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ABSTRACT 

Coal plays an important role in meeting the energy needs of the World. Given its 

abundance and low cost, its use is bound to increase with the growing energy demand. 

Despite its importance, there are concerns over coal’s environmental burdens. In order to 

extract and use coal in a sustainable manner, sustainability assessment has to be 

comprehensive.  

Life Cycle Assessment (LCA) provides systematic and quantifiable measures for 

assessing environmental burdens of products and processes. Extensive LCA work has 

been done on coal use, particularly in electricity generation, but, the coal mining stage 

has been neglected, for the most part. This has resulted in data gaps in the life cycle 

inventory (LCI) of coal and, consequently, in the LCIs for electricity and other products 

that are linked to coal. The situation has resulted in incomplete assessments of the 

sustainability of coal extraction and use, and potential for suboptimal strategies for 

reducing the potential impacts of coal, especially in the mining stage.  

The aim of this study was to employ the general principles of the ISO 14040-49 

series LCA standards, adapting them where necessary, to estimate the cradle-to-gate life 

cycle impacts of coal from surface mining in the United States. Five strip mines that 

produce bituminous coal were used as case studies. The study assessed the life cycle 

water use, land use, energy use, abiotic resource depletion and climate change impacts for 

each mine and compared the performances of the mines based on the impacts.  

For the studied mines, the life cycle potential water use impact is 178 liters/tonne 

of processed coal at the mine gate. The potential land use impacts range from 3 to 10 m2-

year/tonne. The potential energy use impacts vary from 97 to 181 MJ/tonne, the abiotic 

resource depletion impacts vary from 7.8 to 9.4 kg Sb-equivalent/tonne, and the climate 

change impacts range from 38 to 92 kg CO2–equivalent/tonne. This study provides 

insight into contributions of mining processes to the impacts of coal. The results of the 

study contribute the much needed information to fill the data gaps in the LCI of coal, and 

provide baseline information that can aid the coal mining industry and public policy 

makers in the development of strategies and policies to sustainably exploit coal.
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1. INTRODUCTION 

1.1. BACKGROUND 

1.1.1. Importance of Coal.  Coal plays an important role in today’s society. It 

generates about one half (48.5% in 2008) of the electricity used in the Unites States (EIA, 

2009a) and 39% of electricity worldwide (World Coal Institute, 2005). According to the 

Energy Information Administration (EIA), the US has the largest coal reserves in the 

world (262 billion tons of recoverable reserves) and mines over a billion tons (1.171 

billion tons in 2008) of coal annually (EIA, 2009b). Projections up to the year 2030 

predict that increases in coal consumption for electricity generation at both new and 

existing power plants, as well as due to commissioning of new coal-to-liquids plants, 

expected to be constructed in the future, will result in an annual coal production growth 

rate of about 0.6% (EIA, 2009c). Other than its use in electricity generation, coal is a vital 

feedstock in other industrial processes. Industries such as steel making, cement 

production, paper making and others, which produce goods essential for society’s 

comfort and progress, depend on coal. Coal-to-liquid fuels conversion may possibly turn 

out to be a critical process across many nations in the future, given the limited reserves of 

crude oil which currently provides most of the liquid fuels. 

The US produces coal from about 1,400 mines. The bulk of production is from 

surface coal mining operations, which account for about two thirds (69.5% in 2008) of 

total coal production (EIA, 2009b). Surface mining methods are important for extraction 

of coal as they are amenable to high productivity, allow good recovery rates and have 

lower safety hazards, compared to the underground mining systems. 

Given that coal is the most abundant, inexpensive, and readily available energy 

source, it is bound to continue to play a big role in the future energy market (World Coal 

Institute, 2005; Mangena and Brent, 2006). Despite calls for greener sources of energy, it 

is not likely that coal would be significantly replaced in the near future by energy sources 

that are considered to have low impacts on the environment. This is due to the challenges 

associated with these energy sources. There are issues of availability and reliability that 

inhibit use of renewable energy sources such as solar and wind power in base power 
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generation at the scale of coal fired electricity generation plants. There are limited sites 

that are suitable for hydroelectric power generation and this limits the growth of electric 

power generation through this method. With regard to nuclear energy, there is some 

reluctance to accept an increase in its use because of safety concerns over nuclear 

generation plants and spent nuclear fuel waste, as well as security concerns over potential 

diversion to undesirable uses. The development and use of non-conventional energy 

sources such as hydrogen and biomass are still in early stages, and so, the sustainability 

in the production and use of most of these fuels on as large a scale as coal is yet to be 

proven. 

1.1.2. Environmental Sustainability Evaluation in Coal Mining.  Despite the 

importance of coal, there have been increasing concerns over environmental problems 

associated with the extraction and use of coal, as knowledge and understanding of 

impacts of products and processes on the environment have grown. The environmental 

impacts of coal include, among others, the generation of dust and noise from mining 

equipment, and the emissions of criteria air pollutants (from energy use in the mining 

operations and the use of coal) that cause acidification, photochemical oxidation and that 

have toxic properties. Coal is also associated with greenhouse gas emissions that are 

responsible for climate change. These include coalbed methane from coal strata and 

carbon dioxide (CO2) and nitrous oxide (N2O) from energy use in the mining operations 

as well as from the use of coal in electricity generation and in other industrial processes. 

Coal mining causes disturbance of large areas of land and associated habitats; pollution 

of water sources from acid mine drainage generation and depletion of fresh water sources 

in arid regions. 

With increasing environmental awareness, more and more industries and 

businesses are trying to make assessments of the how their activities affect the 

environment in order to identify appropriate corrective measures to improve 

environmental sustainability of their processes and products. Progressive mining 

companies with foresight have recognized that environmental sustainability initiatives do 

not only help keep them in compliance, but they also aid in keeping them competitive by 

improving management, environmental performance and efficiency of their operations, as 

well as in enhancing their public image. 
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Table 1.1 shows the results of a survey of the websites for US coal mining 

companies carried out to assess how the US coal mining industry handles environmental 

sustainability reporting. The results revealed huge disparities in the reporting of 

environmental sustainability across the industry. Only a small number of companies, 

mainly large international mining corporations, have clearly defined performance targets, 

quantitative data for performance assessment and evidence of use of elaborate 

sustainability evaluation and reporting tools. For the majority of companies, there is 

limited information on environmental sustainability performance. Mostly the websites 

carry mission statements about environmental sustainability, and anecdotes about projects 

done or intended to be done, especially reclamation work, and awards received for 

reclamation activities. There are no indications of environmental performance targets, nor 

performance figures. For a lot of them, especially, the small scale operations, they do not 

have websites to communicate information to the public.  

The variability in the quality of reporting of environmental sustainability 

information in the US coal mining industry is a good indicator of the different levels to 

which sustainability has been adopted in the industry. Some shortfalls in the quality of 

reporting observed may be attributed to the limitations of the tools used in environmental 

systems analysis. There are various tools available for evaluation of environmental 

performance. These include, Environmental Impact Assessment; Ecological Risk 

Assessment (ERA); Ecological footprint and Material Flow Analysis (MFA). However, 

each evaluation tool typically has a unique operating scope, strengths and weaknesses, 

which would dictate the kind of information that could be obtained from its use.  

