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Abstract 

Events that violate expectations are biologically significant and accordingly elicit 

various physiological responses. We investigated the functional relationship between 

three of these responses: the P300, the Novelty P3 and the pupil dilation response (PDR), 

with a particular focus on their co-variance with reaction time and measures of 

subsequent memory. In a modified Novelty P3 oddball paradigm, participants 

semantically categorized a sequence of stimuli including (1) words of a frequent 

category, (2) words of an infrequent category (14% of the trials) and (3) pictures of the 

frequent category (14% of the trials). The Novelty P3 oddball task was followed by a 

recall- and a recognition test. Larger amplitudes of the P300, identified by a spatial 

principal component analysis (PCA), were associated with enhanced subsequent recall as 

well as faster reaction times during the recognition test, suggesting a close relationship 

between the cognitive process indexed by the P300 and memory encoding. The PDR was 

larger for infrequents (which required a response switch) than both frequents and pictures 

(which did not require a switch). Furthermore, its latency was correlated with reaction 

time on the same trial and with reaction time on the immediately following trial. There 

was only weak evidence for a correlation with subsequent memory, suggesting that the 

cognitive process associated with the PDR might be a direct link in the stimulus-response 

stream. Larger Novelty P3 amplitudes were associated with both faster reaction times on 

the same trial and stronger memory traces, suggesting that its amplitude might index 

resource allocation. These findings suggest that each of the physiological responses 
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carries a distinct functional significance in detecting, processing, or responding to novel 

events, and we discuss the findings in the light of the prevalent theories of the functional 

significance of each response.  
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Introduction 

The nervous system of humans and other animals preferentially attends to, detects, 

and mnemonically encodes novel, deviant or surprising events (e.g., Ranganath & Rainer, 

2003). If an event is predictable from information available prior to the event’s 

occurrence, usually no adjustment of the behavioral program is required. However, if a 

highly unexpected event occurs, it is adaptive to quickly prepare for action and to encode 

this event into long-term memory so that future behavior can be adjusted accordingly. In 

line with the biological significance of unexpected events, various physiological reactions 

occur in the human body when novelty is encountered. The present study focuses on a 

subset of these physiological processes and examines their functional significance in the 

processing of novel events, specifically the extent to with they index short-term and long-

term behavioral responding to the novel event. 

Novel, non-noxious stimuli elicit a set of autonomic responses, which habituate when 

the same stimulus is repeatedly encountered: The “orienting reflex” (see, for example 

Barry, 2009; Kimmel, 1979; Sokolov, 1963), including a temporary dilation of the pupil 

(the “pupil dilation response”; PDR). Stimulus deviance also elicits a number of cortical 

responses, as for example measured by event-related potentials (ERPs). For example, the 

Mismatch Negativity, N2, Novelty P3, P3a, P300, N400, and slow waves, are all invoked 

in response to stimulus deviance in one way or another (Donchin, Spencer, & Dien, 1997; 

Fabiani, 2006). The Novelty P3 and the P300 are of interest for the present study because 

they are sensitive to similar stimulus- and task parameters as the autonomic orienting 
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reflex in general (Donchin et al., 1984), and the PDR in specific (Nieuwenhuis, De Geus, 

& Aston-Jones, 2011).  

Thus, the brain contains highly specialized areas that are involved in specific aspects 

of information processing, such as language production (Broca’s area) or emotional 

reactivity (e.g. amygdala). At the same time, brain areas do not work in isolation, but 

every complex cognitive process engages an entire neural network. Therefore, each 

physiological response that is measurable when novelty is encountered may reflect 

specialized, unique cognitive processes (such as immediate responding vs. learning), or 

alternatively, the responses as a whole may reflect a unitary, wholistic process invoked to 

process, and respond to, novelty (as appears to be suggested by early reports of the 

orienting reflex, e.g. Sokolov, 1963). The present paper hypothesizes that while Novelty 

P3, P300 and PDR all are evoked by novel events, each physiological process reflects a 

separate function that is either directly integrated into the stimulus-response stream, such 

as perceptual sensitization or response adjustments, or “strategic” functions invoked in 

parallel to the stimulus-response stream, such as episodic memory encoding. The idea 

that different responses elicited by novelty reflect different functions is in line with 

proposals that “physiological processes characterized as signs of orienting may actually 

have taken place in very different poststimulus phases and that these processes may have 

reflected very different aspects of stimuli and organismic functioning” (Näätänen, 1978, 

p. 63). 

There is some agreement in the literature that the collection of autonomic responses 

to novelty (e.g., Näätänen, 1978), including the PDR (Nieuwenhuis et al., 2011), reflect 

the sensory processing of, or facilitation of the immediate response to, novel events, 
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suggesting that these responses are directly integrated into the stimulus-response stream. 

In contrast, the most prominent theory of the P300, the context updating hypothesis 

(Donchin, 1981; Donchin & Coles, 1988), proposes that the P300 reflects processes that 

occur in parallel to the stimulus-response stream, such as strategic adjustments of future 

behavior, including episodic memory encoding.  In combination with ideas from the 

orienting reflex literature, the context updating hypothesis would imply that the P300 and 

the PDR index separate, unique cognitive functions. However, this idea has been recently 

challenged by Nieuwenhuis and colleagues (Nieuwenhuis, Aston-Jones, & Cohen, 2005; 

Nieuwenhuis et al., 2011), who have suggested that the P300 indexes the optimization of 

action in response to deviant events. This would suggest that P300 and PDR index 

analogous processes related to immediate responding. 

The two competing theories of P300 function are derived from different vantage 

points: While the context updating hypothesis is based on a study of the eliciting 

conditions and consequences of the P300, the latter theory has been derived from the 

putative physiological origin of the P300 in noradrenergic cortical input from the locus 

coeruleus (LC) of the midbrain (Nieuwenhuis, Aston-Jones, et al., 2005). Indeed, the 

quest of identifying the functional significance of brain activity is often approached with 

one of these two strategies: On the one hand, identifying eliciting conditions and 

consequences of the ERP component; and on the other hand identifying the anatomical 

origin(s) and then utilizing prior knowledge about the neural substrates to assess its 

function (Donchin et al., 1997). When conclusions derived from both vantage points 

converge, this can dramatically strengthen theoretical accounts; however, in the present 

case a conflict arises that raises the question whether or not the P300 (as well as the 
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Novelty P3) and the PDR reflect central- and peripheral nervous system analogues of the 

same function. 

To examine this issue, the present study simultaneously investigates the functional 

significance of three physiological responses elicited by deviancy: The P300, the Novelty 

P3, and the PDR. The hypothesis is that although the responses share antecedent 

conditions, they might index different psychological functions: The PDR may be related 

to the facilitation of the adjustment of sensory- or motor processes required for 

immediate responding, while the P300 may index learning. Therefore, PDR should be 

correlated with reaction time on the same or subsequent trials, while P300 should predict 

memory performance. 

The next chapter will provide a more detailed review of each physiological response 

of interest, including theories about its function as well as prior findings on its 

relationship to reaction time and episodic memory. 
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Background 

The P300 

The P300 was discovered in 1965 (Sutton, Braren, Zubin, & John, 1965) and has 

since become one of the most widely studied ERP components.  It manifests as a positive 

deflection with a parietal maximum and peaks between 300 and 700ms after stimulus 

onset. 

Basic Characteristics of the P300. The typical experiment known to elicit a P300 is 

the oddball paradigm, which consists of a sequence of stimuli that can be classified into 

one of two categories, of which one occurs rarely and one frequently. When the subject 

actively classifies the stimuli according to the two categories, the infrequent category 

elicits a P300.  Other experiments that elicit a P300 all share the characteristic that the 

eliciting stimulus is rare, unexpected, or very salient, as well as task-relevant (for a 

review, see Donchin, 1981). 

P300 amplitude is inversely correlated to the subjectively perceived stimulus 

probability within the sequence (Duncan-Johnson & Donchin, 1977; K. C. Squires, 

Wickens, Squires, & Donchin, 1976) and increases with the length of the inter-stimulus 

interval: for very long intervals even the frequent category can elicit a P300 (Polich, 

1990).  Furthermore, the P300 is larger when the inter-stimulus interval is fixed than 

when each event occurs after a random interval (Schwartze, Rothermich, Schmidt-

Kassow, & Kotz, 2011). When the oddball task is a secondary task, P300 amplitude is 

inversely correlated to primary task difficulty, suggesting that its amplitude can be used 
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as an indicator of the “attentional resources” allocated to the primary task (Wickens, 

Kramer, Vanasse, & Donchin, 1983). 

Different techniques have pointed to some likely candidate brain regions as 

generators of the P300, including the hippocampus (Axmacher et al., 2010; although the 

extent to which hippocampal activity can directly contribute to scalp-recorded EEG 

activity is controversial; e.g., Fernández et al., 1999) and the temporo-parietal junction 

(e.g., Knight, Scabini, Woods, & Clayworth, 1989). There is converging evidence from 

different techniques for each of these generators, but most likely a network of multiple 

brain regions including subcortical and cortical regions in the parietal, temporal, and 

occipital lobe, rather than an individual source, generates the scalp-recorded P300 (for 

reviews, seeKnight & Scabini, 1998; Linden, 2005). 

Interestingly, the P300 is sensitive to similar experimental manipulations as are 

norepinephric (NE) neurons located in the locus coeruleus (LC) of the brain stem. Since 

ERPs reflect post-synaptic activity (as opposed to action potentials), and since the LC 

neurons broadly project to cortical areas including those that have been implicated in 

P300 generation, the P300 may be the consequence of NE emission by the LC towards 

these brain areas (Nieuwenhuis, Aston-Jones, et al., 2005; Nieuwenhuis et al., 2011).  

The Context Updating Hypothesis of the P300. The context updating hypothesis 

(Donchin, 1981; Donchin & Coles, 1988) is the most influential theory on the functional 

significance of the P300 to date (Polich & Kok, 1995). The theory builds upon the model 

of information processing proposed by Miller, Galanter and Pribram (1960) in that it 

assumes that an individual maintains a mental schema of all presently goal relevant 

information.  If new information conflicts with expectations derived from this schema, an 
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“updating” process is elicited through which this new information is incorporated into the 

schema.  According to the context updating hypothesis, the P300 indexes the updating 

process and is thus proposed to reflect strategic processes affecting future behaviors, 

rather than an immediate behavioral reaction to the stimulus. In other words, the 

cognitive process associated with the P300 is not a direct link in the sequence between 

the perception of the stimulus and the behavioral response, but is part of a parallel 

processing stream that maintains and modifies the schema.  

The schema cannot be updated, nor can an accurate behavioral reaction be executed, 

before the stimulus has been evaluated and classified as deviant. Therefore, both P300 

latency and response time should both be longer when stimulus classification takes a 

longer time. However, the model predicts that the relationship between P300 latency and 

reaction time is not a necessary one, and that under some circumstances the latency of the 

P300 and reaction time are dissociable. At the same time, since context updating occurs 

in interaction with long-term memory, the theory predicts that P300 amplitude, indexing 

the strength of the updating process, will be correlated with the probability of later 

remembering the respective event (Donchin, 1981).   

The LC-NE Theory of the P300. According to Nieuwenhuis and colleagues (2005), 

lesion studies, pharmacological studies and the functional connectivity of LC neurons 

with cortical regions suggest that the P300 reflects the synchronized norepinephric (NE) 

input to multiple cortical regions from neurons of the locus coeruleus (LC). The context 

updating hypothesis does not assume any specific P300 generators, so the physiological 

basis of the P300 within the LC-NE system does not contradict the context updating 
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hypothesis per se. However, the conclusions about P300 function that have been drawn 

from this theory are in conflict with the context updating hypothesis. 

Thus, the response characteristics of LC neurons consist of a tonic and a phasic 

signal. The tonic signal indexes the degree to which the subject is engaged in goal-

directed vs. exploratory behavior (or, more generally, their state of arousal). The phasic 

signal is time-locked to task-relevant events, and is enhanced for infrequent events and 

novels in oddball paradigms (cf. Nieuwenhuis, Gilzenrat, Holmes, & Cohen, 2005). The 

theory proposes that the P300 emerges from this phasic signal. There is much evidence, 

as reviewed in more detail in the chapter on the pupil dilation response, for a relationship 

of LC activity to behavioral responding. Therefore, the phasic NE input to the cortex, and 

consequently the P300, may “facilitate responding” to motivationally relevant stimuli 

(Nieuwenhuis, Aston-Jones, et al., 2005). Apparently in conflict to this idea, P300 latency 

is often longer than the reaction time, suggesting that the P300 cannot be a direct link in 

the stimulus-response stream. However, the Nieuwenhuis and colleagues have argued 

that this inconsistency may be artificial because P300 latency is typically defined as the 

time point of its maximum, when it might be more appropriate to define P300 latency by 

its onset. 

There are some difficulties with Nieuwenhuis’ review of the previous P300 literature. 

For example, their claim that P300 is elicited only in situations where a response is 

required is not supported by prior research (Duncan-Johnson & Donchin, 1977). 

Furthermore, Nieuwenhuis et al. (2005) conceptualize the P300 and the Novelty P3 as 

“sub-components” of the P300 as if they were not functionally distinct components. As 

will be reviewed in the next section, this does not accurately reflect the literatures on 
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P300 and Novelty P3 (Dien, Spencer, & Donchin, 2003; Spencer, Dien, & Donchin, 

1999). Nevertheless, the functional similarities between LC activity and the P300 and 

their physiological connections are striking and taking these into consideration can 

augment theories of its functional significance.  

The LC-NE theory differs from the context updating hypothesis in a fundamental 

way: The LC-NE theory places the cognitive processes associated with the P300 directly 

within the stimulus-response stream, while the context updating theory does not. To 

accommodate findings that implicate a relationship of LC activity to memory formation, 

recently Nieuwenhuis (2011) revised his theory, attributing cognitive processes 

associated with both immediate action and learning to the P300. This revised theory is 

much broader than, and therefore still not identical to the context updating hypothesis.  

The context updating hypothesis and the LC-NE theory make different predictions 

about the relationship between P300, reaction time and memory. The next two sections 

review prior studies addressing these relationships. 

P300 and Reaction Time. Both P300 latency and reaction time are sensitive to the 

time it takes to evaluate the stimulus: Both are longer for more difficult categorization 

tasks (e.g., Kutas, McCarthy, & Donchin, 1977). However, if the cognitive process 

indexed by the P300 is related to response preparation or execution, P300 latency should 

be more strongly associated with the behavioral response following the stimulus than to 

the stimulus onset itself.  

In one of the first studies that investigated the relationship between P300 and reaction 

time, Kutas et al. (1977) applied a within-subject, trial-by-trial analysis of both measures. 

When participants were asked to respond as accurately as possible, P300 latency was 
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strongly correlated with reaction time. In contrast, when response speed was emphasized 

over accuracy, P300 latency and reaction time were uncorrelated. This was interpreted 

such that P300 latency depends on stimulus evaluation time, and when the behavioral 

response is also based on accurate stimulus evaluation, a correlation between the two 

measures is observed.  However, speeded behavioral responses may be executed before a 

full evaluation of the stimulus, but since P300 amplitude still depends on stimulus 

evaluation time, the two measures are decoupled.  

McCarthy and Donchin (1981) presented participants with stimuli that were (1) either 

embedded in a matrix of visual noise (difficult discrimination) or not embedded in noise 

(easy discrimination), and that (2) required a response that was congruent with the 

stimulus (e.g., a right hand response to the word “right”), or incongruent with the 

stimulus. Both reaction time and P300 latency increased with discrimination difficulty. 

However, while response incongruency led to longer response times, it left P300 latency 

unaffected. Magliero, Bashore, Coles and Donchin (1984) replicated this pattern and 

demonstrated a parametric relationship between P300 latency and discrimination 

difficulty degree of noise. Together with the study by Kutas et al., these findings suggest 

that P300 latency is more closely related to stimulus evaluation than the behavioral 

response. It is worth noting that in a similar paradigm, Smulders, Kenemans, Schmidt and 

Kok (1999) reported that stimulus-response incompatibility did increase P300 latency. 

However, in this study stimulus-response compatibility was manipulated between blocks 

and may therefore have been confounded with task-related factors. Furthermore, even in 

Smulders et al.’s findings, P300 latency varied more strongly with stimulus 

discrimination difficulty than with response incompatibility. 
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P300 latency and reaction time have also been dissociated in the Stroop task. For 

example, Ila and Polich (1999) asked participants to classify with a button press the font 

color of color words that were either congruent or incongruent with the font colors, or the 

font color of nonwords. Reaction times were shorter for congruent, and larger for 

incongruent, compared to neutral trials. However, P300 latency was unaffected by 

congruency. 

In sum, P300 latency and reaction time often co-vary in situations in which reaction 

time is mostly determined by stimulus evaluation processes (Friedman, 1984; Holm, 

Ranta-aho, Sallinen, Karjalainen, & Müller, 2006; Leuthold & Sommer, 1993). However, 

when additional complexities affect response initiation, or when responses are based on 

incomplete stimulus evaluation, P300 latency and reaction time are often uncorrelated. 

The decoupling of P300 from reaction time suggests that the cognitive process associated 

with the P300 is not located directly within the stimulus-response stream, as suggested by 

the context updating hypothesis. However, Nieuwenhuis et al. (2011) argue a P300 is not 

necessary to elicit a behavioral response; rather, the cortical NE release that leads to the 

P300 is neuromodulatory. Therefore, when a P300 is elicited and occurs before the 

response, the associated cognitive process facilitates responding and leads to better 

behavioral performance. They support this suggestion with data on the relationship 

between P300 amplitude and task performance. 

For example, P300 amplitude is positively correlated with the probability that 

participants detect the visual target that elicited the P300 (e.g., Rolke, Heil, Streb, & 

Hennighausen, 2001). P300 amplitude has also been reported to inversely correlate with 

reaction time on the same trial (Friedman, 1984). However, the positive relationship 
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between P300 amplitude and performance is not unequivocal: When a stimulus predicts 

the occurrence of a second stimulus at a certain probability, lower probabilities are 

associated with larger P300 amplitudes, but also with longer reaction times and lower 

accuracy (Duncan-Johnson & Donchin, 1982). In summary, the controversy of the 

relationship between P300 and reaction time (and task performance more generally) is, to 

date, not fully resolved. 

P300 and Memory Encoding. In the “Von Restorff paradigm”, named after its 

inventor (Von Restorff, 1933), a study list contains one item that is distinctive, for 

example due to its font size or color, while all other study items are identical in this 

feature.  This “isolate” is more likely to be freely recalled than the other items – the “Von 

Restorff effect”.  Due to their infrequent, task-relevant nature, it is not surprising that the 

isolates also elicit a P300. The P300 is not an all-or-nothing response, and varies from 

one trial to the next, and the context updating hypothesis predicts that this variance in 

P300 amplitude is correlated with the variance in recall (Donchin, 1981).    

In the first study that tested this hypothesis (Karis, Fabiani, & Donchin, 1984), study 

lists in the Von Restorff paradigm were followed by immediate free recall tests. Isolates 

in a deviant font size exhibited the typical recall advantage and elicited a P300, which 

was larger for subsequently recalled, compared to forgotten words.  However, this P300 

“subsequent memory effect” was only observed for participants who used rote rehearsal 

at encoding.  For participants who used elaborative strategies (as well as for non-

distinctive items), the frontal positive slow wave was correlated with recall (Karis et al., 

1984).  This pattern was replicated in an experiment in which participants were instructed 

to use specific encoding strategies (Fabiani, Karis, & Donchin, 1990). In a third study, 
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participants incidentally encoded names in an oddball paradigm (Fabiani, Karis, & 

Donchin, 1986), followed by a surprise recall test. Again, a P300 subsequent memory 

effect was observed, and since participants are unlikely to elaborate when encoding is 

incidental, this is in line with the idea that when elaborative strategies are not used, P300 

amplitude is correlated with recall.  

Finally, three studies manipulated the manner in which a word was isolated.  Under 

item-based encoding tasks, the P300 subsequent memory effect occurred for words in a 

larger font size as well as isolates of a distinct semantic category (Fabiani & Donchin, 

1995) and low frequency words embedded in a list of high frequency words (Kamp, 

Brumback, & Donchin, in press). However, for isolates with a frame drawn around them, 

the P300 was not correlated with recall, even under rote encoding strategies.  Instead, 

similarly to non-distinctive words, the frontal slow wave showed a subsequent memory 

effect (Otten & Donchin, 2000). Thus, the correlation between P300 amplitude and recall 

occurs only if the isolating feature is integral to the study item. 

