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SUMMARY 

 

 

The single crystal superalloy PWA 1484 is used in hot section turbine blade 

applications due to its performance at high temperatures. In practice, the turbine blades 

are often coated in order to protect them from environmental degradation. However, 

under repeated cyclic loading, the coating may serve as a site for crack initiation in the 

blades. Fundamental out-of-phase (OP) thermo-mechanical fatigue (TMF) studies, 

primarily using uncoated solid cylindrical test samples, have previously examined both 

crack initiation and propagation in PWA 1484. In this work, mechanical strain-controlled 

OP TMF tests were performed on coated and uncoated specimens of a hollow cylindrical 

geometry in order to study the effects of both geometry and coating on the TMF crack 

initiation behavior. To accomplish this, it was necessary to create and analyze a modified 

gripping mechanism due to the unique geometry of the test samples, and as predicted by 

hand calculations and finite element analysis, these modifications proved to be 

successful. The TMF test results for the uncoated material were compared to those from 

previous studies under the same testing conditions, and it was found that the differences 

in geometry had a minimal impact on fatigue life. Comparisons of the results for the 

coated and uncoated material suggested that the coating may have offered a slight 

improvement in life, although insufficient results were available to determine whether 

these differences were statistically significant. Damage mechanisms resulting from 

different test conditions were also observed through microscopy on failed specimens. 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

1.1: Motivation 

Components of hot section gas turbine engines constantly undergo cycling of 

temperatures and mechanical loads. These cycles are caused by engine start-up, shut-

down, vibrations, or changes in engine load demands, with additional loads induced by 

thermal gradients [1]. The concurrent and repeated thermal and mechanical cycling 

leading to material degradation in such applications is referred to as thermo-mechanical 

fatigue (TMF). 

As engine performance has been increased, so too have temperatures in the 

turbines and therefore the requirements of the high temperature materials used for the 

components. Through the years, nickel-based superalloys have become the materials of 

choice for turbine discs and blades due to their superior ability to maintain their 

mechanical properties at temperatures near their melting points. Improvements in 

manufacturing methods have led to the production of conventionally cast, directionally 

solidified and then single-crystal superalloys, each leading to improved material 

performance [1]. However, directionally solidified and single-crystal materials exhibit 

extreme anisotropy [2]. Since the turbine blades experience the highest temperatures, 

single crystals are now used for these applications because the elimination of grain 

boundaries greatly reduced creep and environmental attack. 

In practice, some type of coating is usually applied to the surface of turbine blades 

before they are put to use in gas turbine engines to protect them from environmental 
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attack. Without the coating, the alloy would not be able to survive the temperature 

demand placed on them by the current engine technology. However, the coatings are 

brittle and cracking may occur easily, and the cracks may propagate into the base metal 

[3]. Although many TMF tests have shown uncoated specimens to have a longer life than 

coated specimens under the same conditions, the coating is usually necessary to protect 

the alloys during operating conditions [4, 5]. 

Fundamental studies already have been conducted on the material behavior of 

PWA 1484, investigating low- and high-cycle fatigue, TMF, creep, and oxidation, as well 

as the microstructural effects of crystal orientation and dendrite spacing [2, 6-13]. In 

addition, a model is needed to accurately predict the service life of turbine components 

made of PWA 1484. Such a model would not only lead to increased safety but also 

reduce scheduled maintenance costs. Previous TMF testing was performed in the 

Mechanical Properties Research Laboratory (MPRL) at the Georgia Institute of 

Technology (Georgia Tech), and extensive work has been performed to create life 

prediction models based the work of Amaro and colleagues [14-19]. However, the 

validity of this model has been questioned due to life discrepancies between testing 

performed at Georgia Tech and Pratt & Whitney. There were several differences in the 

conditions of the tests, though; not only were the specimen geometries different, but so 

were the temperatures, cycle time, and waveform used for the testing. A summary of the 

differences in the TMF cycles can be found in Table 1.1. The reasons for the life 

discrepancies must be explored in order to validate the life model that has been created, 

starting with the specimen geometry. 
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Table 1.1: Georgia Tech and Pratt & Whitney TMF Cycle Comparison 

 Georgia Tech Pratt & Whitney 

Minimum Temperature (C) 550 427 

Maximum Temperature (C) 1050 1038 

Cycle Time (sec) 180 60 

Waveform ramp sine 

 

 

1.2: Research Objectives 

The primary objectives of this research were to determine the differences in TMF 

test results that may be caused by specimen geometry and to explore the influence of a 

coating on the life and damage mechanisms. It was also desired to show that test results 

obtained in the MPRL at Georgia Tech could be reproduced with different specimen 

geometries. To accomplish this, TMF tests under mechanical strain control were 

performed on hollow specimens of PWA 1484 of the geometry used at Pratt & Whitney 

with and without a coating. First, a method of gripping the unique specimens in the test 

frame was formulated, analyzed, and produced to allow testing to proceed without 

damaging the specimens or affecting the results. Then, the actual TMF tests were 

performed, duplicating the test conditions previously used on solid cylindrical specimens 

at Georgia Tech. After analysis of the stress history results, the crack initiation lives of 

the hollow specimens were compared to those from the solid specimens as well as Pratt 

& Whitney data. Any trends between the two geometries were identified that may explain 

the discrepancies in results between Georgia Tech and Pratt & Whitney. Finally, with the 

aid of a scanning electron microscope, the differences in crack initiation lives and 

damage mechanisms between the coated and uncoated specimens were compared. 
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1.3: Thesis Overview 

The second chapter of this thesis provides relevant background information and a 

literature review of thermo-mechanical fatigue, superalloys, and coatings. Information is 

presented about the types of superalloys, their microstructures and compositions, material 

properties, their performance and behavior under different aspects of TMF loading, and 

the effects of coatings. An overview of the influence of several TMF testing variables is 

also included. The third chapter presents the experimental methods, including the design 

and modification of the test specimens and gripping method, the testing equipment and 

procedure, and the governing standard employed to ensure test validity. The fourth 

chapter includes the results of hand calculations and finite element analysis influencing 

the design process of the modified gripping mechanism to ensure its success. The results 

of the TMF tests on the hollow specimens are also presented here, including load drop 

data as well as stress-strain histories. A discussion of the results, comparisons to previous 

Georgia Tech and Pratt & Whitney data, and possible reasons for the discrepancies are 

provided. The fifth chapter is composed of the conclusions from this research and 

recommendations for future work. 
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CHAPTER 2 

BACKGROUND 

 

2.1: Thermo-Mechanical Fatigue 

Fatigue is the damage caused to a material or structure due to the application of 

cyclic loading. Fatigue damage occurs in three stages: crack initiation or nucleation, 

crack propagation, and fracture [20]. An example of fatigue loading under force control 

can be found in Figure 2.1. In this case, m refers to the mean stress, and a refers to the 

alternating stress or stress amplitude, while max and min are the maximum and minimum 

cyclic stresses, respectively. The R-ratio (or stress ratio, in this case) is defined as the 

ratio of the minimum applied stress to the maximum applied stress. Fully-reversed 

fatigue, meaning that min = -max, corresponds to R = -1. 

 

 

Figure 2.1: Plot Presenting the Terminology for Cyclic Loading [20] 
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In real world applications, fatigue initiation always occurs at sites of stress 

concentration, including casting pores or machining marks [1]. At high load levels that 

would result in low-cycle fatigue (LCF), fatigue is best modeled using a strain-life 

approach (with tests performed under strain control) as opposed to stress-life. Strain-life 

methods simulate fatigue at a notch tip in a component, and the results are considered 

fatigue initiation life estimates [20]. Basquin [21] discovered that stress-life data could be 

plotted linearly in log-log coordinates. Later and independently, Coffin [22] and Manson 

[23] each found that plastic strain vs. fatigue life is also linear on a log-log scale. Plastic 

strain is very important since it is the driver of damage and the deformation mode 

experienced at crack tips and sharp notches. 

During thermo-mechanical fatigue (TMF), materials experience changing 

mechanical loads and temperatures simultaneously. Therefore, the total strain induced in 

the material can be separated into two distinct parts. The thermal strain, εth, results from a 

temperature change and depends on the material’s coefficient of thermal expansion [24]. 

The mechanical strain, εmech, results purely from mechanical loading. TMF tests are most 

commonly conducted under mechanical strain control; for this situation, the R-ratio (or 

mechanical strain ratio, in this case) is defined below in Equation 2.1. 

 
 
 

maxmech

minmech




R  (2.1) 

The phase angle  refers to the phase shift between the thermal and mechanical 

cycles during TMF. Two specific cases are in-phase (IP) and out-of-phase (OP) TMF. 

Figure 2.2 shows an example of an IP TMF waveform, in which  = 0°, and the 

maximum mechanical load occurs at the maximum temperature and vice versa. An 
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example of an OP TMF waveform is shown in Figure 2.3, where  = 180°. In this case, 

the minimum mechanical load occurs at the maximum temperature and vice versa. 

 

 

Figure 2.2: In-Phase Thermal-Mechanical Cycling [25] 

 

 

Figure 2.3: Out-of-Phase Thermal-Mechanical Cycling [25] 
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In addition to these waveforms, bithermal fatigue (BiF) tests are also occasionally 

performed [15, 26-28]. In these tests, all of the mechanical loading only occurs when the 

temperature is constant at either the minimum or maximum. Therefore, the interactions 

that may be introduced from concurrently changing load and temperature are eliminated. 

These tests were designed to bridge the gap between isothermal fatigue and the common 

TMF waveform while isolating the damage mechanisms that occur [27]. An example of 

an OP BiF waveform is shown in Figure 2.4. 

 

 

Figure 2.4: Out-of-Phase Bithermal Fatigue Waveform [15] 
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2.2: Superalloys 

2.2.1: Introduction and History 

High-temperature materials are used for applications such as turbines, rockets, 

and heat exchangers due to their ability to maintain their properties at elevated 

temperatures. This research focuses on those used in gas turbine engines. Two types of 

turbine-powered jet engines are displayed below. Figure 2.5 shows a turbojet engine. Air 

is compressed after the inlet, and then fuel is mixed with the air and combusted. The hot 

air passes through the turbine (which powers the compressor) and a nozzle before exiting 

as exhaust. A turbofan engine, as shown in Figure 2.6, operates in a similar manner, 

except a fan is included in the front that is also powered by the turbine. The fan 

accelerates a portion of the air that bypasses the gas generator portion of the engine 

before being exhausted by a nozzle. Regardless of the type of engine, the materials used 

for the turbine components must operate at high temperatures and experience both 

mechanical and thermal cyclic loading, resulting in TMF damage. 

 

 

Figure 2.5: Schematic of a Turbojet Engine [29] 
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Figure 2.6: Schematic of a Turbofan Engine [29] 

 

To this end, there are several desirable characteristics of high temperature 

materials [1]. First, they should be able to withstand loading at temperatures close to their 

melting point. A high temperature material is one that can operate at greater than 60% of 

its melting point (in absolute units). In addition, the material should have substantial 

resistance to long-term mechanical degradation. Resistance to creep deformation as well 

as static mechanical properties must be maintained over time. Finally, high-temperature 

materials must tolerate severe operating environments that have the possibility of 

resulting in corrosion, oxidation, or other forms of surface degradation. 

Especially for operating temperatures over 800°C, as in gas turbines for jet 

propulsion, nickel-base superalloys have become an important material for their ability to 

fulfill all three of the above requirements. Nickel was chosen as the base element for 

these alloys for three main reasons. First, it has a stable face-centered cubic (FCC) lattice 

structure that does not undergo any phase changes between room temperature and its 
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melting point. An example of the FCC lattice structure is shown in Figure 2.7. Nickel is 

also a material with high ductility and toughness, so it is naturally resistant to fatigue and 

fracture. Finally, it has good creep resistance due to its low diffusion rate. Most of the 

chosen alloying elements were transition metals, meaning they are within the “d block” 

of the periodic table [30]. 

 

 

Figure 2.7: Unit Cell of the FCC Crystal Structure [1] 

 

The performance of gas turbine engines can be greatly improved as the turbine 

entry temperature (TET) can be increased. As a result, the TET has become a central 

aspect of the design [31]. Figure 2.8 shows how the take-off TET of Rolls-Royce civil 

aeroengines has evolved over time, along with the material capabilities. The TETs for 

different families of engines are displayed as an asterisks. For civil aircraft, the TET 

varies during the flight, but it is greatest during take-off. Since the first engine was 

produced in 1940, the TET has been improved by 700°C [32]. This is due to the 

increased material capabilities, along with the cooling of turbine blades and the 

application of coatings. 
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Figure 2.8: Evolution of the Turbine Entry Temperature Capability of Rolls-Royce’s 

Aeroengines [32] 

 

As the temperatures of gas turbine engines has increased over the years, so too 

has the capabilities of the superalloys comprising their components. Figure 2.9 shows 

how the creep performance of superalloys has evolved since the 1940s. The first turbine 

blades  produced were wrought superalloys, and Nimonic alloys enabled the blade 

performance to be drastically improved [33]. The development of improved casing 

methods also led to better performance, followed by the introduction of directional 

solidification and then the production of monocrystalline, or single-crystal, superalloys. 

Although the performance of the superalloys of each production method gradually 

increased over time, the largest jumps in performance occurred with the introduction of 

an improved processing technique. 
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Figure 2.9: Evolution of the High-Temperature Capability of Superalloys [1] 

 

Figure 2.10 depicts turbine blades in polycrystalline, directionally solidified, and 

single crystal forms. Conventionally cast superalloys would have the equiaxed crystal 

structure shown in Figure 2.10(a). With directional solidification, as shown in Figure 

2.10(b), columnar structures were produced with the transverse grain boundaries mostly 

removed. Grain boundaries were eventually completely removed to produce single-

crystal blades, as shown in Figure 2.10(c). With the monocrystalline material, grain-

boundary strengthening elements such as boron and carbon were no longer necessary, so 

the blades could undergo better heat treatments, and the fatigue live was also improved. 
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Figure 2.10: Turbine Blades in (a) Polycrystalline, (b) Directionally Solidified, and (c) 

Single Crystal Forms [34] 

 

2.2.2: Microstructure and Composition 

2.2.2.1: Microstructure 

The microstructure of superalloys typically consists of three different phases. The 

gamma phase (γ) exhibits the FCC structure and forms a continuous matrix. This phase 

contains significant concentrations of cobalt, chromium, molybdenum, ruthenium, and 

rhenium. A gamma prime precipitate phase (γ’) is coherent within the γ-matrix and 

contains elements like aluminum, titanium, and tantalum. In addition, superalloys contain 

carbides and borides, which generally reside on the γ-grain boundaries [35]. 

Figure 2.11(a) shows a section through the phase diagram of a Ni-Cr-Al alloy at 

75% Ni (by atomic percentage). Experiments were performed by Beardmore et al. [36] 

using the alloys of varying composition represented by the dots on the phase diagram. 
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The resulting yield stress as a function of temperature of these alloys is shown in Figure 

2.11(b). It was found that the yield stress of a two-phase γ + γ’ alloy increases to a peak 

at about 800°C. Above this temperature, the yield stress obeys a rule of mixtures so that it 

corresponds to the weighted average of the values for each phase. However, at low 

temperatures, the actual yield strength of the two-phase alloy is much higher that what 

would be predicted by the rule of mixtures. Similar work by Piearcey et al. [37] with the 

directionally solidified alloy Mar-M200 produced similar results. A comparison to the 

behavior of a cube-oriented Ni3Al alloy confirmed that the behavior of the alloy at and 

beyond the peak stress is driven by the strength of the γ’ particles. 

 

 

Figure 2.11: (a) Phase Diagram of a Ni-Cr-Al alloy at 75 at% Ni, and (b) Variation in 

Yield Stress with Temperature for the Alloys Produced [36] 
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Davies and Stoloff [38] explored this behavior at temperatures below the peak 

yield stress by examining Ni-Al alloys. The yield stress of several alloys with different 

compositions was determined at temperatures between -200°C and 800°C. The results are 

displayed in Figure 2.12. The Ni-8%Al alloy did not contain enough aluminum for γ’ 

precipitation, so there were only minimal strengthening effects For the Ni-14%Al alloys, 

the heat treatment was found to have a significant effect on the strength due to its effects 

on the fraction, size, and distribution of the precipitates. The 700°C heat treatment 

resulted in large enough particles that were not spaced too far apart, resulting in a fairly 

constant yield stress across the range of temperatures because the deformation mode was 

microscopic deformation of the γ’ particles. 