There are a variety of reasons that lead to disparities in environmental 

performance monitoring and reporting in the coal mining industry. One of the problems is 

the inconsistent government requirements for permitting of coal mining operations and 

for reporting of environmental performance data. Due to these inconsistencies, 

opportunities for improvement of sustainability of coal mining could be missed. One 

inconsistency lies in the fact that coal mining permit applications for sites outside of 

Federal and Indian lands are not typically required to be accompanied by an 

Environmental Impact Assessment. Given that there are lots of coal mining properties 

outside Federal and Indian lands, a good number of coal mining projects are not required 
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Table 1.1. Web survey results on environmental sustainability reporting in the US coal 
mining industry  

(Note: No official contact was made with the companies in compiling the results) 
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1 Peabody Energy Corp. 200  X X X X X X X X
2 Cloud Peak Energy†‡  141    
3 Arch Coal Inc. 134 X X X X X X X X X X X 
4 Foundation Coal Corp. 69 X X X X X X X X X X X 
5 Consol Energy Inc. 64 X X X X X X X X X X X 
6 Massey Energy Co. 40 X X X X X X X X X X 
7 Patriot Coal Corp. 33 X X X X X X X X X X X 
8 NACCO Industries Inc. 30 X X X X X X X X X X X 
9 Westmoreland Coal Co. 29 X X X X X X X X X X

10 Peter Kiewit Sons Inc. 28 X X X X X X X X X X 
11 Alliance Resources Partner 26 X X X X X X X X X X X X 
12 Murray Energy Corp. 26 X X X X X X X X X X X X 
13 Energy Future Holdings  23 X X X X X X X X X X 
14 Alpha Natural Resources 21 X X X X X X X X X X X 
15 International Coal Group 18 X X X X X X X X X X X 
16 BHP Billiton Ltd†‡ 16    
17 Chevron†  11    X 
18 PacifiCorp 11 X X X X X X X X X X X 
19 James River Coal Co. 11 X X X X X X X X X X X X 
20 Trinity Coal Corp. 11 X – – – – – – – – – – – – 
21 Walter Industries 7.5 X X X X X X X X X X X X 
22 Cline Group 6.1 X – – – – – – – – – – – – 
23 Black Hills Corp. 6.0 X X X X X X X X X X X 
24 Energy Coal Resources Inc. 6.0 X – – – – – – – – – – – – 
25 Western Fuels Association  5.3 X X X X X X X X X X X X 

     Available 
X     Not available 
–     Not applicable 
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to undergo such assessments. For some mine operators, the interest on environmental 

issues only goes as far as addressing them in order to meet the minimum requirements for 

compliance. Such mine operators are not likely to conduct environmental impact 

assessments or any other studies to evaluate the performance of their operations, when it 

is not required of them by law. 

Another pertinent example of how government rules and requirements can 

influence how companies act on sustainability issues can be drawn from guidelines for 

DOE’s Voluntary Reporting of Greenhouse Gases Program and the recently introduced 

EPA’s Mandatory Reporting of Greenhouse Gases Rule. In the voluntary reporting 

program, a threshold of 10,000 metric tons of CO2-equivalent emissions per year has 

been set to decide which operations are large emitters and therefore need to report their 

emissions, while the EPA’s mandatory reporting rule stipulates 25,000 metric tons CO2–

equivalent or more per year of GHG emissions as a qualifier for reporting. First, the 

thresholds leave out the many small scale operators, and may provide a false sense of 

security. The second drawback in the reporting requirements is that they focus only on 

emissions over a time period, rather than emissions per unit of product. The main flaw in 

this is that the many small operations left out from reporting typically have lower 

performance records on the environmental issues compared to the large scale operations 

that also have the benefits of economies of scale and thus superior production efficiency 

and emissions. In general, large scale operations are run by big corporations that often 

have effective sustainability initiatives and perform better on environmental 

sustainability. 

1.1.3. LCA in Evaluation of Mining Products.  Life cycle assessment (LCA) of 

a product or service is the assessment of environmental burdens of a product or service 

across its life cycle (Bauman and Tillman, 2004). This a comprehensive tool for 

quantifying and interpreting environmental impacts of a product or service from the 

cradle to the grave. However, depending on the nature and intended purpose of an LCA 

study, the boundaries of the system under study may be modified appropriately resulting 

in either a cradle-to-gate or gate-to-gate assessment. 

The LCA technique has been used to assess environmental impacts associated 

with various products. Unfortunately, its use in assessing mining products and processes 
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has been limited, as evidenced by limited published literature on LCA applications in 

mining. This situation is particularly true for coal mining. The DOE’s National Renewal 

Energy Laboratory (NREL) has an LCA database (www.nrel.gov/lci/database) for 

various products. The database has comprehensive data on coal use, in electricity 

generation, but the data for coal mining products is limited and a number of important 

environmental flows are missing. 

Coal is linked directly or indirectly to a lot of industrial processes which may be 

studied through LCA. Coal is important for electricity which in turn is associated with a 

lot of industrial processes. These links make comprehensive life cycle inventory (LCI) 

information on coal crucial for LCA in general. Often, life cycle inventory data on 

extraction processes for electric generation fuels such as coal is non-existent and this 

affects the completeness of LCIs for electricity and other industrial processes. Kim and 

Dale (2005), in their compilation of the life-cycle inventory of the United States Electric 

System, cited a lack of data on upstream processes such as coal extraction as a source of 

uncertainty in the inventory data. Databases such as the Emissions and Generation 

Resource Integrated Database (eGRID) developed by EPA contain comprehensive 

information on the US electricity system, but they provide only limited gate-to-gate 

emissions, because of missing data for upstream processes such as coal extraction (Kim 

and Dale, 2005). The lack of data on life cycle emissions from coal extraction could be 

linked to the general lack of data on US mining industry for energy use, mining 

processes, equipment types and fuel types (DOE, 2007). The general unwillingness to 

share data on processes and performance, as well as the limited life-cycle thinking in the 

mining industry could be cited as the main reasons for the lag in LCA applications in coal 

mining. 

LCA studies of coal mining can help fill LCI data gaps, and perhaps generate data 

that could be helpful to the coal mining industry as whole. LCA data can help in 

pinpointing processes from which the coal mining industry can potentially reap benefits 

of significant reductions in life cycle impacts of coal. LCA can be used to complement 

other environmental systems analysis tools and aid in environmental sustainability 

reporting for coal mining businesses. 
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1.2. STATEMENT OF PROBLEM 

Given the wide range of concerns over environmental burdens associated with 

coal, concerted efforts to ensure sustainable coal extraction and use are necessary. This 

calls for the employment of all the necessary environmental sustainability tools to 

evaluate and identify all potential areas for improvement. 

While there is a general shift by the coal mining industry and the mining industry 

in general towards embracing environmental sustainability, there are still some shortfalls 

in the adoption of the concept. There is still limited use of environmental sustainability 

evaluation tools in the coal mining industry, and this may imply limited knowledge and 

awareness of issues of sustainability. In cases where environmental sustainability analysis 

tools are used, the inherent limitations in the scope of analysis that can be covered by 

particular tools, and the form in which the data is presented, affects the quality and 

effectiveness of sustainability reporting (see Table 1.1).  

Even though the life cycle assessment framework currently is believed to address 

mining issues poorly (Lindeijer, 2005), when adapted appropriately, the technique can 

provide valuable information about mining processes. Life cycle assessment provides 

unique information due to its quantitative and analytical character, and the fact that it is a 

holistic approach that assesses environmental flows through the life cycle of a product. 

The holistic approach inherent in the tool enables all impacts to be brought together into 

one framework, irrespective of where they occur, thereby ensuring that transfers in 

emissions and impacts to different life cycle stages, locations, or different media, as a 

result of changes in the processes, are not overlooked.  

Some evaluation tools tend to measure environmental flows on the basis of time 

(e.g. annual basis), which often gives a distorted perception that the bigger the scale of 

operation is, the bigger the environmental flows and impacts. Such evaluations fail to 

communicate the fact that small scale operations while appearing to have lower impacts 

actually have poor efficiencies, and therefore are not the best way to ensure sustainability 

in the long term.  

In LCA, environmental impacts are assessed on the basis of a functional unit of 

product or service. For example, in the case of coal, a functional unit may be based on 
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mass (e.g. 1 tonne) or energy content (1 Megajoule). Such a metric gives a better picture 

of performance in terms of intensities of material and energy inputs, and environmental 

flows. Therefore, it is important to improve awareness of and encourage use of 

systematic and comprehensive sustainability analysis tools such as LCA, which can 

provide valuable information to industry, government and the public.  

