6, 0.8, 1.0, 
1.2 

Variable Constant Decaying, u’/sL0=7.5 
l t/δT0~2.45 

Han and Huh 
[128] 

3D Single-step Le = 0.6, 0.8, 1.0, 1.2 Variable Temperature 
dependent 

Decaying, u’/sL0=6-
10 lt/δT0~2.5-3.2 

Bell, Day et al. 
[16, 129] 

2D Complex C3H8/Air at φ = 0.7, 
CH4/Air at φ = 0.8 and 
H2/Air at φ = 0.37, 
CH4/H2 mixtures Tu = 
300K 

Variable Mixture averaged 
[113] 

Decaying, u’/sL0~1 
l t/δT0~5 

Day et al. [28]  3D Complex H2/Air at φ = 0.37, Tu = 
298K 

Variable Mixture averaged 
[113] 

Decaying, u’/sL0~0-
2.8 l t/δT0~3.75 

Aspden, Day and 
Bell [71, 130, 
131] 

3D Complex H2/Air at φ = 0.31-0.4, 
CH4/Air φ = 0.7, 
C3H8/Air φ = 0.7, Tu = 
298K 

Variable Mixture averaged 
[113] 

Artificially forced, 
u’/sL0~0-150 
l t/δT0~0.5-1 

Hawkes et al. 
[132, 133] 

3D Complex H2/Air at φ = 0.7, Tu = 
700K 

Variable Mixture averaged 
[113] 

Forced by mean 
shear, u’/sL0~1-10 
l t/δT0~1-10 

Sankaran et al. 
[100] 

3D Complex CH4/Air at φ = 0.8, Tu = 
800K 

Variable Mixture averaged 
[113] 

Slot burner, 
u’/sL0~2-3 l t/δT0~0.8-
1.2 
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2.4 Leading points concept 
 

An approach alternative to the “flamelet” paradigm is based upon so-called “leading 

points”, which are intrinsically local properties of the turbulent flame. This concept was 

originally proposed by Zeldovich [134], who described the "leading/pilot" points as the 

most forward-lying points of the flame front in the direction of the reactants. This idea 

was subsequently expanded [4, 61]. In a turbulent premixed flame, the largest velocity 

fluctuations in the direction of propagation create convex bulges with respect to the 

reactants which generate flame surface area behind them and determine the average 

combustion velocity. Thus, leading points are loosely defined as positively curved points 

on the turbulent flame front that propagate out furthest into the reactants in spatial regions 

where turbulent eddies induce low approach flow velocities. Within this interpretation, 

augmentation of flame surface area is the effect of increased burning rates, not the 

fundamental cause. As stated in Ref. [134] (pp. 447-448) for flames propagating in 

horizontal tubes:  

“The pilot point in a non-stationary flame is the most forward-lying point of the flame 

front in the direction of combustion propagation. The igniting “impulse” is transmitted 

from it to adjacent portions of the flame, and so on, until the flame front encompasses the 

entire mixture volume… [pilot points] establish the relationship between an integral 

characteristic of the process (the surface area of the flame) and a local quantity (the 

maximum velocity of the gas along the tube).” 

In the leading point concept framework it is postulated that modifications in the overall 

turbulent combustion speed brought about by Lewis number and preferential diffusion 
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effects depend solely on modification of the burning rate at the leading points since an 

increase (decrease) in the average propagation speed of these points causes more (less) 

flame area to be produced behind them. Thus, such a concept offers the opportunity to 

substantially simplify the modeling of turbulent premixed flames by reducing the 

“flamelet library” (a collection of basic characteristics of perturbed laminar flames that 

allow for all possible type of perturbations) to a single “flamelet page” describing the 

burning rate of the leading point. In other words, modeling of turbulent burning rates by 

leading points concept can be thought as consisting of two sub-problems: (1) modeling 

the burning rates at the leading points and (2) modeling the dynamics/statistics of the 

leading points in the turbulent flame. Studies that attempted to answer to these two 

questions are summarized in the next two sections. 

 

2.4.1 Leading points burning rates 

Several investigators have assumed that the structure of leading points can be well 

represented by quasi-steady “critically” stretched laminar flames in canonical 

configurations such as, stationary curved flame ball [135, 136], expanding spherical 

flames of small radius [42, 137]  and planar counterflow twin flames near extinction [9-

11, 61]. The idea behind this use of critically stretched laminar flames comes from the 

following proposed mechanism for the formation of leading points: a flame element can 

become a leading point if transported toward the reactants by a strong turbulent eddy 

(especially if 0Lu s′≫ ) but its propagation is limited by local extinction; then, at the 

leading point a local balance between convection and quenching is established similar to 

that of critically stretched (i.e. under near-extinction conditions) laminar flames. Other 
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investigators, instead, have simply utilized empirical formulae based on some "effective" 

Lewis number of the mixture to model leading points burning rates [138-140]. 

In the literature, testing of these proposed leading points burning rates models has been 

performed “a posteriori”, i.e. based on their ability to develop correlations for turbulent 

flame speed data. For instance, Venkateswaran et al. [9-11] computed the maximum 

displacement speed ,L maxs  in a twin planar counterflow flame, as shown in Figure 2-23a, 

and used this quantity to correlate their database of H2/CO/air turbulent flames, which 

was presented in Figure 1-1. As can be observed from Figure 2-23b, scaling the turbulent 

flame speed data with ,L maxs  rather than with the unstretched laminar flame speed 0Ls , 

collapses the measurements on a single curve rather well. This is remarkable, given the 

fact that in this database the turbulent flame speeds Ts  of different mixtures at the same 

turbulent intensity can display up to a 200% difference. 

 

 

Figure 2-23. (a) Dependence of laminar flame speed Ls on stretch κ  as computed in 

counterflow twin flames for the different H2/CO/air mixtures of Venkatewaran et al. [11]. 
(b) Same turbulent flame speed data shown in Figure 1-1 [11] but normalized by the ,L maxs  

values shown in Figure 2-23a instead of ,0Ls . 
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For completeness, we also mention that the phenomenon of rapid flame propagation 

along the axis of vortex tubes has been taken into consideration as a possible model for 

the burning rate of leading points [4]. This idea has not seen much development for the 

modeling of Lewis number and preferential diffusion effects but several turbulent 

combustion models have focused on this flame propagation mechanism [64]. The 

possible role of vortex tubes in the formation of leading points will be explored further in 

Section 3.6 and Chapter 5.  

 

2.4.2 Dynamical significance of leading points 

Few results addressing the problem of modeling leading point dynamics and statistics in 

turbulent flames are available in the literature, mainly because the basic leading point 

argument itself is somewhat phenomenological and remains to be put on firm theoretical 

footing. However, there are two instances where the leading points concept can be clearly 

proved. 

The first instance regards the application of the Kolmogorov-Petrovskii-Piskunov (KPP) 

theorem  to a statistically stationary, one-dimensional turbulent flame (see Appendix A in 

Ref. [6] and Ref. [141]). For this geometrical configuration (schematically shown in 

Figure 2-24a), the balance equation for a Favre’ averaged progress variable can be 

written as 
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where uρ  is the unburned gas density,  “¯ ” refers to ensemble averaged quantities, “~” 

refers to Favre’ averaged quantities (i.e. density weighted ensemble averaged c cρ ρ=ɶ ), 

ωɶɺ  is the Favre’ averaged reaction rate and TD  represents the turbulent diffusivity (which 

may be variable and depend on cɶ ). Equation (2.29) under the assumptions 

 

1) 0TD >  (gradient turbulent transport)  

2) 0ρω >ɶɺ  

3) ( )2
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admits a class of solutions known as “pulled fronts” for which the propagation speed Ts  

is controlled by the leading edge of the turbulent flame brush ( 0c =ɶ ): 

 

 ( )2

0

2
T T

cu

s D
c

ρ ω
ρ =

∂=
∂ ɶ

ɶɺ
ɶ

 (2.30) 

 

Assumptions 1)-3) are satisfied by several turbulent premixed combustion RANS closure 

models, and it is customary to utilize the KPP theorem to obtain estimates of turbulent 

flame speed [142]. Within this framework, the “leading points” controlling the turbulent 

flame propagation are defined as those points where 0c →ɶ ; we will refer to this 

point/surface as the “flame brush leading point” in this thesis work.  

Despite being rather straightforward, this characterization of the leading points suffers of 

several drawbacks. First, the validity of assumptions 1)-3) has not yet been proven for 
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turbulent premixed flames even though many closure models satisfy these restrictions. 

Second, a perfectly statistically stationary one-dimensional turbulent flame is not 

realizable experimentally because this configuration is intrinsically unstable. Turbulent 

flames that approximate these conditions can be realized in slightly divergent or slowly 

swirling flows, such as in low-swirl burners (LSB). As an example, Figure 2-24 

reproduces an image from the low-swirl-burner (LSB) of Marshall et al. [143]. 

Nonetheless, most turbulent flame brushes develop from attachment points that constrain 

flame motions and impede turbulence from fully wrinkling the flame in their vicinity: 

predictions inferred from statistically stationary one dimensional flames are often not 

appropriate in these conditions [144, 145], and it is not clear how to identify leading 

points for these situations.  

 

 

Figure 2-24. (a) Schematic of a statically one dimensional stationary turbulent flame (b) Mie 
scattering image from LSB burner of Marshall et al. [143] (d = 36mm, 50/50 H2/CO, 0.55 
equivalence ratio, STP conditions). Reactants are flowing from below. Flame edge (green), 
instantaneous leading point (yellow x) and average progress variable, c , (white), are 
overlaid onto the raw image. 
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Third, experimental or numerical study of the leading edge characteristics of a turbulent 

flame brush is problematic because of difficulty in gathering enough data to develop 

meaningful statistic; indeed, the 0c =ɶ  point in any real data set of finite size lies at the 

point where a single realization of the flame occurs. Note also that within the KPP 

interpretation, the flame does not possess leading points for the majority of time instants, 

as the point on the flame that instantaneously lies farthest into the reactants may occur 

over a range of cɶ  values. This makes it difficult to clearly identify the physical 

mechanism through which leading points influence the overall flame propagation. We 

will refer to these points as “instantaneous leading points”, indicated by the yellow “x” in 

Figure 2-24, where the instantaneous flame front is overlaid on top of time averaged 

progress variable contours. For the turbulent flames analyzed by Marshal et al. [143], for 

90% of the flame realizations the position of the “instantaneous leading points” occurs 

over the 0.02 0.66c< <ɶ  range, with an average location at 0.24 0.30c ≅ −ɶ , depending on 

turbulence intensity and fuel composition.  

The second example that clearly shows the significance of the leading points in uniquely 

controlling the burning velocity is shown in Figure 2-25a, following Ref. [11]. This 

figure illustrates an initially flat flame propagating in a spatially varying, but temporally 

steady, flow field in which the velocity isocontours are parallel to the direction of flame 

propagation. If the laminar burning velocity, 
Ls , is constant, then it is seen that the 

portion of the flame at the lowest velocity point, point “B” in the figure, propagates out 

the fastest. In the lab-fixed coordinate system, the flame at Point B moves at a speed of 

( )L LP
s u+ ∆ , where the subscript “LP” denotes the leading point. Moreover, it can easily 

be shown that, after an initial transient, the entire front reaches a stationary shape and 
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propagation speed with the value ( )L LP
s u+ ∆  as shown in Figure 2-25b. As such, the 

front displacement speed is controlled by the leading points of the flame that propagate 

into the lowest approach flow velocity regions ahead of the flame. This example clearly 

illustrates that the resulting increase in flame area induced by the spatially varying 

velocity field is the effect of the higher displacement speed, not the cause.  Finally, note 

that in this steady state example, the “flame brush leading point” and “instantaneous 

leading point” coincide.  

 

 

 

(a) (b) 

Figure 2-25. Model problem of an initially flat flame propagating into a spatially varying 
flow field (a); level set computation of the model problem, where the initial and final steady-
state flame shapes are shown (b) [11]. 
 

More generally, if the unidirectional periodic velocity field is given by ( ) ( )u x f x= , 

then it can be shown that the burning velocity at large times is given by 

( )( )maxLs f x+ −  (proved in Appendix C). In other words, the burning velocity is 

controlled by conditions at a discrete spatial point or points and is independent of the 

initial conditions and the details of the flow field, such as the scale size of the velocity 

inhomogeneities. This latter model problem becomes more complicated if the flow is 
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unsteady or three dimensional. In this case, the spatial position of the leading point may 

evolve in time: following the terminology of Ref. [9, 10], the leading point may no longer 

be “quasi-steady”, and it is unclear how to apply leading points argument in this case, or 

if this approach is even valid. This thesis work takes up this problem in detail in order to 

examine the dynamical significance of leading points, as described in Chapter 4. 
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CHAPTER 3 

LEADING IPOINTSIBURNINGIRATES 

 

Given the background provided in Chapter 2, it follows that information about the 

structure of the flame front (especially near the turbulent flame brush leading edge) is 

needed to critically evaluate ideas put forward by leading points concepts and, more 

generally, to improve models for the turbulent flame propagation of negative Markstein 

length flames. In particular, this chapter analyzes leading points burning rates by 

investigating: 

 

1) local flame front characteristics (flame speed, flame thickness, curvature and strain) 

of turbulent premixed flames 

2) how these flame front characteristics compare to model laminar flame calculations 

and to “critically” stretched laminar flames 

3) how this comparison changes for those portion of the flame front located near the 

leading edge of the turbulent flame brush. 

 

To achieve these objectives, this chapter analyzes a set of direct numerical simulations 

(DNS) of highly stretch sensitive flames, described by Aspden et al. [71]. These 

simulations consider very lean H2/air flames (φ = 0.31) at moderate and extremely high 

turbulent intensities. In these conditions, the effects of non-unity Lewis number and 

preferential diffusion of species (Section 2.1) are the dominant factors influencing the 

overall flame structure and propagation characteristics: as a consequence, these 

simulations represent a good testing ground for leading point concepts.  
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In order to interpret the statistical information obtained by the DNS database, we 

calculate reference, one-dimensional computations of stretched premixed flames in 

several geometrical configurations shown in Figure 3-1: a planar counterflow twin flame 

(PCF), a tubular counterflow flame [40] (TCF) and an expanding cylindrical flame (ECF) 

ignited from a pocket of burnt gases. These different geometries are useful to isolate 

various nonlinear and unsteady effects (see Section 2.1.2) and allow for a comparison of 

flame response to stretch rates that are imposed through both hydrodynamic stretch and 

flame curvature. Results for a few other flame geometries (tubular flames with an inner 

wall and spherical flames) related to those shown in Figure 3-1 are presented in Appendix 

A.3.  

 

 

Figure 3-1. Premixed flame geometrical configurations utilized in this study as model 
problems to investigate strongly stretched flames: planar counterflow twin flame (PCF, 
left), tubular counterflow flame (TCF, center), expanding cylindrical flame (ECF, right). 

 
 

The rest of the chapter is organized as follows. Section 3.1 briefly overviews the 

conditions and numerical methods used to compute the three model geometries of Figure 

3-1 as well as the characteristics of the turbulent flames computed by the DNS. Section 

3.2 details the definitions of local burning rate, flame thickness, curvature and flame 
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strain used in this thesis to investigate the structure of the turbulent flame front and 

compare it to the 1D laminar computations. Furthermore, the procedure utilized to 

identify the leading edge of the turbulent flame brush is described. Results from the 

model laminar flame computations are outlined in Section 3.3. Analysis of the DNS 

database is then presented in Section 3.4 for the entire flame front and in Section 3.5 for 

the portion of the flame front at the leading edge. Finally, in Section 3.6 the chapter 

concludes with a critical appraisal of the results obtained. 

 

 

3.1 Numerical procedures 
 

All the numerical simulations considered in this chapter utilize the transport coefficients, 

thermodynamics properties and chemical kinetics of the H2/O2 system of the GRI 2.11 

mechanism [146] and a mixture averaged formulation [113] to model molecular 

diffusion. We consider an H2/air flame at an equivalence ratio of φ = 0.31 and with an 

initial reactants temperature 298uT K=  and at pressure 1p atm= . For these conditions, 

a PREMIX [147] calculation shows that the unstretched laminar flame speed is 

0 4.68Ls cm s=  while the flame thickness computed from the maximum value of the 

temperature gradient is ( ) ( ),0
0 1.9b u

T max
T T dT dx mmδ = − = , where ,0 1212bT K=  is 

the adiabatic flame temperature, and the full width at half maximum (FWHM) of the H2 

consumption rate 
2Hωɺ  profile is 2,0 0.67H mmδ = . 

First, we briefly describe the computational approaches used to model the three flame 

geometries shown in Figure 3-1; further details and convergence studies are presented in 
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Appendix A.1. The PCF was simulated utilizing the standard OPPDIF code with an arc-

length continuation technique to capture the extinction point as implemented in 

CHEMKIN-PRO© [147]. For the TCF configuration, a modified version of the OPPDIF 

code adapted for the cylindrical geometry [40] was used. The half jets distance 2L  for 

the PCF and the external radius R of entrance of the fresh gases for the TCF, were both 

chosen equal to 10cm, to ensure that the outer boundary conditions do not affect the 

flame structure at low strain.  