 

 

Figure 2.12: Yield Stress of Several Ni-Al Alloys as a Function of Composition and 

Temperature [38] 
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An image of the microstructure of PWA 1484 can be found in Figure 2.13. The 

rectangular Ni3Al L12 γ’ particles within the γ-phase matrix can clearly be distinguished, 

with a γ’ volume fraction of approximately 60%. As depicted, the optimum 

microstructure consists of many fine γ’ particles separated by only very thin layers of γ 

matrix. 

 

 

Figure 2.13: Image of the Gamma/Gamma Prime Microstructure of the Single-Crystal 

Superalloy PWA 1484 [19] 

 

The material undergoes a three-step heat treatment process [39]. First, there is a 

1316°C for 4 hours solution heat treatment to dissolve the coarse γ’ particles resulting 

from the casting process into a rectangular array of finer cuboidal particles. Next, a 

1079°C for 4 hour cycle is used to bond a coating to the surface of the alloy and create an 

optimal size and distribution of γ’ particles. Finally, a 704°C for 24 hour age is used to 

enhance the yield strength at intermediate temperatures by producing ultra fine γ’ 

between the larger particles. The large rectangular particles are clearly visible in the 
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Figure 2.14, and the fine particles (indicated by an “A”) can be seen in some locations of 

the matrix. The cuboidal γ’ particles measure about 0.35 to 0.6 μm, while the spherical 

particles are about 30 nm in size. 

 

 

Figure 2.14: Microstructure of PWA 1484 after Heat Treatment [39] 

 

The solidification process leads to a dendritic structure, as shown in Figure 2.15. 

A single-crystal nickel-based superalloy with 6.3 wt% Al, 6 wt% Cr, and additional Co, 

Ti, Mo, W, and Ta is shown. Both the dendritic and interdendritic regions contain 

uniformly distributed γ’ precipitates within the γ phase matrix, but the compositions are 

different. In the dendritic regions, the content of Al, Ti and Ti are typically lower, while 

W, Mo, and Cr are more abundant [40]. The dendrites form along the direction of casting, 

with the secondary arms (appearing as plus sign shapes) occurring along the <001> 

family of directions [41]. 
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Figure 2.15: Dendritic Solidification Structure of a Single-Crystal Superalloy [40] 

 

For comparison and completeness of this discussion, Figure 2.16 shows a 

schematic of the microstructure of a polycrystalline superalloy, in which the γ’ 

distribution is much more complex. Secondary intergranular γ’ particles are also present, 

along with tertiary γ’ particles that reside within the γ grains. Currently, single-crystal 

materials are usually used for turbine blades. However, polycrystalline materials are still 

commonly used as the turbine disks where the higher temperatures are not experienced 

due to their isotropic properties, lower production costs, and easier machining [42]. 
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Figure 2.16: Schematic of the Microstructure of a Turbine Disc Alloy [43] 

 

2.2.2.2: Turbine Blade Applications 

The improvements in performance of single-crystal superalloys for turbine blade 

applications have come about due to four primary design guidelines that have been 

developed [1]. First, the elements should be proportioned such that the γ’ volume fraction 

is about 70%. Murakumo et al. [44] performed creep experiments on the alloys TMS-75 

and TMS-82+, which have identical composition for the γ’ precipitates, and as shown in 
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Figure 2.17, this is where the optimum creep behavior is achieved. Creep dislocations do 

not penetrate γ’ precipitates, but there is also a strengthening effect against creep 

deformation from the γ/γ’ interfaces. 

 

 

Figure 2.17: Variation of Creep Rupture Lives with Gamma Prime Fraction of Single-

Crystal Superalloys [44] 

 

Second, the composition of the alloy should be chosen so that the γ/γ’ lattice 

misfit is small. In this case, the interfacial energy between the matrix and precipitates is 

minimized, and γ’ coarsening is restricted. The γ’ coarsening phenomenon will be 

discussed later in section 2.3.2. 

Third, the concentrations of creep-strengthening elements (especially Re, W, Ta, 

Mo, and Ru) should be significant but not large enough to promote the precipitation of 
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topologically close-packed (TCP) phases. The best creep strengtheners are the elements 

that diffuse most slowly in nickel; in ascending order of effectiveness, they are Co, Cr, 

Ta, W, and Re. However, if these elements are too abundant, TCP phases that are 

detrimental to the mechanical properties of the alloy are created. Figure 2.18 shows an 

example of two TCP phases (σ and μ) that were created in the experimental second-

generation superalloy RR2071 after aging at 900°C for 500 hours. 

 

 

Figure 2.18: Extensive Precipitation of TCP Phases in RR2071 Aged at 900°C for 500 

Hours [1] 

 

Fourth, the composition of the superalloy should be chosen to avoid the surface 

degradation from exposure to hot working gases. Oxidation attack reduces the material 

thickness and could also lead to mechanical fatigue failure. For example, Pratt & 

Whitney successfully increased oxidation resistance when transitioning from the first-
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generation superalloy PWA 1480 to PWA 1484, as shown by Cetel and Duhl [39]. The 

increase in Al content increased the tendency for aluminum oxide formation, while the 

decrease in Ti content decreased the rate of alumina formation. Rare-earth additions (Hf, 

La, and Y) also bind with sulfur impurities present in the alloy so that the sulfur does not 

separate the protective oxide scale from the metal surface. The resulting reduction in 

metal loss is depicted in Figure 2.19. 

 

 

Figure 2.19: Uncoated Oxidation Resistance of PWA 1480 and PWA 1484 [39] 

 

The evolution of the chemical composition of superalloys can be seen from Table 

2.1 through Table 2.4, which display the composition of select first-, second-, third-, and 

fourth-generation superalloys. Over the years, as more of the four guidelines mentioned 

above were developed and discovered, several trends became apparent in the 

compositions of the newly developed superalloys. The first-generation single-crystal 

superalloys contain noticeable amounts of γ’ hardening elements Al, Ti, and Ta, and the 
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grain-boundary-strengthening elements C and B from directionally solidified alloys are 

no longer necessary. The characteristic addition to second-generation alloys was 3 wt% 

Re; this amount was increased to about 6 wt% for third-generation alloys. Ruthenium was 

also added to create fourth-generation alloys. Overall and most notably, in the production 

of the newer superalloys, there have been significant additions of Re and reductions of Ti 

and Mo. The experimental aspect of this research focuses on the second-generation 

superalloy PWA 1484. It contains Cr along with excess Al that is not used to form the γ’ 

precipitates for oxidation resistance. Several other elements are included for solid 

solution strengthening, increasing the γ’ phase strength, and to control the mismatch 

between the γ matrix and γ’ precipitates to ensure that the precipitates are coherent with 

the matrix. 

 

Table 2.1: Chemical Compositions (Weight %) of Selected First-Generation Single-

Crystal Superalloys [1] 

 

 

Table 2.2: Chemical Compositions (Weight %) of Selected Second-Generation Single-

Crystal Superalloys [1] 
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Table 2.3: Chemical Compositions (Weight %) of Selected Third-Generation Single-

Crystal Superalloys [1] 

 

 

Table 2.4: Chemical Compositions (Weight %) of Selected Fourth-Generation Single-

Crystal Superalloys [1] 

 

 

2.2.2.3: Turbine Disc Applications 

For completeness of this discussion, polycrystalline superalloys used for turbine 

discs will also be mentioned here. Although the operating temperatures of turbine discs 

are much lower than those for the blades, the induced stresses are substantially higher. 

Therefore, there are four primary requirements for the properties of turbine disc alloys 

[1]. First, they must have a high yield stress and tensile strength to prevent deformation 

or fracture. Second, they should have high ductility and fracture toughness for damage 

tolerance. Next, they should resist fatigue crack initiation, and finally, they should have 

low fatigue crack propagation rates. As this research deals with PWA 1484, a single-

crystal material used for turbine blades, the detailed guidelines for turbine disc materials 

will not be discussed here. The chemical composition of several superalloys used for gas 

turbine engine discs is given in Table 2.5. These alloys can either be produced by ingot 

metallurgy, where the material is produced by vacuum induction melting and then 
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thermally-mechanically worked [45], or through powder metallurgy. The choice of 

production method is dictated by the chemistry of the alloy [46]. 

 

Table 2.5: Compositions (Weight %) of Common Turbine Disc Alloys [47] 

 

 

2.3: Mechanical Properties of Single-Crystal Superalloys 

2.3.1: Temperature Dependence of Strength 

Figure 2.20 displays the yield stress as a function of temperature for several 

single-crystal superalloys along the <001> direction (the crystal orientation with the 

largest strength). For most other alloy systems, the yield stress greatly decreases with 

increasing temperature. In contrast, the yield stress for these nickel-based superalloys 

actually increases with temperature up to about 800°C, but then it begins to decrease 

quickly, and the material becomes considerably weaker near 1200°C. 

This anomalous yielding behavior is due to the γ’ phase. At lower temperatures, 

any decrease in strength of the γ matrix is counteracted by the strengthening of the 

precipitates [48]. As the temperature increases, cross-slip from octahedral planes to cubic 

planes within the γ’ particles is enhanced, which resists deformation and hardens the 
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particles. However, at higher temperatures, coarsening of the particles allows increased 

Orowan looping, and the γ’ precipitates also may begin dissolving. As a result, the yield 

stress peaks when the effects of these deformation mechanisms are balanced. 

 

 

Figure 2.20: Variation of Yield Stress with Temperature for Several Single-Crystal 

Superalloys [1] 

 

The temperature-dependent tensile properties of PWA 1484 determined by Cetel 

and Duhl [39] are shown in Figure 2.21. The yield strength as well as tensile ductility are 

displayed. At room temperature, PWA 1484 has a yield strength of about 960 MPa, 

increasing to almost 1000 MPa near 750°C. Similar to the other single crystal 

superalloys, the strength begins to decrease drastically with increasing temperature after 

the peak strength is reached. 
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Figure 2.21: Tensile Properties of PWA 1484 as a Function of Temperature [39] 

 

2.3.2: Behavior in Creep 

Creep deformation, or the time-dependent inelastic deformation of a material at a 

stress well below yield, is of great interest when considering superalloys held at 

temperature within a gas turbine engine. Data has shown that the mechanism of creep 

deformation is sensitive to the temperature and stress, resulting in several creep regimes 

with distinct modes of microstructural degradation [49]. Figure 2.22 shows creep data for 

the single-crystal superalloy CMSX-4 in the <001> direction at three different 

combinations of temperature and stress. In each case, plots of creep strain vs. time and 
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creep strain rate vs. creep strain are provided. Primary creep deformation occurs at lower 

temperatures with sufficiently high stresses, as shown in Figure 2.22(a), where the strain 

rate first increases and then decreases with increasing creep strain. The amount of 

primary creep increases with the applied stress, and significant primary creep only occurs 

above a threshold of about 500 MPa. Primary creep results in inhomogeneity of slip, so 

initially cylindrical creep specimens can become elliptical due to the considerable creep 

anisotropy in single-crystal superalloys [50]. After primary creep, secondary creep may 

occur, where the creep strain rate is essentially constant. The secondary creep rate is 

proportional to the amount of primary creep strain [51]. 

Tertiary creep, which is observed in Figure 2.22(b), occurs in all known single-

crystal superalloys at intermediate levels of temperature and stress [1]. In this regime, the 

creep strain rate increases monotonically with the creep strain rate, and there is no period 

of steady-state creep as is observed in polycrystalline superalloys. The γ’ particles remain 

intact, and the dislocation motion is restricted to the γ channels. 

The rafting regime occurs at temperatures above about 1050°C, as shown in 

Figure 2.22(c). There is a creep-hardening effect where the creep strain stays essentially 

constant before it drastically increases. The γ/γ’ microstructure degrades quickly due to 

the high temperatures, causing equilibrium interfacial dislocation networks to form at the 

interfaces [52]. In addition, the γ’ particles undergo directional coarsening, or rafting, 

causing them to coalesce [53-55]. 
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Figure 2.22: Constant Load Creep Data for CMSX-4 at Different Temperatures and 

Stresses [51] 
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An example of rafting can be found in Figure 2.23, which shows the γ/γ’ 

microstructure of CMSX-4 after being deformed at 1150°C and 100 MPa for 10 hours. 

The tensile loading direction is vertical in the plane of the picture. The broad faces of the 

rafts are perpendicular to the axis of loading due to the negative lattice misfit. 

 

 

Figure 2.23: Rafted Microstructure of CMSX-4 After Deforming at 1050°C and 100 MPa 

for 10 Hours [53] 

 

Figure 2.24 displays a comparison of the creep strength of PWA 1480 and PWA 

1484 by Cetel and Duhl [39]. The amount of stress required to obtain 1% creep strain in 

300 hours was measured. It can be seen that for a stress of 207 MPa, the improvements in 

the composition for PWA 1484 allowed a temperature increase of 39°C to result in the 

same amount of creep. This also corresponded to a fourfold life advantage at the same 

stress level and temperature. This major breakthrough could result in significant weight 

reduction for the overall structure. 
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Figure 2.24: Creep Strength of PWA 1480 and PWA 1484 [39] 

 

2.3.3: Behavior in Fatigue 

For superalloys, as with other metals, fatigue damage usually occurs in the form 

of localized slip along certain lattice planes [56]. At temperatures around 700°C with 

high stresses, persistent slip bands can be formed and shear the γ’ particles [57]. At 

higher temperatures and low stresses, dislocation movement is limited to the γ matrix 

channels, so deformation occurs in the {111} lattice planes with the highest stresses, and 

crack initiation occurs at surface pits or cracks in the oxide layer [58]. 

Low-cycle fatigue (LCF) occurs when the nominal stress applied to the material is 

larger than the elastic limit. Most of the fatigue life is spent in the crack propagation state, 

and failure usually occurs within 10
5
 cycles for superalloys. In turbine blades, LCF 

results from abrupt changes in loading during engine start-up and shut-down [1]. Dalal et 
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al. [59] showed that the LCF behavior of single-crystal superalloys is very sensitive to 

crystal orientation, as shown in Figure 2.25. Experiments were performed on smooth, 

polished specimens of a Ni-6.8Al-13.8Mo-6W alloy at 980°C under total strain control at 

0.33 Hz with R = 0. For all crystal orientations, the logarithm of the strain range was 

found to be inversely proportional to the logarithm of the fatigue life. The <001> crystal 

orientation, which has the lowest elastic modulus, displayed the best performance in 

fatigue, while the <111> orientation, which has the highest elastic modulus, performed 

the worst. As a result, it was shown that the fatigue strength strongly corresponds to the 

elastic modulus of the crystal orientation in an inverse manner due to the higher stresses 

experienced in the stiffer directions. 

 

 

Figure 2.25: Orientation Dependence of Strain-Controlled LCF Life of a Single-Crystal 

Superalloy at 980°C and 0.33 Hz with R = 0 [59] 
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Experiments performed by MachLachlan and Knowles [60] explored the effects 

of LCF life of the single-crystal superalloy CMSX-4, as shown in Figure 2.26. LCF tests 

were performed under load control with R = 0 at temperatures between 750°C and 

1050°C. The LCF life was found to decrease quickly and non-linearly with increasing 

temperature, and no endurance limit was observed. 

 

 

Figure 2.26: Temperature Dependence of Load-Controlled LCF Life of Uncoated 

CMSX-4 with R = 0 [60] 

 

High-cycle fatigue (HCF) occurs when the stress amplitudes are small and always 

within the elastic regime. The majority of the fatigue life is spent in the crack initiation 

stage, and failure usually occurs after 10
5
 cycles. For turbine blades during HCF, 

vibrations are superimposed on the mean stress induced from the centrifugal force as well 

as the thermal loads from thermal gradients in the blade [1]. Wright et al. [9] explored the 
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effect of R-ratio and frequency on the HCF life of PWA 1484 with a platinum oxide 

coating. All of the tests were performed under load control on <001> specimens at 

1038°C. Figure 2.27 shows the results of the first set of experiments, which were 

performed at 59 Hz for varying R-ratios. No endurance limit was observed, and the HCF 

lives decreased while the slope of the stress-life curve became steeper as the R-ratio was 

increased towards 1. When the mean stress is plotted against the time to failure, as in 

Figure 2.27(b), the data for the higher R-ratios collapses to a single line, meaning that the 

life is becoming independent of R-ratio and that creep is the dominant damage 

mechanism. However, for lower R-ratios, fatigue is the dominant mechanism. 