1.3. OBJECTIVES AND SCOPE OF RESEARCH 

The objective of this research work was to estimate cradle-to-gate life-cycle 

impacts of surface coal mining using the general principles of ISO 14040-49 series of 

standards for life-cycle assessment and adapting them to the peculiar situation of coal 

mining. The study was aimed at giving an understanding of the contributions of the 

mining stage and processes to the overall impacts of coal, using data from five strip 

mining operations in the US.  

In this work, water use, land use, energy use, abiotic resource depletion for energy 

sources and climate change impacts were assessed for each mine. The mines’ 

performances were compared on the basis of the impacts. While there are other impact 

categories such as, acidification, eutrophication, human toxicity, ecotoxicity, and 

photochemical oxidation, that are important and relevant to coal mining, the five were 

chosen because of their connection to the peculiarity of coal. Processes downstream of 

mining have not been included in this study because a lot of LCA work has been done in 

those areas as evidenced by the existence of comprehensive databases on coal use, 

especially in electricity generation. The scope of the work covers processes of the mine 

life stages and impacts as shown in Figure 1.1. 

A sensitivity analysis was conducted to evaluate the implications of data 

uncertainty on the overall results. Dominant sources of impacts that deserve further 

attention were identified and treated comprehensively. Recommendations on addressing 

potential impacts were made and finally, data quality and uncertainty issues were 

assessed qualitatively. 
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Figure 1.1. Processes in the cradle-to-gate life cycle assessment of coal 
 

1.4. RATIONALE FOR STUDY 

This study was done to provide diversity in environmental sustainability analysis 

tools used in the coal mining industry and in mining in general. Given that all 

environmental sustainability evaluation tools have their shortfalls, this study was 

intended to provide a life-cycle perspective in understanding environmental burdens 

associated with coal mining processes. The study was meant to encourage use of LCA as 

a complement to other tools for evaluating environmental impacts of coal mining. 
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It was envisaged that this study would provide a baseline on which the coal 

mining industry could build on to improve their environmental management systems as 

well as sustainability reporting. The research work gives an appreciation of the unique 

information that can be obtained from LCA studies, and which can inform the public, 

industry and government on the true nature and extent of impacts coal mining processes. 

The results of this work provide information that can influence policy making decisions, 

either at government level or at individual company level, regarding areas or processes 

where greater controls of impacts are necessary. This study was intended to contribute 

data towards LCI for coal mining, which so far is very limited. The coal mining industry 

and LCA practitioners can build on the results of this study and conduct similar LCA 

studies to further enhance data quality necessary for addressing data gaps in LCIs for coal 

and other processes and products that are linked to coal.  

1.5. METHODOLOGY 

The research involved performing a cradle-to-gate life-cycle assessment of 

surface coal mining employing the general principles of the ISO 14040-49 series of 

standards and adapting them to the unique situation of coal mining. Data was sourced 

from mine permit applications, air permits, published literature, government reports, and 

other publicly available documents.  The LCA steps followed include: 

a. Goal and scope definition.  

b. Inventory analysis. 

c. Impact assessment. 

d. Reporting and recommendations for improvement. 

1.6. STRUCTURE OF THESIS  

A review of literature is covered under Chapter 2, which has been broken down 

into four main subsections covering environmental sustainability in mining, tools for 

environmental systems performance analysis, overview of LCA framework, and 
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applications of LCA in mining and challenges. Chapter 3 presents the goal and scope 

definition for the LCA study, and life cycle inventory analysis is covered under Chapter 

4. The results of the impact assessment are presented and discussed in Chapter 5, and 

finally, conclusions and recommendations for future work are covered under Chapter 6. 
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2. LITERATURE SURVEY 

This chapter covers a review of literature relevant to research on the application 

of LCA in coal mining. The literature review covers environmental impacts of coal; 

environmental sustainability in mining and coal; environmental assessment tools; 

overview of life cycle assessment (LCA) framework; applications of LCA to mining and 

coal, as well as challenges in applying LCA to coal mining. 

2.1. ENVIRONMENTAL IMPACTS OF COAL   

Despite the contribution of coal to energy security and to the social and economic 

upliftment of communities, it is faced with challenges of environmental issues (World 

Coal Institute, 2005; Chihn, Gheewala and Bonnet, 2007). There is increasing awareness 

of and concerns over the environmental impacts of coal (Hansen, Notten and Petrie, 

2002). Environmental impacts of coal can be significant locally or regionally (Worrall, et 

al. 2009), or even globally, as in the case of climate change impacts from greenhouse 

gases (GHG) emissions. Environmental impacts of note associated with coal include 

those from coal mining and from the use of coal in electricity generation and in other 

industrial processes. Coal mining activities can have severe and lasting effects on the 

natural environment (Worrall et al., 2009). Coal use in electricity generation releases 

pollutants whose impacts on the environment and human health are the primary concern 

over its use as an energy source (Babbitt and Lindner, 2005). Environmental problem of 

coal have sparked calls to increasingly shift towards renewable energy sources for 

electricity generation (Froese et al., 2010). 

2.1.1. Climate Change.  The US Department of Energy’s (DOE) analysis of 

energy use and associated greenhouse gas (GHG) emissions for the US mining industry 

estimates that coal mining emits about 29.4 million tons of CO2-equivalent of greenhouse 

gases per year (DOE, 2007), which contribute to climate change. The GHG emissions 

associated with coal include methane from coal strata, and carbon dioxide and nitrous 

oxide from the use of fuels in coal mining operations, as well as in the use of coal in 
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electricity generation and other industrial processes, such as steel production and cement 

manufacture (World Coal Institute, 2005).  

Concerns over GHG emissions from anthropogenic activities have led to 

international initiatives such as the 1997 Kyoto Protocol to the United Nations 

Framework Convention on Climate Change, which aims to bind big economies to 

stabilize GHG emissions (UN, 1998). In June 2009, the US House of Representatives 

passed the American Clean Energy and Security Act (H.R. 2454), otherwise known as the 

Waxman-Markley comprehensive energy bill.  The bill includes an economy-wide cap-

and-trade plan on greenhouse gas emissions in order to reduce climate change (CBO, 

2009). This bill has stirred concerns and debate on its implication for the future of the US 

coal mining industry. 

While most of the GHG emissions associated with coal are from the use stage, 

e.g. electricity generation (Hendrickson, Lave and Matthews, 2006), it is crucial to look 

at the whole life-cycle of coal, including the mining stage, to identify any opportunity for 

reducing these emissions. To meet emission cuts, such as those set out in the Kyoto 

Protocol (UN, 1998), it is imperative to pursue a comprehensive, all encompassing, 

strategy. Rather than focusing only on a few operations that are regarded as big GHG 

emitters, it may be helpful to look at all emitters since the contributions from the many 

small emitters may be significant. 

2.1.2. Energy Use.  Efficient use of energy resources is one area that is crucial to 

the sustainability of coal mining and mining in general. The energy used to mine and 

process minerals is a growing concern given the global concerns over climate change 

impacts associated with energy use (Basu and Carabias-Hütter, 2004). Energy sources, 

including electricity and diesel, are important inputs to mining (Bogunovic and 

Kecojevic, 2009) and make up the highest component of mining costs (Cheskidov, 

Kortelev, Aleksandrov and Il’bul’din, 2004). The U.S. mining industry (excluding oil & 

gas) consumes approximately 1,246 Trillion Btu of energy per year (DOE, 2007), and 

this represents about 1.3 percent of the 99 Quadrillion Btu total energy consumed in the 

US, annually (EIA, 2009d). 

