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SUMMARY 
 

Making fusion a commercial power source has been a goal of scientists and 

engineers around the globe for more than sixty years, but a commercial fusion reactor 

remains elusive to this day. Nevertheless, many scientific and technological 

breakthroughs have been made during this time, which have brought commercial fusion 

power closer to a reality than it has ever been. A consortium of several countries, 

including the United States, are currently constructing ITER, a large fusion research 

reactor that should, for the first time, produce more power than the amount of input 

power required to initiate and sustain fusion. However, many technological hurdles still 

remain before a viable commercial fusion power plant can be constructed, including the 

development of plasma-facing components with long lifetimes that can survive the harsh 

environment inside the reactor. Among these components, the divertor, which maintains 

the purity of the plasma by removing fusion byproducts from the reactor, must be able to 

accommodate very large incident heat fluxes of at least 10 MW/m2 during normal 

operation. 

Modular helium-cooled tungsten divertors are one of the leading designs for a 

commercial fusion reactor. Helium is a desirable coolant because it is chemically inert, 

compatible with other reactor materials, has a low neutron cross section, and can be 

used at high temperatures to achieve higher thermodynamic efficiencies. Tungsten is 

desirable because of its high melting point, high thermal conductivity, low sputtering 

yield, and low erosion yield. A number of different helium-cooled divertor designs have 

been proposed including the modular He-cooled divertor concept with pin array (HEMP), 

the modular He-cooled divertor concept with multiple jet-cooling (HEMJ), and the helium-

cooled flat plate (HCFP). These three designs typically operate with helium coolant inlet 

temperatures of 600 °C and inlet pressures of 10 MPa. 
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There have been few experiments to evaluate these designs at prototypical 

conditions because such experiments are both challenging and resource-intensive. An 

alternative, more economical approach for experimentally evaluating different designs 

exploits dynamic similarity. Here, geometrically similar mockups of a single divertor 

module are tested using coolants at lower temperatures and pressures. The correlations 

for the nondimensional heat transfer coefficient, or Nusselt number Nu , and 

nondimensional pressure drop, or loss coefficient, from these experiments can then be 

extrapolated to prototypical conditions to predict the maximum incident heat flux that can 

be accommodated by the divertor and the coolant pumping power required under the 

proposed divertor operating conditions. Dynamically similar experiments were therefore 

performed on an HEMP-like divertor with helium and argon at inlet temperatures close to 

room temperature, inlet pressures below 1.4 MPa, and incident heat fluxes up to 2 

MW/m2. The results are used to predict the maximum heat flux that the divertor can 

accommodate, and the pumping power as a fraction of incident thermal power, for a 

given maximum tungsten temperature. The Nu  is assumed to be a function of the 

nondimensional mass flow rate, or Reynolds number, as well as the thermal conductivity 

ratio which accounts for variations in the amount of conduction heat transfer through the 

walls of the divertor module. Numerical simulations of the HCFP divertor, using a 

commercial CFD software package, are performed to investigate how the thermal 

conductivity ratio affects predictions for the maximum heat flux obtained in previous 

studies. Finally, a helium loop is constructed and used to perform dynamically similar 

experiments on an HEMJ module at inlet temperatures as high as 300 °C, inlet 

pressures of 10 MPa, and incident heat fluxes as great as 4.9 MW/m2. The correlations 

generated from this work can be used in system codes to determine optimal designs and 

operating conditions for a variety of fusion reactor designs. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction and Motivation 

The world‘s appetite for energy is perpetually growing, and major advances in 

energy technology are required to meet the challenges that accompany such growth. 

According to projections in the 2013 International Energy Outlook produced by the 

Energy Information Agency [1], worldwide energy consumption is expected to increase 

by 56% from 2010 to 2040, as illustrated in Figure 1. While continuing improvements in 

energy efficiency should help to dampen this growth, new sources of energy are also 

surely necessary to meet the demand, with the greatest needs in increasing electricity 

generation. However, in an era fraught with concern over the production of greenhouse 

gases from traditional fossil-fuel sources and the safety of nuclear fission power plants in 

the wake of the Fukushima Daiichi crisis, new technologies are desired to generate the 

future‘s electricity. Of course, other technologies, such as renewables, already exist that 

address these specific concerns, but like all forms of electricity generation they too have 

their own shortcomings (e.g. intermittency, geographical availability, etc.) that limit their 

potential contribution to the electrical grid.  

While no single technology is able to completely meet the future‘s energy needs, 

electricity from fusion offers a promising alternative to many of the conventional 

methods. Fusion directly addresses many of the deficiencies inherent in other types of 

electricity generation including greenhouse emissions, safety, and intermittency. 

Furthermore, fusion provides a means to keep pace with staggering growth for energy 

consumption with a single station possessing the ability to produce electricity on par 

with, or exceeding, existing fission power plants. 



 

2 
 

 

Figure 1. World energy consumption from 1990-2040. Data collected from EIA [1] 

Nuclear fusion has long been studied as a potential source of commercial power 

generation due to the numerous advantages it possesses over current forms of 

electricity generation. First, greenhouse gases and other hazardous pollutants are not 

produced in a fusion reactor as the primary byproduct is inert helium. Second, a single 

fusion plant has the potential to produce large quantities of consistent base load 

electricity akin to its fission cousins, thus addressing many intermittency problems 

associated with renewables like wind and solar. However, unlike a fission power plant, 

the products from a fusion reaction are not radioactive (the reactor itself does become 

radioactive during its lifetime, but it is significantly less hazardous than waste from 

fission plants). In addition, the low volume of fuel present inside a fusion reactor is small 

enough that the risk of a catastrophic runaway reaction is nonexistent. Finally, the most 

common fuel for a fusion reactor are hydrogen isotopes, which can be harvested or 

created from naturally occurring, nearly limitless sources, such as the oceans, with 

proven technology. 
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Despite these advantages, a working, commercially viable demonstration plant 

has still eluded scientists and engineers for over 60 years. Nevertheless, a successful 

demonstration plant could usher in an era of abundant clean energy to meet tomorrow‘s 

demands. Thus, significant research continues to be performed on fusion power and 

fusion related-projects. Many designs for fusion power plants have been proposed and 

explored over the decades, and two branches have emerged as viable candidates, 

appropriately named magnetic confinement fusion energy (MFE) and inertial 

confinement fusion energy (IFE). While both are promising technologies, MFE is the 

subject of the work herein.  

The path to building a commercial MFE reactor is fraught with many challenges 

that extend beyond the plasma physics. A number of technological hurdles remain 

primarily centered around the interaction between the hot plasma inside the reactor and 

the surrounding materials, and this is the focus of a significant amount of active 

research. The extreme temperatures and radiation inside the vessel severely limit the 

number of suitable materials that comprise the reactor, and many components inside the 

reactor also require very long lifetimes to be economical. 

Specifically, a particular component of many modern tokamak MFE designs, the 

divertor, whose function is to remove byproducts of the fusion reaction from the reactor, 

will be studied. Various divertor designs have been proposed, but this work will focus on 

the most promising concept at present for future commercial fusion reactors: modular 

helium-cooled tungsten divertors. A more detailed description of modular helium-cooled 

tungsten divertors will be provided later in this chapter.  

As it is imperative to have a firm understanding of the fundamental concepts in 

nuclear fusion, the remainder of this chapter will be devoted to introducing the reader to 

many basic principles and subjects. First, a brief introduction to fusion energy will be 
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discussed highlighting some of the essential concepts. Next, the basic MFE designs will 

be introduced including tokamaks and stellarators. Finally, the technologies associated 

with removing the byproducts of the fusion reaction will be reviewed with emphasis given 

to the divertor. 

1.2 Fusion Energy 

In the simplest terms, nuclear fusion is the process by which two lighter nuclei 

fuse into a single heavier nucleus. If the appropriate light nuclei undergo fusion, a 

significant amount of energy is released in the process. This is best summarized in the 

following chart illustrating the binding energy per nucleon of each element shown in 

Figure 2. 

 

Figure 2. Binding energy per nucleon for each element [2] 

For two nuclei that fuse with lower binding energy per nucleon than the resulting 

fused nucleus, energy will be released. That is, the resulting products of that fusion 

reaction will have a lower mass than the reactants, and the difference is released as 



 

5 
 

energy. Typically this occurs for nuclei with atomic numbers less than Fe where the 

binding energy curves peaks (although Ni-62 has the highest binding energy per 

nucleon), but fusion can occur in heavier nuclei if energy is added to the reaction. Fusion 

is the opposite of nuclear fission that is utilized in today‘s nuclear power plants. In 

fission, nuclei with atomic numbers greater than Fe can typically be split into two lighter 

nuclei to release energy. The difference in the binding energy directly correlates to the 

yield from each respective reaction type. As seen in Figure 2, the yield from fusion 

reactions with low atomic numbers can significantly exceed the yield from fission 

reactions. Particularly, the fusion of two hydrogen nuclei into a helium nucleus is of the 

most interest due to its exceptionally large yield. 

For nuclear fusion to occur, the nuclei must be brought within close proximity of 

one another in order for the strong nuclear force to overcome the electromagnetic 

repulsion of the positively charged protons. The energy required to bring nuclei close 

enough is referred to as the Coulomb barrier. This barrier is smallest for hydrogen 

isotopes with an atomic number of only one, and this fact coupled with the potential 

energy yield of helium fusion seen in Figure 2 makes them ideally suited for a fusion 

reactor. Using classical mechanics, the kinetic energy required to exceed the Coulomb 

barrier is far greater than what is realistically feasible for a reactor, but when factoring in 

quantum mechanics, a particle‘s probabilistic ability to tunnel through barriers 

significantly lowers the energy burden [3].  

The sun is the best example of a fusion reactor. Inside of the sun, a complex 

fusion chain reaction occurs known as the proton-proton chain reaction with a yield of 

approximately 25 MeV [4]. To initiate and sustain a fusion chain reaction, the sun takes 

advantage of its immense gravitational force to create large plasma densities at its core. 

There, nuclei can possess enough thermal energy to overcome the Coulomb barrier 
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while the gravitational pull maintains confinement of the plasma. However, for a 

terrestrial nuclear reactor, gravitation confinement of the plasma is not feasible, and an 

alternative means must be used. As a result, these less effective means of confinement 

result in plasma densities significantly smaller than stellar reactors requiring larger 

temperatures in order to achieve a self-sustaining fusion reaction (~100 million K 

terrestrially versus ~15 million K in the sun [3]). Magnetic and inertial confinement are 

the two most commonly used techniques. 

Each specific fusion reaction requires different temperatures in order to 

overcome the Coulomb barrier. Obviously, a fusion reaction with a large fusion cross 

section (reaction probability) at lower energies is desired. Other criteria are also used in 

selecting a potential candidate reaction such as energy yield and the ability to remove 

energy from the plasma. A promising example of a reaction is the fusion of deuterium 

and tritium (D-T), and its reaction equation is as follows: 

 MeVnHeTD 6.171

0

4

2

3

1

2

1   (1) 

The D-T reaction requires relatively low average thermal energies for nucleons of 

~10 keV [3] with cross sections well above other candidate reactions for energies 

exceeding 100 keV. This is shown schematically in Figure 3. In addition, the resulting 

neutrons provide a means to extract energy from the plasma. Neutrons are created with 

14.1 MeV of kinetic energy and are unaffected by magnetic fields. Therefore, they can 

impinge on surrounding surfaces. While this is damaging to the surfaces, the thermal 

energy imparted by the neutrons as they collide with the surface can then be extracted 

and used to generate electricity. As for natural deposits of the fuel, deuterium can be 

found in ocean water using the same technology commonly used to extract heavy water 

for fission reactors. Tritium is not found in nature due to its short half-life of 12.3 years, 
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but can be bred from neutron irradiation of the naturally abundant lithium isotopes Li7

3  

and Li6

3  
[5].  

 

Figure 3. Fusion cross sections as a function of deuterium energy for a deuterium-tritium 
(DT), deuterium-deuterium (DD), and a deuterium-helium-3 (D3He) fusion reaction [5] 

1.3 Magnetic Confinement Fusion Energy 

Numerous designs have been proposed as a means to confine the plasma inside 

a fusion reactor. As stated earlier, this work focuses on MFE designs as opposed to IFE 

designs. For MFE reactors, two types have historically been pursued: the stellarator and 

the tokamak. The stellarator was an American concept first proposed by Lyman Spitzer 

of Princeton in the early 1950s [5]. While promising as a future design and still actively 

researched, the stellarator largely fell out of favor when Soviet successes with tokamaks 

were confirmed by British scientists in 1968 [5]. As a result, most of the recent fusion 

facilities built since that time have been tokamaks.  

Although the stellarator and tokamak share a similar fundamental design using 

external magnetic coils to confine the plasma, the tokamak features a simpler physical 

geometry. An example of a tokamak design, ITER, is shown in Figure 4. The plasma is 
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confined in a D-shaped torus using toroidal and poloidal magnetic fields generated from 

superconducting magnets and electric currents that encompass the torus. The charged 

particles in the plasma spiral about the toroidal magnetic field lines that encircle the 

torus, but the curvature of the torus itself leads to a perpendicular drift of the particles 

that will ultimately result in the particles striking the walls of the reactors. To correct for 

this drift, a poloidal magnetic field is added by driving an electric current through the 

plasma that causes the toroidal field lines to spiral in the torus. This significantly 

improves the confinement time of the plasma and also acts to ‗pinch‘ the plasma away 

from the walls of the torus. Poloidal magnets are also commonly used to aid in creating 

the poloidal field. Typically, the toroidal magnetic field is about 10 times stronger than 

the poloidal field [5]. For stellarators, the winding of the toroidal magnetic field lines is 

created by either winding the torus or the toroidal coils themselves. 

 

Figure 4. An example of a tokamak fusion reactor design, ITER. Currently under 
construction in Cadarache, France [6] 

In addition to confinement, the plasma must be heated to a high enough 

temperature to provide the ions and electrons enough energy to fuse, and this is 
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accomplished by a number of different methods. First, in addition to inducing a poloidal 

field, the electric current also acts to heat the plasma. However, this is not sufficient to 

heat the plasma fully as the electrical resistance of the plasma falls with increasing 

temperature and the plasma heating must be supplemented by other methods [5]. One 

such method is known as neutral beam injection where neutral deuterium atoms, 

unaffected by the magnetic fields, are propelled into the plasma at high velocity. Another 

method is radiofrequency heating where radio waves are emitted into the plasma at a 

precise frequency that the plasma can absorb. Both of these techniques will be used for 

ITER [6]. Once the plasma reaches a desired temperature, D-T fusion reactions begin to 

occur in sufficient numbers where the energy released in the alpha particle (neutrons 

mostly escape the plasma) is sufficient to maintain the plasma temperature and further 

fusion reactions. This point is commonly referred to as ‗ignition‘ and is the ideal 

operating point as no external heating is required [5]. 

As the fusion reactions begin, 14.1 MeV neutrons, unaffected by the magnetic 

field, bombard the walls of the torus depositing their energy as they slow. This thermal 

energy is then removed with a coolant to drive turbines and ultimately to generate 

electricity. The neutron bombardment is also potentially used as a means to breed 

tritium from lithium, and future commercial reactors are designed to incorporate liquid 

lithium near the walls (in conjunction with Be or Pb as a neutron multiplier). The helium 

that is created inside the plasma by the fusion reaction must also be removed after it 

imparts its energy to the plasma since it will not undergo fusion and hinders further D-T 

reactions. The removal of the helium ‗ash‘ is then accomplished by altering the outer 

magnetic field lines such that particles can be removed from the plasma using either 

limiters or divertors. 
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1.4 Divertors 

In MFE reactors, helium and other impurities (eroded particles from the walls of 

the vessel or other gaseous atoms) must be removed from the plasma such that the 

fusion reaction is not hindered and ignition can occur. The two most common devices to 

perform this function are divertors and limiters. Both devices are positioned inside the 

vacuum chamber such that the outer most layers of the confined plasma, referred to as 

the scrape-off-layer (SOL), impinge on an actively cooled surface. This is shown in 

Figure 5. As a result, heat fluxes can reach extraordinarily high values on these 

surfaces, of O(10 MW/m2). Historically, limiters have been used on older MFE reactors 

as the primary means to remove helium and impurities from the plasma primarily due to 

their smaller size and simplicity; however, limiters typically resulted in considerable 

impurities sputtered into the plasma volume [3]. As shown in Figure 5, limiters extend up 

to the separatrix that divides closed plasma volume from the SOL such that any 

sputtered or eroded ions are injected directly into the plasma volume. On the other hand, 

divertors are positioned away from the closed magnetic field lines where sputtered ions 

must travel a distance before reaching the closed plasma volume. Furthermore, the 

discovery of the high-confinement regime (referred to as H-mode) with divertors in the 

ASDEX experiment which effectively doubles the total plasma confinement time, led to 

the mass adoption of divertors in modern tokamaks [3]. When discussing divertors and 

limiters, it is important to emphasize that these terms include the impingement surfaces 

as well as required components necessary to cool and structurally house the surfaces.  
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Figure 5. A schematic of the different magnetic field lines using a limiter (left) and a 
divertor (right) [7] 

In using a divertor inside a fusion reactor, the outer magnetic field lines are 

altered such that the SOL resides in open magnetic field lines that directly impinge on 

the divertor‘s plasma facing surface or target plates. That is, particles that drift across 

the separatrix (the boundary separating the SOL from the confined plasma) are 

immediately directed to the target plates. In this manner, particles will collide with the 

target plate and become embedded in the material or scattered at significantly cooler 

temperatures to the surrounding region (but still outside of the separatrix in H-mode). 

The cooler ions recombine with electrons, and vacuum pumps can then be used to 

remove the neutral gas of hydrogen isotopes, helium, and other impurities to desired 

levels [8]. A more detailed depiction of the magnetic field lines for a divertor configuration 

is shown in Figure 6. 
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Figure 6. Cutaway of the plasma in a reactor vessel with a divertor configuration [7] 

Heat fluxes parallel to field lines in the SOL can exceed 500 MW/m2 and must be 

reduced to acceptable levels before impinging on the target plates of the divertor [9]. The 

values commonly cited and used as design criteria for thermal performance are 10 

MW/m2 for steady-state conditions [3,8,9] and 20 MW/m2 for transient events [9]. The 

reduction in the heat flux is accomplished by a number of methods including but not 

limited to: altering the orientation of the target plates, distributing the heat flux over a 

large area, and using the cooler gas surrounding the target plates for preliminary 

collisions to decrease the kinetic energy of the incident particles [9]. Despite these 

methods, true steady-state heat fluxes for commercial sized reactors have not been 

experimentally measured, and transient heat fluxes could well exceed 10 MW/m2 for 

short durations during off-normal events such as edge localized modes (ELMs). Such 

events are avoided or minimized as it would likely result in significant erosion or melting 

of the target plates. 

Divertor designs can vary significantly based upon their material composition, 

coolant, and geometry. Divertors can also be designed to exist at the top and bottom of 
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a reactor vessel to improve performance. Such designs have been implemented in the 

DIII-D divertor, as well as in a number of ARIES studies. The extreme conditions at the 

divertor target plates have narrowed the range of possible wall materials down 

significantly. Any divertor material must be able to withstand extremely high 

temperatures and irradiation without significant activation or degradation of its material 

properties. In addition, materials with low atomic numbers are desired since any eroded 

particles (sputtering, chemical erosion, etc.) will reduce plasma temperatures through 

Bremsstrahlung radiation. The larger the atomic number of the impurities, the more 

significant the contribution is to radiation losses (losses are proportional to the atomic 

number squared, Z2) [3,5].  

The two most commonly cited materials are carbon fiber composites (CFCs) and 

tungsten. CFCs are advantageous primarily due to their good thermal and mechanical 

properties, inability to melt at high temperatures, and low atomic number. However, one 

of the most serious concerns about using CFCs is their chemical affinity to hydrogen 

isotopes, especially tritium (referred to as chemical erosion). Chemical erosion of carbon 

based surfaces by tritium will subsequently redeposit in other locations inside the vessel 

as hydrocarbons or contaminate the plasma with carbon. Tritium deposition also 

presents a challenge in maintaining a sufficient tritium inventory in the plasma since 

tritium is limited in supply [9]. Newer, larger MFE reactors, such as ITER, specify very 

low tritium retention rates on the plasma facing surfaces of approximately 0.1% of the 

total injected tritium during normal operation [9]. Such targets have yet to be achieved 

experimentally [9]. As an alternative material, tungsten has been proposed for the first 

wall as it possesses excellent thermo-mechanical properties with lower erosion rates for 

a longer expected lifetime [6]. Its high atomic number requires that the impurity 

concentrations in the plasma must not exceed 10-4 for ignition, but high sputtering 
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thresholds mitigate this concern [9]. However, the use of tungsten requires minimal 

occurrences of large heat flux transients in the plasma (e.g. ELMs) that could result in 

surface melting or sublimation which contaminate the plasma [3]. Despite this concern, 

tungsten is viewed as an extremely viable first wall material for divertors in future 

commercial fusion reactors [3]. In fact, ITER, which had originally proposed to test both a 

CFC and a tungsten divertor, has recently discarded its CFC divertor in favor of a 

tungsten design [6]. 

For the divertor coolant, helium cooling is generally regarded as a more viable 

solution than water in commercial reactors for several reasons. First, He possesses a 

very high thermal conductivity among gas coolants and has been widely studied as a 

high heat flux coolant. Second, as it is desired to use the same coolant throughout the 

reactor for simplicity, helium is more compatible in areas where materials such as Li, Be, 

or Pb are present (for tritium breeding). Furthermore, helium does not undergo a phase 

change which allows for cooling at higher temperatures. Since a significant fraction of 

the total thermal energy output of the reactor is imparted on the divertor surface (~10-

15% [10,11,12]), it is critical to extract that energy for electricity production and high 

temperature helium is more thermodynamically efficient. Finally, large neutron fluences 

are expected in commercial reactors significantly larger than those encountered in 

fission reactors, and helium has very low neutron cross sections. 

Divertors for large commercial reactors will likely be divided into smaller units that 

will be able to be removed from the vessel as needed to repair damage that may occur 

during operation. Since the reactor itself will be radioactive due to the neutron 

bombardment of its surfaces and the deposition of tritium on surfaces, remote handling 

will be required [5]. The ITER divertor has been segmented into a series of 54 

removable cassettes as shown in Figure 7.  
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Figure 7. An ITER divertor cassette [6] 

Large temperature gradients inside divertors also pose a structural risk due to the 

significant resultant thermal stresses. While the divertor target plate is not a structural 

element, other components that contain the coolant or support the divertor must be 

ductile and capable of withstanding the thermal stresses without failure during both 

steady-state operation and transients. To mitigate these problems, many commercial 

fusion divertor designs have resorted to modular designs [3], which typically require 

thousands of modular units to completely cover the divertor surface with an area O(100 

m2). 

In short, modular helium-cooled tungsten divertors are some of the most 

promising divertor designs for future commercial fusion reactors and are therefore the 

subject of the research herein. This research will focus on the thermal performance of 

three specific designs: the modular He-cooled divertor concept with pin array (HEMP), 

the modular He-cooled divertor concept with multiple-jet-cooling (HEMJ), and the 

helium-cooled flat plate (HCFP), and will complement and extend the existing work that 

has been presented in the literature. Dynamically similar experiments are performed to 
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evaluate each design, and the results are extrapolated to determine the thermal 

performance under prototypical conditions. From these extrapolations, generalized 

maximum heat flux correlations based upon experimental data can be developed and 

used within system codes to aid in finding optimal designs and operating conditions for 

future commercial fusion reactors.  

The experimental procedure is as follows. First, experiments are conducted on 

mock-ups of the divertor designs using air, helium, and argon as a coolant at low 

temperatures and pressures. Then, temperatures measured with thermocouples 

embedded in these mock-ups, or test sections, are used to calculate Nusselt number 

correlations over a range of Reynolds numbers. By taking advantage of dynamic 

similarity, the Nusselt number correlations are used to predict the maximum heat flux a 

design can endure using prototypical materials and coolant pressures and temperatures. 

The measured pressure drop across the test section is used to generate loss coefficient 

correlations that can also predict the prototypical pressure drop.  

Numerical simulations of the experiments using a commercially available 

computational fluid dynamics (CFD) software package, ANSYS FLUENT® 14.0, are 

performed to evaluate the capability of the software to accurately model the divertor. The 

simulations are also used to investigate several important assumptions in the creation of 

the Nusselt number correlations. Finally, a helium loop is constructed that circulates 

helium at temperatures and pressures near prototypical conditions under incident heat 

fluxes of approximately half the prototypical values. This loop is used to conduct further 

dynamically similar experiments at nearly prototypical heat fluxes and elevated inlet 

temperatures to enhance confidence in the extrapolations that were developed at lower 

incident heat fluxes and at lower coolant temperatures and pressures. The construction 



 

17 
 

of this helium loop will also support future divertor research beyond the scope of this 

thesis. 

The remainder of this thesis is divided as follows. Chapter 2 consists of a 

literature review of this topic focusing on: various heat transfer enhancements used to 

achieve high cooling performance, current modular helium-cooled tungsten divertor 

designs, existing experimental facilities and helium loops, and previous CFD simulations 

and the corresponding turbulence and heat transfer models utilized within. Chapter 3 

presents dynamically similar experiments of a HEMP-like divertor with and without fins 

conducted at low pressure and low temperature using helium and argon as coolants. 

Chapter 4 describes CFD simulations of the experiments in Chapter 3 and of previous 

dynamically similar experiments on the HCFP divertor using ANSYS FLUENT® 14.0. 

Chapter 5 extrapolates the results presented in Chapters 3 and 4 to prototypical 

conditions for both the HEMP-like divertor with and without fins and the HCFP divertor. 

Chapter 6 details the helium loop and presents dynamically similar experiments on the 

HEMJ divertor performed with the helium loop at temperatures, pressures, and incident 

heat fluxes closer to prototypical conditions. Finally, Chapter 7 summarizes the 

conclusions of this thesis and makes recommendations for future work. 
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CHAPTER 2: LITERATURE REVIEW 

The technology required to actively cool heat fluxes of 10 MW/m2 is not a simple 

matter, and the divertor designs that have been devised thus far utilize many advanced 

concepts. The cooling requirements alone present a challenge and are further 

complicated by the restriction of materials and coolants due to the high neutron fluences 

inside a fusion reactor. However, scientists and engineers from many different countries 

have managed to propose several possible solutions each at varying stages of 

development. Some of the most popular designs being actively researched include 

modular helium-cooled tungsten divertors for the variety of advantages they hold over 

alternative candidates as described in Chapter 1. Accordingly, these divertor designs are 

the subject of this work.  

Of the modular helium-cooled tungsten divertors that have been proposed, this 

work will focus on three designs: the He-cooled modular divertor with multiple-jet cooling 

(HEMJ), the He-cooled modular divertor design with integrated pin array (HEMP), and 

the He-cooled flat plate divertor (HCFP). The HEMJ and HEMP designs are commonly 

referred to as ‗finger-type‘ divertors, while the HCFP is appropriately called a ‗plate-type‘ 

divertor. In the following sections each of the designs will be discussed further in addition 

to briefly addressing one other candidate. Recently, research has also been performed 

on the integration of the HCFP and HEMJ designs to take advantage of the favorable 

characteristics of each and this integrated design will also be included. 

It has been clear from the early stages of divertor development that in order to 

cool up to 10 MW/m2 on the divertor surface using helium, it would be necessary to 

incorporate additional techniques to enhance the thermal performance including: cooling 

fins, jet impingement, porous media, etc. Each modular helium-cooled tungsten divertor 

uses one or more of these techniques to achieve the required heat transfer coefficients. 
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Information regarding the advantages and disadvantages each of these heat transfer 

techniques will be discussed further in Section 2.1. Experimental facilities that have been 

constructed to test these divertor designs at or near prototypical conditions will also be 

included together with their capabilities and limitations. Finally, relevant numerical 

simulations that have been performed using commercial CFD codes will be reviewed, 

with emphasis on the relevant turbulence models that have shown promise for helium-

cooled divertors. 

2.1 Heat Transfer Enhancements 

2.1.1 Cooling Fins 

Cooling fins, sometimes referred to as extended surfaces, have long been used 

as a means to enhance the heat transfer in gas cooling applications. A cooling fin is 

simply an extension of an otherwise level surface that increases the surface area over 

which convection occurs. They can take many shapes such as an array pins or ridges or 

as more complex designs as depicted in Figure 8. Cooling fins find use in many 

everyday objects including electronics and radiators and can be machined directly into, 

or attached to, the appropriate surface. 

 

Figure 8. Examples of some complex fin designs. [13] 
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As described in these references [13,14,15], the temperatures along the length of 

the fin decrease from the base fin temperature depending on the fin material and the 

coolant. Ideally, a fin would have an infinite thermal conductivity to maximize the 

temperature difference between the coolant and the surface for as large an area as 

possible, so fins are typically made of highly conductive materials to maintain as high a 

temperature difference as possible. The length of the fin would also ideally be infinite, 

but as the temperature decreases along the length of the fin, the value of this additional 

area is reduced. In addition, there are often practical considerations that limit the size of 

fins such as the clearance between the surface and other components. 

A useful metric for characterizing the thermal performance of cooling fins is the 

fin effectiveness 
f . As stated in Incropera and DeWitt [15], 

f  is the ratio of the fin 

heat transfer rate 
fq  to the heat transfer rate that would exist without the fin. This is 

given as follows: 

 
 


TThA

q

cc

f

f  (2) 

where h  is the heat transfer coefficient, cA  is the area of the cooled surface without fins, 

cT  is the cooled surface temperature, and 
T  is the ambient coolant temperature. As a 

rule of thumb, it is desirable to have a fin effectiveness greater than or equal to 2 [15], 

while a fin effectiveness less than one indicates that the fin is acting as insulation and 

hindering heat transfer [13]. 

 To evaluate the fin effectiveness, it is critical to define the tip condition of the fins. 

For the purposes herein, it is useful to evaluate fins with adiabatic fins tips with constant 

cross sectional areas along its length. For fins of this type, an 1D analytical solution for 

fin heat transfer rate is defined as follows [15]: 
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where P  is the perimeter of the fin cross section, 
fk  is the thermal conductivity of the 

fin, 
fA is the cross sectional area of the fin, and 

fL  is the length of the fin. Substituting 

into the fin effectiveness equation ultimately gives: 

  f

f

f L
h

k
 tanh    where    

ff Ak

hP
  (4) 

Another useful metric for assessing the performance of cooling fins is the fin 

efficiency  . The fin efficiency is a measure of the actual heat transfer rate from the fin 

compared to the maximum amount of heat that could be transferred to the coolant 

assuming the fin was entirely at the base temperature or at an infinite length. A value of 

one indicates that the maximum amount of heat is being transferred from the additional 

area while a value of zero indicates that there is none. Again, for adiabatic fins tips (the 

most relevant in this work), the fin efficiency is as follows: 
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  (5) 

Based on this equation for the fin efficiency, it is important to notice that as the 

heat transfer coefficient increases, the fin efficiency decreases. That is, the better the 

fluid is able to cool, the less of the extended area of the fin will be at the higher base 

temperature, and so there is less benefit in having larger surface area. This is largely 

why fins are used in gas cooling, as opposed to liquid cooling, since gas cooling usually 

has lower heat transfer coefficients [15]. While helium is a gas, its high thermal 

conductivity usually gives relatively high heat transfer coefficients compared with other 

gasses. Therefore, it is critical to evaluate the benefit of using fins with helium-cooling so 

that it may be accurately weighed against the additional cost of manufacturing the fins 

and resulting pressure drop. Combining fins with other techniques to increase the heat 

transfer coefficient such as jet impingement may further reduce the benefit, if any, 
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although jet impingement has been combined with cooling fins in air cooling applications 

[16]. 