Other lab groups have also used the subsequent memory paradigm on ERPs (for a 

review, see Paller & Wagner, 2002). Many of these studies did not identify the specific 

ERP components whose amplitudes were correlated with later memory, but rather termed 

any difference between the later remembered and later forgotten ERPs “difference due to 

memory” (Paller & Wagner, 2002). However, in line with the studies reviewed above, 

most subsequent memory studies have found more positive-going ERPs for later recalled, 

compared to not recalled words, particularly in parietal regions (e.g., Azizian & Polich, 

2007; Kim, Vallesi, Picton, & Tulving, 2009; Paller, Kutas, & Mayes, 1987; Voss & 

Paller, 2009; Wiswede, Rüsseler, & Münte, 2007).  
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Nieuwenhuis et al. (2005) propose that due to the correlational nature of these 

patterns, the P300 subsequent memory effect could be explained by the influence of third 

variables on both P300 and memory encoding, such as a “time-locked heightening in 

selective attention”. The present study will help answer this question, because concurrent 

measurement of multiple ERP components and the PDR will enable us to distinguish 

between a general heightening in attentional resources (as indicated by an increase in all 

physiological responses) and a more direct relationship between P300 and memory 

processes. 

The Novelty P3 

The second ERP component of relevance for the present study is the Novelty P3, an 

ERP component that is often categorized into the “P3 family” due to its temporal overlap 

with the P300 (Polich & Kok, 1995). However, the Novelty P3 is a distinct component 

that is spatially and functionally dissociable from the P300 (Spencer et al., 1999).  

Eliciting Conditions. The Novelty P3 is a positive-going ERP component elicited by 

task-irrelevant, novel (as well as typically perceptually salient) stimuli. Courchesne et al. 

(1975) first reported the elicitation of this component in a modified visual oddball task 

that, among frequent “standard” stimuli (the digit 2) and infrequent “target” stimuli (the 

digit 4) also included the infrequent presentation of novel task-irrelevant stimuli, i.e., line 

drawings of unfamiliar objects. The novels elicited a fronto-central positivity which is 

now known as the Novelty P3 (Courchesne, Hillyard, & Galambos, 1975). Subsequent 

studies revealed that the Novelty P3 is also elicited by auditory novels, such as 

environmental sounds embedded in an oddball sequence of two simple tones (Friedman, 

Simpson, & Hamberger, 1993). Novel stimuli also elicit a P300, but the Novelty P3 and 
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the P300 are separate components with distinct spatial distributions (Spencer et al., 

1999). 

In the original paradigm, the novels were task-irrelevant. However, there is some 

evidence that task-irrelevance is not necessary for the elicitation of a Novelty P3. For 

example, when the participant is instructed to memorize the infrequently presented novel 

sounds for a later test (Cycowicz & Friedman, 1999), or when a button press is required 

to the novels (e.g., Cycowicz & Friedman, 2004; Gaeta, Friedman, & Hunt, 2003), a 

Novelty P3 is still elicited. Therefore, it appears that perceptual deviance is more crucial 

than task-irrelevance to elicit a Novelty P3. 

In the same year in which the original Novelty P3 paper was published, another group 

reported a morphologically similar positivity, the P3a, elicited by infrequent (non-novel) 

events in oddball tasks in which the participant ignores the stimuli (N. K. Squires, 

Squires, & Hillyard, 1975). Simons, Graham, Miles and Chen (2001) showed that the two 

components are indistinguishable in their spatial and temporal distributions. In line with 

this idea, Spencer et al. (1999) demonstrated that in a Novelty P3 oddball paradigm, 

infrequent target stimuli also elicit a P3a/Novelty P3, but with a smaller amplitude than 

for the novels. Therefore, in the present paper the term “Novelty P3” will refer both to 

fronto-central positivities elicited by task-irrelevant novel stimuli and by infrequent, non-

novel stimuli.  

Functional Significance. In the original study by Courchesne et al. (1975), the 

authors suggested that the Novelty P3 reflects an “orienting response” to salient, 

unexpected, and task-irrelevant stimuli. This idea is still prevalent among researchers 

studying the Novelty P3 (for a review, see Friedman, Cycowicz, & Gaeta, 2001). Key 
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observations that support the similarity of the Novelty P3 to the “orienting reflex” as first 

described by Sokolov (based on prior work by Pavlov; e.g., Sokolov, 1963) are the 

habituation with repeated stimulus presentations and its sensitivity to stimulus saliency 

(Courchesne et al., 1975; Rushby & Barry, 2009). However, for the purpose of describing 

its functional significance, placing the Novelty P3 within the orienting reflex framework 

is not very useful. That is, the precise function of the orienting reflex is controversial, and 

different autonomic responses placed within the framework may serve different functions 

(see next chapter for details).  

Another hypothesis is that the Novelty P3 indexes response inhibition (e.g., 

Goldstein, Spencer, & Donchin, 2002). That is, typical Novelty P3 paradigms require a 

response to all stimuli but the novels, so that a possibly pre-programmed response must 

be inhibited.  Further evidence for this idea comes from the finding that a fronto-central, 

and therefore morphologically very similar, positivity is elicited by “No-Go” stimuli in a 

“Go/No-Go” paradigm (e.g., Pfefferbaum, Ford, Weller, & Kopell, 1985). If the two 

positivities were indeed instances of the same ERP component, this would be strong 

evidence for the response inhibition hypothesis. However, the response inhibition idea is 

inconsistent with the findings reviewed above that adding a response requirement to the 

novels does not abolish the elicitation of a Novelty P3. 

Since studies on the relationship between Novelty P3 and behavior within subjects are 

rare, in discussing its functional significance another morphologically similar and 

perhaps functionally analogous ERP component is worth taking into consideration. Thus, 

when a participant commits a behavioral error that they can detect independently, or 

when a participant receives informative feedback that an error has been committed, an 
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error-related negativity (ERN), along with an error positivity (Pe) is elicited (Gehring, 

Goss, Coles, Meyer, & Donchin, 1993; Miltner, Braun, & Coles, 1997). The scalp-

recorded Pe consists of a parietal P300 as well as a frontally distributed positivity with a 

Novelty P3-like morphology (Arbel & Donchin, 2009). The eliciting conditions can be 

considered similar to the Novelty P3 in that errors are infrequent, most likely salient, and 

thus “novel” events.  

The relationship between the Novelty P3 (and Pe) to behavioral responding and 

subsequent memory has not been extensively studied within participants. In the typical 

Novelty P3 oddball paradigm, no response is required to the novels, and memory is not 

typically tested. However, there is some indirect evidence for a role of the Novelty P3 in 

response adjustments after a novel, unexpected event occurs: In a reaction time 

experiment, the occurrence of an infrequent, task-irrelevant tone slowed down the 

response to the immediately following stimulus (Notebaert et al., 2009). Although no 

ERPs were recorded, it is likely that the task-irrelevant, infrequent tone elicited a Novelty 

P3, and it can be speculated that the Novelty P3 amplitude might correlate with the 

reaction time to the subsequent trial. 

Notebaert et al. (2009) also manipulated the probability of participants making 

erroneous responses. “Post-error slowing” – the extent to which the response to the trial 

after an erroneous response is slowed down (Rabbitt, 1969) – was only observed when 

errors were less likely than correct responses. When correct responses were less likely 

than errors, they reported slower reaction times following correct responses. It appears 

therefore that it is not the error per se, but rather the occurrence of an unexpected event 

that causes post-error slowing (Notebaert et al., 2009), indirectly supporting the idea that 
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Pe/Novelty P3 may index response adaptation due to the occurrence of a novel event. In 

line with this idea, the amplitude of the Pe has been reported to correlate with post-error 

slowing (Hajcak, McDonald, & Simons, 2003), although this pattern is not consistent 

within the literature (for a review see Overbeek, Nieuwenhuis, & Ridderinkhof, 2005).  

Few studies have investigated the relationship between the Novelty P3 and memory. 

Fabiani and Friedman (1995) found that older adults exhibited both smaller Novelty P3 

(and P300) amplitudes and reduced recognition memory accuracy for the novels. 

However, a subsequent memory analysis within participants was not conducted. In a 

visual Novelty P3 oddball paradigm, Cycowitz and Friedman (1999) found that neither 

under incidental, nor under intentional encoding instructions a correlation between 

Novelty P3 and the probability of successful subsequent recognition of the novels was 

observed. The P300, by contrast, showed a subsequent memory effect for the first novel 

item when it was intentionally encoded.  

While Cycowicz and Friedman’s (1999) study is the only one to investigate 

subsequent memory effects in a typical Novelty P3 oddball paradigm, other studies with 

less typical paradigms have reported subsequent memory effects within the Novelty P3. 

Using the Von Restorff paradigm, Kamp, Brumback and Donchin (in press) found that 

isolates that were presented in a larger font size than the rest of the list elicited a fronto-

central positivity with the morphology of the Novelty P3, whose amplitude was 

correlated with subsequent recall. In line with this finding, Butterfield and Mangels 

(2003) found that a frontal positivity elicited by negative feedback about the participant’s 

answer to a trivia question (which was followed by the correct answer) was correlated 

with whether or not they remembered the correct answer on a later surprise test.  
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Overall, the current theories on Novelty P3 function and the previously published 

data strongly diverge in regards to whether the Novelty P3 is functionally a direct link in 

the stimulus-response stream. Therefore, more research is needed to explore the 

relationship between Novelty P3, immediate behavioral responding, and subsequent 

memory. 

The Pupil Dilation Response (PDR) 

The variation of pupil size with cognitive processes has been studied for decades. 

Kahneman (1973) proposed pupil size as an index for task-related arousal, or “effort”.  In 

his (and others’) studies pupil size was typically examined by comparing differences 

between tasks or by investigating tonic changes in pupil size across an entire task block 

rather than individual trials (e.g., Peavler, 1974). In contrast, the main focus of the 

present study is a phasic, temporary dilation of the pupil that peaks between 1s and 2s 

after stimulus onset (Friedman, Hakerem, Sutton, & Fleiss, 1973), the pupil dilation 

response (PDR). 

The PDR as Part of the Orienting Reflex. The cognitive PDR elicited by non-

noxious, novel stimuli is traditionally grouped together with a number of other 

physiological responses known under the umbrella term orienting reflex (Sokolov, 1963). 

While the other physiological responses are not directly investigated in the present study, 

it is useful to briefly discuss the phenomenon of the orienting reflex.  

The orienting reflex was first reported by the Russian scientist Sokolov, who 

suggested that a collection of autonomic nervous system reactions to non-noxious 

stimulation reflect a “what is it” reaction in the organism (Kimmel, 1979; Sokolov, 

1963). The most commonly studied component of the orienting reflex is the skin 
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conductance response (SCR): When a stimulus is encountered, skin conductance quickly 

increases and then returns to baseline. Upon subsequent presentations of the same 

stimulus, SCR amplitude habituates. When a dissimilar stimulus is encountered, a 

stronger SCR is elicited again (“response recovery”). Finally, a subsequent presentation 

of the “frequent” stimulus presented before will again elicit a strong SCR 

(“dishabituation”) (e.g., Kimmel, 1979; Waters & Wright, 1979). The SCR is also 

sensitive to stimulus significance and intensity (Waters & Wright, 1979).  

Other physiological responses classified under the orienting reflex concept include a 

deceleration in heart rate, an increase in blood pressure, a reduction in the power of the 

alpha frequency of the scalp-recorded EEG (“alpha blocking”), and the PDR (Barry, 

2009). There has been a long debate of whether the P300 reflects a central nervous 

system analogue of the psychological process manifested in the orienting reflex (Donchin 

et al., 1984). The issue is complicated by the fact that in this literature the P300 and the 

Novelty P3 are rarely treated as distinct ERP components, conceptualizing the 

components together as the “P3 family”, or as “subcomponents” of the LPC (for an 

example, see Rushby & Barry, 2007). 

The original conceptualization of the orienting reflex as a collection of autonomic 

responses that all serve a common function is complicated by the heterogeneity of the 

sensitivity of each measure to experimental manipulation. In fact, there does not seem to 

be a single pair of autonomic responses that exhibits equivalent eliciting conditions. For 

example, only the SCR is sensitive to stimulus intensity (Barry, 2009). As another 

example, heart rate deceleration shows habituation, but does not show response recovery 

to stimulus change. However, although different autonomic components of the orienting 
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reflex might serve different functions, there appears to be some agreement that the 

orienting reflex reflects aspects of stimulus processing or response preparation that are 

integrated into the stimulus-response stream (e.g., Näätänen, 1978). 

Eliciting Conditions of the PDR and their Similarities to the P300. The first study 

on the PDR was published by the same laboratory that originally discovered the P300. 

Thus, similarly to Sutton et al.’s (1965) study of the P300, Friedman and colleagues 

(1973) presented subjects with an auditory “click” that was followed by a second click at 

a certain probability. Before each trial, participants “guessed” whether a second click 

would occur. Both the P300 and the PDR elicited by the second click were inversely 

correlated with the probability of a second click to occur.  

The PDR is also elicited by infrequent, task-relevant events in oddball paradigms 

(Gilzenrat, Nieuwenhuis, Jepma, & Cohen, 2010; Murphy, Robertson, Balsters, & 

O'Connell, 2011) and is equally enhanced when an outcome is better- or worse than 

expected (Preuschoff, 't Hart, & Einhauser, 2011) suggesting that the PDR, like the P300, 

is elicited by events that violate expectancies.  

Further parallels between the two physiological responses are found in recognition 

memory tests, where previously studied (“old”) items elicit both larger parietal ERPs (for 

a review, see Rugg & Curran, 2007) – in our view an instance of the P300 – and larger 

PDRs (Goldinger & Papesh, 2012; Heaver & Hutton, 2011; Otero, Weekes, & Hutton, 

2011) than unstudied foils: The “P300 old/new effect” and the “pupil old/new effect” 

respectively. Finally, erroneous responses in a reaction time tasks elicit a P300 (Arbel & 

Donchin, 2009; Wessel, Danielmeier, & Ullsperger, 2011), as well as a PDR (Wessel et 



22 
 
al., 2011) and one recent study reported that both physiological responses are larger for 

perceived than unperceived errors (Wessel et al., 2011).  

An additional, more indirect connection comes from each response’s correlation to 

another ERP component that indexes violations of semantic expectations: The N400 

(Kutas & Hillyard, 1980). The absolute amplitude of the N400 has been shown to 

negatively correlate with both the PDR (Kuipers & Thierry, 2011) and the P300 (Arbel, 

Spencer, & Donchin, 2010). In summary, the PDR and the P300 for a larger part share 

their antecedent conditions, which has led to the idea that both physiological responses 

index the same psychological process (Nieuwenhuis et al., 2011). If this was the case 

their amplitudes should be correlated with each other. However, a recent study, applying 

a within-subject analysis, found no correlation between P300 and PDR (Murphy et al., 

2011). 

There are also important dissociations between the eliciting conditions of P300 and 

PDR. For example, in Stroop tasks, a larger PDR is elicited by incongruous, compared to 

congruous or neutral word-color combinations (Laeng, Ørbo, Holmlund, & Miozzo, 

2011). This same effect is, however, not obtained for the P300 (Rosenfeld & Skogsberg, 

2006). The prominent theory of Stroop interference attributes the increased reaction time 

to incongruous stimuli to response interference rather than stimulus processing (e.g., Ila 

& Polich, 1999), suggesting that the PDR may be more closely related to response-related 

processes elicited by unexpected stimuli than the P300.  

The LC-NE Theory of the PDR and the P300. Although pupil diameter is not 

directly controlled by locus coeruleus (LC) activity, both receive afferent neural 

connections from the medulla. Furthermore, pupil diameter is correlated with single-unit 
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activity in the monkey LC, suggesting a close relationship between pupil dynamics and 

neural activity in the LC (cf. Nieuwenhuis, Aston-Jones, et al., 2005; Nieuwenhuis et al., 

2011). 

The well-supported “adaptive gain theory” (for a review, see Aston-Jones & Cohen, 

2005) suggests that the LC controls behavior through an adjustment of its tonic and 

phasic activity levels. In its tonic mode, the LC exhibits high tonic (“baseline”) activity 

and only small phasic responses to task-relevant stimuli. This mode corresponds to a state 

of “exploration”, in which the individual seeks out new sources of potential reward 

within the environment rather than showing a narrow focus on attention on the task at 

hand. In contrast, the phasic mode, with low tonic, but strong phasic activity to task-

relevant events, corresponds to a state of “exploitation”, in which the individual exhibits 

strong task focus, thus pursuing a known source of reward.  

There is evidence that pupil size patterns reflect the tonic vs. the phasic LC mode: In 

time periods where baseline pupil diameter is relatively small, but phasic PDRs are large 

(phasic mode), the participant is strongly engaged in the task at hand and shows good 

performance. In contrast, when baseline diameter is relatively large, but the PDR is rather 

small (tonic mode), participants are disengaged from the task at hand and show rather 

poor performance (Gilzenrat et al., 2010; Jepma et al., 2011). Through elegant 

supplemental analyses, Gilzenrat and colleagues (2010) ruled out the possibility that this 

difference in the phasic PDR is due to a ceiling effect in pupil size due to the increased 

tonic activity. Combined with evidence for a role of the LC in adapting behavioral focus 

(see Aston-Jones & Cohen, 2005), this suggests that the phasic PDR may be related to 

aspects of immediate responding.  
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The same group of authors (Nieuwenhuis et al., 2011) have proposed that, like the 

PDR, the P300 reflects phasic activity in the LC, and both are therefore closely related to 

behavioral performance on the same trial. In support of this idea, Murphy et al. (2011) 

found that time periods with smaller baseline pupil diameters were associated with both 

larger PDRs and larger P300s. Importantly, however, on an individual trial basis, there 

was no correlation between the amplitudes of the PDR and the P300, casting some doubt 

on the idea that PDR and P300 reflect the same psychological function. 

The PDR and Reaction Time. According to the same logic outlined for the P300, if 

the phasic PDR indexes aspects of behavioral responding, its latency should be correlated 

more closely with reaction time than stimulus onset. Indeed, one prior study found that, 

across participants, PDR peak latency and reaction time were positively correlated 

(Nuthmann & Van Der Meer, 2005). However, stronger evidence for an association 

would be obtained in a within subject, individual-trial analysis, and thus far no studies 

have investigated this. 

Although there are not many prior studies on the correlation between PDR latency 

and reaction time, there are several studies that investigated PDR amplitude and reaction 

time. For example, the PDR is enhanced for incongruent trials in the Stroop task, a trial 

type that also leads to increases in reaction time (e.g., Laeng et al., 2011; Siegle, 

Steinhauer & Thase, 2004). The source of the Stroop interference is often attributed to a 

conflict in response preparation (e.g., Ila & Polich, 1999), as opposed to stimulus 

processing, providing some indirect support for the idea that the PDR indexes response-

related processes. 
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Stronger evidence for an association between PDR amplitude and reaction time 

comes from Gilzenrat et al. (2005, exp. 1), who found that in an oddball task, the phasic 

PDR was larger in trial types in which reaction times were short and response accuracy 

was high (note, however, that the authors did not study this relationship directly, but by 

relating both enhanced performance and larger PDR to smaller baseline pupil diameters). 

In a similar experiment, Murphy et al. (2011) found that the amplitude of the PDR was 

larger in situations in which participants performed relatively poorly. However, large 

PDRs were followed by an improvement in performance, indicating that behavioral 

adjustments in response to novel events are reflected in the PDR.  

In summary, there is some evidence for a relationship between the PDR and 

behavioral performance in the present- or immediately following trials. This idea is 

consistent with a prevalent theory of PDR function, the adaptive gain theory. 

Furthermore, even Kahneman’s original idea attributing pupil dilation to mental “effort” 

is consistent with the association of pupil dilation with immediate responding. 

The PDR and Memory Encoding. A classic discovery relating pupil size to working 

memory load comes from the digit-span task (Kahneman & Beatty, 1966). Thus, the 

pupil continuously dilates while participants encounter a number of successively 

presented digits (“loading” phase), which are to be retained for subsequent immediate 

serial recall. As the participant recalls the stimuli (“unloading” phase), the pupil diameter 

continuously decreases. This phenomenon is traditionally interpreted in terms of mental 

“effort” – the more numbers are to be retained in working memory, the higher is the 

participant’s effort to retain these stimuli, and hence the pupil diameter constantly 

increases until the working memory capacity is reached. Then, as the numbers are being 
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recalled, the working memory load and thus effort decreases, leading to the decrease in 

pupil size (for a review, see Kahneman, 1973). 

