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ABSTRACT 

Although high-throughput methods exist to identify most small disease causing 

mutations (e.g. substitutions that alter an amino acid), assays to identify larger classes of 

mutations such as deletions/duplications are time consuming, laborious and expensive. 

No in-silico system exists to identify intragene deletion or duplication candidates. We 

hypothesize that a computational system, SPeeDD (System to Prioritize Deletion or 

Duplication candidates), utilizing machine learning techniques can be employed to 

identify the most likely disease causing deletion or duplication candidates within a gene.  

Informative sequence based features were obtained from a set of genes with 

known intragene deletions or duplications for data mining. Machine learning techniques 

were applied to this data. The logic model tree (LMT) method, which is a combination of 

decision tree and logistic regression model, yielded the best results. Sensitivity varied 

depending on the type of machine learning model used, but specificity exceeded 90% for 

all methods evaluated. Sensitivity of the system ranged from 20% to 71.6% depending on 

the type of machine learning method. We were also able to find the new BRCA1 case 

using our system. 

These results suggest that the SPeeDD system provides good sensitivity and 

specificity and can be used to prioritize candidate genes and gene regions for screening. 

Focused screening for copy number variations in prioritized regions will reduce the labor 

and associated costs of the biological assays, and should accelerate the process of 

mutation discovery.  
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ABSTRACT 

Although high-throughput methods exist to identify many small disease causing 

mutations (e.g. substitutions that alter an amino acid), assays to identify classes of larger 

mutations such as deletions/duplications are time consuming, laborious and expensive. In 

addition, no in-silico system exists to identify intragene deletion or duplication 

candidates. We hypothesize that a computational system, SPeeDD (System to Prioritize 

Deletion or Duplication candidates), utilizing machine learning techniques can be 

employed to identify the most likely disease causing deletion or duplication candidates 

within a gene.  

Informative sequence based features were obtained from a set of genes with 

known intragene deletions or duplications for data mining. Machine learning techniques 

were applied to this data. Sensitivity from 20% to 74.2% varied depending on the specific 

machine learning model used, but specificity exceeded 90% for all methods evaluated. 

The logic model tree (LMT) method, which is a combination of decision tree and logistic 

regression model, yielded the best results. The SPeeDD system also succeeded in 

accurately predicting a recently published novel BRCA1 deletion. 

These results suggest that the SPeeDD system provides good sensitivity and 

specificity and can be used to prioritize candidate genes and gene regions for focused 

screening. This will reduce the labor and associated costs of the biological assays, and 

should accelerate the process of mutation discovery. 
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CHAPTER I 

INTRODUCTION 

Statement of problem 

Variations in the genomic sequence, known as mutations, can lead to serious 

conditions that may be passed on to progeny. The most critical mutations are those that 

alter the coding potential or regulation of a gene. Most commonly these are amino acid 

substitutions and copy number changes (duplications or deletions of a genomic region). 

Changes in copy number are most often the result of segmental duplication or deletion of 

sequences within the genome and in several cases have been found to cause a variety of 

genetic disorders. Although high-throughput techniques exist for molecularly identifying 

substitution mutations, the methods available for the identification of deletions or 

duplications are often more time consuming, labor and resource intensive and expensive. 

Hence, in silico prediction of those deletion or duplication candidates most likely to occur 

within a particular gene can be an effective strategy to enable investigators to focus on 

the highest-quality candidates. The objective of this research is to: 

Design and implement a high-throughput computational system to identify 

and prioritize candidate intragene deletions or duplications and to make that 

information readily available to genetic and biomedical researchers. 

The computational system developed as part of this research and described below 

(SPeeDD; System to Prioritize Deletions and Duplications) evaluates genomic features 

associated with previously published disease-associated IDDs to predict the most likely 

set of IDDs for a given gene of interest.  

Strategy and objectives of this research  

In this study, the most likely recombination events resulting in deletion or 

duplication mutations are estimated using machine learning techniques. This 

computational and machine learning system is trained on a set of previously published, 
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biologically verified deletions or duplications. The reliability of machine learning 

systems is dependent on the size and quality of the training data set. To construct the 

largest, high-quality training set, I collected information on 1463 previously published 

gross rearrangements from the Human Genome Mutation Database (HGMD). However, 

due to the challenges involved in identifying the exact breakpoints of IDDs, many of the 

publications do not report fully characterized breakpoints, and thus a portion of the 

published information is ambiguous. To ensure quality in the training set, only those 

mutations whose breakpoints had been fully-characterized at the sequence level were 

included in the training set. This study consists of 102 previously published deletions or 

duplications occurring at different gene loci along with 2338 matched control sequences 

derived from the same regions as the previously published cases.  

Features previously implicated in unequal homologous recombinations are 

calculated for the breakpoints in the training set. Features include sequence-based 

features such as GC content of the breakpoints and the distance between the breakpoints, 

as well as melting temperature features and haplotype block information. These features 

were used to annotate the training set of biologically verified IDDs, and the matched 

control set. The annotated training set was then used to train the SPeeDD system to 

predict likely intragene duplications and deletions (IDDs) within a gene and to prioritize 

the candidate IDDs with regards to the likelihood of observing an unequal recombination 

event.  

Purpose of the computational system 

Rather than conducting biological experiments on the hundreds of candidate IDDs 

with an exhaustive search, SPeeDD computationally narrows the list of candidates and 

determines the list of candidates most likely to lead to unequal recombination. Using 

SPeeDD to prioritize the screening of IDD candidates will aid investigators to focus their 
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research on the most likely candidates, reducing the labor and associated costs of the 

biological assays, and accelerating the process of mutation discovery.  

SPeeDD is an efficient, unbiased method to rank candidate intragene deletion or 

duplication regions. The performance of the system has been computationally validated, 

and has also correctly identified a recently published novel duplication. The SPeeDD 

system is available as a web based system that enables the user to identify high priority 

candidate regions for a given gene. An implementation of the SPeeDD system is readily 

available on the web at http://public.eng.uiowa.edu/SPeeDD.  

 

http://windowshade/speed.html
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CHAPTER II 

BACKGROUND 

This thesis presents a novel computational system to identify and prioritize 

intragene deletions and duplications. This chapter begins with a brief review of the 

human genome. A summary of mutation categorization is then presented to provide 

context for the types of mutations under study. It provides information about how 

recombination leads to deletions or duplications, how significant regions of homology 

play a role during recombination, types of significant regions available such as the 

repetitive sequences in the human genome, how abundance of repeats and crossing over 

leads to human disorders, provide summary of molecular assays that are used to screen 

deletions or duplications, provide information about how databases and other resources 

are used to build a computational system. It also provides the details of the how 

knowledge discovery methods such as machine learning methods are used to study the 

trends in the data. Finally at the end of the chapter we have discussed about the previous 

studies done and also discussed about the significance of their work. 

Human genome 

The human genome contains 23 pairs of chromosomes, of which 22 pairs are 

autosomes and one pair of sex chromosome (females have two X chromosomes, males 

have one X and one Y chromosome). A human cell contains around 25,000 to 30,000 

genes. Genes carry information from one generation to the next in terms of A, C, G and T 

nucleotides. In humans as well as most eukaryotes, genes consist of alternating exons and 

intron only the exons contain information pertaining to protein coding. During the 

process of transcription the entire region in which a gene resides is transcribed (both 

exons and introns). The introns are then removed (spliced) from this pre-mRNA to make 

the final product, a mature messenger RNA or mRNA. The resulting mRNA is then 
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typically utilized in the process of translation to create a specific protein. This process is 

illustrated in Figure 1.  

Changes in the genome are called mutations. Such changes may occur in somatic 

or germ cells. The important difference being that mutations in germ cells are potentially 

heritable, where as mutations in somatic cells is not heritable.  

Although it is known that mutations can cause a change in an observable 

characteristic (phenotype), but not all mutations cause a change in the phenotype. 

Mutations in general fall into several categories. The spectrum of mutations extends from 

small single-base changes to large-scale changes in copy number or chromosomal 

structure. Below is a discussion of the types and examples of the mutations available. 

 

Figure 1 Central Dogma 

Types of mutations 

Different types of mutations may have no effect on the organism, or may have 

one or a spectrum of effects. In addition, different types of mutations affect the DNA and 
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corresponding protein sequence differently. Mutations may lead to nutritional or 

biochemical variation, or changes in a morphological trait, behavior, change in gene 

regulation or may have no effect.  

Single-base substitutions 

Mutations affecting a single base are also called as point mutations. As the name 

indicates only a single nucleotide base gets substituted by another. If a purine (A or G) is 

replaced by a purine or pyrimidine (C or T) is replaced by a pyrimidine it is called a 

transition. Similarly, in cases where a purine is replaced by a pyrimidine or vice-versa, 

the mutation is referred to as a transversion. Single-base pair mutations that lie in coding 

regions may also be sub-divided into three additional classes. They are missense, 

nonsense and silent mutations. All these mutations are shown in Table 1. 

Missense mutations: 

Missense mutation is a change in nucleotide position that causes a change from 

one amino acid to another amino acid. This mutation results in a different protein 

product. For example: In sickle-cell disease the replacement of A by T at the 17th 

position in the gene beta chain of hemoglobin changes the codon from glutamic acid to 

valine. 

Nonsense mutations: 

The change in nucleotide position causes an amino acid to change to one of the 

STOP codons (TAA, TAG, or TGA) and causes the protein to end prematurely. If this 

mutation occurs in the earlier stage of gene translation then more protein will be lost or 

truncated. For example: In some of the cystic fibrosis patients a change in C to a T at 

nucleotide 1609 position changes the codon. It converts a glutamine codon to stop codon 

and makes an abnormal protein.  
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Silent mutations 

The change in nucleotide does not always cause a change in the amino acid. There 

are different codons that code for same amino acid base. During the process of translation 

in silent mutations the amino acid does not change even though there is a change in the 

nucleotide base. In such cases, we do not see a change in protein.  

Table 1. Single base substitutions a) Missense mutations b) Nonsense mutations c) Silent 
mutations 

Mis sense Mutation Nonsense Mutation Silent Mutation 

TGT  TGG TGT  TGA TGT  TGC 

Cys  Trp Cys  Stop Cys  Cys 

 
 
 

Changes in chromosomal structure 

Chromosomal mutations refer to a change in the structure of the chromosomes. 

These mutations occur during the crossing over period of meiosis. There are six different 

types of structural changes that lead to various types of mutations. They are expansion-

contraction type polymorphisms, insertions, deletions, duplications, inversions and 

translocations which are shown in Figure 2. 

Expansion-contraction type polymorphisms 

Expansion-contraction type polymorphisms are caused due to slipped strand 

mispairing in microsatellites and during unequal crossovers in large units of tandemly 

repeated DNA. For example: Expansion of the CGG triplet in the fragile X syndrome in 

the FMR-1 gene.  
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Insertions 

This mutation adds extra DNA into the existing genome. One of the reasons for 

the occurrence of these mutations is due to the presence of transposable elements. 

Insertions of transposable elements into a gene may cause frameshifts leading to a bad 

protein. Insertions or deletions caused with multiples of three bases may be less serious 

because they do not change the reading frame whereas the insertion or deletions that are 

not multiples of three bases can change the reading frame and may produce an abnormal 

protein. For example: An addition of 'CAG' nucleotides to the Huntington gene produces 

a bad protein that interferes with synaptic transmission in parts of the brain and leads to 

loss of motor control in the Huntington disease. 

Deletions 

Deletion mutation is defined as the loss of DNA from the genome. The number of 

bases deleted may range from a few to thousands. There are primarily three different 

types of deletions, they are unequal crossover, unequal sister chromatid exchange and 

intrachromatid recombination involving direct repeats. Deletions can be homozygous or 

heterozygous. But if the deleted region is essential to life then the homozygous deletion 

would be lethal. Heterozygous deletions can be lethal or nonlethal. For example: Alu-

mediated 7.1 deletions found in BRCA1 in breast and ovarian cancer families. 

Duplications 

Duplication mutation is a doubling of a section of the genome. These may are 

very important chromosomal changes in evolution because they supply with the 

additional genetic information which might be capable of having new function. 