Determining the appropriate length for a fin can be done by comparing the ratio 

of heat transfer from a finite fin with an adiabatic fin tip to an infinitely long fin under the 

same conditions [13]. This ratio will simplify to: 

  f

f

Lf
L

q

q
tanh

inf,

,
  (6) 

The closer this ratio is to one, the closer to the maximum amount of heat that can 

be extracted from the fin for a given  . For fL 2.5, already 99% of the heat is 

transferred, compared with that for an infinitely long fin. Further increases in length are 

therefore not justified. 

In addition to increasing the surface area of a cooled surface, cooling fins also 

help promote turbulence and mixing in the coolant. However, the arrangement of the fins 

will of course affect the benefit from mixing. For example, in an array of pin fins in cross 

flow, which can be approximated by tube banks, staggering successive rows of fins will 

improve the heat transfer coefficient [15]. Typically, the heat transfer coefficient can be 

improved until approximately the fifth row, at which point adding further rows will not 

affect the turbulence. Furthermore, additional rows are not beneficial since the 

temperature of the coolant is progressively heated as it passes from one row to the next 

thereby decreasing the temperature difference between the coolant and the fin. 

Hermsmeyer and Malang [17] were the first to propose the use of pin fins in 

helium-cooled tungsten divertors specifying fins with a diameter of 1 mm, pitch of 1.2 

mm, and height of 2 mm in a hexagonal array as having the best performance. Other 

more complicated pin fin arrangements were later proposed for the HEMP design 
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(discussed in Section 2.2.2) by Diegle et al. [18] to increase the heat transfer coefficient. 

These designs were later integrated with jet impingement for further improvement. 

2.1.2 Jet Impingement 

 An effective method to improve the heat transfer across a surface involves the 

use of impinging jets. An impinging jet is simply the acceleration of a fluid through a 

constriction in the flow area directed onto an opposing surface which is used to improve 

heating or cooling characteristics of the flow. The jet usually emerges either from a 

round exit, or a high aspect-ratio rectangular exit, known as a slot. Very high heat 

transfer coefficients can be achieved with jet impingement since thin thermal and 

hydrodynamic boundary layers are formed on the impingement surface [14]. Jet 

impingement is common in materials processing applications including the tempering of 

glass and the annealing of metals, and it is frequently used in the cooling of heated 

components [15].  

A jet can be divided up into four distinct regions as described in the following 

references and depicted in Figure 9 [14,15]. As the fluid leaves through the nozzle exit of 

diameter D or width W, a nearly uniform velocity profile can be used to characterize the 

flow, which dissipates as the flow moves axially. This region with the nearly uniform 

velocity profile is referred to as the potential core. As the potential core dissipates axially, 

the flow forms the free jet region where the velocity profile broadens and becomes 

distinctly non-uniform with a maximum at the center. For submerged jets that discharge 

into the same ambient medium, this broadening is more exaggerated. As the flow moves 

closer to the surface in the stagnation or impingement region, it begins to decelerate 

axially and accelerate along the cross-stream direction. These regions of the flow with a 

velocity component along the cross-stream direction are known as the wall jet region, 

where the flow‘s momentum decays to zero as it moves away from the jet.  
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Figure 9. Diagram of submerged jet impingement of a single round jet or slot [14] 

As one might expect, the thermal performance of jet impingement cooling 

described by the Nusselt number, typically improves with increasing jet velocity or 

Reynolds number, although the distance between the nozzle exit and the surface also 

plays an important role in the Nusselt number and shape of the profile [19]. A useful non-

dimensional parameter used to evaluate relative distances is hDH  where H  is the jet 

to wall spacing and hD  is the hydraulic diameter of the nozzle exit. For 5hDH , the 

Nusselt number profile along the surface of the profile is bell-shaped, with a maximum in 

the center near the stagnation point. As hDH  decreases to values less than 5, a 

characteristic secondary peak in the Nusselt number profile may be observed after the 

maximum found at the centerline; the Nusselt number at this secondary peak may even 

exceed the centerline value. This second local peak tends to move closer to the 

centerline as hDH
 
decreases [20]. The second peak has been attributed to a sharp 

rise in turbulence as the flow transitions from the radially accelerating stagnation region 
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to the decelerating wall jet region [19]. Some studies examining local Nusselt number 

profiles have even observed a third peak for specific jet conditions [21]. 

As observed in Figure 10a, for confined submerged circular jets, the stagnation 

Nusselt number (centerline local Nusselt number) has been experimentally observed to 

decrease with increasing hDH as a result of entrainment of the flow back into the free 

jet region [21], and this entrainment of higher-temperature air degrades the thermal 

performance. Other experimental studies (Figure 10b) have, however, observed that the 

stagnation Nusselt number remains roughly constant for 5hDH
 
[22]. These differing 

observations have been attributed to the different types of confinement in the wall jet 

region of the flow: two dimensional flow [21], vs. three-dimensional radial flow [22]. Such 

results suggest that jet impingement heat transfer is complex and that the geometry of 

the jet and its neighboring jets have a major effect on the thermal performance. 

 

Figure 10. Stagnation Nusselt number against hDH (i.e. hDZ ) for various Reynolds 

numbers in [21] (a) and [22] (b) 

For jet impingement heat transfer, average Nusselt numbers Nu  are commonly 

defined to be a function of the Reynolds number Re , the Prandtl number Pr , the area 

ratio between the nozzle and the impingement region 
rA , and hDH . For dynamically 

similar experiments, Nu  can be simplified as shown below: 

(b) 
(a) 
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  PrRefNu ,  (7) 

where  
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Nu h  (8) 
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and  , eV , and   are the density, velocity of the fluid at the nozzle exit, and dynamic 

viscosity of the fluid, respectively [15]. Average heat transfer coefficients h  are defined 

as: 
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where q   is the average heat flux through the surface, cT  is the average temperature of 

the surface, and eT
 
is the temperature of the fluid leaving the nozzle. 

For cooling applications, jets are typically found in arrays of multiple slots or 

holes. The use of multiple jets can increase the cooled surface area but will typically 

complicate the dynamics of the flow and appropriate layout of the nozzles is required to 

effectively cool this larger area. Typical arrangements for round and slot jet arrays are 

depicted in Figure 11. 

 

Figure 11. Jet array configurations for (a) in-line round jets, (b) staggered round jets, (c) 
and slot jets [14] 

(c) (b) (a) 
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The dynamics of jet arrays has been studied both experimentally and numerically 

by a number of researchers [19,23,24,25] and guidelines and correlations have been 

developed based on this body of work. Critical to the performance of multiple jet arrays 

is the spacing between jets relative to the height of the jets. For a fixed jet height, as the 

jets move closer together, there is interference that occurs between the free jet and 

stagnation regions of adjacent jets. This interference, depicted in Figure 12a, is believed 

to weaken the jet strength and degrade the performance [23]. As the jets move further 

apart, a jet fountain can occur where the bifurcating streams of each jet recirculate back 

up into the free jet region of each respective jet, depicted in Figure 12b. This can also 

reduce the performance as higher-temperature fluid is re-entrained into the primary jet 

streams [23]. Fountains were observed experimentally in the well-known work of 

Saripalli [25]. 

 

Figure 12. Schematic of two adjacent jets showing the effect of jet spacing on the 
profiles for jet interference before impingement (a) and jet fountains (b) [23] 

For arrays of staggered circular jets where fountains occur between jets, the 

stagnation Nusselt number will be reduced and may be lower than the secondary peak 

that occurs at the transition between the stagnation region and the wall jet region [23]. 

As the spacing between jets increases further, high-temperature gas can escape (i.e., 

there is no formation of fountains) and the Nusselt number values increase and form a 

bell shaped profile [23]. As the spacing between jets increases even further, the Nusselt 

numbers will eventually decrease, because each individual jet will no longer be able to 

(a) (b) 



 

28 
 

adequately cool its portion of the heated surface. This suggests that there is an optimal 

jet spacing for a given array of jets. Also, for a given height, this optimal spacing appears 

to be independent of the Reynolds number [23]. The optimal spacing will, however, 

depend on the jet to wall spacing because the conditions under which fountains will form 

depend on this parameter [23].  

In addition to the geometrical arrangement of jet arrays, the venting of spent 

coolant from the system is imperative to the overall heat transfer from the impingement 

surface [15]. For an array of jets, coolant is typically not designed to flow normal to the 

impingement surface between the jets to exhaust. In such cases, spent coolant is often 

forced to re-entrain back in the free jet region of each respective jet reducing the 

performance. The analysis is further complicated by the shape of the cooled surface. For 

concave surfaces, such as those most likely encountered in helium-cooled divertors like 

the HEMJ (discussed in Section 2.2.1), the exhaust is more likely to become re-

entrained in the jet flow region and jets near the axis of the divertor (at the center of the 

array) do not have means to exhaust the coolant [26]. However, both the distance 

between the nozzle and the surface and the diameter of the surface to the jet diameter 

play a strong role in the behavior of the jet.  

Most modular helium-cooled tungsten divertor designs utilize jet impingement as 

a means to improve heat transfer coefficients including, but not limited to, the HEMJ, 

HEMP, and HCFP modules. These designs are discussed in more detail in the next 

sections. Typically, most designs are limited to small nozzle to surface distances

2hDH , which is outside the range of most of the Nusselt number correlations that 

have been developed (i.e. Martin [19]). Although a few correlations that are valid at low 

jet to wall spacings exist [20], it is unclear if they are valid in the confined geometries 

typical of divertors, much less, for the complex jet arrays, concave surfaces, and high jet 
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Reynolds numbers typical of divertors. Each specific divertor design must therefore be 

experimentally and numerically analyzed. 

2.1.3 Porous Media 

Another method to improve the thermal performance of divertors involves the use 

of porous media. An insert made of a porous medium, such as a metallic foam, acts in a 

manner similar to cooling fins in that it significantly increases the cooled surface area 

over which cooling occurs. In addition, it aids in conduction heat transfer perpendicular 

to the surface. The porous medium itself can take many forms such as a bed of small 

spheres or an irregular foam, and it is typically composed of a highly conductive material 

such as a metal to improve conduction through the material. The complex nature of the 

flow through a porous medium (particularly irregular medias) makes it difficult, if not 

practically impossible, to develop analytical correlations. Empirical correlations based on 

experimental databases are therefore usually relied upon for more complex geometries.  

While not studied in this work, porous media inserts have been proposed as a 

means to increase heat transfer coefficients for several helium-cooled divertors for more 

than a decade [27]. As such, it deserves special mention since it frequently appears in 

divertor research, and using porous media with helium cooling has been cited as a 

means to cool very high heat fluxes up to 40 MW/m2 [28]. One of the earliest candidates 

for a helium-cooled divertor was a concept using either small packed spheres or a 

metallic foam [27], as shown Figure 13. 
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Figure 13. Cross section of the porous media concept [27] 

As with cooling fins, the presence of the porous medium increases the pressure 

drop. For divertors, this is a critical parameter that affects the overall efficiency of the 

plant since an increase in pressure drop will increase the power required to pump the 

coolant at a desired flow rate. The Darcy flow model can be used to estimate the 

pressure drop P  in a given direction through a porous medium in terms of knowing the 

volume averaged velocity pmu  as shown below: 

 
K

u
P

pm
  (11) 

where   is the dynamic viscosity and K  is a proportionality factor called the 

permeability of the porous media that is determined experimentally or analytically for 

simple geometries [14]. Gayton et al. [29] investigated the use of porous media in the 

HCFP divertor design (Section 2.2.3) using Ultramet molybdenum foam with an 88% 

porosity in the jet impingement region. For the best configuration tested, they reported 

that there was considerable improvement in the HTC of 52% at the cost of an increase in 

pressure drop of approximately 87%.  
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2.2 Modular Helium-Cooled Tungsten Divertor Designs 

Several modular helium-cooled tungsten divertor designs will be discussed in this 

section emphasizing those designs considered in this work. Most designs have 

undergone significant revisions since their original conception, and these changes will be 

addressed where relevant; however, several aspects (e.g. the alloys, coolant 

temperature operating window, and geometric dimensions) remain the topic of active 

research and may well change in the near future.  

2.2.1 HEMJ 

The most widely researched and developed design to date is the modular He-

cooled divertor concept with multiple-jet-cooling (HEMJ). This design was first conceived 

in 2005 [10] as an alternative ‗finger-type‘ to existing designs such as the modular He-

cooled divertor concept with pin array (HEMP) and the modular He-cooled divertor 

concept with slot array (HEMS). Both the HEMP and HEMS designs are discussed later. 

Finger-type designs, such as the HEMJ, derive their name from a single module‘s 

cylindrical shape, which is oriented perpendicular to the plasma. Hexagonal or square 

tiles of pure tungsten are brazed to each module to form the actual plasma-facing 

surface. 

An HEMJ module is depicted in Figure 14. In this design, He at approximately 

600 °C and 10 MPa flows axially through a cylindrical steel jet cartridge and is then 

accelerated through an array of holes as jets to impinge on the underside of the plasma 

facing surface. The helium flows radially outward, then through the annulus between the 

jet cartridge and the thimble, exiting the module at ~700 °C. In the early designs, it was 

estimated that flow rates of about 6.8 g/s would be required to cool ~12 MW/m2 [30,31]. 

The thimble is made of W-1%La2O3 (WL10) and is brazed to a ODS Eurofer steel 
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structure that connects the module to a manifold. The WL10 thimble has a 15 mm OD 

and a thickness of 1 mm. A hexagonal 18 mm flat-to-flat pure tungsten tile is then brazed 

to the top of the WL10 thimble that acts as the plasma facing surface. A significant 

amount of this tungsten tile is expected to be lost (i.e., sputtering, melting, sublimation) 

during the lifetime of module. 

 

Figure 14. Cross section of the HEMJ module (left) and constructed HEMJ module 
(right) [32] 

Each individual module is combined with 8 others to form a 9-finger module that 

uses a common inlet and outlet for helium. Several of these 9-finger modules are 

attached to a long hexagonal manifold to form a ‗stripe-unit‘. Finally, each stripe unit is 

aligned with other units to form the target plate for the divertor [33,34]. Each of these 

stages of the assembly is depicted in Figure 15. 
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Figure 15. The three stages of the HEMJ assembly to form the target plate: the 9-finger 
module (a), the stripe-unit (b), and the target plate (c). [33] 

Perhaps the greatest disadvantage of the HEMJ design is that a large number of 

modules are required to completely cover the divertor surface. It is estimated that as 

many as 500,000 individual modules [35,36,37] may be required to completely cover a 

plasma-facing surface with an area O(100 m2). This large number of units, and more 

importantly, the difficulties in evenly distributing helium over that many units, presents an 

enormous design challenge for future commercial fusion power plants and reducing this 

complexity is an area of active research [32]. 

The HEMJ design, unlike most other divertor designs, has been studied in a 

number of experiments. The first experiments were performed at the Gas Puffing Facility 

(GPF) by Forschungszentrum Karlsruhe (FZK) in 2004-2005 using the ‗reverse heat-flux 

method‘ (this method is detailed in Section 2.3.1) [30,38]. The highlights of the 

experimental results showed that for a nominal flow rate or 6.8 g/s, the ‗J1a‘ variant of 

the HEMJ design could accommodate an incident heat flux of 12.5 MW/m2 without 

exceeding the operating temperature limits. These results were also consistent with 

numerical simulations of the design using FLUENT® that showed the maximum thimble 

(b) 

(a) 

(c) 
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temperature would not exceed 1300 °C, the specified recrystallization temperature for 

WL10 [11]. Moreover, the HEMJ design has been experimentally studied at prototypical 

conditions, specifically in high heat flux experiments performed on mockups from 2006 

to 2008[34,39,40]. The Efremov Institute and the Karlsruhe Institute of Technology (KIT), 

formerly FZK, used a combined helium loop and 60 kW, 27 keV electron-beam facility to 

simulate the steady-state performance of the HEMJ with 600 °C He at 10 MPa for heat 

fluxes of 5-14 MW/m2 (Section 2.3.4). These experiments were the first experiments 

performed at prototypical conditions (i.e. ~600 °C, 10 MPa, and 10 MW/m2) for a 

modular helium-cooled tungsten divertor. Several variations of the HEMJ design were 

tested in this set of experiments with different brazing materials and dimensions. The 

experiments were also conducted at various flow rates for different cycles of heat loads 

(one of the mockups survived 1114 cycles). The results of these experiments indicated 

that the HEMJ design could accommodate heat fluxes >10 MW/m2 albeit at higher mass 

flow rates of ~13 g/s and lower inlet temperatures <550 °C to avoid damage (due to 

joining of the various tungsten and steel components). A 9-finger unit was also tested for 

short durations with flow rates varying between 20 g/s and 100 g/s. Pressure drop was 

consistent with a single module, and the temperature distribution over the surface of the 

nine-finger unit was shown to be uniform. In 2010, more tests were conducted on six 

HEMJ modules, which all successfully survived over 200 heating cycles without 

significant damage [32]. 

Crosatti et al. [41] conducted experiments on an HEMJ module to evaluate the 

thermal performance for various Reynolds numbers utilizing dynamic similarity. The 

experiments were conducted with room temperature air at inlet pressures <1.4 MPa 

flowing through a brass module. A cartridge heater providing incident heat fluxes as 

great as 1 MW/m2 was used as the heat source. The experimental results were 



 

35 
 

compared with predictions from numerical simulations performed in FLUENT® 6.2. The 

Nusselt numbers at various Reynolds numbers estimated from cooled surface 

temperatures measured with embedded thermocouples were in good agreement with 

the numerical predictions, but the discrepancies in pressure drops obtained at various 

Reynolds numbers were as great as ~12%, with the experimental measurements 

consistently higher than the numerical predictions.  

Rader et al. [42] performed further experiments on the same module, developing 

generalized design curves that could be integrated into system codes used in 

optimization of fusion reactors. Again taking advantage of dynamic similarity, the 

experiments were conducted with room temperature air, helium, or argon at inlet 

pressures <1.4 MPa flowing through a brass or steel module. The module was heated 

with an oxy-acetylene torch to create incident heat fluxes as great as 3 MW/m2. Nusselt 

numbers were again calculated from cooled surface temperatures measured with 

embedded thermocouples. Correlations for the Nusselt number and pressure loss 

coefficient, based upon measurements of pressure drop through the test section, were 

generated. These correlations were then extrapolated to prototypical conditions and 

generalized design curves were generated showing the maximum heat flux the design 

could accommodate for various Reynolds numbers without exceeding different 

maximum tungsten alloy temperatures 
sT  and pumping powers, quantified as the 

fraction of the incident thermal power  . The maximum incident heat flux the design 

could accommodate was plotted for sT 1100, 1200, and 1300 °C (where tungsten 

alloys typically approach their recrystallization temperature) and  5, 10, 15, and 20%. 

This chart is depicted in Figure 16. 
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Figure 16. Prototypical design curves for the HEMJ for maximum alloy temperatures 

sT 1100, 1200, and 1300 °C and  5, 10, 15, and 20%. Dashed vertical line 

indicates Reynolds number of 2.14×104 for 6.8 g/s [42] 

The results in Figure 16 were created from experiments using various coolants 

and test section material combinations. Although there are minor differences in the 

HEMJ design used by Rader and those specified in the original HEMJ design (e.g. a wall 

thickness of 2 mm, vs. the 1 mm specified in the original design), the results are largely 

in agreement with those from the gas puffing experiments performed at KIT with a 

maximum heat flux on the tile of 11.4 MW/m2 for 1300 °C maximum alloy temperature. 

To further confirm the validity of the correlation, however, experiments must be 

performed under conditions closer to the prototypical values, specifically at higher 

incident heat fluxes and coolant inlet temperatures and pressures, which is the subject of 

this thesis. 

2.2.2 HEMP/HEMS 

The earliest modular tungsten helium-cooled finger-type divertor design was the 

helium-cooled modular divertor concept with integrated pin array (HEMP) by Diegele et 

Line of constant   

Line of constant 
sT  
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al. in 2003 [18]. One of the most important motivations in developing a finger-type 

divertor is to minimize thermal stresses to accommodate higher heat fluxes [37]. In 

addition, the divertor can achieve very high heat transfer coefficients with enhancements 

if appropriate while ensuring that the total coolant pumping power is less than 10% of the 

incident power. For the HEMP design, this was accomplished using an array of pin fins 

on the cooled surface to enhance heat transfer. The design underwent many 

modifications over several years [43] before being largely abandoned in favor of the 

geometrically simpler HEMJ design. However, the need for higher heat transfer 

coefficients has renewed interest in this design and also in the use of fin arrays in 

general. 

 A single HEMP module is depicted in Figure 17. In the original design, helium 

enters the annulus created by the thimble with an ID of 12 mm and an OD of 14 mm and 

tube with an ID of 5 mm and an OD of 5.6 mm at 600 °C and 10 MPa. After reaching the 

cooled surface, the helium then flows across an array of pin fins affixed to the surface 

before being redirected out the inner tube at a temperature of approximately 700 °C. The 

thimble is made of WL10 and the tube is made of ODS Eurofer steel. A square 5 mm 

thick pure tungsten tile brazed onto the top of the thimble which, forming the plasma 

facing surface. The WL10 thimble is then brazed to an ODS Eurofer steel manifold.  
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Figure 17. HEMP module depicting tile, thimble, and three different cooling arrays (left). 
The primary pin fin array in more detail (right) [43] 

The use of a pin array to enhance heat transfer coefficients in helium-cooled 

divertors was conceived in early iterations of the HCFP design (referred to as the 

‗modified slot concept‘) [17], but it was adopted for finger-type designs with the 

emergence of the HEMP. As seen in Figure 17, the pin array in the original design was 

supposed to be fabricated separately from the thimble. However, the fin array can be 

machined directly into the thimble‘s cooled surface using electro-discharge machining 

(EDM) although early attempts to achieve this in WL10 were unsuccessful, as shown in 

Figure 18. It is unclear, however, whether it is practical to fabricate such fin arrays using 

EDM in hundreds of thousands of tungsten alloy modules. Another cooling array also 

depicted in Figure 17 is the slot array. The use of the slot array with this design is 

commonly referred to as the HEMS design (helium-cooled modular divertor concept with 

integrated slot array). Using a slot array in lieu of a pin-fin array would simplify the 

machining of the cooled surface. The HEMS design was experimentally tested at 

Pin array Slot arrays 
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prototypical conditions in conjunction with the HEMJ design at incident heat fluxes of 9 

MW/m2, and successfully accommodated 100 heating cycles [39]. 

 

Figure 18. Failed pin array structure in WL10 after EDM [44] 

While the original design specified helium flow entering through the annulus, later 

iterations reversed the direction of the flow [33], similar to that in the HEMJ, to exploit the 

additional advantage of an impinging flow. As such, the end of the tube became a 

contraction ending in a smaller orifice to create a jet at the expense of increased 

pressure drop. 

2.2.3 HCFP 

The helium-cooled flat plate (HCFP) design originated from the ‗modified slot 

concept‘ developed by Hermsmeyer and Malang in 2002 [17] as an alternative to the 

leading helium-cooled porous media design. This design was created to increase the 

maximum sustainable steady-state heat flux to 10 MW/m2 by shortening the conduction 

paths from the surface to the coolant and reducing thermal stress (i.e. temperature 

gradients). Although originally not a modular design, this feature was integrated in later 
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iterations [35]. The ‗flat plate‘ moniker derives from the rectangular shape of the cross 

section where the plasma facing surface forms a flat surface with adjacent units. 

Divertors of this type are also commonly referred to as ‗plate-type‘ divertors. The latest 

iterations of the design are depicted in Figure 19. 

 

Figure 19. A cross section of a single HCFP channel (left) and a solid model of a HCFP 
module consisting of 9 channels in parallel [36] 

In this design, helium at 10 MPa and 600 °C enters a channel and flows 

longitudinally through an upper enclosed manifold. The flow is then accelerated vertically 

through a narrow 0.5-2 mm slot that runs the length of the upper manifold to impinge on 

and cool the underside of the plasma facing surface. Finally, the flow is then directed 

outward through the gap created between the upper and lower manifolds where it is 

ultimately removed through the lower manifold. The upper manifold is tapered such that 

the flow through the slot is uniform along its length as shown in Figure 20. A small region 

of stagnant He at the bottom of the lower manifold insulates the divertor from the 

surrounding structure. 
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Figure 20. Schematic of the HCFP depicting the tapered channel to encourage uniform 
flow through the slot along its length [35] 

Numerical simulations suggest that this design could accommodate peak heat 

fluxes of approximately 10 MW/m2 while keeping pumping power less than 10% of 

thermal power [35] with some estimates putting the maximum peak heat flux as low as 8 

MW/m2 [36,37]. Dynamically similar experiments performed by Hageman et al. [45] using 

air at room temperature and an inlet pressure of <700 kPa on a brass HCFP module 

have indicated that a HCFP at prototypical conditions can endure peak heat fluxes up to 

14 MW/m2 and up to 18 MW/m2 with an array of cylindrical pin fins attached to the 

cooled surface that span the entire gap between the jet exit and the cooled surface for 

prototypical jet Reynolds numbers of 3.3×104. The experiments also showed that this 

maximum heat flux was unaffected by slot width (2 mm vs. 0.5 mm). Gayton et al. [29] 

also performed dynamically similar experiments using molybdenum open-cell foam 

(Ultramet) of 88% porosity or 65 pores per inch between the slot jet and the cooled 

surface to enhance heat transfer; this modification did increase the heat transfer 

coefficient by 52%, but at a significant cost in pressure drop of 87%. Again, further 

studies are required to determine if these dynamically similar predictions are valid for 

different combinations of coolant and test sections materials (primarily helium with a 

WL10 cartridge), as discussed further in Chapter 4 and Chapter 5. 



 

42 
 

The principal advantage of this design is its geometric simplicity and its ability to 

cover large areas of the divertor region in the reactor. Approximately 750 modules 

[36,35,37] would be required to cover the divertor surface with an area O(100 m2) 

compared to several hundred thousand for finger type divertors. 

2.2.4 Other Designs 

Several other modular helium-cooled tungsten divertors have been proposed that 

are in varying stages of development. Perhaps the most developed of these concepts is 

the ARIES T-Tube divertor concept [37,46] developed as part of the ARIES-CS study. 

Although originally proposed for a stellarator type reactor, the design criteria are the 

same for tokamaks. A T-Tube module is depicted in Figure 21. In this design, helium at 

600 °C and 10 MPa enters the central channel which ends in the center of a 100-150 

mm long perpendicular tube made of a tungsten alloy with a 0.5 mm slot along its length. 

The flow accelerates through the slot, cools the inside surface of a larger 15 mm 

diameter tungsten alloy tube, and exits azimuthally around the inner tube before leaving 

through channels parallel to the incoming helium. Pure tungsten armor sits atop the 

outer tungsten alloy tube, and serves as the plasma facing surface. An estimated 

110,000 modules would be required to cover a divertor with an area of O(100 m2) 

[36,35,37]. 
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Figure 21. Solid model of the T-Tube divertor concept [47] 

To the author‘s knowledge, the only experiments performed on the T-Tube 

design are the dynamically similar studies performed by Crosatti et al. [48,49]. These 

experiments were performed using air at room temperature and inlet pressures <500 

kPa through brass test sections. Incident heat fluxes as great as 0.85 MW/m2 were 

obtained using electrical heater cartridges embedded in a tapered copper heater block. 

Numerical simulations performed with FLUENT® were validated with surface 

temperature measurements obtained in the experiments using thermocouples 

embedded near the cooled surface of the test section, and used to calculate Nusselt 

numbers as a function of Reynolds number. These validated numerical simulations were 

then used to predict the performance of the T-tube divertor at prototypical conditions. 

A thorough thermo-mechanical analysis of the T-Tube design was performed at 

FZK by Ihli et al. [47] using FLUENT®. The results of these simulations indicated that the 

design could accommodate heat fluxes of 10 MW/m2 while maintaining a maximum alloy 

temperature of <1300 °C. Furthermore, simulations performed with ANSYS Workbench® 

showed that the maximum thermal stress was less than the maximum of 370 MPa 
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specified for the tungsten alloy. Although this design has been shown numerically to be 

able to withstand heat fluxes of 10 MW/m2, it is unclear if it is possible to further increase 

its thermal performance [37]. 

While the precise steady-state heat flux profile incident upon the plasma-facing 

surface in future reactors is unknown at present, a common approximation is to use a 

Gaussian profile with a peak of 10 MW/m2 [37,47]. Some experimental measurements 

have been made in other reactors using thermocouples, Langmuir probe arrays, and 

infra-red cameras that show that this is a reasonable assumption [9]. Given that sections 

of the plasma-facing surface will not be subject to the maximum heat flux of 10 MW/m2, it 

may be feasible to use other designs with reduced thermal performance in these areas 

that are simpler to manufacture and less expensive. This would greatly reduce the cost 

of the divertor. Designs of this type are often referred to as 'integrated designs.‘ 

Such an integrated design combines the HEMJ and HCFP designs depicted in 

Figure 22 [36,37]. Here HEMJ-like modules, integrated into the HCFP manifold cools the 

parts of the plasma-facing surface of the divertor receiving >6-8 MW/m2, while the 

traditional HCFP design is used in areas where the heat flux <6-8 MW/m2. This 

integrated approach would use helium at temperatures and pressures similar to the 

HCFP and HEMJ designs (~600-700 °C and 10 MPa), but would change the manifolding 

and dimensions for each HEMJ module. Each HEMJ module would have 18 mm OD as 

opposed to the 15 mm OD in the original design. With these changes, ~87,820 HEMJ 

modules would be required compared to the original estimate of 500,000.  
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Figure 22. Integrated HCFP and HEMJ design [36]  

2.3 Helium Loops 

A number of experimental facilities have been constructed to test the 

performance of helium-cooled components for fusion research. This section briefly 

describes four of these helium loops in Europe, Russia, and the United States focusing 

on those that have been used for divertor research.  

Helium is by nature difficult to contain, and building and maintaining loops using 

helium at prototypical conditions for divertors (~600-700 °C and 10 MPa) presents many 
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challenges. In addition to these conditions, providing the expected incident steady-state 

heat flux of 10 MW/m2 on the test section significantly increases complexity and cost. 

Electron beams or plasma arc jets have been successfully used to supply incident heat 

fluxes of 10 MW/m2, but typically require a large capital investment. As a result, few 

helium loops are capable of operating at prototypical conditions.  

2.3.1 Gas Puffing Facility 

One of the first facilities created primarily for testing modular helium-cooled 

tungsten divertors at near prototypical conditions was the Gas Puffing Facility (GPF) 

operated in partnership between Forschungszentrum Karlsruhe (FZK, now KIT) and the 

Efremov Institute [38,30]. This loop was in operation from 2003 to 2005. Unlike, 

traditional loops, the GPF was designed to run in pulses and could not sustain steady 

operation as its name suggests. However, during a pulse, which typically lasted ~100 s 

in later loop modifications, the loop could achieve 5-15 g/s of helium. The ultimate 

objective of the GPF was to compare the thermal performance of different designs and 

validate CFD simulations. The loop tested several early HEMJ modules and an HEMS 

module.  

The first iteration of the GPF, referred to as GPF1, was used to measure 

pressure drops in different designs. This facility was modified to the GPF2 in order to 

evaluate the thermal performance. A diagram of the GPF2 is depicted in Figure 23. In 

this loop, source tanks at 16 MPa released helium through a regulator providing a steady 

10 MPa to the test section. The pressure drop through the test section was then 

measured during each pulse. Helium is heated to the appropriate temperatures just 

before the test section and is cooled just after returning to the source tanks at room 

temperature. The compressor is used to recharge the source tanks to 16 MPa before 

performing the next pulse.  
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Figure 23. GPF2 schematic: 1) source tanks, 2) pressure regulator, 3) orifice meter, 5) 
heater, 6) test section, 7) cooler, 9) vacuum pump, 10) receiving tanks, 11) compressor 

[38] 

One of the most novel aspects of the GPF2, is the use of the reverse heating 

method to measure the thermal performance. Instead of heating the test section, hot 

helium at ~650 °C that was heated just before the test section was cooled in the test 

section by a thin film of water at ~20 °C over the surface of the divertor module. Then 

computed HTCs and measured pressure drops were plotted for various flow rates to 

estimate the steady-state thermal performance of the various designs. The heater and 

cooler were constructed of 4 mm steel balls wrapped in either a NiCr resistor jacket for 

heating or a water jacket for cooling. Brass test sections were used with similar thermal 

conductivities to that of tungsten at prototypical conditions.  