The ECF was simulated with an isobaric, one dimensional formulation of the 

conservation equations in cylindrical coordinates. The continuity, thermal energy and 

species equations were discretized and solved with the finite element method, as 

implemented in the commercial software COMSOL© [148]. The initial conditions ( 0t = ) 

imposed for temperature T , species mass fractions iY  and gas velocity u  are 

 

,0 ,0, 0 , 0
( , 0) ( , 0) ( , 0) 0

, ,

b b
i i i

iu u
i i i

T r R Y r R
T r t Y r t u r t

T R r Y R r

 ≤ < ≤ < = = = = = = 
≤ < ∞ ≤ < ∞  

 (3.1) 

 

which corresponds to a quiescent cylindrical pocket of radius iR composed of 

equilibrium combustion products ,0b
iY  at the adiabatic flame temperature ,0bT  immersed 

in the fresh mixture (uY , uT ). Calculations were performed for different initial radii, iR, 

ranging from 0Tδ  to 0 4Tδ , which is close to the critical radius of ignition for these 

simulations. To avoid numerical difficulties, the step discontinuities in the initial 

conditions were smoothed over an interval of length 0 10Tδ  centered around iR. It is 
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important to recognize that a real expanding cylindrical flame at these conditions quickly 

develops a cellular structure because of thermo-diffusive instabilities - this one 

dimensional model suppresses this effect. However, this assumption was invoked 

purposefully since the key point of this computation was to determine the sensitivity of 

curved cylindrical flames, and not as an actual computation of the dynamics of a real 

expanding flame. 

The flow conditions and characteristics of the DNS database that is analyzed in this 

chapter are described in detail in Ref. [71] and references therein. The software utilized 

for these simulations is based on a low-Mach-number formulation of the reacting flow 

equations for which the limitations imposed by the Courant-Friedrichs-Lewy condition 

do not require the very small time steps needed by classical DNS codes based on fully 

compressible Navier-Stokes equations. The code also implements an adaptive mesh 

refinement strategy to resolve the flame zone and regions of intense vorticity in greater 

detail. The combination of these approaches allows for the simulation of flame fronts 

over long durations and enables meaningful estimates of turbulent flame brush features 

[71, 91].  

The DNS considered in this chapter were performed in a computational domain 

consisting of a high-aspect-ratio ( 05 Tδ : 05 Tδ : 040 Tδ ) parallelepiped volume where the 

flow was initialized with fresh H2/air mixture beneath the hot combustion products, 

resulting in a downward-propagating flame. Periodic lateral boundary conditions were 

specified, along with an insulating free-slip fixed wall at the bottom of the domain and 

outflow at the top. A density-weighted forcing term in the momentum equations was used 

to maintain the turbulent background, characterized by an integral length scale 
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0 0.5t Tl δ =  and turbulent intensities 0' 3.69Lu s =  (Case A31), 0' 17.1Lu s =  (Case B31), 

0' 32.9Lu s =  (Case C31) and 0' 106.8Lu s =  (Case D31). This numerical configuration 

does not have a direct experimental analogue, but this approach is preferred to using an 

inflow boundary as it allows for arbitrarily large turbulence levels that are numerically 

incompatible with an inflow boundary condition. Further details of the DNS database are 

reported in Table 2, where the Karlovitz number, Damköhler number, and Reynolds 

number for the various cases are listed.  

 

Table 2. Turbulent flame properties for the four simulations at equivalence ratio φ = 0.31. 
The Reynolds number Re is evaluated utilizing the kinematic viscosity of the reactants νu = 
0.175 cm2/s (viscosity of the adiabatic equilibrium products is ten times higher νb= 1.74 
cm2/s) 

Case A31 B31 C31 D31 

0Tδ  [mm] 1.9 1.9 1.9 1.9 

0Ls  [cm/s] 4.68 4.68 4.68 4.68 

0Lu s′  3.69 17.1 32.9 106.8 

0t Tl δ  0.5 0.5 0.5 0.5 
1 t tu lτ ′=  7.38 0 0L Ts δ  34.2 0 0L Ts δ  65.8 0 0L Ts δ  213.6 0 0L Ts δ  

( )1 23 3
0 0t L TKa u l s δ′=  10 100 266 1562 

( ) ( )0 0t T LDa l u sδ ′=  1.36 x 10-1 2.92 x 10-2 1.52 x 10-2 4.68 x 10-3 
u

tRe u l ν′=  9.4 43.4 83.6 271.3 

 

According to the Borghi-Peters diagram (see Section 2.2) case A31 and B31 are in the 

“thin reactions zone” regime while case C31 and D31 are in the “distributed reactions 

zone”. However, reactions remain confined to thin fronts for all the cases (see Figure 5 in 

Ref. [71]) and no transition to distributed reactions is observed. This is the result of the 

strong effect of non-unity Lewis number and preferential diffusion of species which 

substantially increase the reaction rate of positively stretched flame elements as discussed 
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in Ref. [71] and in the next sections. Similarly to most DNS studies, the magnitude of 

Da  and Re of these simulations is small relative to many experiments (such as those 

described in Chapter 1) and turbulent premixed flames of practical interest. These 

limitations, which depend on DNS computational requirements, will be commented on 

further in Section 3.6.  

 

 

3.2 Definitions 
 

Burning velocities were calculated using the same procedure described in Day et al. [28]. 

As described in Section 2.1.1, this definition is one of the most numerically robust and 

meaningful definition of burning speeds. For the three-dimensional flames obtained by 

the DNS, this procedure starts with the tessellation of a temperature isosurface refT , and 

the construction of normal vectors by extending along integral curves js  of temperature 

gradient. A prism, Ω , can then be built as shown in Figure 3-2. The consumption speed 

cs  is then calculated by integrating the hydrogen mass consumption rate 
2Hωɺ over the Ω  

volume and normalizing by the area refA  intersection between Ω  and the flame surface, 

multiplied by the initial hydrogen density contained in the reactants ( )
2H reac

Yρ  

 

 ( )
2

2

H

c

H refreac

d
s

Y A

ω

ρ
Ω

Ω
= ∫ ɺ  (3.2) 
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The mean curvature CK  and strain rate SK  are computed at the flame surface using the 

identities (see Section 2.1)  

 

 
:

C

S

K n

K nn u u

= ∇⋅
= − ∇ + ∇ ⋅

�

�� � �  (3.3) 

 

where n�  is a unit vector locally aligned with the temperature gradient and u�  represents 

the gas flow velocity vector. The following analogues of equation (3.2) are used for the 

geometries of Figure 3-1:  
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0

PCF:
L
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0

TCF:  
R
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 ∫ ɺ  (3.5) 

 ( )
2 2

0

ECF:  c H H refreac
s r dr Y Rω ρ

∞

 =
 ∫ ɺ  (3.6) 

 

where, for the two curved flames geometries, refR  corresponds to the radial position at 

which the temperature is equal to refT , and 1C refK R= . The reference flame isosurface in 

the above definitions was chosen as the 1088refT K=  isotherm, which corresponds to the 

position at which the consumption rate of hydrogen 
2Hωɺ  peaks in a laminar one 

dimensional unstretched flame, as calculated by PREMIX [147]. Sensitivity studies 

(presented in Appendix B.1) were performed by repeating these procedures using refT  
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surfaces of 990K  and 1190K  for the model calculations and DNS, showing little change 

in the conclusions presented later in this chapter.   

 

 

Figure 3-2. Prism shaped volume, Ω , constructed using curves js  locally normal to the 

temperature isotherms; the inset plot shows a typical variation of 
2Hωɺ  along js  [28].  

 
 

To determine the local flame thickness, temperature and H2 consumption rate fields were 

interpolated along the integral curves js  of Figure 3-2. From these profiles, a flame 

thickness based on maximum temperature gradient, Tδ , and full width at half maximum 

of H2 consumption rate profile, 2Hδ , were defined for each of the triangular elements 

dividing the flame surface as 
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where the summation is taken over the three js  corresponding to a single triangular 

element. The lengths Tδ  and 2Hδ  are intended to provide an estimate of the local 

thickness of preheat-zone and H2 consumption layer, respectively. Also, note that the 

difference ,0b uT T−  used to normalize the temperature gradient is purely a reference 

value, since the local temperature values in lean hydrogen flames can differ from the 

adiabatic flame temperature, due to Lewis number effects and preferential diffusion of 

species. The analogous flame thickness definitions for the 1D geometries are readily 

obtained by substituting js  in equations (3.7) and (3.8) with either r  for the TCF and 

ECF, or x  for the PCF, and discarding the averaging over different js .  

 

 

 

Figure 3-3. Instantaneous snapshots of the 1088refT K=  isosurface colored by local 

consumption rate cs  for case A31 (left) and C31 (right). The transparent plane ( 0.05c = ) 

indicates the z-position at which 1/20 of the total consumption of H2 in the entire 
computational domain is reached. The flames are propagating upward in these images. 



73 
 

Statistical data for the DNS were gathered at multiple time instants on temporal intervals 

in which the turbulent flame can be considered statistically stationary (see Figure 7a in 

Ref. [71]). To identify the leading edge of the turbulent flame brush, the H2 consumption 

rate field was averaged spatially at each time instant in the direction perpendicular to the 

mean direction of flame propagation, obtaining a one dimensional average consumption 

rate profile. Based on this profile, the leading edge of the flame brush was then defined as 

the portion of space comprised between the most forward lying flame position towards 

the reactants and the position at which the cumulative average H2 consumption rate 

reaches 1/20 of the total. This particular value was chosen for practical reasons as a 

compromise between collecting values sufficiently close to the edge of the flame brush 

and having enough realizations across different snapshots in time to build meaningful 

statistics (see Appendix B.2). This procedure is equivalent to defining a progress variable 

c  at each time instant based on the instantaneous consumption rate of H2 and then 

defining the leading edge as the region 0 0.05c≤ ≤  as shown in Figure 3-3. We note also 

that implicit within the approach described above is an ansatz that the flame is 

statistically flat.  

 

 

3.3 One dimensional numerical simulations 
 

In interpreting the results, it is important to recognize that the sensitivity of premixed 

flames to large stretch values is not unique, but a function of the stretch profile through 

the flame and, therefore, the configuration in which the calculation is performed [42, 49] 

(see Section 2.1.2). This also implies that the maximum burning rate ,L maxs  is not a 
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unique quantity but varies with geometrical configuration. In order to illustrate this 

sensitivity, Figure 3-4 presents consumption speed cs  values plotted against flame 

stretch, κ, for the geometries shown in Figure 3-1. The stretch rate, κ , is evaluated at the 

refT  isotherm applying the following definitions:  

 

 
1

PCF: TCF: ECF: refz z

ref

dRu u
              

z z R dt
κ κ κ∂ ∂= = =

∂ ∂
 (3.9) 

 

where zu  represent  the flow velocity in the z  direction (see Figure 3-1) and refR  is 

defined as in equations (3.5) and (3.6). A maximum value of the burning velocity is only 

evident for the PCF.  This is due to the fact that in Figure 3-4, as in all the following 

figures, results for the ECF are plotted starting from the time instant at which maximum 

H2 consumption rate is reached, to avoid plotting the initial phase of the ignition process 

(see Appendix A.2). It is known that for lean H2/air mixtures ignition transients can be 

quite long [41], as evidenced by the slow convergence of the various ECF toward a 

common solution at low stretch rates. A maximum burning velocity is more ambiguous 

for these flames, as it is difficult to differentiate the ignition transient from the quasi-

steady stretch sensitivity. Results for the TCF are also plotted up to the highest values of 

consumption speed, which is reached just before extinction, as for the PCF. At low 

stretch rates, all five curves tend to converge towards a common solution as expected, but 

diverge for higher values; e.g., curved flames display a higher consumption rate then the 

PCF. These curves also suggest that for this flame ,L maxs  values of about 12-18 times 
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larger than the unstretched burning velocity 0Ls  can be achieved, depending on how 

flame stretch is applied.  

 

 

Figure 3-4. Consumption rate cs  dependence on stretch rate κ  for PCF “ * ”, TCF “ ○”, 

ECF with different initial ignition radius ( 0 0.25i TR δ =  “◊”, 0 0.5i TR δ =  “□”, 

0 0.75i TR δ =  “∆” , 0 1i TR δ =  “ x”). 

 
 

For reference, Figure 3-5a re-plots several of these cases as a function of curvature. The 

flame thickness itself is a strong function of curvature/stretch rate as shown in Figure 

3-5b and c, which plot the ratio of unstretched to stretched flame thickness Tδ  and 2Hδ  as 

a function of mean curvature CK , for the curved laminar flame geometries. The figure 

shows that increasing curvature can reduce the flame thickness Tδ   up to 6-8 times and 

2Hδ  up to 2.5-3 times relative to the unstretched flame. For the TCF, Figure 3-5c shows 

that 2Hδ  at first becomes thinner with increasing curvature and then thickens because the 

flame is pushed closer to stagnation axis (0r = ) reducing the residence time available for 

the reactions to complete. At 0 ~ 7C TK δ  the curve is terminated, because for curvatures 

larger than this value the flame has been pushed so close to stagnation axis that the H2 
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consumption rate 
2Hωɺ  at 0r =  becomes larger than half of the maximum value, making 

2Hδ  ill-defined. The thermal thickness Tδ  instead increases monotonically as the flame 

becomes more curved as shown in Figure 3-5b. For the ECF, however, both flame 

thicknesses 2Hδ  and Tδ  display a non-monotonic behavior [41, 48]. For sufficiently low 

values of curvature, however, ECF are thinner than TCF.  

 

 

Figure 3-5. Consumption rate cs (a), inverse of flame thickness Tδ  (b) and 2Hδ  (c) plotted 

against mean curvature CK  for the curved flame geometries: symbols are the same as in 

Figure 3-4.  
 

 

Finally, Figure 3-6 presents the strain rate SK  for the curved flame geometries in Figure 

3-1 calculated at the 1088refT K=  isosurface utilizing the following expressions: 
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z z r
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ref

r
S r

ref
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For the PCF, strain rate and stretch are the same while for TCF and ECF strain rate 

depends also on the curvature of the flame as discussed in Section 2.1. Figure 3-6 shows 
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that for the same value of curvature CK  the stretch rates κ  for ECF and TCF are similar 

while the strain rates SK  differ substantially. As explained in Section 2.1, SK  is a 

measure of the flow velocity spatial gradients contribution to flame stretch. The 

geometries of Figure 3-1 are each characterized by a different flow field structure and this 

represents another reason why their response to stretch rate is not the same.  

 

 

Figure 3-6. Strain rate SK  and stretch rate κ  dependence on curvature CK  for expanding 

cylindrical flame (ECF) with 0 0.25i TR δ =  and tubular counterflow flame (TCF). Every 

quantity is calculated at the 1088refT K=  isosurface applying equations (3.9) and (3.10). 

 
 

 

3.4 Turbulent flame front structure 
 

3.4.1 Local flame front curvatures, shapes and strain rates 

In this section, we start the analysis of the DNS turbulent flames by studying their local 

curvatures, shapes and strain rates. Firstly, the geometry and shape of the flame front is 

investigated in terms of principal curvatures 1k  and 2k  ( 1 2CK k k= + , 2 1k k< ) in Figure 



78 
 

3-7. This figure shows the joint PDFs, weighted by area, of the principal curvatures 1k  

and 2k  of the 1088refT K=  isosurface for case A31 to D31. From this figure it can be 

seen that the probability of measuring larger values of curvatures grows as turbulence 

intensity increases and that most of the 1088refT K=  isosurface exhibits convex toward 

the products (negatively curved 0CK < ) geometries, especially at high turbulent 

intensities. However, at positions where the 1088refT K=  isosurface is negatively 

curved, the flame is likely non-burning because of the strong non-unity Lewis number 

effects and preferential diffusion of species characterizing these flames. In fact, for these 

types of flames, joint PDFs weighted by area have the undesirable effect of including in 

the statistical analysis large portions of non-burning flame area. A possible solution to 

this problem would be to define the “flame area” as the portion of the 1088refT K=  

isosurface over which the fuel consumption rate is above a given threshold [28]. 

However, this threshold is arbitrary. The strategy adopted in the rest of the chapter, 

unless otherwise specified, consists in weighting the PDFs by the local fuel consumption, 

2H dω
Ω

Ω∫ ɺ , rather than area, refA   (see Figure 3-2). With this approach, portions of the 

flame front that are not burning are excluded from the statistical analysis without the 

inclusion of arbitrary parameters. Besides, the integral of PDFs weighted by fuel 

consumption is physically meaningful because it is equal to the total consumption rate of 

fuel over the entire computational domain and is directly related to the total turbulent 

flame speed Ts  (see Chapter 1).  
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Figure 3-7. Area-weighted joint PDFs of the principal curvatures 1k  and 2k   ( 1 2CK k k= + , 

2 1k k< ) of the 1088refT K=  isosurface for case A31, B31, C31 and D31. The PDFs are 

normalized to the peak values. Small pictures in the figure of case A31, show a classification 
of the flame shapes in (from top, clockwise) spherical and cylindrical convex toward the 
fresh gases, saddle-point, cylindrical and spherical convex toward the burnt gases (arrows 
point toward the unburnt side). 
 

Figure 3-8 shows the same data of Figure 3-7, but weighted by local fuel consumption; 

clearly, much of the negatively curved portions of the 1088refT K=  isosurface have been 

excluded in these plots. From this figure it can be seen that at low turbulent intensity (i.e. 