Duplication occurs in directly repeated genes and intergenic direct repeats. Crossing over 

between sister chromatids during meiosis may cause an out of alignment and lead to a 

chromatid with a duplication or a deletion. For example: unequal crossing over created a 

second copy of a gene in the steroid hormone aldosterone.  
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Inversions 

In case of an inversion mutation the whole section of DNA is reversed. Small 

inversion involves few bases within a gene whereas a longer inversion involves large 

regions of chromosome. Inversions are caused by intrachromatid recombination between 

inverted repeats. At times, repairs of chromosome breaks can cause paracentric and 

pericentric inversions. If the centromere is not included in the inversion, it is called 

paracentric inversion but if the inversion is spanning the centromere it is called 

pericentric inversion.  For example: Inversion of genomic sequence from exon1 to intron 

22 in factor VIII gene causes severe hemophilia. 

Translocation 

There are three types of translocations they are Robertsonian fusion, reciprocal 

and insertional translocations. Reciprocal translocation is the most common type of 

translocation in which a segment from one chromosome is exchanged with a segment 

from another nonhomologous chromosome. At times during the exchange translocations 

may alter the position of centromere and size of the chromosome. For example: Offspring 

of an individual who is a carrier with heterozygous translocation for chromosome 21 

leads to downsysndrome. 
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a) 

 

b) 

 
c) 

 

Figure 2 Changes in chromosme structure – a) expansion-contraction type 
polymorphisms b) Insertions c) Deletions and Duplications d) Inversions e) 
Translocation 
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Figure 2 – Continued 

d) 

 
e) 
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Changes in chromosome number 

A change in chromosomal number leads to abnormal number of chromosomes or 

chromosomal sets. In humans, these mutations are known to cause diseases. But in 

agricultural technology the manipulation of chromosomal numbers are routinely used to 

grow larger fruits or flowers. 

Aberrant euploidy 

When changes in chromosome number involve whole set of chromosomes it is 

called abnormal euploidy. The most common abnormal euploids are polyploids like 

triploids (3x), tetraploids (4x) etc.. Odd numbers of these chromosomal sets leads to 

sterility because of unpaired chromosomes during meiosis. But the even sets can produce 

standard (although abnormal) segregation ratios. For example: Polyploids are formed by 

combining sets from different species. This can be advantageous in crop breeding. 

Polyploidy can also result in an organism with greater dimensions and this discovery led 

to advances in horticulture and in crop breeding. 

Aneuploidy  

Aneuploidy results in an unbalanced genotype with an abnormal phenotype. 

Examples of aneuploids are 2n-1 (monosomic) and 2n+1 (trisomic). Aneuploidy is 

believed to result from chromosomal nondisjunction. Aneuploidy in humans is 

responsible for several genetic disorders. For example: Aneuploid conditions in humans 

are Down’s syndrome (trisomy 21) and Klinefelter’s syndrome (XXY). 
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Figure 3 Example of Anueploidy 

Figure from Raven and Johnson 1991

DNA mutations, repair and recombination 

Mutations can be caused by many different stimuli. Environmental agents such as 

ultraviolet light, cigarette smoking and chemicals can cause mutations. They may also 

arise during the process of DNA replication during cell division (mitosis) or production 

of gametes (meiosis). Most damaged bases are repaired by repair systems such as base 

excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR) and by 

direct reversal of base damage. But DNA damages such as double strand breaks are 

repaired by homologous recombination repair (HRR) pathway or by non homologous 

end-joining (NHEJ) pathway. HRR uses similar sequences to join the broken ends 

whereas NHEJ prefers some complementary nucleotides but proceeds without it. 

The process of crossing over is termed as recombination. Recombination plays an 

important role in evolution. However, sometimes it may lead to genomic rearrangements 

and disorders. Recombination occurs in germ-line cells where exchange and reassortment 

of genetic information happens during meiosis. Recombination also happens in somatic 

cells to repair the damaged or broken regions of chromosomes. Defects in recombination 

result in unrepaired chromosomal breaks or aberrant gene translocation, the cost of which 
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can lead to cancer. Cell lines derived from patients predisposed to breast cancer through 

mutations in BRCA1 and BRCA2 exhibited phenotypic properties characteristic of a 

recombination/repair defect (Moynahan et al., 1999; Snouwaert et al., 1999; Moynahan et 

al., 2001). 

The size of genomic rearrangements varies from small to large. Large 

rearrangements occur inter chromosomally or intra chromosomally or DNA slippage 

during replications (Pentao et al., 1992; Krawczak and cooper 1991). Charcot-Marie-

Tooth disease type 1A (CMT1A) is an autosomal dominant disorder resulting from 

unequal crossing-over of misaligned flanking CMT1A-REP elements on chromosome 

17p (Patel and Lupski 1994; Chance et al., 1994). Sequence analysis of this large 

genomic rearrangement revealed flanking CMT1A-REP elements are approximately 30 

kb in length, AT-rich and 98% sequence identity (Reiter et al., 1996). Large genomic 

rearrangements are common in evolution. For e.g. it is known that two genomes may 

have lots of genes in common but are organized in a different fashion. Small genomic 

rearrangements lead to a loss of a whole gene or part(s) of a gene. This study focuses on 

small genomic rearrangements that deletes or duplicates a portion within a gene (IDDs). 

These small rearrangements deleting a portion of the gene may alter gene function or 

gene regulation. 

 There are two main types of genomic rearrangements – homologous 

recombination and non-homologous recombination. Homologous recombination is a 

mechanism where DNA exchange occurs between sequences with extensive homology. 

A hallmark of homologous recombination is the presence of short exact homologous 

regions at or near the breakpoints - the point at which the sequence switches from one 

region to another. Breakpoints are typically found in non-coding regions. Often the 

homology is due to repetitive elements which may be found throughout the genome in 

high copy number – particularly in intronic and intergenic regions.  Examples of 

homologous event include study of gene function by gene knockout, DNA recombination 
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during meiosis, interchromosomal recombination during mitosis, sister chromatid 

exchange and non allelic gene conversion (Stahl 1979; Wasmuth et al., 1984; Liskay et 

al., 1984; Scherer and Davis 1980). Non-homologous recombination occurs between very 

little or short similar sequences. Some examples of these events include chromosome 

translocation, the movements of retroviruses and transposable elements, rearrangement of 

anti body and T-cell receptor of genes (Gerondakis et al., 1984; Stark and wahl 1984; 

Shapiro 1983; Honjo 1983; Hedrick et al., 1984; Malissen et al., 1984). 

Homologous recombination 

There are two types of homologous recombination - equal and unequal. Equal 

homologous recombination showing how recombination leads to exchange of genetic 

material between genes is shown in Figure 4. The gene in this example (Figure 4) 

consists of four exons (A, B, C and D boxed elements), intervening three introns (lines) 

with two repetitive elements in intron 1 and 2. Repeats are a stretch of similar sequences 

that are repeated some number of times. During equal crossover the structure of genes 

remains the same. The resultant of equal crossover consists of admixture of same exons 

form mother to father and vice-versa. Unequal homologous recombination, by 

comparison occurs when similar sequences recombine resulting in a change in gene 

structure – the amount of DNA exchanged is unbalanced. There is however, a 

conservation of genomic material. Unequal recombination results in one chromosomal 

copy with an insertion, and the other with the complementary deletion. Figure 5 presents 

an example of unequal homologous recombination starting from the same gene used in 

Figure 4.  The resultant of unequal recombination leads to a deletion of exon B in the first 

chromosome and a duplication of exon B in the second chromosome (Figure 5). 

 



 16

 

Figure 4 Example of equal homologous recombination between a maternal and paternal 
copy of a gene. 

 

Figure 5 Example of unequal homologous recombination between a maternal and 
paternal copy of a gene leading to a deletion or duplication 

Significant regions of homology 

Similar sequences that are repeated some number of times are known as repetitive 

elements. Features such as length, similarity and distance between sequences play a role 

during unequal cross over (Deininger and Batzer 2002; Lupski 1998,). Hence this study 

will mainly focus on regions with high similarity. 

 



 17

Presence of repetitive sequences in the human genome  

It is known that human genome sequences consist of approximately 25,000 genes 

(Ensembl).  Most of the DNA sequence is not coding. Apparently the superfluous DNA 

(approximately 70% in humans) has been termed as junk DNA (Ohno et al., 1972). 

However, "junk" DNA is not really junk, it might be more appropriately called as "non-

coding" DNA, and these contain various repeat elements. Repeat elements are found 

widely dispersed both among the coding and the non-coding region of the genome.  

Repeats are found both in prokaryotes and eukaryotes. But are more frequent in 

eukaryotes particularly those with larger genomes. 

Approximately 50% of the Human genome consists of repeats (International 

Human Genome Sequencing Consortium 2001). Repeats are classified into different 

types depending on the repeat length. Here is a summary of repeat analysis of the human 

genome (Sanger Institute). 

• 20% consists of LINEs 

• 13% consists of SINEs  (out of which 11% is Alu sequences) 

• 8% retrovirus like and 2% DNA transposons 

• 3% is tandem simple sequence repeats (SSR) 

Types of repetitive DNA 

Repetitive DNA is mainly of two types. They may be tandem (arranged in blocks) 

or they may be interspersed (distributed in the genome) as shown in Figure 6a and b. 

Interspersed repeats and tandem repeats are quite common in mammalian genomes. 

Interspersed repeats are known as mobile or transposable elements they are located at 

dispersed regions in a genome as shown in Figure 6b.  

 



 18

 

Figure 6 Types of repeats a) Tandem repeats b) Interspersed repeats 

Interspersed repeats 

In mammals, the most common interspersed repeats are Long Interspersed 

Nuclear Elements (LINEs) and Short Interspersed Nuclear Elements (SINEs). The 

average length of LINE is 7 kb. Human genome contains some 850,000 LINEs. Most of 

these belong to a family called LINE-1 (L1). Length of L1 element ranges from few 

hundred to 9000 base pairs. Length of SINE element varies from 100-500 bp. Human 

genome contains about 1,500,000 copies of SINE elements.  Alu’s are the most abundant 

of SINES. Alu elements are about 300 bp long and found on average every 3-4 kb in the 

human genome (Batzer and Deininger 2002).   

Though the LINE elements are highly similar it is more observed that SINEs are 

involved in unequal crossovers. The SINE elements such as ALUs are likely to be close 

and abundant for unequal recombination. In comparison LINE elements, are big and 

similar but are far from each other. Hence, reduces the chances of recombination. Mis-

pairing between Alu elements and L1 elements has been shown to cause deletion or 

duplication in several genes.  
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Tandem repeats 

In contrast to interspersed repeated DNA tandem repeats are an array of 

consecutive repeats. They are sub classified based on the size of blocks; they are 

satellites, minisatellites and microsatellites. The size of a satellite DNA ranges from 100 

kb to over 1 Mb and most of these are located at centromere. The size of the minisatellite 

ranges from 1 kb to 20 kb. There are two common minisatellites, one found anywhere in 

the genome (variable number of tandem repeats (VNTR) and the other mostly found at 

telomeres of a chromosome. Its repeat unit ranges from 9 bp to 80 bp. The telomere 

contains tandem repeated sequence such as GGGTTA. The size of telomere repeat is 

about 15 kb. The size of microsatellite ranges from 1 to 6 bp and the whole repetitive 

region of a microsatellite spans less than 150 base pairs. Microsatellites show a high 

degree of length polymorphisms and are extremely useful in human genetic studies.  

These repeats are also called as short tandem repeat polymorphisms (STRPs).  

Repeats and Human diseases 

Previous studies revealed that length and similarity between sequences correlate 

positively with the distance between sequences during recombination. Repeats such as 

Alus are well-known to be involved in unequal crossovers leading to diseases (Deininger 

and Batzer 2002). There are several examples of unequal crossover between homologous 

chromosomes leading to a disease. Genes such as LDLR, BRCA1, RB1, ABCA4, C11 

have large numbers of repeats, and therefore are likely to be effected by unequal 

crossovers (Lehrman et al., 1985; Lehrman et al., 1987). The focus of this research is to 

compile all known cases of deletions or duplications greater than at least 20 base pairs 

within a gene and to look for any similarities and differences applying machine learning 

algorithms. 
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It is known that mutations involving repetitive sequences cause human diseases. 