The relationship between PDR and episodic memory has been most frequently 

studied by recording the PDR during a recognition test. These experiments have 

consistently reported a “pupil old/new effect” – larger PDRs for previously studied 

stimuli compared to non-studied foils (e.g., Otero et al., 2011).  

There are few prior studies on the relationship between the PDR and episodic 

memory using the subsequent memory paradigm, and the results are inconsistent (for a 

review, see Goldinger & Papesh, 2012). Papesh and Goldinger (2011) reported that 

auditory study words that were subsequently successfully recognized with high 

confidence had elicited larger PDRs at study than words recognized with low confidence, 

or forgotten words. In contrast, Kafkas and Montaldi (2011) reported that incidentally 

encoded pictures that were later judged as more familiar elicited smaller PDRs at study 

than those that were judged as less familiar. Similarly, Nabler and colleagues (2013) 

found that larger constrictions to the onset of pictures predicted subsequent recognition. 

It is important to note, however, that since photographs show different luminance 

characteristics than words, this constriction effect might be specific to pictorial stimuli. 

Overall, more research is necessary to investigate subsequent memory effects in the PDR. 

In summary, several prior studies have linked pupillary responses to behavioral 

performance on the same- or the following trials. These findings are in line with the idea 

that the PDR might be directly integrated into the stimulus-response stream. However, 

prior reports on subsequent memory effects are rare and inconsistent, so the role of the 

PDR in memory encoding is to date unclear. 
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The Present Study 

A review of the literature suggests that there is much overlap in the eliciting 

conditions of the P300, Novelty P3 and PDR. However, although it appears that P300 

may be related more closely to memory encoding than behavioral responding, and that 

the reverse is true for the PDR, the extent to which each response indexes immediate 

responding and/or memory encoding remains controversial. The goal of the present study 

is to investigate this issue using a modified Novelty P3 oddball paradigm. We conducted 

a thorough study of the correlation of each response with behavioral measures, and an 

additional regression analysis on individual trials aimed to determine the extent to which 

the physiological variables remain predictive of the behavioral measures when variance 

of other physiological responses has been accounted for. Furthermore, by recording 

multiple physiological indices of novelty, more general effects of “attention” as a third 

variable influencing both physiological responses as well as memory encoding can be 

ruled out (as these would be expected to affect all responses).  

Our design was similar to the typical Novelty P3 oddball paradigm, with the major 

modification that the pictures inserted into the sequence (i.e., the “novels”) were 

classifiable along the same dimension as the other stimuli. This design was chosen 

because it allowed us to study the relationship of the elicited physiological responses to 

immediate responding. Each Novelty oddball task was followed by recall- and 

recognition tests. We thoroughly studied the behavioral data obtained from each phase of 

the experiment, especially the extent to which behavior varied between stimulus types, in 

order to aid an interpretation of the variance of each physiological response with stimulus 

type. We studied the relationship between each physiological response with (1) reaction 
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time on the same trial, (2) subsequent recall, (3) subsequent recognition speed and (4) 

reaction time on the next trial. To do so, we performed both median split analyses on 

reaction times and an analysis of individual trials. Finally, a regression analysis attempted 

to determine the correlation with each measure and performance when the other measures 

had been accounted for. 

Hypotheses. While we also thoroughly studied patterns in the behavioral data in our 

paradigm, our main hypotheses addressed the variance of the physiological responses 

with experimental manipulations and behavior. The hypotheses concerning the P300 and 

the PDR were directed, while the Novelty P3 hypotheses were more exploratory due to a 

scarcity of relevant prior findings. 

Based on a wealth of prior data, we hypothesized that a P300 and a PDR will be 

elicited by the infrequent task-relevant category. Furthermore, we expected that 

infrequent presentations of pictures (“novels”) among the verbal stimuli would elicit a 

Novelty P3, a P300, and a PDR.  

Secondly, we expected that the P300 would exhibit a subsequent memory effect, with 

larger amplitudes for later recalled, compared to not recalled, infrequent stimuli. The 

hypothesis about the correlation between P300 amplitude and subsequent recognition 

speed was more exploratory – prior studies have not found a P300 subsequent memory 

experiment when recognition memory was tested (Fabiani et al., 1990). However, since 

we focused on reaction time rather than accuracy during recognition, we expected that a 

P300 subsequent memory effect might be observed. 

Since we hypothesized that the PDR indexes processes related to immediate 

responding, we predicted that its amplitude and latency would correlate with reaction 
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time on the same trial. Furthermore, based on the literature reviewed above, we also 

predicted that there would be a correlation between PDR measures and reaction time to 

the immediately following trial. 

Finally, we hypothesized that while the P300, Novelty P3 and PDR are elicited by the 

same stimuli, they represent separate psychological processes, and therefore the measures 

would not strongly correlate with each other on an individual trial basis. We also 

expected that all physiological indices would be correlated with both reaction time and 

memory, but a regression analysis attempted to reveal whether each physiological 

response predicts the respective outcome (reaction time or memory) when the other 

physiological responses have been accounted for. 
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Methods 

All procedures were in accordance with the Declaration of Helsinki and approved in 

advance by the Institutional Review Board of the University of South Florida. 

Participants 

In exchange for partial course credit, twenty-nine healthy undergraduate college 

students from the University of South Florida Psychology Department’s participant pool 

took part in this experiment, which was part of a larger, two-session study1. One 

participant was excluded because their memory performance (recall and recognition) 

deviated from the sample by more than 2 standard deviations. Furthermore, 3 participants 

were excluded due to technical difficulties during the participant run. The final sample 

included 25 participants, aged 18-49 years (M=23.44). Six participants were male and 4 

were left-handed. All participants were native speakers of English with normal or 

corrected-to-normal vision.  

Stimuli 

The stimuli presented in the encoding phase of each experimental block were 

classifiable according to one of three rules: (1) edible vs. inedible, (2) living vs. non-

living and (3) smaller vs. larger than a shoebox. Lists of nouns for each of the 6 

categories were created by drawing words from Francis and Kucera’s (1982) database. In 

                                                
1 The other session was scheduled one week apart and involved an experiment studying 
ERPs and pupil responses elicited during motor-preparation. The main purpose of using 
the same participants in two experiments was to reduce the amount of preparation time 
required for the calibration of the eye tracker.	
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an initial selection step, six college students were asked to apply the classification rules 

(e.g., edible vs. inedible) to the respective set of words. Words for which these 

participants indicated that they couldn’t easily be classified or that their category 

membership was ambiguous were excluded.  

We next we selected line drawings of a subset of the words. Thus, for as many words 

as possible, we obtained Clip Art pictures that depicted items referred to by the words 

and converted each image to black color. We pre-selected about 40 images of each 

category that, according to our judgment, depicted most clearly the respective noun. 

These pre-selected pictures were then shown in random order to a sample of 20 

participants (none of which later participated in the main experiment) in a paper-based 

questionnaire.2 For each image the participants were asked to (1) name the object 

depicted and (2) rate the difficulty of naming the image on a scale of 1 (“not difficult”) to 

7 (“very difficult”). We then selected the 20 images of each category for which the 

provided names showed the largest overlap between participants and that were also rated 

as easy to name. Note that very similar labels like “bread” vs. “loaf of bread” or “glasses” 

vs. “eye glasses” were counted as the same label. For the final set of the 20 pictures of 

each category, at least 18 of the 20 participants had provided the same label, and the 

average naming difficulty rating (on a scale of 1 to 7) was less than 1.8 (M=1.17). The 

words corresponding to the selected images in each category were then removed from the 

word lists.    

From the remaining words in each category, 136 nouns including between 3 and 9 

letters were selected. Care was taken to match word frequency (lemma occurrences per 

                                                
2 The participants in this pilot procedure were between 16 and 60 years old and all 
reported English to be their first language. 11 were female and 9 were male. 
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million from Francis and Kucera, 1982) and length (number of letters) of the words in the 

edible (frequency: 1-78, M=11.49; length: M=5.46) to the inedible (frequency: 1-48, 

M=12.35; length: M=5.49) category, the living (frequency: 1-100, M=22.45; length: 

M=5.6) to the non-living (frequency: 1-77, M=20.46; length: M=5.62) category, and the 

smaller (frequency: 1-99, M=16.36; length: M=5.59) to the larger than a shoebox 

(frequency: 1-94, M=16.98; length: M=5.68) category. 

The final lists of stimuli contained 136 nouns and 20 images for each of the six 

categories. The participants were highly accurate in categorizing the stimuli (M=.94, see 

behavioral results for details), suggesting that the selected stimuli were appropriate for 

the present task and sample. 

All stimuli were presented in black font on a light grey background (RGB values 125, 

125, 125). The words were displayed in font size 40 in Arial font, therefore spanning 

between 2.8 and 8.6 degrees of the visual angle. The largest dimension (either width or 

height) of the pictures was 95mm, and therefore in their largest dimension pictures 

spanned 8.6 degrees of the visual angle. 

Task and Procedure 

Every experimental session took place at 9am to avoid arousal changes due to time of 

the day as a nuisance variable. All participants first gave informed consent, after which 

the electrode net was applied. The participant then took a seat at a distance of about 60cm 

in front of a computer screen, after which the experimenter calibrated the eye tracker. The 

preparation time for the EEG- recording and eye tracking was up to 30min.  

The experiment contained a practice block and six experimental blocks, each 

consisting of an encoding phase, immediate free recall, a distraction task and a 
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recognition phase. Figure 1 illustrates the structure of an experimental block. After the 

final block, participants were debriefed and given information about the purpose of the 

experiment. The duration of the experiment did not exceed 2 ½ hours. 

Encoding. At encoding, participants completed an oddball task that involved one of 

three types of semantic judgments, each of which was (along with the corresponding 

stimulus set) randomly assigned to two successive experimental blocks. That is, blocks 1 

and 2 shared the same task, as did blocks 3 and 4, as well as blocks 5 and 6. Therefore, 

we will refer to blocks 1, 3, and 5 as “sub-blocks 1” and to blocks 2, 4 and 6 as “sub-

blocks 2”. The three semantic judgment tasks were: 

(1) Living vs. nonliving (e.g., lion vs. pencil) 

(2) Smaller vs. larger than a shoebox (e.g., ant vs. ship) 

(3) Edible vs. inedible (e.g., pizza vs. table) 

The order of the tasks was randomized. Participants pressed one of two buttons with 

their left or right hand to classify each stimulus. Response hands were assigned randomly 

for each block, and the assignment was displayed on the bottom of the screen throughout 

the task (figure 1). While participants were informed that memory tests would follow, 

they were instructed to focus their full attention on the semantic judgment task and to 

respond as quickly and accurately as possible. Since the stimuli were presented in a 

relatively quick sequence and each stimulus required a response, we assumed that 

participants were not using elaborative memorization strategies in parallel to performing 

the encoding task.  
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1. Encoding (duration: 2 min 48s)  

 
 
 

One of three semantic judgment 
tasks: 

 
1. Edible vs. inedible 

2. Living vs. non-living 
3. Smaller vs. larger than a 

shoebox 
 
 

2. Recall (duration: 3 min) 
  

3. Distraction (duration: about 3 min 30s)  

 
 
 

 

4. Recognition  

 
 
 

Presented are: 
 

- all “old” infrequents and pictures 
- 10 “old” frequents 

- an equal number of “new” 
infrequents, pictures and frequents 

 

5. Performance Feedback  
 

Figure 1. Structure of one experimental block. Shown is a second sub-block, which 
included pictures in the encoding sequence. See text for details. 
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Each encoding phase contained a sequence of 73 stimuli, which were presented for a 

duration of 300 ms each, followed by a 2000 ms-long fixation cross. In blocks 1, 3 and 5 

(henceforth referred to as “sub-blocks 1”), 63 of these stimuli were of the frequent-, and 

10 were of the infrequent category; for example, 63 words (86%) may have been “edible” 

while 10 words (14%) were “inedible”. Blocks 2, 4, and 6 (henceforth referred to as “sub-

blocks 2”) contained 53 words of the frequent category (72%), 10 words of the infrequent 

category (14%) and 10 line drawings of items in the frequent category (14%). Which 

category was infrequent within each block was randomized across participants. Pictures 

were to be classified according to the same task as the words (and hence, the pictures 

always required the frequent response – this was, however, not explicitly stated to the 

participants). The first three and the last three stimuli were always words of the frequent 

category, and these words were not further analyzed or presented in the recognition 

phase. Each stimulus was drawn at random from the respective lists, with the restriction 

that no two infrequents and no two pictures could be presented successively. Stimuli not 

used in the encoding phase served as foils in the recognition task (see below).  

The purpose of including the line drawings in every other task block was to elicit a 

Novelty P3. It is worth noting, however, that these “novels” are very different from the 

ones used by Courchesne et al. (1975) in that they were images of familiar items, and in 

that they required a response. The rationale for using classifiable stimuli was that we 

intended to determine the relationship between each physiological response and reaction 

time on the same trial. It is worth noting that in prior studies, pictures of familiar objects 

(Cycowicz & Friedman, 2007) and novels that were task-relevant (Cycowicz & 
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Friedman, 1999, 2004) have elicited a Novelty P3. Combined with pilot data for the 

present design, this suggested that our paradigm was suitable to elicit a Novelty P3. 

Recall. Immediately after each encoding phase (i.e., each set of 73 stimuli), 

participants were asked to write down, in any order, every word or picture label they 

remembered from the preceding task. The amount of time allowed for the recall phase 

was 3 minutes. At the end of the recall phase, an experimenter entered the room to take 

away the recall sheet. 

Distraction Phase. The recall phase was followed by a distraction task lasting about 

3.5 minutes. The distraction phase consisted of a simple oddball task in which 

participants had to press one of two buttons according to whether each of a sequence of 

140 stimuli was an “X” or an “O”. Each stimulus was presented for 100ms, followed by a 

1400ms long fixation cross. The probability of the infrequent stimulus on any given trial 

was .2, and the assignment of X or O as the infrequent was randomized. Data from the 

distraction phase are not reported in the present paper. 

Recognition. Immediately after the distraction task the recognition phase began. In 

each trial, participants judged their recognition memory for the respective stimulus, by 

pressing one of four buttons, on a scale of 1 (“definitely old”) to 2 (“probably old”) to 3 

(“probably new”) to 4 (“definitely new”). The response assignment was displayed at the 

bottom of the screen the entire time. All infrequents (n=10) and all pictures (n=10; only 

in blocks 2, 4, and 6), as well as a random sample of 10 frequents from the encoding 

phase were tested, along with an equal number of unstudied stimuli drawn from the same 

pool. Presentation order was random. The stimulus stayed on the screen until the 
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response was given and between two recognition trials a fixation cross was presented for 

1 sec (figure 1). 

Performance Feedback. After the conclusion of each block participants were given 

feedback about their performance. That is, their classification accuracy and average 

response time at encoding, as well as their recognition rate (i.e., the proportion of correct 

responses at test; this evaluation ignored the confidence judgment), was displayed on the 

screen. After receiving this feedback, participants were allowed to take a break for as 

long as they wished. 

Practice. Before the first experimental block participants completed a practice, which 

was shorter than the experimental blocks but followed the same structure. In the practice 

encoding phase, participants judged 10 names according to whether they were male or 

female names, the recall phase lasted only 45 seconds, the distraction task included only 

10 X/O oddball trials, and the recognition phase included a random sequence of only 5 

“old” and 5 “new” names. The instructions were the same as for the remainder of the 

experiment, and the purpose of the practice was to insure that participants were familiar 

with the task structure and understood all instructions.  

EEG Recording and ERP Analysis 

The EEG was recorded with a 128 electrode EGI system, with the central electrode 

(Cz) as the on-line reference site, and digitized at a sampling rate of 250 Hz. Using 

Netstation software, we off-line band-pass filtered the EEG with cutoff frequencies of 0.3 

and 20 Hz, and replaced bad channels by a mathematical interpolation procedure. Then, 

the EEG was sliced into segments of 300 ms before- to 1400 ms after stimulus onset. The 

extracted stimulus categories included frequents presented in the first sub-block, 
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frequents in the second sub-block, infrequents in the first sub-block, infrequents in the 

second sub-block and pictures. Note that in order to avoid as best as possible influences 

of sequential effects on the physiological measures (K. C. Squires et al., 1976), frequent 

stimuli were only included if they were preceded by frequents. Eye blinks were removed 

by an independent component analysis (ICA) technique provided by Joe Dien’s toolbox 

(Dien, 2010a) in Matlab. The eye blink-corrected trials were then re-referenced to linked 

mastoids and automatically and visually screened for artifacts. Any trials including 

artifacts were excluded from further analysis. Finally, subject ERPs were calculated for 

each stimulus category. 

The subject ERP averages for all stimulus types were submitted to a spatial PCA 

(Spencer et al., 1999) to identify ERP components and to obtain “factor scores” as 

amplitude measures. PCA factors that exhibited the morphologies typical for the Novelty 

P3 or the P300 were selected for further analysis. Often, spatial PCA is followed by a 

temporal PCA step to extract temporal patterns in the data. However, this method 

provides one temporal factor with a fixed latency to represent each ERP component of 

interest and is therefore inappropriate to measure latency differences within an individual 

component (e.g., to compare latencies between trial types or to quantify latency for 

individual trials). Rather than using temporal PCA, we therefore quantified ERP 

component amplitude as the maximum factor score in the baseline corrected “virtual 

ERPs” (spatial factor scores over time, Spencer et al., 1999) within a specified time 

window, as reported in the results section. Component latency was defined as the time 

point (in ms) of the maximum factor score. Such measures have previously been used 

successfully (Brumback, Arbel, Donchin, & Goldman, 2012). 
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Quantification of ERP components in individual trials was equivalent to 

quantification for the averages: The EEG was “filtered” through the respective spatial 

factor coefficients to obtain “virtual ERPs”, and then amplitude and latency were 

extracted by using the peak picking procedure on the individual trial’s virtual ERP. 

Pupil Size Recording and PDR Analysis 

Pupil diameter was recorded from both eyes at a sampling rate of 60 Hz, using 

SmartEye Pro 5.8 software and two cameras installed below the participant screen. For 

all off-line analysis, we used self-written Matlab code. The pupil diameter recording was 

first sliced into segments from 1000 ms before- to 3000 ms after stimulus onset, using the 

same trial categories as for the ERP analysis (although we immediately collapsed across 

sub-blocks for the pupil diameter analysis). Data points for which the pupil diameter 

measurement was below 2mm or above 10mm, or for which the pupil diameter deviated 

from the average of the previous 3 data points by more than 0.5mm were marked as bad 

because they were physiologically implausible. Note that this procedure also marks eye 

blinks as bad data points. Bad data points were then replaced by a linear interpolation 

procedure using the values of the two “good” data points that immediately surrounded 

bad data points. Trials were excluded from further analysis if more than 25% of the data 

points, or 15 sequential data points were marked as bad, because in these cases the 

interpolation procedure was not expected to deliver reliable results. 

Next, a single pupil diameter recording was obtained for each time point by averaging 

across the measurements from both eyes. A 3-point moving average filter was then 

applied to the data. Subject averages were computed for each trial type, including 500ms 
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before to 2000 after stimulus onset. Finally, each subject average was baseline corrected 

using the 500ms before stimulus onset. 

The pupil dilation response (PDR) analysis – both for the averages and for the single 

trials – involved extracting the maximum change in diameter, compared to the pre-

stimulus baseline, within a time window of 1000 to 1500ms after stimulus onset. Latency 

was defined as the time point (in ms) of the maximum. In addition, we analyzed the mean 

amplitude in the time window where pupil size returned to baseline (1500-2000ms after 

stimulus onset), as well as the absolute baseline pupil diameter. 
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Results 

We begin by reporting the behavioral data, which will aid in a characterization of the 

task demands imposed by our design, as well as constrain subsequent interpretations of 

the functional significance of the elicited physiological responses. Furthermore, analysis 

of the behavioral data also provides suggestions for which covariates to include in our 

regression models. Second, we will report an analysis of the ERP data using spatial PCA. 

We will compare component amplitudes and latencies between stimulus types (frequent 

vs. infrequent vs. picture), report a subsequent memory analysis using the typical 

approach, as well as an median-split based analysis of component sensitivity to reaction 

times on the same trial, during the recognition test, and to the successive trial. Third, we 

will report a pupil size analysis, performing the same statistical comparisons as for the 

ERPs. In the final section we report the regression analysis, which brings together data 

from all previous sections. 