Figure 2.28 displays the data obtained by Wright et al. [9] at varying frequencies 

with two different R-ratios. For R = -1, the results were found to be independent of 

frequency, meaning that a time-independent fatigue process is dominant at low mean 

stresses. For   R = 0.1, the HCF life was larger at higher frequencies, meaning that a time-

dependent creep and/or environmental degradation process was dominant in failure. At 

the lower frequencies, there was much more time per cycle for these processes to take 

effect, leading to the much shorter lives. 
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Figure 2.27: HCF Data for Coated PWA 1484 at 1038°C and 59 Hz Showing the Effect 

of R-ratio [9] 
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Figure 2.28: HCF Data for Coated PWA 1484 at 1038°C Showing the Effect of 

Frequency with (a) R = -1 and (b) R = 0.1 [9] 
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Figure 2.29 shows an example of a modified Goodman diagram (alternating stress 

vs. mean stress) created for the HCF life of PWA 1484 at 871°C with a defined 10
7
 cycle 

endurance. HCF tests were performed by Cetel and Duhl [39] on smooth and notched 

specimens of the alloy between 593°C and 982°C. At these high temperatures, the fatigue 

results showed significant improvement over previous alloys like PWA 1480 due to the 

superior creep performance. 

 

 

Figure 2.29: Modified Goodman Diagram for PWA 1484 at 871°C [39] 

 

2.4: Environmental Degradation of Superalloys 

2.4.1: Oxidation 

Giggins and Pettit [61] examined the oxidation of Ni-Cr-Al alloys of varying 

compositions at temperatures of 1000°C, 1100°C, and 1200°C. Each alloy contained 

nickel, and some contained only the γ phase, while others also included the γ’ and/or αCr 

phases. It was found that all of the alloys experienced a period of transient oxidation 
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before steady-state conditions were reached. During this period, the surface of the alloy 

was rapidly converted to oxide layers, and the composition of the oxide was constantly 

changing. After steady-state was reached, the alloy could be categorized as either a 

Group I, Group II, or Group III alloy. However, some alloys, called transition alloys, 

showed an oxidation layer of constantly-changing composition. 

The typical oxidation behavior observed for a Group I alloy is shown in Figure 

2.30. Group I alloys typically followed parabolic rate laws with a short transient period. 

The oxidation rate for these alloys was much greater than that of pure nickel. The nickel 

was oxidized externally to form a continuous scale of NiO, and a discontinuous subscale 

of Al2O3 and Cr2O3 was formed due to internal oxidation of the aluminum and chromium. 

The oxidation rates were controlled by transport through the NiO scale. 

 

 

Figure 2.30: Representative Oxidation Mechanism for Group I Alloys [61] 
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Figure 2.31 shows the oxidation behavior of Group II alloys. The oxidation 

usually followed the parabolic rate law, although some experiments showed deviation. 

There is a dense outer layer of Cr2O3 with a subscale precipitate of Al2O3. The oxidation 

rate was controlled by diffusion through the aluminum-doped Cr2O3 scale. PWA 1484 

has been found to be a Group II oxide former, with dominant oxides consisting of spinel, 

NiO, α-Al2O3, or some combination of the three [14]. 

 

 

Figure 2.31: Representative Oxidation Mechanism for Group II Alloys [61] 

 

The oxidation mechanisms shown by Group III alloys can be found in Figure 

2.32. These alloys essentially obeyed a parabolic rate law from the start of oxidation. The 

rate constants were found to be substantially smaller than those for Group I or II alloys. 

Oxide scales on the surface consisted of only Al2O3, and the oxidation rate was controlled 

by diffusion through this scale. 
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Figure 2.32: Representative Oxidation Mechanism for Group III Alloys [61] 

 

For practical superalloys, oxidation is not as clearly defined into the groups 

described above, and the behavior becomes complicated due to the number of elements 

composing the alloy. As deduced by Giggins and Pettit [61], the oxidation behavior is 

heavily dependent on alloy composition. Figure 2.33 shows an example of the oxidation 

behavior of the third-generation superalloy CMSX-10 after being exposed to certain 

temperatures for 100 hours. CMSX-10 does not form an alumina scale, and an external 

NiO scale as well as internal oxidation can be observed [62]. With the increased Re 

content and decreased Cr content, the alloy cannot resist either the formation of the thick 

Ni scale or internal oxidation. As a result, a surface coating is extremely necessary in 

practical applications of the material. 

 



 42 

 

Figure 2.33: Surface and Cross-Section Views of Oxidation of CMSX-10 After Heat 

Treatment for 100 Hours at (a,b) 800°C, (c,d) 900°C, and (e,f) 1000°C [1] 

 

A cyclic oxidation study was recently performed on typical single-crystal 

superalloys of each generation with one-hour hold times at 1100°C [1]. The results of the 

study are shown in Figure 2.34. At higher cycle counts, the first-generation superalloys 

demonstrated the best performance, with performance decreasing with each generation. 
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This is due to the increasing emphasis being placed on different mechanical properties 

and less dependence on the alloy composition to impart oxidation resistance. Instead, the 

superalloys are increasingly reliant on surface coatings for protection from the 

environment. 

 

 

Figure 2.34: Results of Cyclic Oxidation Testing of Single-Crystal Superalloys [1] 

 

Oxidation attack of superalloys can easily be the initial cause of eventual fatigue 

failure [1]. Wright [63] performed low cycle isothermal fatigue experiments on the 

second generation single-crystal superalloy René N4 in an uncoated form. As shown in 

Figure 2.35, there was extensive oxidation damage at the surface, and a fatigue crack 

initiated at oxide pits. 
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Figure 2.35: Fatigue Crack Initiation from Oxide Pits in Uncoated René N4 [63] 

 

2.4.2: Gamma Prime Depletion 

The oxidation of superalloys causes the depletion of the γ’ particles near the 

surface. This can occur when aluminum diffuses into the surface of the alloy, creating an 

aluminum-rich surface oxide, or when oxygen diffuses into the surface to form 

subsurface alumina particles [64]. Studies involving a wide variety of superalloys, 

including both single crystal and directionally solidified alloys, all found evidence of γ’ 

depletion at high temperatures [61-67]. The depletion of the strengthening precipitates 

results in the weakening of the microstructure, which causes a greater amount of 

plasticity from equivalent loading conditions. Zhao et al. [68] performed analysis on the 
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response of CMSX-4 at a notch tip to examine the effects of γ’ depletion. Figure 2.36 

shows the resulting plastic strain distribution near the notch tip after a constant load for 

400 hours at 950°C with and without oxidation effects. It can clearly be seen that the 

environmental damage has caused a redistribution of stresses and an increased 

accumulation of plastic strain, indicating that the environmental degradation led to 

increased mechanical damage. Dumoulin et al. [69] also produced similar results. 

 

 

Figure 2.36: Distribution of Plastic Strain Near a Void with and without Oxidation at 

950°C for 400 Hours [68] 

 

2.5: Coatings 

Since the entry temperatures of gas turbine engines have increased beyond the 

melting temperatures of the materials used, the components would degrade quickly 

without the protection they receive from surface coatings [4]. As a result, the design of 

coatings and measures to make sure they remain intact and compatible with the base 

metal of the components have become very important considerations. However, because 
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of the mechanical properties of the coatings and mismatches in the coefficients of thermal 

expansion between the coating and base metal, the coatings tend to crack and spall 

relatively quickly [1]. In addition, the cracks in the coating may propagate into the base 

metal itself due to the localized stress concentration, which causes increased crack 

growth rate in the superalloy [8]. Work performed by Heine et al. [70] demonstrated that 

coatings could result in up to 7.5 times shorter fatigue life when compared to the 

uncoated alloy. 

Figure 2.37 displays the relative coating lives and turbine temperature 

enhancements provided by three common coating technologies: diffusion coatings, 

overlay coatings, and thermal barrier coatings. Diffusion coatings are the most common 

and often consist of an aluminum layer deposited onto the surface by chemical vapor 

deposition, and a heat treatment promotes adhesion and diffusion with the substrate to 

form an aluminum-rich layer on the surface [71]. A layer of platinum may be placed on 

the surface before the aluminization process to increase oxidation resistance [72]. 

Overlay coatings provide greater resistance to oxidation and corrosion, but they are more 

costly because they must be applied by air or vacuum plasma spraying or electron beam 

physical vapor deposition [73, 74]. Gas turbine components are usually coated with 

MCrAlX-type materials with various compositions, where “M” refers to some 

combination of Ni and Co and “X” refers to reactive elements [75, 76]. Unlike diffusion 

coatings, these overlay coatings have flexibility in compositions which are independent 

of the substrate. Thermal barrier coatings offer an even greater advantage and involve a 

ceramic layer being deposited on the superalloy, which provides insulation and lowers 

the temperature of the substrate. To prevent spallation of the coating, a bond coat (some 
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form of diffusion or overlay coating) is usually deposited between the ceramic layer and 

the superalloy [77, 78]. 

 

 

Figure 2.37: Relative Coating Lives and Turbine Temperature Enhancements from Three 

Coating Forms [79, 80] 

 

Tamarin et al. [4, 5] performed load-controlled out-of-phase TMF tests on 

CMSX-4 with and without coatings; the results are displayed in Figure 2.38. As labeled 

in the figure, the uncoated superalloy (4), as well as the alloy with Co-32Ni-21Cr-8Al-Y 

(1), Ni-8Co-12Cr-7Al-Y (2), and Ni-7Co-12Cr-17Al-Y (3) overlay coatings were 

examined. It was found that the coating (especially cobalt-based coatings, which are more 

brittle than nickel-based coatings) substantially reduced the TMF life. 
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Figure 2.38: OP Load-Controlled TMF Results for CMSX-4 in the Uncoated Condition 

(4) and with Various Overlay Coatings (1-3) [5] 

 

On the other hand, testing performed by Wood et al. [3] did not show such a 

deficit. Experiments were performed on IN738LC with a CoNiCrAlY coating under 

strain-controlled TMF between 300°C and 900°C. Although extensive cracking was 

observed in the coating, as shown in Figure 2.39, the resulting TMF lives of coated and 

uncoated specimens were not significantly different. 
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Figure 2.39: Extensive Cracking in CoNiCrAlY Overlay Coating on IN738LC Substrate 

after TMF Testing [3] 

 

2.6: Behavior of Superalloys Under TMF Conditions 

While isothermal fatigue is relatively straightforward and bithermal fatigue 

displays the interaction effects for the damage mechanisms that occur at high and low 

temperatures, conventional TMF can create many different damage mechanisms and 

interactions during each cycle [42]. Before discussing these, it is necessary to understand 

the general damage mechanisms for superalloys at different temperatures. At low 

temperatures, deformation occurs by γ’ shearing because the precipitates are closely 

spaced. In strain-controlled fatigue tests, the stresses in annealed materials generally 

increase with the cycle count and then may stabilize or begin to soften.  In fact, under 
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cyclic loading, many superalloys have been found to harden both at room temperature 

and at elevated temperatures [81-87]. This is the result of an increase in the dislocation 

density and cross-slip that restricts the dislocation motion. The hardening becomes more 

pronounced at higher strain levels. At higher temperatures, coarsening of the precipitates 

may occur, leading to lower strength. Cross-slip is enhanced, leading to the formation of 

fewer slip bands. Shearing of the γ’ results in softening, as shown by Antolovich et al. 

[88] in René 80. At intermediate temperatures, Milligan and Antolovich [89] found that 

deformation in PWA 1480 occurred through a γ’ bypass mechanism. 

Depending on test conditions, four primary damage mechanisms occur in 

superalloys during TMF: creep, fatigue, creep-fatigue, and environmental-fatigue. During 

creep failure, cracks initiate from internal micropores [28, 90]. Creep in tension increases 

the mean stress, while creep in compression decreases it. Creep can be observed during 

in-phase TMF, but out-of-phase tests only tend to exhibit creep during a high-temperature 

hold time [91]. Fatigue cracks initiate at the surface of the material due to the motion of 

dislocations during cyclic plasticity [28, 92]. 

An example of damage mechanism interactions was shown by Boursier [93]. 

Fatigue experiments were performed on René 80 in which the material was cycled 

isothermally with a constant strain range for about half its expected life, and then the 

temperature was changed between 25°C and 760°C before cycling continued. The 

specimen that started at high temperature broke on the first cycle at room temperature, 

and it was found that the oxides formed at the high temperature were cracked by slip 

bands at room temperature. However, the specimen that began at room temperature and 

then cycled at 760°C did not fracture until the expected failure life predicted for 
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isothermal conditions. As a result, not only were temperature interaction effects observed, 

but they were found to be sequence-dependent. 

The results of Boursier [93] explain why out-of-phase TMF is more damaging 

than isothermal fatigue or in-phase TMF. This was also shown experimentally by Gayda 

et al. [26], who conducted isothermal, in-phase bithermal, and out-of-phase bithermal 

fatigue experiments on bare and coated PWA 1480. The applied coating was a 

NiCoCrAlY coating named PWA 276. The out-of-phase lives were found to be much 

lower than either the in-phase or isothermal lives, confirming that these interaction 

effects must be at play. Therefore, out-of-phase TMF testing is used to find the limiting 

life of turbine components. In addition, while isothermal bare and coated results differed, 

the results under bithermal fatigue conditions were shown to be very similar. 

 

 

Figure 2.40: Isothermal Fatigue and IP/OP BiF Life Curves for PWA 1480 [26] 
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The results of TMF tests performed on PWA 1484 by Cetel and Duhl [39] are 

shown in Figure 2.41, where they are compared to results from PWA 1480. The material 

was coated with a NiCoCrAlHfSiY overlay coating, and the out-of-phase strain-

controlled tests were performed at temperatures of 427-1038°C. It is believed that the 

increased creep resistance of PWA 1484 when compared to PWA 1480 doubled the TMF 

life or equivalently led to an increase of 36°C in the maximum temperature. Due to an 

increase in creep resistance, the mean stress during the test was not as high, leading to 

better performance and longer life. 

 

 

Figure 2.41: Out-of-Phase TMF Life of PWA 1480 and PWA 1484 [39] 
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2.7: Effects of TMF Testing Variables 

2.7.1: Introduction 

A myriad of factors have the possibility to influence TMF test results for identical 

loading conditions. Apart from the test conditions themselves, these may include factors 

such as specimen geometry, methods of temperature control, temperature gradients in the 

specimen, and phase angle, whether they are purposefully applied or if they are a result of 

errors in test methods. These effects have all been explored in some form, and the results 

are discussed below. 

 

2.7.2: Specimen Geometry 

Loveday et al. [94] performed a TMF inter-comparison exercise with eight inner-

circle laboratories using specimens of the polycrystalline superalloy Nimonic 90 of three 

different geometries (solid, hollow, and flat) produced at the same workshop and ten 

outer-circle participants using specimens of their own in-house geometry. Tests were 

fully-reversed and mechanical strain controlled, and three repeat IP tests at a strain range 

of 0.7% along with three repeat OP tests at a strain range of 0.8% were conducted. A 

ramp waveform with temperatures of 400-850°C and a 180 second cycle time was used. 

It was found that the overall scatter was ±67% for IP tests and ±45% for OP tests. The 

differences in results for solid round bar, hollow, and solid flat specimens were small in 

comparison to the scatter, but tubular specimens typically gave slightly shorter lives than 

solid specimens. 

Pahlavanyali et al. [95] performed TMF tests on both miniature and full-scale 

specimens of Nimonic 90 to investigate whether testing costs could be reduced. The thin 
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miniature specimens had a 1x1 mm cross-section in the gage section, while the full-scale 

specimens had a hollow geometry. Temperatures ranged from 400-850°C with a heating 

and cooling rate of 5°C/s, and four different phase angles were used. Tests were 

conducted under displacement control in such a way that the stress would be equal in 

both sizes of specimens. Good agreement in the TMF lives for both types of specimens 

were demonstrated, and the failure mechanisms were the same for both specimens. 

 

2.7.3: Temperature 

In addition to the geometry effects discussed above, Loveday et al. [94] also 

explored the effects of temperature measurement systems. Five methods of temperature 

measurement were employed: ribbon thermocouples, spot-welded bead thermocouples, 

thermocouples with individually spot-welded wires, beaded thermocouples tied on to the 

specimen, and sheathed thermocouples inserted into the specimen through a hole in the 

grip end. It was difficult to make firm conclusions due to the scatter in the data, but the 

ribbon and spot-welded bead thermocouples tended to have the largest scatter and lowest 

TMF lives, probably caused by uncertainty and underestimation of the temperature 

measurement. In addition, some of the laboratories also did not have the capabilities to 

span the entire temperature range in the given cycle time; as a result, it was found that the 

TMF life increased with increasing temperature range. 

In a comparison experiment performed by Beck and Rau [96], similar 

thermocouple attachment methods, as well as optical pyrometry, were employed for 

temperature measurements and compared. Although none of the methods were ruled out, 

several recommendations were presented to ensure the best temperature reading. No 
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differences were observed between the readings from type R and type K thermocouples, 

so type K wire was recommended for temperatures up to 850C due to the better thermo-

voltage, but higher-temperature type R wire was recommended for temperatures above 

900C. 