Instability of microsatellite, minisatellite repeats leads to human disorders such as Fragile 

X syndrome (Oberle et al., 1991), myotonic dystrophy (Mahadevan et al., 1992), 

Huntington’s disease (Gusella et al. 1983) etc. Repetitive sequences such as SINEs and 

LINEs are also known to cause human disorders. It is very well known that most of the 

unequal crossovers that lead to diseases are known to occur between Alu (SINE) 

elements.  

Alu repeats leading to human diseases 

Alu elements affect the genome by factors like recombination between the 

elements, insertions, gene conversion and alterations in gene expression (Deininger and  

Batzer 2002). Insertion of an Alu might change the transcription or disrupt the open 

reading frame when inserted in exonic region of a gene. Of the diseases related to genetic 

disorders such as breast cancer and neurofibromatosis ~0.1 % of them are due to Alu 

insertions (Deininger and Batzer 2002).  

Alu elements and recombination 

Deletion or duplication can occur due to unequal homologous recombination 

between Alu elements. It is known that Alu elements hold particular characteristics that 

make them prone to recombination. These are: 1) The sequence identity is on average 

greater than 75% between the Alu elements 2) Alu elements are present in close 

proximity within the genome; hence more chances of recombination events happening 

between them 3) Due to the large quantity of the number of Alu elements present in the 

genome there are numerous identical DNA stretches increasing the probability for 

recombination and 4) A chi-like motif that is present within the Alu sequence may 

stimulate recombination (Callinan and Batzer 2006). 
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It is well known that Alu mediated recombination may sometimes lead to disease 

like breast cancer, Parkinson, diabetes type II etc. Approximately 0.4% of human genetic 

disorders result from Alu mediated unequal homologous recombination (Deininger and 

Batzer 2002). This is almost certainly a conservative measurement as this type of 

mutations is under-surveyed. At the transcript level, these would result in removal or 

replication of entire exons. The biological assays that are most commonly used to identify 

mutations this type are described in the section below. 

Identification of deletions or duplications using 

molecular techniques 

Deletions and duplications can be molecularly confirmed using several different 

assays, with each technique having its own advantages and disadvantages. Which assay is 

best depends on a variety of factors including the expected size of the mutation, the 

number of samples to be assayed, and how exactly the position of the mutation (s) are 

known. For example, large-scale mutations such as chromosomal abnormalities are 

usually detected by performing Fluorescence in-situ hybridization (FISH), Southern 

blotting, CGH and array CGH. If the number of samples to be assayed is large, then the 

overhead cost of acquiring and adopting an arrayCGH platform is amortized across the 

large number of samples. Smaller mutations affecting a few tens or hundreds of bases can 

be confirmed using techniques such as quantitiative PCR when the sample size is low, or 

with high-density (potentially custom designed) arrayCGH when the sample size is high. 

Several of the most common assays are described below.  

Southern blotting  

Southern blotting (Southern EM 1992) is the most widely used technique to 

identify deletions and duplications. In this assay, genomic DNA is fragmented and 

separated by fragment size. The size and quantization of the fragments derived for the 
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locus under study are then used to determine if a deletion or duplication has occurred. 

The fragmentation of the DNA is performed with one or more restriction enzymes, which 

cleave the DNA at specific motifs (restriction sites). The fragmented DNA is then 

electrophoresed on an agarose gel, which separates the fragments by size, with the 

smaller fragments moving more rapidly through the matrix of the gel. The DNA 

fragments are then denatured and transferred from the agarose gel into a membrane. 

Finally, the membrane is probed with a labeled DNA fragment of the gene or genomic 

region of interest. This will allow visualization of the fragments of genomic DNA from 

that gene or region.  

Polymerase chain reaction  

Polymerase chain reaction (PCR; Saiki et al., 1988) is perhaps the most versatile 

and commonly used assay in molecular biology. It provides a focused and automatable 

method to amplify the DNA from a specific region. The typical application of a PCR-

based assay to detect deletions and duplications is to amplify from both flanks of the 

deleted region and run the resulting product on a size-separating agarose gel. For a 

sample with two normal copies, this produces a single band on the gel at a particular 

molecular weight. However, duplications produce banks of larger molecular weight, and 

deletions produce lower molecular weight fragments. Thus, with appropriate normal 

controls, either heterozygous or homozygous deletion and duplication mutations may be 

distinguished. The PCR process is essentially multiple rounds of geometric replication of 

a specific region. This procedure requires a thermostable polymerase to duplicate the 

strands, as well as two oligonucleotide primers flanking the region to be amplified. Each 

iteration of PCR-based duplication results in a doubling in the representation of the 

amplified region. Thus 30 rounds of PCR results in approximately a billion-fold 

amplification (230 = 1,073,741,824). The primary limitations on PCR-based assays are the 
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relatively limited primer size that can be amplified, and the specificity of the PCR 

primers. Essentially, you have to know exactly what you are looking for. 

A more general approach to PCR-based detection of deletions and duplications is 

quantitative PCR (Q-PCR). This approach requires a much higher degree of control of the 

temperature than a standard thermocycler, and a better resolution of the exact copy 

number representation after multiple rounds of PCR. The benefit of Q-PCR over PCR is 

that the exact flanking regions do not have to be characterized, and the sizes of the 

mutation do not have to be known. Instead, a small region anywhere within the deleted 

region is assayed and the quantization of the amplification is compared among cases and 

controls. 

Fluorescence in-situ hybridization (FISH) 

Fluorescence in-situ hybridization (FISH) is useful for identifying chromosomal 

abnormalities. FISH allows researchers to visualize and map where a particular sequence 

falls within an individuals chromosome. This assay is typically performed on a spread of 

condensed metaphase chromosomes using one or more fluorescently labeled probes. The 

location and relative size of the hybridized probe provides evidence for changes in size or 

location of the underlying locus. The benefit of FISH is that it allows visualization of the 

entire context surrounding a deletion or duplication mutation. For example, if there have 

been large-scale changes to the genome resulting in chromosomal abnormalities such as 

translocations or changes in ploidy. The limitation of FISH is that in practice only the 

largest of duplications or deletions (100’s of kb) are observable. It is possible to identify 

smaller mutations, but it requires a more focused set of probes, at which point other 

methods may be more cost effective.  
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Comparative genomic hybridization (CGH) 

Comparative genomic hybridization (CGH); (Bentz et al., 1998) is a fluorescent 

cytogenetic technique that identifies gains, losses and amplifications of DNA. During 

CGH studies the case and control tissues are labeled with different fluorophores. The 

labeled case and control DNA are then hybridized to a normal metaphase chromosome. 

The intensity ratio between cases and controls along the length of the chromosome under 

study is used to evaluate regions of DNA gain or loss. CGH is sensitive to amplifications 

of 1 Mb or larger, while a single copy loss can be detected if the region is greater than 10 

Mb in length. CGH has been applied to identify copy number polymorphisms or genomic 

rearrangements in human genomes (Sebat et al., 2004) and identifying alterations in 

breast cancer. 

Micro array based CGH 

Recently, array-based CGH methods are more commonly used to detect copy 

number changes. ArrayCGH can be performed at a higher resolution than traditional 

CGH, and can simultaneously survey the entire genome. Similar to CGH DNA, case and 

control samples are labeled with different fluorescent colors and hybridized with several 

hundreds or thousands of DNA probes. The color ratio of case to that of control DNA is 

then calculated along the chromosomes to evaluate regions of DNA gain or loss in the 

case sample. Micro and macro deletions can be detected using array CGH method (Pinkel 

et., 1998, Pinkel and Albertson 2005), with the theoretic ability to detect copy number 

changes as small as 5 to 10 kb. 

Summary of assays available to detect deletions or 

duplications 

Each molecular method described so far to identify deletions or duplications has 

advantages and disadvantages. Hybridization methods such as blotting and CGH require 
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more DNA (1-5µg) whereas PCR based assays can use 100-1000 fold less DNA. 

Methods specifically designed for measuring DNA copy number changes such as array 

CGH also have limitations.  Overall, the methods are each relatively expensive and do 

not have fine resolution across the entire genome. 

Databases and other resources 

The past decade has seen the completion of the human genome, and a tremendous 

amount of additional biomedical data including disease descriptions and catalogs of 

known mutation. Much of this data is available from on-line databases that provide 

access to those resources. The sections below provide a background on some of these 

databases and other resources used in the performance of this research. 

Mutation databases 

Biological mutation databases like OMIM, Human Genome Mutation Database 

(HGMD), Universal Mutation Database (UMD), the WayStation database and locus 

specific databases (such as BRCA1 database, LDLR database, etc) provide extensive data 

on previously identified disease-causing mutations. The availability of these databases 

offers advantages and disadvantages. For example, the locus-specific databases excel in 

having the greatest depth of information often having ethno-geographic origin data, 

population frequency data, detection methodology data and other additional data. 

However, this comes at the cost of having to incorporate data in a variety of formats from 

heterogeneous sources. Locus-specific databases often also suffer from poor gene-wise 

coverage, lack of uniform layout content and quality control (i.e., not all mutations are 

validated), problems with upkeep and maintenance of data, unreliable URLs and are not 

publicly available in some cases. Similar kinds of problems also exist with OMIM and 

UMD. But However, HGMD has the convenience of a central repository with a very high 

coverage of genes and mutations compared to other databases (Stenson et al., 2003). 
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Hence we have used HGMD database to gather the list of genes with intragene deletions 

or duplications. 

Gene Annotation repositories 

Genomic databases such as those provided from Ensembl, UCSC, and NCBI 

consist of both the complete genome assembly as well as genomic annotation data. All 

three of these resources provide access to gene-focused information. Several specific 

pieces of data are most critical: (1) cross-referencing of a gene with a variety of naming 

standards (RefSeq, HUGO symbol, gene name, mRNA accessions, etc), (2) the exact 

position within the genome of the transcript, and (3) the gene structure which maps the 

positions within the transcript onto genomic coordinates. The UCSC genome database 

was selected as it provides access to genomic databases through which gene and genomic 

information can be accessed programmatically. This database consists of information 

about the gene structures, repetitive sequence elements, and a wide range of additional 

genomic annotations. Hence, the availability of computer resources, biological mutation 

databases and genomic databases now permits new approaches to understanding the 

mutation mechanisms. 

Haplotype block data  

Genomic rearrangements are often associated with recombination hotspots 

(Purandare and Patel, 1997; Lupski, 1998; Elliott and Jasin, 2002). It is also known that 

the regions between the haplotype blocks are recombination hotspots where the 

sequences tend to recombine (Daly et al. 2001; Patil et al. 2001; Dawson et al. 2002; 

Gabriel et al. 2002; Phillips et al. 2003).  A haplotype block is defined as a DNA segment 

within genetic markers (usually SNPs) exhibit little or no recombination activity (Wall 

and Pritchard 2003; Hey 2004) within a block. The International HapMap Project is a 

collaborative study to identify the genetic similarities and disparities among humans by 

studying various populations (http://www.hapmap.org/). The haplotype block structures 
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identified as part of the International HapMap Project will increase researchers ability to 

identify genes involved in diseases which will in turn aid in identifying therapeutic drugs 

(International HapMap Consortium 2005; Deloukas and Bentley 2004). The goal of this 

project is to compare the genetic sequences of diverse individuals in order to identify 

regions of chromosomes where genetic variants are shared between populations. 

The focus of the HapMap group is to identify haplotype block data based on 

single nucleotide polymorphisms (SNPs) in various populations. The International 

HapMap Project was initiated in early 2003. By the end of February 2005, the project had 

gathered more than one million SNP markers in 270 individuals from four ethnically 

different study populations (30 trios from Yoruba, 30 trios from CEPH, 45 individuals 

from Tokyo and 45 individuals from Beijing). Unfortunately, the International HapMap 

Project does not currently provide access to the haplotype block structures for a given 

population. They are still in the process of developing algorithms to determine haplotype 

blocks based on LOD, D’ and r2 values of SNP markers for a given chromosome. 