Behavioral Data 

Analysis of the behavioral data included an analysis of (1) reaction time and accuracy 

at encoding, and (2) recall rates, recognition accuracy, and reaction times during the 

recognition test. These analyses will reveal differences in stimulus processing/response 

preparation time (as indexed by reaction time at study) as well as task difficulty (as 

indexed by a combination of reaction time and accuracy at study) between encoding 

tasks, task blocks and stimulus types. Furthermore, it will reveal differences in strength or 

efficiency in encoding and retrieval as it varies with the different conditions. Outlining 
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these differences will subsequently aid in an interpretation of the variance in the 

physiological measures with the different conditions (especially between frequents, 

infrequents and pictures).  

Behavioral Data: Reaction Times and Accuracy at Encoding. Our behavioral 

measures for the encoding phase included median reaction time and the proportion of 

accurate responses. Overall, participants were highly accurate in performing the encoding 

tasks (accuracy M=.94), suggesting that our design was suitable and the selection of our 

stimuli was appropriate for our sample. For the analysis of the reaction times it was 

useful to first examine the shape of the reaction time distribution. 

Therefore, we first constructed a vincentized group reaction time curve across all trial 

types from the encoding phase (the vincentization procedure “summarizes” the shape of a 

distribution across participants; it calculates quantiles for the group distibution by 

averaging over the participants’ individual quantiles; see Ratcliff, 1979). The vincentized 

probability density function (figure 2A, top panels) was positively skewed and therefore 

showed the typical shape of reaction time curves in two-choice reaction time tasks (e.g., 

Ratcliff, 1979).  

For the purpose of a regression analysis it was useful to transform the data to a 

distribution that more closely approximates normality, since with normally distributed 

data it is more likely that the residuals are also normally distributed – a key assumption of 

regression. To this end, we first excluded outliers for each participant by eliminating 

reaction times that deviated by at least 3 standard deviations from their mean reaction 

time. Afterwards, we log-transformed each data point; such a transformation tends to 
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normalize reaction time data (Ratcliff, 1993). Indeed, as shown in figure 2A (bottom 

panels), the resulting reaction time distribution approximated normality more closely.  

Due to the skew, we compared reaction times between conditions and stimulus types 

using the median (rather than the mean) as the measure of central tendency. Statistically, 

we analyzed differences with two-sided paired samples t-tests or repeated measures 

ANOVAs.  

Performance in the Three Different Encoding Tasks. When we designed the three 

different semantic judgment tasks (“edible”: edible vs. inedible, “size”: larger vs. smaller 

than a shoebox, “living”: living vs. non-living) and selected the corresponding stimuli in 

each category, we assumed that the three tasks would be about equivalent in their task 

demands. To test whether this assumption was correct we tested for differences in the 

median reaction times between tasks (figure 2B). In the contrary to our expectation, there 

was an overall difference in reaction time [F(2,48)=4.44, p=.02] between the “size” task 

(M=657.52ms), the “edible” task (M=618.68ms) and the “living” task (M=638.8ms). Post 

hoc t-tests suggested that reaction times in the “size” task were significantly longer than 

for the “edible” task [t(24)=2.9, p<.01], while no other differences were significant 

[“edible” vs. “living”: t(24)=-1.94, p=.07; “size” vs. “living”: t(24)=1.26, p=.22].  

When response accuracy was collapsed across stimulus types (frequents, infrequents 

and pictures), there were no differences between the three task types (p>.9). However, 

differences became apparent when only trials of the infrequent category were compared 

[F(2,48)=3.32, p<.05]. Most likely, ceiling performance for frequents (M=.96) and for 

pictures (M=.98) prevented the detection of differences when accuracy was collapsed 

across stimulus types. Thus, infrequents in the “size” task were associated with lower 
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accuracy (M=.72) than infrequents in the “edible” task (M=.82) [t(24)=2.26, p=.03], but 

neither the difference between infrequents in the “size” and the “living” category 

(M=.79) [t(24)=1.98, p=.06], nor the difference between “edible” and “living” [t(24)=.73, 

ns] was significant. Taken together, the reaction time and accuracy data suggest that the 

“size” task was more difficult than the “edible” task. One implication of this difference is 

that task type should be included as a covariate in the regression analyses of reaction time 

at encoding. 

Performance Throughout the Experiment. It is possible that performance changed 

across the course of the experiment due to fatigue or learning effects. To investigate this, 

we tested for reaction time differences between blocks 1 and 2 (M=647.24ms), blocks 3 

and 4 (M=636.76ms), and blocks 5 and 6 (M=631ms; figure 2C). While there was a 

slight tendency for response times to decrease across the course of the experiment, the 

difference was not significant [F(2,48)=.69, ns.]. Likewise, there were no significant 

differences in response accuracy; not even when only accuracy for infrequent stimuli was 

analyzed [F(2,48)=1.61, ns]. 

Performance in the First and Second Sub-blocks. Next, we investigated whether 

performance differed between those task blocks that included only words of the frequent- 

and the infrequent category (sub-blocks 1), and blocks that also included pictures (sub-

blocks 2). We expected that if there were any differences, sub-block 2 would likely show 

longer reaction times because the presence of the pictures might increase task difficulty. 

In contrary to this idea (figure 2D), reaction times were significantly longer for the first 

(M=652.04ms) than for the second (M=627.82ms) task block [t(24)=3.27, p<.01]. This 

difference cannot be solely driven by shorter reaction times to pictures, as pictures were 



45 
 
associated with numerically longer reaction times than frequents (see section on trial 

types below). Since two sub-blocks always shared the same semantic judgment task 

(“edible”, “size” or “living”), the reaction time difference could reflect learning effects.  

Response accuracy did not differ between the first and the second sub-block, neither 

when the analysis was collapsed over stimulus types [t(24)=.26, ns], nor when it was 

conducted separately for frequents (M=.94 for the first and M=.95 for the second sub-

block) [t(24)=.58, ns] and infrequents (M=.79 for the first and M=.74 for the second sub-

block) [t(24)=1.66, ns]. 

Performance for Frequents, Infrequents and Pictures. The analyses reported thus 

far tested for unintended effects of our study design on reaction times, which would need 

to be accounted for in further analyses. The manipulation of including frequents, 

infrequents and picture trials was, however, expected and intended to lead to differences 

in response characteristics (figure 2E). Indeed, median response times differed between 

trial types [F(2,48)=45.63, p<.01], such that participants were slower in responding to the 

infrequent category (M=731.26ms) than to frequents (M=622.52ms) [t(24)=9.27, p<.01] 

and pictures (M=637.48ms) [t(24)=6.24, p<.01], while pictures and frequents did not 

differ from each other [t(24)=1.55, ns].  

Error rates also differed between trial types [F(2,48)=85.16, p<.01]: participants were 

more likely to make errors on infrequent trials (percent accurate M=.78) than for 

frequents (M=.96) [t(24)=9.65, p<.01] and pictures (M=.98) [t(24)=10.73, p<.01], with 

no difference between frequents and pictures [t(24)=1.53, ns]. The increased response 

times and error rates for infrequent trials could reflect a cost of response switching, as 

only infrequents required the infrequent response.  
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A. Overall Reaction Time Distribution (Encoding) 
Probability density function Cumulative distribution function 

  

 
 
 

 

B. Reaction Time by Task C. Reaction Time by Block Number 

 
 

 

D. Reaction Time by Sub-Block E. Reaction Time by Trial Type 

 
 

 

F. Reaction Time by Trial Type and Accuracy G. Reaction Time to the Subsequent Trial 

 
 

 

Figure 2. Reaction time data from the encoding phase. A. Overall vincentized, group-level 
reaction time (RT) distribution. Top panel: probability density function (pdf) and cumulative 
distribution function (cdf) of the raw RTs. Bottom panel: Log-transformed distribution, with a 
normal distribution overlaid. B-G: Median RTs and cdf’s by task type (B), block number (C), 
sub-block (D), trial type (E), trial type and accuracy (F) and by previous trial type (G).  
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Error vs. Correct Trials. Much prior literature has suggested that response times can 

vary in systematic ways with response accuracy (Rabbitt, 1969). Since many participants 

committed no errors for picture trials, our analysis of this issue focused on trials of the 

frequent and the infrequent category (figure 2E). Thus, we submitted the median reaction 

times to a trial type (frequent vs. infrequent) by accuracy (correct vs. incorrect) ANOVA. 

While none of the main effects were significant (p>.09), we found a significant 

interaction [F(1,23)=58.58, p<.01]. As is clearly visible in figure 2E, for frequents, error 

trials (M=859.04ms) were slower than correct trials (M=618.9ms) [t(24)=5.25, p<.01], 

while for infrequents, errors (M=610.4ms) were faster than correct responses 

(M=754.06ms) [t(24)=7.66, p<.01]. This pattern suggests that for frequents, errors might 

be due to a “true” miscategorization of the respective word, with the longer reaction time 

indexing a “hesitation” to respond. In contrast, error responses to infrequents are most 

likely due to a premature execution of the frequent response before the stimulus has been 

fully evaluated. 

Reaction Time to the Following Trial. A final behavioral measure during the 

encoding phase that was relevant to our hypotheses was the performance on the trial that 

followed frequents, infrequents and pictures. Only trials that were followed by frequent 

trials were included in this analysis. Based on the results by Notebaert et al. (2009), we 

expected that responses will be slowed down after the presentation of an infrequent event, 

which in our design might include infrequents and pictures. Indeed, infrequents 

(M=642.4ms) and pictures (M=625.94ms) tended to be followed by slower responses 

than frequents (M=619.14ms). However, this difference was not significant 
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[F(2,48)=2.56, p=.09]. Responses following frequents (M=.96), infrequents (M=.96) or 

pictures (M=.97) also did not significantly differ in response accuracy [F(2,48)=.8, ns]. 

Reaction Time and Accuracy at Encoding: Summary. The reaction times showed 

the typical, positively skewed, distribution. However, after excluding outliers and log 

transforming the reaction times, the distribution approximated normality. Our analyses of 

the median reaction times and response accuracies suggest that our experimental design 

had several unintended effects: Task performance differed between the semantic 

judgment tasks, and between blocks that did- and blocks that did not include pictures. 

These findings suggest that in the following analysis (in particular the regression 

analysis), task type and sub-block should be included as predictors of reaction time. 

We also found that reaction times were slower and accuracy was lower for 

infrequents compared to both frequents and pictures. This difference is most likely due to 

the cost of response switching: Infrequents required a switch to the infrequent response, 

while neither frequents nor pictures did. Our design, however, confounds semantic 

deviance with a switch in the correct response, so an alternative possibility is that 

processing the semantic content of the stimuli of the frequent category (including the 

pictures) benefitted from conceptual priming effects. We will return to this point in the 

discussion. 

Finally, errors were associated with slower responses than correct responses for 

frequents, while the reverse was true for infrequents. Since this interaction may 

complicate further analysis, trials with erroneous responses were subsequently excluded. 

Behavioral Data: Memory Performance. The behavioral measures of memory 

performance included the proportion of stimuli recalled, recognition accuracy, as well as 
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reaction time during the recognition test. Note that the first three and the last three stimuli 

presented in the encoding phase were “buffer” stimuli (which were always of the frequent 

category), intended to absorb primacy- and recency effects, and were therefore not 

included in the analysis. Furthermore, it is worth noting that we will keep referring to the 

“frequent” and the “infrequent” categories, although during the recognition test all 

categories were equally frequent (i.e., only a subset of the frequents were presented 

during the recognition test). For instance, we will use the term “frequent” to refer to the 

category that was presented as the frequent category at encoding.  

Recall Rates. Overall, participants recalled about 20 percent of the stimuli presented 

at encoding (M=.19). Recall rates did not differ between encoding tasks (“size”: M=.2; 

“edible”: M=.19; “living”: M=.19) [F(2,48)=.29, ns], and did not decrease between 

blocks 1 and 2 (M=.2), blocks 3 and 4 (M=.19) and blocks 5 and 6 (M=.19) [F(2,48)=.24, 

ns]. However, there was a statistical trend for lower recall rates in the second sub-blocks 

(M=.18), compared to the first sub-blocks (M=.2) [t(24)=2.06, p=.05], suggesting a 

tendency for proactive interference for task blocks including stimuli of the same 

category. 

As shown in figure 3A, there were differences in recall rates between stimulus types 

[F(2,48)=18.78, p<.01], indicating that frequents (M=.16) were recalled with a lower 

probability than infrequents (M=.27) [t(24)=4.65, p<.01] and pictures (M=.32) 

[t(24)=6.83, p<.01]. The difference between infrequents and pictures was not significant 

[t(24)=.17, ns]. 
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A. Recall Rates by Stimulus Type B. Recognition Sensitivity (d’) and Bias (c) 

  
 

C. Proportion of Hits and Correct Rejections 

 
 
 

D. Reaction Time at Test 
                  “old” items                                                 “new” items 

 
Figure 3. Memory performance. A: Recall rates for each trial type. B: Recognition 
accuracy (sensitivity, measured by d’) and the bias measure (c) for each trial type. C: 
Proportion of old items that were given a correct response (“hit”) and proportion of new 
items that were given a correct response (“correct rejection”/CR). D: Reaction time at test 
for old items (high- and low confidence hits, misses) and new items (high- and low 
confidence correct rejections, false alarms), by stimulus type.  
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Recognition Accuracy and Bias. An accurate way of measuring recognition memory 

and bias is to examine ROC curves, which can be constructed by plotting pairs of hit 

rates and false alarm rates for given levels of the participant’s confidence judgment 

(Grider & Malmberg, 2008). However, although our experimental paradigm incorporated 

confidence ratings, the vast majority of the participants’ responses were of high 

confidence (see recognition results below); in other words, several participants did not 

utilize the entire spectrum of confidence ratings. Therefore, to quantify recognition 

accuracy, we used the somewhat less accurate point measures d’=z(Hit)-z(False Alarm) 

as a measure of recognition sensitivity (i.e., the ease of distinguishing between an “old” 

and a “new” item), and c=-(z(Hit)+z(False Alarm))/2 as a measure of bias (the tendency 

to respond “old” vs. “new” when no information on memory strength is available; e.g. 

Grider & Malmberg, 2008) by collapsing over “definitely old” and “probably old” 

responses to obtain hit rates and false alarm rates.  

Overall, sensitivity was relatively high (d’=2.27) suggesting that participants were 

very accurate in distinguishing between “old” and “new” items during the recognition 

test. The overall bias of c=-0.35 suggested that in general, participants in our experiment 

showed a slightly liberal bias (i.e., a relatively high probability of responding “old” when 

no information is available), as indexed by negative values of c. 

We next performed analogous comparisons to the recall analysis: Between the three 

tasks, between blocks 1 and 2, 3 and 4, and 5 and 6, between sub-blocks 1 and 2, and 

between the three stimulus types. To do so, a slight modification in calculating of d’ and 

c was necessary because some participants showed either a hit rate of 1 or a false alarm 

rate of 0 for one of the trial types, tasks or blocks. For such scenarios, neither d’ nor c are 
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defined. Therefore, we added one false alarm and subtracted one hit for each subject 

before calculating d’ and c. In the comparison between frequents, infrequents and 

pictures the transformation was more complicated because the number of picture trials 

was only half the number of frequents and infrequents (since pictures were only 

presented in the second sub-blocks). Thus, we added one false alarm and subtracted one 

hit for the frequents and infrequents, and added/subtracted 0.5 for pictures.  

In parallel to the recall data, neither recognition sensitivity (d’; “size”: M=2.12; 

“edible”: M=2.16; “living”: M=1.97) [F(2,48)=1.65, ns], nor bias (c; “size”: M=-.34; 

“edible”: M=-.26, “living”: M=-.35) [F(2,48)=1.35, ns] differed between the different 

semantic judgment tasks. Furthermore, there were no differences between blocks 1 and 2 

(d’: M=2.21, c: M=-.3), blocks 3 and 4 (d’: M=2.03, c: M=-.3) and blocks 5 and 6 (d’: 

M=2.02, c: M=-.35) [d’: F(2,48)=1.97, ns; c: F(2,48)=.42, ns]. Finally, there was 

statistically only a trend for a difference in recognition sensitivity between sub-blocks 1 

(d’: M=2.06; c=-.36) and sub-blocks 2 (d’: M=2.17; c=-.29) [d’: t(24)=2, p=.06], and the 

sub-blocks did not differ in bias [t(24)=1.62, ns].  

However, both sensitivity [F(2,48)=62.35, p<.01] and bias [F(2,48)=21.06, p<.01] 

differed between the three stimulus types (figure 3B). Participants were least accurate in 

recognizing stimuli that were presented as frequents in the encoding phase (M=1.68), 

with significant differences to the infrequents (M=2.34) [t(24)=6.92, p<.01] and the 

pictures (M=2.95) [t(24)=10.27, p<.01]. The difference between pictures and infrequents 

was also significant [t(24)=5.07, p<.01].  

Recognition bias (as measured by c; figure 3B) was much more conservative (i.e., 

participants were less likely to respond “old” without additional information) for pictures 
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(M=.01) than for frequents (M=-.49) [t(24)=7.04, p<.01] and infrequents (M=-.24) 

[t(24)=2.61, p=.02]. The difference in bias between frequents and infrequents was also 

significant [t(24)=4.14, p<.01]. 

Due to the patterns within the recall- and recognition memory analyses, we 

subsequently collapsed our memory measures across task, block and sub-block, but not 

across stimulus type. 

For the purpose of an ERP subsequent memory analysis it is also important to 

consider the proportion of trials in each recognition category for previously studied items 

(high confidence hits, low confidence hits, and miss), as such proportions cannot be 

deduced from merely inspecting d’ or c, respectively. While recognition responses to 

“new” events (high confidence correct rejections, low confidence correct rejections, false 

alarms) are not directly relevant for the purpose of an ERP subsequent memory analysis, 

they will be reported for the sake of completeness.  

As is clearly visible in figure 3C, the proportion of previously studied stimuli that 

were correctly identified as “old” (i.e., the hit rate) was very high. There were no overall 

differences in the proportion of hits between frequents (M=.91), infrequents (M=.93) and 

pictures (M=.91) [F(2,48)=.33, ns]. Even when only confident hits were analyzed, the 

effect of stimulus type was non-significant [F(2,48)=2.67, p=.08], although there was a 

tendency for a larger proportion of high confidence hits for infrequents (M=.87) and 

pictures (M=.88) than for frequents (M=.82). The high hit rates obtained in our paradigm 

were problematic for a subsequent memory analysis because only a small number of 

study trials (especially for pictures and infrequents) would fulfill the “subsequently 
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forgotten” category (i.e., subsequent incorrect “new” responses to previously studied 

items; “misses”). 

There were larger differences between stimulus types in the proportion of previously 

not studied stimuli that were correctly identified as “new” (correct rejections; figure 3C): 

Both when all correct rejections [F(2,48)=66.72, p<.01], and when only confident correct 

rejections [F(2,48)=80.74, p<.01], were considered the differences were significant 

between stimulus types. The proportion of correct rejections was highest for pictures 

(M=.92 total, M=.81 for confident correct rejections) and lowest for frequents (M=.64 

total, M=.4 only confidents), with significant differences between all pairs (all t>4.4). 

These patterns are in line with the more liberal response bias for frequents. 

Overall, our data suggest that for pictures, participants were most accurate in 

distinguishing between previously studied and unstudied items, followed by the 

infrequents and, finally, the frequents. Furthermore, participants were more willing to 

respond “old” to frequents than to infrequents and pictures, reflected in a more liberal 

bias measure and a lower proportion of correct rejections. 

Reaction Time during the Recognition Test. Our design yielded very high hit rates, 

resulting in few trials in the “forgotten” category if recognition accuracy was used to sort 

the study trials in an ERP subsequent memory analysis. Due to this non-optimal pattern 

in the recognition accuracy data, we also considered reaction time during the recognition 

test. A detailed discussion of models on reaction time distributions in recognition is 

beyond the scope of the present paper. However, it is important to note that most models 

assume that the “strength” of a memory trace is negatively correlated with reaction time 

during the recognition test, both for hits and correct rejections of a specific stimulus type 



55 
 
(e.g., Ratcliff & Murdock, 1976). Therefore, in the present paper we use recognition 

reaction time as an index of relative memory strength (keeping in mind that many other 

factors also affect recognition reaction time). An additional advantage is that reaction 

times provide a parametric memory measure that is suitable for a regression analysis. 