Kuhn et al. [97] aimed to discover the effects of defined temperature errors on the 

TMF test results for Nimonic 90. Out-of-phase, fully-reversed, strain-controlled tests 

were performed with a mechanical strain range of 0.8% and temperatures of 400-850°C 

with a temperature rate of 5°C/s. Both time-based and temperature-based thermal strain 

compensation methods were used. Tests under time-based compensation were found to 

be much more sensitive to temperature errors, especially at the lower temperature. An 

increasing temperature range decreased the life due to the extra strain supporting the 

mechanical loading, while a decreasing temperature range increased the life. However, 

the life results for temperature-based compensation tests were found to be more tolerant 

of temperature errors. Nevertheless, the temperature errors were found to affect the cyclic 

stress-strain curves. 

Brendel et al. [98] examined the effects of thermal gradients on out-of-phase 

TMF results for Nimonic 90. A temperature range of 400-850C and a fully-reversed 

mechanical strain range of 0.8% were employed, along with two different heating/cooling 

rates (5C/s and 20C/s) for a low thermal gradient and a high thermal gradient. It was 

found that the gradient had no significant effect on the life results, but finite element 

analysis showed that the thermal gradient may have reduced stresses in the specimen 

under tensile loading. In addition, the heating/cooling rate was not found to affect the test 

results. 
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On the other hand, Andersson and Sjostrom [99] performed similar experiments 

with heating/cooling rates of 5C/s, 2C/s, and 10C/s and found different results. They 

found that the TMF lives of the 10C/s tests were the longest, and the 2C/s tests had the 

shortest lives, with the 5C/s tests falling in between. It was suggested that the reason for 

this was the increased compressive creep for the slower heating/cooling rates, causing 

larger back-stress in tension; however, this result should be material-specific. 

 

2.7.4: Phase Angle 

Another set of experiments performed by Pahlavanyali et al. [100] explored the 

effect of phase angle. TMF tests on Nimonic 90 were performed under the same 

conditions as mentioned before [95], but phase angles of  = 0 (in-phase), 180 (out-of-

phase), 18010, 18020, and 270 (counter clockwise) were all used. It was found 

that deviations of 10 from the out-of-phase cycle had no significant effect on the life 

results, while a deviation of +20 produced higher plasticity and -20 produced lower 

plasticity than the out-of-phase test. 
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CHAPTER 3 

EXPERIMENTAL METHODS 

 

3.1: Introduction 

For this work, uniaxial out-of-phase thermo-mechanical fatigue tests under 

mechanical strain control were performed using hollow specimens of PWA 1484. Half of 

the specimens were protected by a coating on the outer surface. The buttonhead 

specimens, shown in Figure 3.1, are optimized for testing at Pratt & Whitney labs. 

However, these specimens could not be used in the collet grips of the testing system 

present at Georgia Tech. Up to this point, all of the TMF testing performed at Georgia 

Tech used solid cylindrical specimens of a similar geometry to that shown in Figure 3.2. 

Therefore, a modified gripping mechanism had to be created. 

 

 

Figure 3.1: Hollow Buttonhead Test Specimen as Received from Pratt & Whitney 

 

 

Figure 3.2: Solid Round Bar Test Specimen Normally Used at Georgia Tech 
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As a result, the ends of the specimens were modified to create a new gripping 

section, and a system of adapters was created to increase the gripping diameter to a 

standard size for the collet grips. Due to concerns about crushing the hollow specimens, 

plugs were also inserted into the ends. Figure 3.3 shows a visualization of the specimen 

with the modifications to the gripping mechanism, while Figure 3.4 shows an exploded 

view of the whole assembly, complete with the plugs and collet adapters. Analysis 

performed on these modifications predicted that they would be successful (see section 4.2 

of this thesis), and in practice they have allowed for successful TMF tests using the 

current test machine and grips. To ensure validity of the data, the tests were performed 

while conforming to the requirements provided by an ASTM standard practice for strain 

controlled TMF testing [101]. 

 

 

Figure 3.3: Visualization of Modifications to Gripping Mechanism 
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Figure 3.4: Exploded View of Modified Specimen, Plugs, and Adapters 

 

3.2: Materials 

The specimens used for testing were supplied by Pratt & Whitney and were 

composed of PWA 1484, a second generation single crystal nickel-based superalloy. Due 

to its resistance to mechanical degradation and ability to retain its properties at elevated 

temperatures, the material is used for components in gas turbine engines [1]. The 

chemical composition of PWA 1484, a cast alloy, can be seen in Table 3.1. For additional 

information on the microstructure and processing, refer to section 2.2.2.1 of this thesis. 

 

Table 3.1: Nominal Composition of PWA 1484 (Weight %) [1] 

Element Ni Co Ta W Al Cr Re Mo Hf 

Weight % 59.3 10.0 9.0 6.0 5.6 5.0 3.0 2.0 0.1 
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Turbine blades are commonly protected by a surface coating to increase the 

resistance to environmental damage. In practice, if the metal surface is exposed to high 

operating temperatures, it can experience chemical and mechanical degradation relatively 

quickly [1]. Of the fifteen test specimens received, seven were coated and eight were 

uncoated. The coating applied to the specimens is Pratt & Whitney proprietary, and as 

such, it could not be examined or described any further. To prevent additional differences 

between the specimens, the uncoated specimens underwent an identical heat treatment 

process as was used in the application of the coating to the coated specimens. 

 

3.3: Specimen Design and Modification 

Figure 3.5 and Figure 3.6 show the original buttonhead specimens. Several 

dimensions have been omitted for simplicity, but the critical dimensions are included. 

The drawing in original English units (along with those of all of the following drawings) 

can be found in Appendix A of this thesis. This specimen geometry works very well for 

TMF testing at Pratt & Whitney with the correct grips and cooling from internal air flow. 

The specimens were originally machined by Metcut Research Inc. in Cincinnati, Ohio. 

The quality inspection for the original specimen machining can be found in Appendix B. 

The tolerance allows the inner diameter to range between 1.13729 cm and 1.14808 cm, 

but all of the specimens received had an inner diameter smaller than 1.143 cm. Also, the 

outer diameter of the shank could range between 1.5621 cm and 1.5875 cm, but this 

dimension was greater than or equal to 1.5748 cm for all of the specimens received. 
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Figure 3.5: Drawing of the Original Specimen with Critical Dimensions 

 

 

Figure 3.6: Isometric View of the Original Specimen 

 

To accommodate the present testing equipment, the buttonheads of the specimens 

had to be removed, and due to the nature of the collet grips, the tolerance of the gripping 

section also needed to be maintained more closely. As a result, the entire shank section 

was machined, as shown in Figure 3.7 and Figure 3.8. Grinding down the buttonheads as 

opposed to cutting off the ends was a useful way to provide additional gripping force by 
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preserving the specimen’s length. As previously mentioned, since all of the specimens 

were large enough, a new diameter of 1.5748 cm for the gripping section was chosen. 

The machining modification of the specimens was performed by Element Materials 

Technology in Cincinnati, Ohio. The quality inspection for this machining step can be 

found in Appendix B. 

 

 

Figure 3.7: Drawing of the Modified Specimen with Critical Dimensions 

 

 

Figure 3.8: Isometric View of the Modified Specimen 

 



 63 

3.4: Modified Gripping Method 

3.4.1: Plugs 

Due to concern based on previous experience with hollow specimens, plugs were 

inserted into the ends of the specimens using a shrink fit method to prevent crushing in 

the collet grips. Calculations were performed to find the stresses induced in the 

specimen’s gripping section, and finite element models were also created to check for any 

stress concentrations and ensure that the gage section was not affected. In addition, the 

stress in the specimen that may be induced by the changing temperature of the trapped air 

was calculated. For detailed results of these analyses, see section 4.2 of this thesis. 

Figure 3.9 shows a drawing of a plug. Based on the analysis mentioned above, the 

diameter needed to be slightly larger than the inner diameter of the specimen (ideally 

rounded up to the nearest thousandth of an inch, or within an increment of 0.0254 mm) 

for this insertion method. The 2.54 cm length of the plugs was chosen such that they 

almost reach the point where the specimen starts to neck down towards the gage section 

while sitting flush with the end. The leading edge of the plug could have also been filed 

off for easier insertion, although this was not performed in this case. 

 

 

Figure 3.9: Drawing of a Plug 
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Ideally, the plugs also would have been made from PWA 1484 or another 

superalloy with a very similar coefficient of thermal expansion to that of the specimens in 

order to prevent possible expansion mismatches during the thermal cycling of the TMF 

tests. However, for ease of machining and economic considerations, the plugs were 

produced from steel. During testing, the water-cooling of the gripping section and the 

large applied clamping force prevented any problems.   

A burr existed on the inner edge of the ends of most of the specimens, so it was 

originally thought that the holes were smaller than they were in actuality. The burrs were 

removed with a manual deburring tool before proceeding. The shrink fit was performed 

using a dry ice and alcohol bath, although it could have been easier to use a cooling agent 

such as liquid nitrogen. The plugs were placed in the bath for 10-15 minutes and then slid 

into one end of the specimen. The assembly was allowed to return to room temperature to 

ensure a stable fit before proceeding with the other end of each specimen. For some of 

the largest plugs, the bath alone did not provide enough of a temperature difference to 

adequately shrink the plug; in these cases, the specimen was placed in an oven and heated 

to 200°C for 5-10 minutes before finally performing the fit. Figure 3.10 shows two 

specimens (one uncoated and one with the coating) after the completed machining 

modifications and with plugs inserted. As previously mentioned, the uncoated specimens 

underwent an identical heat treatment used during the application of the coating, which 

caused the darker color of the surface of the material away from the machining 

modifications. 
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Figure 3.10: Uncoated (Left) and Coated (Right) Specimen After Modifications 

 

3.4.2: Collet Adapters 

After modifying the specimens, adapters for the collet grips were produced to 

allow the specimens to be gripped by 2.54 cm diameter collets. Figure 3.11 is a drawing 

of one of the adapters. The inner radius was dictated by the chosen outer diameter of the 

specimen gripping section, and the outer radius was dictated by the chosen size of collet 

grips. The height of the adapters was chosen to be the same as the height of the gap in the 

collet grips so that the top edge could easily and uniformly sit flush with the top of the 

collets. The adapters were machined by wire EDM from a plate of alloy A-286 steel, an 

iron-nickel base superalloy.  This material was selected due to its relatively high strength. 
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Figure 3.11: Drawing of a Collet Adapter 

 

To allow the adapters to be easily inserted into the grips and the specimen to be 

more easily inserted into the adapters, as well as to reduce stress concentrations on the 

specimen, certain edges of the adapters were filed down by hand. As shown in Figure 

3.12, these edges include the outside bottom edge (making first contact with the collet 

grips), the top inside edge (making first contact with the specimen), and the two inside 

vertical edges that may dig in to the specimen. 

 

 

Figure 3.12: Views of Collet Adapter with Filed Edges 
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Three of these adapters were placed inside each grip around the specimen to 

match up with the three pieces of the collet. It is important to note that the uniformity of 

these adapter pieces is extremely critical to avoid alignment issues during the gripping of 

the specimen, which could lead to the unintended application of a bending moment. Also, 

it is important to make sure that the longitudinal flat surfaces of all three adapters do not 

make contact with each other when clamped (meaning that they do not span a complete 

360 degrees), or the specimen may slip out during the TMF testing due to the interference 

resulting in insufficient clamping force. This problem actually occurred during initial 

verification; to correct this problem, the edges of the adapters were ground down to make 

sure each one spanned less than 120 degrees. Figure 3.13 shows a modified specimen in 

the test frame being successfully gripped by the adapted collet system. 

 

 

Figure 3.13: Specimen Gripped by Collet with Adapters 

 

3.4.3: Clamping Force Analysis 

Calculations were performed in order to determine the theoretical grip pressure 

necessary to apply the desired loads. Each of the following equations and constants 
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(Equation 3.1, Equation 3.2, A, μg-c, and CR) were found in the equipment manual for the 

grips [102]. First, the clamping pressure that had been applied to the round bar specimens 

in previous experiments was determined. A grip supply pressure P of 20.68 MPa had 

been used. The specimens were 1.27 cm in diameter at the ends and were inserted 1.778 

cm into the grips, giving a gripping area of 7.094 cm
2
. The clamping force Fc is 

determined from Equation 3.1, 
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where A = 60.7 cm
2
 is the area of the grip piston and μg-c = 0.06 is the coefficient of 

friction between the grip and collet. An original clamping force of 376.7 kN was 

determined, and when divided by the gripping area, the clamping pressure was 

determined to be 531.0 MPa. 

For these experiments on the hollow specimens, the collet grip adapters had an 

outer diameter of 2.54 cm, and the ends were inserted 1.651 cm into the grips, giving a 

gripping area of 13.17 cm
2
. In order to obtain the same clamping pressure as the round 

bar specimens, it is found that the required clamping force is 699.6 kN.  Using Equation 

3.1, the required grip supply pressure is found to be 38.41 MPa. This value was 

attainable, as the maximum supply pressure to the grips is 44.82 MPa. 

In order to ensure that the calculated grip supply pressure would be sufficient, 

another calculation was performed. At 760°C, the ultimate tensile strength of PWA 1484 

is at a maximum value of 992 MPa [103]. Therefore, for the specimens’ cross-sectional 

area of 2.027 cm
2
, the maximum applied axial load L would be 18.65 kN. The required 

grip supply pressure can be predicted by Equation 3.2, 
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where T is the applied torque, D is the specimen diameter, and CR = 0.422 MPa/kN is a 

constant value for round specimens. As an axial-torsion machine was used but no torque 

was applied to the specimen, T = 0. This equation predicts that a grip supply pressure of 

21.21 MPa would be sufficient, although it was finally decided that P = 38.41 MPa from 

the previous calculation would be used since it provided some measure of safety and 

conservatism. 

 

3.5: Equipment 

Tests were performed using an MTS axial/torsion closed-loop servohydraulic test 

frame with model 204.63 100 kN axial actuator. The tests were controlled using an MTS 

FlexTest 40 digital controller and Multipurpose Elite software. The specimens were 

gripped with water-cooled MTS 646.10 A/T collet grips for 25.4 mm round specimens. 

The specimens were heated using an Ambrell EASYHEAT 0224 induction 

heating system. The seven-turn inductive coil was formed using 4.7625 mm diameter 

copper tubing. The heater was controlled using a Eurotherm 3204 temperature/process 

controller. The temperature of the specimen was measured through a thermocouple 

welded to the specimen; 30 AWG type K wire, 24 AWG type K wire with high 

temperature glass sheathing, and 30 AWG type R wire were each used at some point 

during the testing. The thermocouples were spot welded to the specimen using a Unitek 

spot welder with model 1-163-02 spot welder control. For preliminary temperature 
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experiments with multiple thermocouples, the temperatures were read using an OMEGA 

model 199 digital temperature indicator. 

Axial strain was measured using an MTS 632.53E-14 extensometer with 3.5 mm 

diameter ceramic rods that were 11.43 cm long. The ends of the rods were sharpened 

using a 26.9875 mm diameter grinding wheel at a 30° angle such that the tip of the rods 

conformed to the outer diameter of the specimen gage section. The extensometer has an 

operating range from +20% to -10% strain, and it was calibrated periodically to a range 

of ±5% strain. 

Figure 3.14 shows the experimental setup for the TMF testing. The test specimen 

can be seen in the collet grips (with adapters) surrounded by the induction coil. The 

extensometer can also be seen in its mounting apparatus and attached to the front of the 

specimen through the gaps in the seven-turn coil. 

 

 

Figure 3.14: TMF Test Setup 
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3.6: Testing Procedure 

3.6.1: Overview of TMF Test Procedure 

Prior to beginning the TMF test setup, the surfaces of the collet grips, adapters, 

and specimen gripping section were cleaned with ethanol while the test machine was 

warming up. A thermocouple was spot welded to the top of the specimen just outside of 

the gage section (3.686 cm from the end of the specimen) for temperature control. If 

necessary, the specimen surface was gently exposed using P4000 grit grinding paper. The 

wire was fed towards the top of the specimen and secured at the edge of the gripping 

section underneath two pieces of nickel wire that were welded to the surface at that 

location. A picture of the type R thermocouple secured to the specimen is shown in 

Figure 3.15. The rationale for the location of the thermocouple is explained later in 

section 3.7.2.1. 