Currently the International HapMap Project has an option to download the SNP marker 

data to haploview software and visualize the haplotype blocks for a max of 250 kbp 

region. Haploview software allows haplotype analysis of genotype data. 

The Encode project and Perelegen Sciences are two additional groups that are 

studying population variations similar to the International HapMap Project. Perlegen 

Sciences(http://www.perlegen.com/) genotyped more than 1.5 million SNPs in 71 

individuals including those of European American, African American and Chinese 

ancestry. More than 112 million individual genotypes were obtained. Using data 

generated by Perlegen Sciences Hinds et al (2005) published a comprehensive study of 

genetic variation in three different populations. The genotypes were partitioned into 

haplotype blocks for each chromosome using the HAP phasing software (Halperin and 

Eskin, 2004). Haplotype block start and end positions for each chromosome are available 

to download from their website (http://research.calit2.net./hap/wgha/). 
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Knowledge discovery or machine learning techniques  

Data mining algorithms are very useful when exploring large quantities of data 

and attempting to discover meaningful patterns from that data. Such techniques use 

statistical analysis, artificial intelligence, and machine learning technologies to identify 

patterns that are intractable to find by manual analysis alone. 

The general structure of a data mining experiment is outlined in Figure 8 in the 

context of a biological problem. The Biological Understanding phase focuses on 

understanding the project objectives and requirements from a biological perspective, and 

then converting this knowledge into a data mining problem. The Data Understanding and 

Data Preparation phases are the most time consuming. The objectives of these two phases 

are to understand what features play a role biologically and identify the features that are 

sensible to obtain computationally. In the Modeling phase, various machine learning 

algorithms are applied and their parameters are calibrated to optimal values in the 

Assessment phase. There are many types of machine learning algorithms, several of 

which are described below. 
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Figure 7 Phases of data mining 

Decision trees 

The decision tree method is based upon a graph of decisions and their outcomes. 

This algorithm is used to predict or classify a problem – an easily interpretable white box 

model. The C4.5 implementation is the most widely used decision tree algorithm. It 

determines what features to use at a decision point based on information gain (Ross 

Quinlan 1993). The splitting procedure is repeated in a recursive manner until further 

splitting is not beneficial. In the resulting tree structure, each inner node in the tree 

corresponds to a variable, each branch represents a possible value or range of values of 

that variable and each leaf represents the predicted value of target variable. 
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Neural networks (ANN) 

Neural networks are non-linear statistical data modeling tools. A neural network 

or artificial neural network (ANN) is an interconnected group of artificial neurons that 

uses mathematical or computational modeling to identify patterns in data based on the 

weights of the observed data (Hertz et al., 1990; Havkin 1999; Lawrence 1994). They are 

used to model complex relations between input and output nodes based on a random 

function approximation method which 'learns' from data based on the weights. 

K-nearest neighbor  

The k-nearest neighbor algorithm (k-NN) is a pattern recognition method that 

classifies the output based on the closest training examples in the feature space 

(Dasarathy 1991). The space is partitioned into regions. The training phase of the 

algorithm consists of feature vectors and class labels of the training samples. During the 

actual classification phase, the same features used in training the system are computed for 

the test sample (for which the correct classification is not known). The test data point 

closest to a region is considered to be part of that class. Distances from the new vector to 

all stored vectors are computed and the k closest samples are selected. The new point is 

predicted to belong to the class that is nearest to the one within the set. 

Logistic model tree (LMT) 

Logistic Model regression (LMT) is a combination of tree induction and logistic 

regression model resulting in a single tree (Landwehr et al., 2003; Landwehr et al., 2005). 

A logistic model tree consists of a standard decision tree structure with logistic regression 

functions at the leaves using posterior class probabilities. Therefore, LMTs consists of a 

tree structure that is made up of a set of inner nodes and a set of leaves or terminal nodes 

in an instance space. Tree induction identifies subdivisions by recursively splitting the 
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instance space in a divide-and-conquer fashion until further subdivisions are not 

beneficial. In a study conducted on 36 datasets by Landwehr et al., they concluded that 

the LMT model outperformed simple logistic, multi logistic, C4.5 and CART methods 

(Landwehr et al., 2005).  In general, LMT model produces smaller trees than the 

classification trees built by C4.5 or CART. 

Support vector machines (SVM) 

A support vector machine (SVM) applies linear classification techniques to non-

linear classification problems. The support vector machine method is used for 

classification problems – defining separate features as different dimensions and thus 

partitioning regions in a multidimensional space corresponding to known outcomes. A 

hyperplane separates the data points “neatly” with maximum distance to the closest data 

point from both classes (Cortes and Vapnik 1995). 

Summary of data mining 

There are several studies that used data mining algorithms such as neural 

networks, hidden markov models and support vector machines to identify core promoters 

(Ohler et al., 2002; Pavlidis et al., 2001; Ben-Hur and Brutlag, 2003; Sharan and Myers, 

2005; Reese 2001). Other projects, such as the PAR (prioritization of annotated regions) 

algorithm also used knowledge based methods to identify mutations (Braun et al., 2006). 

Hence, for more than a decade data mining and machine learning has become popular to 

identify patterns. 

Previous studies and significance of their work 

According to HGMD statistics approximately 6% of the mutations available in the 

database are intragene deletions or duplications (Stenson et al., 2003). It is known that 

intragene deletions or duplications are nonrandomly distributed in the human genome 

(Mitelman, 2000) and are responsible to predispose the carrier to breast and colon cancer 
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(Rabbitts, 1994; Puget et al., 1999; Petrij-Bosch  et al., 1997; Wijnen et al., 1998; 

Mitelman, 2000) and inherited diseases (Stankiewicz and Lupski  2002). 

Intragene deletions or duplications are one of many categories of mutations that 

can cause disease. Different types of mutations occur with varying frequencies in a gene-

dependent fashion. For some diseases (e.g., Duchenne and Becker muscular dystrophy), 

intragene deletions or duplications are common causes of disease. In contrast, they are a 

rare cause of other diseases (e.g. hemophilia A,Lesch-Nyhan syndrome). 

Repetitive elements and similar sequences are known to present an abundant 

opportunity for genomic rearrangements (Deininger et al., 2003) and mutations involving 

Alus are actively involved in human diseases (Batzer and Deininger, 2002). 

Approximately 0.4% of human genetic disorders result from Alu mediated unequal 

homologous recombination (Deininger and Batzer, 1999). A study revealed that GC 

content increases in the regions of recombination and the presence of a 26 bp core 

sequence in Alu mediated unequal homologous recombination (Rudiger et al., 1995). 

Another study revealed that during rearrangement mechanism features like repeat size, 

degree of homology, and distance between the similar sequences play a major role 

(Stankiewicz and Lupski, 2002). 

Most of the gross rearrangement analyses have been confined to relatively few 

genes (Monnat et al., 1992; Janssen et al., 1993; Osterholm et al., 1996). But a recent 

study on a different set of genes revealed that sequences flanking unequal recombination 

breakpoints (breakpoint position ± 15base pair) tend to be AT rich. This study also 

reported that direct repeats are over represented in deletion breakpoints (Abeysinghe et 

al., 2003). The features that were the focus in the previous studies were length of the 

similar sequences, percent identity between the sequences, whether repetitive elements 

were involved and distance between the sequences. We included this set of features used 

in previous studies and also incorporated novel features such as the GC content of the 
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pairs of similar sequences, GC content of the deleted sequence, melting temperature 

characteristics and haplotype characteristics of the sequences likely to recombine. 

 



 34

CHAPTER III  

COMPUTATIONAL AND MACHINE LEARNING APPROACH 

The goal of my thesis is to design and develop a novel method to identify 

intragene deletions or duplications (IDDs) using computational and machine learning 

methods. IDDs include a gene and 5 kb upstream and downstream of a gene; which 

means deletions or duplications within a gene, promoter region and 3’ UTR regions. 

Computational methods were used to extract key feature data from a set of published 

IDDs. Machine learning algorithms or data mining techniques were further applied to 

train on the set of key features to predict IDD candidates for a given gene. 

High-level picture of our novel approach 

The approach is briefly outlined in Figure8. My strategy for identifying IDD 

candidates is accomplished in three stages. The First stage is to collect fully-characterized 

breakpoints for previously published IDD cases. In this context, fully-characterized 

implies that the exact breakpoint of the IDD is known. The next stage is to identify and 

select informative features of IDDs, and to compile known case and control sets based on 

the fully-characterized breakpoints collected in the first stage. Final stage is where 

analysis is performed utilizing the case and control sets with features to prioritize 

candidate IDDs. The prioritization is accomplished using machine-learning algorithms 

which have been trained using the features of the case and control data sets.  These three 

strategies combined lead to a solution to predict deletion or duplication candidate regions 

for a given gene. 
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Figure 8 General outline of the process. 

On average the size of an intron is longer than the exon and hence they contain 

greater number of Alus and therefore more chances of unequal homologous 

recombinations. But of all the possible unequal recombinations, only few may lead to 

disease. Others may lead to a variation in the expression of that particular protein, or may 

have no effect. In addition, assays to identify deletions or duplications are time 

consuming and expensive. Hence prioritization of candidate IDDs with in-silico 

procedures should be very helpful. 

Although studies have been performed to investigate the mechanism underlying 

homologous recombination, to our knowledge there is no bioinformatics system that will 

predict deletion or duplication candidates within a gene based on a previous set of known 

deletions or duplications. SPeeDD – System to Prioritize Deletions or Duplications is 
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such a system, designed to estimate the most probable recombination events resulting in 

deletions or duplications by applying computational and machine learning techniques on 

the DNA sequence parameters of known biologically verified deletions or duplications. 

Reliability of any machine learning system is based on the type of features used 

and the quality of the training data set. After surveying the literature, we used the features 

that are very well understood and proven to be involved during unequal homologous 

recombination (Deininger and Batzer 1999; Brooks et al., 2001; Shaw et al., 2002; Shaw 

et al., 2004; Abeysinghe et al., 2003; Lupski and Stankiewicz 2005; Sen et al., 2006). 

After obtaining the entire feature set data for the cases and controls data mining 

techniques were applied on the DNA sequence features. Data mining softwares consists 

of several data pre-processing and machine learning methods like artificial neural 

networks, decision trees, k-Nearest Neighbor, support vector machines and so on. 

The performance of the computational and machine learning system developed is 

evaluated using cross validation methods.  All different types of machine learning 

methods were applied on the system and efficacy of the models are compared in terms of 

sensitivity and specificity. The model that yielded high sensitivity and specificity values 

were considered for the final implementation of the system to predict candidate regions 

for a given gene of users interest. 

SPeeDD is an interactive web based tool, which aids investigators in identifying 

intragene deletions and duplications. This software with number of valuable options for 

the scientist may provide a fast and less expensive method to predict deletions or 

duplications. The application of computational and machine learning methods are 

complementary to laboratory assays, it helps investigators focus on more likely 

candidates first with the goal of increasing the pace and efficiency of biological research. 

Hence our novel method to identify possible deletion or duplication candidate regions 

likely to cause disease within a gene reduces cost and is effective. 
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CHAPTER IV 

METHODS OF THE COMPUTATIONAL SYSTEM 

The computational system developed as part of my thesis research (SPeeDD) 

incorporates features of previously reported intragene deletions or duplications (IDDs) to 

predict novel deletion or duplication candidate regions within a gene. This required the 

collection of two important data sets, and the harnessing of several computational tools. 

The first data set required was the collection of previously reported IDDs. This was 

collected from the Human Genome Mutation Database (HGMD). The primary literature 

was then evaluated for each of the reported IDDs, and the exact break-point sequences 

were identified when possible. These cases are then annotated with genomic position, and 

position within the gene using the UCSC genome database. The second data set is the 

control data set that was derived for each case. It includes a set of potential homologous 

recombination sequences that have not been observed to be causing disease. 