Figure 3D displays the reaction times by stimulus types (frequents, infrequents and 

pictures) and types of recognition judgments (high- and low confidence hits, misses; 

high- and low confidence correct rejections and false alarms). In line with prior reports 

(Ratcliff & Murdock, 1976), reaction times were numerically faster for low confidence 

responses than for high confidence responses. Due to the high recognition accuracy, for 

some trial types data were not available for all participants. Therefore, we conducted the 

inferential statistics only on the median reaction times for high confidence hits and high 

confidence correct rejections. The 2 (response type: hit/correct rejection) by 3 (trial type: 

frequent/infrequent/picture) repeated measures ANOVA resulted in a main effect for 

response type [F(1,24)=20.05, p<.01], a main effect for trial type [F(2,48)=13.18, p<.01], 

as well as an interaction [F(2,48)=8.72, p<.01]. Thus, for all trial types, hits were faster 

than correct rejections (all t>2.67), a common finding in recognition reaction times (e.g., 

Ratcliff & Murdock, 1976).  

Follow-up analyses conducted on confident hits and correct rejections separately 

revealed reaction time differences between stimulus types for correct rejections 

[F(2,48)=12.65, p<.01], with faster reaction times for pictures (M=922ms) than frequents 

(M=1166ms) [t(24)=3.78, p<.01] and infrequents (M=1081ms) [t(24)=5.71, p<.01], but 

no significant differences between frequents and infrequents [t(24)=1.75, p=.09]. For hits, 
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differences between trial types were smaller (frequents: M=806ms; pictures: M=778ms; 

infrequents: M=829ms), and statistically non-significant [F(2,48)=2.84, p=.07].  

Overall, the faster reaction times for correct rejections, as well as the tendency for 

faster hits, support the idea that the memory traces were strongest for pictures, followed 

by infrequents, and weakest for frequents. This interpretation is in line with our recall- 

and recognition accuracy data and also with prior literature: The “picture superiority 

effect” in recall (Paivio, Rogers, & Smythe, 1968) and recognition (Shepard, 1967) is a 

well-studied phenomenon, and the superiority of infrequents over frequents is also in line 

with prior studies (e.g., Von Restorff, 1933). 

 

Raw reaction times 
Probability density function (pdf) Cumulative distribution function (cdf) 

  
Log-transformed reaction times (pdf) 

 
 
Figure 4. Distribution of reaction times for high confidence hits during the recognition 
test. Top panel: Vincentized probability density function (pdf) and cumulative 
distribution function (cdf) on the raw reaction times. Bottom panel: Log-transformed 
pdfs. 
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In a final analysis step we characterized the shape of the reaction time distribution, 

focusing on reaction times for confident hits (figure 4). Similarly to the reaction times at 

encoding, the distribution was positively skewed. The log-transformed distributions (after 

outliers deviating by more than 3 SD from the subject mean) are shown in figure 4 

(bottom panel). It is important to note that although this distribution shows a much 

weaker positive skew than the raw reaction time distributions and that therefore the 

distribution more closely resembles a normal distribution, the skew is still visible. 

Event-Related Potentials 

In this section, we describe an analysis of the ERPs recorded in the encoding phase. 

In order to have enough trials in each ERP average to obtain a clean principal component 

analysis (PCA) solution, we collapsed ERPs across semantic judgment tasks. Thus, both 

the Novelty P3 and the P300 have large amplitudes and rather broad temporal 

distributions. Therefore, even if their latencies varied with the semantic judgment task in 

the same way as reaction times (the largest mean difference was 39ms between the “size” 

and the “edible” task), collapsing over tasks was not expected to have a major effect on 

the morphology of the ERPs (other than somewhat widening the average waveform) or 

the PCA solution. Furthermore, this effect should be the same for all conditions, so the 

comparisons reported below should remain unaffected.  

In oddball tasks, sequential effects on ERP component amplitudes have been reported 

(K. C. Squires et al., 1976). To reduce the influence of such effects on our analysis as 

much as possible, ERPs for the frequent category included only those frequent trials that 

were preceded by frequents. Furthermore, to investigate a possible qualitative difference 
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in the ERP structure depending on whether or not pictures were present in the stimulus 

sequence, we initially computed ERPs separately for the first and the second sub-blocks.  

 

 Grand Average ERPs  

Fz (el 11) 

 

 

Cz (129) 

 

Pz (62) 

 

Oz (75) 

 
 
Figure 5. Grand average ERPs elicited at encoding by trial type. Displayed are frontal 
(Fz), central (Cz), parietal (Pz) and occipital (Oz) electrodes at midline sites. 
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Figure 5 shows the grand average ERPs from the frontal, central, parietal and 

occipital electrodes. Visual inspection suggests that the ERP patterns for frequents and 

infrequents were qualitatively similar for the two sub-blocks (those including pictures 

and those that did not). Furthermore, it is apparent that both infrequents and pictures 

elicited broad positivities across the scalp. A principal component analysis further 

characterized the componential structure of these positivities, and we specifically focused 

on PCA factors with spatial- and temporal distributions characteristic of the P300 and the 

Novelty P3. 

PCA on Frequents, Infrequents and Pictures of the Two Sub-blocks. Our first 

PCA was conducted on the subject-averaged ERPs for five stimulus types: Frequents and 

infrequents in the first sub-block, frequents and infrequents of the second sub-block, and 

pictures (which always occurred in the second sub-block). Submitted to the PCA were 

recordings from all electrodes and a time window between stimulus onset (0ms) and 

1400ms after the stimulus. Twenty-five spatial factors were extracted, accounting for a 

total of 93% of the variance, of which data from the first six factors are presented in 

figure 6. Based on their spatial distributions and the patterns in the virtual ERPs, the 

centrally distributed spatial factor 2 (variance accounted for: 26%) and the posterior 

factor 4 (variance accounted for: 5%) were of interest for the present study. The former 

may correspond to the Novelty P3 and the latter may correspond to the P300. 

Importantly, infrequents and frequents in the first and second sub-blocks showed the 

same qualitative pattern in the ERPs: infrequents in both sub-blocks elicited both a larger 

Novelty P3 (spatial factor 2) and a larger P300 (spatial factor 4) than the frequents within 

the same sub-blocks. Furthermore, the latencies of these components did not appear to  
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Spatial Factor Loadings Virtual ERPs  

SF 1 

 

 

 

 

SF 2 
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Figure 6. Results from the first PCA. Shown are spatial factor loadings (left panel), and 
virtual ERPs (right panel) for the first six spatial factors. Note: SF=spatial factor. 
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differ between the first and second sub-blocks. Therefore, for the purpose of simplicity 

we collapsed the ERP averages across sub-blocks and conducted a new PCA on this 

simplified dataset. 

PCA on Frequents, Infrequents and Pictures Collapsed over Sub-Blocks. ERPs 

elicited by frequents, infrequents and pictures (collapsed across sub-blocks) were 

submitted to a PCA with identical parameters to the PCA described above. The solution 

accounted for 95% of the variance in the data. Figure 7A shows the spatial factor 

distributions of the first eight spatial factors. Like in the initial PCA, we obtained a 

central factor (spatial factor 2, accounting for 25% of the variance) and a posterior P300 

factor (spatial factor 5, accounting for 4% of the variance). The distribution of their 

spatial factor loadings was virtually identical to the previous PCA solution. Figure 7C 

(left panel) shows the virtual ERPs associated with the two spatial factors of interest. 

Again, infrequents appeared to elicit both a larger Novelty P3 and a larger P300 than 

frequents. Pictures appeared to elicit the largest Novelty P3 and an earlier-peaking 

positivity within the P300 factor. 

At this point it is worth noting that the PCA algorithm aims to extract factors that 

account for the highest possible percent of variance within the data. Since the pictures 

elicited the largest amplitudes in the relevant spatial factors, it stands to reason that the 

PCA solution was driven by the ERPs elicited by the pictures, therefore possibly not 

accurately representing the ERPs elicited by frequents and infrequents. If this is the case, 

then a PCA on only the ERPs elicited by verbal stimuli might yield qualitatively different 

factors. For this reason we finally conducted a PCA only on the ERPs elicited by the 

verbal stimuli (frequents and infrequents).  
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A. PCA on Frequents, Infrequents and Pictures: Spatial factors 1-8 
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C. Virtual ERPs from both PCAs for the spatial factors of interest 
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Figure 7. Results from the PCAs on the three stimulus types (frequents, infrequents and 
pictures), and from the PCA on two stimulus types (frequents and infrequents). A and B: 
spatial factor loadings of the first 8 spatial factors for the first (A) and the second (B) 
PCA. C: Virtual ERPs for the Novelty P3 factor and the P300 factor in each PCA.  
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The PCA solution accounted for 95% of the variance, and the distributions of the first 

eight spatial factors are presented in figure 7B. The distribution of the relevant spatial 

factors – SF1 as the Novelty P3 (accounting for 28% of the variance) and SF4 as the 

P300 (accounting for 5% of the variance), was virtually identical to the analogous factors 

obtained from both of the previous PCA solutions. The similarity is confirmed by an 

inspection the virtual ERPs, presented in figure 7C, right panel. We concluded that the 

spatial factors of the PCA conducted on all three trial types accurately characterize the 

Novelty P3 and the P300 factor for all three stimulus types.  

 

Spatial distribution Virtual ERPs  

  

 

Figure 8. Additional spatial factor with the morphology of a P300. Left panel: spatial 
factor loadings, right panel: virtual ERPs.  

 

It is also worth noting that the PCA on the ERPs of only the verbal stimuli revealed 

an additional spatial factor that exhibited the typical morphology of the P300 (figure 7B, 

SF8). As seen in figure 8, in the respective spatial factor’s (SF 8, accounting for 3% of 

the variance) virtual ERPs, infrequents indeed elicited a larger positivity than frequents in 

the P300 time range (500-900ms after the stimulus). It is possible that this additional 

P300-like factor is a by-product of the PCA algorithm and that some residual variance 

due to the same scalp-recorded ERP component was captured in this factor as was 

captured by the more posterior factor obtained in both PCA solutions. However, to 
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account for the possibility that it represents a distinct ERP component, we included this 

factor in our subsequent analyses. We reasoned that if it turned out that the two spatial 

factors showed the same patterns in our analyses, it is likely that the two factors captured 

variance due to the same ERP component. 

In summary, since it was clear that the PCA on the three stimulus types provided 

P300 and Novelty P3 factors that were representative of all stimulus types, we included 

the respective spatial factors in all further analyses. The second spatial factor with P300-

like morphology, obtained in the second PCA, was also included as a variable. 

Variance of ERPs with Trial Type. Thus far we have only visually inspected 

patterns in the virtual ERPs, but have not reported inferential statistics. To quantify ERP 

component amplitudes, the spatial PCA is typically followed by a second PCA step that 

identifies temporal patterns in the virtual ERPs (Spencer et al., 1999). However, temporal 

PCA cannot measure slight latency differences between conditions or individual trials 

and since several of our research questions addressed latency, we did not perform a 

temporal PCA. Instead, we used a peak picking procedure to quantify component 

amplitude and latency within each spatial factor of interest. The time windows used for 

peak picking were centered around the peak of the grand average virtual ERPs. 

For the Novelty P3, we quantified component amplitude by picking the maximum 

spatial factor score (i.e., the maximum point in an individual’s baseline-corrected virtual 

ERP) in a time window of 400 to 800ms after stimulus onset. Novelty P3 amplitude 

differed between all stimulus types [F(2,48)=36.6, p<.01], with significant differences 

between all pairs of stimulus types in post hoc tests [frequent vs. infrequent: t(24)=4.07, 

p<.01; frequent vs. picture: t(24)=7.31, p<.01; infrequent vs. picture: t(24)=5.21, p<.01]. 
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Thus, pictures elicited the largest amplitude, followed by infrequents, and frequents 

elicited the smallest amplitude. 

For the P300 from the first PCA, for frequents and infrequents we quantified 

amplitude by the maximum factor score in a time window of 500 to 900ms after stimulus 

onset. For the pictures, the time course of the virtual ERPs in the P300 factor was 

different from the other two stimulus types (figure 7C). Therefore, for the pictures we 

used a time window of 200 to 400 ms after the stimulus. While we still performed 

analogous inferential statistics, it must be kept in mind that the positivity elicited by 

pictures might not be the same ERP component as elicited by infrequents (see 

discussion). The amplitude differences between stimulus types were significant 

[F(2,48)=16.21, p<.01], with significant differences between all pairs of stimulus types 

[frequent vs. infrequent: t(24)=3.73, p<.01; frequent vs. picture: t(24)= 5.49, p<.01; 

infrequent vs. picture: t(24)= 2.29, p=.03]. Like for the Novelty P3, P300 amplitudes 

were larger for infrequents than for frequents, and were largest for pictures (again 

keeping in mind that the positivity elicited by the pictures might be the same as a P300). 

Finally, for the additional P300-like factor obtained in the PCA on 2 stimulus types, 

we quantified amplitude as the maximum factor score in a time window of 500 to 900ms 

after stimulus onset. The visual impression of a larger P300 amplitude for infrequents 

than for frequents was statistically confirmed [t(24)=3.5, p<.01]. Although ERPs elicited 

by pictures were not included in the PCA from which this factor emerged, for the purpose 

of completeness we also calculated amplitude and latency measures for picture trials. 

Like infrequents, pictures exhibited significantly larger maximum factor scores for this 
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spatial factor than frequents [t(24)=4.19, p<.01]. However, there was not a significant 

difference between infrequents and pictures [t(24)=1.58, p=.13]. 

 

A. Novelty P3 (SF2, first PCA) B. P300 (SF5, first PCA) 

  
C. P300 (SF8 second PCA) D. Pupil dilation response 

  

 
 
Figure 9. Relationship between ERP- and pupil measures, and reaction time at encoding. 
“Fast” ERPs contain trials in which reaction time was below the individual participant’s 
median reaction time for that trial type, and “slow” responses are trials in which reaction 
time was above the median. 

 

Correlation of ERP Components with Reaction Time on the Same Trial – a 

Median Split Analysis. Our ultimate goal was an individual trial analysis of correlations 

between physiological measures with behavioral measures associated with the same trial. 

In an initial step, we analyzed such correlations in a more traditional manner that utilized 
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ERP signal averaging. Thus, to analyze correlations between ERPs and reaction time at 

encoding, we performed a median split of reaction times for each participant and each 

trial type and calculated separate ERPs for “fast” and “slow” response trials. Figure 9 (A-

C) shows the resulting grand average virtual ERPs for the three spatial factors of interest. 

We statistically analyzed the data with 3 (trial type: frequent vs. infrequent vs. picture) by 

2 (fast vs. slow) repeated measures ANOVAs. Since we have already reported the 

variance of ERP components with trial types (frequent vs. infrequent vs. picture), we will 

not report main effects for trial type in this section, but will focus on main effects for 

speed and, wherever statistically significant or relevant for our hypotheses, interactions 

between speed and trial type. 

As clearly visible in figure 9A, Novelty P3 amplitude was larger in trials associated 

with fast responses, compared to slow responses [F(1,24)=12.08, p<.01]. Response speed 

did not interact with trial type (p>.46), and the amplitude pattern was the same for all trial 

types (figure 9A). Novelty P3 latency was also correlated with reaction time on the same 

trial [F(1,24)=9.05, p<.01], with shorter Novelty P3 latencies for faster responses. The 

interaction with trial type approached significance [F(2,48)=3.16, p=.05], suggesting that 

the latency effect was only present for frequents [t(24)=2.8, p=.01] and pictures 

[t(24)=2.47, p=.02], but non-significant for infrequents [t(24)=.13, ns]. 

The P300 factor obtained in the first PCA did not differ in amplitude between fast and 

slow responses, and response speed did not interact with trial type (both p>.6). Instead, 

P300 latency was correlated with response speed [F(1,24)=9.8, p<.01], with shorter 

latencies for trials with faster responses. The interaction with trial type was also 

significant [F(2,48)=3.42, p=.04], suggesting that the latency effect was present only for 
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frequents [t(24)=2.73, p=.01] and infrequents [t(24)=2.64, p=.01], but not for pictures 

[t(24)=.13, ns]. This pattern is clearly visible in figure 9B. 

Finally, the P300 factor obtained in the second PCA also did not exhibit significant 

amplitude differences between fast and slow response trials (although visual inspection of 

the waveforms suggest somewhat larger amplitudes for faster responses, figure 9C), and 

speed did not interact with trial type (both p>.25). However, component latency differed 

between fast and slow trials [F(1,24)=5.65, p=.03], with shorter latencies for trials with 

faster responses. The interaction was not significant [F(2,48)=.31, ns], but due to the 

P300 morphology differences between verbal stimuli and pictures, we still performed 

planned comparisons between fast and slow responses of each trial type separately. The 

correlation of P300 latency with reaction time was significant for infrequents [t(24)=3.14, 

p<.01], approached significance for frequents [t(24)=1.73, p=.1], and was non-significant 

for pictures [t(24)=.65, ns]. 

The correlations between P300 amplitude and reaction time (in both PCA factors that 

show characteristics of the P300) replicate a large number of prior findings (e.g., Kutas et 

al., 1977), in line with the idea that both reaction time and P300 latency depend on 

stimulus evaluation time. The correlations between Novelty P3 amplitude and latency to 

reaction time, in turn, are novel findings within the literature. 

Correlation of ERP Components with Subsequent Recall. We next conducted a 

traditional subsequent memory analysis comparing ERPs elicited by subsequently 

recalled trials to unrecalled trials (figure 10A-C). Only 19 participants were included in 

this analysis because 6 participants had less than three artifact-free trials in at least one of 
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the ERP averages. Statistical comparisons were analogous to the median split reaction 

time analysis. 

 

A. Novelty P3 (SF2, first PCA) B. P300 (SF5, first PCA) 

  
C. P300 (SF8, second PCA) D. Pupil Dilation Response 

  

 
Figure 10. Grand average virtual ERPs (A-C) and pupil measures (D) elicited by 
subsequently recalled vs. not recalled stimuli. 

 

Figure 10A suggests that Novelty P3 was slightly larger for later recalled, compared 

to forgotten, trials across stimulus types. This impression was statistically confirmed 

[F(1,18)=22.86, p<.01], and the difference was present for each trial type (recall by trial 

type interaction: p>.98). Novelty P3 latency was uncorrelated with subsequent recall and 

there was no interaction with trial type (both p>.77). 
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The P300 factor obtained in the first PCA also exhibited larger amplitudes for 

subsequently recalled stimuli [F(1,18)=11.77, p<.01], although inspection of figure 10B 

suggests that the differences were small. In planned comparisons, this subsequent 

memory effect was significant for infrequents [t(18)=2.32, p=.03] and pictures 

[t(18)=2.12, p<.05], but not for frequents [t(18)=1.67, ns]. P300 latency in this spatial 

factor was not correlated to subsequent recall [F(1,18)=.57, ns]. 

Finally, the P300 factor obtained in the second PCA also showed larger amplitudes 

for subsequently recalled than not recalled trials [F(1,18)=11.28, p<.01]. The interaction 

was not significant (p>.88). We again performed planned comparisons on each trial type, 

but the subsequent memory effect was not robust and thus statistically non-significant for 

each trial type alone (p>.09). P300 latency in this spatial factor was uncorrelated with 

recall [F(1,18)<.01, ns]. 

The P300 subsequent memory effect we report in this section is in line with many 

previous studies (e.g., Karis et al., 1984), but the effect actually appeared to be smaller in 

magnitude than the Novelty P3 effect in the present data set. The Novelty P3 subsequent 

memory effect is a relatively novel finding, but in line with this pattern, a study from our 

group recently reported a correlation between the Novelty P3 (where the spatial 

distribution of the Novelty P3 was similar to the present data set) and subsequent recall 

(Kamp et al., in press).  

Correlation of ERP Components with Reaction Time at Test. Since the proportion 

of high confidence hits was too high, not enough trials would have been in the 

“forgotten” category of a traditional subsequent memory analysis using recognition 

accuracy as the means of sorting ERPs. Therefore, we focused on only subsequent 
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confident hits and sorted encoding trials based on subsequent reaction time during the 

recognition test, as an index of memory strength. Like for the reaction time at encoding, 

we performed a median split and compared “subsequent fast confident hits” to 

“subsequent slow confident hits” (figure 11). One participant was excluded due to 

insufficient trial numbers, resulting in 24 participants for this comparison.  