Case A31) most of the fuel is consumed by flame elements with a cylindrical/spherical 

shape convex toward the reactants. For higher turbulent intensities, instead, the flame 

becomes more tightly wrinkled and exhibits also saddle-point and cylindrical toward the 

products geometries. Figure 3-8 also shows that the most highly curved elements tend to 

have a cylindrical geometry [59] and this partially justifies the choice of cylindrical one-

dimensional geometries in Figure 3-1, as also discussed in Section 2.3.  
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Figure 3-8. Fuel consumption-weighted joint PDFs of principal curvatures 1k  and 2k   (

1 2CK k k= + , 2 1k k< ) of the 1088refT K=  isosurface for case A31, B31, C31 and D31. The 

PDFs are normalized to the peak values. Legend is the same as in Figure 3-7. 
 

Secondly, we analyze the local strain rates at the turbulent flame fronts. Figure 3-9 shows 

the fuel consumption weighted joint PDFs of strain rate SK  and curvature CK  for cases 

A31 to D31. Mean strain rate values increase with increasing turbulent intensity with the 

peak probability in these joint PDFs is approximately located at ~ 1S t tK u lτ ′=  (see 

Table 2). For each case the correlation S CK K−  is negative, similarly to past DNS studies 

which considered lower turbulent intensities [102-106]. As discussed in Section 2.3, this 

trend arises from defocusing of heat in front of positively curved flamelets, and vice 

versa for negatively curved flamelets. However, non-unity Lewis number effects and 

preferential diffusion of species tend to increase (decrease) the temperature at positively 

(negatively) curved portions of the flame front contrasting the effect of heat defocusing 

(focusing). For this reason SK  values are more skewed toward positive values than the 
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data presented in Figure 2-19, even though weighting the joint PDFs by fuel consumption 

tends to highlight positively curved portions of the flame front for which SK  tends to be 

negative. Furthermore, for ~ 0CK , the spread between lower and higher values of SK  

tends to be larger than for highly positive or highly negative CK  values (i.e. the joint 

PDFs have a triangular shape) and this spread grows with increasing turbulence levels. 

This is due to the fact that for ~ 0CK  strain rates are dominated by random turbulent 

straining rather than correlation with curvature. Finally, it is interesting to note that the 

negative correlation of SK  and CK  differs from the data presented in Figure 3-6 for the 

laminar flame calculations, for which SK  increases monotonically with CK . This 

observation affects the comparison between laminar and turbulent flames especially for 

highly curved flame elements which are of interest for the study of leading point burning 

rate models as detailed in the next sections.  

 

 

Figure 3-9. Fuel consumption-weighted joint PDFs of curvature CK  and strain rate SK  at 

the 1088refT K=  isosurface for case A31, B31, C31 and D31. The PDFs are normalized to 

the peak values. 
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3.4.2 Case A31 

In this section we compare the local characteristics (flame speed, flame thickness, 

curvature and strain) of the turbulent premixed flame obtained in Case A31 with the 

laminar flame computations described in Section 3.3. The low turbulent intensity of this 

case makes its description simpler compared to the other cases which are discussed in the 

next section. In the following discussion, flame front characteristics are described in term 

of local mean curvature CK , since strain rates are relatively low (see Figure 3-9) and 

most of the flame front displays a cylindrical or spherical shape (see Figure 3-8).  

Figure 3-10 presents fuel consumption-weighted joint PDFs of mean curvature CK  and 

burning speed cs  (a), inverse of flame thickness Tδ  (b), 2Hδ  (c) and strain rate SK  (d) 

and compares them with data obtained from laminar flames computations described in 

the previous section. These figures show that the position of the joint PDFs peak 

probability is approximately situated between the laminar simulations except for the 

strain rate; for reference, in Figure 3-10 about 50% of the total H2 burning is comprised 

by flame elements inside the iso-contour 0.4 of the joint PDFs. On the contrary, the 

strengths of the correlations c Cs K− , T CKδ − , 2H CKδ −  are weaker than that predicted 

by the model laminar flames calculations. This means that highly positively curved 

flamelets tend to burn less intensely and tend to be thicker than the model laminar flames 

with the same curvature, and vice versa for flat or negatively curved flamelets. These 

trends are explained by the negative correlation between strain rate and curvature which 

is opposite to the monotonic increase of strain rate with curvature characterizing the 

laminar model flames. In fact, Figure 3-10d suggests that at high curvatures ( 0 1C TK δ > ), 

the strain rate at the turbulent flame front tends to be lower than what is predicted by the 
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model laminar flames and vice versa at low curvatures ( 0 0.5C TK δ < ). Besides, the joint 

PDFs T CKδ −  and 2H CKδ −  appear to be more concentrated around the peak probability 

values and to be less sensitive to curvature variations. For this reason, in Figure 3-10b 

and Figure 3-10c, the contour corresponding to the lowest probability plotted does not 

extend to curvature values as negative as those of the c Cs K−  joint PDF in Figure 3-10a. 

The remaining dispersion in the joint PDFs data can be explained by unsteady effects in 

the flame response. Non-flamelet behaviors are also partly responsible for the disparity in 

behavior between the model laminar flames and flamelets with low and negative 

curvatures. In fact, these flamelets are mostly situated at the borders of the cellular 

structures that characterize the geometry of this case, as shown in Figure 3-3. It is known 

that at these locations diffusive and thermal gradients are not parallel to each other due to 

the low burning rates of these elements and considerable species fluxes parallel to the 

temperature isosurfaces occur [28]. As a consequence, the one dimensional laminar 

flames described in the previous section are not an appropriate model for the flame 

behavior these locations.  

Finally, Figure 3-10 shows that the consumption speed values of the most highly curved 

flamelets (~7 0Ls ) are about half the ,L maxs  values obtained from the model laminar flame 

calculations described in Section 3.3 (~12-180Ls ). A similar consideration is valid for 

flame thicknesses, since the thinnest portions of the turbulent flame front are about twice 

as large as the critically stretched model laminar flames. This indicates that at the low 

turbulent intensity and low Reynolds number characterizing case A31, critically stretched 

flames are not a relevant model for turbulent flame propagation. This conclusion is 

compared to what is observed at higher turbulent intensities in the next sections.  
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Figure 3-10. Fuel consumption-weighted joint PDFs of mean curvature CK  and burning 

speed cs  (a), inverse of flame thickness Tδ  (b), 2Hδ  (c) and strain rate SK  (d) for case A31. 

The PDFs are normalized to the peak values. Lines superimposed to the contours refer to 
results obtained from one-dimensional laminar flame computations (see Figure 3-5): dot-
dashed lines refer to TCF computations while solid lines refer to ECF computations with 

0 0.25i TR δ = . 

 

3.4.3 Case B31, C31 and D31 
 

In this section, the flame front characteristics of the higher turbulent intensity cases (B31, 

C31 and D31) are analyzed. Figure 3-11 shows the fuel consumption weighted joint 

PDFs of thermal flame thickness Tδ  with curvature CK  (top row) and strain rate SK  

(bottom row), for case B31, C31 and D31. The first observation from these figures is that 

most of the fuel is consumed in flamelets that are thinner than the unstretched laminar 

flame 0Tδ . Contrary to what is observed for case A31, the dependence of  Tδ  on either 

CK  or SK  is non-monotonic due to the strong competition between curvature and strain 

rate effects; in fact, compared to case A31, case B31, C31 and D31 are characterized by 

much higher mean strain rates, as shown in Figure 3-9. These trends are consistent with 
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those of past DNS studies with single step chemistry [105, 106] (see Figure 2-21 and 

Figure 2-22) and complex chemistry [121] (see Figure 9 in the cited paper) except for the 

fact that here the turbulent flame front is much thinner than the unstretched laminar 

flame. Observing the bottom row of Figure 3-11 it is clear that Tδ  is correlated with SK  

only in regions where the flame is sufficiently thin and the strain rate is sufficiently 

negative or positive. For example, for case B31 the correlation T SKδ −  is strong only for 

0 4T Tδ δ >  and 0 0 60S T LK sδ >  or 0 0 20S T LK sδ < − . For the higher turbulent intensities 

of case C31 and D31 similar regions can be identified but only with growing difficulty 

because of the increased scatter of the joint PDFs due to unsteady effects. The top row of 

Figure 3-11 suggests that thick flames (i.e. low values of 0T Tδ δ ) that do not correlate 

with SK  are mostly associated with negatively curved flamelets for which strain rates are 

relatively low (see Figure 3-9). The negative correlation between strain rate and curvature 

explain also the negative correlation between 0T Tδ δ  and CK , for 0CK > . In summary, 

the trends shown in Figure 3-11 can be interpreted in terms of local strain rates and their 

correlation with curvature. The growing dispersion in the joint PDFs for increasing 

turbulence levels is likely due to unsteady effects.  
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Figure 3-11. Fuel consumption-weighted joint PDFs C TK δ−  (top row) and S TK δ−  

(bottom row) for case B31, C31 and D31. The PDFs are normalized to their peak values.  
 

Similar observations are valid for the flame thickness measured by 2Hδ . Figure 3-12 

shows the fuel consumption weighted joint PDFs of flame thickness 2Hδ  with curvature 

CK  (top row) and strain rate SK  (bottom row), for case B31 and C31, while case D31 is 

not shown. For this latter case, the H2 consumption layer is extremely contorted (see 

Figure 5 in Ref. [71]) and pockets of burned gases frequently form. At the center of these 

pockets, the H2 consumption rate does not decrease to half of the maximum value 

computed along js , making 2Hδ  ill-defined. Even for case B31 and C31, some caution is 

necessary when calculating  2Hδ  since at some positions in the flame front there may not 

be a clear peak in the hydrogen consumption rate, especially where the flame is burning 

less intensely. For this reason, the joint PDFs in Figure 3-12 are calculated utilizing only 

flame elements for which the H2 consumption rate 2Hωɺ  at the refT  isotherm is greater 
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than 30% of the maximum value of 2Hωɺ  in an unstretched laminar flame, which is equal 

to 0.575 ( )3kg m s . Despite these difficulty in calculating 2Hδ , comparing Figure 3-11 

and Figure 3-12 it is clear that the overall shape of these joint PDFs is similar, which 

suggests that 2Hδ  and Tδ  are controlled by similar physical phenomena.  

 

 

Figure 3-12. Fuel consumption-weighted joint PDFs 2C HK δ−  (top row) and 2S HK δ−   

(bottom row) for case B31 and C31. The PDFs are normalized to their peak values. Only 
flame elements with 2Hωɺ  at 1088refT K=  larger than 0.3 times ( )30.575kg m s  are utilized 

to build these joint PDFs. 
 

 
Finally, Figure 3-13 shows the fuel consumption weighted joint PDFs of consumption 

speed cs  with curvature CK  (top row) and strain rate SK  (bottom row) for case B31, C31 

and D31. These figures indicate that consumptions speeds correlate better with local 

mean curvature rather than strain rate unlike local thermal flame thickness Tδ . This is 

probably due to the fact that strain rates and curvatures have a different influence on the 
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thermal gradients than on the structure of the reaction zone. Similar trends were observed 

for a stoichiometric H2/air flame ( 1.0φ = , 700uT K= , 0 1.74Lu s′ = , 0 2t Tl δ = ) in Ref. 

[121], where it was found that local heat release rate correlated better with curvature 

rather than strain rate (see Figure 8 in the cited paper) while the flame thickness behaved 

as in Figure 3-11 and Figure 3-12 (see Figure 9 in the cited paper). Furthermore, Figure 

3-13 shows that the consumption speed is positively correlated with curvature (as 

expected for these 0cMa <  flames) and the data become more scattered as the turbulence 

intensity increases passing from case B31 to D31. For highly positively curved flamelets, 

the correlation c Cs K−  appears to be negative, as for T CKδ − , but the correlation is much 

weaker. On the contrary, the dependence on strain is more difficult to interpret and no 

correlation is easily distinguishable.  

 

 

Figure 3-13. Fuel consumption-weighted joint PDFs C cK s−  (top row) and S cK s−  (bottom 

row) for case B31, C31 and D31.  
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Given the complexity of the trends described in Figure 3-11, Figure 3-12 and Figure 

3-13, it is clear that a direct comparison between laminar flame models and local 

statistics of the turbulent flame structure has to be performed with more care, unlike that 

performed in the previous paragraph for case A31. This is mainly due to the increased 

geometrical complexity of the flame front, the stronger interaction between curvature and 

strain rate and the growing influence of unsteady effects for these three cases compared 

to case A31. For these reasons in the next two paragraphs, the flame front characteristics 

are analyzed distinguishing between different geometries in an attempt to provide a better 

comparison with laminar flame computations. Since positively curved flamelets (either 

cylindrical or spherical) and positively strained flat flamelets are candidates for being 

leading points flamelets, the next two sections focus on these two geometries. 

 

3.4.3.1 Cylindrical and spherical flamelets 

This section investigates the structure of the cylindrical and spherical shaped portions of 

the flame fronts of case B31, C31 and D31. To identify spherical and cylindrical 

geometries only flame elements with positive principal curvatures 1 2 0k k> >  are 

considered (see Figure 3-8). It should also be noted for case A31 most of the flame front 

displays cylindrical and spherical geometries (see Figure 3-8) and thus it is possible to 

compare directly the data described in this section with the data presented in Section 

3.4.2. 

Figure 3-14 shows the fuel consumption weighted joint PDFs of local mean curvature 

CK  with consumption speed cs  (a), inverse of flame thickness Tδ  (b), 2Hδ  (c) and strain 

rate SK   for the cylindrical and spherical flamelets of case B31. Since the large majority 
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of the flame elements presented in this figure are characterized by a high consumption 

speed (unlike the data presented in the previous section), 2Hδ  is well defined and no 

further conditioning of its joint PDF with CK  is necessary.  

 

 

Figure 3-14. Fuel consumption-weighted joint PDFs of mean curvature CK  and burning 

speed cs  (a), inverse of flame thickness Tδ  (b), 2Hδ  (c) and strain rate SK  (d) for case B31. 

These joint PDFs are built utilizing only positions at which the principal curvatures of the 
1088refT K=  isosurface are both positive (1 2 0k k> > : cylindrical and spherical shaped 

elements). Legend is the same as in Figure 3-10. 
 

Similarly to Figure 3-10, the position of the joint PDFs peak probability falls on top of 

the model laminar flame computations, which are represented by the thick black lines 

superimposed to the contours of the joint PDFs. This peak probability occurs at 

substantially higher values of curvature and consumption speed and substantially lower 

values of flame thickness than for case A31. On the contrary, the overall dependence of 

cs , Tδ  and 2Hδ  does not agree with the model laminar flame calculations.  The main 
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reason for this behavior is due to the opposite effect of CK   and SK  on the flame 

structure as described in the previous section. In fact, Figure 3-14 shows that strain rates 

and curvatures are negatively correlated for the turbulent flame while for the one-

dimensional model laminar flames strain rates increase monotonically with curvature. 

This effect was already present for case A31 but for case B31 it is much stronger because 

of higher values of SK . At ~ 0,CK  the strain rate tend to be extensive (i.e. positive) and 

flame elements tend to be thinner and burn more intensely than the model laminar flames 

with the same CK ; in these conditions the effects of curvature are less important than 

strain rate, as described in detail in the section 3.4.3.2. At 0CK ≫ , instead, flame 

elements are subject to compressive strain rates which counteract the effect of positive 

curvature (see Figure 3-9). Incidentally, it is also interesting to notice that the dependence 

of cs  on CK  follows better the laminar models results than Tδ   and 2Hδ  flames because, 

as noted in the previous section, consumption speed is less sensitive to the local strain 

rate than flame thickness. 

Similar considerations are valid for cases C31 and D31, whose statistics are shown in 

Figure 3-15 and Figure 3-16, respectively. For case D31 in Figure 3-16 the joint PDF of 

2Hδ  with CK  is not shown, for the reasons discussed in the previous section. The scatter 

in these joint PDFs is higher than case B31 likely due to the growing unsteadiness of the 

flame response, but the peak probability of the joint PDFs falls on top of the model 

laminar flame computations even at these higher turbulent intensities. This agreement 

was not necessarily expected, as it is known that non-steady effects decrease the effective 

stretch sensitivity of the flame [93, 97], and so we had anticipated the DNS results for 

consumption speed to fall below the laminar calculations. This result might be a 
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manifestation of the insensitivity of curvature-induced flame speed modifications to 

frequency, as opposed to its strong sensitivity to nonsteadiness in hydrodynamic stretch 

[56], that is suggested by theory (see Section 2.1.2). 

 

 

Figure 3-15. Case C31: fuel consumption-weighted joint PDFs of mean curvature CK  and 

burning speed cs  (a), inverse of flame thickness Tδ  (b), 2Hδ  (c) and strain rate SK  (d) for 

cylindrical and spherical flame elements (1 2 0k k> > ). Legend is the same as in Figure 3-14.  