 

 

Figure 3.15: Thermocouple Attachment to Specimen 
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The specimen was then inserted into the test machine. First, with ample space 

between the top and bottom grips, three collet adapters were held in place in the top grip 

by hand while inserting the specimen 1.651 cm until it was manually tightened. A view 

of the specimen with the thermocouple wire positioning after it was inserted into the top 

grip can be found in Figure 3.16. Next, the bottom grip was set in the desired position, 

and three more collet adapters were placed inside and positioned so that they were flush 

with the top surface of the grip. With the specimen moving through the induction coil, the 

top grip was carefully brought downwards while making sure the alignment was correct 

until the specimen was inserted 1.651 cm into the bottom grip. Then, the bottom grip was 

manually tightened, and the supply pressure to both grips was turned on. 

 

 

Figure 3.16: Front View of Specimen after Insertion into Top Grip 
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The coil was then centered around the specimen, and the extensometer was put in 

place. Several non-damaging force-controlled cycles were run at a frequency faster than 

the actual test frequency to ensure that the extensometer rods were not slipping. Under 

force control, the elastic modulus of the specimen was measured at room temperature, 

along with the minimum, mean, and maximum temperature for the TMF test. If 

necessary, the values of the Porportional-Integral-Derivative (PID) gains of the 

temperature controller were adjusted to obtain a stable temperature in order to record an 

accurate modulus. 

Next, as the tests were all performed under mechanical strain control, the thermal 

strain compensation was performed. Several thermal cycles under zero force were 

performed while the temperature vs. strain response was observed until a stable response 

was achieved. As it was ideal that no thermal strain hysteresis exist, the PID values of the 

controller and the position of the coil were adjusted until the thermal strain response was 

satisfactory. A fourth-order polynomial was fit to the temperature vs. strain response to 

model the thermal strain, and the mechanical strain was calculated as the difference 

between total strain and thermal strain. To check the accuracy of the thermal strain 

compensation, a thermal cycle under zero mechanical strain was performed, and the 

resulting maximum and minimum loads on the specimen were observed and compared to 

allowable limits. 

After the test procedure was edited for the appropriate mechanical strain range, 

the actual test could be initiated. A much more detailed step-by-step list for the testing 

procedure can be found in Appendix C. The test ended either when the specimen 

fractured or when it was stopped manually after a sufficient drop in tensile load suggested 
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that a crack had initiated and propagated in the specimen. After the TMF test was 

completed, the specimen was inspected, and if applicable, the fracture surface or gage 

section was more closely examined under a microscope. Finally, the data files for the 

tests were processed and analyzed using MATLAB. 

 

3.6.2: Changes to TMF Test Procedure 

Throughout this project, a few changes to the testing procedure were 

implemented, mostly related to the thermocouples. Initially, in addition to the control 

thermocouple, a second auxiliary thermocouple was also welded to the specimen just 

below the gage section (3.683 cm from the end of the specimen). However, this was 

eliminated to prevent the possibility of crack initiation at this location. The wire from the 

control thermocouple at the top of the specimen also initially ran downwards through the 

bottom of the coil, but it was redirected upwards in order to prevent the sheathing from 

burning, which would cause degradation of the actual thermocouple wire. To accomplish 

this, a single piece of nickel wire was used at first, but a second piece was added to 

ensure that the thermocouple wire was secured and could not wiggle in either direction. 

Finally, for the first few experiments, type K (nickel-chromium vs. nickel-aluminum) 

thermocouple wire was used, but type R (platinum-13% rhodium vs. platinum) wire was 

later implemented due to its resistance to degradation and associated longer life at higher 

temperatures. 
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3.6.3: Attempt at an Alternate Method of Thermocouple Attachment 

To avoid any potential damage to the specimen resulting from spot welding the 

thermocouple wire, an alternate non-welding thermocouple attachment method was 

explored. As a small region of the coating needed to be removed in order to weld to a 

coated specimen, the idea initially stemmed from the desire to leave the coating intact so 

that no part of the surface of the specimens would be exposed. An experiment was 

performed to determine if it was feasible to tie on a beaded thermocouple to the surface 

of the specimen. For this experiment, using type K thermocouple wire, a thermocouple 

was welded to the specimen, and a separate thermocouple bead was also formed and tied 

on to the specimen directly next to the weld using wire with high temperature glass 

sheathing. Using the welded thermocouple as the control, the temperature reading from 

the tie-on thermocouple was examined over a temperature range of 427°C to 1050°C. 

The welded thermocouple temperature was set to 50°C increments between 550°C and 

1050°C, as well as to 427°C, 732°C, and 1038°C. The end goal was to create a 

correlation between the readings from the welded thermocouple and the tie-on 

thermocouple so that the tie-on method could be used for temperature control of further 

TMF testing. The experiment was set up and dismantled three separate times to check for 

repeatability and to try to obtain a relationship between the two temperature readings that 

was as accurate as possible. 

Figure 3.17 shows the tie-on thermocouple readings for the three experimental 

setups as a function of the welded thermocouple temperature, while Figure 3.18 displays 

the difference between the two thermocouple readings across the temperature range that 

was examined. While the reading from the tie-on thermocouple was always lower than 



 76 

the welded thermocouple, it was found that the temperature difference was large and not 

constant. In addition, neither the correlation between the two readings or the temperature 

difference was linear, and neither curve followed the same shape across the different 

setups. The tie-on thermocouple temperature was also fairly inconsistent between the 

three experimental setups, so it was determined that this thermocouple attachment 

method was not completely repeatable and had a fairly large dependence on certain 

aspects of the setup. As a result, it was decided that the tie-on method of thermocouple 

attachment was not feasible and could not be used for TMF testing. 

  

 

Figure 3.17: Tie-On Thermocouple Temperature Models 
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Figure 3.18: Temperature Difference Between Thermocouple Attachment Methods 

 

3.7: Standardized Testing Practice 

3.7.1: ASTM Criteria 

3.7.1.1: Introduction of Testing Standard 

The TMF tests for this work were performed in such a way as to conform to 

ASTM E2368 – Standard Practice for Strain Controlled Thermomechanical Fatigue 

Testing [101]. This standard practice governs uniaxially-loaded strain-controlled tests in 

which temperature and strain fields are simultaneously and independently varied with 

constant phasing. It covers all the aspects of TMF testing, including the terminology, 
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equipment, specimens, test procedure, and data reporting. The main requirements for the 

test procedure to ensure test validity are summarized in the following sections. 

3.7.1.2: Specimen Temperature 

At any given time during the TMF cycle, the maximum allowable axial 

temperature gradient in the gage section of the specimen is either 1% of the maximum 

cyclic temperature Tmax (in Kelvin) or ± 3 K (whichever quantity is greater). Also, the 

maximum allowable transverse temperature gradient in the gage section is either 1% of 

Tmax (in Kelvin) or ± 7 K (whichever quantity is greater). 

In addition, the accuracy of the cyclic temperature control should be checked by 

examining the amount of hysteresis in the thermal strain (εth) response with the specimen 

held at zero force. The thermal strain hysteresis at any given temperature point should be 

no greater than 5% of the total thermal strain range over the temperature cycle. 

 

3.7.1.3: Thermal Strain Compensation and Mechanical Strain 

At any time during the test, the mechanical strain εmech, or the difference between 

the total strain and the compensating thermal strain, should not deviate from the desired 

value by more than 2% of the mechanical strain range Δεmech. The accuracy of the 

thermal strain compensation technique should also be checked before test initiation by 

performing a thermal cycle under strain control with zero mechanical strain. For an out-

of-phase TMF test, the maximum and minimum allowable stresses during this cycle are 

calculated using the moduli at the corresponding temperatures as shown below in 

Equations 3.3 and 3.4, 
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    minmaxmechmax 02.0 TE   (3.3) 

    maxminmechmin 02.0 TE   (3.4) 

such that the allowable stress magnitude during the cycle is equal to  (σmax-σmin)/2. 

 

3.7.1.4: Temperature/Mechanical Strain Phasing 

The error in the phasing between the temperature and mechanical strain should 

not exceed φ ± 5, where φ is the desired phase shift for the test. There should be no 

cumulative error throughout the duration of the test. 

 

3.7.2: Procedures to Ensure Test Validity 

3.7.2.1: Temperature Gradient 

Before testing began, ten thermocouples (TCs) were welded to a single specimen 

in order to verify the temperature distribution induced by the induction coil. Seven TCs 

were attached along the length, and three additional TCs were attached circumferentially 

at the midpoint of the specimen. Figure 3.19 shows the locations and numbering scheme 

used in the following measurements. The TCs numbered 2 and 6 are slightly outside of 

the gage section, and the TCs numbered 3 and 5 encompass the 1.27 cm distance that lie 

between the extensometer rods. 
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Figure 3.19: Thermocouple Locations for Temperature Gradient Testing 

 

The specimen was inserted into the test machine, and the induction coil was 

centered around the specimen. First, TC 4 was used as the feedback for the temperature 

controller. The temperature distribution was observed and recorded at control setpoints of 

550°C, 800°C, and 1050°C. The results are displayed in Table 3.2. An “x” in the column 

marked “Pass” indicates that the temperature at that location falls within the allowable 

variation specified by the ASTM standard. 



 81 

Table 3.2: Temperature Distribution with TC 4 as Control 

TC 

TC Temperature Reading (°C) 

550°C 800°C 1050°C 

Temp. Pass Temp. Pass Temp. Pass 

1 451.7 

 

712.8 

 

996.1 

 2 523.9 

 

797.8 x 1076.7 

 3 550.6 x 811.1 

 

1082.2 

 4 550.0 x 800.0 x 1050.0 x 

5 554.4 x 817.8 

 

1079.4 

 6 542.8 x 810.0 x 1090.0 

 7 440.6 

 

678.3 

 

931.1 

 8 555.6 x 813.9 

 

1070.0 

 9 553.3 x 805.6 x 1058.9 x 

10 542.2 x 792.2 x 1037.2 x 

 

 

As the actual TMF tests are controlled by a TC outside of the gage section, it was 

decided that TC 6 would be the control location for the remainder of the tests. The 

temperature distribution was checked again with the new control TC with setpoints of 

427°C, 550°C, 800°C, 1038°C, and 1050°C. Only the temperatures within the gage 

section were recorded, and the results can be found in Table 3.3. 

 

Table 3.3: Temperature Distribution with TC 6 as Control 

TC 

TC Temperature Reading (°C) 

427°C 550°C 800°C 1038°C 1050°C 

Temp. Pass Temp. Pass Temp. Pass Temp. Pass Temp. Pass 

3 427.8 x 551.1 x 800.6 x 1035.6 x 1047.2 x 

4 425.0 x 547.8 x 790.0 x 1015.6 

 

1028.9 

 5 432.8 x 557.8 x 803.3 x 1035.0 x 1046.7 x 

6 427.0 x 550.0 x 800.0 x 1038.0 x 1050.0 x 

8 433.9 x 556.7 x 797.2 x 1028.3 x 1040.0 x 

9 432.8 x 557.2 x 796.1 x 1023.3 

 

1034.4 

 10 422.8 x 542.8 x 787.2 

 

1007.2 

 

1027.8 
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The temperature setpoints were then adjusted until each of the recorded 

temperatures within the gage section fell within the allowable variation specified by the 

ASTM standard. Table 3.4 shows the final temperature distribution. The setpoint for each 

desired temperature can be found as the temperature reading for TC 6. 

 

Table 3.4: Adjusted Temperature Distribution Results 

TC 

TC Temperature Reading (°C) 

427°C 550°C 800°C 1038°C 1050°C 

Temp. Pass Temp. Pass Temp. Pass Temp. Pass Temp. Pass 

3 423.9 x 547.8 x 801.1 x 1047.2 x 1060.6 x 

4 427.2 x 550.6 x 796.1 x 1034.4 x 1047.8 x 

5 433.9 x 557.8 x 810.0 x 1051.1 x 1062.8 x 

6 422.0 x 545.0 x 797.0 x 1049.0 x 1065.0 x 

8 433.9 x 557.8 x 805.6 x 1044.4 x 1059.4 x 

9 430.0 x 551.7 x 797.8 x 1035.0 x 1046.7 x 

10 421.7 x 542.2 x 790.0 x 1025.6 x 1037.8 x 

 

 

3.7.2.2: Thermal Strain 

During setup of each test, stress-free thermal cycling in force control was 

performed to examine the thermal strain hysteresis. A representative hysteresis loop for a 

180 second cycle is shown in Figure 3.20. The temperature vs. strain curve was recorded, 

and if the widest gap in the hysteresis loop at any given temperature was larger than 5% 

of the total width (the difference in strain between the minimum temperature and the 

maximum temperature), the PID values of the temperature controller were altered or the 

position of the induction coil was slightly adjusted until the hysteresis loop was 

considered satisfactory. A fourth-order polynomial was then used to fit the thermal strain 
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as a function of temperature so that the mechanical strain could be calculated as the 

difference between total strain and thermal strain. 

 

 

Figure 3.20: Representative Stress-Free Thermal Strain Response 

 

When the actual test was started, two more stress-free thermal cycles were 

conducted while ensuring that the calculated mechanical strain was minimized. The data 

from these cycles was then analyzed more closely using MATLAB. A tenth-order 

polynomial was fit to each side of the hysteresis loop, and the two curves were used to 

verify that the thermal strain hysteresis criterion was indeed met. 

 

Cycle Direction 
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3.7.2.3: Phase Angle 

The phasing between the temperature and the mechanical strain was examined 

during the setup of the test. As the actual temperature signal exhibited a lag behind the 

control signal, a delay in the mechanical strain control signal was implemented at the 

start of the TMF cycling so that the two signals reached their peaks at the same time. 

After the test, cycles near the beginning and the end of the test were examined to ensure 

that the signals remained within the allowable 5° phase error. MATLAB code was used 

to find and compare the time at which each signal reached its peaks. The phasing of a 

representative out-of-phase 180 second TMF cycle is shown in Figure 3.21. 

 

 

Figure 3.21: Representative Out-of-Phase TMF Cycle 
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3.7.2.4: Mechanical Strain Deviation 

During the setup of the test, after the polynomial was fit to the thermal strain, a 

thermal cycle under mechanical strain control with zero mechanical strain was performed 

to verify the accuracy of the thermal strain compensation. The maximum and minimum 

stresses induced during the cycle were calculated and compared to the established 

allowable stress range. 

In addition, during the test, the mechanical strain control signal was collected 

along with the actual response. After the test, a MATLAB script was used to ensure that 

the actual mechanical strain had not deviated from the control point at any time during 

the test by more than the allowable amount of 2% of the total mechanical strain range. 

 

3.8: Failure Criteria 

For previous TMF tests on PWA 1484 conducted at Georgia Tech by Amaro [14], 

the failure criterion corresponding to crack initiation was desired to be linked to the 

microstructure of the material to better represent a physics-inspired life estimation model. 

The crack length corresponding to crack initiation was decided to be equal to the dendrite 

spacing of the material, which was found to be 0.178 mm, as shown in Figure 3.22. For 

the solid specimens used for the tests (a drawing can be found in Appendix A), it was 

found that the ratio of the initial cross-sectional area to the cracked cross-sectional area 

would be equal to 0.996. This scenario is represented schematically in Figure 3.23. 

Therefore, failure was defined as the point in time at which the tensile load carrying 

capabilities of the specimen dropped by 1% for two consecutive cycles. 
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Figure 3.22: Dendrite Spacing of PWA 1484 [14] 

 

 

Figure 3.23: Schematic of Crack Initiation Criteria [14] 

 

An alternative failure criterion used for comparison to Pratt & Whitney data 

corresponds to a 50% drop in load from the peak load seen during the test. In addition, 

although it was desired that the tests be stopped prior to the final specimen fracture in 

order to prevent damage to the extensometer rods or other equipment, specimen 

separation did occur to end several of the tests. As a result, for each TMF test conducted 
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in this study, the cycles at which a 1% load drop (Ni), 50% load drop, and specimen 

separation or test stoppage (Nf) were all recorded. 

 

3.9: TMF Test Plan 

Table 3.5 contains the test matrix used for this research project. All of the tests 

were performed under mechanical strain control and used the fully-reversed out-of-phase 

(OP) TMF waveform. A ramp waveform with a three-minute cycle and a temperature 

range of 550-1050°C was used in order to mimic cycle conditions in the work done by 

Amaro [14] on solid specimens. This would isolate any effects on the TMF life caused by 

specimen geometry. Each test was also performed on an uncoated and coated specimen in 

order to investigate the effects of the coating on life and damage mechanisms. 