Identification of genomic rearrangements 

HGMD maintains a comprehensive database of published human mutations 

(Cooper and Krawczak 1996; Krawczak et al., 2000). Data from HGMD is freely 

available, and was obtained by searching the website by gene name. This search was 

performed for all of the 12,371 gene names with official HUGO symbols (Povey et al., 

2001; Wain et al., 2004). From this list of gene symbols, the list of genes in which gross 

insertions or deletions have been observed was obtained. Gross insertions or deletions are 

the nomenclature used by the HGMD database to describe deletions or duplications of 

more than 20 bp. As of September 2006, HGMD consists of 53,208 mutations recorded 

in 2,056 genes. As shown in Figure 9 the class of mutation in which we are interested, 

gross insertions or deletions account for about 6.5 % of all mutations in the HGMD 

database. 
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Figure 9 Representation of the HGMD statistics as of September 2006. 

Deletions or duplications that occur within a gene the IDDs are one of the least 

surveyed type of mutation that account for a significant fraction of disease-causing 

alterations. The mutations in HGMD are classified into small deletions, small insertions, 

small indels, nucleotide substitutions (missense/nonsense/splicing/regulatory), gross 

deletions, gross insertions, complex rearrangements and repeat variations. Each mutation 

is also associated with a gene. As an example, the summary of mutations associated with 

ABCA4 is shown in Table 2 divided into the total number of mutations for each mutation 

class. ABCA4 has no mutations reported for nucleotide substitutions (regulatory), gross 

insertions and duplications and repeat variations (Table 2). Detailed information on the 

nucleotide substitutions is available via the provided hyperlink, an example of which is 

shown in Table 3. The exact nucleotide base pair change, its effect on coding, and the 

associated disease(s) are detailed as shown in Table 3, along with a reference to the 

journal article. Unfortunately, the hyperlinks provided for the mutations of interest (gross 

deletions or insertions or complex rearrangements) do not provide the same level of 
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detail. Instead, as shown in Figure Table 4, mutations in the gross deletion or duplication 

category only provide data on the particular gene regions (e.g. exons 20 through 22 in the 

Maugeri et al Stargardt deletion) that are affected and a link to the publication in which 

the mutation was reported. 

Construction of local deletion or duplication database 

HGMD does not have a computationally accessible programming interface for 

programmatic interaction, nor do they provide a bulk download option to obtain the entire 

mutation database. They do however; allow web-based interfaces to access mutations on 

a per-gene basis. To obtain the complete set of IDDs from HGMD, I therefore developed 

programs to search HGMD based on gene name. I collected the description, phenotype 

and publication links of all gross deletions and gross duplications from HGMD and 

stored it in our local database as shown in Figure 10. Our database (the University of 

Iowa Human gross deletion or duplication database) has a total of 1463 IDDs in 441 

genes with known gross deletions or duplications along with links to scientific 

publications in which these mutations were published. I manually examined a majority of 

the publications and collected a set of genes with gross deletions or duplications that have 

their breakpoint regions sequenced and published. From this literature review and 

through direct contact with the authors I was able to collect fully characterized break 

points for 102 intragene deletions or duplications. 
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Table 2 Number of entries by mutation type for the ABCA4 gene in the HGMD 
database 

Mutation Type  Total number of mutations 
Nucleotide 
substitutions(missense/nonsense) 

294 

Nucleotide substitutions(splicing) 46 
Nucleotide substitutions (regulatory) 0 
Small deletions 52 
Small insertions 12 
Small indels 1 
Gross deletions 3 
Gross insertions & duplications 0 
Complex rearrangements  1 
Repeat variations 0 
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Table 3 HGMD details of the nucleotide substitutions (missense / nonsense) of the 
ABCA4 gene 

Accession 
Number 

Codon 
Number 

Nucleotide Amino 
acid 

Phenotype Reference 

CMO14282 1 ATG-GTG Met-Val Stargardt 
disease 

Briggs 
(2001) 
Invest 
Ophthalm
ol Vis Sci 
42, 2229

CM983846 11 CTC-CCC Leu-Pro Fundus 
flavimaculatu
s 

Rozet 
(1998) Eur 
J Hum 
Genet 6, 
291

CM990010 15 TGG-TGA Trp-
Term 

Stargardt 
disease 

Maugeri 
(1999) Am 
J Hum 
Genet 64, 
1024

CM980003 18 CGG-
TGG 

Arg-Trp Stargardt 
disease 

Gerber 
(1998) 
Genomics 
48, 139

CM990011 24 CGC-CAC Arg-His Stargardt 
disease 

Lewis 
(1999) Am 
J Hum 
Genet 64, 
422

CM043238 24 CGC-TGC Arg-Cys Cone-rod 
dystrophy 

Klevering 
(2004) Eur 
J Hum 
Genet 12, 
1024

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11527935&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11527935&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11527935&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11527935&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11527935&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11527935&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9781034&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9781034&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9781034&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9781034&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9781034&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10090887&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10090887&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10090887&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10090887&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10090887&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9503029&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9503029&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9503029&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9503029&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9973280&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9973280&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9973280&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9973280&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9973280&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15494742&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15494742&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15494742&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15494742&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15494742&dopt=Abstract
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Table 4 Details of gross deletions obtained from the HGMD source for the ABCA4 gene 

Accession 
Number 

Description Phenotype Reference 

CG035110 1030 bp incl. ex. 
18 (described at 
genomic DNA 
level) 

Stargardt disease Yatsenko (2003) 
Hum Mutat 21, 
636

CG994802 36 bp nt. 6543 
(described at 
genomic DNA 
level) 

Stargardt disease Lewis (1999) Am 
J Hum Genet 64, 
422

CG994803 ex. 20-22 
(described at 
genomic DNA 
level) 

Stargardt disease Maugeri (1999) 
Am J Hum Genet 
64, 1024

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12754711&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12754711&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12754711&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9973280&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9973280&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9973280&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10090887&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10090887&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10090887&dopt=Abstract
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Figure 10 Screen shot of our local deletion database. 

Computational method to identify candidate breakpoint 

sequences 

Previous studies revealed that sequence length and similarity correlates positively 

with the distance between sequences during homologous recombination; features such as 

length, similarity and distance between sequences play a role during unequal crossing 

over (Lupski, 1998). This thesis focuses on “significant regions of homology” that are 

required for recombination. To identify candidate breakpoints a computational system 

was developed to identify similar sequences within a genomic neighborhood. This system 

uses the UCSC genome annotation database to identify the transcribed region associated 

with a gene, and their genome build to obtain the gene’s sequence along with flanking 
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genomic region (Tatusova and Madden, 1999). The BL2SEQ program (Tatusova and 

Madden, 1999) was used to find pairs of similar sequences within the gene’s locus. 

Bl2SEQ was used to perform reciprocal comparison between the gene’s sequence and 

itself using blastn algorithm - a heuristic approximation to the Smith-Waterman local 

alignment algorithm. 

For each gene under study, the genomic sequence including the entire transcribed 

region and 5 kb of flanking sequences on each end were obtained and blasted against it 

self using the BL2SEQ software. The filtering criterion of the BL2SEQ output is shown 

in Figure 11. BL2SEQ output with duplicate hits (e.g., subsequence A aligned with 

subsequence B and subsequence B aligned with subsequence A) represent a single unique 

alignment, and only a non-redundant set is maintained. Out of all similar sequence pairs 

obtained from the BL2SEQ analysis, only those pairs with at least 80% identify and less 

than 50 kb away were considered for future study. The exact context (intron, exon, 

promoter or UTR) of these similar sequences was obtained using the gene structure 

annotation from the refGene table in the UCSC genome database (Tatusova and Madden, 

1999). Details of similar sequences that span exons were obtained for future study, as 

shown in computational pipeline (Figure 11). For each gene we were able to identify the 

known IDD pair of sequence from the filtered BL2SEQ output. 
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Figure 11 Computational pipeline of the BL2SEQ approach 

Our studies to gather the intragene deletion or duplication break points and 

application of computational method to identify the sequence pairs that are prone to 

rearrangement in their respective genes from the BL2SEQ output have established the 

validity of our approach. We extended the BL2SEQ data with other informative features 

likely to be useful using other data and computational resources. For every candidate 

IDDs within a gene, the sequence specific, hapmap and melting temperature features are 

obtained as described below. 
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Feature Selection for the analysis  

The results of any automated analysis depend on the nature and quality of the data 

analyzed. Therefore, the selection of appropriate DNA features is a very important 

criterion. There are several features to be examined for each potential pair of 

recombination. For example Stankiewicz and Lupski demonstrated (Stankiewicz and  

Lupski, 2002) that during the process of recombination, the more identical and the closer 

together the repetitive elements are the greater the chances of recombination. Hence, 

parameters like repeat length, percent identity between repeats and the distance between 

them play a vital role. It is also known that GC-rich and GC-poor regions in the genome 

play a role in the recombination (Fullerton et al., 2001). Hence, GC content parameters of 

the DNA sequences are included. In the same way melting temperature and haplotype 

characteristic features were also included in the analysis.  Below is a list of the features, 

description of the features and how we computationally obtained them in Table 5. 

 



 47

Table 5 List of features which were used by the machine learning application 

Feature Source  Description 
Length BL2SEQ 

 
Length of the sequences 
potentially required for 
recombination 
 

Percent Identity BL2SEQ Percent identity between 
the pair of sequences  
 

Score BL2SEQ BL2score of the similar 
sequences 
 

Distance UCSC database Distance between the 
similar DNA elements 
 

GC content of sequences Simple perl program GC content of sequence 
elements 
 

Repeat involved UCSC database Repeat Characteristics 
 

Tm TmAlign (IDT Software) Melting temperature of the 
pair of sequences likely to 
recombine 
 

TmExact TmAlign(IDT Software) Melting temperature of the 
longest exact match of the 
pair of sequences likely to 
recombine 
 

HapType Haplotype block data Haplotype features 
(sequences located inside 
or outside or span the 
block) 
 

HapDist1, HapDist2 Haplotype block data Other haplotype 
characteristics like - the 
distance to the nearest 
neighboring block from 
beginning to ending of the 
sequences likely to 
recombine.  
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Sequence-specific features 

A Perl program was developed to obtain the sequence-specific features such as 

the sequence length, identify, distance directly from the BL2SEQ output file or with a 

simple analysis of the sequence files themselves. For example, the sequence length refers 

to the length of match for a given pair of homologous sequences. Similarly, the percent 

identity, blast score and the distance between the pairs were extracted from the blast 

output. The GC content calculations were performed for the paired sequences and the 

intervening sequences based upon the location of the aligned sequence specified in the 

BL2SEQ output. The human_annot_jul03 release of the UCSC annotation database was 

used to obtain gene structure information (Tatusova and Madden, 1999). 

Melting temperature features 

The thermo align (TmAlign) program was obtained from IDT (Integrated DNA 

Technologies) to calculate melting temperature (Tm) of the two sequences flanking the 

candidate IDDs (IDT unpublished software). Thermo align uses energy files, 

hybridization temperature, oligo concentration and salt concentration during alignment. 

The thermo align program was used to obtain melting temperature data for the candidate 

IDD breakpoint sub sequences. It is known in homologous recombination events that the 

longer the exact base pair sequence match the higher the chances of recombination 

(Deininger and Batzer 1999; email communication with Deininger) Hence, longest exact 

subsequence (i.e., not interrupted by any base mismatch, as indicated in Figure 12) 

properties are also utilized in the analysis. The DNA concentration, salt concentration and 

hybridization temperature parameters we used to align sequences are 0.0001µM, 140mM 

and 37ºC respectively. 
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Figure 12 Example of pair of similar sequence with longest exact sub sequence in bold 
format 

Haplotype block features 

It is known that genomic rearrangements (deletions or duplications) are often 

associated with recombination hotspots (Purandare and Patel, 1997; Lupski, 1998; Elliott 

and Jasin 2002). As described in the background chapter of my thesis Perlegen Science 

group genotyped over 1.5 million SNPs in populations of European, African American 

and Han Chinese ancestry and partitioned them into haplotype blocks using the HAP 

program (Halperin and Eskin, 2004; Hinds et al., 2005). The start and end positions of 

each block was obtained from their files and stored in our local database. HaplotypeBlock 

feature has three options depending where the IDD candidate sequences lie (INSAME, 

OUT, SPAN). Distance to the nearest haplotype block nearestBlock1 and nearestBlock2 

(nearestLeft, nearestRight) also are obtained for all candidate IDD breakpoints. 