2.3.2 Sandia HeFL 

A closed helium loop was constructed at Sandia National Laboratories as part of 

its high heat flux test facility called the Plasma Materials Test Facility (PMTF) [28]. The 

PMTF performs research on a variety of helium and water cooled high heat flux 
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components including heat exchangers, gyrotrons, microwave amplifiers, and other 

components with a particular focus on fusion related research. As a heat source for the 

facility, the Electron Beam-1200 KW System or EB-1200 is used which provides up to 

1.2 MW of beam power and has achieved record heat fluxes of 140 MW/m2 for water and 

40 MW/m2 for helium [28]. The facility underwent significant modification in the late 

2000s to upgrade to the EB-1200 from the previous EB-60.  

 

Figure 24. Diagram of the PMTF HeFL before upgrade [50] 

The helium loop itself is capable of providing flow rates up to 100 g/s at 

pressures up to 4 MPa and temperatures up to 300 °C. The maximum pressure drop for 

steady flow is 55 kPa at 4 MPa. Although not designed specifically for testing modular 
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divertor designs, it has been used previously to test porous metal divertor modules 

indicating possible concerns for flow instabilities in helium-cooled divertors [51].  

2.3.3 HEBLO 

KIT also owns and operates a closed helium loop called the Helium Blanket Test 

Loop (HEBLO) that has been used to research various helium related first wall 

components including divertors [3,44,52,53]. The loop operates at 8 MPa with a helium 

flow rate up to 120 g/s. The maximum helium temperature is 430 °C with 60 kW of 

helium heating power. The loop was modified in 2004 to work with early mock-ups of 

finger-type divertors including the HEMJ, HEMS, and the HEMP. Surface heating is 

available up to 3 kW using an electric heater.  

 

Figure 25. Image of HEBLO using brass HEMJ test section fabricated at Georgia Tech 
[3] used in Crosatti et al. [41] and Weathers et al. [54] 

Most of the divertor experiments that were performed using HEBLO were used 

for early experimental verification of CFD simulations. In partnership with Georgia Tech, 

a brass HEMJ test section developed for the experiments conducted by Crosatti et al. 

[41] and Weathers et al. [54] was used to validate an ANSYS CFX® model with very 
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good agreement, giving heat transfer coefficients within 5% in all cases. However, 

further experimental divertor research was largely relocated to the combined helium loop 

and electron beam test facility at the Efremov Institute.  

2.3.4 Efremov and KIT EB and Loop 

The experimental facility at the Efremov Institute in partnership with KIT has a 

helium loop and electron beam that are capable of testing helium-cooled divertor 

modules at prototypical conditions [39,40]. A schematic and picture of the facility is 

depicted in Figure 26. This facility was designed as a successor to the GPF to ultimately 

provide the experimental evidence that individual modules and 9-unit modules could 

adequately cool 10 MW/m2 without failure. In addition, it provides the capability to 

provide cyclic loading to the modules to document fatigue in the design. This facility 

conducted experiments on prototypical HEMJ mockups between 2006 and 2010. 

 

Figure 26. The Efremov and KIT Electron Beam and Helium Loop [40] 

The helium loop was capable of providing ~5-15 g/s of helium at inlet conditions 

of 600 °C and 10 MPa in steady-state operation. In addition, with the electron beam, 

heat fluxes as high as 15 MW/m2 could be tested. This loop mostly examined HEMJ 
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designs (with the exception of one HEMS design) fabricated using different 

manufacturing and bonding techniques.  

 

Figure 27. Infrared image of a 9-finger HEMJ module during test in the helium loop at 
600 °C [39] 

2.4 Numerical Simulations 

Due to the extreme conditions under which divertors operate, performing 

experiments at prototypical conditions is both challenging and resource-intensive. The 

few experiments that have been conducted at these conditions are therefore for specific, 

well-developed geometries. Conducting dynamically similar experiments, as is the case 

for this work, can reduce resource and time requirements, but evaluating small changes 

in the geometry often requires the fabrication of new test sections. A faster, more 

economical alternative for evaluating different divertor designs involves the use of 

numerical simulations. Given the current availability of powerful commercial 

computational fluid dynamics (CFD) codes such as ANSYS FLUENT®, most numerical 

simulations are now performed with commercial CFD codes with appropriate validation 

by experimental measurements.  
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Although the exponential growth in computing power over the last 25 years has 

made it possible to perform direct numerical simulations (DNS) of the 3-D Navier-Stokes 

equations, even for turbulent flows, these simulations are still limited to basic geometries 

and relatively low Reynolds numbers, typically of O(104) at most. In the complex 

geometries typical of helium-cooled divertors, it is therefore still necessary to use 

turbulence models to solve the governing equations. Hence, the choice of turbulence 

model is critical in accurately simulating the thermal-hydraulics of a divertor. Studies to 

determine the appropriate models for different helium-cooled divertors typically compare 

the predictions from different turbulence models with experimental measurements, when 

available. Therefore, experiments are not only useful in evaluating a specific divertor 

design, they also gather the data required to validate numerical models that can then be 

used to evaluate how modifying the existing design, or the operating conditions for the 

design, affect the thermal-hydraulic performance of the divertor. 

The CFD simulations in this work use the commercial software package ANSYS 

FLUENT® to evaluate the turbulence models that, according to previous studies, have 

the best agreement with experimental measurements for similar geometries. The next 

sections summarize the relevant numerical work previously performed on helium-cooled 

tungsten divertors using commercial CFD packages and the turbulence models used in 

these studies. 

2.4.1 Previous Work 

An early comparison between different CFD commercial software packages was 

performed at FZK on one of the HEMJ designs (HEMJ1a) [44]. The packages evaluated 

included: Star-CD®, ANSYS Flotran®, FLUENT® and Cosmos®. The predictions for 

maximum thimble temperature from all of these commercial CFD packages, when used 

with the appropriate turbulence models, agreed within ~70 °C (with the exception of the 
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Cosmos package). The authors of the study therefore concluded, based on these 

numerical predictions, that this design did not exceed the material temperature limits, but 

also recommended that experimental studies be performed to validate these predictions. 

A parametric study on the geometry was also performed using FLUENT® (now ANSYS 

FLUENT®) with the realizable k-ε turbulence model at heat fluxes of 8-15 MW/m2, mass 

flow rates of 5.3-15.5 g/s, and coolant inlet pressures of 10-14 MPa (only at a mass flow 

rate of 6.8 g/s). The results indicated that, the design could cool 12 MW/m2 at a mass 

flow rate of 6.8 g/s, while the maximum tungsten alloy temperature remained below the 

recrystallization temperature of 1300 °C. Finally, the effect of varying the width of the gap 

between the jet exits and the cooled surface and the jet hole diameters was also 

investigated; the results indicated that the hole diameter had a strong effect, but the gap 

width had little effect, upon the pressure drop. The heat transfer coefficient, however, 

depended on both parameters.  

Koncar et al. [55] used ANSYS CFX® 11.0 to develop a 3-D numerical model to 

study the optimal diameter and distributions of the jet holes in the cartridge of the HEMJ 

design. Two mass flow rates, namely 6.8 g/s and 13.5 g/s and eight different nozzle 

configurations, including the reference design, were examined in this study. The 

numerical model, a 30° ‗wedge‘ of the HEMJ with periodic boundary conditions, 

consisted of a hexagonal mesh with 400,000 elements (Figure 28). The simulations were 

validated using the maximum tile temperature measurements from the high heat flux 

experiments performed at Efremov [32], and good agreement was found between the 

simulations and the experimental measurements at a heat flux of 10 MW/m2 using the 

SST k-ω turbulence model (Figure 28). This study suggested that a jet array of nozzles, 

all with the same exit diameter of 0.62 mm, gave the lowest tile temperatures. This 

model was refined further in 2012 [56] by including a more accurate profile of the 
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incident heat flux, radiative losses (since the Efremov experiments were performed on 

an uninsulated test section in a vacuum), and more accurate correlations of how the 

material properties depended upon temperature, and this improved model gave 

predictions that were in better agreement. 

  

Figure 28. Hexagonal mesh of the 30° section of the HEMJ used in Koncar et al. (left) 

and the maximum tile temperature compared between experiments and the simulations 
(right) [55] 

Several numerical models using FLUENT® or ANSYS FLUENT® have been 

developed at Georgia Tech since 2007 of the T-Tube, HCFP, HEMJ, and a variation of 

the HEMP and validated against dynamically similar experiments using air as a coolant. 

Crosatti et al. created 3D models of two different dynamically similar T-Tube 

experiments conducted in 2007 [48] and 2009 [49]. Both models consisted of a 

hexagonal mesh with ~1×106 cells with a finer spatial resolution near the walls to resolve 

the boundary layer. The models also took advantage of symmetry using a half model 

[48] and a quarter model [49] as appropriate. The standard k-ε turbulence model was 

used, and found to give results that were nearly identical to those obtained using the 

more computationally intensive RNG k-ε model. The temperatures predicted by the 
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simulations agreed with the experimental measurements, at least within their 

uncertainty, and pressure drop was also accurate for Reynolds numbers >1.9×104. 

Weathers et al. [54] and Crosatti et al. [41] also developed a numerical model of 

the HEMJ in FLUENT® that was validated by measurements from dynamically similar 

experiments. This 3-D half model (limited to half symmetry by the manifold), depicted in 

Figure 29, consists of ~1.4×106 tetragonal/hybrid cells with a finer mesh in the jet 

impingement region. The simulations again used the standard k-ε model with standard 

wall functions. These simulations also gave temperature predictions that agreed with the 

experimental measurements from embedded thermocouples within experimental 

uncertainty.  

 

Figure 29. HEMJ mesh on the symmetry face illustrating the tetragonal/hybrid 
unstructured grid used in Crosatti et al. [41] 

Gayton [57] created a 3-D half model of the HCFP geometry using FLUENT® that 

was also validated using dynamically similar experiments using air. This model differs 

from the HEMJ geometry primarily in the number of cells required to model the entire 

geometry, and a total of 1.67×106 mixed quadrilateral and hexahedral cells were used 
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with a minimum node spacing of 0.25 mm in the impingement region. The model used 

both the standard k-ε model with standard wall functions and the Spalart-Allmaras 

model; the Spalart-Allmaras model was found to give the best agreement with a 5% 

overestimation of the heat transfer coefficient. Numerical simulations of the prototypical 

HCFP module were also been performed by Wang et al. [35] using ANSYS CFX® on a 

narrow slice of a module using the standard k-ε model with wall enhancement; these 

simulations reported that the design could accommodate heat fluxes of 10 MW/m2. 

Rader [58] simulated a 2D numerical model of a HEMP-like geometry without 

cooling fins (also studied in this thesis) using ANSYS FLUENT® and compared the 

predictions obtained with different turbulence models. The model was validated using a 

set dynamically similar experiments performed with air [59]. The model consisted of a 

uniform quadrilateral grid for a total of ~7×105 cells with dimensions of 25 μm, and only a 

radial slice of the HEMJ was modeled because of its axisymmetric geometry. The 

turbulence models examined included: standard k-ε (SKE), RNG k-ε (RNGKE), 

realizable k-ε (RKE), and Spalart-Allmaras (SA); the k-ε models used FLUENT‘s 

enhanced wall treatment. The model which gave predictions that most closely matched 

the embedded thermocouple measurements varied with the flow direction in the divertor. 

For flow entering the central tube and using jet impingement, the predictions using the 

Spalart-Allmaras model provided the best agreement with the experimental 

measurements. For flow entering the annulus with no jet impingement, the realizable k-ε 

model gave temperature predictions that were the closest to those measured by the 

thermocouples. These results are summarized for two reference experiments in Figure 

30. 



 

57 
 

 

Figure 30. Comparison of different turbulence models against temperature 
measurements for an HEMP divertor without fins when the coolant enters the central 

tube (a) and the annulus (b) [58] 

2.4.2 Turbulence Models and Heat Transfer 

A number of semi-empirical turbulence models have been developed to address 

the closure problem of turbulence, where there are significantly more unknowns than 

governing equations. This section focuses on the models available in ANSYS FLUENT® 

that have been used to model divertors, including the Spalart-Allmaras and various k-ε 

models. 

 The basic governing equations for a turbulent flow are the Reynolds-Averaged 

Navier-Stokes (RANS) equations. As turbulence is inherently an unsteady phenomenon, 

characterized by stochastic fluctuations about a well-defined time average, the 

instantaneous values of the flow parameters in the Navier-Stokes equations can be 

written as the sum of a time average (e.g. iu  for the velocity) and fluctuations (e.g. iu  ). 

Rewriting the 3-D Navier-Stokes equations using parameters that are decomposed into 

their time-averaged and fluctuation values, then taking a time average of the result, 

gives the RANS equations as shown below in Cartesian index notation (where quantities 

without bars now denote the time-averaged values excluding the last term): 
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The RANS equations are similar to the 3-D Navier-Stokes equations except for 

an additional term involving a second order tensor, the Reynolds stresses jiuu   . The 

Reynolds stresses introduce six additional unknowns (six as opposed to nine because it 

is a symmetric tensor) to the problem. There are therefore a total of ten unknowns (the 

Reynolds stresses, the velocity, and the pressure), and four equations (Continuity and 

RANS) for a turbulent flow. Thus, there are six more unknowns than there are governing 

equations, which requires more equations to solve or ‗close.‘ Appropriately, this is often 

referred to as the turbulence closure problem.  

Both the Spalart-Allmaras and k-ε models use the application of the Boussinesq 

hypothesis [60] using an eddy viscosity t  to write the Reynolds stresses in terms of the 

mean velocity gradients shown below in Cartesian index notation: 
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where k  is the turbulent kinetic energy. This assumption reduces the number of 

unknowns from six to two; however, it also assumes that t  is a scalar. More complex 

models such as the Reynolds stress model (also provided in ANSYS FLUENT®) solve a 

transport equation instead for each of the six independent terms in the Reynolds stress 

tensor, which of course requires significantly longer computation times [61]. 

 The Spalart-Allmaras (SA) model closes the RANS equations by introducing only 

one additional transport equation for the turbulent eddy viscosity t  (where  tt  ) 

and by eliminating the second term on the right-hand side of Eq. 13 since this term is 
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negligible for thin shear flows [62]. Therefore, the transport equation for the SA model is 

as follows: 
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where G  is the production of the turbulent viscosity, Y  is the destruction of the 

turbulent viscosity, ~S  is a source term, and 2bC  and  ~  are constants. In total, the SA 

model uses a total of twelve constants estimated from experimental data to close the 

problem. After solving, the working variable ~  can then be related to the turbulent eddy 

viscosity t  by the following relations: 
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where   is the molecular viscosity and 1C  is another model constant. 

 The advantages of the SA model include its simplicity since it introduces only one 

additional transport equation, its numerical stability, and its ability to accurately simulate 

flows even at moderate spatial and temporal resolutions [62]. The model is widely used 

for turbulent wall-bounded flows and boundary layers subject to adverse pressure 

gradients [61]. ANSYS FLUENT® has modified the SA model to feature its enhanced 

wall treatment (discussed below) where previously very fine spatial resolutions near 

walls were required [61]. 

Three k-ε (KE) models are discussed here: standard k-ε (SKE) [63], re-

normalized group k-ε (RNGKE) [64], and realizable k-ε (RKE) [65]. All three of these 

models solve two coupled transport equations for the turbulent kinetic energy k  and the 

turbulent dissipation rate  , but the exact form of these transport equations differs 

between each model. For the SKE model the equations are as follows: 
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where kG  is the production of turbulence kinetic energy from velocity gradients and 

buoyancy, 
MY is the dissipation of the turbulence kinetic energy due to the effect of 

compressibility (proposed by Sarkar and Lakshmanan [66] for compressible flows), 
1C  

and 
2C  are constants, and k  and   are turbulent Prandtl numbers for k  and  , 

respectively. Then, t  is related to k  and   by:  
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2k
Ct   (18) 

where 
C  is an empirically determined constant. 

 The RNGKE and RKE models were developed to improve upon issues with the 

SKE model in flows with a high mean shear rate or large separation region where SKE 

significantly overpredicts t  [65]. The models differ from the SKE model primarily in the 

transport equation for   and the definition of t . For brevity, the transport equations for 

each model are not included and can be found in the references for each model. In 

general, the RKE model gives more accurate results for separated flows and flows with 

complex secondary flow features [61]. 

 Critical to the performance of these turbulence models is how the models treat 

near-wall flow. ANSYS FLUENT® provides several options when applicable in the KE 

models to model near-wall behavior including: standard wall functions, scalable wall 

functions, non-equilibrium wall functions, and enhanced wall treatment. Of these, 

standard wall functions and enhanced wall treatment are used here. Near the solid wall 

interface, there are regions of the flow where viscous effects predominate over the 

turbulent effects [67]. One approach to model the flow in this region, when the spatial 
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resolution is not sufficiently fine, is to use wall functions. Wall functions are semi-

empirical formulas that are used to that blend the viscosity-affected region near the wall 

with the fully turbulent region in the flow [61]. A value commonly identified to determine 

the need to use wall functions is the dimensionless wall-normal coordinate
y

 
defined 

as:
 

 


fyV
y 

   (19) 

where y  is distance normal to the wall,  wfV   is the friction velocity, w  is the 

wall sheer stress,   is the coolant density, and   is the coolant kinematic viscosity. 

The standard wall functions, based upon the work of Launder and Spalding [67], 

were developed specifically for relatively coarse spatial resolution along the walls so that 

the viscous effects are negligible compared with turbulent effects [67]. These functions, 

defined in the manual for this software [61], therefore tend to break down as 
y  

decreases, where viscous effects become more significant. The enhanced wall 

treatment in ANSYS FLUENT® is instead a combination of near-wall modeling (when the 

mesh is sufficiently fine enough to resolve the viscous sublayer (i.e. 1y )) with the 

use of wall functions. This approach combines the work of several researchers 

[68,69,70,71,72,73] and is unique to ANSYS FLUENT®. The details of how each model 

is blended to create the enhanced wall treatment are best described in the manual for 

this software [61]. The advantage of this enhanced wall treatment is that it allows for 

flexibility in the spatial resolution of mesh along all the walls of the model, reducing the 

computation time while still providing more accurate boundary layer modeling as 

required. Note that the SA model has been modified in FLUENT® to use the enhanced 

wall treatment. 
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 The inclusion of heat transfer in the numerical models of divertors is critical, and 

ANSYS FLUENT® models heat transfer in both the solid divertor materials and the 

coolant. For the coolant, the energy equation is solved in the following form: 
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where E  is the total energy,  , P , and T  are the density, pressure, and temperature 

of the coolant, respectively, 
teff kkk   is the effective thermal conductivity, k  is the 

thermal conductivity of the coolant, tk  is the turbulent thermal conductivity (determined 

by the turbulence model), eff

ij  is the stress tensor, and hS  is a source term. The first two 

terms on the right represent the contributions to the total energy from conduction and 

viscous heating, respectively. For compressible flows, such as those encountered in this 

work, viscous heat can‘t be neglected [61]. The total energy is defined as: 
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where h  is the enthalpy of the coolant. 

For the SA, SKE, and RKE turbulence models, tk  is simply defined as: 
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where Pc  is the specific heat of the coolant, and tPr  is the turbulent Prandtl number set 

to a constant value of 0.85. The RNGKE model follows a different approach to define 

effk  as: 

 
effPeff ack   (23) 

where 
eff  is the effective viscosity (the sum of the laminar and turbulent viscosities) and 

a  is defined as: 
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where 
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Finally, heat transfer in the solid material is derived by the energy equation of the 

following form (for a stationary solid): 

     hss STkh
t


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
  (26) 

where s  is the density of the solid, h  is the enthalpy, sk  is the thermal conductivity of 

the solid, and hS  is a source term. For the purposes of this work, all solids are modeled 

as isotropic.  
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CHAPTER 3: HEMP-LIKE DIVERTOR DYNAMICALLY SIMILAR EXPERIMENTS 

A set of dynamically similar experiments using air as a coolant were performed 

on an HEMP-like divertor with and without fins to evaluate the thermal performance at 

prototypical conditions [74]. The experiments were used to generate curves for the 

maximum heat flux as a function of Reynolds numbers for three different maximum 

tungsten alloy temperatures. In order to verify that these experiments are indeed 

dynamically similar, additional experiments were performed on the same geometry using 

helium and argon as coolants. The experimental setup and the results of these 

experiments for all three coolants are described in this chapter. 

3.1 Experimental Setup 

3.1.1 Divertor Test Section Assembly 

The test section used to simulate the HEMP-like divertor with and without fins 

consists of an inner tube of OD 8 mm and ID 5.8 mm centered within a cylindrical outer 

shell of OD 12 mm and ID 10 mm. The inner tube has a 3 mm thick endcap with a 2 mm 

diameter port in the center, and the outer shell has either a 6 mm or 10 mm thick 

endcap. The inner tube is positioned such that there is a 2 mm axial gap between the 

end of the inner tube and outer shell endcap. The inner tube is constructed of C36000 

brass alloy; two different outer shells constructed of C36000 brass alloy and AISI 1018 

carbon steel were used. The outer shell is bolted at a flange to a 25.4 mm concentric 

brass cylinder that serves as the manifold, which in turn is attached to an insulating 

polyetherimide annular cylinder that centers the inner tube and prevents any leakage of 

coolant using rubber gaskets. The entire assembly and a cross section of the test 

section are depicted in Figure 31.  
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Figure 31. A solid model of the test module used in the experiments (a), a diagram of the 
pin fin array (b), and a cross section of the finger without fins (c). All dimensions in mm 

Three HEMP-like outer shells were constructed for the once-through 

experiments. One is constructed of AISI 1010 carbon steel, and two are made from 

C36000 brass alloy. The endcap of the steel shell has a thickness of 10 mm, while that 

of the brass shells is 6 mm in thickness. This difference in the dimension of the endcap 

is due to the lower thermal conductivity of steel (~50 W/m·K) versus brass (~120 

W/m·K); increasing the thickness of the steel endcap provides more material for the heat 

to diffuse through to reduce any effects from a non-uniform incident heat flux. A 

hexagonal array of cylindrical pin fins is machined into the inner surface of the endcap of 

one of the two brass shells, as shown in Figure 31b. The pin fins are 2 mm in length and 

1 mm in diameter with a 1.2 mm pitch, and the tips of the fins contact the endcap of the 

inner tube. However, the pin fins do not make perfect contact with the inner tube endcap 

due to machining imperfections.  

The test section can be configured such that the coolant can flow in two 

directions, referred to here as ‗forward flow‘ and ‗reverse flow‘. In forward flow, coolant 

flows through the inner tube where it is accelerated through the port and impinges upon 

the inner surface of the endcap on the shell or ‗cooled surface‘. The coolant then flows 
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radially outward before turning 90° and flowing out the annulus created by the shell and 

the tube. In reverse flow, the coolant flows in the opposite direction. Both flow directions 

utilize cross flow over the fin array when available, but forward flow also uses jet 

impingement cooling. Using the two different flow directions and the two different types 

of shells, four configurations can be tested: forward flow without fins (BF), forward flow 

with fins (FF), reverse flow without fins (BR), and reverse flow with fins (FR). While there 

are differences in the geometry, the BF configuration is similar to an HEMJ configuration 

(albeit with only a single round jet as opposed to an array of jets) and the FF and FR 

configurations are HEMP-like configurations. Since the geometry without fins is 

dimensionally similar to the HEMP divertor (same shell and tube diameters, flat cooled 

surface, etc.), it will be simply be referenced here as an HEMP-like divertor without fins 

to differentiate it from the HEMJ divertor discussed later in this work. 

Temperatures inside the shell are measured by four type-E thermocouple probes 

with a sheath diameter of 0.81 mm embedded in the test section endcap at radial 

distances of 0 mm, 1 mm, 2 mm, and 3 mm from the centerline. The probes are spaced 

by 90 degrees and are all 1 mm from the cooled surface. As a result, the thermocouple 

measurements are extrapolated to cooled surface values assuming 1D conduction 

through 1 mm of the shell material. The thermocouples are held in place by force fitting 

between the holes and the probes. Although thermocouples were also embedded 1 mm 

from the heated surface to try to measure the incident heat flux assuming one 

dimensional conduction between the thermocouples axially, these temperature data 

were not reproducible. It is impractical given the nonuniform heat source (discussed in 

the next section) to accurately measure the temperature this close to the heated surface 

since even slight changes in the position of the flame can give different results. A cross 

section of the thermocouple layout is depicted in Figure 32. 
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.  

Figure 32. Cross section of the HEMP shell cooled surface depicting the thermocouple 
arrangement. Grey circles depict location of the thermocouple junctions 

3.1.2 Flow Loop 

The test section in the ‗once-through‘ experimental setup is cooled using air, 

helium, or argon vented by a fume hood. Air is provided from the building compressed-

air line at pressures up to nearly 700 kPa. Helium and argon are supplied from as many 

as five interconnected 300 ft3 compressed gas cylinders. Two pressure regulators in 

series are used to limit the maximum pressure from the gas cylinders to ~1.4 MPa. A 

Rotameter (Brooks 1110) is used to measure the volumetric flow rate and ultimately the 

mass flow rate of the coolant entering the test section. A static pressure transducer is 

located at the exit of the Rotameter to calculate the coolant density (Omega PX302-

2KGV or Omega PX302-300AV; two pressure transducers are listed as the system was 

modified for helium and argon experiments to allow for higher pressures). More details 

about using a Rotameter to calculate the mass flow rate are provided in Appendix D. 

The pressure is measured at the inlet to the test section using a static pressure 

transducer (Omega PX302-300AV or Omega PX180-060GV), and the pressure drop 

across the test section is measured from the inlet to the outlet by a differential pressure 

transducer (Omega PX26-100DV or Omega PX26-30DV). The coolant temperatures at 

the inlet and the outlet of the test section are measured using type-E thermocouple 

probes.  
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An oxy-acetylene flame, which impinged directly on the outer surface of the shell 

endcap or 'heated surface,‘ is used as the heat source, providing heat fluxes up to 2 

MW/m2. Oxy-acetylene is chosen due to its very high flame temperature. Although this 

torch is in theory capable of providing heat fluxes much greater than 2 MW/m2, most of 

the heat is lost to the surroundings, as opposed to being transferred to the heated 

surface. The relatively small heated surface area of 113.1 mm2 on the HEMP test 

section also makes it difficult to concentrate large flames on the surface. Experiments on 

an HEMJ test section with a heated surface area of 227.0 mm2 achieved heat fluxes up 

to 3 MW/m2 with the same torch [42].  

The entire test section assembly is insulated by a combination of pipe foam, rock 

wool, and Marinite® blocks. A 12 mm hole is drilled through a series of the Marinite® so 

that the shell fit inside the blocks, which are bolted to a Unistrut® structure that supports 

the test section assembly. Pipe foam is used to cover any instrumentation lines and 

piping leading to and from the assembly. Finally, rock wool is inserted into any gaps or 

crevices that are not adequately covered by the Marinite® blocks or the pipe foam.  

A small ceramic ‗sleeve‘ (Figure 33) is used to shield the thermocouples and 

insulation from the flame. The last 0.5 mm of the shell endcap is inserted inside the 

flanged end of the sleeve, resting on a 1 mm thick lip (the inside diameter of the sleeve 

was 10 mm). The sleeve flange is clamped to the shell in the last Marinite® block. A 

machinable ceramic is chosen for the sleeve material because it could be machined 

precisely to the required dimensions and can withstand the high temperatures produced 

by the flame without melting. The sleeve also has a low thermal conductivity, and 

therefore did not remove much heat by conduction from the test section. Moreover, the 

heat conducted by the sleeve will be transferred to the outer shell of the test section, 

since the sleeve only contacts the shell. While the sleeve protects the thermocouples 
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from the flame, it also reduces the stability of the flame. The oxy-acetylene flame, which 

is several centimeters in length, must be positioned very close to the test section surface 

to provide sufficient heat flux. As the flame enters the sleeve, the flame reflected off the 

heated surface must escape without extinguishing itself, which requires impinging the 

flame on the surface at a slightly off-normal angle.  

 

Figure 33. Ceramic sleeve used to shield the thermocouples and insulation from the 
flame 

3.2 Experimental Procedure 

Experiments are conducted by setting the flow rate through the test section at the 

desired value, then applying the oxy-acetylene torch to the heated surface until a steady-

state condition is achieved. Only steady-state conditions, defined to be the condition 

where the inlet temperature iT
 
and the outlet temperature oT  vary by less than 1 ºC over 

a 5 min period with no heating or cooling trend observed, were studied in this work. 

Typically, iT  and oT  vary by no more than 0.5 ºC. Fluctuations in the oxy-acetylene 

flame can produce variations in the embedded thermocouple readings as great as ~5 ºC, 

so all experimental data is averaged over a 200 s interval to obtain steady-state values 

for temperatures and pressures.  

The range of flow rates selected for experiments on this divertor geometry is 

based upon the Reynolds number Re  at the 2 mm diameter port calculated as follows: 
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where m  is the mass flow rate of the coolant through the port,   is the dynamic 

viscosity, 
jD  is the port diameter, and 

jA  is the area of the port. For forward flow   is 

evaluated at the inlet temperature, and for reverse flow   is evaluated at the outlet 

temperature. The evaluation of material properties is discussed in more detail in 

Appendix B. The prototypical Reynolds number 
pRe  for this geometry is determined to 

be pRe  7.6×104 and pRe  7.0×104 for forward flow and reverse flow, respectively. 

This is well within the range for this experimental apparatus 8.0×103  Re  1.6×105. 

The Reynolds number, and ultimately m , are controlled by varying the inlet pressure or 

by closing a needle valve at the exit of the test section. 

It takes several minutes for each experiment to reach steady-state. Previous 

work using cartridge heaters in a copper concentrator as the heat source took hours to 

reach steady-state because of the large time constant of the concentrator [53,75]. Using 

an oxy-acetylene torch greatly decreased this time, which made it possible to conduct 

several experiments at various flow rates with a single run without turning off the torch.  

The thermal power incident on the heated surface of the shell is determined by 

an energy balance using the inlet and outlet temperature of the coolant. The average 

incident heat flux q   is then calculated by dividing the calculated incident thermal power 

by the cross sectional area of the shell 1.113hA  mm2:  
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where Qm   is the mass flow rate,   is the coolant density at the Rotameter, Q  is the 

volumetric flow rate measured by the Rotameter (see Appendix D), and pc  is the 

specific heat evaluated at the average coolant temperature. Admittedly, the average 

incident heat flux determined in this manner does not account for heat losses; however, 

it is assumed that these losses are small because the test section and piping are well-
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insulated. For a single divertor module in an array, radial losses to a neighboring module 

would be negligible since these modules would share a similar heat flux load and would 

be at similar temperatures. Modeling the boundaries of the test section to be adiabatic is 

therefore a reasonable assumption. 

 The actual profile of the heat flux incident on a single module in an actual divertor 

is unknown at present, depending on the location of the module within the array. 

However, the incident heat flux can be approximated as uniform since each module 

covers a very small portion of the divertor surface. In the experiments performed here, 

an oxy-acetylene flame is used to provide the incident heat flux, which is not uniform, 

although Eq. 28 is given in terms of an average incident heat flux. However, the shell tip 

(with thicknesses of 6 mm in the brass shell and 10 mm in the steel shell) helps to even 

out any spatial variations in the incident heat flux via conduction. To verify that using a 

flame as the heat source gives results consistent with using a uniform heat flux, Rader 

performed simulations using ANSYS FLUENT® 14.0 on this geometry [58]. He found that 

the difference between using a uniform incident heat flux and an incident heat flux profile 

that was a Gaussian function with peaking factors as great as 4 (with the same total 

thermal power input) was negligible for both the steel and brass shells. 