 

 

Figure 3-16. Case D31: fuel consumption-weighted joint PDFs of mean curvature CK  and 

burning speed cs  (a), inverse of flame thickness Tδ  (b) and strain rate SK  (c) for 

cylindrical and spherical flame elements (1 2 0k k> > ). Legend is the same as in Figure 3-14.  
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3.4.3.2 Flamelets with low curvature 

As shown in Figure 3-8, for case B31, C31 and D31 most of the fuel is consumed by 

flame elements with ~ 0CK  (i.e. 1 2 ~ 0k k+ ) and their importance increases with 

increasing turbulence intensity. For this reason, in this section we investigate the structure 

of flame elements with low curvature by considering only portions of the flame front at 

which the mean curvature of the 1088refT K=  isosurface is less than one tenth of the 

unstretched thermal flame thickness (i.e. 0 0.1C TK δ < ). This type of analysis is also 

important to clarify the discrepancy, highlighted in the previous section, between 

ECF/TCF computations and flamelets with low curvature.  

Figure 3-17 shows the fuel consumption weighted join PDFs of strain rate SK  with 

consumption speed cs  (a) and flame thickness Tδ  (b), 2Hδ  (c) for flame elements 

characterized by 0 0.1C TK δ <  for case B31. Additionally, Figure 3-18 and Figure 3-19 

present the same analyses for case C31 and D31, respectively. As it can be observed, the 

trends in these joint PDFs are well represented by PCF computations (thick black line 

superimposed to the isocontoturs lines) for case B31 and C31, while for case D31 there is 

no agreement. It appears that the dispersion in the data characterizing these joint PDFs 

increases progressively with turbulence intensity until it becomes too large for the PCF 

computations to be a meaningful comparison. The possible reasons for this dispersion in 

the data are numerous. First, most of the flame elements with 0 0.1C TK δ <  are 

characterized by a saddle-point geometry rather than being perfectly flat (see Figure 3-8). 

These multidimensional effects appear to affect more the consumption rate data rather 

than flame thickness data presumably because the geometry of the prismatic volume Ω  



94 
 

(see Figure 3-2) used to calculate cs , becomes very distorted when the flame has a 

saddle-point geometry. Second, the response to strain rate is affected by unsteady effects, 

as described in Section 2.1.2. Strain rates in a turbulent premixed flame are characterized 

by a wide range of frenquencies and, as shown in Figure 2-9, the structure of PCF is 

insensitive to flow pertubations that vary rapidly in time. As a result, the local structure 

of a turbulent premixed flame front may depend more on the average strain rate rather 

than on the instantaneous value of strain rate. Third, non-laminar behaviors may be of 

importance especially for flame elements characterized by low burning rates and large 

flame thicknesses. In fact, in these conditions it is possible for turbulent eddies to 

penetrate into the flame and substantially disrupt its laminar structure [7, 70-72] (see 

Section 2.2). Fourth, flame merging and flame-flame interaction may also cause 

dispersion in the statistics [118]. These phenomena are also important for the PCF 

computations since for 0 0180S L TK s δ>  the flame has been pushed so close to 

stagnation axis that the H2 consumption rate 
2Hωɺ  at 0x =  (see Figure 3-1) becomes 

larger than half of the maximum value, making 2Hδ  ill-defined. This is the reason why 

the 2Hδ  curves corresponding to PCF are interrupted at this value in Figure 3-18c. 

Finally, at high turbulent intensities it is possible that turbulent eddies aid the 

recirculation of hot gasses on the product side of the flame introducing an effect that is 

not present in the PCF configuration. In the PCF configuration burned gasses are flowing 

away from the flame surface for every value of strain rate SK . 
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Figure 3-17. Case B31: fuel consumption weighted joint PDFs of strain rate SK  and 

burning speed cs  (a), inverse of flame thickness Tδ  (b) and 2Hδ  (c). Only positions at which 

the mean curvature of the 1088refT K=  isosurface is less than one tenth of the unstretched 

thermal flame thickness are considered 0 0.1C TK δ < . The PDFs are normalized to the peak 

values. Solid lines refer to PCF computations. 
 

 

Figure 3-18. Case C31: fuel consumption weighted joint PDFs of strain rate SK  and 

burning speed cs  (a), inverse of flame thickness Tδ  (b) and 2Hδ  (c) for flame elements with 

0 0.1C TK δ < . Legend is the same as in Figure 3-17. 

 

 

Figure 3-19. Case D31: fuel consumption weighted joint PDFs of strain rate SK  and 

burning speed cs  (a), inverse of flame thickness Tδ  (b) and 2Hδ  (c) for flame elements with 

0 0.1C TK δ < . Legend is the same as in Figure 3-17. 
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3.5 Flame front structure at the leading edge 
 

We next analyze statistical data collected at the leading edge of the turbulent flame brush, 

as defined in Section 3.2. Figure 3-20 presents area weighted probability density 

functions of the consumption rate cs , mean curvature CK  and inverse of flame thickness 

Tδ  and 2Hδ  at the leading edge while Figure 3-21 shows area weighted probability 

density functions of strain rate SK  at the leading edge. Area weighting of pdfs is 

employed in this section instead of fuel consumption weighting because all the flame 

elements at the leading edge are burning at a rate much higher than the unstretched 

laminar flame, as shown in Figure 3-20a: in these conditions area weighting and fuel 

consumption weighting of the statistical data produce substantially similar results.  

The data in Figure 3-20 show that the flame front tends to burn more intensely and in 

thinner layers as the turbulent intensity is increased from case A31 to D31; values of 

mean curvature at the leading edge tend to be positive (by geometric necessity), but at 

higher turbulent intensity more finely wrinkled flames accommodate a wider range of 

features in the leading edge interrogation zone (e.g., see Figure 3-3). In Figure 3-20d, the 

PDF of 2Hδ  for case D31 is not shown.  For this case, the H2 consumption rate at the 

center of the pockets that can occur in the interrogation region do not decrease to half of 

the maximum value computed along js , making 2Hδ  ill-defined, as also described in 

Section 3.4.3. Figure 3-21 shows that strain rates at the leading edge are mostly skewed 

toward positive values.  
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Figure 3-20. Probability density functions at the leading edge (weighted by area) of 
consumption rate cs (a), mean curvature CK , (b) inverse of flame thickness Tδ  (c) and 2Hδ  

(d). Symbols refer to different DNS cases (A31 “○”, B31 “ x”, C31 “□” and D31 “∆”). 
 

 

Figure 3-21. Probability density functions at the leading edge (weighted by area) of strain 
rate for case A31, B31, C31 and D31. 
 

To better characterize the geometries of the flame elements at the leading edge of the 

flame brush, the shape of the flame front is also examined using principal curvatures 1k  

and 2k  1 2 2 1( , )CK k k k k= + <  in Figure 3-22, which shows their joint PDFs, weighted by 

area, for case A31 to D31. From this figure it can be seen that most of the flame surface 

at the leading edge exhibits a geometry that is cylindrical/spherical convex toward the 

reactants and that the most highly curved elements tend to have a cylindrical geometry 

[59]. For increasing turbulence intensities, the flame becomes more tightly wrinkled and 

exhibits also saddle-point and cylindrical toward the products geometries, for the reasons 

discussed above.  
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Figure 3-22. Joint PDFs of the principal curvatures 1k  and 2k   ( 2 1k k< ) weighted by area 

and normalized to the maximum value of weighted probability. Legend is the same as in 
Figure 3-8. 
 

To compare statistics collected at the leading edge of the flame brush with the laminar 

simulations, the pdf’s shown in Figure 3-20 are presented in Figure 3-23 and Figure 3-24 

in terms of mean µ  and standard deviations σ  weighted by flame area. Further 

statistical analysis of the data collected at the leading edge is presented in Appendix B.3. 

Means µ  and standard deviations σ  are calculated using the following expressions 

 

 
( ) ( )

( )( ) ( )
, ,

2

, ,

ref i i ref ii i

ref i i ref ii i

A x A

A x A

µ

σ µ

=

= −

∑ ∑

∑ ∑
 (3.11) 

 

where ,ref iA  denotes the area of the triangular element (see Figure 3-2) associated with 

the i-th value ix  which either represents mean curvature CK , strain rate SK ,  

consumption speed cs  or flame thickness 2Hδ  and Tδ .  
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Figure 3-23. Leading edge mean consumption rate cs  (a), mean of the inverse of flame 

thickness Tδ  (b) and 2Hδ  (c) plotted against leading edge average mean curvature CK . 

Symbols refer to different DNS cases (A31 “●”, B31 “ x”, C31 “■” and D31 “▲”). The total 
length of the error bars is equal to σ  on each side. Thicker solid lines refer to ECF 
computations with 0 4i TR δ=  while thicker dot-dashed lines refer to TCF computations. 

 
 

 

Figure 3-24. Leading edge mean strain rate SK  plotted against leading edge average mean 

curvature CK . Figure (b) shows a magnified view of Figure (a) centered on case A31, B31 

and C31. Legend is the same as Figure 3-23. 
 

Figure 3-23a shows that the 1D laminar simulations computed at the average value of 

mean curvature reasonably follow the enhancement in consumption speed with increasing 

turbulent intensity and that case D31 seems to approach the highest values of 

consumption speed and curvature calculated by the model laminar flame computations. 

This conclusion seems also justified by the data of Figure 3-23c, which show that the 

decreasing trend in the average thickness of the H2 consumption layer with increasing 

turbulence levels follows the 1D laminar simulations. Figure 3-23b, however, shows that 



100 
 

the structure of the thermal layer as measured by Tδ  is captured by the 1D simulations up 

to case B31, while cases C31 and D31 seem to progressively diverge from this solution. 

This effect is presumably due to the presence flamelets with low curvature ( ~0CK ) at the 

leading edge, especially at high turbulent intensities, as shown in Figure 3-22. For these 

flamelets, curvature effects are likely to be less important than strain rate effects, 

accounting for some of the differences between model laminar computations and 

statistics obtained from the DNS. In fact, Figure 3-24 shows that for the same values of 

curvature these case C31 and D31 are characterized by higher strain rates than the model 

laminar flame computations. To partially eliminate these effects, Figure 3-25 and Figure 

3-26 reproduce the results of Figure 3-23 and Figure 3-24 but excluding all the elements 

that are not cylindrically or spherically shaped, analogously to the analyses presented in 

Section 3.4.3.1. These figures show that the agreement with the model laminar flame 

calculations increases especially at higher turbulent intensities. This agreement was not 

necessarily expected, as it is known that non-steady effects decrease the effective stretch 

sensitivity of the flame (see Section 2.1.2), and so we had anticipated the DNS results for 

consumption speed to fall below the laminar calculations (note that although these are 

“time averaged” leading edge values, the leading edge curvatures for a given flame 

element are intrinsically unsteady as flame features move in and out of the leading edge 

interrogation region). This result might be a manifestation of the  weak sensitivity of 

curvature-induced flame speed modifications to frequency, as opposed to its strong 

sensitivity to nonsteadiness in hydrodynamic stretch [56]. 
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Figure 3-25. Leading edge mean consumption rate cs  (a), mean of the inverse of flame 

thickness Tδ  (b) and 2Hδ  (c) plotted against leading edge average mean curvature CK . 

Only positions at which the principal curvatures of the 1088refT K=  isosurface are both 

positive are utilized ( 1 2 0k k> > : cylindrical and spherical elements). Legend is the same as 

Figure 3-23. 
 

 
Figure 3-26. Leading edge mean strain rate SK  plotted against leading edge average mean 

curvature CK . Only positions at which the principal curvatures of the 1088refT K=  

isosurface are both positive are utilized (1 2 0k k> > : cylindrical and spherical elements). 

Figure (b) shows a magnified view of Figure (a) centered on case A31, B31 and C31. Legend 
is the same as Figure 3-23. 
 
 

The figures shown in this section allow some assessment of ideas put forward by leading 

point concepts. From the data shown in Figure 3-23 and Figure 3-24, it is clear that the 

overall trend of increasing leading edge mean values of cs , CK  and decreasing Tδ  , 2Hδ  

with increasing turbulence levels follows closely the results of model laminar flame 

computations. The agreement improves when only spherical and cylindrical shapes are 

considered to compute the leading edge mean values, as shown in Figure 3-25 and Figure 
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3-26. It is also interesting to notice that the trends described in this section closely mirror 

those described in Section 3.4.3 (see Figure 3-14, Figure 3-15 and Figure 3-16) for the 

peak probability of the joint PDFs of cylindrical and spherical flamelets (see also 

Appendix B.3). Given the ambiguities and configuration-specific nature of ,L maxs , it is 

difficult to make a precise assessment, but, in terms of orders of magnitude, these 

comparisons show that curvatures and burning velocities can be similar to those of 

“critically” stretched laminar flames especially at high turbulent intensities. For the 

highest turbulent intensity case (case D31), burning rates do appear to approach the 

computed range of ,L maxs  values. Nonetheless, in Section 3.4, it has been shown that the 

most highly curved flamelets are subject to compressive strain rates which prevent the 

flame from becoming too curved for a given level of turbulent intensity and from 

reaching a critically stretched structure. As described in Section 2.3, this trend arises 

because for highly curved flamelets the importance of wrinkling and stretching by 

turbulent eddies is overcome by gas expansion effects. This effect is not present in the 1D 

model laminar simulations. As a consequence, the flame structure of the most highly 

curved flamelets for each case is not well described by model laminar flame 

computations.  

 

 

3.6 Conclusions 
 

This chapter has described a comparison between DNS results of lean, H2/air flames and 

results from several highly-stretched, model geometries [149]. This type of information is 

useful for modeling purposes in the framework of the leading points concept and may 
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also be compared to similar attempts to collapse flame speed data obtained by DNS of 

turbulent flames using different (planar) laminar flame models [99] (see Section 2.3). For 

the lean hydrogen/air mixture investigated, it has been shown that the overall trend of 

increasing cs , CK  and decreasing Tδ  and 2Hδ  with increasing turbulence levels follows 

closely the behavior of model laminar flame computations. In particular, at the leading 

edge the average flame front structure can be reproduced reasonably well by results 

obtained from model geometries with the same average mean curvature. However, the 

comparison between model laminar flame computations and highly curved flamelets is 

complicated by gas expansion across the flame which generates compressive strain rates 

and prevents the flame from becoming too curved for a given level of turbulent intensity. 

For the highest turbulent intensity investigated, case D31, local consumption speed, 

curvatures and flame thicknesses seems to approach the maximum values obtained by the 

laminar model geometries, while other cases display substantially lower values. This 

seems to suggest that at low turbulent intensities “critically” stretched flamelets are not a 

good model for leading points burning rates, at least for the low Reynolds and low 

Damköhler number accessible by direct numerical simulations. At higher Reynolds 

number, turbulent vorticity fluctuations tend to be more concentrated in thin region of 

space, known as “worms” or “vortex tubes”, which are a manifestation of the “internal 

intermittency” of the turbulent flow [150]. It has been postulated that these flow 

structures are able to wrinkle and distort the flame much more efficiently than what 

suggested by low Reynolds number computations and, as such, critically stretched 

flamelets may be relevant also at low 0Lu s′  [4]. A relation between “vortex tubes” and 

regions of high heat release rate was for example claimed in the DNS of Tanahashi et al. 
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[121]. However, this proposed mechanism is difficult to verify computationally because 

of the large computer resources needed to simulate premixed flames at high Reynolds 

number [133]. 
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CHAPTER 4 

LEADING IPOINTSIDYNAMICS 

 

Section 2.4.2 described two model problems which illustrate rather straightforwardly the 

role of leading points in determining the overall displacement speed of the flame front. 

The first model problem regards the application of the Kolmogorov-Petrovskii-Piskunov 

(KPP) theorem to a statistically stationary one dimensional turbulent flame. This 

characterization of the leading points suffers of several drawbacks (see Section 2.4.2) and 

is difficult to extend to more complex flow geometries.   

The second example that clearly shows the significance of the leading points in uniquely 

controlling the overall burning velocity is represented by the case of an initially flat flame 

propagating in a one-dimensional steady shear flow in which the velocity isocontours are 

parallel to the direction of flame propagation. In this situation, it can be demonstrated that 

the front displacement speed is controlled by the leading points of the flame that 

propagate into the lowest approach flow velocity regions ahead of the flame. This latter 

model problem provides a more geometrical and physically meaningful characterization 

of the leading points. However, the dynamical significance of the leading points is more 

difficult to identify in more complex or unsteady flow fields. Following the terminology 

of Ref. [9, 10], the leading points may no longer be “quasi-steady”, and it is unclear how 

to apply leading points arguments in this case, or if this approach is even valid.  

This chapter takes up this problem in detail in order to examine the dynamical 

significance of leading points. Specifically, this chapter considers the passive (i.e., with 

zero heat release) propagation of a premixed flame in a one-dimensional, incompressible, 

unsteady, periodic shear flow. In this context, it proposes a definition for points that 
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control the displacement speed of the front, and studies their dynamics. This type of flow 

configuration has been previously studied as a model problem for flame propagation in 

inhomogeneous flow fields [151-159]. In particular, we will investigate a specific 

velocity field which was considered first by Embid et al. [160], who presented an exact 

solution for the front displacement speed. This problem is re-interpreted within the 

leading points framework in this chapter. Despite representing a rather idealized 

situation, this model problem provides clues on how to extend leading point ideas to 

more complex flow fields.   

The rest of the chapter is organized in the following manner. Section 4.1 introduces the 

G-equation, which is utilized as a model for flame front propagation. Section 4.2 presents 

pertinent results from the theory of Hamilton-Jacobi equations, which, when applied to 

the G-equation, lead to our proposed mathematical formulation of leading points. These 

ideas are then applied to a specific shear flow in Section 4.3, chosen because the 

instantaneous leading points evolve temporally, but also because is amenable to an exact 

solution. The laminar flame speed Ls  is assumed to be constant in Sections 4.2 and 4.3. 