For example as shown in Figure 19 there are two haplotype blocks HAPBLK1 

and HAPBLK2 in the region of interest. If the IDD candidate breakpoints are found in 

between the blocks then the HaplotypeBlock feature is determined as outside the block 

(Out). In case, where IDD candidate is located in the same block the HaplotypeBlock 

feature is determined as present in the same block (InSame). But if one of the IDD 

candidate breakpoint sequence is located inside the block and the other is found to be 

outside the block then it is determined as spanning the block (Span). NearestBlock1 

attribute is the shortest distance between the IDD candidate breakpoint sequences to the 

end of the haplotype block HAPBLK1; as shown in Figure 13 it is the value of d1. 
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NearestBlock2 is the longest distance between the IDD candidate breakpoint sequences 

to the end of HAPBLK; as shown in Figure 13 it is the value of d2. 

 

Figure 13 An example to explain haplotype block feature 

Summary of the data sets used for data mining 

Figure 14 is used to explain the datasets that were used in this study (cases and 

controls). Figure 14 shows a gene with several repetitive elements in introns 3 and 4. 

Theoretically, all the repeats in introns 3 and 4 have equal likely chance to be the 

candidates for deleting exon 4. If an unequal crossover between repetitive elements r3 

and r9 has been observed then the DNA features of r3 and r9 sequences are considered as 

a case set in our study. The other repetitive sequences in introns 3 and 4 could recombine, 

however these other crossovers have never observed. Hence, all other possible 

recombinants are defined as the control sequences in this research. 

Both case and matching control sequences for each gene are obtained from the 

exon spanning recombinants found in the BL2SEQ output as shown in Figure 15. Each 

case with a fully characterized breakpoint sequence is manually validated. Similarly, 

controls sequences that are in the same gene and exhibit the same potential gene 
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rearrangement as the individual cases are also dedeidentified. Sequence specific features, 

melting temperature and haplotype block characteristic features that are known or 

implicated to play a role during unequal homologous recombination are obtained for the 

case and control sequences that are identified. To summarize, we have collected the 

feature set data for all the 102 fully characterized IDDs (case data). Additionally, we also 

have collected feature set data for an extra 2338 potential homology-based candidates 

from the same set of genes for which IDDs have never been observed (control data). 

 

Figure 14 Example of unequal crossover within a gene. Diagram consists of exons 3-5 
and intervening lines intron 3 and 4. Small boxed elements in introns 3 and 4 
are the repetitive elements r1 thru r12. Resultant of unequal crossover between 
repeats r3 and r9 deletes exon 4.  
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Figure 15 Computational pipeline to obtain feature set for a given gene 

Computational and machine learning system 

After collecting the feature information I designed and developed a computational 

and machine learning system to compile case and control data sets and to explore for 

general characteristics in features by applying machine-learning algorithms. This new 

system prioritized candidate deletions and duplications within a gene and is named 

SPeeDD (System to Prioritize Deletions and Duplications). For any gene under study, 

SPeeDD obtains the features described in Table 5 by using several Perl programs, 

databases and softwares. The candidate IDDs with annotated features is fed into the 
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SPeeDD classifier (Figure 16). Case and control sequences with annotated features are 

also used by the SPeeDD classifier as shown in Figure 16. SPeeDD then differentiates the 

candidates based on the training data set and divides the candidate IDDs for the gene 

under study into the most likely candidates and those that are less likely to undergo 

unequal recombination. SPeeDD predicts and ranks the candidates IDDs. For a given 

gene, SPeeDD calculates a confidence score for every compatible pair of homologous 

sub-sequences and ranks them based on that score. 

Data mining or machine learning in the SPeeDD system is performed using Weka 

– an open source machine-learning software package (Witten and Frank 2005). It consists 

of several data pre-processing tools and supports several machine learning methods 

including those used in this research: artificial neural networks, decision trees, k-Nearest 

Neighbor, support vector machines, logistic model tree. A variety of different machine 

learning methods were examined using the collected dataset. The performance and error 

rates among the methods were compared. The best method was selected based upon error 

rate, sensitivity and specificity. 
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Figure 16 Flow diagram of the computational system (SPeeDD). For any gene of interest 
the feature set data as shown in Table 5. The case and control feature set data 
for all known intragene deletions or duplication is obtained as the training data 
set input for the SPeeDD system. SPeeDD performs analysis based on the 
training data and predicts the candidates for the gene under study. 

Validation of the system  

Cross-validation and hold-out (split-sample) methods are commonly used for 

estimating the performance and generalization error. We used N-fold cross-validation 

method on the collected dataset to train and evaluate the SPeeDD system. This method 

trains on N-1 subsets and holds out one data set for testing.  The basic structure of the N-

fold cross-validation procedure is as follows 

1. Shuffle the data randomly  

2. For loop i = 1 to N 

a. Reserve one of the N subsets as the validation set 

b. Train with other N-1 subsets  

c. Test on the validation set 
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3. Report the average performance across N trails 

A value of 10 for N is frequently used for estimating generalization error. Hence 

we used 10-cross fold validation to evaluate methods. Efficacy of a method is measured 

in terms of sensitivity and the specificity. 

Two class confusion matrix  

Performance of the classification systems is typically presented in the form of a 

matrix called a confusion matrix. A confusion matrix contains information about correct 

and predicted classification. Table 6 shows a confusion matrix for a two class classifier. 

The performance of a method can be described in terms of true positive (TP), false 

positive (FP), true negative (TN) and false negative (FN) predictions. TP, TN, FP and FN 

are the four different possible outcomes for a two class classifier as shown in the table. 

True positives and the true negatives denote the two correct classifications. Conversely, 

when a case input is incorrectly classified as control candidate it is termed a false 

negative; and when a control input is incorrectly classified as a case candidate it is termed 

a false positive. 

Table 6 Confusion Matrix of a two class classifier. 

  Predicted Case Predicted Control 
Actual case TP FN 
Actual Control FP TN 

Performance Evaluation in terms of sensitivity and 

specificity 

The performance of the classification is measured in terms of sensitivity and 

specificity. The sensitivity of a set of predictions is described as the percent of positives 
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that are correctly classified and the specificity is defined as the percent of negatives that 

are correctly predicted (Weiss and Provost 2001). 

Sensitivity = TP/(TP+FN) 

Specificity = TN/(TN+FP) 
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CHAPTER V 

RESULTS AND DISCUSSION 

Despite the advances to identify small insertions or deletions (1-50 bp) using the 

sequence-based methodologies and cytogenetics methods (utilizing light microscopy with 

high-resolution chromosome banding techniques) to identify the large rearrangements 

(50 kb – 5 Mb) it is still hard to identify the intermediate level variations (50 bp – 50 kb) 

(Weber et al., 2002; Iafrate  et al., 2004; Conrad et al., 2006; Bhangale et al., 2005; Sharp 

2006). It is laborious and expensive to screen all the possible candidates to identify the 

intermediated level variations within a gene. Hence, the goal of this research is to design 

and implement a high-throughput computational system (SPeeDD) to identify and 

prioritize intermediate level genomic variations with possible deletion or duplication 

candidates within a gene. This was accomplished by computing and mining informative 

sequence features to build a model for the genes with previously published disease 

causing deletions or duplications. Using this data a machine learning model is trained and 

used to predict deletion or duplication candidate regions for genes of interest.  

Construction of the testing set 

HGMD database consists of about 6.5% of gross deletions or duplications 

(Cooper and Krawczak 1996; Krawczak et al., 2000). However, only non-lethal 

mutations that cause observed phenotypes might have been captured by this statistic. 

Gross deletions or duplications that are lethal and those that cause mild phenotypes might 

have been missed by the above statistics; thereby under estimated the true number of 

mutations. 

Few reasons why we could not use all the deletion or duplication mutations 

provided by HGMD are: 1) The HGMD mutation description of gross deletions or 

duplications does not have the clarity in specifying the exact regions of the mutation in 
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the genes. 2) They do not have précised information about where exactly sequences 

recombined; they have the information of what exons were lost or inserted and provided a 

link to the paper that published the mutation.  

Two reasons why HGMD has less clarity in describing their genomic deletions or 

duplications are:   

1) Assays to detect these mutations are different; some researchers would identify 

the mutations in a cDNA level and some in a genomic level. 

2) Mutations are not fully characterized (some researchers would not sequence the 

region that was deleted to identify the exact break point regions). 

All of the gross rearrangements available from HGMD with publications were 

obtained and stored in our University of Iowa human gross deletion or duplication 

database as mentioned in the methods chapter IV of this thesis. The scientific 

publications were searched to obtain the exact breakpoints of the previously published 

IDDs. A total of 1463 publications were examined, and the set of fully characterized 

gross deletions or duplications were collected. In a few cases, we also contacted the 

corresponding author of the publication for more information on breakpoint sequences. 

Through literature mining and direct contact with the authors I collected 102 fully 

characterized intragene deletions or duplications. Most of these cases are deletions with 

only two instances of duplications. 

This is unusual because, in general, unequal recombination events are known to 

result in one copy containing a deletion and the other copy containing duplication; but 

there are more cases of deletions causing a phenotype than duplications. One reason for 

this apparent bias would be if duplications are more lethal than deletions. Another 

possible reason is that assays used to detect IDDs may have greater ability to 

resolve/detect deletions than duplications. This is likely true of hybridization-based 

methods such as comparative genome hybridization, where the ratio of a deletion to a 
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control is 1:2 and the ratio of duplication is 3:2. They are both a 50% change in 

comparison to a normal control, but the deletion is a 2x difference rather than 1.5 x 

differences and is therefore easier to detect. 

After collecting 102 different cases of previously identified deletions or 

duplications, we identified the exact pair of homologous sequence from potential pair of 

recombinatory sequences. These are the breakpoints of the IDDs. For each case there are 

typically numerous combinations of similar sequence that could recombine, resulting in 

IDDs with identical consequence to the gene structure (e.g. deletion of a specific exon or 

exons). One would reasonably expect that these variants would be indistinguishable in 

their phenotypic consequence. The case and control DNA sequences were obtained from 

the BL2SEQ output (The BL2SEQ approach used to obtain the exon spanning 

recombinatory sequences is described in detail in the methods chapter IV of the thesis). 

Construction of the case and control sets 

The case and control sequences were obtained for the 102 fully characterized 

mutations. Identification of case and control sequences for one of these 102 is described 

in detail for clarity. In the gene BBS4, deletion of exons 3 and 4 have been shown to be a 

causative mutation for Bardet-Biedl syndrome. An example of the fully-characterized 

mutation is shown in Figure 17. Interestingly, this deletion of exons 3- 4 was reported in 

two different families from different ethnic populations (Mykytyn et al., 2001; Nishimura 

et al., 2005). When molecularly characterized, both instances of the deletion shared the 

exact same Alu-based breakpoints in introns 2 and 3. When the deleted region was 

sequenced they found that the sequences share high similarity and that the deletion 

breakpoint region consists of 26 bp sequence (Figure 17) that was reported to be a 

possibly recombinogenic sequence (Rudiger et al., 1995); this short well conserved 

region of Alu-sequences is known to be involved in human gene rearrangements and is 
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known to have homology with the prokaryotic chi (Rudiger et al., 1995). Below is a 

description of how we identified these fully characterized mutations from the BL2SEQ 

output of the BBS4 gene. 

After obtaining the article, the deletion with the exact breakpoint sequences was 

identified for the BBS4 gene (Nishimura et al., 2005), we obtained the genomic sequence 

of the gene (accession number NM_033028), 5 kb upstream and 5kb downstream. The 

sequence acquired was aligned to itself using the BL2SEQ software. Perl programs were 

used to parse and obtain the sequences from the BL2SEQ output. As described in the 

methods the blast hits that were redundant or failed to meet our significance criteria were 

removed, as shown in Figure 11 to obtain a list of potential candidate breakpoints. The 

output of the BL2SEQ consisted of sub sequences that were similar and in same 

(plus/plus) and different (plus/minus) orientations. In general, the Plus/plus hits are 

higher than plus/minus hits. The 62 kb sequence (BBS4 gene with the 5 kb upstream and 

downstream sequence) had 5457 pairs of subsequences from the BL2SEQ output prior to 

the removal of redundant and low-quality candidate breakpoints (Figure 18). After 

filtering the blast hits based on the criteria shown in Figure 18, 1270 candidate 

breakpoints remained. Out of the 1270 candidate breakpoints only 32 pairs were 

consistent with deletion of exons 3-4. I went through these manually and identified the 

homologous sequence pair that was found in the BBS4 families from the publication in 

the 32 pairs of sequences likely to delete exons3-4. Based upon this analysis, the 

candidate breakpoint that matched the fully characterized breakpoint sequence for the 

BBS4 was defined as the case set and the remaining 31 candidate breakpoints were 

defined as the control set. 