The temperature at the cooled surface at radial locations corresponding to the 

embedded thermocouples crT  is determined by extrapolating the embedded 

thermocouples readings 
rT  (where r  corresponds to the radial distance from the 

centerline, i.e. 0, 1, 2, and 3 mm) to the cooled surface assuming one-dimensional 

conduction.  
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where TC 1 mm is the distance to the cooled surface, and sk  is the thermal 

conductivity of the shell evaluated at the average temperature between the two values 

(this requires iteration). Next, an area-weighted average is calculated of the four 

thermocouple readings to estimate the average cooled surface temperature cT : 
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Finally, an average heat transfer coefficient h  is computed for the shell without 

fins as follows: 
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where 5.78cA  mm2. The area ratio between the heated surface and the cooled 

surface assumes that all of the heat entering the test section will be removed by 

convection at the cooled surface. In reality, some heat is conducted through the side 

walls of the divertor shell, but this is initially assumed to be negligible. This assumption is 

reexamined later. For the geometry with fins, h  needs to account for the temperature 

variation along the fins. The surface of the fins is not at the uniform temperature cT  and, 

will decrease from cT  along the length of the fins. To account for this variation, the fin 

efficiency   is computed and used to adjust the area ratio of the average heat transfer 

coefficient: 
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where 8.40pA  mm2 is the area of the cooled surface not covered by the fins, and 

302fA  mm2 is the surface area of the fins excluding the tips. The fin efficiency is 

derived from a one-dimensional model assuming that the temperature only varies along 

the length of the fin and the fin tip is an adiabatic boundary, as discussed in Section 

2.1.1. An adiabatic boundary condition is used here since there will be a thin layer of 
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stagnant coolant (a poor thermal conductor) between the fin tip and the tube because of 

the lack of perfect contact from machining imperfections and misalignment. The fin 

efficiency is taken from Eq. 5 and simplified for pin fins below: 
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where fL 2 mm is the length of the fins, 
fk  is the thermal conductivity of the fins 

evaluated at cT , and fD 1 mm is the diameter of a fin. Note that   decreases as h

increases. Solving for   also requires an iterative solution since   and h  depend upon 

one another. 

Evaluating h  using Eq. 31 for the cases with fins gives a metric for evaluating 

the value of an array of fins compared to a surface without fins because both geometries 

are based off the same cooled surface area. As a result, h  in Eq. 31 is commonly 

referred to as the ‗effective‘ heat transfer coefficient effh
 
[59]. By contrast, h  in Eq. 32 is 

referred to as the ‗actual‘ heat transfer coefficient acth . Note that for cases without fins, 

effact hh  . Unless otherwise specified, h  refers here to acth . Finally, the average 

Nusselt number Nu  is computed as follows: 

 
k

Dh
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j
  (34) 

where k  is the thermal conductivity of the coolant evaluated at the average coolant 

temperature   2oi TT  . As in most heat transfer applications, Nu  should be a function 

of both Re  and the Prandtl number Pr  (i.e.  PrRefNu , ). However, for the three 

coolants considered here, Pr  varies between 0.66 and 0.71, and typically Nu  is 

proportional to 
4.0Pr . As a result, the effect of Pr  has been ignored in these studies. So 

the performance of the divertor under prototypical conditions is estimated based on a 

correlation of the form  RefNu  . 
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 Loss coefficients 
LK  are computed for each case as follows: 
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where P  is the measured pressure drop, 
L  is the coolant density, and V is the 

average coolant velocity at the jet. Most of the pressure drop occurs as the coolant is 

accelerated through the port either before or after it is heated depending on the direction 

of flow (i.e. forward or reverse flow), based on numerical simulations [44,58]. In forward 

flow, the coolant is unheated as it passes through the port and 
L  is evaluated by the 

ideal gas law using the outlet pressure and the inlet temperature. In reverse flow, 
L  is 

evaluated using the outlet pressure and the outlet temperature. Loss coefficients are 

typically evaluated instead based on the total pressure, but since the velocity of the 

coolant at the location of the pressure measurements is very small, static pressure 

measurements for P  can be used instead. As a hydraulic parameter, 
LK  is only a 

function or Re , and like Nu , a correlation for 
LK  can be used to predict the pressure 

drop of the divertor module at prototypical conditions. 

3.3 Results 

A total of 40 steady-state experiments were performed using the brass test 

sections with and without fins and either helium or argon as a coolant: 20 forward flow 

experiments and 20 reverse flow experiments. Of these 20 experiments, 6 were 

performed with helium and without fins, 6 with helium and fins, 4 with argon and without 

fins, and 4 with argon and fins. The Reynolds number Re  for these studies varied from 

1.5×104 to 1.2×105, spanning the prototypical value pRe 7.6×104 and pRe 7.0×104 for 

forward flow and reverse flow, respectively. These experiments were compared to a 

series of experiments performed on the same geometry using air as a coolant [59,74]. 
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The average effective heat transfer coefficient effh
 
is plotted in Figure 34 for all three 

coolants. Details regarding the calculation of the experimental uncertainty are given in 

Appendix C. 

  

 

Figure 34. Average effective heat transfer coefficients for air (■), He (●), and Ar (♦) in 

forward flow (a) and reverse flow (b). Open symbols indicate bare experiments and 
closed symbols indicate finned experiments 

Several conclusions can be drawn from Figure 34. First, helium, as expected, 

produces the largest effective heat transfer coefficients, due to its high thermal 
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conductivity. Second, fins significantly enhance cooling for all coolants when compared 

to their respective bare geometries over this range of Re . However, this advantage may 

not necessarily be valid at prototypical conditions based on these results because the fin 

efficiency may be different at prototypical pressures and temperatures. Third, the 

enhancement of effh
 
due to fins is significantly more pronounced in reverse flow, which 

is likely due to the absence of jet impingement cooling in these cases. Also, effh
 
for 

reverse flow without fins is less than that for its forward flow counterpart, presumably 

also due to the absence of jet impingement cooling. Finally, effh  for configurations with 

fins is within experimental uncertainty of one another suggesting that any benefit from jet 

impingement is small for cases with fins. 

Before calculating Nu , the actual heat transfer coefficient acth
 

must be 

calculated for the cases with fins (recall that for the cases without fins: effact hh  ). The 

results for acth  are plotted in Figure 35.  
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Figure 35. Average actual heat transfer coefficients for air (■), He (●), and Ar (♦) in 

forward flow (a) and reverse flow (b). Open symbols indicate bare experiments and 
closed symbols indicate finned experiments 
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have about 4.5 times the cooled surface area of the cases without fins). We therefore 
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to determine the value of the fins in terms of enhancing thermal 

performance. In Figure 35, acth
 
in all the cases with fins is less than acth

 
for the 

2 4 6 8 10 12

x 10
4

0

1

2

3

4

x 10
4

Re

h
a

c
t

2 4 6 8 10 12

x 10
4

0

0.5

1

1.5

2
x 10

4

Re

h
a

c
t

(b) 

(a) 



 

78 
 

corresponding cases without fins. This is simply because the average surface 

temperatures along the length of the fins is less than that for the cases without the fins, 

although this decrease is partially offset by the increase in cooled surface area due to 

the fins. 

Figure 36 shows  ReNu  for each coolant and flow configuration. 

 

 

Figure 36. Average Nusselt numbers for air (■), He (●), and Ar (♦) in forward flow (a) 

and reverse flow (b). Open symbols indicate bare experiments and closed symbols 
indicate finned experiments 
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Similar to the heat transfer coefficients shown in Figure 35, Nu  is lower for cases 

with fins compared to cases without fins; however, this does not account for the larger 

cooled surface area of the cases with fins. The Nu  values calculated for each coolant, 

which should account for this enhanced surface area, should therefore be the same for 

the cases with and without fins for a given coolant, but Figure 36 shows that this is not 

the case for all flow configurations except for forward flow with fins (FF). For forward 

flow, the Nu  values without fins for He are well below those for air and Ar. Conversely, 

the Nu  values with fins for all three coolants are in reasonably good agreement. For 

reverse flow, the Nu  results for He with and without fins are significantly below the 

values for air and Ar. Furthermore, the reverse flow without fins (BR) results for air and 

Ar also differ. These results clearly show that these experiments are not dynamically 

similar, and that Nu  must depend on additional dimensionless groups beyond Re . 

As mentioned previously, the mass flow rate in these experiments was controlled 

by varying the inlet pressure to the test section, with inlet pressures as high as 1.4 MPa 

for the He experiments. The maximum inlet pressure for the air and Ar experiments was 

much lower, about 400 kPa. It was initially assumed that compressibility effects were 

negligible for all three coolants. Although this had already been confirmed for 

experiments conducted with air [59], sixteen more experiments were conducted with Ar 

at higher constant inlet pressures iP 1.4 MPa (eight in forward flow and eight in 

reverse flow) to confirm this assumption for He and Ar. These experiments are referred 

to ‗high inlet pressure experiments,‘ while the previous experiments are referred to as 

‗variable inlet pressure experiments.‘ Experiments with He at higher inlet pressure were 

not practical as the necessary pressures to reach the desired relevant differences in 

Mach number M  were too large for this experimental setup, which was already at its 
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maximum inlet pressure of 1.4 MPa. The Mach number at the port (the location of 

maximum velocity), for a uniform velocity profile, is: 

 
2

41

D

m

T
M

Li





  (36) 

where   is the specific heat ratio and   is the specific ideal-gas constant. The results 

are depicted in Figure 37 for He and Ar for both forward and reverse flow along with high 

inlet pressure experiments performed with air ( iP 700 kPa) [59,74].  
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Figure 37. Mach numbers for air (■), He (●), Ar (♦), high pressure air (▲), and high 

pressure argon () in forward flow (a) and reverse flow (b). Open symbols indicate bare 
experiments and closed symbols indicate finned experiments 
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0.7 for forward flow and 0.3 to 0.85 for reverse flow. Compressibility effects should 

therefore be significant at the upper end of this range. Conversely, M  was significantly 

lower for the high inlet pressure experiments: a maximum of 0.5 for air and 0.2 for Ar. 

High inlet pressure experiments with Ar were at low enough Mach numbers so that the 

2 4 6 8 10 12

x 10
4

0

0.2

0.4

0.6

0.8

1

Re

M

2 4 6 8 10 12

x 10
4

0

0.2

0.4

0.6

0.8

1

Re

M

(b) 

(a) 



 

82 
 

flow could be considered to be incompressible. By comparing Nu
 
values from the 

variable inlet pressure experiments with those from the high inlet pressure experiments, 

it can be determined if compressibility is significant, as shown in Figure 38. 

 

 

Figure 38. Average Nusselt numbers for air (■), He (●), Ar (♦), high pressure air (▲), 

and high pressure argon () in forward flow (a) and reverse flow (b). Open symbols 
indicate bare experiments and closed symbols indicate finned experiments 
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compressibility effects are judged to be negligible. To further study the discrepancy in 

Nu  shown in Figure 36, numerical simulations of these experiments have been 

performed using a commercial CFD code, as will be detailed in Chapter 4.  

The loss coefficient 
LK , computed for each steady-state experiment using Eq. 

35, is plotted in Figure 39 as a function of Re . The results are in good agreement for all 

four flow configurations (for a given configuration), all three coolants, and all inlet 

pressures. Some discrepancy is admittedly observed at low Re  (particularly for cases 

with fins), in part because experimental error is significant at low Re  since the measured 

pressure drops for these cases are comparable to the measurement uncertainty of the 

differential pressure transducer. Regardless, these Re  are much less than 
pRe  for both 

flow directions. As expected, the cases with fins have a larger pressure drop than their 

respective cases without fins. The highest pressure drops are also observed for the FR 

cases, and this is consistent with the observation that most of the pressure drop occurs 

at the port. In reverse flow, the coolant is heated before passing through the port, so 

there should be a larger loss across the port because viscosity increases with 

temperature. However, the cases without fins show approximately the same 
LK  at 

higher Re  for both forward and reverse flow.  



 

84 
 

 

 

Figure 39. Loss coefficients for air (■), He (●), Ar (♦), high pressure air (▲), and high 

pressure argon () in forward flow (a) and reverse flow (b). Open symbols indicate bare 
experiments and closed symbols indicate finned experiments 

These data were used to develop correlations for the loss coefficient as a 

function of Re  that can be used to predict the prototypical pressure drop through the 

divertor for each flow configuration. The form of the correlations was chosen to be a 

power law with a constant offset; in all cases the coefficient of determination 
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exceeded 0.98. These correlations, generated using the built-in fitting function in 

MATLAB® 2008b, are given below: 
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 (37) 

The procedure for using these correlations to estimate prototypical pressure drop is 

discussed further in Chapter 5. 

In summary, a series of experiments with He and Ar on a brass HEMP-like test 

section with and without fins were performed, and used to develop correlations for Nu  

and 
LK , as both a function of Re . Discrepancies in Nu  were found for different 

coolants. These discrepancies are not due to compressibility effects. To explain the 

discrepancies, CFD simulations of the experiments are performed using ANSYS 

FLUENT® 14.0, and the models and results are discussed in depth in the next chapter. 
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CHAPTER 4: NUMERICAL MODELING 

4.1 Numerical Modeling of HEMP-like Divertors 

A numerical model was constructed to further investigate the disparity in the Nu  

values calculated from dynamically similar experiments of the HEMP-like module with 

and without fins using different coolants. Given that the experiments can only measure a 

limited set of temperatures and the overall pressure drop, simulations with this numerical 

model, validated by the available experimental data, make it possible to determine 

thermal transport parameters that are not accessible in the experiments. In addition, this 

experimentally validated model can be used in subsequent studies to investigate how 

changes in the divertor geometry and operating conditions affect its thermal-hydraulic 

performance. Building upon previous experience (cf. Section 2.4.1), this numerical 

model is built using FLUENT® in ANSYS Workbench® 14.0 and solves the continuity 

equations for mass, momentum, and energy in the coolant, and conduction heat transfer 

through the shell and tube. Both a 2D axisymmetric model and a 3D model including the 

shell and tube of the HEMP-like geometry without fins (i.e. bare; BF/BR flow 

configurations) were created. The 3D model consisted of a 30° wedge of the shell and 

tube. The 3D model was mainly used to validate the results obtained with the 2D model 

and determine which turbulence models give the best match to the experimental data. 

Only 2D simulations were performed of the experiments with the steel shell, discussed in 

Chapter 5, as the 3D model was ultimately shown to be redundant and significantly more 

computationally intensive. 

Simulations were performed using data gathered from experimental 

measurements from each steady-state experiment as boundary conditions. The model 

was then validated by comparing h  and P  to experimentally calculated values.  
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Previous work using the FLUENT® solver to model dynamically similar HEMP-like 

divertor experiments using air was able to predict h  values that were within ±10% of 

experimental values for relevant Re  [58]. These simulations are, however, intended to 

also duplicate experiments conducted with helium and argon. Previous simulations of 

this geometry have been unable to predict pressure drop values P  consistent with 

experimental measurements, with discrepancies between the numerical and 

experimental values of P  of 20-40% depending on the Re  and the configuration [58]. A 

geometrical modification, described next, has been included in the model to improve the 

numerical predictions of pressure drop.  

Simulations performed by Rader [58] indicated that a significant fraction of the 

overall pressure drop occurs at the port entrance as the coolant is accelerated into a jet. 

As a result, it is important to accurately model the port geometry. When fabricating the 

tube, the port on the tube endcap was machined with a 45° chamfer on the inside to 

remove burrs from the drilling process. This chamfer was not included in the numerical 

model used for the original simulations. Measurements were obtained for this chamfer 

indicating the chamfer extended 1.0 ± 0.5 mm into the 3 mm tube endcap, and this 

design modification was applied to the geometry for subsequent simulations.  

4.1.1 2D Model 

The 2D axisymmetric model, shown in Figure 40, consisted of 50 mm of the 

brass shell, and 42 mm of the tube, closest to their respective endcaps. All solid 

boundaries are chosen to be adiabatic with the exception of the heated surface. 

Although the ceramic sleeve conceals 1 mm of the heated surface radius, it is ignored in 

this model since small non-uniformities in the incident heat flux have been shown to 

have a negligible effect on the results [58]. Instead, the incident heat flux is assumed to 

be a uniform heat flux calculated from experiments using Eq. 28. Given the large 
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temperature variations in these simulations, temperature dependent properties are used 

for both the solid materials and the coolants. Material properties were compiled from 

several sources, as detailed in Appendix B. 

 

 

Figure 40. 2D axisymmetric model used in the CFD analysis. Solid black lines indicate 
adiabatic boundary conditions, red line indicates heat flux boundary condition, green 

lines indicates coolant boundary conditions (mass flow inlet or pressure outlet depending 
on the direction of flow), dashed black line indicates axis 

The turbulence model was chosen based on previous work by Rader [58]. After a 

study of the various turbulence models available in ANSYS FLUENT®, Rader found that 

the Spalart-Allmaras (SA) model gave results for the forward flow configurations using 

air that provided the best agreement with the corresponding experimental 

measurements. For reverse flow experiments using air, the realizable k-ε (RKE) 

turbulence model with enhanced wall treatment gave predictions that were the closest to 

the experimental results. 

A mass flow inlet and pressure outlet coolant boundary conditions are defined 

and taken from experimental measurements of m , iT , oT , iP , and oP . Only iT  and oP  

are required, and oT  and iP  are defined in the event of any recirculating flow at the 

boundaries (which only occurs briefly in the initial iterations). For the SA model, the 

parameter ~  (related to the turbulent eddy viscosity) must also be defined at the 

boundaries according to the following equation [61]: 
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 IlVavg
2

3~   (38) 

where 
avgV  is the average velocity of the inlet, I  is the turbulence intensity, and l  is the 

turbulence length scale all defined as: 
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where the inlet area iA 26.4 mm2 and 28.3 mm2 for forward flow and reverse flow, 

respectively, i  is the density at the inlet to be determined by the ideal gas law, and iRe  

is the Reynolds number using the hydraulic diameter of the inlet (5.8 mm) and the outlet 

(2 mm) for forward flow and reverse flow, respectively. 

For the RKE model, the turbulent kinetic energy tk  and the turbulent dissipation 

rate   are determined for the flow boundary conditions using the following equations 

[61]: 
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where C is an empirical constant set equal to 0.09. 

The mesh is comprised of approximately 5×105 quadrilateral cells ~25 μm on 

each side and is depicted in Figure 41. This mesh size is determined from a series of 

convergence studies using models with mesh sizes ranging from 15 μm up to 300 μm, 

all representing an experimental reference case, referred to here as Reference Case #1 

or RC1. RC1 is a BF experiment using a brass shell with helium with a Reynolds number 

close to 
pRe . Specific details for the reference cases are given in Appendix A. One of 

the most important parameters in these simulations is the average cooled surface 
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temperature cT
 
since this is in the general location of the largest temperature gradients. 

cT  is then compared to the experimentally calculated values, and the results of the 

mesh convergence analysis are depicted in Figure 42. As the mesh size decreases, the 

numerical predictions of cT
 
approach a value that is within 3 °C of the experimentally 

calculated values for mesh sizes ranging from 25 μm to 100 μm, suggesting that the 

mesh has already converged at 100 μm. A conservative mesh size of 25 μm was 

ultimately selected because 2D simulations at even this small mesh size were 

computationally efficient (i.e. convergence was achieved within approximately 3 hours) 

to ensure a converged mesh at all Re  studied here. This model consisted of about 

486,000 cells. 

 

Figure 41. Quadrilateral mesh in the impingement region generated for the 2D 
simulations. 



 

91 
 

 

Figure 42. 2D forward flow mesh convergence analysis compared to experimental 
measurements in RC1 

4.1.2 3D Model 

Like the 2D model, the 3D model, shown in Figure 43, consisted of a 30° wedge 

of the 50 mm section of the brass shell and the 42 mm section of the tube next to their 

respective endcaps. All the outer boundaries are adiabatic with the exception of the 

heated surface. Symmetry boundary conditions are used for the ‗sides‘ of the wedge. 

Non-uniformities in the heated surface from the flame and the ceramic sleeve are also 

ignored and an experimental average uniform heat flux calculated with Eq. 28 is used as 

the heat flux incident upon the heated surface. The temperature-dependent properties 

used for both the coolant and the solid materials are identical to those used for the 2D 

model as described in Appendix B. 
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Figure 43. 3D 30° numerical model used for the numerical analysis without fins (left). 
Cross section of the model illustrating the boundary conditions (right) 

Similar to the 2D simulations, all inlet and outlet coolant boundary conditions are 

identical to those measured in the experiments. Previous 3D numerical work for air 

suggested the RKE model with enhanced wall treatment provides results that most 

closely match the experimental measurements for forward and reverse flow; however, 

the numerical predictions here using the RKE model over predicted the heat transfer 

coefficients by approximately 5-30% over those obtained in the experiments [58]. 

Nonetheless, the RKE model was selected here. The turbulence parameters, tk  and  , 

at the boundaries were defined using the equations given above. 

The number of cells in the mesh was constrained by limitations on the maximum 

RAM available for the PC used for these simulations. Given the much larger number of 

cells required for the 3D model, a variable mesh was implemented with the most refined 

cells concentrated in the gap between the end of the tube and the cooled surface. In the 

gap, 50 μm tetrahedral cells are used in the coolant and the cell size expands at a 

predefined growth rate from this location, resulting in a mesh consisting of approximately 

Symmetric BC 

Adiabatic BC 

30° 
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3.7×106 cells. As in the 2D simulations, reference case RC1 was used to evaluate the 

mesh convergence by comparing numerical predictions of cT  as the mesh size 

decreases with experimental results. The results of the mesh convergence study are 

shown in Figure 44. Overall, the mesh size has a very small effect on the final result, and 

the numerical predictions, although 8 °C less than the experimental results for even the 

finest mesh, appear to have converged for the two smallest mesh sizes. The larger of 

these two mesh sizes, 50 μm, was therefore used in the 3D simulations.  

 

Figure 44. 3D bare forward flow mesh convergence analysis compared to experimental 
measurements in RC1 

4.2 Results 

4.2.1 2D Results 

Each numerical simulation was compared to the corresponding experimental 

results for h  and P  to validate the model over the full range of Re . In each simulation, 

numerically determined values for cT  are used to calculate h  using Eq. 31. Then h  is 

plotted versus m  (i.e., the dimensional form of Re ) and compared with experimental 

values given in Figure 34. The comparison is shown in Figure 45.  
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Figure 45. Numerically determined values (closed symbols) for h  compared to 

experimental values (open symbols) for He (●) and Ar (♦) in forward flow (a) and 

reverse flow (b) 

Alternatively, the discrepancy between the numerical predictions and the 

experimental results can be plotted as a percent difference, as in Figure 46. Except for 

the reverse flow cases with He, the numerical predictions are within approximately ±5% 

of the experimental values for h , giving confidence that these models accurately 

(b) 
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simulate the experiments. For further validation, the discrepancy between the numerical 

predictions and experimental measurements of P  is given in Figure 47. 

 

 

Figure 46. Percent difference in h from 2-D numerical simulations versus experimental 

values. Includes cases with He (●), Ar (♦), and high pressure Ar () for forward flow 

(closed symbols) and reverse flow (open symbols) 

 

Figure 47. Percent difference in P from 2-D numerical simulations versus experimental 

values. Includes cases with He (●), Ar (♦), and high pressure Ar () for forward flow 

(closed symbols) and reverse flow (open symbols) 
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The numerical predictions of P  for the forward flow cases with variable inlet 

pressure are in good agreement with the experimental data, but reverse flow cases differ 

by as much as ~40% from the experimental measurements. Nevertheless, given that the 

discrepancy between the numerical simulations and experimental measurements of 

Rader [58] showed deviation of ~40% for both the forward and reverse flow cases with 

air, those results suggest that adding the 45° chamfer to the port significantly improved 

the accuracy of P  for the forward flow cases. The reverse flow cases appear, however, 

to be unaffected by this modification.  

The numerical predictions for h  and P  using the SA turbulence model are in 

good agreement with the experimental values for the forward flow cases. Predictions for 

the reverse flow cases with He for h  differ from the experimental values by 10-20%, and 

those for P  differ by approximately 70% for both He and Ar. Two additional turbulence 

models available in ANSYS FLUENT®, the SA and standard k-epsilon (SKE) models, 

were therefore explored for these reverse flow cases in an attempt to improve upon the 

results with helium. Neither of these two models gave results that were a noticeable 

improvement over those obtained with the RKE model. All of this suggests that there is 

considerable room for improvement in these numerical models. Ideally, the same 

turbulence model would be used for each flow direction; however, this might require that 

a different mesh is used for each flow direction. Nevertheless, the numerical predictions 

for the forward flow cases can be used with reasonable confidence to study the 

discrepancies between the experimental results for different coolants.  

To better understand the discrepancy in Nu  values for different coolants shown 

in Figure 36a, a radial profile of local Nusselt number  rNu  was calculated along the 

cooled surface for simulations performed with air, He, and Ar, all at approximately the 

same Re 5×104 for four reference cases RC1-RC4. The values for air were calculated 
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from the simulations performed by Rader (RC2-RC3) [58]. The radial cooled surface 

temperature profiles  rTc  and cooled surface heat flux profiles  rq   from these 

simulations were extracted from the simulations and used in the following equation to 

calculate  rNu : 

  
 

  kTrT

Drq
rNu

ic

j




  (44) 

The local Nusselt number is graphed in Figure 48. As one would expect of 

dynamically similar experiments,  rNu  is similar over all four cases for air, He, and Ar. 

The small differences in  rNu  can be explained by inaccuracies in the turbulence 

models, variations in Re  (47500  Re 54500), and the use of an average thermal 

conductivity for the coolant k . Nevertheless, the average values calculated from  rNu  

in Figure 48 are all significantly lower than those presented in Figure 36a for Re 5×105 

(open symbols). Given that h  values from the simulations and the experiments were in 

good agreement for the forward flow cases (Figure 46a), this result suggests that a 

significant fraction of the heat incident on the HEMP-like divertor is not removed at the 

cooled surface as was originally assumed in Eq. 31. This heat must instead be 

conducted through the side walls of the divertor before it is ultimately removed by 

convection from the inner surface of the side walls. This conduction through the side 

walls of course reduces the heat transfer coefficient at the cooled surface, and the 

relative importance of this effect will presumably vary with the coolant, which explains 

the discrepancy in Nu  among air, He, and Ar. 
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Figure 48. Numerically determined local Nu  profile at Re 5×104 for helium (red, RC1), 

air (black, RC2) [58], high-pressure air (green, RC3) [58], and high pressure argon (blue, 
RC4) 

The fraction of heat that is removed at the cooled surface is plotted as a function 

of Re  for the various coolants for both forward and reverse flow cases in Figure 49. 

From these figures it is immediately clear that the fraction of heat incident on the 

module, which is being removed by the cooled surface, is well below 100%, and that it 

varies strongly depending on the coolant with a weak dependence on Re . For 

simulations performed with air [58], the fraction of heat convected to the coolant at the 

cooled surface is 35-45% for forward flow and 10-15% for reverse flow. For He, it varies 

from 45% to 65% in forward flow and from 20% to 35% in reverse flow. Finally for Ar, it 

ranges from 33% to 40% in forward flow and from 9% to 11% in reverse flow. As 

expected, the inlet pressure does not affect the fraction of heat convected away at the 

cooled surface. Although the HEMP-like design was not intended to be used without a 

fin array, the low fractions of heat being removed by convection at the cooled surface 

suggest there is significant room for improvement in the design. 
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Figure 49. Fraction of the total incident heat that is convected away at the cooled surface 

for air (■), He (●), Ar (♦), high pressure air (▲), and high pressure argon () for forward 

flow (a) and reverse flow (b) 

The fraction of heat removed by convection at the cooled surface from the 

simulations can be used to calculate a true average heat flux at the cooled surface. 

However, the resulting  ReNu  correlation cannot be used to estimate the prototypical 

performance for a tungsten divertor since the fraction of heat that would be conducted 

through the walls cannot be accurately estimated without further simulations, and further 
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experiments to validate these simulations. Dimensional analysis is instead used to 

consider the fraction of heat flux that is conducted through the walls of a divertor, and as 

will be discussed in Chapter 5. 

4.2.2 3D Results 

Each steady-state experiment was also simulated using the 3D model, and the 

results were evaluated by comparing the numerical predictions and experimental values 

of h  and P . The cT  values from the simulations were again used to calculate h  

using Eq. 31, and the discrepancy between the numerical predictions and the 

experimental values is plotted in Figure 50. 

 

Figure 50. Percent difference in h  from 3D numerical simulations versus experimental 

values. Includes cases with He (●) and Ar (♦) for forward flow (closed symbols) and 

reverse flow (open symbols) 

Similar to the 2D simulations, the 3D simulations do a good job of predicting h  

for all of the flow configurations except for reverse flow with helium. The discrepancy in 

h  between the simulations and the experiments is as large as 10% in some cases at 

higher Re , compared with a maximum deviation in the 2D simulations of approximately 
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5%. However, the 2D and 3D models can be considered to be in reasonable agreement 

given that they employ different meshes. The discrepancy in P  between the 

simulations and the experiments is shown in Figure 51.  

 

Figure 51. Percent difference in P from 3D numerical simulations versus experimental 

values. Includes cases with He (●) and Ar (♦) for forward flow (closed symbols) and 

reverse flow (open symbols) 

For the forward flow cases, the numerical and experimental values of P  are 

again in very good agreement with the experiments. However, in reverse flow cases, the 

discrepancy between the simulations and the experiments is about 40%. This indicates 

that including the chamfer in the 3D model did not improve the predictions for P  for 

reverse flow, as was the case for the 2D simulations, and the discrepancy is comparable 

to that found in the original simulations by Rader [58] using air. Nevertheless, using the 

RKE turbulence model with FLUENT‘s enhanced wall treatment in 3D simulations gives 

results that are in good agreement with the experiments in forward flow.  
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4.3 Numerical Modeling of HCFP Divertors 

As discussed in Section 2.2.3, dynamically similar experiments were performed 

by Hageman et al. [45] on a brass HCFP module using air at room temperature and 

pressures up to 700 kPa. Correlations for Nu  as a function of Re  were developed based 

on temperature data from embedded thermocouples which measured temperatures near 

the cooled surface. The correlations were then used to predict the maximum heat flux an 

HCFP module could accommodate with and without an array of cylindrical pin fins. 

HCFP modules with slot widths of 2 mm and 0.5 mm were studied to investigate whether 

slot width had a significant effect on performance. For pRe 3.3×104, these studies 

determined that the prototypical HCFP module could accommodate steady-state heat 

fluxes up to 14 MW/m2 and 18 MW/m2 without and with fins, respectively. 

As discussed in Chapter 3 for the HEMP-like divertor, the results of the 

experiments in Hageman et al. should be confirmed by performing dynamically similar 

experiments using He and Ar. However, the mass flow rates required to perform 

dynamically similar experiments on the HCFP module using these coolants is impractical 

due to excessive costs with the experimental setup used in Chapter 3. Therefore, as an 

alternative to performing these experiments with He and Ar at room temperature and low 

pressures, a numerical model was created in ANSYS FLUENT® and validated with the 

air experiments. Simulations were then performed with He and Ar as coolants. 

Obviously, a numerical model using He at prototypical temperatures and pressures can 

also be created to directly predict the thermal performance, but simulations at room 

temperature and low pressures are first required to validate the model with experimental 

data. Furthermore, these simulations can also determine whether a significant fraction of 

heat is also conducted through the divertor walls in a divertor design other than the 

HEMP-like divertor. Only the HCFP geometry with a 2 mm wide slot without fins was 



 

103 
 

simulated because the number of elements that would be required to accurately model 

the flow between the fins was prohibitively large, and slot widths of 0.5 mm did not show 

any improvement in the thermal performance. 