 

Table 3.5: TMF Test Matrix 

Waveform R-ratio 
Δεmech 

(%) 

Cycle Time 

(sec) 

Tmin 

(°C) 

Tmax 

(°C) 

OP TMF, ramp -1 0.5 180 550 1050 

OP TMF, ramp -1 0.7 180 550 1050 

OP TMF, ramp -1 0.8 180 550 1050 

OP TMF, ramp -1 0.9 180 550 1050 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1: Introduction 

This chapter presents all the results for this work. First, the analysis of the 

modified gripping method is explained, including results from both hand calculations and 

finite element analysis. Next, the actual TMF test results are given; first, the lives 

according to different failure criteria are compared, followed by more detailed plots and 

description of the material behavior during each test. Finally, the main research 

objectives are fulfilled by the following: (1) comparing the TMF results from this work 

for uncoated and coated specimens; (2) comparing these test results to those from 

previous testing at Georgia Tech, which used a different specimen geometry under 

identical test conditions; and (3) comparing these results to those from testing in Pratt & 

Whitney labs with the same specimen geometry under different test conditions. 

 

4.2: Gripping Method Analysis 

4.2.1: Hand Calculations 

4.2.1.1: General Introduction of Calculations 

Prior to modifying the specimens to prevent crushing in the collet grips, hand 

calculations assuming elastic deformation were performed to calculate the amount of 

hoop stress that would be induced in the ends of the specimen during the shrink of the 

plug. The goal was to create light pressure for a solid contact between the specimen and 
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plug without resulting in any harmful stresses in the specimen. Before the actual inner 

diameter of each specimen was known, the entire range of allowable hole sizes within the 

specified machining tolerance was explored. First, it was desired that only a single plug 

size would be used, and the hoop stress in the gripping section of the specimen was 

calculated in a simplified manner assuming that the plug was undeformable. Then, the 

stresses were recalculated accounting for the deformation of the plug, assuming it was 

also made from PWA 1484 as originally planned. A solution was explored to reduce the 

stresses by using multiple plug sizes, and finally the stresses resulting from the prescribed 

plug sizes for the actual specimen hole sizes were found. 

 

4.2.1.2: General Equations 

The cylindrical hollow specimen was treated as a thick-walled pressure vessel. 

Equations 4.1 through 4.3 were derived from Lame’s equations [104]. The hoop stress in 

the specimen at a certain radius r is given by Equation 4.1, 
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where pi is the internal pressure, po is the external pressure, ri is the inner radius, and ro is 

the outer radius. Neglecting the external pressure and replacing the internal pressure with 

the pressure p applied from the plug after the shrink fit, the hoop stress is given by 

Equation 4.2. The hoop stress is maximum at the inner radius of the specimen (where      

r = ri). 
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The pressure introduced by a shrink fit between the specimen and the plug is 

given by Equation 4.3, 
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where r is the radial interference, Rt is the nominal transition radius (after both bodies 

have deformed), Es and Ep are the elastic modulus of the specimen and plug, respectively, 

and s and p are the Poisson’s ratio of the specimen and the plug, respectively. The 

radial interference r is simply the difference between the plug radius (rp) and ri since the 

plug radius is initially larger than the inner radius of the specimen. For the following 

calculations, the pressure from the shrink fit given in Equation 4.3 was substituted into 

the expression for the hoop stress in Equation 4.2. 

 

4.2.1.3: Simplified Calculation Assuming Undeformable Plug 

For the first set of calculations, the plug was assumed to be undeformable, which 

would greatly simplify the calculations and provide a hoop stress higher than would be 

expected in reality. If the plug cannot be deformed, its modulus essentially goes to 

infinity, and the nominal transition radius simply becomes the radius of the plug (Rt = rp). 

Therefore, the contact pressure for this case can be described by Equation 4.4. 
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After Equation 4.4 is substituted into the expression for hoop stress in Equation 

4.2, the goal was to obtain the plug radius as a function of the desired hoop stress. 
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However, this could not be done algebraically, but the plug radius at a certain value of 

hoop stress can be found using the Goal Seek function in Microsoft Excel. All of the 

calculations take the outer radius to be ro = 7.874 mm. The calculations used the 

properties Es = 127,553 MPa and s = 0.37 for PWA 1484 [103, 105]. The value used for 

s was based on that of the similar nickel base superalloy CMSX-4, but regardless of the 

value chosen, it was also discovered that the results were insensitive to Poisson’s ratio. 

Table 4.1 shows the results of these calculations. The plug diameter that would 

give the desired hoop stress on the inner radius of the specimen (ranging from 3.45 MPa 

to 34.5 MPa) for the largest hole (11.4804 mm diameter) is displayed, followed by the 

corresponding hoop stress for the same plug size in the smallest hole (11.3792 mm 

diameter). The results clearly suggest that a plug fit for the largest hole would produce 

extremely large stresses when inserted into the smallest hole, which would even cause 

plastic deformation as the yield stress of PWA 1484 is 895 MPa at room temperature 

[103]. Since the assumptions for this exercise resulted in higher stresses, it was decided 

that a more rigorous calculation should be undertaken in order to provide a better 

estimate of the actual hoop stresses in the case that they may actually be tolerable. 
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Table 4.1: Results of Hoop Stress Calculations Assuming Undeformable Plug 

Hoop Stress 

for Largest Hole 

(MPa) 

Resulting Plug 

Diameter 

(mm) 

Resulting Hoop Stress 

for Smallest Hole 

(MPa) 

3.45 11.48115 991.3 

6.90 11.48149 994.6 

10.35 11.48184 997.8 

13.80 11.48218 1001.1 

17.25 11.48253 1004.3 

20.70 11.48288 1007.6 

24.15 11.48322 1010.8 

27.60 11.48357 1014.1 

31.05 11.48391 1017.3 

34.50 11.48426 1020.6 

 

 

Figure 4.1 shows a graphical representation of the hoop stress as a function of 

plug diameter for three different possible specimen inner diameters (IDs). The 

representative hole sizes that were chosen are the target ID (11.43 mm), the smallest 

possible ID (11.3792 mm), and the largest possible ID (11.4808 mm). It can be seen that 

based on these assumptions, even for a plug diameter that barely contacts the largest hole, 

the hoop stresses would already be much too high for the smaller holes, and it may even 

exceed the elastic limit of the material. Therefore, more rigorous and accurate 

calculations were undertaken. 

 



 93 

 

Figure 4.1: Hoop Stress as a Function of Plug Diameter for Different Hole Sizes 

 

4.2.1.4: Calculation Accounting for Deformable Plug 

Since the “worst-case scenario” explored above produced a result much worse 

than expected, a more realistic calculation accounting for the plug’s deformation was 

performed. Equations 4.5 through 4.7 were derived using Hooke’s law for two-

dimensional plane stress [106]. The plug was taken as the same material as the specimen 

(PWA 1484) such that Es = Ep = E and s = p = . In this case, the contact pressure can 

be described by Equation 4.5. 
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The maximum hoop stress (at the inner radius of the specimen) is given by Equation 4.6. 
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Since the nominal transition radius Rt was not initially known, an iterative 

approach was used. An expression for the decrease in the radius of the plug is given in 

Equation 4.7. 

    1t
tpp

E

pR
Rr  (4.7) 

An initial guess for Rt was taken to be the average of the plug radius and the inner 

specimen radius. After the pressure and hoop stress were evaluated based on this value 

for Rt, a value of p was calculated, which then led to a value of Rt closer to the actual 

number. Ten of these iterations were used (which was more than adequate to achieve 

convergence), and the Goal Seek function in Microsoft Excel was used to find the plug 

size needed to obtain the desired value of the hoop stress at the final iteration. 

Table 4.2 displays the results obtained` using this method. As the calculations 

were more in-depth, only three representative values of hoop stress were chosen, 

including a much smaller value (0.345 MPa) than had previously been explored. As 

before, even with the plug deforming and introducing a smaller stress, the resulting hoop 

stresses from a plug fit for the largest hole in specimens with the smallest hole is still 

much too large (and approaching/exceeding yield). In this case, the stresses in small-

holed specimens did marginally decrease, but not to the extent of considering this 

approach to be a viable option. As a result, it was concluded that one plug size could not 

fit all of the possible hole sizes. 
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Table 4.2: Results of Hoop Stress Calculations Accounting for Plug Deformation 

Hoop Stress 

for Largest Hole 

(MPa) 

Resulting Plug 

Diameter 

(mm) 

Resulting Hoop Stress 

for Smallest Hole 

(MPa) 

0.345 11.48084 865.1 

6.900 11.48161 871.6 

34.500 11.48486 899.1 

 

 

4.2.1.5: Calculations with Multiple Plug Sizes 

One relatively easy solution was to machine four different plug sizes that would 

cover the whole range of the hole size tolerance in order to avoid having to machine a 

different sized plug for each of the specimens. The plug diameters would be 11.4046 mm, 

11.43 mm, 11.4554 mm, and 11.4808 mm. The only possible problem would be for a 

hole diameter exactly at the upper end of its tolerance range (11.4808 mm), which could 

result in a plug diameter equal to or smaller than the hole diameter. If it were deemed 

necessary after measuring the holes, another plug with a diameter of 11.5062 mm could 

have been be machined for such specimens. 

Table 4.3 explicitly shows the prescribed plug diameters for each range of hole 

size within the machining tolerance. The hoop stress accounting for a deformable plug in 

the smallest hole size within the range was also calculated (for example, the hoop stress 

applied by the 11.4046 mm plug in the 11.3792 mm hole). Based on the results, the hoop 

stress in the specimen would stay below 217 MPa if a properly sized plug were inserted. 

 

 

 

 



 96 

Table 4.3: Plug Size Prescriptions and Largest Resulting Hoop Stresses 

Hole Diameter Range 

(mm) 

Plug Diameter 

(mm) 

Actual Hoop Stress 

for Smallest Hole 

(MPa) 

11.3792  2ri < 11.4046 11.4046 216.6 

11.4046  2ri < 11.4300 11.4300 216.4 

11.4300  2ri < 11.4554 11.4554 216.3 

11.4554  2ri < 11.4808 11.4808 216.1 

 

 

Figure 4.2 shows the hoop stress that would be applied to the inner radius of the 

specimen for the four different plug diameters, assuming an undeformable plug. 

Therefore, the stresses shown here are a slight overestimate, and the actual maximum 

stresses for each plug size are shown above in Table 4.3. With this plug sizing plan, the 

hoop stresses for all hole sizes within the tolerance would be in an acceptable range. 

 

 

Figure 4.2: Hoop Stress as a Function of Hole Diameter for Four Plug Sizes 
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4.2.1.6: Revised Calculations After Specimen Measurements 

After the specimens were received, the actual inner diameters were measured. It 

was found that there were only three different hole sizes: 11.4173 mm (12 specimens), 

11.4046 mm (2 specimens), and 11.3792 mm (1 specimen). Therefore, according to 

Table 4.3, only two different plug sizes were needed. Since only three sets of calculations 

were required, the deformation of the plug was included, and a similar process to that 

described in section 4.2.1.4 was used. In addition to the maximum hoop stress, the 

maximum von Mises stress in the specimen was also calculated. The von Mises stress 

σVM is defined by Equation 4.8 [107], 

      2

13

2

32
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   (4.8) 

where σ1, σ2, σ3 are the principal stresses. In this case, since the longitudinal stress is zero, 

the only two principal stresses are the radial stress (which is equal to the pressure from 

the interference fit, p) and the hoop stress, σc. 

Table 4.4 shows the results of the finalized hand calculations for the maximum 

stresses at the inner surface of the specimen. As planned, all of the resulting stresses are 

manageable. Fortunately, the majority of the specimens also experience the smallest 

stresses, and the von Mises stress for all of the specimens is well below the yield stress.  

 

Table 4.4: Revised Calculations for Maximum Specimen Stresses from Shrink Fit 

Number of 

Specimens 

Hole Diameter 

(mm) 

Plug Diameter 

(mm) 

Hoop Stress 

(MPa) 

Von Mises Stress 

(MPa) 

12 11.4173 11.4300 108.2 125.0 

2 11.4046 11.4300 216.4 250.0 

1 11.3792 11.4046 216.6 250.1 
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4.2.2: Finite Element Analysis 

4.2.2.1: General Introduction of Models 

In addition to the hand calculations, finite element analysis (FEA) models of the 

specimen were created in order to check for any large stress concentrations or unwanted 

stresses in the specimen’s gage section resulting from the modified gripping mechanism. 

For easier visualization of the following models, Figure 4.3 shows a free body cut view 

of the specimen along its longitudinal axis. Plugs can be seen at each end of the 

specimen. The axis of symmetry is shown as the dotted yellow line, and the plane of 

symmetry across the center of the specimen is shown as the dotted red line. Both 

axisymmetric and three-dimensional models were used for the analysis. The 

axisymmetric model would be represented by one side of components in the cross-section 

visible in this figure. 

 

 

Figure 4.3: View of Free Body Cut of Specimen and Plugs 
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Figure 4.4 shows the axisymmetric models of the specimen, plug, and adapters 

that were created in Abaqus. Models with and without a plug present in the end of the 

specimen were compared. The model of the plugged specimen included two steps: (1) the 

shrink fit itself, and then (2) the actual application of the gripping force. A symmetric 

boundary condition was applied at the midpoint of the specimen, and the clamping load 

was distributed over the outer surface of the collet adapters. For simplicity, only the 

region of the collet adapters above the end of the specimen and plug was included in the 

models. The mesh used eight-node axisymmetric quadrilateral elements and was refined 

until convergence in the stress was achieved, resulting in an element size of 0.127 mm. 

 

                

Figure 4.4: Axisymmetric FEA Models without and with a Plug 
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A full three-dimensional model was also initially created, as shown in Figure 4.5. 

The left view shows the outer surface of the specimen within the collet adapters, and the 

right view shows the assembly as translucent so that the whole specimen and the plug are 

visible. As before (although not shown in the figure), both a plugged and unplugged 

specimen were modeled. As with the axisymmetric model, only half of the specimen was 

modeled using symmetry, and the clamping force was applied to the outer surface of the 

collet adapters, which were modeled in full for this case. 

 

           

Figure 4.5: Opaque and Translucent View of Three-Dimensional FEA model 

 

Since the results of the three-dimensional model were found to be consistent with 

the axisymmetric model after mesh refinement, the three-dimensional was abandoned to 

greatly save time and computational power. Therefore, all of the following FEA results 
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refer to the axisymmetric models shown in Figure 4.4. As previously mentioned, the 

elastic modulus and Poisson’s ratio for the specimen were input as 127.553 GPa and 

0.37, respectively. The plug and collet adapters were assigned a modulus of 200 GPa and 

a Poisson’s ratio of 0.3, typical properties of steels [24]. The specimen inner radius was 

defined as 5.715 mm, and for the model including a plug, the plug radius was 5.7277 mm 

so that the maximum possible interference during the shrink fit (0.0254 mm) was 

modeled. As calculated in section 3.4.3, a clamping pressure of 531.0 MPa was applied. 

All of the results show the von Mises stress in MPa. For comparison to the stresses, as 

noted earlier, the yield stress for PWA 1484 at room temperature is 895 MPa. 