Similarly we collected 102 fully characterized intragene deletions or duplications 

(IDDs) from which the case data set was constructed. Furthermore, we have also 
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collected an extra 2338 potential homology-based candidates from the same set of genes 

for which IDDs have never been reported and called it as control data set in this study. In 

other words, the control data consists of surrounding sequences where there is an a priori 

equal chance of generating the same exonic loss or gain but which have not been 

previously observed. 

 

Figure 17 The sequence flanking of 5’ and 3’ Alu elements for the BBS4 exons 3 and 4 
deletions (Nishimura et al., 2005). The region in which the breakpoint has 
occurred within each Alu element is shown in a box. The 26-bp core sequence 
in the Alu element identified by Rudiger et al. (1995) is also shown in the 
figure. 
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Figure 18 Flowchart of the case and control sequences in BBS4 exons 3-4 deletion 

Computation of the pertinent features 

Data mining is a widely used technology in biomedical research, and has been 

used to identify patterns in microarray expression data, promoter discovery, promoter 

modeling, disease causing mutations based on sequence annotation and discovery of 
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regulatory elements. In this research I have applied data mining techniques to identify 

and prioritize candidate IDDs. Identification and collection of the data to be mined is 

often the most challenging component in data mining. After data collection, 

preprocessing and cleaning the data are also the toughest jobs. In order to eliminate the 

limitations of a single data source the data used in this research was collected from 

multiple sources. At times there were difficulties including various sources such as the 

genomic build they considered while doing their analyses. Although the current human 

genome assembly is NCBI’s build 36, to be consistent with our analysis we used NCBI’s 

build 34 across all various sources and data. This was necessary to incorporate the 

haplotype data set from Perlegen Sciences, which is currently only available on build 34.  

Below is an example of a IDD candidate that is selected from an actual file of  the 

BBS4 gene obtained with details of the features (Figure 19). 
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Figure 19 Example of DNA sequence features collected for a possible deletion candidate 

The features listed in figure 19 are collated from several different sources: 

sequence features based on the BL2SEQ identified breakpoints, haplotype block features 

and melting temperature features. Many of these features are interdependent. For 

example, there is a positive relationship between the length and GC content of the 

breakpoint sequence and the Tm of the breakpoint sequence. We have removed the 

features that are highly correlated because they add no extra information to the model, 

however if the variables are dependent but are obtained from different sources and 

measured in a different way then we have retained those variables. 
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Length, percent identity, score, strands, starting and ending positions of candidate 

IDDs breakpoint sequences are obtained using BL2SEQ program. Length attribute is the 

number of basepairs that are aligned between the query and subject sequences; as shown 

in Figure 19 the length of the query (QrySeq) and subject sequence (SbjSeq) is 93. 

Percent identity indicates the similarity between the sequences. The percent identify 

(Percent) is 86.3 between the query and subject sequences (Figure 19). The BL2SEQ 

output also returns the alignment of the query and subject sequences. The starting and 

ending positions of the query and subject sequence are converted into genomic positions 

as shown in Figure 19 (Query and Sbjct attributes). The starting genomic position of the 

query sequence (Query) 70719157 is subtracted from the ending genomic position of the 

subject sequence (Sbjct) 70692937 to obtain the distance 26314 between the IDD 

candidate breakpoints (Figure 19). Query sequence (Qstrand) and subject sequence 

(Sstrand) strands are the orientations obtained from the BL2SEQ output.  

Few parameters shown in Figure 19 are obtained using computational methods. 

Below is the detailed description of the features obtained using computational methods as 

shown in Figure 19. Repeat characteristics of the IDD candidate breakpoints are obtained 

by using UCSC database and simple Perl programs (QryRepeat and SbjRepeat). As 

shown in Figure 19 Perl program is used to obtain the length and sequence of the longest 

uninterrupted exact matching string (ExaStr).  Sequences of the longest uninterrupted 

string (ExaStr), query sequence (GCquery), subject sequence (GCsbj), upstream of the 

query sequence (GCupstream), downstream of the subject sequence (GCdownstream) and 

the likely deleted sequence (GC between) are obtained and the GC content of the 

sequences (Figure 19) are calculated using Perl programs. Gene structure is obtained 

using the UCSC database and possible result of the IDD candidate is programmatically 

determined (Result); as shown in Figure 19 the result describes the possible deletion of 

part of promoter region, exons 1, 2 and 3. 
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 The melting temperature characteristics that were used in this study were 

obtained from the TmAlign software (unpublished software). Below is the detailed 

description of the features obtained with that program as shown in Figure 19. The 

TmAlign features were calculated for the breakpoint pairs identified by BL2SEQ, 

Tm(AllSeq), or the longest exact matching sequence, TmExact. 

Haplotype features were obtained from the haplotype block information that was 

developed by Perlegen Sciences. These features included a qualitative assessment of 

where the breakpoints are located with respect to haplotype blocks (HaplotypeBlock), 

and distances upstream (NearestBlock1) and downstream (NearestBlock2) to the nearest 

haplotype block boundary. In Figure 19 the breakpoints are located in the same haplotype 

block (InSame) and are 4479 and 8562 bp from the upstream and downstream haplotype 

block junctions. 

After collecting the data, preparation of the data for actual analysis is done by 

determining the statistical variability in the data, validating the data values in the context 

of the biology, creating a high level picture of the nature and the content of data to be 

mined, dealing with missing data values and transforming data values from one 

representation to another when necessary. 

Out of all the features collected, only the following features were utilized in the 

final model to classify the control and case data sets efficiently. The features used are 

length, percent identity, GC content, melting temperature and bl2 score (bl2score) of the 

candidate breakpoints, the distance and GC content between the breakpoints, the 

haplotype block status, and the nearest haplotype block boundary to both ends of the 

IDD. One final feature is included that specifies the classification of a given entry. This 

feature takes the value of YES for cases and NO for controls. 
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Building the classifier models 

The classification model was built using the feature data for the case and control 

set described above. In our study, the classification system was trained on case and 

control data sets to predict intragene deletion or duplication (IDD) candidate regions 

within a gene and to prioritize them based on a confidence score. A knowledge flow 

diagram of the classification system is shown in Figure 20. As shown in Figure 20 the 

classifier was built on top of the Weka machine learning system, requiring that the 

feature data for the training set and candidates to be evaluated be converted into Arff 

format (the data format used by Weka). Each record in an Arff data set describes the set 

of features for an IDD or candidate IDD. Each record is assigned to a class or outcome as 

shown in Figure 20. The outcome (classification feature) of the training data set is set to 

TRUE for the case data set and FALSE for the control data set in which there is no 

evidence of deletion or duplication occurrences. Based on the training data, the classifier 

will determine the properties to distinguish the case and control data sets. A Variety of 

classifiers are applied and the machine learning method that performed best will be 

selected. The performance of various methods was evaluated using cross validation 

methods on the training data set. The information of the classification function (best 

performed machine learning method) is stored in a classification model and further 

applied to predict the outcome in case of an unknown set. 
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Figure 20 Knowledge flow diagram of the classification model 

Validation 

Fitness of a model is evaluated using cross validation methods. Three cross-

validation techniques that are commonly used are hold out method, N-fold cross 

validation and the leave-one-out method. Cross-validation methods predict the 

performance of a machine learning method on unseen data by dividing the training set 

into two parts, training on the first part, and evaluating the performance on the second 

part. This allows us to estimate the amount of error based on what is being learned by the 

given model from the training data subset. 

N-fold cross validation 

I used 10-fold cross validation to evaluate several machine learning methods 

available in the Weka system (Witten and Frank 2005). In 10-fold cross-validation 

method the method is trained on 9 subsets and performance is tested on the one 

remaining data set; this process is repeated 10 times and the average performance is 

reported across 10 trails. The advantage with the 10-fold cross validation method is it 

estimates the generalization error on 10 different subsets as an alternative of only a single 

 



 69

subset that is used during the hold out method validation (Weiss and Kulikowski 1991; 

Hjorth 1994; Plutowski et al., 1994; Shao and Tu 1995). 

Selecting the appropriate machine learning system 

Multiple machine learning models including artificial neural networks, decision 

trees, logistic model tree, simple logistic, simple Naive Bayes, k-nearest neighbor and 

support vector machines were applied using the 10-fold cross validation method on the 

case and control datasets. The performance of the algorithms on various data sets was 

compared to predict the best model. The determination of the best model was performed 

based on the performance of predicting the true positives, false positives, ability to deal 

with the missing data, noisy data and the ability to explain the classification. Sensitivity 

of the system varied from 20% to 74.2% but the specificity exceeded 90% for all the 

methods that were assessed (Figures 21 and 22). One reason, for the high specificity is 

the utilization of an unbalanced data set. The majority of the training data set consisted of 

the control sequences. Only 4.2% of the data set consisted of the cases. This however is 

the case in most of the real-world problems; in which there are always fewer cases than 

controls. 
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Figure 21 Sensitivity of various models using 10-fold cross validation method. The 
models tested include simple logistic regression models (SL), artificial neural 
networks (ANN), a decision tree (J48), simple naïve Bayes (NBS), support 
vector machine (SVM) and logistic model tree (LMT). 

Logistic models uses logit boost with simple regression functions for fitting (Rice 

1994). The classifier to build simple logistic (SL) regression models gave low sensitivity 

value. Reason why SL gave low sensitivity value could be due to the fact that the features 

are highly inter dependent. Due to low sensitivity value this method was not used as final 

classification function for our model. 

As shown in Figure 21 the sensitivity of the artificial neural network (ANN) 

model is greater than simple logistic method. Unfortunately, in general, the decisions 

made with the ANN methods are not easily interpreted and its knowledge representation 

is also poor. Few reasons why we did not choose this as our final model to train the 
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system is because of its low sensitivity and also due to the fact that the decisions made by 

this method are not easily interpretable in the biological context. 

The performance of simple naive bayes (NBS), decision tree (J48) and support 

vector machine (SVM) methods were similar in terms of sensitivity and specificity. 

Specificity of all three methods exceeded 95. Sensitivity is between 60-65 for SVM, NBS 

and J48 methods (Figure 21 and 22). 

 Logistic model trees (LMT) are classification trees with logistic regression at the 

leaves. LMT which is a combination of the logistic regression and decision tree method 

yielded the best results with sensitivity and specificity of 74.2 and 97.2 respectively 

(Figure 21 and 22). In case of the LMT model the rules implicated in making decisions 

are easily interpretable which gives an insight into how the classifier works. The decision 

tree that is being generated by LMT is an easy to interpret white box model. The 

challenge with a 10-fold cross validation is that for every iteration you are throwing out 

10% of your training set to evaluate. This reduction in training set size can have severe 

consequences to the performance of a classifier.  Therefore, I also used the leave-one-out 

validation strategy to evaluate the various machine learning models using the maximum 

amount of data for use in training the methods. 
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Figure 22 Sensitivity of various methods using 10-fold cross validation method. The 
models tested include simple logistic regression models (SL), artificial nueral 
networks (ANN), a decision tree (J48), simple naïve Bayes (NBS), support 
vector machine (SVM) and logistic model tree (LMT). 

Leave-one-out method 

In the leave-one-out approach each entry in the case data set was evaluated based 

upon training with features of the remaining 101 cases. This maximized the size of the 

training set, and also provided an estimate of the expected performance for the final 

system. Following the construction of the classifier and the evaluation with the 10-fold 

cross validation it is clear that the LMT algorithm performed best of my data set. Hence 

we used the best performed method (LMT) to train and predict the outcome of the test 

case. Based on the training data set the model predicts the test case; it makes a decision if 

it is a disease causing deletion candidate or not. Leave-one-out method is a different way 

of evaluating the performance of the model. The advantage of leave-one-out method is it 
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allows to train on a bigger dataset than in N-cross validation.  Leave-one-out method 

identified the left out mutations with an accuracy of 81%. 