4.3.1 HCFP Model 

Figure 52 shows the HCFP test section used in the dynamically similar 

experiments and the 3D half model that was used in the simulations. The HCFP test 

section, which is significantly larger than the HEMP-like test section, requires larger 

cells. All outer boundaries, except for the symmetry plane and the heated surface, were 

modeled as adiabatic. The test section was heated in the experiments using a copper 

heater block with three embedded cylindrical cartridge heaters. The heat flux incident on 

the heated surface was given in the simulations as a uniform profile whose value was 

taken to be the thermal power, determined again from a control volume energy balance 

on the coolant divided by the area footprint of the copper heater block hbA 1.753×10-3 

m2. Given the relatively large size and high thermal conductivity of the copper heater 

block, conduction within the heater block should ensure that the incident heat flux is 

essentially uniform. The test section consists of an outer shell of C36000 brass alloy 

surrounding an inner aluminum cartridge. Temperature dependent properties were used 

for brass alloy shell and coolants in these simulations (the aluminum cartridge did not 

have a large enough temperature variation in the simulations to warrant temperature 

dependent properties); further details are given in Appendix B. 
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Figure 52. Solid model of the dynamically similar experimental setup used in Hageman 
et al. [45] (left) and the numerical 3D half model used to simulate the test section (right). 
The heat flux boundary condition is highlighted in red and all other solid boundaries are 

adiabatic 

The turbulence model used in these simulations was the standard k-ε (SKE) 

model with standard wall functions. Given the large size of this test section, it is 

impractical to perform these simulations with as fine a mesh as that used in the HEMP-

like simulations, and so the mesh resolution is much greater than a wall unit. Standard 

wall functions were therefore used here in conjunction with the SKE model.  

The mass flow inlet and pressure outlet coolant boundary conditions were taken 

from experiments performed at different Re . As in the HEMP-like models, m , iT , oT , iP , 

and oP
 
are defined; however, iT  and oP  are fixed, and oT  and iP  are defined in the 

event of any recirculating flow at the boundaries (which only occurs briefly in the initial 

iterations). The turbulence parameters at the boundaries, tk  and  , were defined using 

Eqs. 42 and 43. 

The mesh consists of approximately 3.85×106 hexahedral and tetrahedral cells of 

varying sizes, where the smallest cells of about 0.25 mm are placed along the cooled 
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surface. The size of the cells increases from the cooled surface in the jet impingement 

region to 0.75 mm in the coolant, and increase further in the solid to a maximum cell size 

of 1.5 mm in the outer shell of the test section. This range of cell sizes was determined 

from a series of simulations of the same steady-state experiment, Reference Case #5 

(RC5) with different mesh sizes. Predicted values of the average cooled surface 

temperature cT  along the midline of the test section (near the embedded 

thermocouples) were again compared for different meshes; Figure 52 shows cT  as a 

function of the total number of cells on the cooled surface compared with the 

experimental values. Since the cooled surface temperature monotonically deceases to 

the experimental value, the mesh with the largest number of cells on the cooled surface, 

~3.3×104, or 3.85×106 cells total, was used in these simulations. Unfortunately, using a 

mesh with an even larger number of cells was impractical with the computational 

resources available. 

 

Figure 53. Average cooled surface temperature along the test section midline in the 
simulations and experiment (RC5) versus the total number of cells on the cooled surface 
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4.3.2 Results 

Hageman et al. [45] carried out dynamically similar experiments performed at 

three approximate Re  of 12700, 33000, and 47,000, compared to a 
pRe  of 

approximately 3.3×104. One experiment at each Re  was simulated here. The data from 

Hageman et al. are used to compute an average Nusselt number Nu  using a procedure 

similar to that described in Section 3.2 for the HEMP-like divertor. 

The average incident heat flux is calculated using Eq. 28 where the area of the 

heated surface for the HCFP hA 2.206×10-3 m3. Then, the five thermocouples 

embedded 0 mm, 4.1 mm, 4.1 mm, 8.2 mm and 8.2 mm from the plane of symmetry are 

extrapolated to values at the cooled surface assuming one-dimensional conduction 

using Eq. 29. Next, an area-weighted average cooled surface temperature cT  is 

calculated as follows: 

   52.82.81.41.40 cccccc TTTTTT   (45) 

An average heat transfer coefficient is computed using Eq. 31 for an HCFP 

cooled surface area cA 1.853×10-3 m3. Finally, an average Nusselt number Nu  is 

computed for each experiment using Eq. 34 and the cT  from Eq. 45. The experimentally 

determined Nu  is then compared to the Nu  calculated from the simulations, and the 

difference between these two values is used to estimate the numerical error. The 

percent difference between the numerical and experimental values is shown for the 

three Re  in Figure 54.  
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Figure 54. Percent difference in Nu  between the experiments and the numerical 

simulations of the HCFP module using air as a coolant 

Figure 54 shows that the simulations and the experiments are in reasonable 

agreement, with a maximum difference of ~11% at the lowest Re . Therefore, the 

numerical model can be used to estimate Nu  values for the coolant He. Furthermore, 

since the simulations of the HEMP-like module showed that the deviations in Nu  

between different coolants were due to differences in the fraction of heat conducted 

through the walls of the divertor, simulations were performed for three different test 

section materials with very different sk  values. These three materials were a stainless 

steel alloy, a fictitious high-conductivity material, and a fictitious low-conductivity 

material. The five different coolant/test section material configurations simulated here 

are summarized in Table 1. 
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Table 1. HCFP configurations simulated in the numerical model. Details for the material 
properties are found in Appendix B.  

Configuration Coolant 
Test Section 

Material sk  (W/m·K) 

1 Air Brass ~140 

2 He Brass ~140 

3 Air Stainless Steel ~20 

4 Air High Conductivity ~185 

5 Air Low Conductivity ~9 

 

Figure 55 shows the numerical results for Nu  obtained at the three Re  using the 

same coolant boundary conditions as in the three original simulations with air and the 

appropriate mass flow rates for helium. 

 

Figure 55. Nu  for each Re  experimentally tested in Hageman et al. for the five different 

coolant/test section material configurations listed in Table 1: experiments (■) [45], conf. 1 

(■), conf. 2 (●), conf. 3 (♦), conf. 4 (▲), and conf. 5 ().  

As observed for the HEMP-like divertor, Nu  depends on the coolant, with He 

giving lower Nu  than air. This again suggests that less heat is being conducted through 

the walls of the divertor in experiments with He (cf. Figure 49). Furthermore, reducing 
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the thermal conductivity of the test section material has the same effect, with more heat 

convected away at the cooled surface. Dimensional analysis will also be used for the 

HCFP geometry to account for conduction through the walls of the divertor, as will again 

be discussed in Chapter 5. 
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CHAPTER 5: PROTOTYPICAL PERFORMANCE 

5.1 Effect of Thermal Conductivity Ratio 

It is initially assumed in Eq. 31 that all of the incident heat flux on the test section 

is removed at the cooled surface via convection. However, as shown in Chapter 4, a 

significant fraction of the incident heat flux is instead conducted through the walls of the 

divertor. This heat is of course ultimately removed by convection as the coolant flows 

over the side walls of the divertor, but this is not included in the current dimensional 

analysis of Nu . A new dimensional analysis was therefore performed to obtain a revised 

simple and experimentally based correlation for the Nu , as detailed next. 

The average heat transfer coefficient h  was originally assumed to depend upon 

jD ,  , V ,  , pc , and k . The problem therefore involves seven variables and four 

basic dimensions: mass M , length L , time T , and temperature  . From 

Buckingham‘s Pi Theorem, three unique non-dimensional groups, or   terms, are 

sufficient to completely describe this problem, and the   terms used here are namely, 

Nu , Re , and Pr . However, since the Pr  values for the three coolants considered in this 

problem are comparable, ranging from ~0.66 to 0.71, and most correlations for turbulent 

heat transfer scale as 
4.0Pr  we assume that the dependence of Nu  on Pr  is negligible. 

Hence, Nu  only depends upon the Re .  

However, given that conduction through the divertor walls is non-negligible, h  

must also depend upon an additional parameter, namely the thermal conductivity of the 

divertor material sk . By the Buckingham Pi Theorem, the problem then requires four   

terms, whose derivation is briefly summarized below. 

First, the variables are expressed in terms of their basic dimensions: 



 

111 
 

 

1

3

13















LTV

ML

LD

MTh

j


   

13

13

122

11

















MLTk

MLTk

TLc

TML

s

p



  (46) 

Then, using the Method of Repeating Variables, the four repeating variables, which 

contain all the basic dimensions, are chosen to be 
jD , V ,  , and k . Each of the four 

remaining variables is then combined with these four repeating variables to create four 

dimensionless groups. For the group involving h : 
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k

Dh j
1  (49) 

Repeating this process to determine   terms that involve  , pc , and sk
 
gives the 

dimensionless groups Re , Pr , and   respectively: 
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Finally, the dimensional analysis gives: 

     ,,, RefPrRefNu   (53) 

In this dimensional analysis, the only new dimensionless group involving the 

thermal conductivity of the divertor material sk ,  , is simply the ratio of the thermal 
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conductivity of the solid to that of the coolant. Of course, this analysis does not yield a 

unique set of dimensionless groups. It is convenient, however, to use the dimensionless 

groups that are commonly used in heat transfer, namely Nu , Re  and Pr . The range of 

  produced from the experimental data is summarized in Table 2: 

Table 2. Approximate experimental thermal conductivity values for different coolants. 
Temperature dependent thermal conductivities are given which account for the different 

values in the same test section material 

Test Section 
Material 

Coolant sk  (W/m·K) k  (mW/m·K)   (-) 

Brass (C36000) Ar 136 19 7200 

Brass (C36000) Air 140 28 5000 

Brass (C36000) He 125 158 800 

 

Physically speaking,   characterizes the relative contributions of conduction and 

convection observed in Figure 36. In heat transfer, the Biot number Bi  is usually used 

instead in problems where both convection and conduction are relevant  

 
s

c

k

Lh
Bi   (54) 

where cL  is a characteristic length, assumed to be the diameter of the cooled surface 

cD 10 mm. Here,   is used instead of the more common Bi  because  , unlike the 

Biot number, is independent of h . Since Nu  is also a function of h , using Bi  in a 

correlation for Nu  would require an iterative solution. Using   instead may, however, 

still require an iterative solution because the thermal conductivities of the solid and the 

coolant are functions of temperature, as detailed in the following sections.  

 Nevertheless, based on this dimensional analysis, the experimental data from 

Figure 38 are curve-fit to a power-law function of the form: 

 baReCNu   (55) 
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where a , b , and C  are all constants which are determined using multiple linear 

regression in MATLAB 2008b. Since the results for FF suggest that Nu  is essentially 

independent of  , the Nu  correlation for this case is curve-fit to a power-law function 

that only involves Re . The thermal conductivity of the coolant k  is evaluated at the 

average of the inlet and outlet coolant temperatures   2oi TT  , and the thermal 

conductivity of the shell sk  is evaluated at the average cooled surface temperature cT . 

The resulting correlations for each flow configuration are as follows: 
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 (56) 

where these correlations, based upon the data in Table 2, are valid for: 
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Figure 56 (forward flow) and Figure 57 (reverse flow) compare the experimental 

data with their respective correlations (solid lines), as well as ±10% uncertainty bands 

(dashed lines). 
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Figure 56. Average Nusselt number correlation using the thermal conductivity ratio for air 

(■), He (●), Ar (♦), high pressure air (▲), and high pressure argon () in BF (a) and FF 

(b). Dashed lines indicate ±10% deviation from the correlation 

(b) 

(a) 
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Figure 57. Average Nusselt number correlation using the thermal conductivity ratio for air 

(■), He (●), Ar (♦), high pressure air (▲), and high pressure argon () in BR (a) and FR 

(b). Dashed lines indicate ±10% deviation from the correlation 

The experimental measurements are within ±10% of the correlations of Eq. 56, 

suggesting that these correlations can be used with reasonable confidence to predict the 

thermal performance of these divertor configurations at prototypical operating conditions. 

Typically, heat transfer correlations for turbulent internal flows have nReNu   where

(a) 

(b) 
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n 0.8. This relationship appears in the correlations here for Nu  if they are expressed 

in terms of Bi  instead of  . Dividing Nu  by   yields: 

 CBi
L

D
Bi

k

k

k

DhNu

c

j

s

j



 (58) 

where C  is a constant. Then, the FR correlation given in Eq. 56 can be rewritten: 

 
9056.00944.07429.0

0944.0
0196.0 NuCBiRe

Nu



 (59) 

 0944.07429.09056.0  BiCReNu  (60) 

Finally, Nu  can be written in terms of Re  and Bi  as: 

 1042.08203.0  BiCReNu  (61) 

and we see that the Nusselt number depends on the Reynolds number raised to an 

exponent that is approximately 0.8. Similarly, rewriting Nu  in terms of Re  and Bi  gives 

854.0ReNu   for the BF case and 
741.0Re  for the BR case. Finally, for FF, where Nu  is 

essentially independent of   (or Bi ), 857.0ReNu  . So, in all four flow configurations, the 

dependence of Nu  upon Re  is consistent with that expected for turbulent internal flow if 

the data is fit with alternative dimensionless groups, and the variations in n  are likely 

due to experimental uncertainty and the choice of ―characteristic‖ properties (e.g. 

evaluating properties at inlet, vs. average coolant, temperatures). 

5.2 Steel Test Section 

Before using the correlations of Eq. 56 to predict the prototypical performance, 

the value of   at prototypical conditions must be estimated and compared with the 

bounds given in Eq. 57. The HEMP divertor design specified a shell of the tungsten alloy 

WL10. For a divertor temperature of ~1000 °C and an average He coolant temperature 

of ~650 °C, the thermal conductivities of the solid and coolant are ~116 W/(mK) and 
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0.354 W/(mK), respectively, giving a prototypical thermal conductivity ratio p  340. 

This is unfortunately below the range of validity of the correlations; therefore, the 

correlations must be verified at lower   values.  

5.2.1 Steel Experiments 

The simplest way to achieve lower   values in the experiments is to decrease 

the thermal conductivity of the shell sk . Moreover, since the previous experiments only 

varied the thermal conductivity of the coolant k , using a test section made from a 

different material also provides confidence that correlations based on   are valid for 

changes in the thermal conductivities of the coolant or the shell. The steel test section 

previously described in Section 3.1.1 was therefore used for further experiments. Since 

results from a single flow configuration obtained with a different test section should be 

sufficient to prove that the correlations are valid at lower  , only the BF configuration 

was examined.  

AISI 1018 carbon steel was chosen as the shell material due to its relatively low 

thermal conductivity and the availability of sk  data over a range of temperatures. In 

experiments with helium,  330, based on k 0.161 W/(mK) at 40 °C and sk 52.9 

W/(mK) at 250 °C, a value slightly lower than that expected at prototypical conditions. 

Materials with even smaller sk  could, in theory, be used with other coolants, such as air, 

to achieve  340, but this was considered to be impractical because non-uniformities 

within the flame used to heat the shell can become significant for shells made of 

materials with very low thermal conductivities. To minimize nonuniformities in the heat 

flux incident upon the cooled surface of the shell the shell endcap length (i.e., the 

dimension between the heated outer and cooled inner surfaces) was increased to 10 

mm.  
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Experiments were conducted using the same procedure given in Section 3.2. A 

total of 22 steady-state experiments were performed: 13 experiments using air, 5 

experiments using helium, and 4 experiments using argon, giving three values of 

370, 2000, and 3000 for helium, air, and argon, respectively. Nusselt numbers Nu  and 

  were calculated for each experiment; these results, along with those from previous BF 

experiments and the BF correlation of Eq. 56, are all plotted in Figure 58. 

 

Figure 58. Average Nusselt number correlation using the thermal conductivity ratio for air 

(■), He (●), Ar (♦), high pressure air (▲), and high pressure argon () using the steel 

shell in BF configuration (closed symbols). Open symbols indicate experiments using a 
brass shell. Dashed lines indicate ±10% deviation from the correlation 

The results for Nu  using the steel shell are in excellent agreement with the 

previous BF results for all three coolants providing added confidence in the validity of 

this correlation approach. Finally, the loss coefficient 
LK  was computed for each 

experiment using Eq. 35, and these data, along with those from the previous 

experiments, are shown in Figure 59. As expected, 
LK  is independent of sk  and  . 
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Figure 59. Loss coefficients for air (■), He (●), Ar (♦), high pressure air (▲), and high 

pressure argon () using the steel shell in BF configuration (closed symbols). Open 
symbols indicate experiments using a brass shell 

In summary, it is experimentally confirmed that the correlations of Eq. 56 are 

valid at lower values of  , and that these correlations can be extended to 
p  for the BF 

case. Although the actual value of   achieved in these experiments with helium (~370) 

is slightly greater than the expected prototypical value of ~340, the difference is small 

enough that the correlation can be used with some confidence at prototypical values. 

Furthermore, while this correlation was only experimentally verified for the BF correlation 

at lower  , it can be assumed that the corresponding correlations of Eq. 56 for the other 

three flow configurations (i.e., FF, BR and FR) can also be extended to prototypical 

conditions. The bounds over which the correlations of Eq. 56 are valid were therefore 

extended to: 
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Finally, the experimentally derived correlations for Nu  and 
LK  given in Eq. 56 

and Eq. 37, respectively, can be used to predict the prototypical performance of the four 

flow configurations. Additional numerical simulations were performed, however, to 

confirm that   accurately characterizes the relative contributions of convection and 

conduction in the steel test section. 

5.2.2 Numerical Simulations of the Steel Test Module 

The 2D axisymmetric numerical model given in Section 4.1.1 was used to 

simulate the experiments performed with the AISI 1018 steel test section. Earlier 

numerical studies showed that the results obtained with a 2D model were sufficient, and 

a 3D model was redundant. Two small modifications to the model were required, 

namely, changing the test section material to steel, and increasing the length of the shell 

endcap from 6 mm to 10 mm. The model also included the chamfer on the inside surface 

of the port. The model, when meshed with a quadrilateral grid using 25 μm cells, 

consisted of approximately 5×105 cells. The Spalart-Allmaras turbulence model was 

used in the simulations, and all the boundary conditions were identical to those used for 

the simulations of the brass test section, as described in Chapter 4. 

The model was first validated by comparing experimentally determined and 

numerically predicted values of h  and P . For each simulation, the values of cT  from 

the simulations were used in Eq. 31 to calculate h . The difference (in percent) between 

h  between the experiments and the simulations is plotted as a function of m  in Figure 

60.  
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Figure 60. Percent difference in h  between experiments and simulations using the steel 

shell for air (■), He (●), and Ar (▲) 

The average heat transfer coefficient calculated from the simulations is in all 

cases within 14% of that obtained in the experiments. At moderate m , the simulations 

underestimate h  by approximately 11%. This discrepancy is slightly higher than that for 

the brass test section, perhaps because the thermal conductivity of this steel as a 

function of temperature is not as well-characterized as that of the brass. Nonetheless, 

the numerical simulations were considered in reasonable agreement with the results 

from both the brass and steel shell experiments. The difference in P  values (again, in 

percent) between the simulations and the experiments is shown in Figure 61. The 

simulations give pressure drop values within 7% of the experiments, similar to what was 

observed for simulations of the forward flow cases using the brass test section. 
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Figure 61. Percent difference in P  between experiments and simulations using the 

steel shell for air (■), He (●), and Ar (▲) 

Since only the BF configuration was experimentally studied using a steel shell, 

the validity of models with different test section materials and tip lengths cannot be 

determined here for the other three flow configurations. For the BF configuration with a 

steel shell, however, the SA turbulence model predicts values of h  and P  within 11% 

and 7%, respectively, at moderate Re . The numerical model is also used to estimate the 

fraction of the of total incident heat removed by convection at the cooled surface, versus 

that removed by conduction through the walls of the divertor, as shown in Figure 62. As 

was the case for the brass shell, the fraction of heat convected away at the cooled 

surface of the steel shell is much less than 100%, as was originally assumed in Eq. 31. 

Furthermore,   is inversely proportional to the fraction of heat convected away at the 

cooled surface, demonstrating that   can be used to characterize the relative 

contributions of convection, vs. conduction. For a value of   near its prototypical value 

of ~340 (steel shell with helium) in the BF configuration, 53% to 68% of the incident heat 

is removed by convection at the cooled surface, and this fraction increases with Re .  
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Figure 62. Percentage of the total incident heat that is convected away at the cooled 

surface for air (■), He (●), Ar (♦), high pressure air (▲), and high pressure argon () for 

a steel test section (closed symbols) and a brass test section (open symbols) in the BF 
flow configuration 

5.3 Prototypical Thermal Performance 

5.3.1 HEMP-like Divertor 

One of the objectives of this research is to determine, using experimentally 

based correlations, whether this helium-cooled HEMP-like divertor design can 

accommodate an expected average incident heat flux of 10 MW/m2 during normal 

operation while staying within material temperature limits. To do so, the experimentally 

determined Nu  correlations of Eq. 56 are used, while the 
LK  correlations of Eq. 37 are 

used to estimate the coolant pumping power at prototypical conditions. It is important to 

emphasize that this analysis only considers the thermal-hydraulic limitations of the 

divertor design and does not account for failures due to thermal stresses. Furthermore, 

the correlations developed thus far are only applicable for divertors of the same 

geometry. 
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The prototypical operating conditions for the HEMP-like divertor studied here, 

which are close to those for the HEMP module, are summarized in Table 3. The average 

pressure boundary interface temperature sT
 

(i.e., the temperature at the interface 

between the tile and shell) is where the temperature will be a maximum in the tungsten 

alloy pressure boundary. As discussed in Chapter 2, the prototypical materials and 

material temperature limits have yet to be finalized, so this analysis evaluates several 

temperatures.  

Table 3. Prototypical operating conditions for the HEMP-like divertor 

Reynolds Number (
pRe ) 7.6×104 / 7.0×104 (Forward/Reverse flow) 

Mass Flow Rate ( m ) 3.3 g/s 

Inlet Pressure ( iP ) 10 MPa 

Inlet Temperature ( iT ) 600-700 °C 

Shell Material WL10 

Interface Temperature ( sT ) 1100-1300 °C 

 

For a given Re , the appropriate Nu  correlation of Eq. 56 is used. Computing Nu  

requires that   is known, which requires thermal conductivity values at the appropriate 

temperatures. As noted previously, the thermal conductivity of the solid sk  is evaluated 

at the average cooled surface temperature cT
 
and the thermal conductivity of the 

coolant k  is evaluated at the average of iT  and oT . Since, cT  and oT  are not initially 

known, the calculation begins with an estimated value, and these temperatures are then 

recalculated at each iteration until they converge. Next, an average heat transfer 

coefficient is computed as follows: 

 
jD

kNu
h   (63) 
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where k  is the thermal conductivity of the He evaluated at the average temperature

  2oi TT  . At this point, the outlet temperature oT  is still unknown, so its value is set to 

that for the initial estimate. Then, the maximum heat flux that can be accommodated by 

the divertor at the pressure boundary interface 
max

q   for a given maximum pressure 

boundary interface temperature sT
 
is determined by: 

 
T

is

R

TT
q




max  (64) 

where the thermal resistance: 

 
s

s

effc

h
T

khA

A
R


  (65) 

and s  1 mm is the thickness of the pressure boundary, sk  is the thermal conductivity 

of the pressure boundary (or shell material) evaluated at the average of cT
 
and the 

maximum tungsten alloy temperature sT . The values of cT
 
and oT  must then be 

compared to the original estimates. The average cooled surface temperature: 

 i

eff

c T
h

q
T 


 max   (66) 

while the outlet temperature: 

 i

p

o T
cm

q
T 





max   (67) 

These new values for cT
 
and oT  are used to recompute 

max
q 

 
until all the values 

converge in an iterative process. The specified maximum tungsten alloy temperature is 

an average value so the calculated 
max

q 
 
could produce peak values larger than the 

specified maximum temperature limit. However, if the heat flux on a single divertor 

module is roughly uniform, conduction, if significant, will ―smooth‖ out the temperature 
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profiles, making them nearly uniform. Typically, a maximum of five iterations are required 

to achieve convergence within 0.01%. 

The pumping power is then determined and given in terms of  , pumping power 

as a fraction of the total incident thermal power. In general,   should not exceed 10% 

[36]. Using the correlations of Eq. 37 for the appropriate flow configuration, the loss 

coefficient 
LK  is determined, and then used to estimate the pressure drop P  as 

follows: 

 2

2

1
VKP LL   (68) 

Since L  depends on the outlet pressure oP , this also requires an iterative solution 

where PPP io  . The pumping power W  is then calculated from the converged 

value of P : 

 


Pm
W




  (69) 

where   2oi  
 
is an average of the coolant densities at the inlet and outlet. 

Then, 
max

q 
 
is computed for a range of   values (5, 10, 15, and 20%): 

 
hA

W
q






max  (70) 

Finally, the maximum heat flux that can be accommodated by the divertor is 

calculated over a range of Re  below and above 
pRe , as shown in Figure 63, for the 

prototypical conditions given in Table 3 with iT 600 °C.  
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Figure 63. Maximum heat flux for the HEMP-like divertor for each of the four flow 

configurations (a-d) at iT 600 °C for sT 1100, 1200, and 1300 °C (solid black lines) 

and  5, 10, 15, and 20% (red dashed lines) 
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Figure 63 Continued. Maximum heat flux for the HEMP-like divertor for each of the four 

flow configurations (a-d) at iT 600 °C for sT 1100, 1200, and 1300 °C (solid black 

lines) and  5, 10, 15, and 20% (red dashed lines) 

As expected, the maximum heat flux the divertor can accommodate 
max

q   given 

in Figure 63 increases with increasing Re  for a given 
sT ; however, the pumping power 

as a fraction of incident thermal power   also increases demonstrating the trade offs in 

the thermal-hydraulic performance. The maximum heat flux values are based on the 

cross-sectional area of the shell hA , but a single module will need to cool a pure 
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tungsten tile with an area greater than hA . To account for the larger tile area, 
max

q 

needs to be rescaled by the ratio of the tile area tA  to hA . Since, the tile area was not 

explicitly defined for this design, 
max

q 
 
is multiplied by the area ratio for the HEMP 

design, th AA 0.71, to give the maximum heat flux that can be sustained on the tile

tile
q  . For the BF configuration (Figure 63a), 

max
q 17.3 MW/m2 and 

tile
q 12.3 

MW/m2 at 
pRe
 
for sT 1200 °C, for example. The maximum heat flux

 
values for the four 

flow configurations are summarized in Table 4. Smaller tiles could, however be used 

(albeit at the expense of more modules) to increase 
tile

q   if required.  

Table 4. Thermal performance of the HEMP-like divertor at 
pRe  and iT 600 °C 

Configuration 
sT

 
(°C) max

q 
 
(MW/m2)   (%) 

tile
q   (MW/m2) 

BF 1100 14.4 15 10.2 

 1200 17.3 13 12.3 

 1300 20.2 11 14.3 

FF 1100 17.2 15 12.2 

 1200 20.6 13 14.6 

 1300 23.9 12 17.0 

BR 1100 6.2 >20 4.4 

 1200 7.5 >20 5.3 

 1300 8.7 >20 6.2 

FR 1100 16.0 18 11.4 

 1200 19.0 15 13.5 

 1300 22.1 14 15.7 

 

Three of the four flow configurations, namely the BF, FF and FR cases, are all 

able to withstand heat fluxes of at least 10 MW/m2 on the tungsten tile. Of these three 

configurations, the FF case has the best overall performance, accommodating a heat 

flux exceeding 17 MW/m2 on the tile at sT 1300 °C followed by the FR configuration, 

which has a slightly lower 
tile

q   and larger   at 
pRe . Both reverse-flow configurations 
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therefore appear to be inferior to their corresponding forward-flow cases. Finally, all 

these configurations have   values that exceed 10% (a value often used as cutoff for 

economical performance). The fourth configuration, the BR (Figure 63c) case, has the 

worst performance, as was already evident in Figure 38b, and can only accommodate 

6.2 MW/m2 even at a maximum cooled surface temperature sT 1300 °C. This is hardly 

surprising, since this configuration has neither jet impingement nor fins. In addition, it 

has the largest values of  . As a result, the BR configuration is only included here for 

completeness.  

The correlations for the Nu  number in Eq. 56 that were used to predict the 

prototypical performance fit all of the experimental data within ±10%. Therefore, the 

uncertainty in the results presented in Figure 63 and Table 4 is approximately ±10% plus 

the contributions to the uncertainty from the material properties in the extrapolations. 

However, the uncertainty in the material properties, especially due to long-term exposure 

to high-fluence neutrons is not well-quantified and is not included in this analysis. 

Contributions from radiative heat transfer from the cooled surface are also excluded in 

the preceding figures since simple calculations show that, even in the best 

circumstances, the fraction of total heat radiated from the cooled surface is minor 

compared to the total heat removed by convection and conduction. Excluding 

contributions from radiative heat transfer from the cooled surface also makes 

extrapolations from the correlations conservative for added confidence in the maximum 

heat flux each configuration can accommodate. 

In addition to evaluating prototypical operating conditions for various geometries, 

the correlations developed from Figure 63 can be integrated into system codes and used 

to evaluate the thermal-hydraulic performance of the divertor over a variety of operating 

conditions. These systems codes can then be used to optimize the operating conditions 
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for the design, considering the tradeoffs at a system level, well beyond the thermal-

hydraulic issues considered here. Obviously, a wide variety of issues beyond thermal 

hydraulics and thermal stresses, such as the cost of electricity, neutronics, 

manufacturing and assembly costs, must all be considered in the final design.  

As discussed previously, the material temperature limits (and even the specific 

tungsten alloy) are not yet finalized for this design. Recent work suggests that the 

minimum tungsten alloy temperature based on the ductile-to-brittle transition 

temperature should be increased to 700 °C. Figure 64 was therefore generated with this 

higher inlet temperature iT 700 °C to determine how increasing iT  degraded the 

overall thermal performance for the same pressure boundary temperature limits. The 

maximum heat flux
 
values for the four flow configurations are summarized in Table 5.  

 

Figure 64. Maximum heat flux for the HEMP-like divertor for each of the four flow 

configurations (a-d) at iT 700 °C for sT 1100, 1200, and 1300 °C (solid black lines) 

and  5, 10, 15, and 20% (red dashed lines) 
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Figure 64 Continued. Maximum heat flux for the HEMP-like divertor for each of the four 

flow configurations (a-d) at iT 700 °C for sT 1100, 1200, and 1300 °C (solid black 

lines) and  5, 10, 15, and 20% (red dashed lines) 
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Figure 64 Continued. Maximum heat flux for the HEMP-like divertor for each of the four 

flow configurations (a-d) at iT 700 °C for sT 1100, 1200, and 1300 °C (solid black 

lines) and  5, 10, 15, and 20% (red dashed lines) 

Table 5. Thermal performance of the finger-type divertor at 
pRe  and iT 700 °C 

Configuration 
sT (°C) max

q   (MW/m2)   (%) 
tile

q   (MW/m2) 

BF 1100 12.1 30 8.6 

 1200 15.1 22 10.7 

 1300 18.0 20 12.8 

FF 1100 14.2 30 10.1 

 1200 17.6 24 12.5 

 1300 21.1 20 15.0 

BR 1100 5.2 >40 3.7 

 1200 6.5 >40 4.6 

 1300 7.8 >40 5.5 

FR 1100 13.1 32 9.3 

 1200 16.3 27 11.6 

 1300 19.4 22 13.8 
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As expected, there is a significant decrease in 
max

q 
 

at this higher iT . 

Nevertheless, the FF configuration can accommodate at least 10 MW/m2 incident on the 

tile, and the FR and BF cases can also do so for sT  1200 °C, at 
pRe  for th AA 0.71. 

As seen earlier, the reverse-flow configurations appear to be inferior to their 

corresponding forward-flow cases. For the forward-flow cases, adding an array of pin 

fins to the cooled surface (FF) increases 
max

q   by ~17-18%, but this also increases the 

fabrication cost and complexity of the modules. Perhaps the most noticeable effect of 

increasing iT  is the significant increase in   for all configurations at a given 
pRe  and 

cT . This increase is due to several factors. First, the relative decrease in 
max

q   reduces 

  since 
max

/1 q  . Next, to keep 
pRe
 
constant as iT  increases requires increasing 

the mass flow rate m  by 8% to account for the resultant increase in inlet viscosity i  

(4.528×10-5 Pa·s at 700 °C, vs. 4.194×10-5 Pa·s at 600 °C) since 
ip mRe  . 