 

A. Novelty P3 (SF2 first PCA) B. P300 (SF5 first PCA) 

  
C. P300 (SF8 second PCA) D. Pupil dilation response 

  

 
 
Figure 11. Relationship between ERP- and pupil measures, and reaction time at test. 
“Fast” ERPs contain trials in which reaction time was below the individual participant’s 
median reaction time at test for that trial type, and “slow” responses are trials in which 
reaction time was above the median. 
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Visual inspection of figure 11A suggests that larger Novelty P3 amplitudes were 

associated with faster subsequent recognition judgments (at least for frequents and 

pictures). However, the main effect for subsequent response speed was neither 

statistically significant for Novelty P3 amplitude [F(1,23)=.38, ns], nor for Novelty P3 

latency [F(1,23)=.79, ns]. Similarly, the P300 from the first PCA (figure 11B) did not 

show significant main effects of subsequent recognition speed in its amplitude 

[F(1,23)=.05, ns] or latency [F(1,18)=.23, ns]. We also performed planned comparisons 

between fast and slow subsequent recognition judgments for each trial type, but none 

revealed any statistically significant, systematic variance with subsequent recognition 

reaction time. 

The amplitude of the P300 obtained in the second PCA exhibited a main effect for 

subsequent recognition reaction time [F(1,23)=5.72, p=.03] – this effect, however, was in 

the opposite direction as predicted: larger amplitudes were associated with slower 

responses at test. The interaction with stimulus type also approached significance 

[F(2,46)=2.55, p=.09], indicating that larger amplitudes for trials that were associated 

with slower subsequent reaction times during the recognition test - was only significant 

for frequents [t(18)=2.57, p=.02] (p>.39 for the other trial types). 

Overall, besides some interesting trends, the median split ERP analysis using the 

reaction time during the recognition test revealed weak or no statistically robust 

differences in any of our measures between fast and slow recognition judgments. 

However, reaction time during recognition provides a continuous measure that can index 

subsequent memory strength and is therefore well suited as a dependent variable in a 
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regression analysis. A regression analysis on single trials may also have a larger power to 

detect a correlation between physiological measures and reaction time at test. 

Correlation of ERP Components with Reaction Time on the Next Trial. Previous 

studies (Notebaert et al., 2009) have reported that after the presentation of infrequent 

stimuli, responses to the next stimulus are slowed down. Furthermore, the amplitude of 

the P300 has been shown to correlate with the extent to which reaction times are slowed 

down to the next trial after an error (e.g., Hajcak et al., 2003). These prior findings 

motivated us to study the extent to which amplitudes and latencies of the physiological 

measures elicited in our Novelty P3 oddball paradigm were correlated with reaction time 

to the next trial. It is worth noting, however, that our behavioral data exhibited only a 

statistically non-significant trend for slowed responses after infrequent stimuli, 

suggesting that in our dataset the power of detecting associations between physiological 

measures and reaction time to the next trial might also be reduced. 

The analysis compared trials followed by a fast response to trials followed by a slow 

response, using a median split, given that the following trial was of the frequent category 

(figure 12A-C). Two participants were excluded from this analysis due to insufficient 

trial numbers.  

Novelty P3 amplitude [F(1,22)<.01, ns] and latency [F(1,22)=.17, ns] were unrelated 

to reaction time on the next trial (figure 12A). 

The P300 from the first PCA (figure 12B) showed no amplitude differences based on 

subsequent reaction time [F(1,22)=1.13, ns], but its latency varied with reaction time to 

the next trial [F(1,22)=10.99, p<.01], with the interaction approaching significance 

[F(2,44)=2.89, p=.07]. Thus, shorter P300 latencies were associated with subsequent 
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faster responses only for frequent [t(22)=2.61, p=.02] and infrequent [t(22)=2.57, p<.01] 

trials, but not for pictures [t(18)=.15, ns]. 

 

A. Novelty P3 (SF2 first PCA) B. P300 (SF5 first PCA) 

  
C. P300 (SF8 second PCA) D. Pupil dilation response 

  

 
 
Figure 12. Relationship between ERP- and pupil measures, and reaction time to the 
immediately following trial. Included are only trials followed by frequents. “Fast” ERPs 
contain trials in which reaction time to the next trial was below the individual 
participant’s median reaction time for frequents, and “slow” responses are trials in which 
reaction time was above the median. 

 

 

For the amplitude of the P300 from the second PCA (figure 12C) the effect of 

subsequent response speed was non-significant [F(1,22)=2.78, p=.11], and for its latency 

the main effect only approached significance [F(1,22)=3.59, p=.07]. In subsequent 



75 
 
planned comparisons, the association between shorter P300 latencies and faster 

subsequent responses was significant only for infrequent trials [t(22)=2.61, p=.02], but 

not for frequents [t(22)=1.68, ns] or pictures [t(22)=.22, ns]. 

Similarly to the recognition reaction time analysis, the effects in the median split 

analysis using reaction time to the next trial were weak and not generally statistically 

robust. However, reaction time to the next trial was also analyzed in a regression model, 

which might provide greater power to detect differences. 

Pupil Data 

In this section we report the analysis of our pupil size measures recorded during the 

encoding phase. Seven of the twenty-five participants were excluded from the 

pupillometric analysis due to equipment failure of the eye tracker or human error 

collecting the eye tracking data (n=3) or due to excessive noise (such as due to eye 

blinks) in the pupil size recording (n=4).  

 

A. Baseline Pupil Diameter B. Change in Pupil Diameter (“Pupil Dilation Response”) 

  
Figure 13. Differences in pupil measures between stimulus types. A: Baseline pupil 
diameter for frequents, infrequents and pictures. B: Temporal progression of changes in 
pupil diameter from baseline, time-locked to stimulus onset. 
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In line with the ERP analysis we collapsed trials across the first and second sub-

blocks. Figure 13A shows the average baseline pupil diameter recorded over the 500ms 

preceding each stimulus. Since during the baseline period it was unknown which stimulus 

type would next be presented, it is not surprising that the baseline pupil diameter was 

comparable between trials with the three different stimulus types (about 4.5mm). Figure 

13B shows the change in pupil diameter from baseline over time, time-locked to stimulus 

onset. Thus, infrequents appeared to elicit a larger increase in pupil size than frequents – 

a change of about 0.2mm, compared to 0.1mm. Pictures initially elicited a small “dip” in 

the pupil diameter recording, possibly a light reflex to the offset of picture presentation 

(recall that stimuli stayed on the screen for 300ms), followed by a dilation. However, the 

magnitude of this dilation was overall numerically smaller than for frequents. 

We first analyzed the maximum amplitude of the pupil dilation response (PDR) for 

each stimulus type, using a time window of 1000ms to 1500ms after stimulus onset for 

peak-picking (figure 13B). In line with the visual impression, there were differences 

between stimulus types in PDR amplitude [F(2,34)=27.95, p<.01]: Greater dilations were 

elicited by infrequent stimuli than by both frequents [t(17)=6.06, p<.01] and pictures 

[t(17)=6.53, p<.01], with no significant difference between frequents and pictures 

[t(17)=1.06, ns]. While the latency of the peak dilation appeared to be earlier for 

frequents than for infrequents and pictures, this difference was not significant 

[F(2,34)=2.48, p=.1].  

In order to analyze whether pupil size returned to baseline earlier for frequents than 

for infrequents (as suggested by an inspection of figure 13B), we next analyzed the mean 

dilation (compared to the baseline) in a second time window, 1500ms to 2000ms after 
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stimulus onset. Indeed, the difference between stimulus types was significant 

[F(2,34)=19.92, p<.01], with larger mean amplitudes for infrequents than for frequents 

and [t(17)=6.64, p<.01] and pictures [t(17)=4.59, p<.01], but no significant difference 

between frequents and pictures [t(17)=.77, ns]. This suggests that the larger amplitude of 

the pupil dilation response for infrequents was followed by a slower return to the baseline 

diameter. 

Since only infrequent stimuli required an infrequent response (i.e., a response switch), 

one possible interpretation of the fact that only infrequents, but not pictures, elicited 

larger dilations that frequents, is that the pupil dilation response indexes processes related 

to behavioral responding. Our data are also in line with Kahneman’s (1973) suggestion 

that pupil size indexes “effort” exerted by the participant, as a switch in response can 

reasonably be assumed to require more “effort” than the execution of the frequent 

response. Note, however, that Kahneman recorded pupil size over a longer period of time 

than the time window in which the phasic PDR is observed. The analysis reported next 

addresses in more detail the relationship between the PDR and behavioral responding. 

Correlation of Pupil Measures with Reaction Time at Encoding – A Median Split 

Analysis. Like for the ERPs, we performed a median split on reaction time at encoding 

and thus calculated separate pupil averages for “fast” and “slow” response trials (figure 

9D). Two participants were excluded from this analysis due to an insufficient number of 

trials in one of the categories. The statistical analysis was analogous to the ERP analysis. 

As is visible in figure 9D, the maximum dilation did not differ between trials with fast 

and slow responses [F(1,15)=.57, ns]. Rather, the main difference due to response speed 

appeared to be within the latency to the peak dilation and the amplitude in the second 
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time window. This was corroborated by a main effect of response speed on peak latency 

[F(1,15)=10.78, p<.01]. This pattern was visible for all stimulus types (figure 9D), and 

the interaction between stimulus type and response speed was non-significant (p>.64). 

Similarly, the mean amplitude in the second time window was larger for slow- than for 

fast responses [F(1,15)=14.94, p<.01], a pattern that was again seen for all stimulus types 

(figure 9D; interaction with stimulus type p>.74). In other words, slower responses were 

associated with a later peak along with a slower return to the baseline diameter. 

Baseline pupil diameter did not differ between fast and slow response trials 

[F(1,15)=.87, ns], although in planned comparisons there was some evidence for smaller 

baseline diameters in trials with faster reaction times for frequents [t(15)=2.23, p=.04]. 

However, comparisons of baseline diameter in fast and slow trials for the other trial types 

were non-significant (p>.75), and for infrequents the difference was even in the opposite 

direction (i.e., baseline diameters tended to be larger for trials with shorter reaction 

times). 

Subsequent Memory Analysis: Recalled vs. Not Recalled Trials. Analogously to 

the ERP analysis, we also compared pupil measures between subsequently recalled- and 

non-recalled trials (figure 10D). Two participants were excluded from this analysis due to 

an insufficient number of trials.  

The maximum change from baseline in the time window 1000-1500ms indeed 

distinguished between subsequently recalled- and not recalled items, as can be seen 

especially for frequents and pictures in figure 10D. This subsequent memory effect was 

significant overall [F(1,15)=11.77, p<.01]. However, subsequent planned comparisons 

between recalled and not recalled trials of each stimulus type failed to reach significance 
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in all cases (p>.07). The latency to the peak dilation did not show a subsequent memory 

effect [F(1,15)=1.16, ns], and the difference in dilation in the second time window only 

approached significance [F(1,15)=3.26, p=.09]. In subsequent planned comparisons the 

difference in the second time window was not robust for any trial type (p>.1).  

Finally, baseline pupil diameter did not vary with subsequent recall [F(1,15)=.79, ns]. 

In summary, there was some evidence for an association between larger peak pupil 

dilations and subsequent recall success, but this effect did not survive planned 

comparisons for each stimulus type. Other than that, none of the pupil measures showed 

subsequent memory effects. 

Median Split Analysis of Reaction Time at Recognition. We also split the 

encoding trials into “fast” and “slow” subsequent recognition judgments, using a median 

split on the associated reaction time at test (only for trials that had been subsequently 

given a confident “old” response; figure 11D). Data from two participants were not 

included due to insufficient trial numbers.  

There were no significant main effects for reaction time at test, neither for the 

maximum dilation [F(1,15)=1.78, ns], nor for peak dilation latency [F(1,15)=.4, ns], nor 

for the mean amplitude in the “return to baseline” time window [F(1,15)=.14, ns]. In 

reflection of the apparent amplitude difference for pictures that received fast, compared 

to slow, recognition judgments, the interaction between trial type and recognition speed 

approached significance for the mean amplitude in the second time window 

[F(2,30)=3.22, p=.05]. However, none of the subsequent planned comparisons were 

significant (p>.1). Overall, as for the recall data, associations between pupil dilation 

measures and subsequent recognition were absent or weak. 



80 
 

Interestingly, the analysis revealed a correlation between the baseline diameter and 

subsequent recognition response speed. That is, generally, trials with smaller baseline 

diameters at encoding were associated with quicker “old” responses during recognition 

[F(1,15)=10.7, p<.01].  

Pupil Measures and Reaction Time to the Next Trial. Figure 12D shows the pupil 

measures for trials that were followed by “fast”, and “slow” responses, respectively. Note 

that three participants did not have enough trials for the analysis and were thus excluded. 

As can be seen in the figure, the pupil dilation response to trials followed by fast and 

slow subsequent responses were comparable. In corroboration of this impression, neither 

peak amplitude [F(1,14)=.2, ns], nor peak latency [F(1,14)=.44, ns], nor the mean 

amplitude in the second time window [F(1,14)=1.62, ns] differed between trials with fast- 

and slow subsequent reaction times. Likewise, baseline pupil diameter was uncorrelated 

with reaction time to the next trial [F(1,14)=1.99, ns]. 

Regression Models 

The analyses reported so far have provided some insight into the response of each 

physiological measure to experimental manipulations in a Novelty Oddball task. The 

patterns that we discovered suggest that the sensitivity to task parameters of the pupil 

dilation response, the Novelty P3 and the P300 do not overlap perfectly and hence most 

likely, the three physiological responses reflect different cognitive processes invoked 

upon the encounter of novelty.  

The interpretation of the patterns in the P300 was complicated by the fact that two 

PCA factors with the morphology of the P300 were obtained- one posterior factor 

obtained in the first PCA, and a parietal factor in the second PCA on only verbal stimuli. 
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The virtual ERPs of both factors clearly distinguished between frequents and infrequents, 

and pictures elicited an earlier positivity. Due to the early peak it is unlikely that this ERP 

component is a P300; instead, the occipital distribution may suggest that it reflects early 

visual processes invoked by perceptual deviance (for further discussion of this issue, see 

discussion section). Overall, P300 latency (in either P300 factor) was correlated with 

reaction time on the same trial, particularly for frequents and infrequents. Furthermore, 

P300 amplitude predicted subsequent recall. These patterns alone do not strongly imply a 

role of the P300 for either the immediate behavioral reaction or memory encoding. 

The Novelty P3 was largest for perceptually salient stimuli (i.e., pictures of the 

frequent category inserted into the oddball stream), which required the frequent response 

and were also associated with the strongest memory traces, as indexed by our behavioral 

analysis. Combined with the fact that response time to pictures was indistinguishable 

from frequents, this suggests that the Novelty P3 is not directly related to response 

preparation or execution. Rather, it might index the processing of deviance, with a 

specific sensitivity to perceptual deviance. However, somewhat inconsistent with this 

idea, Novelty P3 amplitude was correlated with both reaction time on the same trial, as 

well as the probability of subsequent recall. One possibility is that this ERP component is 

sensitive more generally to resource allocation to novel stimuli. 

Finally, the pupil dilation response was largest for infrequent stimuli and tended to be 

smaller in amplitude for pictures than frequents. This indicates that the PDR does not 

index the processing of perceptual deviance or stimulus probability per se (infrequents 

and pictures were equally probable in sub-blocks 2), but it might be sensitive to response 

preparation or execution demands that are heightened when an infrequent response is 
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required. In line with this idea, the latency of the peak dilation and its return to baseline 

were correlated with reaction time. However, the maximum amplitude was also 

correlated with subsequent recall, so thus far, as for the other measures, we are thus far 

unable to link the pupil response uniquely to either behavioral responding or memory. 

The expectation that all measures will be correlated to some extent with both 

measures of immediate responding and subsequent memory was therefore confirmed by 

our data. Next, a sequence of regression analyses investigated the correlation between 

each physiological measure to behavior on an individual trial basis. This analysis allowed 

us to (1) test whether the relationships observed in the median-split analysis held up in an 

analysis focused on individual trials and (2) whether the each physiological measure 

remained a significant predictor of the respective behavioral measure when the other 

physiological responses had been accounted for. Note that only the 18 participants for 

whom pupil data were available were included in the regression analysis.  

The dependent variables were reaction time at encoding, reaction time at test, and 

reaction time to the next trial. We did not perform an analogous analysis for the recall 

data, because recall is a binary variable and therefore not ideally suited for parametric 

regression. 

Correlations between Physiological Measures and Reaction Time at Encoding. 

The first question was which physiological measures were correlated with reaction time 

on an individual trial basis. It is worth re-iterating that the physiological measures of 

interest were the amplitude and latency of the Novelty P3, the P300 from the first PCA 

on the 3 stimulus types, the P300 from the second PCA on 2 stimulus types, and the pupil 

dilation response, as well as the baseline pupil diameter and the mean change in pupil 
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diameter from baseline in the second time window (the “return to baseline” time 

window).  

Table 1 shows partial correlation coefficients between each physiological variable 

and reaction time on the same trial during encoding. The first value in each cell 

represents the overall correlation when variance due to the variables participant, 

encoding task, sub-block, and stimulus type are partialed out. The next three entries 

represent the partial correlations computed separately for frequents, infrequents, and 

pictures, respectively. Note that the separate correlations for each trial type are listed in 

order to be able to accurately interpret the patterns and their variance with stimulus type. 

However, for the purpose of simplicity, the regression analyses always included data 

from all three stimulus type, with “stimulus type” included as a covariate. 

The first column in table 1 reflects which physiological variables are individually 

correlated with reaction time. Overall, these correlations show striking parallels to the 

median split analysis of reaction times. First, Novelty P3 amplitude was inversely 

correlated with reaction time on the same trial: A larger Novelty P3 was associated with a 

faster response on the same trial. The correlation between Novelty P3 latency and 

reaction time was only significant when infrequent trials were analyzed separately. 

Also in line with the median split analysis, for both the P300 (measured in either 

spatial factor) and for the pupil dilation response, it was not peak amplitude, but peak 

latency that was correlated with reaction time. That is, longer P300 latencies and longer 

latencies of the PDR were associated with longer reaction times. In addition, the 

maximum amplitude of the P300 from the second PCA also showed a negative 

correlation with reaction time for pictures and infrequents, but not across stimulus types. 
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Table 1: Correlations among log reaction time at encoding and physiological variables, 
when variance due to participant, task, stimulus type and sub-block has been partialed 
out. 
 
 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 
1. Log RT 
(Encoding) 

-           

2. Novelty 
P3 Max 

-.11** 
-.1** 
-.18** 
-.12** 

-          

3. Novelty 
P3 Latency 

.03 
-.00 
.15** 
.1 

.1** 

.11** 

.04 

.09 

-         

4. P300 
Max (1st 
PCA) 

-.02 
-.03 
-.08 
.01 

.39** 

.41** 

.38** 

.25** 

.06** 

.06** 

.09 

.09 

-        

5. P300 
Latency 
(1st PCA) 

.1** 

.09** 

.16** 
-.06 

-.00 
.01 
-.07 
.07 

.11** 

.11** 

.18** 

.03 

.05** 

.05* 

.02 

.12 

-       

6. P300 
Max (2nd 
PCA) 

-.04 
-.02 
-.11* 
-.15* 

.34** 

.33** 

.36** 

.39** 

.06** 

.05* 

.08 

.13 

.46** 

.49** 

.44** 

.26** 

.04 

.03 

.02 

.12 

-      

7. P300 
Latency 
(2nd PCA) 

.11** 

.12** 

.11* 

.03 

-.02 
-.02 
-.06 
.04 

.13** 

.13** 

.15** 

.11 

.01 

.04 
-.03 
-.1 

.34** 

.35** 

.37** 

.01 

.03 

.04 
-.02 
.02 

-     

8. Pupil 
Dilation 
Max 

.01 

.02 
-.07 
.09 

-.03 
-.04 
.07 
-.01 

-.00 
.00 
.01 
-.06 

-.01 
.00 
-.00 
-.04 

.04* 

.05* 

.01 
-.15* 

-.01 
-.01 
.01 
-.00 

.06** 

.07** 

.01 
-.07 

-    

9. Pupil 
Dilation 
Latency 

.18** 

.18** 

.15** 

.23** 

-.04* 
-.04 
-.08 
.08 

.01 
-.01 
.06 
-.07 

-.04* 
-.03 
-.08 
-.08 

.05** 

.05* 

.06 
-.13 

-.05** 
-.06* 
-.05 
-.05 

.02 

.03 
-.01 
-.06 

.11** 

.11** 

.11* 

.14* 

-   

10. Pupil 
Mean 2nd 
TW 

.1** 

.1** 

.1* 

.15* 

-.04* 
-.05 
.00 
-.03 

-.01 
-.01 
.01 
-.06 

-.04* 
-.03 
-.06 
-.04 

.03 

.03 

.02 
-.09 

-.06** 
-.06** 
-.09 
-.01 

.05* 

.05* 
-.01 
.07 

.79** 

.78** 

.81** 

.81** 

.3** 

.3** 

.27** 

.31** 

-  

11. Pupil 
Baseline 

.1** 

.11** 

.05 

.18** 

-.01 
-.00 
-.1* 
.05 

-.04* 
-.07** 
.03 
-.07 

-.03 
-.01 
-.11* 
.03 

.02 
-.00 
.1* 
.04 

-.00 
.00 
.01 
-.07 

-.02 
-.02 
.06 
-.11 

-.39** 
-.37** 
-.46** 
-.45** 

-.00 
.01 
-.06 
-.01 

-.42** 
-.4** 
-.45** 
-.45** 

- 

 
The first number in each cell is the partial correlation coefficient between the two 
measures with stimulus type partialed out. The remaining three numbers represent the 
correlation coefficient for (1) frequents, (2) infrequents or (3) pictures only. Shaded cells 
in the first column index physiological measures correlated (across stimulus types) with 
log reaction time. Shaded areas in the rest of the table indicate correlation coefficients 
between two variables that are both individually correlated with reaction time.  Note: ** 
indexes p<.01, * indexes p<.05 
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A final pattern that is in line with the median split analysis is the correlation between 

reaction time and the mean change from baseline in the second time window of the PDR 

(the “return to baseline” time window). Slow responses were associated with larger 

dilations in the second time window, suggesting a slower return of the pupil size to 

baseline.  