Section 4.4 then considers generalizations of these results to the case where the burning 

velocity Ls  has a linear dependence on curvature, where the proportionality coefficient is 

a positive Markstein length, ℓ . Finally, we conclude in Section 4.5 with a summary of the 

principal findings. 
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4.1 G-equation 
 

To model the reaction front propagation we utilize the G-equation, which was first 

formulated by F. Williams [161] and is used extensively for various combustion 

problems such as the theoretical determination of flame transfer functions [162] and 

turbulent consumption rates [163], as well as in many computational fluid dynamics 

(CFD) studies [164, 165].   

 

 

Figure 4-1. Instantaneous snapshot of a wrinkled laminar flame sheet, whose instantaneous 
position is given by the parametric equation = 0G(x, y, z, t)  [84]. 
  
 

The G-equation relates the motion of the flame front with various flow/flame parameters. 

Consider the flame front as a gas dynamic discontinuity in three dimensional space 

whose position is described by the parametric equation, ( ),G x t const=�
. It is convenient 

to set ( ), 0G x t =�
 such that 0G <  and 0G >  for the unburned and burned states, 

respectively (see Figure 4-1). In a flame-fixed (Lagrangian) coordinate system, the fact 

that ( ), 0G x t =�
 on the flame implies that: 

Product
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 ( ), , , 0at the flame
surface

D
G x y z t

Dt
=  (4.1) 

 

Converting this expression into an Eulerian form gives: 

  

 0F

G
v G

t

∂ + ⋅∇ =
∂

�
 (4.2) 

 

where Fv
�

 is the velocity of the flame front which can be decomposed into the sum of 

flow velocity and normal flame propagation speed as F Lv u s n= − ⋅� � �
 (see also Section 

2.1.1).  Note that the normal direction to the flame front can be written as n G G= ∇ ∇�
 

(see Figure 4-1). Then, Eq. (4.2) can be expressed as: 

 

 ( ), L

G
u x t G s G

t

∂ + ⋅∇ = ∇
∂

� �
 (4.3) 

 

where the zero level set of the scalar function G  represents the flame position, Ls  is the  

laminar flame speed (assumed constant, except in Section 4.4) and ( ),u x t
� �

 is the flow 

velocity at the flame, which is considered as prescribed. In the combustion literature, 

equation (4.3) is known as the G-equation and was originally employed to model flame 

motions in flow fields characterized by length scales much larger than the laminar flame 

thickness, such as in the wrinkled and corrugated flamelet regime [161]. However as a 

phenomenological model, the G-equation is rather flexible in that many factors 
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influencing front motion can be incorporated into Ls , making it useful to model flame 

front motion also in the thin reaction zone regime [57]. Additionally, prescribing the flow 

field ( ),u x t
� �

 upstream of the flame is equivalent to neglecting gas expansion across the 

flame and is, as such, rigorously valid only in the limit of low density ratio flames. This is 

a common assumption made in these types of analyses [151-159] – discussion of its 

implications can be found in these references.  

 

 

4.2  Problem formulation and mathematical background 
 

4.2.1 One dimensional problem formulation 

In this chapter we assume a two-dimensional flame front whose location is a single 

valued function, ξ , of the coordinate x  (see Figure 4-2). Because of this assumption we 

can define ( ) ( ), , ,G x y t y x tξ= − . Inserting this expression in Eq. (4.3) leads to [144]: 

 

 ( ) ( )
2

, , 1x y Lu x t u x t s
t x x

ξ ξ ξ∂ ∂ ∂ + − = − +  ∂ ∂ ∂ 
 (4.4) 

 

Eq. (4.4) is a Hamilton-Jacobi equation, whose convex Hamiltonian is represented by

( ) 2, , 1L x yH H x t g s g u g u= = + + −  where g xξ= ∂ ∂  is the flame slope. The flame 

slope satisfies the conservation equation associated to eq. (4.4): 
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 ( ), , 0
g

H x t g
t x

∂ ∂+ =
∂ ∂

 (4.5) 

 

which can be obtained simply differentiating in x  Eq. (4.4). In this section, we assume 

that xu  and yu  are periodic in ( ),x t  with period [ ] [ ]0, 0,L T×  and form an 

incompressible flow field: with this latter assumption, the condition 0u∇⋅ =�  dictates that 

( ) ( ),x xu x t u t= . We are interested in the study of the average front displacement speed at 

large time, Ts , defined as: 

 

 ( )
0 0 0 0

1 1 1 1
, ,

L T L T

Ts dx dt H x t g dx dt
L T t L T

ξ∂= − =
∂∫ ∫ ∫ ∫  (4.6) 

 

In the context of multiscale expansions of Hamilton-Jacobi equations, Ts  is also referred 

to as the “homogenized (or effective, or critical) Hamiltonian” (see Appendix C).  

 

 

Figure 4-2. Schematic of a two-dimensional flame whose position is a single valued function 
of the x coordinate. 
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Away from discontinuities in the graph of g, which are known as “shocks” and 

represents cusps in the graph of ξ , the solution of Eq. (4.5) can be described in terms of 

characteristic curves. Characteristic curves satisfy the following system of ordinary 

differential equations: 

 

 
2

)
1

)

L x

y

dx H g
a s u

dt g g

udg H
b

dt x x

∂= = +
∂ +

∂∂= − =
∂ ∂

 (4.7) 

 

Solutions of Eq. (4.4) admit also a variational representation, known as the “Lax-Oleinik 

formula” [166] in the context of partial differential equation theory, “principle of least 

action” [167] in the context of Hamiltonian dynamical systems theory or “principle of 

dynamic programming” [168] in control theory, given by 
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( )

( ) ( )( ) ( )( )
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t

AC t x
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γ γ
τ

ξ γ γ ξ γ τ τ τ
∈ =

 
= + ∀ < 

 
∫ ɺL  (4.8) 

 

where AC represents the set of all Lipschitz continuous paths :γ →ℝ ℝ  and L is the 

Lagrangian function (or Legendre transform) associated with the Hamiltonian H : 
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When the Lagrangian assumes finite values (i.e., for ( )L xs u tγ≥ −ɺ ), it can be 

demonstrated that the characteristic curves are solutions of the minimization problem 

(4.8), and from Eq. (4.7) we have: 

 

 
dx H

dt g
γ ∂= =

∂
ɺ  (4.10) 

 

Then, from a physical point of view, it can be seen that the Lagrangian represents the 

propagation speed in the y-direction of the points on the flame surface that follows the 

trajectory of the characteristic curve γ . As defined in [169], those curves, γ , which solve 

Eq. (4.8) on intervals ] ],t− ∞  are referred to as “one-sided minimizers” and “two-sided” 

(or global) minimizers if they solve it on intervals ] [,− ∞ + ∞ .  

In general, the Lagrangian can also achieve infinite values for ( )L xs u tγ< −ɺ . At 

positions where ( )L xs u tγ= −ɺ  the flame slope g becomes infinite as shown by the 

equation 

 

 
( )22

x

L x

u
g

s u

γ
γ γ

−∂= =
∂ − −

ɺ

ɺ ɺ

L
 (4.11) 

 

which is the convex (or Legendre) conjugate of Eq. (4.10). In these instances, Eq. (4.4) 

loses meaning because the flame position can no longer be represented by a single valued 

function ξ  and the full G-equation (4.3) must be solved to model the front dynamics. 
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To illustrate the physical meaning of equation (4.8), in the next section we consider a 

simplified version (the Hopf-Lax formula [166]) valid for problems where the flame 

propagates into a quiescent flow. 

 

4.2.2 Hopf-Lax formula and Huygens propagation 

The Hopf-Lax formula [166] is a simplification of Eq. (4.8) valid when the flame 

propagates into a quiescent flow ( 0x yu u= = ). In this situations the governing equation 

for the flame position, Eq. (4.4), becomes 

 

 
2

1Ls
t x

ξ ξ∂ ∂ = − +  ∂ ∂ 
 (4.12) 

 

and the characteristic curves have a constant slope (i.e. dx dt constγ = =ɺ ) since 

0dg dt =  in equation (4.7). Then, the Lagrangian (Eq. (4.9)) can be written as: 

 

 ( ) 2 2

L

L L L

L

s

s s s

s

γ

γ γ γ
γ

+∞ >
= − − − ≤ ≤
+∞ − >

ɺ

ɺ ɺ ɺ

ɺ

L  (4.13) 

 

and the general solution Eq. (4.8) becomes the Hopf-Lax formula [166]:  

  

 ( ) ( ) ( ) ( )
*

22* *, min
L L

init L
x s t x x s t

x t x s t x xξ ξ
− < < +

 = − − − 
 

 (4.14) 
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where ( ), 0init x tξ ξ= =  represents the initial position of the flame front. Noticing that the 

expression between paranteses in eq. (4.14) represents the equation of a circle, this 

solution simply states that the flame propagates in every radial direction from all points 

on flame fronts ( )( )* *, initx xξ  with a speed equal to Ls . To illustrate, Figure 4-3 shows the 

instantaneous flame location at two instances of time, 0t =  and dt . The dashed lines 

indicate circles of radius Ls dt, centered at points on the flame fronts at 0t = . The flame 

position at later times can be constructed geometrically by drawing such circles about 

every point along the flame at each time, as shown in Figure 4-3. This process is also 

referred to as “Huygens propagation” (see Ref. [66]). If the flame is curved, different 

points influence the flame propagation in different ways. For example, some concave 

regions do not contribute at all in determining the flame front position at later times 

(point D) as its propagation is overshadowed by propagation from neighboring points 

(points C and E). In other words, only convex regions are important in determining the 

position of the flame front in the large time limit.  

 

 

Figure 4-3. Sketch illustrating Huygens propagation (Hopf-Lax solution for flame 
propagation).  
 

 

4.2.3 Aubry-Mather theory 

Let us first consider a multidimensional autonomous Hamilton-Jacobi equation 
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 ( ), 0 nH x x
t

ϕ ϕ∂ + ∇ = ∈
∂

� �
ℝ  (4.15) 

 

where the Hamiltonian function H  is smooth, convex in the ϕ∇  variable, is periodic in 

x
�

 with period [0,1]n  and satisfies the so called coercivity condition: 

 

 ( )lim ,H x
ϕ

ϕ
∇ →+∞

∇ = + ∞�
 (4.16) 

 

With these assumptions, it is possible to prove that among the characteristic curves 

associated with Eq. (4.15) there always exist global minimizers (i.e., characteristic curves 

that  exists on time interval ] [,− ∞ + ∞ ) and that the long time behavior of the solutions of 

Eq. (4.15)  is completely determined by their trajectories [170, 171]. For the one 

dimensional problem considered in Section 4.2.1, the coercivity condition is satisfied for 

x Lu s<  when the flow field is time independent, which is also a sufficient condition to 

prevent the flame slope from becoming infinite (g < ∞ ) for any solution of Eq. (4.4), 

given sufficiently regular initial conditions [171]. In this situation, global minimizers *γ  

exist and the front speed Ts  can be expressed just in terms of their trajectories as  [172] 

 

 

( ) ( )( )

( )( ) ( )( )

* *

0

22 * *
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1
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T

T

T

L x y

s t t t dt
T

s t u u t dt
T

γ γ

γ γ
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 = − − − − + 
 

∫

∫

ɺ

ɺ

L

 (4.17) 
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To understand, the physical meaning of these results it is useful to visualize the global 

minimizers in the x t−  plane. Let us return to the problem considered in Section 2.4.1 - 

an initially flat flame, ( ) ( ),0 ,0 0x g xξ = = , propagating in a steady periodic flow field, 

( )cos 2yu A x Lπ= − , with no transverse flow, 0xu = .  In this case, the characteristic 

curves can be obtained by solving Eq. (4.7) analytically [153]. Figure 4-4 plots the 

temporal evolution of g and ξ  for 0.5LA s = . It can be seen that, after an initial 

transient, the solution develops a shock in the graph of g (a cusp in the graph of ξ ) at 

0.5x L = , which grows until the steady state is reached. The characteristic curves of 

these solutions are plotted in the x t−  plane in Figure 4-5. Note that the only trajectories 

that are never absorbed by the shock correspond to the positions where yu  is minimum. 

These trajectories represent the global minimizers and, from Eq. (4.17), the front 

displacement speed can be readily obtained as 

 

 T Ls A s= +  (4.18) 

 

The characteristic curve trajectories that are global minimizers uniquely determine the 

large-time behavior of the flame propagation. The points on the flame front that follows 

these trajectories can also be seen as the points that propagate most quickly in the y-

direction and, in a sense, they represent the “optimal” solutions in the variational problem 

(4.8) [172]. In contrast, the dynamics of the one-sided minimizers, which form the 

“domain of attraction” of the shock [173], determines the overall shape of the flame (as 
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will become clearer in the next section), but do not provide any information about the 

large-time front displacement speed.  

 

        

Figure 4-4. Flame slope g (a) and flame shape ξ  (b) at different normalized times ( )Lt s L  

for the flow field ( )- cos 2yu A x Lπ= , 0xu =  with 0.5LA s = . 

 

 
Figure 4-5. Characteristic curves in the -x t  plane for the solutions showed in Figure 4-4. 
One-sided minimizers are represented by variously colored thin lines, global minimizers by 
thick red lines and the shocks trajectories by thick blue dot-dashed lines. 
 

 

The existence of global minimizers is not guaranteed in general for the G-equation. In 

fact, its Hamiltonian ( ) ( ), LH x G s G u x G∇ = ∇ − ⋅∇�
, does not satisfy Eq. (4.16) for a 
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mean-zero velocity field ( )u x
�

 which changes sign and has amplitude larger than the 

laminar flame speed Ls  [174]. From a physical point of view, the lack of coercivity 

means that the propagation of the flame front is dominated by stirring and convection and 

it is possible that certain flow profiles may “block” all characteristic curves and prevent 

them from existing on time intervals ] [,−∞ + ∞  (i.e., prevent it from being a global 

minimizer). A two dimensional example of this situation is the so called “cellular flow” 

whose stream function is given by sin sinA x yψ =  (with xu yψ= ∂ ∂ , yu xψ= − ∂ ∂ ) 

with LA s>>  [175]. A sketch of the streamlines and velocity vectors of this flow field are 

shown in Figure 4-6. As it can be observed all the streamlines form closed periodic paths 

and for sufficiently high flow velocities ( LA s>> ) they impede the motion of the 

characteristic curves [175].  

 

 

Figure 4-6. Streamlines (thick lines) and velocity vectors (arrows) for the cellular flow. 
 

However, for this flow field some success in studying front displacement speeds trends 

has been made by considering “least time” trajectories [176] or local “action minimizing” 
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trajectories [177], which seem to have analogies to the global minimizers but in a local 

setting. Thus, it is conceivable that investigating the dynamics of global minimizers in 

situations in which they exist can still be of relevance to understand more general flows.   

For time-dependent Hamiltonians, the coercivity condition is no longer sufficient to 

ensure the existence of global minimizers. A stronger assumption on the Hamiltonian that 

guarantees the existence of global minimizers is the so called superlinearity  

 

 
( ), ,

lim
H x t

ϕ

ϕ
ϕ∇ →+∞

∇
= +∞

∇

�

 (4.19) 

 

An example of Hamiltonian satisfying this conditions, is the “classical” Hamiltonian 

( ) ( )2
, , 2 ,H x t F x tϕ ϕ∇ = ∇ +� �

 (where 
2

2ϕ∇  represents the kinetic energy and 

( ),F x t
�

 the potential energy) whose associated conservation equation (similar to Eq. 