 

4.2.2.2: Gripping an Unplugged Specimen 

Figure 4.6 shows the FEA results for the gripping of an unplugged specimen 

including the whole model, while Figure 4.7 shows an augmented view of the stresses in 

the specimen gripping section. The model predicts a stress concentration at the top edge 

of the specimen-adapter interface up to 1332 MPa, but during actual testing, no yielding 

in the specimen or adapters was observed at this point. Ignoring the stress concentration 

at that point, the maximum von Mises stress on the inner surface of the specimen is 

predicted to reach 1125.47 MPa with a large portion of the gripping section over the yield 

stress of 895 MPa. Therefore, it was predicted that the hollow specimen would indeed 

collapse within the collets, so it was determined that it was necessary to plug the ends to 

support the gripping section. 
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Figure 4.6: FEA Results for Gripping an Unplugged Specimen 
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Figure 4.7: FEA Results for Gripping an Unplugged Specimen (Specimen Only) 
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4.2.2.3: Shrink Fit Step 

Figure 4.8 shows the FEA results for the shrink fit step of the plugged model, 

while Figure 4.9 shows an augmented view of the specimen gripping section only. The 

highest stress of 458.8 MPa occurs at the top edge of the plug, but the highest stress in the 

specimen at that point only reaches 294.1 MPa. Away from this slight stress 

concentration, the stress at the inner surface of the specimen is only about 268 MPa. This 

result is only slightly higher than the von Mises stress of 250 MPa calculated by hand 

based on an identical radial interference (see Table 4.4 in section 4.2.1.6) and still well 

within a tolerable stress range. It can also be seen from the figures that only a negligible 

amount of stress is generated in the specimen’s gage section from the insertion of the 

plug. 
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Figure 4.8: FEA Results for the Shrink Fit Step 
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Figure 4.9: FEA Results for the Shrink Fit Step (Specimen Only) 
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4.2.2.4: Gripping a Plugged Specimen 

Figure 4.10 shows the results for the stresses induced while gripping a plugged 

specimen, while Figure 4.11 shows an augmented view of the stresses in the specimen 

gripping section. As with the unplugged case, there is an artificially created stress 

concentration at the upper edge of where the adapter contacts the specimen. Away from 

this point, the actual maximum stress at the inner surface of the specimen ranges from 

between 577 MPa and 602 MPa. This is a drastic decrease in stress from the 1125 MPa 

predicted for the unplugged case, and the gripping should not result in yield. Also, even 

after gripping, no significant stresses are generated in the specimen’s gage section. As a 

result, it was decided that plugging the specimen was not only necessary but also a stable 

and non-damaging way of gripping the specimen, and the modified gripping mechanism 

should have no impact on the TMF test results. 
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Figure 4.10: FEA Results for Gripping a Plugged Specimen 
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Figure 4.11: FEA Results for Gripping a Plugged Specimen (Specimen Only) 
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4.2.3: Air Pressure Calculations 

If the plugs do indeed make the specimen air-tight, it was thought that the 

temperature changes of the trapped air could induce stresses in the gage section of the 

specimen. In order to ensure that the TMF tests essentially remained uniaxial, the 

pressures and resulting hoop stresses were calculated at the temperature endpoints of the 

baseline TMF cycle used. To find the pressure, the ideal gas law was used and simplified 

for a constant volume process, as shown in Equation 4.9 [108]. 

 
1

2
12

T

T
PP   (4.9) 

In the above equation, P1 and T1 represent the pressure and temperature, respectively, at 

the beginning state, and P2 and T2 represent the pressure and temperature at the second 

state. For each case, T1 = 293 K is room temperature, and P1 = 101.325 kPa is 

atmospheric pressure. 

Once these values were calculated, Equations 4.2 and 4.8 were used to find the 

resulting maximum hoop stress and von Mises stress, respectively, at the inner surface of 

the specimen. Inner and outer radii of ri = 5.715 mm and ro = 6.985 mm for the gage 

section of the specimen were used for the calculations. Table 4.5 shows that the resulting 

stresses in the specimen are essentially negligible, and the differences in pressure 

between the minimum and maximum temperatures should not be enough to make any 

significant impact on the test results. 
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Table 4.5: Results of Air Pressure Calculations 

Temperature 

(°C) 

Pressure 

(kPa) 

Max. Hoop Stress 

(MPa) 

Max. von Mises Stress 

(MPa) 

550 284.6 1.44 1.68 

1050 457.5 2.31 2.70 

 

 

4.3: TMF Test Results 

4.3.1: Life Results 

The TMF life results can be found in Table 4.6 for uncoated specimens and Table 

4.7 for coated specimens. All tests were performed with the OP TMF ramp waveform 

with temperatures ranging from 550-1050°C, a fully-reversed strain ratio of R = -1, and a 

cycle time of 180 seconds. The measured elastic modulus across the temperature range of 

the specimens used can be found in Appendix D. The cycles to crack initiation based on a 

1% load drop (Ni), cycles to 50% load drop, and cycles to specimen failure or test 

stoppage (Nf) are reported for each test. Very little difference between the number of 

cycles to crack initiation and to a 50% load drop was observed, indicating rapid crack 

growth. On some occasions, the specimen fractured before a 50% load drop was reached. 

If the test was stopped manually before specimen separation, the lower bounding value 

for Nf is shown with an indication that the actual fracture cycle would have been greater. 

The cycle Ni was determined through a double extrapolation technique. After 

plotting the stress extrema as a function of cycles, a line was fit to the stabilized linear 

region of the maximum tensile stress. The crack was said to have initiated after the 

maximum stress dropped 1% from the fitted line for two consecutive cycles. In this way, 

crack initiation was distinguished from any material softening behavior. 
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In all cases, the TMF life decreased with increasing strain range for a given type 

of specimen. Apart from the mech = 0.5% condition, the coated specimen exhibited 

slightly longer crack initiation life than the uncoated specimen at a given mechanical 

strain range. 

 

Table 4.6: TMF Test Results for Uncoated Specimens 

Δεmech 

(%) 

Specimen 

Number 

Ni 

(cycles) 

Cycles to 

50% Load Drop 

Nf 

(cycles) 

0.5 5111AA-06-2 7393 7478 7520 

0.7 5111AA-06-1 1153 1213 1219 

0.8 5111AA-03-1 918 N/A 959 

0.9 5111AA-02-1 361 N/A 365 

 

 

Table 4.7: TMF Test Results for Coated Specimens 

Δεmech 

(%) 

Specimen 

Number 

Ni 

(cycles) 

Cycles to 

50% Load Drop 

Nf 

(cycles) 

0.5 5111AA-08-1 4464 4531 >4637 

0.7 5111AA-08-2 1483 N/A 1517 

0.8 5111AA-07-1 1407 1455 >1563 

0.9 5111AA-09-2 513 N/A 518 

 

 

4.3.2: Mechanical Strain Range 0.5% 

The results for the mech = 0.5% tests are displayed below. The maximum, 

minimum, and mean stress and stress range as a function of cycle are shown in Figure 

4.12 (uncoated) and Figure 4.14 (coated), and the stress-mechanical strain hysteresis 

loops for the first, half-life, and final cycle are shown in Figure 4.13 (uncoated) and 

Figure 4.15 (coated). In this case, contrary to each of the other results, the uncoated 

specimen had a considerably longer life. A kinematic hardening effect can be observed at 
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the beginning of each test, with the stress range staying fairly constant near 500 MPa 

while the mean stress increased until a stabilized value was reached at about 100 MPa. 

The stabilized tensile stress on the uncoated specimen was slightly higher, but both 

specimens exhibited similar first-cycle and stabilized hysteresis loops as well as mean 

stress and stress range during the progression of the test. Crack propagation occurred for 

quite a long period of time in each case, and the effect of the large cracks can be seen by 

the abrupt change of slope in the final cycle hysteresis loops once the load crosses into 

tension. The coated specimen exhibited an increase in both the maximum and minimum 

stresses preceding failure; it appears the crack initiated slightly outside of the 

extensometer rods before propagating in between them. 

 

 

Figure 4.12: Stress History for Uncoated Specimen, Δεmech = 0.5% 
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Figure 4.13: Hysteresis Loops for Uncoated Specimen, Δεmech = 0.5% 

 

 

Figure 4.14: Stress History for Coated Specimen, Δεmech = 0.5% 
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Figure 4.15: Hysteresis Loops for Coated Specimen, Δεmech = 0.5% 

 

4.3.3: Mechanical Strain Range 0.7% 

The stress history and selected hysteresis loops for the uncoated specimen with 

mech = 0.7% are shown in Figure 4.16 and Figure 4.17, respectively. Again, a similar 

hardening behavior to both mech = 0.5% tests can be seen, and the mean stress stabilized 

slightly above 200 MPa with a stress range of just under 700 MPa. Crack initiation and 

propagation was observed from the tensile load drop before the specimen fractured. 
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Figure 4.16: Stress History for Uncoated Specimen, Δεmech = 0.7% 

 

 

Figure 4.17: Hysteresis Loops for Uncoated Specimen, Δεmech = 0.7% 
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The fracture surface of the uncoated specimen was observed using a scanning 

electron microscope (SEM). Figure 4.18 shows a thumbnail region on the outer surface 

that is believed to be a possible crack initiation point. A region of the surface exhibiting 

’ avoidance is shown in Figure 4.19, indicating that this region of crack extension 

occurred at intermediate temperatures. An area of the fracture surface that experienced 

oxidation attack and surface voids can be seen in Figure 4.20, which was most likely 

exposed to the environment earlier in the crack extension process. 

 

 

Figure 4.18: SEM Image Showing Possible Crack Initiation Point on the Fracture Surface 

of Specimen 5111AA-06-1 (Uncoated with Δεmech = 0.7%) 
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Figure 4.19: SEM Image Showing Gamma Prime Particle Avoidance on the Fracture 

Surface of Specimen 5111AA-06-1 (Uncoated with Δεmech = 0.7%) 

 

 

Figure 4.20: SEM Image Showing Regions of Oxidation and Voids on the Fracture 

Surface of Specimen 5111AA-06-1 (Uncoated with Δεmech = 0.7%) 
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The stress history and hysteresis loops for the mech = 0.7% test on a coated 

specimen are shown in Figure 4.21 and Figure 4.22, respectively. The stress range was 

about the same as that of the uncoated specimen, although it did not exhibit as much 

hardening, so the mean stress throughout the test was lower and stayed around 100 MPa 

for most of the test. For this mechanical strain range, the coated specimen had a crack 

initiation life 330 cycles longer than the uncoated specimen, which may be explained by 

the lower mean stress. As expected for the higher strain range, the hysteresis loops are 

larger in total height and width than for the Δεmech = 0.5% case seen in Figure 4.15. The 

tensile load did not drop as much prior to specimen fracture, so the final cycle loop did 

not exhibit the same bend as seen before for extensive cracking. Comparing the first 

cycle and half-life hysteresis loops to those observed in Figure 4.17, it is clear that the 

different hardening behavior of the coated specimen caused the mean stress to remain 

lower than that of the uncoated specimen. 
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Figure 4.21: Stress History for Coated Specimen, Δεmech = 0.7% 

 

 

Figure 4.22: Hysteresis Loops for Coated Specimen, Δεmech = 0.7% 
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4.3.4: Mechanical Strain Range 0.8% 

The stress history and hysteresis loops for the uncoated specimen with mech = 

0.8% are displayed in Figure 4.23 and Figure 4.24, respectively. The stress range 

remained essentially constant slightly under 800 MPa, while the mean stress slowly 

increased throughout the beginning of the test to a value near 200 MPa. As seen with the 

other tests, the hysteresis loop from the first cycle essentially shifted upwards until 

stabilization before the stress range began to decrease. 

 

 

Figure 4.23: Stress History for Uncoated Specimen, Δεmech = 0.8% 
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Figure 4.24: Hysteresis Loops for Uncoated Specimen, Δεmech = 0.8% 

 

Figure 4.25 and Figure 4.26 display the stress history and hysteresis loops for the 

coated specimen with mech = 0.8%. Initially, the first-cycle stresses and stress range 

were the same as those for the uncoated specimen. However, the test stopped and had to 

be restarted after 240 cycles. The mean stress initially appeared as if it would stabilize 

near 100 MPa, but after restarting, it stabilized at about 200 MPa. After restarting the test, 

the stress range was almost 100 MPa higher than the initial value. Overall, the coated 

specimen lasted 489 cycles longer than the uncoated specimen before crack initiation; 

however, it must be understood that this data is not truly representative due to the test 

shut down. As can be seen from the final cycle hysteresis loop, the tensile load-bearing 

capacity was extremely low due to the very large crack at the end of the test. 
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Figure 4.25: Stress History for Coated Specimen, Δεmech = 0.8% 

 

 

Figure 4.26: Hysteresis Loops for Coated Specimen, Δεmech = 0.8% 
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4.3.5: Mechanical Strain Range 0.9% 

The stress history and hysteresis loops for the uncoated (Figure 4.27 and Figure 

4.28, respectively) and coated (Figure 4.29 and Figure 4.30, respectively) specimens with 

mech = 0.9% can be found below. Both tests showed a virtually identical stress 

evolution with a stress range of about 900 MPa and a stabilized mean stress of about 200 

MPa. For the uncoated specimen, the load drop was not captured before fracture, but the 

time at which crack initiation occurred could be found from the slight jump in tensile 

load before fracture. This was most likely due to the crack initiation and fracture 

occurring slightly outside of the extensometer rods. The discontinuities in both first-cycle 

hysteresis loops indicate that the hardening behavior was accentuated due to the higher 

applied strain range, so the hysteresis loops shifted upwards faster than those in the other 

tests. For this mechanical strain range, the coated specimen had a crack initiation life 152 

cycles longer than the uncoated specimen. 
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Figure 4.27: Stress History for Uncoated Specimen, Δεmech = 0.9% 

 

 

Figure 4.28: Hysteresis Loops for Uncoated Specimen, Δεmech = 0.9% 
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Figure 4.29: Stress History for Coated Specimen, Δεmech = 0.9% 

 

 

Figure 4.30: Hysteresis Loops for Coated Specimen, Δεmech = 0.9% 



 127 

SEM images from the fracture surface of the coated specimen with mech = 0.9% 

are shown below. As expected from the very small load drop before fracture, Figure 4.31 

most likely shows a large region of fast fracture along crystallographic planes. No clear 

crack initiation point in the base metal could be found. It is believed the initial crack 

occurred in many places in the coating before propagating into the alloy. The distinct 

cracking behavior in the coating on the outer surface of the specimen can be seen in 

Figure 4.32. 

 

 

Figure 4.31: SEM Image Showing Crystallographic Fracture Planes on the Fracture 

Surface of Specimen 5111AA-09-2 (Coated with Δεmech = 0.9%) 
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Figure 4.32: SEM Image Showing Cracking Behavior in the Coating of Specimen 

5111AA-09-2 (Coated with Δεmech = 0.9%) 

 

4.3.6: Discussion 

The same type of hardening behavior was seen for each test, both coated and 

uncoated. The mean stress always gradually increased to 100-200 MPa, and the stress 

ranges were essentially constant throughout the duration of the test before crack 

initiation, and as expected, the stress range was larger with a larger applied mechanical 

strain range. In all cases, the stress vs. mechanical strain hysteresis loop essentially 

shifted upwards with a slowly increasing mean stress until stabilization. Similar stress 

Cracks Initiating 

in Coating 



 129 

evolution behavior was observed by Buchholz et al. [85] for OP TMF testing between 

750-950C. When crack initiation occurred, the maximum stress began to shift towards 

zero. After extensive cracking, a sharp bend in the hysteresis loops occurred at zero load, 

and very little tensile force was applied to reach the desired positive mechanical strain. It 

appeared as though the tests with higher mechanical strain ranges were more prone to fast 

fracture before extensive crack growth occurred. 

For the mech = 0.5% tests, the life results seemed to agree with those found by 

Tamarin et al. [5] in which coated specimens experienced a severely shortened life when 

compared to uncoated specimens; the lives were at least halved, depending on the type of 

coating. However, for each of the other mechanical strain ranges, the coating seemed to 

provide a marginal improvement in TMF life of a few hundred cycles. There is a chance 

this may just be due to scatter in the data; in either case, the rest of the results seem to 

agree with those found by Wood et al. [3] and Gayda et al. [26], where no significant 

discrepancy in life was observed between coated and bare specimens. Due to the 

relatively long cycle time, more severe oxidation damage may occur in the uncoated 

specimens immediately, so the coating may provide a small positive shift in lives despite 

the early cracking behavior. However, the exact trade-off is not explicitly clear and may 

be strain-dependent, but the coating does clearly appear to provide some small benefit in 

life. More testing of both specimen types at identical strain ranges is required to 

determine the statistical variation in the lives and find if the differences observed here are 

actually significant. 
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4.4: Comparison of Results 

Figure 4.33 displays a strain-life plot of mechanical strain range vs. cycles to 

crack initiation (Ni) for the tests described above with the modified hollow specimens, 

with a comparison to the results obtained by Amaro [14] with solid specimens. All tests 

shown here were conducted under identical temperature ranges and cycle times. The life 

for the uncoated hollow specimen at mech = 0.5% was longer than that obtained for a 

solid specimen, and the life at mech = 0.9% was shorter. However, on the whole, the 

lives for both coated and uncoated specimens lie well within the range that would be 

expected based on Amaro’s data. These results indicate that there is little, if any, effect of 

the specimen geometry on TMF test results under the conditions explored. 

 

 

Figure 4.33: Comparison of TMF Lives to Previous Testing with Solid Specimens 
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Figure 4.34 displays a plot of the hollow specimen strain-life results compared to 

the typical data ranges obtained by Pratt & Whitney (P&W) for both coated and bare 

specimens of the same geometry. However, the Pratt & Whitney tests used temperatures 

of 427-1038C with a 60 second cycle time. In this case, a 50% load drop is used for the 

failure criterion; for tests in which this did not occur before fracture, the final cycle count 

Nf was plotted. For each mechanical strain range, Pratt & Whitney reported longer lives 

for the uncoated specimens, although there was a slight overlap for mech = 0.6%. Except 

for the coated specimen with mech = 0.8%, each of the other tests performed at Georgia 

Tech (GT) showed a shorter life than the corresponding Pratt & Whitney data range. 