Furthermore, increasing the temperature reduces   by approximately 10%. A 10% 

decrease in L  will also increase P  by about 11% since 
2VP L  and LV 1 . 

In brief, m  increases by 8%,   decreases by 10%, and P  increases by 11%. The 

pumping power then increases by 33% for an equivalent 
pRe  based only on these 

effects, as shown below: 

 

  
33.1

9.0

11.108.1







Pm
W



 (71) 

Finally, a 10% decrease in L  due to the increase in temperature results in a 

further decrease in P  since L  is defined by the outlet pressure oP . For a fixed inlet 

pressure iP  10 MPa, P  will further increase (compared with an inlet temperature of 

600 °C) because oi PPP  . In summary, all of these factors contribute to a significant 

increase in   when iT  increases from 600 °C to 700 °C. Moreover, these effects will 
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become worse if it is necessary to further increase the minimum operating temperature 

for the divertor materials (i.e. increase the coolant inlet temperature). 

5.3.2 HCFP Divertor 

Following the previous analysis for the HEMP-like divertor, this analysis can be 

extended to the numerical simulations of the HCFP divertor performed in Chapter 4. 

Figure 55 showed that Nu  at a given Re  depends on the test section material or 

coolant used in the simulations. The conditions for the five different configurations 

simulated are summarized in Table 6, along with the thermal conductivity ratio   derived 

earlier in this chapter.  

Table 6. HCFP configurations simulated in the numerical model including the thermal 
conductivity ratios for each 

Configuration 
Test Section 

Material 
Coolant sk  (W/m·K) 

k  

(mW/m·K) 

  

(-) 

1 Brass Air ~140 28 ~5000 

2 Brass He ~140 158 ~770 

3 Stainless Steel Air ~20 28 ~750 

4 High Conductivity Air ~185 28 ~7000 

5 Low Conductivity Air ~9 28 ~330 

 

The thermal conductivity ratios range from 330 to 7000, closely matching the 

values experimentally tested for the HEMP-like divertor. Since the prototypical values for 

  are expected to be ~340 for an average helium coolant temperature of 650 °C and a 

WL10 tungsten alloy temperature of ~1000 °C, the prototypical values are within the 

range of the simulations. Since Nu  decreases with   at a given Re  (Figure 55), as is 

also the case for the HEMP-like divertor (Figure 36), Nu  is also fit to a power-law 

function of the form given in Eq. 55 using multiple linear regression in MATLAB® 2008b. 

The thermal conductivity of the coolant k  is again evaluated at the average of the inlet 
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and outlet of the coolants   2oi TT  , while the thermal conductivity of the shell sk  is 

evaluated at the average cooled surface temperature cT . The resulting correlation is as 

follows:  

 191.0616.0095.0 ReNu   (72) 

which is valid for: 
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 (73) 

Figure 65 compares the experimental results and the numerical predictions with 

this correlation (solid lines) and ±10% uncertainty bands (dashed lines). 

 

Figure 65. Nu  correlation using the thermal conductivity ratio for configurations listed in 

Table 6: experiments (■) [45], conf. 1 (■), conf. 2 (●), conf. 3 (♦), conf. 4 (▲), and conf. 

5 (). Dashed lines indicate ±10% deviation from the correlation 

The experiments and simulations are in good agreement with the correlation, 

within 10% in all cases. This correlation can therefore be used with reasonable 

confidence to predict the prototypical performance of the HCFP. Unlike the HEMP-like 

analysis performed above, note that only one thermal conductivity ratio was 
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experimentally studied, and performing further experiments using different test section 

materials (and hence different values of  ) to confirm this correlation would be valuable.  

To evaluate the pressure drop through the HCFP module at prototypical 

pressures and temperatures, a correlation for the loss coefficient in the HCFP module 

was also developed using the experimental data of Hageman et al. [45]. The pressure 

drop data from the experiments performed with this particular HCFP geometry were 

converted to pressure loss coefficients LK  using Eq. 35. Since it was shown that the 

test section material and the coolant have no bearing on LK , the correlation for LK  was 

based only on these experimental data, and found to be: 

 
605.00275.0 ReKL   (74) 

The prototypical operating conditions for the HCFP divertor, which are very 

similar to those for the HEMP-like divertor, are given in Table 7. Three average pressure 

boundary interface temperatures sT  (i.e., maximum alloy temperature) and two inlet 

temperatures were again considered. 

Table 7. Prototypical operating conditions for the HCFP divertor 

Reynolds Number (Rep) 3.3×104  

Inlet Pressure (Pi) 10 MPa 

Inlet Temperature (Ti) 600-700 ºC 

Divertor Material WL10 

Interface Temperature ( sT ) 1100-1300 ºC 

 

 The maximum heat flux that can be accommodated by the HCFP-like design 

was predicted using the same procedure as that used for the HEMP-like divertor. For a 

given Re , Nu  is calculated from Eq. 72 and used to calculate an average heat transfer 

coefficient h  using Eq. 63. Then 
max

q   is calculated from Eqs. 64 and 65 where the 

thickness of the pressure boundary s 2 mm. cT  and oT  are then calculated using Eqs. 
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66 and 67 respectively and this calculation is repeated until 
max

q  , cT  and oT  all 

converge with an error less than 0.01%. 

Similarly, the procedure for determining the maximum heat flux the design can 

sustain for a given value of   (pumping power as a fraction of total incident thermal 

power) is similar to that used for the HEMP-like divertor. For a given Re , P  is 

calculated with Eq. 68, and then used in Eq. 69 to calculate the pumping power. Finally, 

Eq. 70 is used to determine 
max

q  .
 
Figure 66 shows the maximum heat flux for the HCFP 

divertor over a range of Re  spanning 
pRe  for inlet temperatures of 600 °C and 700 °C  

 

Figure 66. Maximum heat flux for the HCFP divertor for iT 600 °C (a) and 700 °C (b) 

for sT 1100, 1200, and 1300 °C (solid black lines) and  5, 10, 15, and 20% (red 

dashed lines) 
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Figure 66 Continued. Maximum heat flux for the HCFP divertor for iT 600 °C (a) and 

700 °C (b) for sT 1100, 1200, and 1300 °C (solid black lines) and  5, 10, 15, and 

20% (red dashed lines) 

Since the tile area tA  is the same as the heated surface area hA  in the HCFP 

divertor, the maximum heat fluxes plotted in Figure 66 are the maximum heat fluxes 

incident upon the tile that can be accommodated by this design. Clearly, the HCFP 

design cannot withstand heat flux values >10 MW/m2; indeed, recent studies of a more 

advanced HCFP geometry also indicate that the maximum heat flux is closer to 8 

MW/m2 [36,37]. At 
pRe , sT 1300 °C and iT 600 °C, these results suggest that 

max
q   

will be slightly less, about 7.0 MW/m2. This discrepancy may be due to differences in the 

HCFP divertor designs studied, as shown in Figure 19 and Figure 52. The final results 

from these studies are summarized in Table 8. 
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Table 8. Thermal performance of the HCFP divertor at 
pRe  

iT  (°C) 
sT

 
(°C) max

q   (MW/m2)   (%) 

600 1100 5.0 14 

 1200 6.0 13 

 1300 7.0 11 

700 1100 4.3 25 

 1200 5.3 22 

 1300 6.3 19 

 

These predictions of the maximum heat flux for the HEMP-like divertor and the 

HCFP divertor can also be integrated into system codes and used to find optimal 

configurations for each respective geometry. However, given that these correlations are 

all based on dynamically similar experiments (and simulations for the HCFP) using air, 

He, or Ar at room temperature and low pressure (<1.4 MPa), these correlations should 

be verified by experiments at temperatures and pressures closer to prototypical values.  

Finally, all of the experiments described to this point were performed at heat 

fluxes of ~2 MW/m2 or less, vs. a prototypical value of 10 MW/m2. Experiments at higher 

incident heat fluxes are therefore needed to verify that these results are also valid at 

prototypical heat fluxes. Such experiments are only practical with helium, and so a new 

helium loop was designed and constructed in order to perform experiments at higher 

temperatures, prototypical pressures, and higher heat fluxes. This is discussed in the 

next chapter.  
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CHAPTER 6: HELIUM TEST LOOP 

The preceding chapters presented a series of dynamically similar experiments on 

the HEMP-like divertor with and without fins that were used to develop correlations for 

the Nusselt number and loss coefficient for a range of operating conditions and 

temperature constraints. These correlations were then used to predict the thermal 

performance of the divertor at prototypical conditions in terms of the maximum heat flux 

that can be accommodated by the design and the pumping power as a fraction of 

incident thermal power for a given coolant flow rate. The results of this analysis are 

depicted as generalized maximum heat flux charts shown in Figure 63 and Figure 64. 

These charts, which present results for a number of different constraints (e.g. inlet 

temperatures, maximum tungsten alloy pressure boundary temperatures) can then be 

used in system codes that optimize the overall plant performance.  

The results for experiments using He and Ar as a coolant demonstrate that these 

correlations depend on the thermal conductivity ratio   as well as the dimensionless 

coolant mass flow rate, characterized by Re . This ratio characterizes the fraction of the 

incident heat flux that is removed via convection, vs. conduction, through the divertor. 

Predictions from numerical simulations using ANSYS FLUENT® for different coolants 

and test section materials were used in addition to experimental data using air for the 

HCFP geometry to revise previous correlations for maximum heat flux and include their 

dependence upon  . 

The experiments on the HEMP-like geometry with and without fins described in 

the previous chapters were all performed with different coolants at room temperature 

and at inlet pressures <1.4 MPa, with a maximum incident heat flux of 2 MW/m2. 

Obviously, these experimental conditions are quite different from the prototypical 

conditions specified for modular helium-cooled tungsten divertor designs (i.e., inlet 
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temperature of ~600 °C, inlet pressure of 10 MPa, and incident steady-state heat flux of 

10 MW/m2). Additional experiments were therefore performed using He at elevated inlet 

temperatures and prototypical pressures to provide additional validation of these 

correlations. To do so, a helium loop was designed and constructed to give longer run 

times than those possible with the previous once-through setup based on a bank of 

compressed-helium cylinders so that steady-state conditions could be achieved at higher 

inlet temperatures and at higher incident heat flux values. The helium loop was also 

designed to perform experiments at the prototypical inlet pressure of 10 MPa. Finally, a 

new heat source, namely an induction heater, has been used to achieve higher heat 

fluxes, as great as 4.9 MW/m2, than those possible with the oxy-acetylene torch. 

Test sections modeling the HEMJ divertor were fabricated from the tungsten 

alloy MT-185 (97% W, 2% Ni, and 1% Fe) and studied in this helium loop. Steady-state 

experiments were conducted for inlet temperatures ranging from room temperature (~27 

°C) up to 300 °C, inlet pressures of ~10 MPa, and heat fluxes as great as 4.9 MW/m2 

over a range of Re . Average Nusselt numbers and loss coefficients were again 

calculated for each experiment, and used to develop correlations for Nu  and 
LK . These 

updated correlations are then used to generate generalized maximum heat flux charts 

for the HEMJ design under various constraints using a procedure similar to that 

described in the previous chapter.  

6.1 Experimental Setup 

6.1.1 Helium Loop 

Figure 67 shows a schematic of the Georgia Tech helium loop. This loop is 

capable of providing a maximum helium mass flow rate of 10 g/s at a maximum inlet 

temperature of 400 °C and inlet pressures between 7.5 MPa and 10.3 MPa. Before 
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starting the loop, the entire loop and test section are evacuated by a vacuum pump, and 

charged with helium supplied from 41.4 MPa source tanks. To reduce contamination in 

the helium loop, the loop is evacuated and refilled with helium to above atmospheric 

pressure at least three times before filling to 10 MPa. A reciprocating compressor is 

used to drive the helium through the loop.  

 

 

Figure 67. Schematic of the helium loop indicating many of the key components. Red 
lines indicate piping leading to the test section and blue lines indicate piping leading 

away from the test section. Arrows indicate the direction of flow for the helium 

Helium leaves the compressor at ~10 MPa and nearly room temperature, then 

passes through two 300 ft3 compressed gas cylinders (the ―buffer tanks‖ in Figure 68), 

entering via a vertical tube at the top of the cylinder, exiting the tube at and impinging on 

the bottom of the cylinder, and finally exiting through the top of the cylinder through a tee 

via the annulus between the tube and the opening at the top of the cylinder. The buffer 

tanks should help reduce the pulsations from the reciprocating compressor and also 

increase the helium inventory in the loop, helping to reduce the effect of small leaks 
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(which are difficult to avoid in a helium loop). A static pressure transducer (OMEGA 

PX309-2KGI) measures the pressure, and a type-K thermocouple probe measures the 

temperature, of the helium after it exits the buffer tanks and passes through a 140 μm 

inline filter. 

 

Figure 68. The two buffer tanks in series used in the helium loop. Helium flows from right 
to left in the photo 

Some of the helium is then diverted through the main bypass to regulate the flow 

rate to the test section. The rest of the helium goes through the main line, and the mass 

flow rate through this line, which is also the mass flow rate through the test section, is 

determined from measurements with a Venturi meter (Lambda Square V50-10) and 

differential pressure transducer (Rosemount 1151DP4E22). The helium then enters a 

coil-in-coil heat exchanger that serves as a recuperator, where the heated helium exiting 

the test section through the outer coil heats the room-temperature helium passing 

through the inner coil as it flows in the opposite direction. This preheated helium then is 

heated further when it flows over two 2000 W cylindrical cartridge heaters (OMEGA CIR-

5121/240V) powered by a 240 V variable autotransformer and mounted within a 1 in 
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(25.4 mm) ID pipe (Figure 69). The heated helium then flows through flexible steel 

hosing to the HEMJ test section.  

 

Figure 69. Solid model of the heater used in helium loop 

The hot helium then exits the test section, and either flows through the outer coil 

of the recuperator to preheat the incoming room-temperature helium or through the 

recuperator bypass for experiments conducted with the coolant at room temperature. 

The actual flow path is controlled by a needle valve in each flow path (Swagelok SS-

3NBS4). The helium exiting the recuperator or recuperator bypass combines with that 

passing through the main bypass, and then passes through a second coil-in-coil heat 

exchanger that acts as the cooler. Water at room temperature in the outer coil cools the 

helium down to room temperature before it returns to the compressor to be circulated 

again through the loop.  

The main bypass line (Figure 70) includes a 7 μm inline filter and a needle valve 

(Swagelok SS-1RS4) to regulate the flow. A bypass is necessary to control the mass 

flow rate as the mass flow rate produced by the reciprocating compressor cannot be 

adjusted. The mass flow rate through the bypass is calculated using the readings from a 
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Venturi meter (Lambda Square V50-10) and a differential pressure transducer 

(Rosemount 1151DP4S22). 

 

Figure 70. Bypass used to divert helium away from the test section 

The piping for the loop is 0.5 in (12.7 mm) 304 stainless steel tubing with a wall 

thickness of 0.035 in (0.889 mm) rated to a maximum pressure of 13.6 MPa at ~400 °C, 

and Swagelok compression fittings are used for all connections. The recuperator is 

heavily insulated with large blocks of rock wool enclosed within stainless steel sheeting 

(Figure 71), while the tubing between the recuperator and the test section is wrapped in 

rock wool surrounded by an outer layer of corrugated aluminum sheeting. The heater 

(Figure 69) is encased in two layers of 1 in (25.4 mm) thick Duraboard® blocks except for 

the tubing housing the Conax® electrical feedthroughs for the cartridge heaters, which 

are exposed to the surroundings so that they remain at the lower temperatures required 

to maintain a good seal. The tubing between the compressor and the recuperator is not 

insulated because the coolant is at room temperature, or is being cooled back to room 

temperature, in this part of the loop.  
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Figure 71. Photos of the recuperator (left) fully encased in insulation and the cooler 
(right). Both the recuperator and cooler are coil-in-coil heat exchangers 

The compressor used for this loop, the Hydro-Pac® C01.5-05-450LX 

reciprocating compressor (Figure 72), is capable of providing mass flow rates for helium 

up to 10 g/s at pressures between 7.2 and 10.3 MPa. A reciprocating compressor was 

chosen for this loop because it was an economical choice for driving a flow with large 

pressure drops at high temperatures. This compressor uses a single-stage hydraulically 

driven intensifier with a stroke length of 102 mm and a frequency of ~ 1 Hz powered by a 

5 hp motor. This leads to oscillations in the mass flow rate that are damped for steady-

state experiments, as discussed in Section 6.2.1. 
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Figure 72. Hydro-Pac® C01.5-05-450LX reciprocating compressor shown from the front 
(left) and the back (right) 

In practice, it is impractical to completely seal (i.e., eliminate all leaks in) a helium 

loop. Nevertheless, the amount of leakage must be minimized, and the two buffer tanks 

in the loop ensure that the helium inventory is large enough that the total system 

pressure during an experimental run is not affected by leaks, which are estimated to be 

about 50 mg/h.  

6.1.2 Test Section 

The HEMJ divertor was selected for testing in the helium loop because it is the 

leading helium-cooled divertor design at present, and the only design (to our knowledge) 

that has been repeatably experimentally shown to accommodate incident heat fluxes of 

10 MW/m2 at prototypical conditions. A drawing of a cross-section of the HEMJ test 

section, and an image of the HEMJ outer shell, or thimble, are shown in Figure 73. 
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Figure 73. Cross-sectional drawing of the HEMJ test section thimble and jet cartridge 
(left) and an image of the complete test section thimble (right). The dimensions are given 

in mm 

The thimble has an OD of 17 mm and a minimum ID of 12.9 mm; the inner radial 

dimension of the thimble gradually increases, reaching a maximum value of 16.0 mm at 

the bottom of the thimble. The 25.4 mm OD, 10.1 mm thick flange at the bottom of the 

thimble seals the test section to a manifold with a compression collar. The inside surface 

geometry is identical to that the of the HEMJ J1-c design, with radii of curvature of 2.3 

mm at the corners and 15 mm in the center, resulting in a minimum thimble endcap 

thickness of 5 mm. The top heated surface of the thimble has an outer rim with a 

thickness (radial extent) of 1 mm and a height (axial extent) of 1 mm.  

The thimble was constructed of tungsten alloy MT-185 (commonly referred to as 

‗heavy tungsten‘) consisting of 97% W, 1% Fe, and 2% Ni, which is similar to Densimet-

185, because of its machinability (and commercial availability). Six type-K thermocouple 

(TC) probes with 0.5 mm OD sheaths were inserted into holes drilled into the side of the 

test section along two perpendicular planes. Four of the TCs were 0.5 mm away from 
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the cooled surface at radial distances of 0 mm, 2.1 mm, 4.3 mm, and 6.4 mm from the 

centerline; the temperatures measured by these TCs were used to estimate the 

temperature distribution over the cooled surface assuming an axisymmetric temperature 

field. The other two TCs were both on the centerline at axial distances of 0.5 mm and 2.9 

mm from the heated surface; these TC readings were used to estimate the axial heat 

flux due to conduction and to determine the maximum temperature in the thimble.  

Figure 74 shows the 302 stainless-steel inner jets cartridge, which is 

geometrically identical to the HEMJ J1-c design, used in these experiments. The 

cartridge has 25 jet holes: one 1.04 mm central hole and twenty-four 0.6 mm holes on a 

hexagonal grid. The three small flanges at the base of the cartridge ensure that the width 

of the gap between the end of the jet cartridge and the cooled surface is at least 0.74 

mm. The jet cartridge is brazed onto a 0.375 in (9.53 mm) OD stainless steel tube with a 

threaded end so that, if desired, the gap width can be adjusted; in these experiments, 

however, the gap was always 0.9 ± 0.1 mm.  

 

Figure 74. Isometric view (left) and top view (right) of the jet cartridge 

The thimble is sealed to a stainless steel manifold with a custom machined 

copper gasket, as shown in Figure 75. A steel compression collar is bolted to the 

manifold to create the seal. Helium enters the bottom of the manifold, flows through the 
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holes in the cartridge forming an array of jets to cool the inner surface of the thimble, 

exits the thimble through the annulus between the jet cartridge and the thimble, and 

leaves the test section through a 0.5 in (12.7 mm) OD tube perpendicular to the axis of 

the manifold. The three other 0.25 in (6.4 mm) OD tubes in the manifold are 

instrumentation ports. The inlet and exit temperatures of the coolant, namely the 

temperatures when the coolant enters and exits the manifold, are measured by two 4-

wire resistance temperature detectors (RTDs) (OMEGA P-L-A-1/8-6-0-TS-8). The outlet 

static pressure of the coolant is measured by a pressure transducer (OMEGA PX302-

2KGV) at the exit of a ~12 in length of tubing attached to an instrumentation port in the 

manifold to ensure that the coolant is at room temperature (which protects the sensor 

and gives accurate measurements). Finally, the pressure drop across the test section is 

measured with a differential pressure transducer (Rosemount 1151 DP5S22) between 

an instrumentation port on the manifold and the inlet to the jet cartridge. 

 

Figure 75. Exploded test section assembly 

The manifold and test section are heavily insulated in layers of rock wool, and the 

manifold is bolted to a supporting 1 in thick Duraboard® plate, which, in turn, is bolted to 
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a Unistrut® support structure, to thermally isolate it from the surroundings. Most of the 

thimble is surrounded by a stack of Marinite® plates, but the last ~10 mm of the thimble is 

insulated instead in Marinite® powder to allow insertion of the TCs. 

6.1.3 Heat source  

The once-through experiments on the HEMP-like test section described in the 

previous chapters were performed at incident heat fluxes as great as 2 MW/m2 with the 

oxy-acetylene torch, although Rader [42] achieved heat fluxes as great as 3 MW/m2 

using a brass HEMJ test section and an otherwise identical experimental setup. Higher 

heat fluxes could be achieved with the HEMJ test section because it has a larger cross 

sectional area, and hence the flame from the oxy-acetylene torch can impinge upon, and 

heat, a larger area. However, increasing the incident heat flux beyond 3 MW/m2 is 

impractical, in part because this requires increasing the diameter of the flame from the 

torch, which damages the Duraboard® sleeve that protects the insulation and TCs. 

Despite the limitations on heat flux, the oxy-acetylene torch was used in several 

experiments, and a Duraboard® sleeve was machined to fit over the outer 1 mm of the 

thimble diameter to shield the TCs from the flame.  

An induction heater was also used instead of the oxy-acetylene torch to achieve 

higher incident heat fluxes. A 10 kW induction heating system (Ambrell EasyHeat LI), on 

loan from the Safety and Tritium Applied Research (STAR) facility at Idaho National 

Laboratories (INL), was used in these experiments (Figure 76). This solid-state induction 

heating system converts three-phase electrical power into an oscillating magnetic field 

around a ―workpiece,‖ inducing electrical eddy currents in, and heating, the workpiece. 

The magnetic field is generated by passing alternating current (AC) at frequencies as 

great as 480 kHz through a water-cooled copper coil. 
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Figure 76. 10 kW EasyHeat LI power supply used for induction heating 

To inductively heat the surface of the test section, a workpiece consisting of a 

cylinder of extruded graphite with a 17 mm OD and 30 mm axial dimension is heated by 

a copper coil (Figure 77). The coil used in these experiments is a simple helical coil with 

four turns, a diameter of 38.1 mm, and a height of 30 mm. The coil is custom made 

using 0.25 in (6.35 mm) OD copper tubing. The graphite is thermally coupled to the 

heated tungsten surface of the test section by a 0.15 mm thick copper shim, which is first 

heated to its melting point using the oxy-acetylene torch, to ensure good contact 

between the graphite and tungsten surfaces. 
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Figure 77. Solid model assembly of the induction heater copper coil, graphite workpiece, 
and HEMJ thimble 

 To reduce oxidation, and the resultant erosion, of the graphite workpiece during 

the experiment, argon is continuously injected to the top surface through six 0.125 in 

(3.18 mm) stainless steel tubes distributed circumferentially around the cylinder. An 

enclosure consisting of three side walls of 1 in (25.4 mm) thick Duraboard and a fourth 

side wall containing a window consisting of a 0.25 (6.35 mm) thick transparent pane of 

Pyroceram® contain the argon blanket and the workpiece. The floor of the enclosure 

consists of the Marinite® plates used to insulate the test section, and the ceiling consists 

of a 0.25 in (6.35 mm) aluminum plate. Compressed rock wool is used to fill voids in the 

enclosure, although there is significant leakage of argon from the enclosure. 

Nevertheless, a significant amount of the graphite is oxidized, and the graphite 

workpieces must be replaced every few experiments, where each experiment has a 

duration of at least 1 h. Despite oxidation and erosion of the workpiece, however, 

steady-state heat fluxes as great as 4.9 MW/m2 were achieved with this induction heater 

setup. 
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6.2 Experimental Procedure 

The procedure for experiments using the helium loop is similar to those for the 

single-pass experiments. Only steady-state experiments are performed. In all cases, the 

flow rate is set to achieve the desired Reynolds number, and the test section is heated 

until steady-state conditions, defined again to be when both the inlet temperature iT
 
and 

the outlet temperature oT  vary by less than 1 ºC over a 5 min period, are achieved. In 

most cases, iT  and oT  vary by no more than 0.5 ºC. Oscillations in the mass flow rate 

are kept below ±3% at flow rates greater than 3 g/s, as described later in this section. 

When heating with the oxy-acetylene torch, fluctuations as large as 5 ºC in the readings 

from the embedded TC are also possible. When the induction heater is used instead, the 

output power can decrease slightly because of erosion and oxidation of the graphite 

workpiece during an experimental run. The current through the coil can be increased to 

maintain a constant power, but adjusting this current usually leads to small fluctuations 

in the incident heat flux. To minimize the effect of such fluctuations, steady-state 

temperature and pressure values were obtained by averaging the measurements over 

an interval of at least 150 s. Although temperatures in the following experiments were 

significantly higher than previous experiments on the HEMP-like divertor, simple 

calculations showed that, even in the best circumstances, contributions from radiative 

heat transfer from the cooled surface were minor compared to the total heat removed by 

convection and conduction. Therefore, radiative heat transfer is excluded from this 

analysis.  

The coolant mass flow rate m  is calculated from the pressure drop 

measurements through the Venturi meter as follows: 
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where v  is the density of the coolant entering the Venturi meter, vP  is the pressure 

drop between the throat and largest diameter of the Venturi meter, 1A 196.0 mm2 is 

the large cross sectional area of the Venturi meter, 2A 26.3 mm2 is throat cross 

sectional area of the Venturi meter, and C 0.8828 is the flow coefficient provided by 

the manufacturer of the Venturi meter. 

The mass flow rate is determined from the desired Reynolds number Re  based 

on the diameter of the central port oD 1.04 mm: 
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where 
i  is the dynamic viscosity at the inlet, and jA  7.64×10-6 m2 is the total cross 

sectional area of the jets. The Reynolds number 
pRe  for the HEMJ at prototypical 

conditions of 6.8 g/s and iT 637 °C is ~2.14104. However, experiments performed at 

the Efremov Institute have suggested that Re  > 4104 may be required to accommodate 

heat flux values of 10 MW/m2. The range of Re  that can be achieved in the helium loop, 

with a maximum mass flow rate of 10 g/s, of course depends on iT . At room 

temperature (27 °C), Re 6.8×104 is feasible, while at iT 300 °C, only Re 4.4×104. 

As noted earlier, Re , and hence m , are adjusted in the helium loop by using the 

bypass. 

The thermal power incident on the test section is estimated from an energy 

balance applied to the coolant. This power is divided by the cross-sectional area of the 

test section hA 227.0 mm2 to determine the average incident heat flux q   the test 

section: 
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where pc  is the specific heat evaluated at the average coolant temperature.  
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Using an energy balance to calculate the incident power to the test section 

assumes that losses from the test section are negligible. Although the test section is 

well-insulated in these experiments, these losses may not be negligible for higher 

operating temperatures. Eq. 77 also assumes a uniform incident heat flux. Although 

neither the oxy-acetylene torch nor the induction heater provide a uniform incident heat 

flux, the simulations by Rader [58] on the HEMP-like geometry using ANSYS FLUENT® 

14.0 suggest that there is enough conduction between the heated and cooled surfaces 

of the thimble to ―even out‖ the non-uniform incident heat flux profile. 

 The average cooled surface temperature 
cT  is an area-weighted average of the 

four local cooled surface temperatures crT  (where r  corresponds to the radial distance 

from the centerline in mm). First, crT  is estimated by extrapolating the TC readings rT  to 

the cooled surface assuming one-dimensional conduction: 
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where TC 0.5 mm is the distance to the cooled surface and sk  is the thermal 

conductivity of the thimble evaluated at the average temperature between the two values 

(which requires iteration). 
cT  is then computed using the same equation used by Rader 

[58] where the area averaging is based on a 2-D projection of the curved surface: 

 
4.63.41.20 442.0314.0218.0026.0 ccccc TTTTT   (79) 

The average heat transfer coefficient h  is then: 

 c

h

ic
A

A

TT

q
h

)( 


  (80) 

where cA 131.5 mm2. This area ratio assumes that all of the heat that is transferred 

through the heated surface is removed by convection at the cooled surface. Although 

this assumption is not exact for the HEMP-like and the HCFP-like designs, as discussed 



 

158 
 

in the previous chapters, we account for this by including the thermal conductivity ratio 

  in the Nusselt number correlation.  

 The average Nusselt number Nu  along the cooled surface is then: 

 
k

Dh
Nu o  (81) 

where k  is the thermal conductivity of the coolant evaluated at the average coolant 

temperature   2oi TT  . Again, the correlation for Nu  is assumed to be only a function 

of Re  and  , and we assume that Pr  effects are negligible (i.e.,  ,RefNu  ). 

 Finally, loss coefficients 
LK  for each experiment are computed: 
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where P  is the measured pressure drop, L  is the coolant density, and V  is the 

average coolant velocity at the jet. Again, L  is evaluated using the outlet pressure and 

the inlet temperature because numerical simulations suggest that most of the pressure 

drop occurs across the jet holes before the coolant impinges on the cooled surface, and 

the properties at the outlet of these holes are well-approximated by the outlet pressure 

and inlet temperature. We again assume that 
LK  is only a function Re  as has been 

shown in the HEMP-like geometry. 

6.2.1 Mass Flow Rate Oscillations 

The Hydro-Pac® C01.5-05-450LX reciprocating compressor used here can 

operate a flow loop with large pressure drops (exceeding 1.4 MPa) at 10 MPa, 

circulating helium by using a piston to compress helium at the desired pressure in one of 

two opposing cylinders. The downside to using a reciprocating compressor is the 

oscillations in the mass flow rate, which are as great as 8% of the average value.  
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This section describes the procedures used to reduce these oscillations to a 

maximum of 3% in these steady-state experiments. Although the two large buffer tanks 

downstream of the compressor should help to damp these oscillations, the maximum 

amplitude of the oscillations in the mass flow rate for an average m   6.1 g/s are about 

5.7% of this value (Figure 78). Smaller secondary oscillations are also evident but of a 

negligible magnitude. The period of these oscillation are about 1 s, corresponding to the 

compressor frequency of ~1 Hz. 

 

Figure 78. Measured mass flow rate as a function of time for an average m  6.1 g/s 

The overall pressure drop across the loop was therefore increased to reduce the 

magnitude of these oscillations. Additional pressure losses are ―added‖ to the flow loop 

by using partially closed needle values on the bypass and main lines; these valves are 

adjusted to achieve the desired value of m  through the test section with a total pressure 

drop of at least 1.1 MPa. The needle valve in the bypass line is shown in Figure 70, 

while the valve in the main line is located immediately downstream of the exit of the 

recuperator or, for experiments at room temperature, in the recuperator bypass line. The 

amplitude of the oscillations is less than 3% of the average value for these large 
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pressure drops (Figure 79). Increasing the pressure drop across the loop successfully 

reduces oscillations in the mass flow rate for average m  3 g/s  10 g/s. For m  3 g/s, 

however, the maximum amplitude of the oscillations increases, and can be as great as 

5%. These mass flow rates are not, however, of interest in these experiments. 