Energy use has always been accounted for in life cycle assessment (Baumann and 

Tillman, 2004), but often it has only been addressed to the point of inventory compilation 
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and determining environmental flows associated with it, and not necessarily as an impact 

category. It is essential to focus on energy use as an impact so that issues of energy 

efficiency, especially when dealing with processes whose product is an energy source, as 

in the case of coal mining, can be given due attention.  Given that coal mining processes 

involve using fossils fuels, either directly or indirectly through electricity, whose supply 

is not infinite, it is important to understand the energy profile of the coal mining industry.  

2.1.3. Resources Depletion For Fossil Fuels.  At the current extraction rates, it is 

estimated that the US recoverable coal reserves could last for about 230 years (EIA, 

2009c). US reserves for crude oil and natural gas are expected to last for even shorter 

periods: 24 years for crude and 70 years for natural gas at 2007 domestic consumption 

levels (EIA, 2009c). Management of non-renewable resources has become a key issue in 

the debate on sustainability (Worrall et al., 2009), and so, resource depletion is one of the 

emerging impact categories in evaluating products (Morris, 2005). Since fossil fuels are 

non-renewable resources, it is important to look at their depletion implications of 

extracting coal by certain mining systems. This impact category is particularly relevant to 

fossil fuels because, unlike metal minerals, after extraction they do not accumulate in the 

technosphere where they could be recyclable (Morris, 2005): once used, they are 

destroyed. 

2.1.4. Land Disturbance.  Coal mining, particularly surface coal mining, affects 

large areas of land and habitats (Canals et al, 2007; Worrall et al., 2009), and this is one 

of the reasons often cited in opposition to coal mining by environmental pressure groups 

and communities. The opposition to surface coal mining projects sometimes emanates 

from a lack of appreciation of some positive aspects that are unique to surface coal 

mining nowadays. Unlike in the cases of surface metal and non-metal mining operations, 

the land impacted by surface coal mining is typically reclaimed contemporaneously with 

mining to allow for post-mining uses that are the same as pre-mining uses or better, as 

required by the regulations of the Surface Mining Control and Reclamation Act 

(SMCRA) of 1977. 

Land use impacts are seldom included in environmental assessments of products 

(Canals et al., 2007). However, land use impacts in mining are believed to be important 

and the dominant contributor to changes on global biodiversity, so that leaving them out 
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of any impact assessment is a flaw (Lindeijer, 2005; Bourassa, 2005). The large surface 

area disturbances characteristic of surface coal mining makes this impact even more 

relevant and important to this type of mining. 

2.1.5. Water Use.  The potential for water depletion by coal mining processes is 

an important issue, particularly in arid areas (Baur and Zapp, 2005; Luba et al., 2006; 

Mangena and Brent, 2006). Coal mining involves the use of water for dust allaying on 

haul roads, coal washing, and coal transportation by hydraulic transportation in some 

cases. The quantity of water used in mining can be high depending on processes involved 

(Mangena and Brent, 2006). The potential for water depletion in some areas makes it 

vital to assess the water use impacts for coal mining in such areas, so as to enable 

development of effective strategies for water use management.  

2.1.6. Water Quality.  Processes in coal mining and coal use (e.g. electricity 

generation) can release effluents that can impact water quality. The formation of acid 

mine drainage (AMD) is one of the major environmental problems facing the coal mining 

industry (EPA, 1994; Mangena and Brent, 2006; Chihn et al., 2007; Worrall et al., 2009). 

AMD forms from the oxidation of sulfide minerals in the presence of water, resulting in 

effluent that is acidic and rich in metal and sulfate ions (Jage, Zipper and Noble, 2001). 

The resulting drainage affects the quality of water and aquatic ecosystems around mines 

(Cravotta, 2003). Coal mines typically have this problem because of presence of sulfide 

minerals such as pyrite and marcasite, which are usually associated with coal strata (Jage 

et al., 2001). AMD generation during mining sometimes continues through the post 

mining stage if not adequately addressed during reclamation. According to Kaas and Parr 

(1992) and EPA (1994), it is estimated that in the Appalachia, between 7,000 and 8,000 

kilometers of streams were polluted by AMD from coal mines, mostly abandoned ones. 

The regulations of the Surface Mining  Control and Reclamation  Act (SMCRA) 

of 1977 require coal mine operators to meet land reclamation standards that aim to 

minimize generation of acid mine drainage. The water quality standards found in the 

Clean Water Act of 1972, which regulates effluent releases into US waters, place a 

requirement on coal mine operators to treat water impacted by AMD to acceptable 

quality levels before it is discharged into water courses.   
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2.1.7. Acidification, Photochemical Oxidation and Toxicity.  Coal mining 

activities release dust particulates and various gaseous pollutants from the use of diesel 

and other energy sources (Chinh et al, 2009). The burning of coal in electricity generation 

stations also results in emissions of various pollutants into the air (Babbitt and Lindner, 

2005). Some of the gases (e.g. oxides of sulfur and nitrogen) can results in impacts such 

as acidification and photochemical oxidation. Trace elements, such as mercury, selenium 

and arsenic released from the burning of coal, can lead to human toxicity and ecotoxicity 

(World Coal Institute, 2005). 

2.1.8. Solid Waste.  Coal mining generates significant quantities solid waste 

(Worrall et al., 2009), and this may be in the form of overburden material and gob 

material from the coal washing processes. However, unlike in other surface mining 

operations, coal mining waste is useful as backfill in the reclamation of mined out areas 

(McCarter, 1992), and usually, the waste from coal washing is buried under spoils in 

mined out pits. The use of coal in electricity generation also produces solid waste in the 

form of Coal Combustion Products (CCPs), such as fly ash, bottom ash and boiler slag 

and flue gas desulfurization material (World Coal Institute, 2005). While CCPs may have 

beneficial uses, most of the CPPs generated cannot be put to use, and therefore they pose 

problems of waste management (Babbitt and Lindner, 2008). 

2.2. ENVIRONMENTAL SUSTAINABILITY IN MINING AND COAL  

The World Commission on Environment and Development (WCED, 1987) 

defines sustainable development as “the ability of current generations to meet their needs 

without compromising the ability of future generations to meet their own needs.”  The 

approach to defining sustainability varies considerably among different stakeholders 

(Spitzley and Tolle, 2004; Manderson, 2006; Mudd, 2009; Muga, 2009). The definition 

of sustainability depends on whether the views are from business leaders, scientists, civic 

groups or government (Spitzley and Tolle, 2004; and Mudd, 2009). However, it is 

generally agreed that sustainability requires a balanced implementation of the social, 

economic and environmental objectives (Basu and Carabias-Hütter, 2004; Muga, 2009; 

Finnveden, et al., 2009).  
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In mining, balancing the different aspects of sustainability is extremely complex 

because of the wide group of stakeholder requirements that have to be satisfied (Basu and 

Carabias-Hütter, 2004). The different views on what sustainability entails have led to 

disparities in how elements of sustainability are adopted and implemented (Bond et al., 

2010). von Below (1993) characterized the disparate views on sustainability as applied to 

mining by suggesting that the level of concern for the environment is a function of the 

level of welfare of a community. Rees (1992) cites the example that, when considering 

trade-offs between economic growth and environmental quality, developing nations are 

likely to emphasize on economic aspects, because their main concern is breaking the 

cycle of debilitating poverty. Thus, the views on sustainability of a mining project at a 

local level may not be in line, or may even clash, with those at a regional or international 

level. 

The mining industry is increasingly embracing sustainability and adopting 

performance indicators for reporting sustainability performance (Basu and Carabias-

Hütter, 2004). While some companies only go as far as the minimum requirements for 

regulatory compliance (McLellan et al., 2009), others have found it advantageous to look 

beyond compliance (EPA, 2006), and they have incorporated sustainability into their 

management systems and employ corporate sustainability reporting, environmental 

management systems, as well as environmental performance analysis tools to improve 

their image and stay competitive.  