Sensitivity to training set size (expected performance) 

We evaluated the performance of the system using variety of input sizes to 

estimate the benefit of larger models. In other words, how much can we expect the 

performance to increase as more IDDs are identified and included in the training set. To 

address this question, a Monte Carlo simulation was performed. In this example, training 

sets of decreased size were randomly selected from the complete set of 102 fully 

characterized cases. In this experiment we varied the size of the randomly constructed 

training set between 50 and 100 in steps o f 5 to study the impact on the classifier of 

varying the size of the training set. For each input case data set size 100 random training 

sets were generated and evaluated with the 10-fold cross validation to assess 

performance. The results of the model with respect to varying sizes and sensitivity are 

shown in Figure 23. The slope of the curve gradually increased throughout. As expected 

larger training sets result in better performance – here expressed as the sensitivity. 

Results indicate that there is a steady improvement in the beginning rather towards the 

end of the curve. In input sizes 85 to 100 we did not see any tremendous improvement in 

terms of sensitivity of the model. This experiment also proved that by increasing the 

training input size the sensitivity will also increase, the sensitivity has increased from 

35% to 70% for input sizes 50 to 100. This shows that the larger the case data set 

positively correlates with the sensitivity. 
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Figure 23 Monte-carlo simulation of various input datasets 

Role of each feature in predicting the candidates 

Importance of each feature in predicting the true positives was evaluated. At a 

time only one feature was removed from the features collected and 10-fold cross 

validation was applied to see how well the system predicts the IDD candidates. Influence 

of each feature was estimated based on the performance of predicting the true positives 

from the set of IDDs after removing the feature from the case and control data sets.  

As shown in Figure 24 removal of GCbwn (GC between the IDD candidate 

breakpoints) feature has a big impact on the model and reduces the power of true 

prediction drastically. Percent identity, distance between the IDD breakpoint sequences 

also has a impact on the model if it is removed (Figure 24). 
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Figure 24 Influence of each feature on predicting the IDD candidates. This experiment 
was conducted by removing each parameter at a time and observing how well 
the system predicts the true positive candidates. 

System implementation (SPeeDD) 

Recent studies have made progress to understand the trends in the homologous 

recombination mechanism (Abeysinghe et al., 2004; Sen et al., 2006). But to our 

knowledge there is no system that predicts and prioritizes deletion candidates within a 

gene. SPeeDD – System to Prioritize Deletions or Duplications is a bioinformatics 

system that has been developed to predict the most likely IDD candidates by applying 

data mining techniques to the set of features identified above of previously identified 

deletions or duplications (i.e., the training data set). SPeeDD is an interactive 

visualization tool, designed to aid researchers to generate hypotheses and focus their 

efforts in identifying intragene deletions and duplications. The system can predict the 

prioritized deletion or duplication candidates for any specified gene of interest. This 
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software with number of valuable options for the scientist may provide a fast and less 

expensive method to identify deletions or duplications. 

SPeeDD Computational Pipeline 

The computational pipeline of the SPeeDD system is shown in Figure 25. 

SPeeDD consists of both bioinformatics and machine learning methods. The system 

diagram in Figure 25 is divided into two sections. The section on the left presents the 

path taken to obtain the case and control data sets. The section on the right of Figure 25 

shows how IDD candidates are identified for a specified gene by the SPeeDD system. 

Note that he output of the left hand side (the case and control data sets) is an input to the 

machine learning component on the right hand side. 
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Figure 25 Computational pipeline of the SPeeDD system 

Case and control data set flow diagram 

 The left hand side (boxes in yellow color) of the flowchart illustrates the steps 

that were followed to obtain case and control data sets to train the SPeeDD system. As 

shown in Figure 25 HGMD was used to obtain all links to previous journal publications 
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with known deletions or duplications. These publications were then manually searched to 

obtain the set of genes with fully characterized breakpoints. 102 previously published 

intragene deletions or duplications (IDDs) with exact breakpoint sequences were 

collected for the study. Potential IDDs were identified from the set of homologous 

sequence pairs obtained by blasting the gene sequence against itself (BL2SEQ). 

Published breakpoints for the 102 fully characterized IDDs (case set) were identified 

from the potential recombinant set obtained from the BL2SEQ output.  Surrounding 

potential sequences that could delete or duplicate same exon(s) in the BL2SEQ output, 

but were never observed in the patient population were utilized as a control set. For all 

the case and control data sets the DNA sequence features were obtained using various 

data resources and software. 

SPeeDD flow diagram 

The right hand side (boxes in blue color) of the Figure 25 summarizes the analytic 

steps performed in the SPeeDD system follows to predict the deletion or duplication 

regions. As shown in Figure 25, the initial step is to obtain the genomic sequence for the 

specified gene and perform a self-self alignment with BL2SEQ to identify the 

homologous sequence pairs that are the candidate IDDs. The sequence, melting 

temperature and haplotype features are the computationally obtained for those candidate 

IDDs as described in the Methods chapter. The classifier, having been trained on the case 

and control datasets as shown in Figure 24, then prioritizes the resulting IDD candidates. 

Based on the knowledge gained with the trained data the machine learning model 

differentiates predicts the outcome of the homologous sub-sequences of the gene under 

study. SPeeDD predicts and prioritizes the list of candidates based on the confidence 

score that the machine learning model calculates. 
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SPeeDD Implementation 

SPeeDD is implemented using several computational and bioinformatics 

platforms including Perl, Bioperl, MySQL and CGI. SPeeDD uses a collection of 

softwares such as BL2SEQ (NCBI’s alignment software), TmAlign (IDT’s melting 

temperature software), WEKA (data mining software in Java; Witten and Frank 2005) 

and databases such as UCSC, HUGO, HGMD, Perlegens Sciences database with 

haplotype blocks. 

SPeeDD web-interface 

Our implementation of SPeeDD is readily available on the web at 

http://public.eng.uiowa.edu/SPeeDD. As demonstrated by the validation results presented 

above, SPeeDD successfully identifies and enriches lists of deletion or duplication 

candidate regions for a given gene. The system provides an automated, unbiased method 

to save investigators time and effort when examining a gene for potential deletion or 

duplication candidate regions. Snap shots of our implementation is shown in the below 

Figures from 26- 31. Figure 26 is the snapshot of the home page of the SPeeDD system. 

SPeeDD system is password protected. It consists of a login page where user enters 

authorized login and password. After logging in successfully the SPeeDD system 

provides the user an option of entering a gene name or refseq id of interest. As shown in 

Figure 27, SPeeDD uploads and displays the fasta file of a gene of interest with the 5kb 

upstream and downstream of the gene. Following Figure 27, a page with various blast 

filtering options as shown in Figure 28 appears. This page has list of options to filter the 

BL2SEQ output. Default parameters for length, percent identity and distance are set to 

30, 80 and less than 50 kb respectively. The system provides an option to change this if 

user desires by choosing one of the options in drop down list boxes. After selecting the 

options, various features (sequence specific, melting temperature and haplotype 

characteristics) are obtained for IDD candidates of that gene. Once the features are 
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collected the data is converted into arff format to be handled by the Weka machine 

learning system (Witten and Frank 2005). The unknown outcomes of the IDD candidates 

are predicted by the machine learning model and prioritized based on the confidence 

score and displayed as shown in Figure 29. Details of the candidates are obtained by 

using the detail link in Figure 29. The output of this link is as shown in the Figure 30 with 

the details of the resultant of the deletion. It displays the total number of bases affected 

and details of the frame shift mutation. Genomic view for the candidate with a positive 

outcome is obtained thru the link in Figure 29. The genomic view of the true positive 

deletion candidate is displayed by utilizing the dynamically created custom track in the 

UCSC browser (Figure 31). 

 

Figure 26 Screen shot of the SPeeDD system. This is the home of the system. On the left 
hand side it consists of a description of the SPeeDD. On the right hand side 
there are several options such as the login, analysis and help. 
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Figure 27 Screen shot of SPeeDD system. For the gene of interest the +/- 5kb gene is 
obtained in order to blast. The above screen displays the genomic positions of 
the gene and the fasta sequence retrieved to blast the sequence. This pages also 
provides an option to blast the sequence against itself. 
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Figure 28 Screen shot of SPeeDD system. This page consists of various options to filter 
the BL2SEQ output. The default parameters are shown in the figure. Drop 
down boxes are provided to change the length, percent identity and distance 
options for the pairs of homologous sub-sequences. 
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Figure 29 Screen shot of SPeeDD system. Data mining is performed and it displays the 
list of candidates with a outcome (Decision) yes or no and a confidence value 
associated to it. It displays the outcome of the deletion or duplication in terms 
of exon or exons. 
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Figure 30 Screen shot of SPeeDD system. Candidates link of Figure 29 displays this 
figure 30. It consists of more details of mutation description such as the 
resultant of deletion. 
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Figure 31 Screen shot of SPeeDD system. Genomic view of a candidate with decision yes 
in Figure 29 leads to a custom track of UCSC browser. The red block above 
the STS markers in the figure indicates the genomic starting ending positions 
of the block that may potentially be deleted 

Novel applications 

The theoretic utility of the SPeeDD system has been demonstrated in the 

Validation section above. Additional opportunities to validate the system’s prioritizations 

are available as new IDDs are reported. To date, one novel duplication that was never 

included in any training set has been validated with the SPeeDD system. 
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BRCA1 mutation identification 

In July of 2006, a novel duplication within the BRCA1 gene was identified in a 

population of Chinese ethnicity (Yap et al., 2006). This mutation is a duplication of 8.4 

kb, resulting in an additional copy of exon 13. Because the exon is not a multiple of three 

bp long (127 bp) and is in the middle of the coding region, including two copies would 

induce a frame shift mutation. Therefore, a duplication of exon 13 would be expected to 

adversely affect the protein. Because this mutation has been only recently reported, and 

had never been included in our training set, it is a perfect candidate to validate the 

performance of the SPeeDD system. 

The BRCA1 gene contains several (how many) repetitive elements all of which 

could potentially recombine resulting in the deletion or duplication of one or more exons. 

SPeeDD collected all homologous sequences that could recombine with the feature data 

and performed data mining to predict the possible outcome of the candidates. In 

particular, SPeeDD identified 44 exon spanning IDD candidates. 

The system analyzed and prioritized each candidate IDD. Based on the patterns of 

the data the model predicted 44 candidates to delete or duplicate exons and 5601 

candidates that may not recombine and delete or duplicate exons. SPeeDD was 

successfully able to identify the novel BRCA1 duplication mutation as a predicted, highly 

prioritized candidate IDD. This illustrates that SPeeDD, and the method underlying the 

system can be used to identify new deletions or duplications. 

Summary 

The goal of the SPeeDD system is to enhance a researcher’s ability to identify and 

validate intragene deletions and duplications, an under-represented class of mutations 

capable of causing human disease. The strategy through which this is accomplished is to 

increase the efficiency of the mutation discovery process through the use of a 

computational system. The SPeeDD system utilizes information from a set of previously 
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identified and validated intragene deletions and duplications to train a computational 

system which can then identify and prioritize candidate intragene deletions and 

duplications. 

Based upon both computational and biological validation, SPeeDD successfully 

identifies those candidates that are most likely to be involved in an intragene deletions or 

duplication. The growing availability of both sequence and functional annotation has 

greatly improved the quality of computational predictions. Due to the abundance of 

repeats within a gene it is laborious to look for deletion or duplication candidates 

comprehensively across a gene. SPeeDD provides a quick, unbiased method to rank 

candidate deletion or duplication regions. This allows investigators to focus their research 

on those candidate IDDs that are most likely to be deleted, thereby reducing the labor and 

associated costs of the biological assays and accelerating the process of mutation 

discovery. Our implementation of SPeeDD is readily available on the web at 

http://public.eng.uiowa.edu/SPeeDD.

 

http://windowshade/speed.html
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