 

Figure 79. Comparison of mass flow rate as a function of time at m 6 g/s shown in the 

previous figure (black) and for an experiment where the pressure drop >1.1 MPa (red) 

6.3 Experimental Results 

A total of 24 steady-state experiments were performed at various inlet 

temperatures and mass flow rates using the oxy-acetylene torch as a heat source: 5 at 

iT 27 °C, 4 at iT 100 °C, 5 at iT 200 °C, 5 at iT 250 °C, and 5 at iT 300 °C. 

The Re  in these experiments varied from 1.7×104 to 3.7×104, a range that brackets the 

prototypical value pRe 21,400 at iT 637 °C and m 6.8 g/s. The experiments 

performed at the Efremov Institute used mass flow rates up to 13 g/s and iT 550-600 

°C, corresponding to Re 4.2×104-4.4×104, slightly above in the values studied here. 

The experiments at iT 300 °C were only possible at Re 2.9×104 because the heaters 

were unable to achieve such high inlet temperatures at higher m , suggesting that more 
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powerful, or additional heaters, will be required in future experiments. The incident heat 

flux varied from about 2.2 to 2.8 MW/m2 for the experiments using the oxy-acetylene 

torch. Figure 80 shows the results for the average heat transfer coefficient h  (details 

regarding the calculation of the experimental uncertainty are given in Appendix C). 

 

Figure 80. Average heat transfer coefficient h  for iT 27 °C (♦), iT 100 °C (▲), iT

200 °C (■), iT 250 °C (), and iT 300 °C (●) 

These average heat transfer coefficients range from approximately 2×104 W/m2·K 

at low Re  to 3.7×104 W/m2·K at the highest Re , and vary by as much as 20% at a given 

Re . Given that these experiments are all for the same geometry, the differences in h  at 

a given Re  are likely due to changes in the thermal conductivity of the coolant due to 

variations in iT , variations in the amount of heat conducted through the walls of the 

divertor, and enhanced losses at high iT . In addition, the values of h  in Figure 80 are 

not the true average heat transfer coefficients of the cooled surface because they are 

based on ch AA  (cf. Eq. 80), and hence overestimate the average heat flux that is 

removed at the cooled surface. Figure 81 shows the corresponding average Nusselt 

number Nu . 
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Figure 81. Average Nusselt number Nu  for iT 27 °C (♦), iT 100 °C (▲), iT 200 °C 

(■), iT 250 °C (), and iT 300 °C (●) 

The variations in Nu  at a given Re  (but at different values of iT ) are greater 

than the experimental uncertainty. These variations are likely due in part to variations in 

the fraction of heat that is conducted through the walls of the divertor, vs. convected by 

the coolant at the cooled surface with iT . Although the same coolant and thimble 

material are used for all experiments, the change in the respective thermal conductivities 

with temperature varies, and so the   (as discussed in Chapter 5) varies from ~630 at 

iT 27 °C to ~460 at iT 300 °C. Based on previous experiments, these data are used 

to develop a correlation for Nu  with a power law function of the form: 

 baReCNu   (83) 

The experiments of Rader [58] on an HEMJ module using room-temperature 

coolants at low pressures, gave a correlation of the form 19.0Nu  for  3407000. 

Since the range of   in Rader‘s experiments is significantly larger than those tested 

here (  3407000 in Rader‘s experiments, vs.  460630 here), we assume here 

that Nu  in these experiments is also proportional to 
19.0 . The HEMJ module used by 
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Rader was found to have a smaller gap width from the test section studied here (<0.6 

mm). Therefore, Rader‘s correlation for Nu  could not be directly compared with these 

data. However, this correlation for Nu  did show an increase in performance compared 

with these data indicating that smaller gap widths may produce larger Nu . This is left as 

an area of future study. A curve-fit of the data shown in Figure 80 with MATLAB 2008b 

then gives the following correlation: 

 19.0537.0196.0  ReNu  (84) 

which is valid for: 
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 (85) 

Although the  340 under prototypical conditions, which is less than the values 

of   given in Eq. 85, this correlation can likely be extended to lower values of  , based 

on the range of validity for previous correlations for the HEMP-like geometry. Figure 82 

compares this correlation with the experimental data.  
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Figure 82. Based on the correlation of Eq. (76) 19.0Nu  as a function of Re  for iT 27 

°C (♦), iT 100 °C (▲), iT 200 °C (■), iT 250 °C (), and iT 300 °C (●). The 

dashed lines denote a ±10% ‖error band‖ for the correlation 

The experimental data are within 10% of the correlation (i.e., within the dashed 

lines). Including the thermal conductivity ratio in the correlation for Nu  decreases the 

variation in Nu  at a given Re  by about 6%, based on the values of   at the highest and 

lowest iT  (i.e.,   06.1460630
19.0
 ). The remaining variations in Nu  at different iT

 
are 

likely due to losses, since the discrepancy between the true incident heat flux and that 

estimated from an energy balance of the coolant will change depending on iT .  
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Figure 83. Loss Coefficient 
LK  for iT 27 °C (♦), iT 100 °C (▲), iT 200 °C (■), 

iT 250 °C (), and iT 300 °C (●) 

Finally, the loss coefficient results are shown in Figure 83 as a function of Re . 

LK  is almost constant, and has very little, if any, dependence on Re  and iT . This result 

is consistent with previous results on an HEMJ module [58] that gave LK  values ranging 

from 2.1 to 2.6 for the range of Re  explored here. In this work, there was a weak 

dependence of LK  on
 
Re , but the loss coefficients are simply assumed to be constant 

here, and the average value over these experiments: 

 37.2LK  (86) 

All of these experiments were performed using the oxy-acetylene torch. The 

experiments thus far show that the correlation for Nu  and LK  developed above using 

dynamically similar experiments are consistent for 27 °C  iT 300 °C. This adds 

confidence that the correlations are capable of accurately predicting the thermal 

performance at prototypical conditions.  

To extend the range of applicability of these correlations to higher heat fluxes, 

dynamically similar experiments were also performed at higher incident heat fluxes using 
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the induction heater. A total of 20 experiments were performed with the induction heater: 

10 at iT 27 °C, 3 at iT 100 °C, 4 at iT 200 °C, and 3 at iT 250 °C. The Re  in 

these experiments varied from 2.0×104 to 3.9×104, and the average incident heat fluxes 

ranged from 2.8 MW/m2 (the highest value achieved with the torch) to 4.9 MW/m2. 

Figure 84 shows the results for 19.0Nu  as a function of Re  obtained for these 

experiments (filled symbols) as well as those shown in Figure 82 using the torch (open 

symbols). 

 

Figure 84. Average Nusselt number Nu  including the thermal conductivity ratio   for 

iT 27 °C (♦), iT 100 °C (▲), iT 200 °C (■), iT 250 °C (), and iT 300 °C (●) 

using the oxy-acetylene torch (open symbols) and the induction heater (closed symbols) 

The results obtained at higher incident heat flux values are in good agreement 

with the correlation developed for data at lower q  , with only one data point (at the 

lowest Re  studied) differing by more than 10% from the correlation. Table 9 summarizes 

the values of average incident heat flux q   for all experiments.  
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Table 9. Average incident heat flux for the induction heater experiments 

Heat Source Inlet Temperature ( iT ) Heat Flux ( q  ) (MW/m2) 

Oxy-acetylene torch 27 °C 2.5 – 2.8 

 100 °C 2.4 – 2.7 

 200 °C 2.3 – 2.6 

 250 °C 2.5 – 2.6 

 300 °C 2.2 – 2.4 

Induction Heater 27 °C 2.8 – 4.9 

 100 °C 3.6 – 4.0 

 200 °C 3.3 – 4.9 

 250 °C 3.6 – 4.4 

 

Figure 84 provides more confidence that this Nu  correlation can therefore be 

extrapolated to prototypical conditions, although the maximum q   achieved here is still 

half that of the prototypical value.  

 

Figure 85. Loss Coefficient 
LK  for iT 27 °C (♦), iT 100 °C (▲), iT 200 °C (■), 

iT 250 °C (), and iT 300 °C (●) using the oxy-acetylene torch (open symbols) and 

the induction heater (closed symbols) 
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Finally, Figure 8 shows the results for  ReKL  for all the experiments. As 

expected, LK  is nearly constant, with an average value of 2.34, for 1.7×104  Re

3.9×104. The correlation for Nu  and the estimate for LK  are therefore used to predict 

maxq  , the maximum heat flux the design can accommodate, and  , the pumping power 

as a fraction of incident power, at prototypical conditions, as detailed next.  

6.4 Prototypical Performance 

This procedure to estimate the thermal performance of the HEMJ divertor at 

prototypical operating conditions (Table 10) is similar to that described in Chapter 5 for 

the HEMP-like geometry. Two helium inlet temperatures ( iT 600 °C and 700 °C) and 

three average pressure boundary/tile interface temperatures ( sT 1100 °C, 1200 °C and 

1300 °C) were considered here, again because the material temperature limits remain 

unspecified. 

Table 10. Prototypical operating conditions for the HEMJ divertor 

Reynolds Number (
pRe ) 2.14×104 (as high as 4×104 may be used) 

Mass Flow Rate ( m ) 6.8 g/s 

Inlet Pressure ( iP ) 10 MPa 

Inlet Temperature ( iT ) 600-700 ºC 

Shell Material WL10 

Interface Temperature ( sT ) 1100-1300 ºC 

 

For a given Re , Nu  is calculated from Eq. 84 and used to calculate an average 

heat transfer coefficient h  using Eq. 63. Then, 
maxq 

 
is calculated using Eqs. 64 and 65 

where the thickness of the pressure boundary s 1 mm. 
cT  and oT  are then calculated 
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using Eqs. 66 and 67 respectively and the procedure is iterated until 
maxq  , 

cT  and oT  all 

converge with an error of less than 0.01%. 

Similarly, the maximum heat flux which can be accommodated at a given value 

of   is determined by a procedure similar to that used for the HEMP-like divertor. For a 

given Re , P  is computed using Eq. 68 and used to calculate the pumping power W  

from Eq. 69. Then 
maxq 

 
for a constant   can be determined using Eq. 70. 

 

 
Figure 86. Maximum heat flux for the HEMJ divertor for iT 600 °C (a) and 700 °C (b) 

for sT 1100, 1200, and 1300 °C (solid black lines) and  5, 10, 15, and 20% (red 

dashed lines) 
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Figure 86 Continued. Maximum heat flux for the HEMJ divertor for iT 600 °C (a) and 

700 °C (b) for sT 1100, 1200, and 1300 °C (solid black lines) and  5, 10, 15, and 

20% (red dashed lines) 

Figure 86 gives 
max

q 
 
for the HEMJ divertor over a range of Re  that span pRe  

for inlet temperatures of (a) 600 °C and (b) 700 °C. The target plate for the HEMJ design 

is a hexagonal pure tungsten tile with a dimension (flat to flat) of 18 mm, which results in 

a ratio of heated surface to tile areas th AA 0.81. Since 
max

q 
 
is the maximum heat 

flux on the pressure boundary hA , 
max

q 
 

must be multiplied by this area ratio to 

determine the true maximum heat flux 
tile

q   that can be accommodated on the surface 

of the tile. At the expected prototypical conditions pRe 2.14×104, iT 600 °C, and 

sT 1200 °C, 
max

q 13.0 MW/m2 and 
tile

q 10.5 MW/m2. Table 11 summarizes the 

maximum heat flux values at pRe 2.14×104. Based on these results, the HEMJ divertor 

can accommodate incident heat fluxes on the tiles of 10 MW/m2 at prototypical mass 

flow rates. However, if the inlet temperature of the coolant must be increased above 600 

°C to avoid embrittlement issues with the tungsten alloy or the maximum allowable 

tungsten alloy temperature is less than 1200 °C, it may be necessary to increase the 
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mass flow rate. Finally, these are only steady-state heat flux values—and incident 

transient heat flux values due to ELMs, for example, may also require increasing Re .  

Table 11. Thermal performance of the HEMJ divertor at pRe 2.14×104 

iT  (°C) 
sT

 
(°C) max

q   (MW/m2)   (%) 
tile

q   (MW/m2) 

600 1100 10.6 9 8.6 

 1200 13.0 8 10.5 

 1300 15.5 7 12.6 

700 1100 8.9 16 7.2 

 1200 11.4 13 9.2 

 1300 13.9 11 11.3 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

This chapter summarizes the conclusions drawn from the previous chapters, 

discusses the contributions of this research to the MFE community, and makes 

recommendations for future work. Three modular helium-cooled divertor designs were 

studied in this work: a HEMP-like divertor with and without fins, the HCFP divertor, and 

the HEMJ divertor. The objectives of this research were to:  

 perform dynamically similar experiments or numerical simulations to develop 

Nusselt number and loss coefficient correlations in order to evaluate the thermal-

hydraulic performance of these designs at prototypical conditions 

 develop charts from the correlations to determine how changes in operating 

conditions and material temperature constraints affect the maximum heat flux the 

designs can accommodate 

 extend the range of experimental parameters to near prototypical conditions 

thereby enhancing confidence in the extrapolations based on dynamic similarity. 

7.1 Research Findings:  

7.1.1 The HEMP-like Divertor 

A brass mockup of a HEMP-like divertor with and without fins was constructed 

and experimentally studied in four different flow configurations resulting from combining 

two different flow directions and a cooled surface with or without fins: forward flow 

without fins (BF), forward flow with fins (FF), reverse flow without fins (BR), and reverse 

flow with fins (FR). Dynamically similar experiments on each flow configuration were 

performed using helium or argon as a coolant. Compressibility effects were found to be 
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negligible in these experiments. Numerical simulations of the geometry without fins 

indicated that a significant fraction of the incident power was removed by conduction 

through the divertor walls as opposed to convection at the cooled surface that varied 

according to the coolant and test section material. A new dimensionless group, the 

thermal conductivity ratio  , was introduced to account for this effect. 

Correlations for the average Nusselt number Nu  as a function of the Reynolds 

number Re  and   were developed for each flow configuration, and the experimental 

data fit within 10% of the resulting correlations given in Eq. 56. The range of validity for 

these correlations was found to encompass prototypical values of Re  and  . 

Correlations for the loss coefficient 
LK  as a function of only Re  were also developed.  

The correlations for Nu  and 
LK  were used to generate generalized maximum 

heat flux charts for each flow configuration, given in Figure 63 and Figure 64, for inlet 

temperatures of 600 °C and 700 °C, respectively. Forward flow configurations were 

found to have the best thermal performance. At a prototypical Re  of 7.6×104, inlet 

temperature of 600 °C, and a maximum alloy temperature of 1200 °C: 

 the maximum heat flux the BF configuration can accommodate is 17.3 MW/m2, 

based upon the heated surface (vs. tile) area, with a pumping power as a fraction 

of incident thermal power   of 13% 

 the maximum heat flux the FF configuration can accommodate is 20.6 MW/m2, 

based upon the heated surface (vs. tile) area, with a   value of 13%. 

Finally, a significant increase in the pumping power was observed when increasing the 

inlet temperature from 600 °C and 700 °C. 
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7.1.2 The HCFP Divertor 

Three-dimensional numerical simulations of the HCFP geometry were performed 

using ANSYS FLUENT® and validated against the earlier dynamically similar 

experiments using air performed by Hageman [45]. His experimentally derived Nu  were 

within about 11% of the numerical predictions. More simulations were then performed 

with the same numerical model using different combinations of coolants and test section 

materials, and hence  . An improved correlation for Nu  as a function of Re  and   is 

given in Eq. 72; all of the numerical and experimental values are within 10% of this 

correlation. This revised Nu  correlation, along with a correlation for 
LK  found using 

Hageman‘s experimental data, were used to generate generalized maximum heat flux 

charts, shown in Figure 66, for inlet temperatures of 600 °C and 700 °C. The maximum 

heat flux the divertor can accommodate for prototypical Re  of 3.3×104, inlet temperature 

of 600 °C, and a maximum alloy temperature of 1300 °C is 7.0 MW/m2 with a   value of 

11%. 

7.1.3 The HEMJ Divertor 

Finally, a helium loop was constructed to perform dynamically similar 

experiments at near prototypical conditions to provide further confidence in the 

extrapolations to prototypical conditions and evaluate the HEMJ divertor. Dynamically 

similar experiments were performed on the HEMJ test section at inlet temperatures 

ranging from 27 °C to 300 °C using the oxy-acetylene torch as a heat source, and the 

correlation for  ,ReNu  given in Eq. 84 was developed from these data and found to 

be within 10% of the experimental measurements. The results from the helium loop 

experiments for pressure drop suggested that 
LK  correlation was essentially constant 

and independent of Re . More experiments at higher incident heat flux values were 

conducted at inlet temperatures ranging from 27 °C to 250 °C using the induction heater, 
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and these results were in good agreement with the correlations for Nu  and 
LK  obtained 

using the oxy-acetylene torch at lower incident heat flux values. Based on the resulting 

generalized maximum heat flux charts, again for inlet temperatures of 600 °C and 700 °C 

(Figure 86), the maximum heat flux that can be accommodated by the divertor at a 

prototypical Re  of 2.14×104, inlet temperature of 600 °C, and a maximum alloy 

temperature of 1200 °C is 13.0 MW/m2, based on the heated surface (vs. tile) area, with 

a   value of 8%. Previous correlations for Nu  derived from room temperature 

experiments performed by Rader [58] with a smaller gap width indicated that the HEMJ 

design could be improved by decreasing the gap width. 

7.2 Contributions 

The thermal performance of three leading modular helium-cooled tungsten 

divertor designs was experimentally investigated in this work. There are few such 

experiments because of the practical difficulties in achieving the very high prototypical 

temperatures and pressures required for prototypical conditions. These experiments are 

therefore valuable to the fusion community because they greatly expand the 

experimental thermal-hydraulics database for these configurations. The contributions of 

this work include:  

 new experimentally and numerically based Nusselt number and loss coefficient 

correlations for the HEMP-like with and without fins, the HCFP, and the HEMJ 

divertor designs 

 new generalized maximum heat flux charts that estimate the maximum heat flux 

each divertor design can accommodate under various temperature and coolant 

mass flow rate constraints.  
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These correlations can be used in system codes, for example, to optimize the overall 

performance of future commercial fusion reactor designs.  

Although applied here to specific designs, the approach utilized here based on 

dynamically similar experiments to analyze the thermal performance was validated over 

a range of temperatures, pressures, coolants, heat fluxes, and materials. This study 

therefore suggests that results from properly conducted dynamically similar experiments 

at temperature and pressures lower than prototypical conditions, using alternative 

coolants, and at lower incident heat fluxes can be used with reasonable confidence to 

predict the thermal performance of future divertor designs at prototypical conditions. 

Experiments of this type require less effort both in terms of time and resources, which 

makes it more practical to experimentally investigate variants of the divertor designs. A 

helium loop was constructed as part of this research that enables dynamically similar 

experiments at near-prototypical conditions using tungsten-alloy test sections. This 

unique facility gives us the capability to study a wider range of modular divertor designs. 

Finally, experimentally validated numerical simulations were used to extend the 

range of these studies as required. These simulations also evaluated the impact of using 

different turbulence models on the accuracy of the numerical predictions and 

investigated several key assumptions in the dimensional analysis. 

7.3 Recommendations for Future Work 

In terms of future work, the following suggestions would complement and extend 

this doctoral research. 

 The Nu  and 
LK  correlations presented here have been developed for three 

specific divertor designs. While there has been some research in the literature 

aimed at optimizing these designs, this work is limited, and there is little work to 



 

177 
 

date on optimizing the size(s) of the jet holes and the gap width between the jets 

and the cooled surfaces on the HEMJ divertor. Given that the current HEMJ test 

section used in the helium loop has an adjustable gap width, a combination of 

experiments and numerical simulations, should be performed to determine 

optimal geometries. Particular attention should be paid to the means by which 

coolant is exhausted from the jet array. A similar optimization should also be 

performed on the HEMP-like design in terms of gap width and jet diameter as 

indicated by the low fractions of incident heat removed by convection at the 

cooled surface of the divertor without fins in Figure 49. 

 Given that the correlations developed in this work are only applicable for 

divertors of the same geometry, it is important to extend the validity of these 

correlations to cover relevant geometrical changes. For example, since the 

conduction through the walls of the divertor is significant, the effect of varying the 

thickness of the divertor walls should be investigated. This analysis could be 

performed numerically or experimentally.  

 Again, given that conduction through the walls is significant, a new divertor test 

section for the helium loop should be constructed, preferably from the WL10 

tungsten-alloy that is a leading candidate for future divertor designs, with 

thermocouples embedded in the walls at different axial locations to obtain wall 

temperature data that can be used to validate numerical simulations. Numerical 

simulations validated by these temperature data could then be used to more 

accurately quantify the fraction of heat removed through the walls of the divertor 

by conduction. Experiments using the helium loop indicate that heat losses 

increase, as expected, as the helium inlet temperature increases. These losses 

should be further quantified and these results should be used to improve the 
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estimates of the actual heat flux that is incident upon the test section. 

Temperatures measured by thermocouples attached to the outside of the 

insulation could be used to estimate the heat loss. An experimentally validated 

numerical model can also be used to estimate the magnitude of the losses by 

comparing simulations of room temperature experiments to those at high inlet 

temperatures. 

 The current induction heater design should be modified to ensure more 

consistency at higher heat flux values. Using a workpiece made of a more 

oxidation-resistant graphite would also allow for longer run times, and increase 

the number steady-state experiments that can be performed with a given 

workpiece. The possibility of using a tungsten-alloy workpiece should also be 

considered, since such a workpiece would undergo less oxidation and have 

better thermal contact with the test section. Finally, a new test section should be 

constructed that integrates the workpiece with the thimble to eliminate contact 

issues altogether. 

 Dynamically similar experiments on a HCFP test section made from a low 

thermal conductivity material should be performed using air as a coolant to 

validate the simulations performed here to obtain experimental data at thermal 

conductivity ratios closer to prototypical values. In addition, experiments should 

be performed on a HCFP test section similar to the design described in Tillack et 

al. [36]. 

 The effect of surface roughness on the cooled surface of each divertor module 

should be investigated. By increasing the surface roughness, the thermal 

performance could be enhanced but at a cost of increased pressure drop. The 

magnitude of this tradeoff is important for optimizing each design. Careful 
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measurements of the existing test sections should also be made to determine if 

surface roughness is a factor in the existing experimental data. 

 While the numerical model for the HEMP-like module without fins showed 

reasonable agreement with the experimental data in forward flow, there is 

considerable room for improvement. Ideally, the same turbulence model should 

be applicable for both forward and reverse flows, but this may require that a 

different mesh is used for each flow direction. Other commercial CFD packages 

should be explored for these geometries, and a model for the HEMP-like divertor 

with fins and the HEMJ model should be created and validated using the 

experimental data contained within this work. 
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APPENDIX A: EXPERIMENTAL DATA 

This appendix includes the measured time-averaged data for all steady-state 

experiments that appear in this work. Each row corresponds to a single steady-state 

experiment. All variables are defined in the Nomenclature. Tables A.1 through A.20 

include data for the HEMP-like divertor experiments. Table A.21 includes data for the 

HCFP experiments. Tables A.22 through A.23 include data for the HEMJ divertor 

experiments with the helium loop. Finally, Tables A.24 and A.25 include the reference 

cases for the HEMP-like geometry and the HCFP geometry.  

 

A.1 Bare Forward Data with Air [59] 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

417966 137598 413656 83.2 81.7 81.8 81.2 20.9 31.5 1216.2 

348066 118387 344059 88.3 86.8 87.2 86.5 20.9 33.4 1132.2 

282441 99814 278846 95.1 93.6 94.0 93.4 21.1 36.0 1038.3 

215010 79797 211955 104.2 102.7 103.0 102.5 21.3 39.6 934.6 

145849 57740 143479 117.8 116.3 116.5 115.9 21.6 44.8 806.2 

106365 44220 104459 129.3 127.8 128.0 127.4 21.9 49.5 707.4 

71156 31047 69752 144.0 142.5 142.5 141.9 22.1 54.9 598.7 

49156 22041 48129 159.0 157.5 157.4 156.8 22.3 61.2 514.7 

35650 16205 34906 173.6 172.1 171.8 171.2 22.6 68.1 440.6 

20831 9546 20423 197.5 195.9 195.5 194.9 22.9 78.5 336.9 

6954 3294 6940 249.0 247.3 246.2 245.8 23.6 100.4 178.8 

415530 130439 411819 205.6 201.6 201.6 197.8 21.9 55.8 1191.5 

348387 112281 344978 220.8 216.8 217.0 213.1 22.1 61.6 1107.5 

277220 92594 274247 240.6 236.5 236.8 232.8 22.3 68.9 1018.6 

210001 73139 207566 265.8 261.7 261.9 257.8 22.5 78.7 905.0 

140743 51937 138974 304.5 300.2 300.1 295.8 22.8 94.6 766.6 

107647 41176 106259 333.1 328.7 328.3 323.9 23.0 106.5 677.7 

69512 28188 68618 348.9 344.8 344.3 340.4 23.3 117.6 564.1 

49362 20706 48779 345.7 342.0 341.3 338.1 23.6 120.8 485.1 

35965 15438 35601 338.9 335.5 334.9 332.2 23.7 122.0 420.9 

20245 8945 20180 310.0 307.3 306.6 305.1 24.0 117.9 317.1 

A.2 Fins Forward Data with Air [59] 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

418004 150890 413884 64.4 62.8 64.1 66.0 21.7 34.0 1181.6 

348102 129777 344285 69.4 67.9 69.2 71.2 21.8 36.5 1097.6 

281912 109412 278390 70.1 68.7 70.0 72.1 22.0 37.8 1008.7 

210358 85848 207392 77.7 76.3 77.6 79.7 22.2 41.7 895.1 

141424 61786 139110 88.5 87.2 88.4 90.5 22.5 47.0 761.7 

100817 46276 98980 99.7 98.4 99.5 101.6 22.7 52.7 658.0 

69924 33383 68519 111.2 110.0 111.0 113.1 23.0 58.9 569.1 
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A.2 Fins Forward Data with Air Continued [59] 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

48807 23859 47754 125.0 123.8 124.6 126.7 23.2 66.1 480.1 

34712 17255 33928 138.3 137.3 138.0 140.0 23.5 73.2 406.0 

20656 10463 20165 161.3 160.3 160.7 162.8 23.8 84.7 312.2 

7161 3861 7027 214.4 213.5 213.3 215.1 24.6 107.1 168.9 

419135 145038 415652 136.4 131.7 134.7 134.7 21.7 54.9 1151.9 

346794 123349 343730 147.6 143.0 145.9 146.2 21.9 60.6 1063.0 

278600 102196 275668 161.9 157.5 160.2 160.7 22.1 67.7 969.2 

211619 80851 209159 181.8 177.5 180.0 180.6 22.4 77.8 870.4 

139998 56877 138147 213.5 209.4 211.6 212.2 22.6 93.7 727.1 

104989 44337 103536 238.3 234.2 236.2 236.8 23.0 106.6 638.2 

70116 30980 69096 276.7 272.7 274.4 274.9 23.4 127.6 534.5 

49572 22828 48824 266.0 262.7 264.0 264.7 23.6 127.3 460.4 

35086 16671 34560 257.6 254.8 255.9 256.8 23.8 126.4 391.2 

21470 10570 21166 257.2 255.0 255.7 256.6 24.1 128.0 302.3 

A.3 Bare Reverse Data with Air [59] 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

415634 179849 410095 121.0 120.2 119.0 118.8 23.9 31.7 1300.1 

349237 154196 344224 128.8 128.0 126.9 126.8 23.8 33.2 1196.4 

274102 124403 269829 141.3 140.6 139.1 139.1 23.8 35.7 1087.7 

208304 97504 204791 151.2 150.6 149.0 149.0 23.8 38.5 974.1 

142657 69779 140012 164.7 164.2 162.5 162.5 24.0 42.9 840.7 

107156 53770 105047 174.6 174.2 172.3 172.4 24.1 46.6 741.9 

70392 36027 68921 190.0 189.6 187.4 187.6 24.2 52.6 618.5 

48030 24716 47018 211.2 210.8 208.3 208.3 24.4 60.8 519.7 

35618 18338 34540 229.1 228.6 225.8 225.4 24.1 67.2 450.5 

21836 11234 21055 244.5 244.0 241.1 240.8 24.5 78.3 346.8 

7087 3745 6445 283.1 282.4 279.5 278.8 26.0 106.9 178.8 

417008 175510 411010 272.5 270.8 267.7 267.2 23.8 46.1 1260.6 

351943 151041 346479 294.3 292.6 289.3 288.4 23.8 50.3 1166.8 

284747 125280 279987 310.4 308.9 305.2 304.6 23.9 54.9 1063.0 

208548 93967 205054 338.4 337.1 333.1 332.0 24.5 63.1 929.7 

135232 63862 132539 373.9 372.7 368.4 367.9 24.6 76.0 771.6 

105706 51340 103355 332.4 331.5 328.1 328.6 24.7 74.2 702.4 

70154 34992 68281 356.4 355.7 351.8 352.5 25.0 85.9 578.9 

51224 25816 49580 325.5 325.0 321.8 322.8 25.3 86.6 509.8 

36105 18393 34751 339.3 338.7 335.3 336.4 25.6 95.9 430.7 

22828 11659 21529 362.9 362.3 358.7 359.7 26.2 112.5 331.9 

A.4 Fins Reverse Data with Air [59] 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

202356 97649 200244 103.9 104.0 102.0 105.2 24.1 52.3 835.8 

140885 72377 139363 117.4 117.5 115.5 118.7 24.2 60.7 707.4 

105792 56723 104661 129.7 129.8 127.7 131.0 24.3 68.5 618.5 

68465 38591 67754 150.3 150.4 148.0 151.4 24.6 81.8 504.8 

49077 28479 48590 165.9 166.0 163.3 166.8 24.8 92.4 425.8 

34399 20509 34211 178.0 177.8 175.4 178.5 24.0 100.7 356.6 

20176 12429 19756 206.3 206.2 203.6 206.9 24.9 119.1 262.8 

7816 4962 7505 148.1 148.3 147.2 150.4 25.5 90.0 159.1 
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A.4 Fins Reverse Data with Air Continued [59] 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

272602 122491 269198 98.7 98.8 97.4 101.3 23.8 48.6 939.5 

346500 149126 342566 90.5 90.6 89.2 93.3 23.6 44.0 1043.3 

416416 178775 412139 85.0 85.1 83.6 87.6 23.6 40.9 1142.1 

413913 174871 410371 181.3 179.0 176.7 180.6 24.1 70.0 1077.9 

349537 149498 346439 198.1 196.1 193.6 197.5 24.1 78.8 988.9 

279442 124424 276771 217.3 215.5 213.0 216.8 24.1 90.0 885.2 

214041 100626 211807 241.2 239.4 236.9 240.5 24.2 104.9 776.5 

146306 74785 144511 278.9 277.1 274.4 277.4 24.4 128.9 643.2 

110324 59370 108524 313.7 312.1 309.2 312.0 24.7 151.3 564.1 

A.5 Bare Forward Data with Air at High Pressure [59] 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

618878 186357 611419 196.1 195.6 189.7 187.6 24.4 51.5 1413.3 

624458 130169 619440 209.0 208.5 202.7 200.6 24.5 55.8 1268.1 

626537 110546 622919 215.1 214.6 208.9 206.6 24.7 58.3 1189.7 

627923 94029 625152 221.8 221.3 215.6 213.3 24.9 60.8 1109.2 

631634 69770 630007 239.5 238.8 231.5 227.9 25.1 66.6 962.1 

634942 48216 634559 260.5 259.9 252.4 247.8 25.5 74.6 797.3 

636723 34021 637642 284.9 284.3 276.5 273.1 26.0 84.4 656.0 

640393 20853 641581 330.3 329.5 321.5 318.4 26.5 103.7 467.6 

645468 9914 647537 313.1 312.5 306.7 305.1 27.1 115.8 238.1 

A.6 Fins Forward Data with Air at High Pressure [59] 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