Perez and Sanchez (2009) and Matthews et al. (2004) evaluated how the standard 

of sustainability reporting stands in the mining industry by reviewing sustainability 

reports for major mining corporations. They compared the reports against international 

reporting guidelines, including those of the Global Reporting Initiative (GRI), looking at 

the number of indicator categories covered, and the quality of information for each of the 

covered indicators. The results of the study by Matthews et al. (2004) are illustrated in 

Figure 2.1. 
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Figure 2.1. Standard of sustainability reporting in the mining industry 
(Adapted from Matthews et al., 2004) 

 
 

Both studies note that performance on sustainability evaluation and reporting 

varies widely in the mining industry. In addition, environmental performance is the one 

that has greatest variability in the reporting of indicators (Perez and Sanchez, 2009), as 

well as the worst reporting (Matthews et al., (2004), compared to sustainability indicators 

for economic and social aspects. Matthews et al. (2004) concluded that companies which 

report on sustainability fall into four distinct groups, and that there is a fifth group 

comprising companies that do not report anything that is relevant to sustainability:  

• Group 1: These are the influencers who are actively leading and setting the  

  industry agenda, and they use sustainability to differentiate  themselves  

  from competitors. 

• Group 2: Companies that are rapidly improving their reporting performance,  

  following on the footsteps of the first group. 

• Group 3:  Companies focused on risk reduction activities. 
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• Group 4: Companies that are still coming to grips with sustainability and have no  

  holistic approach, but rather focus on specific, narrow areas. 

 

The US coal mining industry has only a few big, multi-national corporations, and most of 

the players in the industry are small operators, who would most likely fall under the fifth 

category as defined by Matthews and others (see Table 1.1).  

The major challenge facing coal mining is environmental sustainability (Mangena 

and Brent, 2006). Opposition to coal mining has for the most part emanated from issues 

of environmental damage, including among others, destruction of vast areas of forests 

and ecosystems due to surface mining, acid mine drainage generation and pollution of 

water sources, as well as acidification and climates change impacts from mining and use 

of coal.  

In the US, the modern era of environmental concerns emerged in the 1960s, 

driven by domestic concerns over local air and water pollution and coal strip-mining 

issues, among many others (Speth, 2002). These concerns led to the development of the 

National Environmental Policy Act (NEPA) in 1969, from which several pieces of 

legislation have been enacted to protect the environment. The promulgation of different 

pieces of environmental protection legislation has shaken the US coal mining industry 

over the years. For instance, the limits on sulfur dioxide (SO2) emissions mandated by the 

Clean Air Act of 1970 forced some coal fired electric generation plants to switch to low 

sulfur coal from the Western US or to alternative fuels (Rau, 1987), and the result was 

that many coal mines in the Eastern US had to close down (Kral, 1993). The recent 

passing of the American Clean Energy and Security Act of 2009 (H.R. 2454) by the 

House of Representatives in June 2009, aimed at reducing greenhouse-gas emissions in 

order to combat climate change (CBO, 2009), sparked a big debate and uncertainty about 

the future of coal (Storm, 2009; Carpenter and Hairfield, 2010).  

The impact of mining on the environment can resonate for many years (Mudd, 

2009; Worrall et al., 2009), and this makes environmental sustainability crucial. The 

environmental component of sustainability in coal mining projects deserves attention, just 

like economic and social aspects. Awareness and scientific knowledge of environmental 
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effects of processes and products are continually increasing (Muga, 2009), and this 

results in new impacts that have to be taken into account by the coal mining industry. The 

newly discovered impacts and subsequent regulations to address them, necessitate that 

the coal mining industry should continually assess and improve the resources needed to 

address environmental problems. This may involve adopting new environmental 

performance measurement tools to enable the industry to address the environmental 

impacts which otherwise cannot be sufficiently dealt with by other tools. 

2.3. ENVIRONMENTAL ASSESSMENT TOOLS 

Increasing interest in environmental issues has put pressure on industries to 

develop more environmentally friendly processes and products (Gäbel and Tillman, 

2005). In order to deal with environmental problems at their sites, companies, including 

mining companies, are increasingly adopting environmental management systems such as 

the ISO 14001 - Environmental Management System (Petrie et al., 2000). The key 

features of environmental management systems (EMS) are the requirement for evaluating 

and reporting performance, as well as to continually improve performance.  

There are a number of factors that can contribute to disparities in environmental 

sustainability performance for coal mining companies. These may include, local legal 

requirements; ownership (whether private or public); level of awareness of environmental 

issues and management’s attitude towards environmental issues; size of company and 

resources available. In order to achieve environmental sustainability, there is need to 

define its components in measurable terms (Rebitzer et al., 2004), and to set targets 

against which performance can be measured (Hales and Prescott-Allen, 2002). For 

companies that collect environmental performance data, the shortcomings in their 

reporting could be due to limitations of the environmental evaluation tools employed. 

Without proper assessment methodology that uses quantifiable measures, there is a risk 

of failing to achieve intended results, or at worst, getting unintended results which may 

turn out to be worse (Hales and Prescott-Allen, 2002). 

There are various tools for assessing the environmental performance of systems, 

and these include, Environmental Impact Assessment, Ecological Footprint, Risk 
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Assessment, Ecological Risk Assessment, Material Flow Analysis and Life Cycle 

Assessment (Baumann and Tillman, 2004). Each of these tools has a unique scope, 

strengths, and weaknesses, which determine the form of data and level of detail in the 

data that is used for sustainability reporting, and hence the quality of reporting.  

2.3.1. Environmental Impact Assessment.  The International Association for 

Impact Assessment (IAIA) defines Environmental Impact Assessment as “the process of 

identifying, predicting, evaluating and mitigating the biophysical, social, and other 

relevant effects of development proposals prior to making major decisions and 

commitments.” Environmental Impact Assessment is a tool that attempts to balance 

economic, ecological and social aspects of projects and it is used for environmental 

planning and decision making for implementation of projects (Bond et al., 2010). It is a 

procedural tool that is prescribed by law, and its key aspects are detailed descriptions of 

the anticipated local environmental impacts and public participation in the process 

(Baumann and Tillman, 2004). In the US, under NEPA, Environmental Impact 

Statements (EIS) are required for federally supported developments. Coal mining projects 

proposed in Federal lands or Indian Lands typically are subject to the EIS requirement. 

The Environmental Impact Assessment approach recognizes that each site is 

unique, with its own set of issues, and so, the results of an Environmental Impact 

Assessment are specific to an operation in a specific location setting (McLellan et al., 

2009). In mining, it is important to recognize site specific differences as this allows for 

tailored designs to effectively address the concerned problems at particular sites (van Zyl, 

2005; McLellan et al., 2009). However, the approach of dealing only with impacts at the 

site of the operation presents a limitation in that an Environmental Impact Assessment 

cannot give a full picture of the overall environmental impacts of a product beyond the 

production phase.  

The Environmental Impact Assessment’s downside is that it is not likely to 

identify the transfer of environmental problems outside the boundaries of the site due to 

choices made in process design. In fact, choosing alternatives that shift environmental 

impacts beyond the borders of the process site tends to be tolerated in Environmental 

Impact Assessment.  For instance, when comparing the options of electricity generation 

in a mining site and electricity from the grid, there is likely to be preference for 
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connecting to electricity from the grid, because the emissions would be off site, even 

though the grid electricity may be generated from higher impact energy sources.  