(4.5)) is  

 

 ( ) ( ),
v

v v F x t
t

∂ + ⋅∇ = −∇
∂

�
� � �

 (4.20) 

 

where v ϕ= ∇�
 and is referred to as the “forced inviscid Burgers equation” [178]. On the 

contrary, the Hamiltonian of the G-equation is of the “relativistic” type [179] and is not 

superlinear.  Note that the G-equation reduces to this forced Burgers equation in the limit 

of small flow fluctuations [153, 180].  
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4.2.4 Definition of Aubry-Mather Leading Points 

Based on the theory described in the previous section, we concentrate first on steady flow 

fields for which the coercivity condition Eq. (4.16) is satisfied. In this context, we define 

“Aubry-Mather points” as those parts of the flame whose propagation follows the 

trajectories of the global minimizers. Note that the global minimizers may not be isolated 

trajectories and, as such, they may not be discrete points on the flame as the name 

“leading points” seems to suggest. For instance, if in the example of Figure 4-4 and 

Figure 4-5 we had chosen a function with degenerate (i.e., with zero second derivative) 

absolute minima to represent the steady shear flow profile, then the trajectories of the 

global minimizers could originate from a continuous band of spatial positions. In the 

context of the Hamiltonian dynamical system defined by equations (4.7), when the 

trajectories of the global minimizers are isolated from each other, they are also known as 

“hyperbolic trajectories” [167]. When the system is autonomous (i.e., the velocity flow 

field does not depend explicitly on time), they may be also referred to as “hyperbolic 

fixed (or equilibrium) points”, since they are equilibrium points for the characteristic 

curves in Eq. (4.7). In the case of a flame propagating in a unidirectional steady shear 

flow ( ( )yu f x= , 0xu = ), it can be shown that the Aubry-Mather points are hyperbolic 

points (i.e., a finite number of isolated points) only if ( )f x  possesses a finite number of 

non-degenerate absolute minima for [ ]0,x L∈ . Thus, this analysis suggests a third 

potential leading point definition, which we refer to as the “Aubry-Mather Leading 

points”, as those parts of the flame that follows the trajectories of global minimizers, in 

the case these are hyperbolic trajectories.  These are the discrete points on the flame that 

control its propagation speed. 
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4.3  Example problem 
 

In this section, we consider a flame propagating in a periodic steady shear flow 

( )yu f x=  with a constant mean transverse wind 0xu V= ≥ . Eq. (4.4) admits an 

analytical solution [160] for this flow field, which is reproduced in Appendix C. With a 

change in coordinate system, this problem is also equivalent to a flame propagating at an 

angle of ( )1tan TV sθ −=  to the velocity isocountours of yu . In this framework, the mean 

transverse wind V  can be interpreted as a parameter of the “unsteadiness” of the axial 

flow yu  since in a reference frame attached to the transverse flow (moving in the x-

direction with velocity V ) the Galilean transformations 

 

 
0x x

y y

x x Vt u u V

t t u u

′ ′= + = − =
′ ′= =

 (4.21) 

 

eliminates the transverse mean flow, with the shear flow now being time dependent 

( ) ( ),yu x t f x Vt′ ′ ′= − . In this new reference frame, the shear is therefore acting on the 

flame with a time-scale given by L V , where L  is the spatial period of ( )yu x . The 

competition between this time scale and the time scale associated with flame propagation, 

which can be taken as proportional to LL s , generates rich and interesting behavior 

[158]. In fact, the rate at which the front displacement speed Ts  is enhanced by 

increasing flow intensity A is reduced as the unsteadiness V  grows, analogous to one of 

the mechanism leading to the “bending effect” discussed in the turbulent combustion 

literature [156]. 
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In order to demonstrate several points about the characteristics of the global minimizers, 

we consider two periodic flow fields: one consisting of a single harmonic 

 

 ( ) ( )cos 2yu x A x Lπ= −  (4.22) 

 

and one with multiple harmonics  

 

 

( ) 1 1
cos 2 sin 2 cos 4

2 2

1 1 1
cos 6 sin 6 cos 8

2 4 2

y

A x x x
u x

L L L

x x x

L L L

π π π

π π π

      = − + + +     ∆      

     + − +     
     

 (4.23) 

 

where ∆  is a suitable normalization factor so that the expression in square parentheses 

has unit amplitude. The latter shear flow (4.23) is considered here as it was also used in 

references [160, 181] as an example of a profile with a complex structure and an 

asymmetrical form with multiple local maxima and minima. Figure 4-7 shows a sketch of 

the shear profiles (4.22) and (4.23).  
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Figure 4-7. Shear flow profiles given by equation (4.22) (solid line) and equation (4.23) (dot 
dashed line). 

 

Figure 4-8a shows the dependence of Ts  on the shear flow amplitude A for both profile 

(4.22) and (4.23) at different values of “unsteadiness parameter”, V . Its inhibiting effect 

is illustrated by the fact that when no unsteadiness is present ( 0V = ) Ts  depends linearly 

on A, and is given by Eq. (4.18) for both shear flow profiles, while the front 

displacement speed monotonically decreases for increasing V . Figure 4-8b replots these 

same data in terms of normalized enhancement of the displacement speed ( )T Ls s A−  in 

order to better illustrate this effect. Here, the significance of increasing V  on decreasing 

the displacement speed is clearly shown. At large enough values of V , Ts  always 

asymptotes to Ls . However, Ts  exceeds Ls  for a larger range of V  values with 

increasing amplitude, A.  
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Figure 4-8. Dependence of front displacement speed Ts  on shear flow amplitude A  for 

fixed unsteadiness parameter V  (a). Normalized enhancement of displacement speed 

( )-T Ls s A as a function of unsteadiness parameter V at fixed shear flow amplitude A (b). 

Solid lines refer to the shear flow profile (4.22) while dashed lines refer to the shear flow 
profile (4.23). 
 
 

The classical interpretation of these effects is in terms of flame area. To illustrate, Figure 

4-9 plots flame shapes at the steady state for a fixed shear flow amplitude ( 0.5LA s = ) 

and different values of transverse wind intensity. It can be observed how the overall 

flame area decreases as the unsteadiness parameter V  increases. However, this 

explanation does not clarify why, for certain values of A and V , the front displacement 

speed is identical for the two shear flow configurations, while it is different for other 

combination of A and V . Specifically, Figure 4-8 shows that Ts  values are different for 

the two shear flow profiles (i.e., dashed and solid lines are not superimposed) for large 

values of unsteadiness V .  
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Figure 4-9. Flame shape ξ  for 0.5LA s =  and different values of LV s  for both profile 

(4.22) (a) and profile (4.23) (b). The graphs of ξ  are adjusted so that their average is zero. 
“Aubry-Mather leading points” are indicated by black circles (which only exist for the 

LV s = 0 and 0.5 cases); “instantaneous leading points” are indicated by red crosses. 

 
 

We now show that the differences in the occurrence of the inhibiting effect between shear 

flow profile (4.22) and (4.23) can be interpreted in terms of the dynamics of global 

minimizers (i.e., in terms of the “Aubry-Mather leading points”). First we remark that 

both profiles (4.22) and (4.23) have only one absolute minimum per period at points 

where yu A= − . The equilibrium points of the characteristic curves (4.7) for these 

velocity flow fields are given by 
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and can be classified as hyperbolic (or saddle) fixed points when 2 2 0yd u dx >  (local 

minimum of yu ), elliptic (or centers) when 2 2 0yd u dx <  (local maximum of yu ) and 

non-hyperbolic (or non-isolated) when 2 2 0yd u dx =  [182]. According to the discussion 

in the previous section then, for 0V =  the solution of Eq. (4.4) possesses a unique 

hyperbolic global minimizer per period whose position coincides with the hyperbolic 

fixed point in correspondence of the absolute minimum in velocity.  

 

   

Figure 4-10. Backward characteristic curves in the -x t  plane corresponding to the 
solutions shown in Figure 7a (shear flow profile of equation (4.22) with 0.5LA s =  and 

0LV s =  (a), 0.5LV s =  (b), 0.9LV s =  (c)). 

 

   

Figure 4-11. Backward characteristic curves in the -x t  plane corresponding to the 
solutions shown in Fig. 7b: shear flow profile of Eq. (4.23) with 0.5LA s =  and 0LV s =  (a), 

0.5LV s =  (b), 0.9LV s =  (c). 
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A convenient way to visualize the global minimizers in the x t−  plane is to solve the 

equations (4.7) backward in time since all the characteristic curves (one-sided 

minimizers) converge to the global minimizers for t → −∞  [169, 183]. Figure 4-10 and 

Figure 4-11 illustrate these backward characteristic curves for the solutions plotted in 

Figure 4-9. Figure 4-10a and Figure 4-11a show that when no unsteadiness in the flow is 

present ( 0LV s = ) all the one-sided minimizers converge to the global minimizers for 

both shear flow profiles. Then, from Eq. (4.17), it is clear that both profiles yield the 

same front displacement speed since ( )max yu A− = . This conclusion is not influenced 

by the trajectories of the one-sided minimizers which determine the details of the flame 

shape and depend on the form of the shear flow profile yu . From Figure 4-10b and 

Figure 4-11b, it is clear that a limited amount of “unsteadiness” in the flow does not alter 

the trajectory and the hyperbolic character of the global minimizers. In this case, the front 

displacement speed and its “bending” with increasing V are the same for both shear 

flows. Examining the flame shapes plotted in Figure 4-9 for 0.5LV s = , it also 

interesting to notice that the discrete global minimizer trajectory does not correspond to 

the most forward-lying position of the flame – i.e., the “Aubry-Mather leading points” 

and the “instantaneous leading points” do not coincide. In other words, the points 

controlling the front displacement speed are not the most forward-lying position of the 

flame front in the direction of the reactants. 

A bifurcation in solution characteristics occurs when the unsteadiness parameter, V , 

reaches a critical value. For example, in Figure 4-10c and Figure 4-11c all the trajectories 

are global minimizers and their hyperbolic character is lost. In this case, the trajectories 

of the global minimizers depend on the spatial details of the shear flow structure, and the 
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two profiles (4.22) and (4.23) yield different values of front displacement speed 

according to Eq. (4.17). This is better illustrated in the phase space g- x  associated with 

the system of equations (4.7) shown in Figure 4-12. In this figure, for the shear flow 

profile (4.22), several orbits are plotted as thin lines, the fixed points given by Eq. (4.24) 

are represented by thick dots and the slope g of the flame shapes of Figure 4-9a are 

represented by thick lines. As it can be observed for  0.9LV s =  the hyperbolic fixed 

points do not belong to the steady state solution, while for 2LV s =  no fixed point is 

present among the orbits of the characteristic curves.  

 

  

  

Figure 4-12. Phase space -g x associated with the characteristic curves of shear flow profile 

(4.22) with 0.5LA s =  and 0LV s =  (a), 0.5LV s =  (b), 0.9LV s =  (c) and 2LV s =  (d) . 

Thin lines represent orbits of the characteristic curves, thick lines represent the steady state 
solution and dots represent fixed (equilibrium) points. 
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From the analytical solution shown in Appendix C, it is then possible to solve for the 

parameter values A and V  where the hyperbolic fixed points do not belong to the steady 

state solution of Eq. (4.4), as plotted in Figure 4-13. The figure shows that for LV s>  the 

unsteadiness is too high and no fixed points are present for all values of A. At low A 

values, the fixed point can be lost even at lower values of V . This situation mirrors the 

trends shown in Figure 4-8. 

 

 

Figure 4-13. Parameter space -A V  divided into regions in which solutions of the model 

problem admit and do not admit hyperbolic global minimizers *γ . Dots indicate the 

conditions at which solutions plotted in Figure 4-9 are obtained ( 1L = ).  
 

Two key results emerge from this section. First, under certain conditions, the front 

displacement speed is controlled by velocity field characteristics at discrete points on the 

flame, points we define as “Aubry-Mather leading points”. However, these points do not 

generally lie on the farthest forward point of the front (the “instantaneous leading point”).  

Under these conditions, the two totally different velocity fields with the same minimum 

value lead to identical front displacement speeds. Second, for other conditions, the front 

displacement speed is not controlled by discrete points, but rather by the entire spatial 
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distribution of the velocity field. For these conditions, the “instantaneous leading points” 

do not have any dynamical significance in controlling the front displacement speed. The 

extent to which these two results modify proposed leading point arguments as articulated 

in the Section 2.4 remains to be seen, however, as care must be exercised in translating 

results from this deterministic problem to the ensemble average characteristics of the 

stochastic problem that is of interest for the turbulent problem [184]. 

 

 

4.4 Curvature effects 
 

The previous section considered the case where the laminar burning velocity Ls  was 

constant. In reality, for mixtures with non-zero Markstein lengths it is well known that 

the laminar burning velocity is a function of the flame stretch rate that, in turn, is a 

function of the local flow shear and flame curvature (see Section 2.1). As shown in 

Chapter 3, DNS studies of turbulent premixed flames show that local changes of flame 

speed correlate strongly with the local curvature of the flame front [4, 60]. In this section, 

we incorporate a curvature sensitivity into the burning velocity, by means of the 

following linear expression (see eq. (2.9)): 
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where 0Ls  represents the laminar unstretched flame speed, ℓ is the Markstein length and 

CK  represents the curvature, defined as in Chapter 3. Let us first consider weak 

curvatures (i.e., small amplitude of wrinkling relative to the transverse length scale of 

wrinkling), for which this expression can be linearized and, when inserted into the G-

equation, yields an additional “viscous” term [185]: 

 

 
2 2

0 0 2
1x y L Lu u s s

t x x x

ξ ξ ξ ξ∂ ∂ ∂ ∂ + − = − + + ∂ ∂ ∂ ∂ 
ℓ  (4.26) 

 

In this section, we consider only positive Markstein lengths 0>ℓ  (i.e., thermo-

diffusionally stable flames). From a physical point of view, the viscous term can be 

interpreted as a diffusion effect that “blurs” the otherwise “sharp” trajectory of the global 

minimizer. Indeed, Eq. (4.26) admits a variational solution that is quite similar to Eq. 

(4.8), but with white noise addition [179, 186]: 

 

 ( ) ( ) ( )( ) ( )( ), min , , ,
t

Y
x t E r s s s ds r

τ

ξ η ξ τ τ
 

= + 
 
∫ ɺL  (4.27) 

 

where r  solves for s tτ < ≤  the stochastic differential equation 
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and Y varies in the class of smooth, time dependent functions, ( ) ( )( ),s Y r s sη =ɺ , w  

represents a one dimensional Wiener process and E  denotes the expectation with respect 

to the Wiener measure. If we call Yℓ  the minimal Y in Eq. (4.27) and rℓ  the solution of 

the corresponding stochastic differential Eq. (4.28) then it is possible to obtain a formula 

analogous to Eq. (4.10) [186] 

 

 ( ) ( ) ( ), , ,s Y x s H x s g
g

η ∂= =
∂ℓ ℓ

ɺ  (4.29) 

 

Despite being presented here for the one dimensional case, we remark that the stochastic 

variational representation can be extended to the three dimensional viscous G-equation, 

as described in Ref. [179].  

It seems intuitive to expect that the strength of the Markstein length effect depends on the 

behavior of 2 2xξ∂ ∂  along the global minimizers trajectories (i.e., the behavior of the 

“curvature” at the leading points). If the set of global minimizers for the inviscid problem 

consists of a finite number of hyperbolic trajectories in each period, then it can be shown 

that this intuitive physical picture is indeed correct. Let us define the large-time average 

value of 2 2xξ∂ ∂  following the i-th global minimizer for the inviscid problem as 
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and assume that, among all the global minimizers, there exist only one minI i iC C=  per 

period. Then, it can be demonstrated that [187-189] 
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To illustrate, we consider the effect of the viscous term for the model problem described 

in Section 4.3 for shear flow (4.22) and (4.23) in the A V−  parameter space where the 

solution possesses a unique, hyperbolic global minimizer per period (see Figure 4-13). 

Using the analytical solution in Eq. (C.7), the values of IC  for both profiles are given by: 
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 (4.32) 

 

This expression clearly shows the inhibiting effect that a positive Markstein length has on 

the front displacement speed. This result is well known from measurements of turbulent 

flame speeds of lean, heavy fuels [4, 7]. The effect of the curvature term is stronger for 

the shear flow (4.23), since the absolute minimum at *x γ=  is sharper.  

This 1Lℓ ≪  result can be compared to more general solutions by solving Eq. (4.26) 

numerically. The computational scheme discretized first order spatial derivatives in Eq. 
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(4.26) using a fifth-order WENO scheme [190] and a central sixth-order scheme for the 

viscous term. A Total Variation Diminishing (TVD), third order Runge–Kutta scheme 

[191] was used for time integration and the Local Lax-Friedrich (LLF) scheme was used 

for improved stability [190]. Comparison between the numerical computation of Ts  and 

the asymptotic result in Eq. (4.31) is shown in Figure 4-14 for different values of A and 

V. These results show that equations (4.31)-(4.32) exactly captures the dependence of Ts  

upon ℓ for 1Lℓ ≪ , especially when the value of  2 2xξ∂ ∂  at the leading point is not too 

high (such as for shear flow (4.22) in Figure 4-14a). For high values of 2 2xξ∂ ∂ , the 

dependence of Ts  on ℓ  becomes nonlinear, and the linearized approximation loses 

accuracy. 

 

  

Figure 4-14. Front displacement speed Ts  dependence on Markstein length ℓ for 1LA s =  

(a), 10LA s =  (b) and different V  values for the model problem of Section 4.3. Solid lines 

refer to numerical solutions of Eq. (4.26), dashed lines to the linear approximation (4.31)-
(4.32).  
 

Analogous results are valid when the weak curvature assumption is removed and the full 

curvature expression is used in Eq. (4.26), which becomes 
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The last term in Eq. (4.33) is a second order elliptic operator (see p.260 in [192]) which 

can be considered a generalization of the Laplacian (i.e., the viscous term in Eq. (4.26)). 

It is possible to prove that the same theory presented above is valid when the viscous 

term is substituted by any second order elliptic operator (see Remark 6 in [188]). Eq. 

(4.31) is still valid but with iC  now given by 
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which is the averaged flame curvature computed following the i-th global minimizer for 

the inviscid problem. Using the analytical solution, Eq. (C.7), the value of IC  for the 

model problem of Section 4.3 is now given by: 
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Figure 4-15. Front displacement speed Ts  dependence on Markstein length ℓ for 1LA s =  

(a), 10LA s =  (b) and different V  values for the model problem of Section 4.3. Solid lines 

refer to numerical solutions of Eq. (4.33), dashed lines to the linear approximation of Eq. 
(4.31)-(4.35). 
 
 

Analogously to Figure 4-14, Figure 4-15 compares equations (4.31)-(4.35) with the value 

of Ts  computed solving numerically Eq. (4.33). 