An additional finding not obtained in the median split analysis was the correlation 

between baseline pupil diameter and reaction time: Smaller baseline amplitudes were 

associated with shorter reaction times.  

In summary, many physiological variables were correlated with reaction time on the 

same trial. It is worth investigating whether the physiological responses are also 

correlated with each other, possibly due to third variables such as “attentional resources” 

allocated in each trial. Thus, we examined the correlations among the variables, with a 

particular focus on those physiological variables that were correlated with reaction time 

(shaded cells in table 1). Several relatively highly correlated pairs of physiological 

measures are worth noting. P300 latency measured by the first PCA on three stimulus 

types, and P300 latency measured by the second PCA showed a relatively high overall 

partial correlation of r=.34. Furthermore, the mean change in pupil diameter from 

baseline in the second time window (the “return to baseline” time window) was 

correlated with peak dilation latency (r=.3). This correlation is intuitive because a later 

peak in the dilation of the pupil should also temporally delay the return of pupil size to 

baseline.  Finally, baseline diameter was negatively correlated with mean diameter 

change in the second time window. In other words, larger baseline pupil sizes were 

associated with a faster return to baseline. These correlations among physiological 
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measures must be kept in mind when interpreting the outcome of our multiple regression 

model because collinearity of predictor variables can under some circumstances be 

problematic in regression models.  

Thus, we next developed a multiple regression model to predict reaction time at 

encoding on an individual trial basis, using those physiological measures as predictors 

that were individually correlated with reaction time. The goal was to investigate which of 

the measures will statistically predict reaction time when the other variables have been 

accounted for. The regression model included the random covariate participant as well as 

the fixed covariates (known, based on our behavioral analysis, to affect reaction time) 

task type, sub-block, and trial type. 

 

Table 2. Multiple regression model on the log reaction times at encoding, which included 
participant as a random covariate, as well as task, stimulus type and sub-block as fixed 
covariates. 

Variable Unstandardized 
Coefficient (B) 

Standard Error Standardized 
Coefficient (β) 

Novelty P3       
     Amplitude -.00168 .000306 -.104** 
P300 (PCA 1)       
     Latency .000059 .000019 .07679** 
P300 (PCA 2)    
     Latency .000069 .000018 .06659** 
Pupil       
     Latency .000105 .000014 .1325** 
     Mean dilation 1.5-2s .05342 .01018 .1004** 
     Baseline diameter .04841 .006758 .3129** 

Note: ** indexes p<.01, * indexes p<.05 
 

Table 2 shows the regression table from this model. Interestingly, all physiological 

variables that were individually correlated with reaction time remained significant 

predictors of reaction time in the multiple regression model. Note also that in additional 



87 
 
analyses, entering the variables in different orders into the regression model in all cases 

somewhat changed the beta weights, but all variables remained significant predictors 

even when entered into the model last (i.e., when variance due to all other variables had 

been accounted for).  

The hypothesized dissociation, specifically between the relationships of pupil size 

latency and P300 latency to reaction time, was therefore not supported by our statistical 

analysis. Rather, both P300 latency and pupil dilation latency continued to predict 

reaction time when the respective other variable had been accounted for. 

Correlations Between Physiological Measures and Reaction Time During the 

Recognition Test. Table 3 displays the partial correlation of each measure with log 

reaction time at test, when variance due to participant and stimulus type has been 

partialed out. Significant negative correlations with reaction time at test were found for 

Novelty P3 amplitude and P300 amplitude (for the P300 factor from the first PCA); that 

is, larger amplitudes at encoding were associated with shorter reaction times at test. In 

addition, mean pupil size in the return-to-baseline time window was positively correlated 

with reaction time at test: Slower returns to baseline were associated with slower 

responses at test. 

The Novelty P3 and P300 patterns are consistent with the statistical trends we found 

for the median split analysis of reaction time at recognition (although these were 

previously non-significant). Furthermore, the correlation for the return of the pupil 

diameter to baseline to recognition speed was not significant in the previous analysis, 

although there had been a trend for an interaction between stimulus type and subsequent 

recognition speed for this measure.  
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Table 3. Correlations among log reaction time at test and physiological variables elicited 
at encoding, when variance due to participant and stimulus type has been partialed out. 
 
 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 
1. Log RT 
(Recogn.) 

-           

2. Novelty 
P3 Max 

-.1** 
-.18** 
-.05 
-.08 

-          

3. Novelty 
P3 Latency 

-.02 
-.04 
.01 
-.04 

.1** 

.16** 

.07 

.11 

-         

4. P300 Max 
(1st PCA) 

-.08* 
-.16** 
-.06 
.03 

.37** 

.48** 

.41** 

.24** 

.04 

.05 

.08 

.03 

-        

5. P300 
Latency (1st 
PCA) 

.03 

.02 

.05 
-.01 

-.04 
-.00 
-.08 
.07 

.16** 

.17** 

.19** 

.08 

.04 

.02 

.01 

.14 

-       

6. P300 Max 
(2nd PCA) 

-.04 
.02 
-.07 
-.12 

.4** 

.37** 

.39** 

.4** 

.08* 

.03 

.08 

.1 

.38** 

.42** 

.46** 

.24** 

.04 
-.01 
.03 
.13 

-      

7. P300 
Latency (2nd 
PCA) 

-.04 
.03 
-.06 
-.08 

-.02 
.04 
-.05 
.01 

.16** 

.11 

.16** 

.14 

-.03 
.03 
-.03 
-.07 

.3** 

.3** 

.37** 

.05 

.01 

.06 
-.02 
.03 

-     

8. Pupil 
Dilation 
Max 

-.01 
-.03 
-.02 
.02 

-.01 
.01 
.05 
.01 

-.01 
-.01 
.07 
-.11 

-.00 
.00 
-.03 
-.05 

.02 

.01 

.06 
-.14 

-.03 
-.09 
.02 
-.01 

.04 
-.01 
.06 
.02 

-    

9. Pupil 
Dilation 
Latency 

.02 

.01 

.01 

.07 

-.04 
-.05 
-.07 
.07 

.05 

.03 

.07 
-.05 

-.06 
-.04 
-.1* 
-.06 

.08* 

.16** 

.09 
-.1 

-.03 
-.06 
-.05 
-.03 

.04 

.13** 

.00 
-.1 

.12** 

.14* 

.11* 

.15** 

-   

10. Pupil 
Mean 2nd 
TW 

.07* 

.04 

.08 

.02 

-.03 
.00 
-.02 
-.04 

-.00 
.01 
-.02 
-.13 

-.02 
.02 
-.07 
-.04 

.03 

.02 

.06 
-.05 

-.06 
-.1 
-.08 
-.00 

.04 

.04 

.03 

.04 

.8** 

.81** 

.8** 

.81** 

.31** 

.35** 

.3** 

.28** 

-  

11. Pupil 
Baseline 

.04 

.06 

.07 

.01 

-.06 
-.09 
-.15** 
.01 

-.00 
-.07 
-.00 
.06 

-.08** 
-.04 
-.15** 
.03 

.03 

.00 

.06 

.03 

-.02 
-.06 
.00 
-.04 

-.00 
-.01 
.03 
-.08 

-.43** 
-.41** 
-.43** 
-.45** 

-.02 
-.02 
-.03 
.01 

-.43** 
-.41** 
-.42** 
-.48** 

- 

 
Only trials are included that were associated with subsequent confident hits. The first 
number in each cell is the partial correlation coefficient between the two measures with 
stimulus type partialed out. The remaining three numbers represent the correlation 
coefficient for (1) frequents, (2) infrequents or (3) pictures only. Shaded cells in the first 
column index physiological measures correlated (across stimulus types) with log reaction 
time at test. Shaded areas in the rest of the table indicate correlation coefficients between 
two variables that are both individually correlated with reaction time at test.  Note: ** 
indexes p<.01, * indexes p<.05 
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Table 4. Multiple regression model on the log reaction times at test, which included 
participant as a random covariate, as well as stimulus type as fixed covariate. 
 

Variable Unstandardized 
Coefficient (B) 

Standard Error Standardized 
Coefficient (β) 

Model 1    
     Novelty P3    
     Amplitude -.00168 .000762 -.08144* 
     P300 (1st PCA)    
     Amplitude -.00067 .000555 -.04761 
     Pupil       
     Mean dilation 1.5-2s .04084 .02077 .06084* 
Model 2    
     P300 (1st PCA)    
     Amplitude -.00112 .000517 -.07936* 
     Pupil       
     Mean dilation 1.5-2s .04216 .02081 .06280* 
Model 3    
     Novelty P3    
     Amplitude -.00202 .000709 -.09798** 
     Pupil       
     Mean dilation 1.5-2s .04091 .02077 .06094* 

Note: ** indexes p<.01, * indexes p<.05 
 
 

We entered the three physiological variables that were individually correlated with 

reaction time at test into a multiple regression model along with the covariates 

participant and trial type. As shown in table 4 (model 1), Novelty P3 amplitude and pupil 

diameter in the second time window remained significant predictors of reaction time at 

test, whereas P300 amplitude was non-significant. To investigate whether the P300 was 

not a significant predictor in this model due to the shared variance between Novelty P3 

and P300 amplitude (the correlation between the two variables was r=.34, table 3), we 

ran two additional analyses that included either Novelty P3 or P300 amplitude as a 

predictor. As shown in table 4 (models 2 and 3), larger P300- and Novelty P3 amplitudes 

at encoding predicted shorter reaction times when the respective other ERP component 

was not included in the model. Thus, both Novelty P3- and P300 amplitude predicted 
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subsequent recognition reaction time when pupil diameter in the “return to baseline” time 

window had been accounted for, but while the Novelty P3 continued to predict reaction 

time at test when P300 amplitude had been accounted for, this was not true vice versa. 

One complication when interpreting these results is that some stimuli might be 

inherently easier to process than others, leading to variance in reaction times at 

recognition that is not directly related to memory strength. Processing difficulty is also 

likely to affect the physiological measures, which could lead to a correlation between 

physiological measures and subsequent recognition reaction time that does not, as would 

be of interest, index associations with subsequent memory strength. To test this idea, we 

assumed that variance due to inherent stimulus characteristics would influence reaction 

time both at encoding and at test. To account for this, we modified our models to include 

log reaction time at encoding as an additional predictor of reaction time at recognition. 

Table 5 displays the main results of this analysis. As expected, reaction time at 

encoding was highly predictive of reaction time at test in all of the models. Importantly, 

after including reaction time at encoding as a predictor, mean pupil diameter in the 

“return-to-baseline” time window no longer significantly predicted reaction time at test in 

any of our models. However, both Novelty P3 amplitude and P300 amplitude, at least 

when included in separate regression models (models 2 and 3, table 5) continued to 

predict subsequent reaction times at test. 

This finding was also corroborated by an examination the partial correlations of each 

physiological variable with reaction time at test when participant, stimulus type and 

reaction time at encoding had been partialed out. Thus, the partial correlations with 

reaction time at test remained significant for Novelty P3 amplitude (r=-.08, p=.01) and 
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P300 amplitude measured in the first PCA (r=-.07, p=.03), but not for the mean pupil 

diameter in the second time window (r=.05, p>.1). It is also worth noting that when 

variance due to the reaction time at encoding was partialed out, still none of the other 

physiological measures showed significant partial correlations with recognition speed. 

 
Table 5. Multiple regression model on the log reaction times at test, which included 
participant, stimulus type and reaction time at encoding as covariates. 
 

Variable Unstandardized 
Coefficient (B) 

Standard Error Standardized 
Coefficient (β) 

Model 1    
     RT at Encoding .1637 .04908 .1198** 
     Novelty P3    
     Amplitude -.00129 .000766 -.06245 
     P300 (1st PCA)    
     Amplitude -.00072 .000552 -.05116 
     Pupil       
     Mean dilation 1.5-2s .03271 .02080 .04872 
 
Model 2 

   

     RT at Encoding .1762 .04857 .1289** 

     P300 (1st PCA)    
     Amplitude -.00106 .000514 -.07516* 

     Pupil       
     Mean dilation 1.5-2s .03308 .02083 .04928 
 
Model 3 

   

     RT at Encoding .1620 .04908 .1185** 
     Novelty P3    
     Amplitude -.00166 .000713 -.08035* 
     Pupil       
     Mean dilation 1.5-2s .03287 .02081 .04869 

Note: ** indexes p<.01, * indexes p<.05 
 

Overall, our results suggest that only Novelty P3 amplitude and P300 amplitude in the 

spatial factor obtained from the first PCA are predictive of subsequent memory strength, 

as indexed by reaction time during recognition. However, their amplitudes appear to 

account for overlapping portions of the variance in recognition reaction times. 
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Table 6. Correlations among log reaction time to the next trial and physiological variables 
elicited at encoding, when variance due to participant, task, sub-block and stimulus type 
has been partialed out. 
 
 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 
1. Log RT 
(Next Trial) 

- 
 

          

2. Novelty P3 
Max 

.01 

.03 
-.06 
.04 

- 
 

         

3. Novelty P3 
Latency 

-.04 
-.05* 
.06 
-.04 

.1** 

.1** 

.04 

.1 

- 
 

        

4. P300 Max 
(1st PCA) 

.03 

.03 

.00 

.01 

.39** 

.39** 

.44* 

.32** 

.04 

.04 

.1 
-.01 

-        

5. P300 
Latency (1st 
PCA) 

.04 

.04 

.01 
-.04 

-.00 
-.01 
-.07 
.08 

.11** 

.09** 

.18** 

.05 

.05* 

.05 

.01 

.16* 

- 
 

      

6. P300 Max 
(2nd PCA) 

.04 

.04 

.06 

.00 

.34** 

.32** 

.4** 

.46** 

.04 

.02 

.07 

.14 

.46** 

.49** 

.46** 

.32** 

.03 

.03 
-.01 
.19* 

- 
 

     

7. P300 
Latency (2nd 
PCA) 

.03 

.02 
-.02 
-.04 

-.02 
-.01 
-.09 
.03 

.13** 

.12** 

.17** 

.1 

.01 

.05 
-.03 
-.12 

.35** 

.36** 

.39** 

.00 

.03 

.05 

.01 
-.12 

-     

8. Pupil 
Dilation Max 

.01 

.02 
-.01 
.01 

-.03 
-.05 
.07 
-.02 

-.01 
-.01 
.02 
-.04 

-.03 
-.02 
-.03 
-.01 

.03 

.05* 
-.01 
-.16* 

-.03 
-.02 
-.05 
-.03 

.05* 

.05* 

.01 

.05 

- 
 

   

9. Pupil 
Dilation 
Latency 

.06** 

.08** 
-.08 
.24** 

-.04* 
-.04 
-.08 
.09 

.01 
-.01 
.05 
-.04 

-.03 
-.03 
-.09 
-.02 

.04* 

.05 

.06 
-.19* 

-.04 
-.05 
-.07 
.04 

.01 

.02 
-.00 
-.04 

.11** 

.11** 

.13** 

.11 

- 
 

  

10. Pupil 
Mean 2nd TW 

.02 

.03 
-.04 
.1 

-.05* 
-.04 
.00 
-.07 

-.01 
-.01 
.01 
-.02 

-.05* 
-.03 
-.08 
.01 

.03 

.03 

.02 
-.11 

-.06** 
-.06* 
-.14** 
.01 

.03 

.04 

.02 

.08 

.78** 

.78** 

.8** 

.8** 

.3** 

.29** 

.29** 

.26** 

- 
 

 

11. Pupil 
Baseline 

.04 

.05* 

.00 

.02 

.00 

.02 
-.12* 
.06 

-.04 
-.07** 
.03 
.04 

-.03 
.00 
-.11 
-.06 

.03 

.00 

.12* 

.05 

.02 

.02 

.04 
-.02 

-.01 
-.03 
.09 
-.08 

-.39** 
-.37** 
-.43** 
-.47** 

.00 

.02 
-.08 
-.02 

-.42** 
-.41** 
-.43** 
-.48** 

- 
 

Only trials are included that were followed by a frequent trial. The first number in each 
cell is the partial correlation coefficient between the two measures with stimulus type 
partialed out. The remaining three numbers represent the correlation coefficient for (1) 
frequents, (2) infrequents or (3) pictures only. Shaded cells in the first column index 
physiological measures correlated (across stimulus types) with log reaction time at test. 
Shaded areas in the rest of the table indicate correlation coefficients between two 
variables that are both individually correlated with reaction time at test.  Note: ** indexes 
p<.01, * indexes p<.05 
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Correlations between Physiological Measures and Reaction Time on the Next 

Trial. The final question concerned the relationship between physiological measures and 

the reaction time to the next trial (if the next trial was of the frequent category). As shown 

in table 6, the only significant correlation was between pupil dilation latency and reaction 

time to the next trial: The later the peak dilation occurred, the longer was the reaction 

time on the next trial. Since no other correlations were significant, it was unnecessary to 

run a regression analysis analogous to those reported in the previous sections. 

Additional Findings from the Correlation/Regression Analysis. There are several 

additional patterns within the correlational structure of our data that are worth noting and 

discussing in the context of our research questions and prior literature. Of interest are 

correlations between the different physiological measures (tables 1, 3 and 6). Note that 

because a different subset of the trials is included in each table (for example, table 6 only 

includes trials that were followed by frequents), the precise values are slightly different, 

but the general patterns are very similar across tables. Since calculations of the 

correlations in table 1 included the largest number of trials we will refer to table 1 here.  

First, ERP amplitudes of Novelty P3, P300 from the first PCA and P300 from the 

second PCA were relatively highly correlated with each other (the smallest correlation 

was between Novelty P3 and P300 from the second PCA: r=.34). However, the pupil 

dilation amplitude measured in the first time window was generally uncorrelated with 

ERP amplitudes from either PCA factor. Small, but significant negative correlations were 

found between the mean diameter in the second time window and ERP amplitudes (r 

ranged between -.04 and -.06). If the pupil dilation response reflected the same cognitive 
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process as any of the ERP components, a strong positive correlation would be expected. 

Our correlational patterns speak against this idea. 

Also worth discussing is the relationship between baseline pupil diameter on the one 

hand, and reaction time, pupil dilation magnitude and P300 amplitude on the other hand. 

Thus, the adaptive gain theory of the PDR (e.g., Gilzenrat et al., 2010) and the P300 (e.g., 

Nieuwenhuis, Aston-Jones, et al., 2005) predicts an association of smaller baseline 

diameters with (1) better performance, as for example indexed by shorter reaction times, 

(2) larger pupil dilation amplitudes and (3) larger P300 amplitudes. Table 1 clearly 

support points (1) and (2), but the support for point (3) within our dataset is weak. That 

is, baseline diameter was overall uncorrelated with any ERP amplitude measure (r ranged 

between 0 and -.03). Only when just infrequent trials were considered, a significant 

correlation in the predicted direction was found between baseline diameter on the one 

hand, and Novelty P3 amplitude (r=-.1) and P300 amplitude from the first PCA (r=-.11) 

on the other. 
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Discussion 

The main patterns in the behavioral data were that (1) words of the infrequent 

category were associated with longer reaction times and higher error rates than words in 

the frequent category and images that depicted objects of the frequent category, and (2) 

pictures were associated with the strongest memory traces, followed by infrequents and 

finally frequents, as indexed by recall rates, recognition sensitivity, as well as reaction 

times to correct, high confidence “old” (hits) and “new” (correct rejections) responses. 