 

 

Figure 4.34: Comparison of Hollow Specimen Data to Pratt & Whitney Data 
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Several possibilities exist for the differences in the data. Since the Georgia Tech 

testing used a longer cycle time, there was the possibility of more environmental damage 

during each cycle, which would reduce the overall life; in addition, this would make the 

coating relatively more beneficial, explaining the absence of the life advantage for 

uncoated specimens. On the other hand, the faster Pratt & Whitney cycle time may 

reduce the effects of creep and oxidation, so the early cracking of the coating would 

clearly cause the lives of coated specimens to be shorter. Testing performed by 

Andersson and Sjostrom [99] exhibited decreasing life with decreasing heating/cooling 

rates (meaning increasing cycle time), supporting this hypothesis. 

The higher minimum temperature and lower temperature range used for Georgia 

Tech testing may also cause the life differences. Not only is isothermal fatigue life 

reduced at higher temperatures, but testing observed by Loveday et al. [94], for example, 

showed an increase in life at increasing temperature ranges. Also, at all times during the 

test, the temperature for the Georgia Tech cycle would be higher. This would greatly 

increase the relative rate of oxidation, especially at the low temperature end of the cycle. 

Regardless, more testing is required to find the exact source of the TMF life 

discrepancies, but it appears as though the difference in specimen geometry, test 

machine, and operator have been eliminated. 
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CHAPTER 5 

CONCLUSIONS 

 

5.1: Overall Conclusions 

The goal of this research was to investigate the differences in thermo-mechanical 

fatigue crack initiation lives of PWA 1484 caused by specimen geometry and coating. 

Previous testing had been performed at both the MPRL of Georgia Tech (with solid 

specimens, a cycle time of 180 seconds, temperatures 550-1050°C, and a ramp 

waveform) and Pratt & Whitney (with hollow specimens of a larger cross-sectional area, 

a cycle time of 60 seconds, temperatures 427-1038°C, and a sinusoidal waveform). 

Modifications were made to the ends of the specimens and other components were 

produced to allow the buttonhead specimens to be gripped by collet grips. Hand 

calculations and finite element analysis were performed to ensure the success of the 

modified gripping mechanism. Mechanical strain-controlled TMF tests were performed 

under the previous Georgia Tech cycle conditions on the coated and uncoated modified 

hollow specimens. The results of the TMF tests were compared to the previous data 

obtained at Georgia Tech using solid specimens in order to check for internal consistency 

with varying specimen geometries. The primary conclusions of this research are as 

follows: 

 It was determined the designed gripping method would not damage the specimen 

or affect test results. 

 The modified gripping method proved to provide successful TMF results. 
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 For the lowest applied mechanical strain range, the coated specimen showed a 

40% deficit compared to the crack initiation life of the uncoated specimen. For 

each of the higher strain ranges, the coated specimens exhibited an improvement 

between 29% and 53% in life. Not enough data was obtained to say conclusively, 

but it appears the coating offers a marginal improvement in TMF life for a three 

minute cycle time. 

 For the coated specimens, as predicted, several cracks initiated in the coating 

before propagating into the base metal. 

 The test results for the hollow specimens did not exhibit significant differences 

from the trends showed by the previous solid specimen testing at Georgia Tech. 

Therefore, specimen geometry has effectively been eliminated as a primary cause 

in the differences in life results between Georgia Tech and Pratt & Whitney. 

 The hollow specimen test results still showed significant life differences from the 

Pratt & Whitney data. The root cause of the differences must come from one or 

more other possible sources. 

 

5.2: Recommendations for Future Work 

Additional tests should be run with coated and uncoated specimens of PWA 1484 

at identical mechanical strain ranges to further explore the effects of the coating and to 

determine the main causes of the TMF life differences between Georgia Tech and Pratt & 

Whitney. Some of this testing is currently ongoing. One testing variable should be 

changed at a time so that the relative effects can be observed. As the results have been 

shown to be essentially specimen-independent, these tests may be performed with the 
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smaller conventional solid round bar specimens used for previous testing to reduce cost, 

time, and effort in the preparations. The following tests are recommended: 

 The 550-1050°C, 180 second cycle with at least two of the mechanical strain 

ranges examined in this work should be used to get a better idea of the scatter in 

the TMF data and verify the marginal life benefit provided by the coating that was 

observed here. 

 Tests with a 60 second cycle (if possible) with temperatures 550-1050°C would 

isolate the effects of cycle time on the TMF behavior. 

 Tests with a 180 second cycle with temperatures 427-1038°C would isolate the 

effects of the different temperature range on the TMF behavior. 

 Tests with a 60 second cycle (if possible) with temperatures 427-1038°C should 

be run to exactly imitate the Pratt & Whitney cycle conditions. 

It is unlikely that a 60 second cycle is obtainable while conforming to ASTM standards 

without internal forced air cooling of hollow specimens. However, a longer cycle time 

could be used to identify any possible trends in TMF life based on cycle time. In addition, 

the effects of waveform (ramp vs. sine) on test results should be explored. 

Finally, additional microscopy could be conducted on the bare and coated 

specimens used for testing in this work to determine the exact damage mechanisms that 

occurred for each strain range and gain a better understanding of the relative influences of 

creep, oxidation, and fatigue. Similar microscopy should also be conducted on any future 

testing to determine the effects of cycle time, temperatures, and/or waveform on the 

damage mechanisms. 
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APPENDIX A 

PART DRAWINGS IN ENGLISH UNITS 

 

 

 

Figure A.1: Drawing of the Original Specimen with Critical Dimensions (Inches) 

 

 

Figure A.2: Drawing of the Modified Specimen with Critical Dimensions (Inches) 
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Figure A.3: Drawing of a Plug (Dimensions in Inches) 

 

 

Figure A.4: Drawing of a Collet Adapter (Dimensions in Inches) 
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Figure A.5: Drawing of Solid Cylindrical Specimens Used for Previous Testing [14] 
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APPENDIX B 

SPECIMEN QUALITY INSPECTIONS 

 

 

 

Figure B.1: Initial Specimen Quality Inspection (Page 1) 
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Figure B.2: Initial Specimen Quality Inspection (Page 2) 
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Figure B.3: Initial Specimen Quality Inspection (Page 3) 
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Figure B.4: Quality Inspection for Specimen Gripping Diameter Modification 
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APPENDIX C 

DETAILED TMF TESTING PROCEDURE 

 

 

The following lists contain the finalized testing procedure (both start-up and shut-

down) used to perform the OP TMF experiments with a ramp waveform and a three-

minute cycle. Especially important steps are emphasized in bold red lettering. This 

procedure is very specific to the test frame, computer, and software used for these tests. 

 

TMF Test Start-Up Procedure 

 Prepare specimen 

o Measure dimensions 

o Mark location for the thermocouple (1.45” from the end) 

o Spot weld thermocouple wires to the marked location (if necessary, gently 

sand off small spot to expose specimen surface) 

 Welder settings: switch to high, #1 button, knob to 1:00 position 

o Clean the ends with ethanol 

o Mark grip locations (0.65” from ends) 

 Clean grips 

o Wipe down the insides of collets with ethanol 

o Clean surfaces of collet adapters with ethanol (if necessary, first smooth 

out the surfaces with sandpaper) 

 Start up machine 

o If necessary, turn on main hydraulic pump (first turn to low, then wait 

about 30 seconds, then turn to high) 

o Open Station Manager (2013_1_9_withvirtual.cfg: 

nickel_super_alloy_9_12) 

o Set interlocks 

 Force: upper = 500 lb, lower = -500 lb 

 Displacement: upper = 0.75”, lower = 0.1” 

o Set control mode to CLC Axial 

o Turn HPU and HSM controls to low, then to high after a few seconds 

o Warm up machine  - use Basic TestWare (file: warm_up.tst) 

 CLC Axial control mode, setpoint = 0.4”, amp. = 0.28”,  

freq. = 0.5 Hz, sine waveform 

 Run for at least approximately 10 minutes 
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 Insert specimen 

o Set lower grip displacement to 0.7” (CLC Axial) 

o If necessary, unlock the upper grip, raise it up, and lock again 

o Hold 3 adapters in upper collet grip by hand, and put specimen between 

them into the upper grip 

o Tighten upper grip by hand 

o Set lower grip displacement to 0.2” (CLC Axial) 

o Put 3 adapters in lower collet grip 

o Unlock the upper grip, and lower with the specimen through the coil until 

the specimen is inserted into the lower grip 

 Make sure to maintain alignment of adapters and constantly check 

the force  meter (should read about -100 lb while upper grip is 

unlocked) 

o Lock the upper grip and reset the Program interlock 

o Tighten lower grip by hand 

o Pressurize upper and lower grips (close the release knobs, then open the 

pressure knobs) 

 Inside the box: top gauge should read about 5500-6500 psi, lower 

gauge (near knob) should read just below 40 psi 

o Set control mode to Force, set to 0 lb 

o Center coil around specimen 

o Plug thermocouple into temperature controller 

o Set interlocks 

 Force: upper = 5,000 lb, lower = -5,000 lb 

 Displacement: upper = 0.35”, lower = 0.15” 

 Attach extensometer 

o Calibrate extensometer if necessary 

o Adjust position of the support if necessary (need enough spring force) 

o Install the extensometer (using the gage block for spacing) 

 Make sure rods are centered horizontally on the specimen 

 Gently use fingers try to wiggle the rods (horizontally, vertically, 

and twisting) and make sure they don’t move 

o Attach screen to front of test fixture to shield the specimen from air 

moving within the laboratory 

o Zero strain (then record the offset) 

o Make sure extensometer is seated well (file: extensometer_check.tst) 

 Run a force control test (fully elastic range) at a faster frequency 

than during the actual test 

 Force control, setpoint = 0 lb, amp. = 2000 lb (may need to lower 

for coated specimens), freq. = 0.1 Hz, ramp waveform 

 Scope: time plot of Axial Force and Axial Strain 1 – strain should 

cross 0 at the same time as the force 

 Let it run for about 20 cycles, until satisfied 
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 Check room temperature modulus 

o Run modulus check test (file: modulus_check.tst) 

 Force control, setpoint = 0 lb, amp. = 2000 lb for uncoated 

specimens or 800 lb for coated specimens, freq. = 0.03 Hz, sine 

waveform 

(if results are unsatisfactory, increase frequency to up to 0.167 Hz) 

 Run for 3 cycles 

 Scope: X/Y plot, Y = Axial Force, X = Axial Strain 1 

o Copy data to Excel file (modulus_check.xlsx) 

o Record modulus from linear fit of stress-strain plot 

 Increase the temperature and check the modulus (at least at the minimum, mean, 

and maximum test temperatures should be checked) 

o Turn on water to grips and induction heater 

o Turn on the temperature controller and set mode to Auto 

o Turn on heater and hit start button (after letting water flow for a bit) 

o Increase temperature to the desired temperature (file: temp_set.tst) 

 Temp FDBK control mode, ramp to desired temp in 90 seconds 

 Force control, ramp to 0 lb in 90 seconds 

o Run modulus check test (file: modulus_check.tst) 

 Force control, setpoint = 0 lb, amp. = 2000 lb for uncoated 

specimens or 800 lb for coated specimens, freq. = 0.03 Hz, sine 

waveform 

(if results at temperature are unsatisfactory, increase to 0.167 Hz) 

 Run for 3 cycles 

 Scope: X/Y plot, Y = Axial Force, X = Axial Strain 1 

o Copy data to Excel file (modulus_check.xlsx) 

o Record modulus from linear fit of stress-strain plot 

o Repeat for all desired temperatures 

 Perform thermal strain fit 

o If necessary, set the temperature to the mean temperature  

(file: temp_set.tst) 

 Temp FDBK control mode, ramp to mean temp in 90 seconds 

 Force control, ramp to 0 lb in 90 seconds 

o Record the total strain, and then zero it (also record the new offset) 

o Run thermal cycling test (file: thermal_cycling.tst) 

 Adjust temperature setpoints (and tune controller if necessary) so 

that end points are correct 

 Temp FDBK control mode, freq. = 0.333 cpm, ramp waveform 

 Force control, setpoint = 0 lb, amp. = 0 lb, freq. = 0.333 cpm 

 Perform about 10 cycles to ensure a stable hysteresis loop 

 Scope: X/Y plot, Y = TC_CONTROL, X = Axial Strain 1 

o Copy data to Excel file (TC_DATA_MATLAB.xlsx) 

o Run MATLAB code (ThermalStrainFourier.m – also need Fseries.m and 

Fseriesval.m to be present in the folder) 

o Copy parameters into Calculation Editor (must be in Configuration mode) 
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o Check the accuracy of the fit (file: thermal_fit_check.tst) 

 Temp FDBK control mode, freq. = 0.333 cpm, ramp waveform 

 MechanicalStrain control, setpoint = 0 in/in, amp. = 0 lb,  

freq. = 0.333 cpm 

 Run for 1-2 cycles and examine the resulting forces 

 Calculate upper/lower limits of allowable force 

 If necessary, make adjustments and repeat thermal strain fit 

 Start test 

o Set interlocks 

 Force: determined by test loading conditions 

(usually upper = 12,000 lb, lower = -6,000 lb is good) 

 Displacement: upper = 0.35”, lower = 0.15” 

 Strain: determined by test loading conditions 

(usually upper = 1.3%, lower = -1.3% is good) 

o Open Multipurpose Elite and edit test procedure  

(file: MechStr _OP_TMF _2) 

 Set Tmin, Tmax, MechStrMin, MechStrMax 

 Check other variables, make sure the desired waveform is correct 

o Create new test run/specimen 

o Hit Run button 

o Scope: X/Y plot, Y1 = Axial Force, Y2 = TC_CONTROL, with X1 and 

X2 = Axial MechanicalStrain 

 

 

 

 

 

 

 

 

 

 

 

 



 147 

Shut-Down Procedure (After Test Completion) 

 Stop the procedure (unlock) in Multipurpose Elite 

 Export the test data 

 Set temperature back to room temperature (file: temp_set.tst) 

o Temp FDBK control mode, ramp to 0 in 90 seconds 

o Force control, ramp to 0 lb in 90 seconds 

(if specimen has fractured – use CLC Axial control mode with current 

displacement) 

 Turn off induction heater and wait for specimen to cool 

 Set control mode to CLC Axial 

 Set interlocks 

o Force: upper = 500 lb, lower = -500 lb 

o Displacement: upper = 0.75”, lower = 0.1” 

 Remove extensometer 

 If the hydraulics are off, turn HPU and HSM controls to low, then to high 

o May need to change or override certain interlocks 

 Turn off pressure to lower grip (close pressure knob, then open release knob) 

 Loosen lower grip by hand 

 Unlock upper grip and raise it as much as necessary 

 Lock upper grip 

 Turn off pressure to upper grip 

 Loosen upper grip by hand 

 Remove specimen through the coil 

 Remove adapters from the collets 

 Turn HPU and HSM controls off to turn off the machine 

 Turn off water to grips and induction heater 

 Turn off the main pump if no other tests are running in the lab 



 148 

APPENDIX D 

TEMPERATURE-DEPENDENT MODULUS DATA 

 

 

Table D.1 contains the modulus of each specimen used for testing that was 

measured at room temperature and within the range of test temperatures. The data is 

shown graphically in Figure D.1, where it is also compared to published data for PWA 

1484 [103]. The experimentally measured moduli match up well to the published values, 

indicating that strain, force, and temperature measurement and control were all accurate 

during TMF testing. 

 

Table D.1: Temperature-Dependent Modulus Data for All Specimens 

Specimen 

Modulus at Temperature (GPa) 

20°C 427°C 550°C 732°C 800°C 1038°C 1050°C 

5111AA-02-1 133.51 - - - 102.18 - - 

5111AA-03-1 126.66 112.30 107.66 97.18 94.10 75.79 74.65 

5111AA-03-2 123.07 - - - 96.31 - - 

5111AA-04-2 130.01 - - - 98.53 - - 

5111AA-06-1 130.39 - - - 93.36 - - 

5111AA-06-2 129.93 114.73 110.29 - 97.25 - 77.86 

5111AA-07-1 132.49 118.58 113.03 - 98.85 - 78.31 

5111AA-08-1 130.94 - 109.88 - 96.25 - 74.52 

5111AA-08-2 136.39 - - - 97.81 - - 

5111AA-09-2 135.70 - - - 99.17 - - 
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Figure D.1: Measured Modulus as a Function of Temperature for All Specimens, 

Compared to Published Data 
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