 

 

4.5 Conclusions 
 

In order to assess leading points arguments, this chapter has analyzed exact solutions for 

flame propagation in periodic shear flows [193]. These results validate some basic ideas 

from leading points arguments, but also modify them appreciably, at least for this 

deterministic problem. In particular, these results clearly show that for sufficiently strong 

(high A ) and steady (low V ) flow perturbations, the front displacement speed is 

controlled by velocity field characteristics at discrete points on the flame. However, these 

points do not generally lie on the farthest forward point of the front (the “instantaneous 

leading point”).  On the contrary, for sufficiently weak (low A ) or unsteady (high V ) 
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flow perturbations, the front displacement speed is not controlled by discrete points, but 

rather by the entire spatial distribution of the velocity field.  For these conditions, the 

“instantaneous leading points” do not have any dynamical significance in controlling the 

front displacement speed.  Finally, these results clearly show that the effects of flame 

curvature sensitivity in modifying the front displacement speed can be successfully 

interpreted in term of leading point concepts in cases where the set of global minimizers 

consists of hyperbolic fixed points. 

In future it will be of interest to verify if the ideas described in this chapter can be 

extended to two and three dimensional flows for which the G-equation do not admit 

global minimizers such as cellular flows consisting of array of vortices [175-177], which 

may resemble more to the turbulent flow field experienced by a real premixed flame. 

Also it will be of interest to extend the theory presented in Section 4.4 to thermo-

diffusively unstable flames for which 0<ℓ . 
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CHAPTER 5 

CONCLUSIONSIANDIRECOMMENDATIONS 

 

In this chapter, the overall contributions of the work presented in this thesis are outlined. 

Additionally, recommendations for further work are put forward for consideration. 

 

 

5.1 Conclusions 
 

The influence of fuel/oxidizer composition on the progration and structure of turbulent 

premixed flames is a phenomenon of considerable complexity. In order to make progress 

in understanding this subject it is necessary to identify key governing processes while 

cutting-off interesting but marginal phenomena. Leading point concepts suggest that the 

turbulent burning velocity of premixed flames is controlled by the velocity of the points 

on the flame that propagate farthest out into the reactants. It is also postulated that 

modifications in the overall turbulent combustion speed depend solely on modifications 

of the burning rate at the leading points since an increase (decrease) in the average 

propagation speed of these points causes more (less) flame area to be produced behind 

them. Several investigators have also assumed that the structure of leading points can be 

well represented by quasi-steady “critically” stretched laminar flames in canonical 

configurations. In this framework modeling of turbulent burning rates can be thought as 

consisting of two sub-problems:  

1) modeling of burning rates at the leading points  

2) modeling of the dynamics/statistics of the leading points in the turbulent flame.  
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To address the first sub-problem Chapter 3, has described a comparison between DNS 

results of lean, H2/air flames and results from several highly-stretched, model geometries. 

This type of information is useful for modeling purposes in the framework of the leading 

point concept and may also be compared to similar (but less detailed) attempts to collapse 

local flame speed data obtained by DNS of turbulent flames using planar laminar flame 

models [99] (see Section 2.3). For the turbulent flames investigated in this thesis, the 

influence of curvature on the local structure of the flame front is too large to be neglegted 

and use only planar laminar flames for comparison. 

For the lean hydrogen/air mixture investigated, it has been shown that the overall trend of 

increasing mean cs , CK  and decreasing Tδ  and 2Hδ  with increasing turbulence levels 

follows closely the behavior of model laminar flame computations. In particular at the 

leading edge, the average flame front structure can be reproduced reasonably well by 

results obtained from model geometries with the same average mean curvature. This 

agreement was not necessarily expected, as it is known that unsteady effects decrease the 

effective stretch sensitivity of the flame. This result might be a manifestation of the weak 

sensitivity of curvature-induced flame speed modifications to frequency, as opposed to its 

strong sensitivity to nonsteadiness in hydrodynamic stretch. 

For the highest turbulent intensity investigated, case D31, local consumption speed, 

curvatures and flame thicknesses seems to approach the maximum values obtained by the 

laminar model geometries, while other cases display substantially lower values. This 

suggests that at low turbulent intensities “critically” stretched flamelets are not a good 

model for leading points burning rates, at least for the low Reynolds and low Damköhler 

number accessible by direct numerical simulations. Such consideration should be taken 
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into account when developing models for turbulent flame speeds based on leading points 

concepts, and may explain difficulties of this approaches in modeling turbulent flame 

speed data at high pressures [9] or for very lean hydrogen/air flames [137].  

A major source of difference between model laminar flame computations and highly 

curved flamelets is the presence of negative (i.e., compressive) strain rates. For the model 

laminar flames considered in this thesis, strain rates increase monotonically with 

curvature and are always positive, while for the investigated turbulent flames the 

correlation between strain rates and curvatures is negative. Because of this effect, the 

most higly curved flamelets at each turbulent intensity display lower values of 

consumption speed and are thicker than model laminar flames with equal curvature.  

To address the second sub-problem, Chapter 4 covers exact solutions for flame 

propagation in periodic shear flows. These results validate some basic ideas from leading 

points arguments, but also modify them appreciably, at least for the deterministic 

problems considered in this thesis. For the simple case of a front propagating in a one-

dimensional shear flow, these results clearly show that the average front displacement 

speed is controlled by flow field characteristics at discrete points on the flame only when 

the amplitude of the shear flow is sufficiently large and does not vary too rapidly in time. 

Furtheremore in these conditions, if the local laminar flame speed at which the flame 

propagates depends linearly on the flame front local curvature, then overall modifications 

in the average front displacement speed can be successfully interpreted just studying the 

curvature of leading points. However, these points do not generally lie on the farthest 

forward point of the front, differently from the original definition of leading points.  
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On the contrary, for sufficiently weak or unsteady flow perturbations, the front 

displacement speed is not controlled by discrete points, but rather by the entire spatial 

distribution of the velocity field. For these conditions, the leading points do not have any 

dynamical significance in controlling the front displacement speed. These results seem to 

indicate that the leading points are able to drive the progation of a flame front only if 

sufficiently steady and intense flow perturbations exist in the flow field.   

 

 

5.2 Recommendations for future work 
 

To expand and verify results presented in Chapter 3 it would be desirable to investigate 

turbulent flames at higher Reynolds number and higher Damköhler numbers than those 

characterizing the DNS database utilized in this thesis. At higher Reynolds number 

vorticity fluctuations tend to be more concentrated in thin region of space, known as 

“worms” or “vortex tubes”, which are a manifestation of the “internal intermittency” of 

the turbulent flow [150]. It has been postulated that these flow structures are able to 

wrinkle and distort the flame much more efficiently than what suggested by low 

Reynolds number computations and, as such, critically stretched flamelets may be 

relevant also at low 0Lu s′  [4]. A relation between “vortex tubes” and regions of high 

heat release rate was, for example, claimed in the DNS of Tanahashi et al. [121]. 

However, this proposed mechanism is difficult to verify computationally because of the 

large computer resources needed to simulate premixed flames at high Reynolds number 

[133]. 
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Further theoretical/numerical work is also required to better understand unsteady effects 

on the response of curved premixed laminar flames. As described in Section 2.1.2, most 

studies on unsteady effects consider flat strained laminar flames in a counterflow 

configuration. Some insight, may be obtained from flame vortex interactions studies but 

this configuration is rather complicated. It is envisaged that an improved knowledge of 

unsteady effects will allow for a more accurate understanding of the local structure of 

turbulent premixed flames. A possible flame-flow configuration that could be used to 

study unsteady-curvature effects would be to force harmonically the inlet of a tubular 

counterflow flame in order to achieve a flame whose curvature varies periodically in a 

prescribed manner.  

Moreover, it will be of interest to verify if the ideas described in Chapter 4 can be 

extended to two and three dimensional flows for which the G-equation do not admit 

global minimizers such as cellular flows consisting of array of vortices [175-177] or 

random flows [174, 194-196], which may resemble more to the turbulent flow field 

experienced by a real premixed flame. Finally, it will be of interest to extend the theory 

presented in Section 4.4 to thermo-diffusively unstable flames for which 0<ℓ . 
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APPENDIX A 

 

A.1. Numerical convergence and validation of the 1D numerical simulations 
 

This section describes numerical convergence studies for the one dimensional numerical 

models utilized in Chapter 3.  

The different versions of the standard OPPDIF code [197] that have been used to 

simulate the planar counterflow flame and the tubular flame utilize an adaptive placement 

of mesh points to calculate more accurate solutions on finer meshes starting from 

solutions calculated on coarser meshes. The adaptive placement of the mesh points is 

controlled by the first and second derivatives of the solution vector ϕ . The code 

recursively checks that the following inequalities are respected at each grid point j : 

 

 1 GRAD max minj jϕ ϕ ϕ ϕ−− < ⋅ −  (A.1) 

 
1

CURV max min
j j

d d d d

dx dx dx dx

ϕ ϕ ϕ ϕ
−

       − < ⋅ −       
       

 (A.2) 

 

where GRAD and CURV are two user-defined parameters which can assume values 

comprised between 0 and 1. Figure A-1 shows a study on the numerical convergence of 

three planar counterflow flame calculations characterized by different inlet velocities. 

These simulations consider a H2/Air flame at an equivalence ratio of 0.31φ =  and 

reactants at standard temperature and pressure (298K, 1atm). Based on these data, it can 

be observed that solutions with approximately 2000 mesh points (corresponding to 
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GRAD = CURV = 0.01) can be considered as numerically converged. For this reason, all 

the calculations shown in Chapter 3 were performed imposing GRAD = CURV = 0.01.  

 

     

Figure A-1. Stretch rate κ (a) and consumption speed sc (b) for planar counterflow flame 
calculations with different number of grid points at three different reactants inlet velocities. 
For these calculations the distance between jets is equal to 2cm. 
 

As already described in Chapter 3, the expanding cylindrical flame was simulated with an 

isobaric, one dimensional formulation of the conservation equations in cylindrical 

coordinates where the continuity, thermal energy and species equations were discretized 

and solved by means of finite element method as implemented in the commercial 

software COMSOL© [148]. The H2/Air flames considered in Chapter 3 were resolved 

with a mesh size 65 10x m−∆ = ⋅  corresponding to a ratio 0 380T xδ ∆ =  and advanced in 

time using the backward differentiation formula implemented in DASPK [198]: relative 

and absolute tolerances were set equal to 10-6 and 10-9, respectively.  

To check the accuracy of the time-stepping method, ignition delay times for different 

mixtures were calculated utilizing the plug-flow reactor code implemented in the 

“Reaction Engineering Interface” of COMSOL© [148] and compared with those obtained 

from the standard plug-flow reactor code implemented in CHEMKIN [147]. Figure A-2 
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shows a comparison between the temperature-time profiles as calculated by the two 

programs for a H2/CO/Air mixture at different initial temperatures. As it can be observed 

the calculations agree very well with each other. 

 

 

Figure A-2. Temperature time-history for plug-flow reactors as computed in COMSOL 
(dashed black lines) and CHEMKIN (solid colored lines). The mixture consider is 
H2/CO/Air with φ = 0.48 and H2/CO volumetric ratio equal to 90/10. Initial temperatures 
range from 700K to 1200K. The numerical simulations utilize the Davis chemical 
mechanism [199]. 
 

The ability of the mesh to resolve the flame motion was checked repeating expanding 

cylindrical flame computations with different mesh sizes. Figure A-3 shows the 

temperature profiles computed at 1t ms=  as obtained by two expanding cylindrical flame 

calculations characterized by different mesh sizes. The coarse mesh ( 15x mµ∆ = ) is 

already sufficient to accurately compute the flame propagation, but for the calculations in 

Chapter 3 the finer mesh ( 5x mµ∆ = ) was chosen to better resolve spatial and temporal 

derivatives needed to evaluate the thermal flame thickness Tδ  and the flame 

displacement speed refdR dt (see Section 3.3).  
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As a final validation of the code developed in COMSOL©, the propagation of a one-

dimensional planar flame was computed modifying the code utilized for the expanding 

cylindrical flame. Figure A-4 illustrates the result of a calculations in which a planar 

H2/air ( 0.31φ = ) flame propagated until reaching steady state and shows that the solution 

computed agrees with profiles computed from the standard PREMIX code [200].  

 

 
Figure A-3. Temperature profiles at t = 1ms for two expanding cylindrical flame 
calculations computed with different mesh sizes ∆x (H2/Air, 0.37φ = , 298uT K= , 

1p atm= , 0 1i TR δ =  [201]). 

 

     

Figure A-4. Comparison between solutions obtained from PREMIX [200] and from one-
dimensional planar computations in COMSOL at steady state. Figure (a) and (b) show 
temperature and H atom mass fraction profiles, respectively. The two numerical 
simulations utilize the same transport coefficients, thermodynamics properties and chemical 
kinetics of the H2/O2 system of GRI 2.11 mechanism [146] and a mixture averaged 
formulation [113] to model molecular diffusion.  
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A.2. Quasi-steady response and ignition transients of expanding cylindrical 
flames 

 

This section discusses the quasi-steady response and the ignition transients associated 

with the cylindrical flames numerical simulations presented in Section 3.3. We follow a 

procedure similar to that described in Ref. [48] to identify unsteady effects in the 

response of propagating flames. The starting point of this analysis is the energy balance 

equation written in cylindrical coordinates [202]: 

 

 
1

1 K

p r pk kr
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c u r c j q

t r r r r r
ρ λ

=
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where ρ  represents the density of the gas mixture, pc  is the specific heat at constant 

pressure of the gas mixture, ru  is the gas flow velocity in the radial direction, λ  is the 

thermal conductivity of the gas mixture, pkc  is the specific heat at constant pressure of 

the k -th species, krj  is the diffusion flux of the k -th species and q′′′ɺ  is the heat release 

per unit volume due to chemical reactions. Rewrinting equation (A.3) in a reference 

frame moving with the flame at a speed d refs dR dt=  we obtain  
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Unsteady effects are associated with the first term in equation (A.4): in the quasi-steady 

limit, this term is small compared to the others.  

Figure A-5 shows the magnitude of the various terms of equation (A.4) plotted against 

radial position r  at different time instants (t  = 0.1, 0.2, 0.5 and 1ms) after ignition (t  = 

0ms) for ECF with 0 0.25i TR δ = . For convenience, Figure A-6 shows these time 

instants plotted as dots on the graphs of consumption rate cs  versus time t  or curvature 

CK  to have a direct comparison with the data presented in Section 3.3. Figure A-7 and 

Figure A-8 show the same analyses as Figure A-5 and Figure A-6 but for the ECF with 

0 0.75i TR δ = . As it can be observed from these figures, the magnitude of the unsteady 

term (solid line) is small at t  = 0.5 and 1ms for both intial radii iR  of the ignition pocket. 

These data indicate that after reaching a peak consumption speed, the response of these 

cylindrical flames quickly becomes quasi-steady. The difference between quasi-steady 

responses of ECF with different iR  are entirely due to the different energy contained in 

the ingntion pocket [48]. Finally, it should be noted that the unsteady term does not 

become exactly equal to zero because the flame thickness is increasing and the products 

at the center of the pocket are cooling as the flame expands because of non-unity Lewis 

number effects and differential diffusion of species.  
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Figure A-5. Magnitude of the terms in equation (A.4) plotted against radial position r at 
different time instants (t = 0.1, 0.2, 0.5 and 1ms shown in Figure A-6) after ignition (t = 0ms) 
for ECF with 0 0.25i TR δ = . 

 

 

Figure A-6. Consumption rate cs  plotted against time t  (a) and curvature 1C refK R=  (b) 

for ECF with 0 0.25i TR δ = . The dots represent the time instants at which the data in 

Figure A-5 are obtained.  
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Figure A-7. Magnitude of the terms in equation (A.4) plotted against radial position r at 
different time instants (t = 0.1, 0.2, 0.5 and 1ms shown in Figure A-8) after ignition (t = 0ms) 
for ECF with 0 0.75i TR δ =  

 

 

Figure A-8. Consumption rate cs  plotted against time t  (a) and curvature 1C refK R=  (b) 

for ECF with 0 0.75i TR δ = . The dots represent the time instants at which the data in 

Figure A-7 are obtained. 
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A.3. Tubular flames with an inner wall and spherical flames 
 

This section presents results for two other one-dimensional flame geometries related to 

those presented in Chapter 3 and shown in Figure A-9: tubular flames with an inner wall 

of radius IR  and expanding spherical flames (ESF) ignited from a pocket of burnt gases. 

These geometries were not included in Chapter 3 because they do not add much 

information to the results already presented in Section 3.3: the separate effects of 

curvature, strain and ignition transients can be discussed satisfactorily just utilizing planar 

counterflow flames (PCF), tubular flames with no inner wall (TCF) and expanding 

cylindrical flames (ECF). Nonetheless, these results are reported in this Section for 

completeness. As in Chapter 3, all the numerical simulations considered in this Appendix 

utilize the transport coefficients, thermodynamics properties and chemical kinetics of the 

H2/O2 system of GRI 2.11 mechanism [146] and a mixture averaged formulation [113] to 

model molecular diffusion. Furthermore, we consider only an H2/Air flame at an 

equivalence ratio of φ = 0.31 and with initial reactants temperature 298uT K=  and at 

pressure 1p atm= . 
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Figure A-9. Premixed flame geometrical configurations described in this Appendix: tubular 
counterflow flame with an inner wall of radius RI (left), expanding spherical flame (right). 