The behavioral patterns at encoding could have two different explanations, which, 

based on our experimental design, cannot be easily disentangled. In our view, the more 

likely explanation is that words of the infrequent category were the only stimuli that 

required an “infrequent response”, in other words a response switch. Thus, since in 86% 

of the trials, one response was required, it was useful for the participants to pre-program 

this frequent response. If, in contrary to a developed expectation, an infrequent stimulus 

was presented, this pre-programmed response needed to be inhibited and the other 

response needed to be prepared. This response switch would have led to the observed 

increase in reaction time and error rate. 

The alternative explanation is that stimuli of the frequent category (including the 

pictures) benefitted from a semantic priming effect. Thus, the previous presentation of a 

large number of stimuli of the same category might have facilitated processing of 

frequents and pictures, while infrequents were not preceded by as many stimuli from the 

same category and therefore did not benefit from such a priming effect. Our experimental 
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design confounds semantic deviancy with response switching, so we cannot completely 

rule out this possibility. However, if priming took place in our design, we should observe 

a larger amplitude in the ERP component known as the N400 (Kutas & Hillyard, 1980) 

for those stimuli that did not benefit from the priming effect, that is, the infrequents. 

However, although negative peaks at 400ms after the stimulus were observed in several 

components that showed centro-parietal distribution consistent with an N400 distribution 

(for example, figure 7 A, SFs 2, 4 and 5; see also the grand averages in figure 5), none 

exhibited a larger negative peak at 400ms for infrequent stimuli. The lack of N400 (or 

priming) differences between stimulus types might be due to the fact that our categories 

were very broad. We therefore consider the response switching explanation more likely 

than the priming explanation. 

The memory patterns including recall rates, recognition accuracy and reaction time 

during the recognition test, suggest that pictorial stimuli were encoded into the strongest 

memories, and that participants might have used retrieval strategies that favored the 

pictures. This pattern is in line with a large body of literature on the “picture superiority 

effect” (e.g., Shepard, 1967). There is some evidence that the picture superiority effect 

occurs due to an enhanced encoding of distinctive details of pictorial vs. verbal stimuli 

(Curran & Doyle, 2011). Furthermore, our recall and recognition memory data also 

suggest that infrequents were more likely to be encoded and retrieved both in the recall 

and recognition tests, compared to frequents. Again, the memory superiority of infrequent 

stimuli is in line with a large body of previous literature (e.g., Hunt, 2006; Von Restorff, 

1933).  
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It is important to take into account these behavioral patterns when interpreting the 

differences in the physiological responses between stimulus types and their correlation 

with behavioral data (such as reaction time at encoding and at test). Thus, combining 

patterns within the physiological responses with the behavioral differences between 

stimulus types can help constrain the interpretations of the physiological responses’ 

functional significance. 

P300, Reaction Time and Subsequent Memory 

Before discussing the relationship between P300 and behavioral patterns, it first 

necessary to discuss the fact that we obtained two PCA factors that showed typical 

characteristics of a P300 – a parietal/posterior spatial distribution as well as a large 

positive peak for infrequents in the time window of 500 to 900ms. It is possible that the 

two factors reflect two different scalp-recorded ERP components, possibly with distinct 

neural correlates and functions. However, an alternative possibility, which in our view is 

more likely, is that the two P300-like factors are a by-product of the analysis method 

used. PCA aims to explain as much variance as possible with a small number of factors. 

However, the rotation method attempts to minimize loadings of intermediate magnitude 

and maximize larger loadings, effectively “focusing” the highest spatial factor loadings 

onto a relatively small scalp area (this is true for both Varimax and Promax, for an 

explanation of the rotation methods, see Dien, 2010b). Especially when a scalp-recorded 

ERP component has a broad scalp distribution, it is therefore possible that the variance 

induced by a single ERP component is captured by two PCA factors. After initially 

obtaining the two P300-like factors from the PCA, we did not take a strong stance as to 

whether the two factors represent the same- or different ERP components. Rather, we 
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included both factors in our analysis. If the factors had varied in qualitatively different 

ways with our experimental manipulations and behavioral data, this would have spoken 

against the idea that both factors capture the same ERP component. However, in almost 

all of our analyses, the two factors showed similar response patterns: Both factors showed 

a large, early positivity for pictures and a broader positivity between 500 and 900ms post-

stimulus that was larger for infrequents than frequents. Similarly, the latencies of both 

factors were correlated with reaction time, and both factors’ amplitudes were correlated 

with subsequent recall. Furthermore, the amplitudes (r=.46) and latencies (r=.34) of both 

factors were also relatively highly correlated with each other on an individual trial basis 

(note that on individual trials of EEG activity there are high levels of noise, so these 

correlation coefficients can be considered relatively high). In the following, we will 

therefore focus on the discussion of the factor from the first PCA on all stimulus types, as 

this factor explained a larger portion of the variance in the data. 

The relatively late P300 peak for infrequents (at about 700ms after the stimulus) is 

not untypical, as we used verbal stimuli – that is, it is reasonable to assume that it takes a 

longer time to detect semantic deviance as opposed to deviance based on more superficial 

stimulus characteristics. However, the positivity that pictures elicited in the P300 factor 

was much sharper and peaked much earlier than the P300 for the infrequents. In 

principle, latency differences between deviance-related components elicited by 

infrequents and pictures are not surprising since it should take longer to register semantic 

deviance than perceptual deviance. However, a P300 that peaks about 200ms after 

stimulus onset would be extremely early. Furthermore, it is inconsistent with prior studies 

(Spencer et al., 1999) and therefore unlikely that such strong latency differences would 
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be observed in the P300 but not in the Novelty P3. In summary, it is unclear whether in 

our paradigm pictures elicited a P300. 

The finding that P300 latency was consistently correlated with reaction time at 

encoding is a replication of a large number of prior findings, beginning in the study of 

Kutas et al. (1977) where response accuracy was encouraged. However, disconfirming 

our hypothesis, P300 latency continued to statistically predict reaction time on individual 

trials when all other physiological responses had been accounted for. In other words, 

statistically, P300 latency explained a different portion of the variance in reaction time 

than, for example, the pupil dilation response.  

In the light of the prior findings reviewed in the introduction, which showed that 

P300 latency and reaction time could be dissociated, it is important to note that our 

finding should not be taken as evidence for a direct relationship between P300 and 

behavioral responding. All that can be concluded from our results is that P300 latency 

and PDR latency do not explain the same portion of the reaction time variance. One 

hypothesis that should be tested in further studies is that P300 latency explains variance 

in reaction times that is due to the stimulus evaluation processes, whereas the PDR 

explains variance due to aspects of response preparation- or execution. This idea could be 

better tested in an experimental design that manipulates stimulus evaluation- and 

response demands independently. 

The P300 subsequent memory effect – larger P300 amplitudes for subsequently 

recalled- compared to not recalled stimuli when elaborative encoding is not used – also 

replicated many prior studies, starting with Karis et al. (1984). However, the present 

study is the first to also demonstrate, on an individual trial basis, a correlation between 



100 
 
P300 amplitude during encoding and reaction time during a recognition test. The 

correlation remained significant when variance due to reaction time at encoding, which 

we used as an index of inherent differences in processing time between stimuli, was 

accounted for. Taken together, the traditional P300 subsequent memory analysis and the 

correlation with recognition reaction time converged on the idea that P300 amplitude 

elicited at encoding correlates with subsequent memory. One possible interpretation is 

that P300 amplitude is proportional to subsequent memory strength, which should 

facilitate both recall and recognition. 

The Novelty P3 as an Index of Resource Allocation? 

The centrally distributed factor was interpreted as a Novelty P3, based on its spatial 

distribution and the classical Novelty P3-like response to experimental manipulation: the 

positivity was largest for perceptually deviant, infrequent stimuli, second largest for 

semantically deviant, but not perceptually salient words, and smallest for words of the 

frequent category. While the stimuli themselves were not task-irrelevant as in the typical 

Novelty P3 oddball paradigm (Courchesne et al., 1975, but see Cycowicz & Friedman, 

2004), the presentation format (i.e., the fact the respective noun was presented in picture 

form) was task-irrelevant. Our findings are thus in line with the idea that a Novelty P3 

can be elicited even when a response is required to the eliciting stimulus, which speaks 

against the response inhibition hypothesis of the Novelty P3. It is therefore likely that the 

No-Go P3 (e.g., Pfefferbaum et al., 1985) is a functionally separate component to the 

Novelty P3 observed in our paradigm. 

The pattern in Novelty P3 amplitude did not qualitatively parallel the behavioral 

measures from the encoding phase: reaction times were slowest and error rates highest 
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for infrequents, but these showed an intermediate Novelty P3 amplitude. Performance 

levels (reaction time and error rate) were about equal for frequents and pictures, yet the 

Novelty P3 amplitudes elicited by these two stimulus types vastly diverged. Overall, in 

light of our data it seems unlikely that the Novelty P3 elicited in our paradigm indexes 

response-related processes.  

Novelty P3 amplitude was correlated with reaction time at encoding in both the 

median split- and the individual trial analysis. Interestingly, in its variance with stimulus 

type, Novelty P3 amplitude also directly mirrored subsequent memory strength. That is, 

pictures both elicited the largest Novelty P3 and were associated with the strongest 

memory traces. Infrequents elicited the second largest amplitude and exhibited the second 

strongest memory traces. Finally, frequents elicited the smallest amplitudes and were 

associated with the weakest memories (at least to the extent to which strength is indexed 

by recall probability, recognition sensitivity and/or reaction time during the recognition 

test). Furthermore, within stimulus types, larger Novelty P3 amplitudes were associated 

with larger probabilities of subsequent recall and, in individual trials, shorter reaction 

times during the subsequent recognition test. Taking all these patterns together, one 

possible interpretation is that Novelty P3 amplitude might reflect resource allocation to a 

given trial. That is, the more resources are allocated to an experimental trial (1) the 

quicker the response (at least within stimulus types) and (2) the stronger this trial is 

encoded into episodic memory.  

In a dual-task paradigm, Wickens and colleagues (1983) varied the difficulty of the 

primary task to manipulate the extent to which resources were available for the secondary 

oddball task. P300 amplitude elicited in the secondary task was correlated with the extent 



102 
 
to which resources were allocated to the oddball task. Since in such early studies dense 

electrode arrays were not available, and due to the strong spatio-temporal overlap 

between P300 and Novelty P3, it is possible that the variance in scalp-recorded ERPs 

with resource allocation was, in fact, driven by variance in the centrally distributed 

Novelty P3, as obtained in the present study. This issue remains to be investigated in 

future studies. 

In sum, we found no support for our (very exploratory) hypothesis that Novelty P3 

amplitude would be related to immediate responding. Based on our data it appears more 

likely that Novelty P3 amplitude is sensitive to processes elicited by deviance that 

operate in parallel to the stimulus-response stream, such as resource allocation. 

The Pupil Dilation Response and Behavioral Responding 

The current view in the literature is that a temporary increase in pupil size – the pupil 

dilation response – is elicited by events that deviate from expectancies, such as infrequent 

events in an oddball paradigm (Murphy et al., 2011), behavioral errors (Wessel et al., 

2011), or the delivery of an unexpected reward or the absence of an expected reward 

(Preuschoff et al., 2011). The present study suggests that the PDR is not elicited by low 

stimulus probability or deviancy due to perceptual characteristics per se – if this was the 

case, pictures should have elicited larger amplitudes than frequents (recall that pictures 

were equally improbable as infrequents). In contrast, infrequents elicited the largest PDR, 

in our view most likely due to the associated response switch. 

The idea that response-related processes are reflected in the PDR was further 

supported by the correlation of its latency and its mean amplitude in the “return to 

baseline” time window with reaction time – longer PDR latencies and larger amplitudes 



103 
 
in the second time window were associated with longer reaction times on the same trial. 

Note that this finding is in contrast to Gilzenrat (2010), who found larger PDR 

amplitudes to be correlated with better performance. However, it is principally in line 

with Murphy et al. (2011) in that larger amplitudes (at least in the “return to baseline” 

time window) were associated with longer reaction times.  

Murphy et al. (2011) also found that trials in which PDRs were large (and 

performance was relatively low) were followed by improvements in performance. In our 

single trial correlational analysis, there was some evidence for a slower response to the 

next trial when PDR latency was relatively long. However, we did not find any 

correlations between PDR amplitude and reaction time to the next trial. The reasons for 

this discrepancy between our studies and others are unclear, but it is important to point 

out one major difference between our oddball task and Murphy et al’s and Gilzenrat et 

al’s: In both of their studies, the oddball tasks used very simple and easy to categorize 

stimuli, while our study involved a relatively complex semantic judgment. 

Overall, our data therefore support the view that the cognitive process indexed by the 

PDR is related to response preparation or execution, in line with Nieuwenhuis et al. 

(2011). However, our data do not support the idea that larger PDR amplitudes directly 

correspond to better task performance (see, for example Gilzenrat et al. 2010). 

Nieuwenhuis (2011) recently proposed that phasic LC activity and consequently the 

PDR (along with the P300) are not only related to behavioral responding, but also to 

memory encoding. Our analyses provided only weak evidence for a correlation between 

pupil measures and subsequent memory strength. There was a small subsequent memory 

effect, such that larger PDR amplitudes were associated with a higher probability of 
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subsequent recall. However, this finding did not appear to be statistically robust, as it did 

not hold up for analyses conducted separately for each stimulus type. In the individual 

trial analysis, we did obtain a correlation between the mean amplitude in the “return to 

baseline” time window and reaction time at test. However, this correlation became non-

significant when reaction time at encoding to the same stimuli – which can index 

response speed independently of memory strength – was included as a predictor. It seems 

therefore, that pupil diameter measures co-vary with the extent to which the eliciting 

stimulus will later be remembered, but that this correlation is not due to a direct link 

between the cognitive process indexed by the PDR and memory encoding. The 

associations might be explained by third variables (possibly stimulus-evaluation or 

response-related processes) that affect both the PDR and subsequent memory strength. 

Relationship between P300, Novelty P3 and PDR 

In this section we will review the empirical evidence obtained in our study in the light 

of the adaptive gain theory of LC function (especially in its implications for PDR and 

P300) as well as the context updating hypothesis of the P300. First, it is important to re-

iterate that PDR amplitude was uncorrelated with P300 or Novelty P3 amplitude. In fact, 

pupil size in the “return to baseline” time window even negatively correlated with ERP 

amplitudes. Furthermore, the response patterns for frequents, infrequents and pictures 

were not exactly in parallel between the PDR and the ERP components (keeping in mind, 

however, that it is not clear whether the positivity elicited by pictures in the P300 factor 

is an instance of the P300). These patterns suggest that while P300, Novelty P3 and the 

PDR are elicited by events that violate expectancies, the cognitive processes indexed by 
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each response are unlikely to be “central and autonomic analogues of the same cognitive 

process” (Nieuwenhuis et al., 2011). 

The extent to which our data confirm predictions from the adaptive gain theory 

(Aston-Jones & Cohen, 2005) can also be investigated by exploring relationships 

between the tonic pupil diameter (as approximated by pupil diameter in the baseline 

period) on the one hand, and measures of performance, PDR amplitude and P300 

amplitude on the other. As predicted by the adaptive gain theory, on individual trials 

smaller baseline diameters were associated with faster reaction times – especially for 

frequent- and picture trials – as well as larger PDR amplitudes in the first time window 

and in the “return to baseline” time window. While in principle, this pattern could be 

explained such that larger baseline diameters do not allow for as much dilation as smaller 

baseline diameters because of ceiling effects, Gilzenrat et al. (2010) found the same 

pattern and through elegant supplemental analyses ruled out the ceiling effect possibility. 

In the light of these significant and relatively high (taking into account the relatively 

high levels of noise on individual trials) correlations, it is even more striking that baseline 

diameter was uncorrelated with P300 amplitude. This speaks against the idea that the 

P300 reflects the phasic response in the LC, at least to the extent to which P300 is 

assumed to follow the patterns predicted by the adaptive gain theory. It is worth noting, 

however, that Novelty P3 amplitude was significantly and negatively correlated with 

baseline pupil diameter (r=-.04, table 1). It is possible that prior studies that did not use 

PCA to disentangle ERP components, and that reported negative correlations between 

baseline pupil diameter and P300 amplitude (e.g., Murphy et al. 2011), in fact picked up 

variance from the Novelty P3. The other patterns within the Novelty P3 were also 
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consistent with predictions from the adaptive gain theory: Its response patterns paralleled 

memory strength, its amplitude was negatively correlated with reaction time on the same 

trial and at test, and subsequent memory effects were present for both subsequent recall 

and subsequent recognition speed. All these associations between Novelty P3 and 

behavior are generally in line with the idea that large Novelty P3 amplitudes coincide 

with a strong task focus (“exploitation”), which, in turn leads to improved task 

performance and memory encoding. 

It is next worth discussing separately each behavioral measure that we investigated. 

For example, many physiological variables were correlated with reaction time on the 

same trial. In the individual trial analysis, these included Novelty P3 amplitude, P300 

latency, PDR latency, mean pupil diameter in the “return to baseline” time window and 

baseline pupil diameter. All variables remained significant predictors of reaction time 

when the other physiological responses had been accounted for. Therefore, our data do 

not allow for the conclusion that the PDR is more closely related to reaction time than 

P300, as we had hypothesized. However, it is also not warranted to conclude that all of 

our physiological responses are indices of cognitive processes that are directly integrated 

into the stimulus-response stream. For example, the link between P300 latency and 

reaction time has been found previously (Kutas et al., 1977) when, like in our study, 

participants were instructed to respond accurately (the high accuracy of .94 confirms that 

participants in our study attempted to respond accurately). However, in a condition where 

participants were asked to respond faster, the correlation was abolished (Kutas et al. 

1977). To clarify which response is more closely associated with behavioral responding, 

future studies should apply experimental paradigms that differentially manipulate 
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variance in reaction time due to stimulus evaluation time and due to response demands. If 

the former manipulation primarily affected P300 latency and the latter primarily affected 

PDR latency, this would speak for a dissociation of the extent to which each response is 

associated with behavioral responding. 

It is also worth noting that the amplitudes of neither P300 nor PDR were negatively 

correlated with reaction time. This constrains the theory of their functional significance 

such that the extent to which the associated cognitive processes are elicited does not 

appear to affect behavior directly. 

The context updating hypothesis predicts that P300 amplitude will be correlated with 

the probability of subsequent recall for the eliciting event (Donchin, 1981). In line with 

this idea and with many prior studies beginning with Karis et al. (1984), we obtained a 

P300 subsequent memory effect. The correlation between P300 amplitude and the 

reaction time during recognition strengthened the association between P300 and memory. 

Interestingly, however, Novelty P3 amplitude was also correlated with subsequent recall 

(in line with Kamp et al., in press) and recognition speed, and the regression analysis 

suggested that the two ERP components accounted for overlapping portions of the 

variance in subsequent memory.  

The evidence for a correlation between PDR and subsequent memory was much 

weaker, as discussed above. Unlike the PDR, the P300 and Novelty P3 remained 

significant predictors of subsequent recognition reaction time when reaction time at 

encoding had been accounted for, suggesting a stronger (and possibly more direct) 

relationship between the ERP components and subsequent memory than for the PDR. 
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Summary and Conclusions 

Overall, the results of the present study suggest that the Novelty P3, P300 and the 

PDR respond in different ways to experimental manipulations and co-vary in 

qualitatively different ways with behavior. None of our physiological measures uniquely 

predicted reaction time or subsequent memory, but our data speak for a closer correlation 

of P300 with subsequent memory and a closer correlation of the PDR with behavioral 

responding. Novelty P3, in contrast, co-varied with many measures of behavior, leading 

us to suggest that it might index a more general resource allocation process.  

To further investigate these relationships, future studies should employ paradigms 

that manipulate stimulus evaluation time and response preparation demands 

independently. Such designs may be more sensitive to disentangle the variance of each 

measure with the two processes.  
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