2.3.2. Ecological Footprint.  The concept of Ecological Footprint was conceived 

in 1990 by Mathis Wackernagel and William Rees (Global Footprint Network, 2009). It 

is based on the assumption that, for a given area, there is a maximum rate of resource 

consumption and waste discharge that can be sustained indefinitely without progressively 

impairing the functional integrity and productivity of the ecosystem (Rees, 1992). The 

Ecological Footprint is a measure of humanity’s demand on nature, and it evaluates how 

much land and water area a human population requires to produce the resources it 

consumes and to absorb its wastes using prevailing technology (Global Footprint 

Network, 2009). This tool has very little use in evaluation of specific products, services 

or operations (Spitzley and Tolle, 2004). The scope of this tool is limited to evaluating 

the carrying capacity of land (area metric), and so it does not cover a lot of impact 

categories that can be evaluated by other assessment tools such as LCA. 

2.3.3. Risk Assessment.  Risk assessment is the process of assessing the 

probability of occurrence of adverse events as well as their potential consequences 

(Jones, 2001). In the context of environmental performance evaluation of products or 

processes, risk assessment typically relates to toxic effects of chemicals, and it 

characterizes them with respect to human health and the environment (SETAC, 1997). 

Risk assessment aims to quantify actual risk, and therefore it requires specific 

information on the conditions of a given population, and this makes the tool more 

specific to a site at a given time (Olsen et al., 2001). The downside to application of risk 

assessment in evaluating products lies in the fact that risk assessments are narrowly 

focused in their scope as they deal with toxicological impacts at a specific location. Risk 

assessment is more suited for the evaluation of a facility that makes a product, rather than 

for a product over its life cycle. 

2.3.4. Ecological Risk Assessment.  An Ecological Risk Assessment (ERA) 

determines the nature and likelihood of effects of human activities on animals, plants and 

the environment (SETAC, 1997).  The environmental value (e.g. species or habitat type) 

that is to be protected is identified together with its vulnerability, the contaminants 

present and their ecotoxicity characteristics, then, risk is characterized by integrating 
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exposure and stressor-response profiles (SETAC, 1997; EPA, 1998). Ecological risk 

assessments provide information about the potential adverse effects of different 

management decisions, and the EPA uses ERAs to support management actions, 

including regulation of hazardous wastes and industrial chemicals (EPA, 2008). ERA is 

useful for addressing site specific impacts on biodiversity, but its usefulness in evaluating 

a product over its life cycle is limited. 

2.3.5. Material Flow Accounting.  Material Flow Accounting (MFA) or Material 

Flow Analysis is used to analyze and describe flows of a particular material within a 

region (e.g. a nation or a municipality), an industrial sector or an organization (Baumann 

and Tillman, 2004; De Marco et al., 2009). In the context of environmental evaluation of 

products, businesses can use MFA to assess resource use intensities in order to improve 

efficiencies in the use of materials. However, this kind of assessment would be limited to 

the production stage in the life cycle of a product. 

MFA can be used to evaluate material flows between different economic sectors 

at a national level, and these flows, together with economic accounting models, can be 

used to develop economic input–output LCA models (De Marco et al., 2009).  An 

economic input-output LCA (EIO-LCA) model provides a faster and cheaper way to 

conduct LCAs, but it can only give rough estimates for some products (Huijbregts et al., 

2001; Hendrickson et al., 2006). Thus, the EIO-LCA models do not give detailed data for 

individual unit processes in the manufacture of a product, and as such, they cannot be 

useful where accuracy is critical, such as when comparing environmental performances 

of different products or individual unit processes for a product.   

2.4. LIFE CYCLE ASSESSMENT FRAMEWORK  

The ISO 14040 standard defines life cycle assessment (LCA) as the compilation 

and evaluation of the material and energy flows, and of the potential environmental 

impacts of the life cycle of a product (ISO, 1997). Thus, LCA assesses the potential 

environmental impacts and resources used for a product, from the point of raw material 

acquisition, through production of product parts and the product itself, and the use of the 

product, to ultimate disposal of product and its waste management. A characteristic 
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central to LCA is its holistic approach (Guinée, 2002; Muga, 2009), in that it covers 

potential environmental impacts through all the stages in the life cycle of a product. 

Figure 2.2 illustrates a general life cycle assessment model.  

 

 

 

Figure 2.2. A generalized life cycle assessment model   
(Adapted from Owens, 1997) 

 

 

2.4.1. Development of LCA Methodology.  The use of the LCA technique goes 

back to the 1960s (Curran, 1996; Owens, 1997; Ekvall, Tillman and Molander, 2005), 

though initially the technique went by various names (EPA, 2006). Before the name LCA 

came into being, practitioners of the technique referred to it by names such as, Energy 

Analysis, Product Ecobalances, Resource and Environmental Profile Analysis (REPA), 

Integral Environmental Analysis, Environmental Profiles, Product Line Analysis, and  

Integrated Chain Management (Curran, 1996; Guinée, 2002; Baumann and Tillman, 

2004). While there are variations on historical accounts as to how LCA started, the 

general belief is that the first work that is now considered to be an LCA type study, was a 
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study commissioned by Coca-Cola Company in the US in 1969, in which the Midwest 

Research Institute (MRI) was engaged to evaluate alternative containers for beverage 

packaging (Baumann and Tillman, 2004; EPA, 2006). The evaluation considered energy, 

materials and environmental consequences, and it was referred to as Resource and 

Environmental Profile Analysis (REPA). At about the same time, somewhat similar 

studies, driven by concerns over energy and waste associated with packaging materials, 

were undertaken in Sweden, Germany and United Kingdom (Baumann and Tillman, 

2004). Other LCA type studies followed, inspired by the initial efforts. The first LCA 

type studies carried out between 1969 and 1972 were all focused on packaging materials, 

especially for beverage containers (Curran, 1996; Baumann and Tillman, 2004). The oil 

crisis of 1973, further spurred development of LCA by fueling interest in detailed energy 

analyses (Owens, 1997; Baumann and Tillman, 2004), although analyses of 

environmental flows were limited in the studies (Curran, 1996). 

Before the advent of common methodological rules or standards, results of LCA 

studies varied quite considerably because of the different approaches by individuals 

undertaking the studies (Buxmann, 2005). The Society of Environmental Toxicology and 

Chemistry (SETAC) was the first international body to work on the development of LCA 

methodology, with its initial involvement starting in 1989 (Guinée, 2002). SETAC put 

forth a science-based platform for development of LCA, and they formalized the LCA 

methodology by defining the terms to describe LCA as well as laying down the initial 

framework (Curran, 1996). SETAC developed a code of practice for LCA (Consoli et al., 

1993) to reduce arbitrariness in the application of the technique (Guinée, 2002; Baumann 

and Tillman, 2004). SETAC continues to hold annual meetings aimed at improving the 

LCA methodology. 

The development of the code of practice by SETAC was an important step 

towards standardization of LCA as the code acted as the forerunner to the activities of the 

International Organization for Standardization (Guinée, 2002). The International 

Organization for Standardization (ISO) started working on standards relating to LCA in 

1994. The first of the ISO 14040 series of standards (Environmental management – Life 

cycle assessment), which laid down the procedure for performing LCA, was first released 

in 1997 (Baumann and Tillman, 2004). ISO standards pertain to the technical as well as 
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organizational aspects of LCA. The ISO Technical Committee 207 (ISO/TC207) has 

been focusing on, among others, defining terminology, establishing technical 

frameworks, structuring the analysis in different phases of LCA, and establishing general 

methodological requirements. ISO/TC207’s contribution has been the reduction in the 

haphazard use of the tool by developing standards, which has improved the general 

acceptance of LCAs by stakeholders and the international community (ISO, 2006b). The 

ISO 14040 series of standards include the following standards and technical reports: 

• ISO 14040: 2006 -  Principles and framework (2nd Edition.) 