 
 

The tubular flame with an inner wall represents an intermediate situation between a PCF (

IR R> → ∞ ) and a TCF ( 0IR R> = ). The size of the internal radius IR  adds a degree of 

freedom to the flame response since different flames subjected to equal stretch rates 

zdu dzκ =  can have different radius of curvature depending on the size of IR . In fact, 

this geometrical configuration is useful to study the different effects of strain and 

curvature on the flame response, as pointed out for example in Ref. [203]. To illustrate, 

Figure A-10 shows the consumption speed cs  (as defined in Chapter 3) dependence on 

stretch rate κ  for flames with different IR : for all the simulations the external radius was 

maintained at the same distance from the internal radius, 1IR R cm= + . As it can be 

observed, at smaller IR  consumption speed are larger for the same value of stretch rate, 

with the differences increasing as the stretch rate increases.  
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Figure A-10. Consumption rate cs  dependence on stretch rate κ  for tubular counterflow 

flame computations with inner walls of different radii IR  and 1IR R cm= + . The 

0I TR δ = ∞  curve refers to solutions obtained from a PCF computation. 

 

The characteristics of expanding spherical flames are similar to those of expanding 

cylindrical flames. However, for the same flame radius refR  the mean curvature of 

spherical flames ( 2C refK R= ) is two times larger than that of cylindrical flames (

1C refK R= ): this causes ignition transients and nonlinear effects to differ between the 

two configurations. Figure A-11 shows the consumption rate cs  and flame thicknesses 

Tδ  and 2Hδ  for TCF ( 0IR = ), ECF and ESF both ignited by a pocket of burnt gases with 

initial radius 0 0.25i TR δ = . As it can be observed from Figure A-11a, the consumption 

speed cs  of the spherical flame is bounded between the ECF and TCF solutions except at 

high CK , which are inaccessible to ECF and TCF. Figure A-11b and c, instead, shows 

that for low CK  spherical flames tend to be thicker than cylindrical flames. 

 

RI increasing 
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Figure A-11. Consumption rate cs (a), inverse of flame thickness Tδ  (b) and 2Hδ  (c) plotted 

against mean curvature CK  for an expanding cylindrical flame with 0 0.25i TR δ =  (solid 

red line), an expanding spherical flame with 0 0.25i TR δ =  (dashed blue line) and a tubular 

flame with no inner wall (dashed-dotted black line).  
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APPENDIX B 

 

B.1. Sensitivity to the choice of Tref 
 

In this Section we investigate the sensitivity of the results presented in Chapter 3 to the 

particular choice of temperature isosurface refT  used to represent the flame surface 

position.  

Figure B-1 shows the fuel consumption weighted joint PDFs of local mean curvature CK  

with consumption speed cs  (1st row), inverse of flame thickness Tδ  (2nd row), 2Hδ  (3rd 

row) and strain rate SK  (4th row) for the cylindrical and spherical flamelets of case C31; 

different isothermal surfaces refT  are used to define the flame surface: 990refT K=  (left 

column), 1088refT K=  (central column) and 1190refT K=  (right column). From these 

figures it is clear that the peak probability of the joint PDFs falls on top of the model 

laminar flame computations regardless of the particular refT  choice: with increasing refT  

curvatures values CK  tend to be higher while strain rate SK  values tend to be lower, in 

agreement with the model laminar flame computations. Besides, the overall shape of the 

joint PDFs does not appear to be affected by the particular choice of refT , except for the 

c Cs K−  joint PDF. The definition of cs  implicitly depends on CK  through the term refA  

(see Section 3.2) and the decrease in H2 consumption at higher curvatures due to flame 

thickening is counteracted by the decrease in refA . For this reason the consumption speed 

of the most highly curved flamelets agrees better with the model laminar flame 
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calculations for 1190refT K= . Similar considerations are valid for the other cases (A31, 

B31 and D31), which are not shown here.  

Figure B-2 shows the fuel consumption weighted join PDFs of strain rate SK  with 

consumption speed cs  (1st row) and flame thickness Tδ  (2nd row), 2Hδ  (3rd row) for flame 

elements characterized by 0 0.1C TK δ <  for case C31; different isothermal surfaces refT  

are used to define the flame surface: 990refT K=  (left column), 1088refT K=  (central 

column) and 1190refT K=  (right column). As it can be observed, the overall shape of the 

joint PDFs is not substantially modified by the particular refT  choice. However, the 

scatter in the joint PDFs decreases with decreasing refT . This is presumably due to the 

fact that cs , Tδ , 2Hδ  and SK  are less sensitive to curvature effects for 990refT K= , as 

shown in Figure B-1. 

Finally, Figure B-3 and Figure B-4 show mean and standard deviations of data collected 

at leading edge of the turbulent flame brush (see Section 3.5) for cs  (1st row), Tδ  (2nd 

row), 2Hδ  (3rd row) and SK  (4th row) plotted against leading edge mean CK ; different 

isothermal surfaces refT  are used to define the flame surface: 990refT K=  (left column), 

1088refT K=  (central column) and 1190refT K=  (right column). These figures show that 

the 1D laminar simulations computed at the average value of mean curvature reasonably 

follow the enhancement in consumption speed with increasing turbulent intensity 

regardless of the refT  chosen.  
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Figure B-1. Case C31: fuel consumption-weighted joint PDFs of mean curvature CK  and 

burning speed cs  (1st row), flame thickness Tδ  (2nd row), 2Hδ  (3rd row) and strain rate SK  

(4th row) for cylindrical and spherical flame elements ( 1 2 0k k> > ). The PDFs are 

normalized to the peak values. Lines superimposed to the contours refer to results obtained 
from one-dimensional laminar flame computations: dot-dashed lines refer to TCF 
computations while solid lines refer to ECF computations with 0 0.25i TR δ = . Different 

isothermal surfaces refT  are used to define the flame surface: 990refT K=  (left column), 

1088refT K=  (central column) and 1190refT K=  (right column). 
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Figure B-2. Case C31: fuel consumption-weighted joint PDFs of strain rate SK  and 

burning speed cs  (1st row), flame thickness Tδ  (2nd row) and 2Hδ  (3rd row) for flame 

elements whose mean curvature is less than one tenth of the unstretched thermal flame 
thickness (i.e. 0 0.1C TK δ < ). The PDFs are normalized to the peak values. Solid lines refer 

to PCF computations. Different isothermal surfaces refT  are used to define the flame 

surface: 990refT K=  (left column), 1088refT K=  (central column) and 1190refT K=  (right 

column). 
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Figure B-3. Leading edge mean consumption rate cs  (1st row), mean flame thickness Tδ  (2nd 

row), 2Hδ  (3rd row) and mean strain rate SK  (4th row) plotted against leading edge average 

mean curvature CK . Symbols refers to different DNS cases (A31 “●”, B31 “ x”, C31 “■” 

and D31 “▲”). The total length of the error bars is equal to σ  on each side. Thicker solid 
lines refer to ECF computations with 0 4i TR δ=  while thicker dot-dashed lines refer to 

TCF computations. Different isothermal surfaces refT  are used to define the flame surface: 

990refT K=  (left column), 1088refT K=  (central column) and 1190refT K=  (right 

column). 
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Figure B-4. Magnified view of Figure B-3 (4th row) centered on case A31, B31 and C31. 
 

 

B.2. Sensitivity to the definition of leading edge 
 

In this Section we investigate the sensitivity of the results presented in Section 3.5 to the 

definition used to identify the leading edge of the turbulent flame brush. In Section 3.2 a 

progress variable c  at each time instant was defined based on the instantaneous 

consumption rate of H2 and then the leading edge was defined as the region 0 0.05c≤ ≤ . 

Figure B-5 and Figure B-7 display mean and standard deviations of data collected at 

leading edge of the turbulent flame brush (see Section 3.5) for cs  (1st row), Tδ  (2nd row), 

2Hδ  (3rd row) and SK  (4th row) plotted against leading edge mean CK ; different progress 

variable c  intervals are used to identify the leading edge : 0 0.025c≤ ≤  (left column), 

0 0.05c≤ ≤  (central column) and 0 0.1c≤ ≤  (right column). Clearly, there is little 

difference between the three sets of samples, indicating a satisfactory level of statistical-

convergence. As expected, average values of cs , CK , SK , 1 Tδ  and 21 Hδ  tend to 

increase slightly and standard devaitions tend to decrease slightly as the sample size is 

reduced and moved closer to the leading edge (i.e. for 0 0.025c≤ ≤ ). 
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Figure B-5. Leading edge mean consumption rate cs  (1st row), mean flame thickness Tδ  (2nd 

row), 2Hδ  (3rd row) and mean strain rate SK  (4th row) plotted against leading edge average 

mean curvature CK . Symbols refers to different DNS cases (A31 “●”, B31 “ x”, C31 “■” 

and D31 “▲”). The total length of the error bars is equal to σ  on each side. Thicker solid 
lines refer to ECF computations with 0 4i TR δ=  while thicker dot-dashed lines refer to 

TCF computations. Different averaged progress variable intervals are used to define the 
leading edge of the turbulent flame brush: 0 0.025c≤ ≤  (left column), 0 0.05c≤ ≤  
(central column) and 0 0.1c≤ ≤  (right column). 
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Figure B-6. Magnified view of Figure B-5 (4th row) centered on case A31, B31 and C31. 
 

 

B.3. Joint PDFs at the leading edge 
 

To extend the investigation of statistics collected at the leading edge of the flame brush 

presented in Section 3.5, Figure B-7 shows area weighted joint PDFs of local mean 

curvature CK  with consumption speed cs  (1st row), inverse of flame thickness Tδ  (2nd 

row), 2Hδ  (3rd row) and strain rate SK  (4th row) for case A31 (1st column), B31 (2nd 

column), C31 (3rd column) and D31 (4th column). The symbols superimposed to the 

contours of these joint PDFs refer to leading edge area-weighted means of cs , Tδ  , 2Hδ  

and SK  plotted against leading edge area-weighted mean CK  while the total length of the 

error bars is equal to σ  on each side. These figures show that mean and standard 

deviations are sufficient to capture the increasing trend of cs , CK  and SK  and decrease 

of Tδ   and 2Hδ  with increasing turbulence. The peak of these joint PDFs are close to the 

mean values, indicating that the joint PDFs are not too asymmetric, except for the 

C SK K−  joint PDF of case D31 for which the joint pdf is highly asymmetric. Sign and 

strength of the correlations between CK  and cs , Tδ  , 2Hδ  and SK  is consistent with the 

discussions presented in Chapter 3 for fuel consumption weighted joint PDFs. Similar 
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considerations are applicable when only cylindrical and spherical elements are 

considered, as shown in Figure B-8. 

 

 

Figure B-7. Area weighted joint PDFs of mean curvature CK  and burning speed cs  (1st 

row), flame thickness Tδ  (2nd row), 2Hδ  (3rd row) and strain rate SK  (4th row) at the leading 

edge for case A31 (1st column), B31 (2nd column), C31 (3rd column) and D31 (4th column). 
Symbols refer to leading edge area-weighted means of cs , Tδ  , 2Hδ  and SK  plotted against 

leading edge area-weighted mean CK . The total length of the error bars is equal to σ  on 

each side. Thicker black solid lines refer to ECF computations with 0 4i TR δ=  while 

thicker black dot-dashed lines refer to TCF computations. 
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Figure B-8. Same as in Figure B-7, but only considering cylindrical and spherical flame 
elements ( 1 2 0k k> > ) at the leading edge. 
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APPENDIX C 

 

This Appendix describes the analytical solution of the model problem of Section 4.3 

[160]. This solution is obtained through an averaging procedure (homogenization) for the 

G-equation applicable when the velocity flow field in which the flame is moving is 

composed by spatially and temporally separated scales. Let us assume that u
�

 in Eq. (4.3) 

is an incompressible velocity field with two separated spatial scales ( ) ( )u v x v xε= +
�� � � �

, 

where ε  is a small parameter representing the ratio of the two length scales of the 

velocity field: in this context it is natural to seek a solution G  in the form of an 

asymptotic multiscale expansion 

 

 ( ) ( )0 1, , , ...G G x t G x x tε ε= + +� � �
 (C.1) 

 

Substituting Eq. (C.1) into Eq. (4.3) at the leading order we obtain 

 

 ( ) ( )( ) ( )
0

0 1 0 1 0x y L x y

G
v x v y G G s G G

t

∂ + + ⋅ ∇ +∇ − ∇ + ∇ =
∂

� � � �

� � � �
 (C.2) 

 

where y x ε=� �
. The objective of the homogenization procedure is to describe the motion 

of the larger scale 0G  in terms of the smaller scale 1G , namely, to obtain the effective 

propagation speed ( ),Ts P x
� �

 of the large scale for a given position x
�

 and direction of 

propagation 0
xP G= −∇ �

�
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 ( )
0

,T

G
s P x

t

∂ =
∂

� �
 (C.3) 

where 

 

 ( ) ( ) ( )( ) ( )1 1,T y L ys P x v x v y P G s P G= − + ⋅ − + ∇ + − + ∇� �

� � ��� � � �
 (C.4) 

 

Eq. (C.4) is a nonlinear eigenvalue problem, referred to as the flame “cell problem” 

[204]. If the larger scale is a constant ( )v x const=
� �

 (i.e., its period is infinite) the ansatz 

(C.1) is an exact solution and Ts  obtained by homogenization procedure is the same as 

that obtained by simply averaging the Hamiltonian as in equation (4.6). In this case the 

discussion on the multiscale expansion has only a motivational purpose.  

In our model problem, we considered a two scale flow with ( ) ( ),0v x V const= =
� �

 and 

( ) ( )0, ( )v x f xε =� �
, where ( )f x  is periodic of period L and zero mean; our choice of 

( ),G y x tξ= −  in Eq. (4.4) is equivalent to imposing 0G y=  and ( )1 ,G x tξ= −  with the 

mean direction of propagation now being (0, 1)P= −
�

. With these choices Eq. (C.4) 

reduces to: 

 

 ( )21T Ls s g Vg f x= + + −  (C.5) 

 

The eigenfunction g of this nonlinear eigenvalue problem has to satisfy a periodicity 

condition 
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0

1
0

L

g dx g
L

= =∫  (C.6) 

 

This average slope g  can also be interpreted as a conserved quantity for the conservation 

equation (4.5), since its dynamics does not modify g . For Hamiltonians of the 

mechanical type, ( ) ( )2, , 2 ,H x t g g f x t= + , this quantity represents an average 

momentum of the system [169]. Equations (C.5)-(C.6) can be solved using the procedure 

presented in Table 3. This is a simplified version of the procedure in Ref. [160] which 

includes a general dependence on mean direction of propagation (sin ,cos )P θ θ=
�

 and 

the constant large scale velocity ( ) ( )cos ,sinv x V θ θ=
� �

const= . This simplified problem 

was also originally solved by Phillips [205] who utilizes the term “leading points”, which 

correspond to our “Aubry-Mather leading points” in Chapter 4.  

Once Ts  has been calculated, the flame shape can be calculated solving Eq.(C.5) for g: 

  

 
( )( ) ( )( )22 2

2 2

T L L T

L

V s f x s V s s f x
g

V s±

+ ± − + +
=

−
 (C.7) 

 

Eq. (C.7) has two branches. For case 1 and case 2b in Table 3 the only physical solution 

is g− , since it is the only one that satisfies the periodicity condition (C.6). For case 2a in 

Table 3, the physical solution g jumps between the two branches. These jumps are at 

points where ( )f x  reaches an absolute maximum (“transition points”) and at points 

where g is discontinuous (“shocks”). The only rules that regulate these jumps are the 
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entropy condition ( ) ( )0 0g x g x+ −≤  
across a shock at x0 and the respect of the periodicity 

condition (C.6). For the same value of Ts  there can be more than one entropy solution g. 

 

Table 3. Procedure used to calculate the front displacement speed, Ts , for the model 

problem considered in Section 4.3.
 

Define ( )( )* 2 2 maxT Ls s V f x= − + −  and the function 

( )
( )2 2 2

1
2 2

L L

L

Vz s z V s
F z

V s
−

− + −
=

−
 

1. If LV s>  then Ts  solves the nonlinear algebraic equation 

( )( )1

0
0

L

TF s f x dx− + =∫  

2. If LV s<   

a. if ( )( )1 *

0
0

L

TF s f x dx− + <∫  then *
T Ts s= ; 

b. else Ts  solves the same nonlinear algebraic equation as in case 1. 

3. If LV s=  the solution yields points where g =∞  (i.e., a points where the flame is 

parallel to the y-axis) and is not well described by equation (2). The solution of 

this case can be obtained as a limit from above of case 1 or from below of case 2 

 
 

Finally, as an example we show how the large time front speed Ts  for a flame 

propagating in a unidirectional periodic velocity field ( ) ( )yu x f x= , 0xu =  can be 

obtained through a simple geometric reasoning, as mentioned in Section 2.4.2. For the 

flow field under consideration Eq. (C.5) becomes: 
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 ( )21T Ls s g f x= + −  (C.8) 

 

When the flame front has reached a steady state, at points where ( )f x  has an absolute 

minimum the flame slope g is zero, by geometric necessity.  

Then, Eq. (C.8) can be readily solved, obtaining 

 

 ( )( )maxT Ls s f x= + −  (C.9) 

 

This result is independent of the particular details of the shear flow profile ( )f x  and is a 

particular solution of case 2a in Table 3. 
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