623970 202956 616244 164.7 158.6 161.3 160.6 24.6 60.6 1370.2 

633562 136942 628060 176.2 170.0 172.6 171.8 24.7 66.2 1201.4 

644780 88312 641283 193.9 187.9 190.2 189.4 25.0 75.3 989.5 

652453 61198 649482 212.6 206.5 208.8 208.1 25.6 84.0 828.6 

647092 46875 645870 228.7 222.4 225.2 224.1 25.8 93.2 718.8 

655121 30990 655131 259.3 253.2 255.7 254.7 26.2 109.2 559.9 

673550 13967 673225 249.3 245.3 246.8 246.7 26.8 117.6 304.8 

A.7 Bare Reverse Data with Air at High Pressure [59] 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

666430 213420 661438 353.4 352.0 343.8 342.2 23.3 49.5 1462.4 

671771 139918 668367 327.9 326.7 319.5 318.3 23.3 49.5 1272.1 

677353 105648 674711 342.7 341.5 334.3 333.2 23.4 52.9 1124.9 

684200 75714 683812 333.2 331.9 325.4 324.5 23.5 54.6 962.1 

687168 54909 687203 346.8 345.3 338.6 337.2 23.7 59.2 814.9 

690413 41601 691898 319.3 318.0 312.2 311.2 23.7 58.9 699.2 

692502 27566 695026 345.1 343.7 337.8 336.8 24.0 67.8 534.3 

700911 13995 703559 372.2 370.8 364.9 364.3 24.5 86.5 304.8 

A.8 Fins Reverse Data with Air at High Pressure [59] 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

666279 244680 664245 164.9 160.6 162.6 164.1 23.9 56.6 1370.2 

671218 158259 672266 178.0 173.5 175.7 177.2 24.1 62.9 1172.0 



 

183 
 

A.8 Fins Reverse Data with Air at High Pressure Continued [59] 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

675800 123339 677172 187.7 183.2 185.5 186.9 24.2 67.9 1048.4 

680005 88143 682965 202.6 198.0 200.2 201.4 24.3 75.9 887.5 

685041 60784 688467 222.9 218.4 220.3 221.3 24.5 87.7 720.7 

690182 38823 693951 254.1 249.6 251.1 251.8 24.8 107.1 542.2 

694857 19970 699147 225.2 222.0 223.0 223.4 25.1 110.1 348.0 

A.9 Bare Forward Data with Helium 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

129760 50286 126937 216.0 218.5 209.5 211.7 26.1 80.7 732.1 

186003 69454 182715 184.0 185.8 177.8 179.9 25.4 66.5 860.5 

312534 108928 307922 158.9 161.0 153.6 155.0 26.7 55.7 1172.2 

624700 198174 612856 134.9 131.8 128.3 131.8 27.1 45.0 1448.6 

1349135 400165 1323938 96.9 95.7 92.9 93.4 24.5 33.1 2060.8 

1058651 319528 1038029 104.0 102.5 99.7 99.4 28.3 38.1 1854.8 

A.10 Fins Forward Data with Helium 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

153329 64798 152625 167.6 162.5 164.9 166.7 25.6 82.3 775.7 

348026 133822 347809 122.7 116.8 119.9 120.4 25.5 55.1 1091.6 

206700 83678 202723 146.6 140.1 144.6 144.0 25.5 69.9 865.9 

1114294 371109 1091288 83.8 78.0 81.5 81.0 27.4 37.4 1825.4 

668915 233354 656101 100.6 94.5 97.5 96.8 25.7 42.9 1438.8 

1369349 448083 1346506 78.8 73.2 77.0 76.5 27.7 35.7 2033.3 

A.11 Bare Forward Data with Argon 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

213670 75988 215074 322.1 321.9 312.8 312.8 22.4 97.9 913.0 

342935 108448 335725 343.2 342.1 331.5 329.9 22.3 94.6 1095.5 

85265 34662 81906 285.0 284.3 279.0 278.6 23.1 102.1 624.6 

467383 148183 480073 318.7 317.7 306.1 303.7 21.9 81.4 1276.0 

A.12 Fins Forward Data with Argon 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

217574 83736 211890 208.2 204.7 212.0 207.8 22.4 93.9 867.9 

493441 164832 485897 212.1 206.1 217.5 209.8 22.2 84.3 1232.8 

376237 132412 368736 194.8 190.1 200.4 193.4 22.3 82.3 1101.4 

113813 50371 108550 173.6 171.8 177.8 174.4 22.9 85.5 669.7 

A.13 Bare Forward Data with Argon at High Pressure 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

1355005 26151 1351963 321.4 321.5 312.0 312.7 22.9 96.4 461.7 

1345285 55109 1349893 304.0 303.2 293.1 291.4 22.9 79.6 824.7 

1344510 40053 1353662 331.3 330.5 319.8 318.2 23.1 90.8 661.9 

1347534 19121 1356405 302.1 302.6 294.2 295.4 23.5 100.1 316.6 
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A.14 Fins Forward Data with Argon at High Pressure 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

1360325 30979 1353518 215.7 211.5 217.2 214.0 22.5 94.6 485.3 

1352208 48446 1344673 205.9 199.9 210.0 203.0 22.2 84.6 683.5 

1355190 65977 1345788 211.1 204.2 216.0 207.8 21.4 82.4 854.2 

1352806 22515 1342578 194.1 190.4 197.9 193.4 22.9 89.7 349.9 

A.15 Bare Reverse Data with Helium 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

149677 60558 140669 336.1 333.8 324.4 323.4 24.4 75.8 773.7 

206948 81148 200496 304.7 301.9 293.5 292.3 24.5 64.0 897.3 

348718 124626 338094 255.4 252.9 245.1 243.6 25.5 51.1 1123.0 

641980 208522 624928 212.8 210.3 204.3 202.7 25.5 40.9 1468.3 

1065365 332588 1058206 169.2 166.6 161.9 160.3 21.7 30.8 1872.4 

1287210 392996 1270890 163.9 161.4 156.8 154.8 26.8 34.5 2060.8 

A.16 Fins Reverse Data with Helium 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

158083 82140 162738 170.4 165.6 166.4 168.1 25.1 87.2 734.5 

248935 116110 251735 145.4 140.6 142.4 144.9 25.3 69.0 895.4 

380192 160308 375860 122.3 117.5 120.1 122.5 24.4 54.1 1075.9 

775777 293281 777293 101.8 97.0 99.9 102.0 25.0 41.1 1509.5 

1122394 400174 1103355 91.2 88.8 89.6 91.7 28.1 39.0 1782.2 

1394344 487098 1370401 84.1 80.0 82.6 84.7 26.4 35.2 1962.7 

A.17 Bare Reverse Data with Argon 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

152427 63334 148290 306.8 305.9 301.4 301.6 24.5 73.9 783.5 

276039 105025 276131 271.8 270.8 266.9 266.8 24.0 57.9 1028.8 

458418 159060 456835 305.3 304.0 299.2 298.4 23.6 55.0 1268.1 

56616 26346 52363 305.9 305.2 301.2 301.8 26.0 92.9 516.7 

A.18 Fins Reverse Data with Argon 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

219891 103123 220649 258.0 255.0 255.2 255.2 25.0 118.8 799.2 

555384 216178 555573 237.5 233.6 234.4 235.4 21.1 85.0 1219.1 

328754 141582 328604 223.2 220.4 220.5 221.1 24.2 94.7 969.9 

80296 45022 81369 181.7 180.2 180.3 180.7 25.7 103.2 546.1 

A.19 Bare Reverse Data with Argon at High Pressure 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

1370834 21296 1373270 296.9 296.0 291.7 292.0 24.4 70.2 346.0 

1346243 30209 1345373 274.7 273.8 269.3 269.2 22.1 57.3 508.8 

1351218 61288 1350072 316.0 314.8 309.1 308.4 21.7 53.6 848.3 

1348211 43322 1339507 245.4 244.6 240.6 240.6 22.2 49.1 681.5 
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A.20 Fins Reverse Data with Argon at High Pressure 

RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

1359135 38429 1352281 227.3 225.0 224.6 226.2 24.7 98.5 503.0 

1366279 56843 1361754 197.0 194.4 194.8 196.4 23.9 79.6 685.4 

1355410 81500 1349634 231.6 228.5 228.9 231.3 23.0 85.4 840.4 

1363343 26206 1359218 131.2 129.8 130.5 131.6 23.9 67.6 371.5 

A.21 HCFP Data with Air [45] 

m (g/s) P (Pa) oP (Pa) 0cT (°C) 4cT (°C) 4cT (°C) 8cT (°C) 8cT (°C)
 iT (°C) oT (°C) 

21.7 55296 151685 221.9 223.2 222.8 216.5 218.3 22.0 55.1 

8.8 1999 330948 183.1 183.2 183.2 179.9 180.9 22.7 63.0 

32.5 86736 275790 259.1 258.2 257.9 243.7 244.3 19.8 51.9 

A.22 HEMJ Experiments on the Helium Loop with the Oxy-Acetylene Torch 

vP (Pa) P (Pa) oP (Pa) 8cT (K) 6cT (K) 4cT (K) 2cT (K) iT (K) oT (K) vT (K) vP (Pa)
 

9978567

.472868

68 

102779 9828747

.739184

53 

727.6 719.9 694.7 687.3 573.5 588.3 300.1 2334 

9984519

.400723

35 

12913 9948200

.694096

68 

543.9 531.4 509.5 503.6 299.1 334.4 299.0 554 

1000564

9.66715

35 

21436 9945653

.608123

65 

597.2 584.5 563.0 559.9 374.8 404.9 299.3 741 

1003260

2.80349

32 

36858 9928638

.911648

04 

675.5 663.8 647.5 640.2 473.1 498.6 298.7 1018 

9728412

.310526

91 

59197 9613695

.640939

65 

755.1 745.5 727.6 709.2 573.9 595.3 298.6 1350 

9910125

.072749

92 

34430 9834626

.048898

27 

509.9 504.1 481.2 469.2 299.0 322.4 298.9 1475 

9908580

.963224

35 

57811 9784144

.250979

12 

565.2 560.2 537.4 523.0 373.5 393.2 298.8 1992 

9951785

.562819

14 

22463 9888293

.355234

55 

538.2 533.4 495.2 482.3 299.0 328.1 298.9 967 

9881462

.758149

15 

53707 9760751

.615401

76 

721.5 717.0 679.7 659.2 522.8 545.2 298.1 1340 

9989591

.825528

49 

128049 9741741

.433672

44 

689.7 685.5 650.7 633.7 522.1 536.9 298.4 3184 

9917703

.265400

80 

7947 9866387

.827189

21 

566.3 552.0 530.5 515.1 298.8 342.2 297.8 350 

9905958

.028049

37 

13413 9858941

.560335

93 

613.3 599.8 579.2 563.2 373.7 410.0 297.8 480 

9985226

.127088

25 

23116 9948244

.779312

17 

682.7 667.8 658.6 638.4 473.4 502.7 297.4 659 

9986007

.958136

17 

30749 9898046

.486790

10 

766.5 753.2 745.2 724.8 574.0 600.4 297.2 730 

9986664

.057750

57 

97949 9832994

.860050

37 

725.2 713.9 707.2 688.1 575.3 590.2 297.3 2272 

9982100

.939301

52 

27770 9921173

.794099

19 

514.1 502.8 480.5 462.8 298.2 322.8 297.9 1234 

1001124

2.74236

19 

47800 9988994

.318097

30 

565.2 552.2 536.1 519.7 373.2 393.6 298.3 1704 

1004293

8.97235

58 

81720 9882967

.155247

15 

645.8 633.3 617.5 601.0 473.0 489.9 298.5 2308 

1001083

0.28469

59 

79562 9916526

.749516

01 

699.2 687.2 676.7 657.5 522.8 540.8 298.1 2038 

1001001

7.13626

35 

104991 9882109

.293970

16 

691.6 680.2 669.6 650.8 524.1 540.0 298.1 2680 

1003289

3.42552

97 

134363 9824458

.343465

61 

684.9 674.0 663.7 645.0 524.1 538.3 298.5 3441 

9879938

.496820

19 

77535 9736510

.913225

89 

750.5 740.0 724.0 701.9 572.5 590.9 297.5 1814 

9884544

.404713

44 

50965 9777705

.345201

79 

666.7 655.0 638.9 618.2 472.4 494.7 297.6 1445 

9874238

.289452

91 

60359 9746097

.736503

03 

660.7 649.1 633.6 612.8 473.0 493.4 297.2 1701 

A.23 HEMJ Experiments on the Helium Loop with the Induction Heater 

vP (Pa) P (Pa) oP (Pa) 8cT (K) 6cT (K) 4cT (K) 2cT (K) iT (K) oT (K) vT (K) vP (Pa)
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A.23 HEMJ Experiments on the Helium Loop with the Induction Heater Continued 

vP (Pa) P (Pa) oP (Pa) 8cT (K) 6cT (K) 4cT (K) 2cT (K) iT (K) oT (K) vT (K) vP (Pa)
 

9840362

.301030

57 

16443 9830026

.817761

87 

666.260

2137404

58 

660.626

0076335

88 

679.908

5725190

84 

616.714

9236641

22 

296.441

068702

290 

355.631

954198

473 

295.902

381679

389 

742 

9893773

.953203

47 

48974 9895835

.399874

50 

594.021

6318407

96 

618.861

8507462

69 

610.111

3681592

04 

546.386

6915422

89 

374.131

358208

955 

402.338

706467

662 

296.046

004975

124 

1770 

9873118

.961785

42 

17530 9893803

.353683

40 

631.336

7263681

59 

656.079

4427860

70 

645.382

6368159

21 

582.708

0398009

95 

374.277

412935

323 

420.810

582089

552 

296.082

850746

269 

636 

9850675

.912828

31 

31305 9834119

.099963

18 

633.472

6567164

18 

633.805

0895522

39 

649.349

6666666

67 

596.846

5323383

09 

372.871

781094

527 

411.332

537313

433 

296.003

353233

831 

1143 

9940803

.109761

48 

120082 9778007

.404175

21 

643.627

2089552

24 

638.157

2189054

73 

669.879

8606965

18 

640.981

2636815

92 

475.189

716417

910 

493.757

656716

418 

297.714

572139

303 

3469 

9945854

.246677

31 

76977 9896869

.688931

50 

673.428

8905472

64 

663.984

5920398

01 

690.437

6119402

98 

669.705

2686567

16 

473.696

139303

483 

499.390

611940

298 

297.917

870646

766 

2219 

9995570

.495961

00 

30654 9951374

.803366

40 

761.352

0298507

46 

767.602

0099502

49 

793.229

2587064

67 

759.810

6368159

20 

474.116

512437

811 

520.814

109452

736 

297.524

303482

587 

894 

9984224

.229544

19 

47521 9911051

.501459

83 

758.571

2935323

38 

759.781

6616915

42 

783.736

8805970

15 

760.564

0696517

41 

473.742

626865

672 

516.506

955223

881 

297.263

442786

070 

1372 

9963832

.245208

88 

139791 9787075

.539902

59 

684.001

7284768

21 

697.474

7284768

21 

741.771

8211920

53 

702.794

5695364

24 

520.842

807947

020 

539.954

854304

636 

297.013

370860

927 

3681 

9963822

.039032

63 

96561 9801727

.986481

99 

742.518

4875621

89 

754.071

3930348

26 

793.024

8358208

96 

747.487

1990049

75 

522.929

776119

403 

551.699

164179

104 

297.049

606965

174 

2519 

9816600

.208133

79 

57401 9737149

.462459

10 

750.433

3564356

43 

762.305

6930693

07 

770.399

5544554

46 

739.695

9306930

69 

522.759

673267

327 

556.661

495049

505 

296.865

514851

485 

1507 

A.24 Reference Cases for the HEMP-like Simulations 

Case RP (Pa) P (Pa) iP (Pa) 6cT (°C) 5cT (°C) 4cT (°C) 3cT (°C) iT (°C) oT (°C) Q (cm
3
/s) 

RC1 624700 198174 612856 134.9 131.8 128.3 131.8 27.1 45.0 1448.6 

 
RC2 145849 57740 143479 117.8 116.3 116.5 115.9 21.6 44.8 816.5 

RC3 640393 20853 641581 330.3 329.5 321.5 318.4 26.5 103.7 359.9 

RC4 1347534 19121 1356405 302.1 302.6 294.2 295.4 23.5 100.1 316.6 

 

A.25 Reference Cases for the HCFP Simulations 

Case m (g/s) P (Pa) oP (Pa) 0cT (°C) 4cT (°C) 4cT (°C) 8cT (°C) 8cT (°C)
 iT (°C) oT (°C) 

RC5 21.7 55296 151685 221.9 223.2 222.8 216.5 218.3 22.0 55.1 
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APPENDIX B: MATERIAL PROPERTIES 

Many of the materials in this work are evaluated over a wide range of 

temperatures. As such, it is imperative to include temperature dependent properties in 

the calculations. The properties for the coolants and the solid materials used in this work 

were compiled from a number of different sources in the literature and are summarized 

below. 

 

B.1 Coolant Properties 

 Three coolants were used in the experiments: air, helium, and argon. For the 

once-through experiments, pressure was limited to <1.4 MPa therefore effects in the 

properties from varying pressure were negligible. Experiments using the helium loop 

were conducted at pressures up to 10 MPa, but the variation in helium‘s properties 

between atmospheric pressure and 10 MPa is also negligible. Therefore, properties 

were only evaluated based on their temperature.  

The properties for air, helium and argon were evaluated from Table 12, Table 13, 

and Table 14, respectively. Linear interpolation was utilized for temperature values that 

fall between available temperatures in the tables. 

Table 12. Temperature dependent properties for air [15] 

T  (°C) Pc  (J/kg·K)   (μPa·s) k  (W/m·K) 

250 1006 16 0.0223 

300 1007 18.5 0.0263 

350 1009 20.8 0.03 

400 1014 23 0.0338 

450 1021 25.1 0.0373 

500 1030 27 0.0407 

 
Table 13. Temperature dependent properties for helium [76] 

T  (°C) Pc  (J/kg·K)   (μPa·s) k  (W/m·K) 

275 5193.00 18.78 0.147 

300 5192.99 19.93 0.156 
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Table 13 Continued. Temperature dependent properties for helium [76] 

T  (°C) Pc  (J/kg·K)   (μPa·s) k  (W/m·K) 

325 5192.98 21.05 0.165 

350 5192.98 22.15 0.174 

375 5192.98 23.23 0.182 

400 5192.98 24.29 0.190 

425 5192.98 25.33 0.199 

450 5192.98 26.36 0.207 

475 5192.98 27.37 0.215 

500 5192.98 28.36 0.222 

525 5192.99 29.34 0.230 

550 5192.99 30.31 0.238 

575 5192.99 31.27 0.245 

600 5192.99 32.22 0.252 

625 5192.99 33.15 0.260 

650 5193.00 34.07 0.267 

675 5193.00 34.99 0.274 

700 5193.00 35.89 0.281 

725 5193.00 36.79 0.288 

750 5193.00 37.68 0.295 

775 5193.01 38.56 0.302 

800 5193.01 39.43 0.309 

825 5193.01 40.30 0.315 

850 5193.01 41.15 0.322 

875 5193.01 42.00 0.328 

900 5193.02 42.85 0.335 

925 5193.02 43.68 0.341 

950 5193.02 44.52 0.348 

975 5193.02 45.34 0.354 

1000 5193.02 46.16 0.361 

1025 5193.02 46.97 0.367 

1050 5193.02 47.78 0.373 

1075 5193.02 48.58 0.379 

1100 5193.03 49.38 0.385 

 
Table 14. Temperature dependent properties for argon [76] 

T  (°C) Pc  (J/kg·K)   (μPa·s) k  (W/m·K) 

280 521.76 21.40 0.0167 

300 521.54 22.70 0.0177 

320 521.36 23.90 0.0187 

340 521.22 25.10 0.0196 

360 521.11 26.30 0.0206 

380 521.02 27.50 0.0215 

400 520.94 28.60 0.0224 

420 520.87 29.70 0.0232 

440 520.82 30.80 0.0241 

460 520.77 31.90 0.0249 
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Table 14 Continued. Temperature dependent properties for argon [76] 

T  (°C) Pc  (J/kg·K)   (μPa·s) k  (W/m·K) 

480 520.73 33.00 0.0257 

500 520.69 34.00 0.0265 

 

The specific ideal gas constant for each of the three coolants is given in Table 

15. 

Table 15. Specific ideal gas constants for air, helium, and argon 

Coolant   (J/kg·K) 

air 287.0 

He 2077.1 

Ar 208.2 

 

B.2 Test Section Material Properties 

Four test section materials were included in this work: C36000 brass, AISI 1018 

carbon steel, the tungsten alloy WL10, and the tungsten alloy MT-185. Since only 

steady-state experiments and simulations were performed, the only relevant property for 

each test section was the thermal conductivity. For C36000 brass, AISI 1018 carbon 

steel, and WL10, discrete thermal conductivity data were gathered from the literature 

and fit using a polynomial or a power law.  

The brass alloy, C36000, was fit to the data plotted in Figure 87 with the following 

equation: 

   4006.0661.11 TTks   (87) 
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Figure 87. Thermal conductivity data with varying temperature for brass alloy [15] and 
power law fit 

The steel alloy, AISI 1018, was fit to the data plotted in Figure 88 with the 

following linear equation: 

   47.770496.0  TTks  (88) 

 

Figure 88. Thermal conductivity data with varying temperature for steel alloy [15] and a 
linear fit 
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The tungsten alloy, WL10, was fit to the data plotted in Figure 89 with the 

following second order polynomial: 

   8.2061143.010372.3 25   TTTks
 (89) 

 

Figure 89. Thermal conductivity data with varying temperature for WL10 [77] and a 
second order polynomial fit 

Measurements for the thermal conductivity of the tungsten alloy, MT-185, were 

taken at Oak Ridge National Laboratory using the laser-flash method. Small thin 

samples from the MT-185 rod used to construct the test sections were cut using wire 

EDM for the measurements. The specific heat 
Pc  and the thermal diffusivity   were 

each measured separately with respect to temperature. For each discrete temperature in 

which   was measured, the 
Pc  at a corresponding temperature was selected from the 

measured data and sk  was calculated with the following equation: 

 Ps ck   (90) 

where   18.5 g/cm3 was the density of MT-185 (changes in volume with temperature 

were deemed negligible). The calculated data for sk  is plotted in Figure 90 with the 

following third order polynomial: 
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   58.360.1054-1.261e-8-5.325e 23  TTTTks
 (91) 

 

Figure 90. Thermal conductivity data measured at ORNL with varying temperature for 
MT-185 and a third order polynomial fit 
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APPENDIX C: UNCERTAINTY ANALYSIS 

As with all experimental analysis, it is imperative to estimate the uncertainty in 

each measurement and propagate that uncertainty through the calculations. This 

appendix summarizes the uncertainty in the instruments, the material properties, and the 

dimensions used in these experiments. Then, the method for propagating the uncertainty 

through to the Nusselt number and loss coefficient correlations is explained in 

accordance with the procedure described in the references [78,79]. An example is also 

provided. 

 

C.1 Uncertainty in the Instruments 

Table 16 lists the instruments used in this experiment and their corresponding 

uncertainty. The uncertainty in analog instruments is half of the resolution of the 

instrument, and the uncertainty in the digital instruments is specified by the 

manufacturer.  
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Table 16. Experimental uncertainty in the instruments used in all experiments 

Instrument Uncertainty Units 

Omega Type-E TC Probe 
1.0 (≤250°C) 

0.004 T (<250°C) 
°C 

Brooks 1110 Rotameter 1.180×10-5 m3/s 

Omega PX302-2KGV 34474 Pa 

Omega PX302-300AV 5170 Pa 

Omega PX180-060DV 1241 Pa 

Omega PX26-100DV 1723 Pa 

Omega PX26-30DV 517 Pa 

Omega Type-K TC Probe 
1.1 (≤275°C) 

0.004 T (<275°C) 
°C 

Omega PX309-2KGI 34474 Pa 

Rosemount 1151DP3E22 12 Pa 

Rosemount 1151 DP5S22 329 Pa 

Omega P-L-A-1/8-6-0-TS-8 RTD 0.15+0.002 T  °C 

 

C.2 Uncertainty in the Material Properties 

The uncertainty in the material properties was either specified in the source or 

approximated with a conservative assumption. The uncertainties used in the calculations 

here are summarized in Table 17. 

Table 17. Uncertainty in the material properties used in the calculations 

Material/Coolant Property Uncertainty (%) 

Air   5 

 
Pc  5 

 k  5 

Helium [76]   10 

 
Pc  5 

 k  5 

Argon [76]   2 
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Table 17 Continued. Uncertainty in the material properties used in the calculations 

Material/Coolant Property Uncertainty (%) 

Argon [76] 
Pc  0.3 

 k  2.2 

C36000 Brass sk  5 

AISI 1018 Steel sk  5 

MT-185 sk  5 

 

C.3 Uncertainty in the Dimensions 

The uncertainty in the dimensions used in the calculations is summarized in 

Table 18. The geometrical uncertainty is the smallest contribution to the overall 

uncertainty in the experimental results. 

Table 18. Uncertainty in the dimensions 

Dimension Uncertainty Units 

cA  (HEMP) 0.7 mm2 

hA
 
(HEMP) 1.0 mm2 

cA  (HEMJ) 1.3 mm2 

hA
 
(HEMJ) 2 mm2 

jD  0.05 mm 

oD  0.05 mm 

TC  0.1 mm 

 

C.4 Propagation of Uncertainty 

For a value  LxxxfR ,...,, 21 , the most probable estimate of the uncertainty 

RU  is generally accepted to be root squared sum of the uncertainty for each 
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independent variable multiplied by a sensitivity index [79]. The sensitivity index in this 

case is simply ixR   where i 1, 2,…., L . That is: 

 

2
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
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i i

xLR
x

R
UxxxU

i
 (92) 

where 
ixU  is the uncertainty in the independent variable ix . It is important to emphasize 

this is only an estimate of the uncertainty derived from truncated Taylor series expansion 

of  LxxxfR ,...,, 21 . This also ignores any covariant variables, but these do not 

appear in this analysis. 

 As an example, the uncertainty in the Reynolds number Re , ReU , is calculated for 

Reference Case #1 (Appendix A). First, the density at the exit of the Rotameter 
R  is 

calculated using the ideal gas law. For brevity, R  1.16 kg/m3 and 
R

U 
 ± 0.055 

kg/m3. Then, the mass flow rate m  is computed as follows (see Appendix D, c  1.20 

kg/m3): 

 RcQm   (93) 
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 m 1.71 g/s  

 mU  ± 0.043 g/s 

Now, the Reynolds number Re  is calculated using Eq. 27 where the uncertainty 

in the port diameter 
jDU  ± 0.05 mm and an uncertainty of 10% is assumed for the 

viscosity U : 
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 Re 54704  

 ReU ± 5804 



 

198 
 

APPENDIX D: MASS FLOW RATE MEASUREMENTS USING A ROTAMETER 

For the HEMP-like experiments conducted in this work, a variable area 

Rotameter (Brooks 1110) was used to measure the volumetric flow rate. In its simplest 

form, a Rotameter is a tube, usually transparent, with a increasing cross sectional area 

from the bottom to the top. A float inside the tube indicates the volumetric flow rate 

versus a calibrated linear scale printed on the tube. The density of the coolant is then 

measured at the exit of the Rotameter, and the mass flow rate is calculated. The 

advantages of a Rotameter are its simplicity and low cost, but it must be oriented 

vertically and is sensitive to the temperature of the coolant (since the viscosity of the 

coolant changes with temperature). The scale is typically calibrated for a single 

temperature. For the experiments conducted in this work, the inlet temperatures did not 

significantly vary from the calibrated temperature. 

To accurately measure the mass flow rate of different coolants at a variety of 

pressures using a variable area Rotameter requires that minor corrections are made to 

its calibrated scale. The volumetric flow rate through a Rotameter can be calculated from 

a force balance on the float itself. The resulting equation is as follows [58]: 

 
 





F

FF
T

A

Vmg
CAQ




2
 (97) 

where C  is a discharge coefficient specified for the Rotameter, 
TA  is the annular cross 

sectional area between the float and the tube, 
FV , 

Fm , 
FA  are the volume, mass and 

cross sectional area of the float, respectively, and   is the coolant density. It is 

assumed that the steel float is significantly more dense than the gas coolant (not 

necessarily the case for liquids) and therefore the contribution of FV  is negligible. The 

equation then simplifies to: 
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F

F
T

A

gm
CAQ



2
  (98) 

 The actual volumetric flow rate 
aQ  is then calculated using a Rotameter scale 

that is calibrated for a volumetric flow rate 
cQ
 
at a specific pressure. Based upon the 

above equation, the volumetric flow rate is inversely proportional to the square root of 

the density of the gas. As a result, the following equality can be formed for a given float 

position:  

 ccaa QQ    (99) 

 

R

c

c

a

c

ca QQQ







  (100) 

where c 1.20 kg/m3 is the calibrated density for this Rotameter using air at 101.3 kPa 

and 21.1 °C, and Ra    is the actual measured density at the exit of the Rotameter. 

Finally, the mass flow rate is calculated as follows: 

 cRcaR QQm    (101) 

 



 

200 
 

APPENDIX E: PEER-REVIEWED PUBLICATIONS 

A large portion of this work has resulted in peer-reviewed publications as 

conference papers and journal articles. Two peer-reviewed conference papers were 

featured at the Technology on Fusion Energy (TOFE) conference in 2010 and 2012 as 

oral presentations, and the conference paper presented in 2010 earned the Best Student 

Paper Award. A journal article was published in 2012 in Fusion Science and Technology. 

The publications are included in this appendix as they appeared in the journals. This 

author also contributed to other closely related publications as a co-author and they are 

also listed below (but not included). 

 

E.1 Peer-Reviewed Publications as First Author 

 B. H. Mills, J. D. Rader, D. L. Sadowski, M. Yoda, and S. I. Abdel-Khalik, 

"Experimental Investigation of Fin Enhancement for Gas-Cooled Divertor 

Concepts," in Technology of Fusion Energy, vol. 60, Las Vegas, 2011, pp. 191-

195. 

 B. H. Mills, J. D. Rader, D. L. Sadowski, M. Yoda, and S. I. Abdel-Khalik, 

"Dynamically Similar Studies of the Thermal Performance of Helium-Cooled 

Finger-Type Divertors With and Without Fins," Fusion Science and Technology, 

vol. 62, pp. 379-388, Nov 2012. 

 B. H. Mills, Rader J. D., D. L. Sadowski, M. Yoda, and S. I. Abdel-Khalik, "An 

Experimental Study of the Effects of the Solid-to-Coolant Thermal Conductivity 

Ratio in Helium-Cooled Divertor Modules," Fusion Science and Technology, vol. 

64, pp. 670-674, September 2013. 
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E.2 Co-Authored Peer-Reviewed Publications 

 J. D. Rader, B. H. Mills, D. L. Sadowski, M. Yoda, and S. I. Abdel-Khalik, 

"Experimental and Numerical Investigation of Thermal Performance of Gas-

cooled Jet-Impingment Finger-type Divertor Concept," Fusion Science and 

Technology, vol. 60, pp. 223-227, July 2011. 

 J. D. Rader, B. H. Mills, D. L. Sadowski, M. Yoda, and S. I. Abdel-Khalik, 

"Optimization of Pin-fin Arrays for Helium-cooled Finger-type Divertor," Fusion 

Science and Technology, vol. 64, pp. 315-319, August 2013. 

 J. D. Rader, B. H. Mills, D. L. Sadowski, M. Yoda, and S. I. Abdel-Khalik, 

"Verification of thermal performance predictions of prototypical multi-jet 

impingement helium-cooled divertor module," Fusion Science and Technology, 

vol. 64, pp. 282-287, August 2013. 
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