• ISO 14041: 1998 - Goal and scope definition and inventory analysis (1st Edition) 

• ISO 14042: 2000 - Life cycle impact assessment (1st Edition ) 

• ISO 14043: 2000 - Life cycle interpretation (1st Edition) 

• ISO 14044: 2006 - Requirements and guidelines (1st Edition) 

• ISO/TR 14047: 2003 - Examples of application of ISO 14042 (1st Edition) 

• ISO/TS 14048:2002 - Data documentation format (1st edition) 

• ISO/TR 14049: 2000 - Examples of application of ISO 14041 (1st edition) 

 

The ISO 14040:2006 replaced the old ISO 14040: 1997, as well as the ISO 14041, 

ISO 14042 and ISO 14043, and brought them under one standard (ISO, 2006b). ISO has 

also developed other standards such as the ISO 14025:2006, which deals with principles 

and procedures for environmental labels and environmental product declarations, an area 

that is closely related to LCA.  

The United Nations Environmental Programme (UNEP) is another important 

international player in LCA, having taken on the role of stimulating global use of LCA 

(Guinée, 2002). Their work mainly centers on encouraging the application of LCA, 

particularly in developing nations. In 1996 the UNEP published a user-friendly guide to 

LCA, as part of their effort to encourage wide application of LCA (Guinée, 2002). 
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2.4.2. Phases of LCA.  The LCA model, as put forward by SETAC in the 1993 

code of practice, had four main components (Figure 2.3). These are, Goal Definition and 

Scoping, Inventory Analysis, Impact Assessment, and Improvement Assessment. Over 

time, Improvement Assessment came to be viewed as one of the possible uses of LCA, 

rather than a step in the methodology (Baumann and Tillman, 2004). So, in the ISO 

14041 standard, Improvement Assessment was dropped and replaced with Interpretation 

as shown in the ISO 14041:1998 framework model in Figure 2.4. 

The removal of improvement assessment as a separate LCA phase was fitting 

because not all LCA studies necessarily require improvement assessment. For instance, 

some retrospective LCAs, such as stand-alone LCAs, are typically meant to compile 

baseline information for acquaintance with the environmental flows for product system or 

its components, without the intention for product or processes improvement, and for such 

studies, the improvement assessment phase would not be relevant. Despite its removal as 

a phase, Improvement Assessment remains part of LCA as it can be included in the goal 

of a study when there is an interest in assessing the effects on the environment of changes 

to the product system. 

 

 
Figure 2.3. SETAC 1993 LCA framework      

(Adapted from Curran, 1996)  
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Figure 2.4. LCA framework according to ISO 14041:1998 

(Adapted from Baumann and Tillman, 2004) 
 

 

2.4.2.1 Goal and Scope Definition.  An LCA study is carried out to answer 

specific questions, and these are the questions that guide the goal and scope of an LCA 

study (Curran, 1996). Aspects of this phase are defined and described in the ISO 14041: 

1998 and ISO/TR 14049: 2000. In the goal definition, the purpose of the study or the 

context in which the LCA study is to be conducted is established, as well as the 

anticipated audience. 

As part of the goal and scope definition, it is important to explain the nature of the 

study, i.e. whether it involves a prospective or retrospective LCA (Ekvall, 2005; 

Finnveden et al., 2009). A retrospective LCA study (also known as descriptive, 

accounting or attributional) describes the environmental flows to and from a life cycle 

and its subsystems (Höjer et al., 2008). Retrospective LCAs are useful for comparing 

existing products in marketing (Weidema, 2001), though some do not necessarily involve 

any comparisons, such as those for learning purposes (Ekvall, Tillman and Molander, 

2005; Finnveden et al. 2009). On the other hand, a prospective (or change-oriented, 

effect-oriented or consequential) LCA aims to describe the consequences of changes 

made within the technological system investigated (Ekvall et al., 2005; Höjer et al., 

2008), and is useful for decision making (Tillman, 2000).  
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The type of LCA has a bearing on the type, specificity and hence quality of data 

that is necessary to achieve results of some significance (Tillman, 2000). For 

retrospective LCAs, average data (which represents average environmental burdens for 

producing a unit of the product from the system) may suffice, while prospective LCAs 

typically require marginal data, which corresponds to the effects on the environmental 

burdens of the system due to a small change in the output of a product (Tillman, 2000; 

Ekvall et al., 2005; Finnveden, 2008).  

In the goal and scope definition phase, the LCA practitioner defines the product, 

process system boundaries, impact categories of interest, as well as the format for 

presenting results. The functional unit, which is a quantified performance measure of a 

product system used as a reference unit in an LCA study, must be defined. The 

determination of the boundaries of an LCA project is critical to the completeness of the 

LCA (Raynolds, Fraser and Checkel, 2000), and it is based on a number of factors, 

including, the goal and scope of the project, the availability of data, and the time and 

resources available (Ahmadi et al, 2003; Rebitzer et al., 2004).  

The ISO 14040 standard requires that where possible, scoping should be done 

quantitatively. The standard suggests that environmental outputs for all unit processes be 

evaluated to determine the unit processes’ relevance, before the system boundaries are 

drawn. However, evaluating each unit process before deciding the boundaries of an LCA 

could prove to be impractical in terms of time and other resources required, especially for 

a system with lots of unit processes. Typically LCA practitioners select product system 

boundaries using qualitative evaluation in which one aims to include what they consider 

to be the main sources of life-cycle impacts. Raynolds et al. (2000) view this practice to 

be too arbitrary, and thus, would not ensure repeatable results.  

To address the problem of selecting boundaries, Raynolds et al. (2000) proposed a 

method called the Relative Mass-Energy-Economic (RMEE) method. This is a systematic 

method to quantitatively determine whether or not certain unit processes should be 

included in the system boundaries, based on their relative mass, energy and economic 

values, compared to the functional unit. However, this method has limitations because it 

was developed specifically for energy sources. While it is applicable to coal, for instance, 

it is difficult to apply to most mining products such as metals, quarrying products and 
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others that have relatively low energy content compared to mass and economic values. In 

spite of the method’s limitations, Awuah-Offei et al. (2008) have shown that it could be 

adapted to the non-energy mining products by disregarding the energy parameter and 

using different cut-off ratios for mass and economic value to match the different scales on 

which products for unit processes relate to the mass and economic value for the 

functional unit. 

Depending on the intended use of the LCA, the system boundaries may be 

streamlined by eliminating some life cycle stages or some impact categories (Curran, 

1996; Todd, 1996). Instead of a full LCA (cradle-to-grave assessment), one may choose 

to eliminate some downstream life cycle stages and do a cradle-to-gate assessment if the 

interest is on evaluation of a product from raw material extraction up to the point where 

the product leaves the boundaries of the production facility. Another streamlined version 

is a gate-to-gate assessment in which environmental releases or impacts of interest are 

only those directly from within the boundaries of the production facility. 

2.4.2.2 Inventory Analysis.  The inventory analysis phase is described in the ISO 

14041:1998 and ISO/TR 14049:2000. In this phase, relevant energy, material and other 

resource inputs, as well as environmental releases to air, water, and land, and other 

environmental burdens, throughout the life cycle of a product are identified and 

quantified. The life cycle inventory (LCI) items are calculated as the functional unit’s 

proportional share of the full environmental flows from each process (Finnveden et al. 

2009). 

2.4.2.3 Life Cycle Impact Assessment.  The ISO 14042:2000 and ISO/TR 

14047:2003 describe the steps in the life cycle impact assessment (LCIA) phase. In this 

phase, potential impacts are assessed based on impact categories defined in the goal and 

scope definition and the environment flows identified in the inventory analysis. The 

LCIA phase has several steps, which include classification, characterization, 

normalization, grouping, weighting and data quality analysis. In terms of the ISO 

14042:2000 standard, classification and characterization are mandatory, while the other 

steps are optional. 

2.4.2.3.1 Classification.   Classification involves the assignment of the emissions 

from the inventory into impact categories according to the substances’ ability to 
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contribute to different environmental problems (Baumann and Tillman, 2004). For 

example, sulfur dioxide (SO2) can be assigned to acidification and photochemical ozone 

creation potential, and carbon dioxide (CO2) and methane (CH4) can be assigned to 

global warming potential. 

2.4.2.3.2 Characterization.  Following classification, characterization models are 

selected to model the impact of each emission quantitatively, according to the 

environmental mechanism (cause-effect chains) of the pollutants in order to give an 

impact score expressed in a common unit for the impact category (Pennington, et al., 

2004). Characterization methods model the fate of pollutants in the environment to 

different extents: some modeling may be problem-oriented (midpoint modeling) or 

damage-oriented (endpoint modeling) (Mangena and Brent, 2006; Finnveden et al., 

2009). The modeling approach determines the characterization factors (equivalency 

factors) used to convert the inventory estimates to potential impacts. For instance, in the 

climate change impact category, characterization factors expressed as kg CO2-equivalent 

may be used for the change in absorption of radiation in the atmosphere due to 

greenhouse gas emissions, and this would represent midpoint (problem-oriented) 

modeling. On the other hand, the percentage of a particular species that has disappeared 

or the percentage of land submerged under water due to melting of ice in polar regions as 

a result of climate change caused by greenhouse emissions would represent endpoint 

(damage) modeling. 

Characterization factors are also determined by the time scale used in the 

characterization modeling, as the lifetime of a substance has an influence on the 

substance’s persistence in contributing to the particular impact over time (IPCC, 2007). 

As an example, the IPCC has developed global warming characterization factors for 20, 

100 and 500-year time horizons, and the Global Warming Potentials for the longer time 

horizons reflect the importance of long-lived pollutant (IPCC, 2007). 

2.4.2.3.3 Normalization.  In normalization, the results from characterization are 

related to reference values, which express the relative magnitude of the impact scores on 

a scale which is common to all the impact categories (Bauman and Tillman, 2004). 

Normalization puts the significance of the characterization results in context, by relating 

the environmental burdens of a product (or service) to the overall burden in its 
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surroundings, and typically this is done at a national level and on an annual basis (Bare, 

Gloria and Norris, 2006; Mangena and Brent, 2006). 

2.4.2.3.4 Grouping.  Grouping involves sorting and ranking of indicators after 

characterization. This usually is a qualitative process in which indicators are grouped 

together and ranked based on level of importance, i.e. from high importance, medium 

importance to low priority (Pennington et al., 2004). The level of importance placed on 

indicators during ranking is usually based on social, political and ethical values, and thus, 

there is an element of subjectivity in grouping (Finnveden et al., 2009) 

2.4.2.3.5 Weighting.  Weighting allows different impact categories to be 

measured on a single scale so that the relative importance of the different environmental 

impact categories and resource consumptions can be evaluated (EPA, 1996; Finnveden et 

al., 2009). When weighting is used, the relative significance assigned to the impact 

categories depends on the goal of the study. Weighting may be necessary when trade-off 

situations occur, (e.g., where an improvement in one impact score results in a 

deterioration of another impact score).  There are no set weighting factors that are 

considered correct and this makes weighting subjective (González, Adenso-Díaz and 

González-Torre, 2002; Pennington et al., 2004; Finnveden et al., 2009). 

2.4.2.3.6 Data Quality Analysis.  The final step in the LCIA phase is data quality 

analysis, which involves an analysis of the LCI or LCIA results to give an understanding 

of their reliability (Baumann and Tillman, 2004). When interpreting the results of an 

LCA, it is important to have an idea of the quality and uncertainty of the data (Finnveden 

and Lindfors, 1998), because that helps in judging the significance of the LCA results 

(Huijbregts et al., 2001; Basset-Mens et al., 2003). Even though, the step of data quality 

analysis is regarded as optional by the ISO 14042:2000, it is critical for ensuring that 

conclusions and recommendations drawn from LCA results are valid. 

 Huijbregts et al. (2001) divided sources of data uncertainty into two categories: 

data inaccuracy and lack of specific data, which is further divided into complete lack of 

data (data gaps) and unrepresentative data. They suggested these different sources of data 

uncertainty can be addressed by: 
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• Using economic input-output LCA models to estimate lacking data. 

• Replacing missing data for products with that for main ingredients or components. 

• Using uncertainty factors for non representative data. 

• Using quantitative uncertainty propagation methods for dealing with data 

inaccuracies. 

• Using sensitivity analysis to identify parameters that are important to the uncertainty 

of the LCA results.  

 

 The approaches suggested for dealing with data gaps are more relevant for 

manufacturing processes that involve use of ingredients or components, where such 

ingredients or components can be substituted with others. The methods may have limited 

use in processes that produce primary products, such as coal mining. For instance, when 

there is no data available for coal beneficiation processes, data for processing of other 

mineral products would most likely not be anywhere close to that for coal so as to allow 

for data substitution.  

 Sensitivity analysis can be used to identify parameters that are important and can 

significantly contribute to the uncertainty of the LCA results and which therefore need 

further uncertainty characterization (Huijbregts et al., 2001). Many concerns expressed 

about the accuracy of LCA results relate to failure to perform sensitivity analysis (Ross, 

Evans and Webber, 2002). While some LCA practitioners omit to do sensitivity analysis 

in their studies, generally this is an exercise that should be easy to carry out since it does 

not require parameters that often are not available. Sensitivity analysis should not be 

neglected, unless there is good data to allow for reliable quantitative uncertainty analysis.   

 Data uncertainty analysis should be an integral part of every LCA as it gives 

credence to the significance of the LCA results (Huijbregts et al., 2001; Ross et al., 

2002). There are several techniques available for quantitatively estimating data 

uncertainties. To model and estimate data uncertainty in LCA, Chevaliar and Le Teno 

(1996)  used intervals calculations; Yang, Luo and Zhou (2000); Tan et al. (2002); 
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Benneto et al. (2006) and González et al. (2002) used fuzzy data sets, and Awuah-Offei, 

Checkel and Askari-Nasab (2008) used Monte Carlo simulation. Other methods which 

have been used include analytical uncertainty propagation methods, Bayesian Statistics 

and Latin Hypercube simulation. Out of all these different techniques, stochastic 

modeling using Monte Carlo simulation is widely recognized as a valid technique for 

operationalizing uncertainty in LCA (Huijbregts et al., 2001).  Despite the importance of 

modeling data uncertainty and the availability of various tools for doing that, modeling 

data uncertainty is not common practice in LCA (Huijbregts, et al., 2001). 

 Quantitative uncertainty analysis tools can give good characterization of data 

uncertainty, but the validity of their results depends on the quality of data distribution 

parameters used (Huijbregts et al., 2001). The main challenge in using these tools is that 

they require more data than is often available. The highly regarded probabilistic 

simulation tools in particular (e.g. Monte Carlo simulation), can only be useful if 

information on the probability distribution of the LCA input data is known, which is 

rarely the case in LCA studies (Maurice et al., 2000). The use of quantitative uncertainty 

analysis methods does not guarantee reliable LCA results (Lloyd and Ries, 2007). Thus, a 

quantitative analysis that is undertaken using poor information on the distribution of 

uncertainty is likely to be misleading. When quantitative uncertainty analysis is not 

possible, at least a qualitative assessment of the reliability of the data should be done 

(Ross et al., 2002). Qualitative analysis approach may not be as precise as quantitative 

methods, but it is still able to explain the sources of uncertainties to enable appropriate 

interpretation of the LCA results. 

2.4.2.4 Life Cycle Interpretation.  In the life cycle interpretation phase, the 

results are evaluated, significant issues are identified, conclusions are drawn and 

recommendations are made (ISO 14043: 2000). Conclusions and recommendations are 

made in the context of the defined goal and scope, and bearing in mind the limitations of 

the results. 

2.4.3. Uses of LCA.  LCA is receiving more attention from industry and 

regulatory authorities as an important tool for environmental systems analysis 

(Frischknecht and Rebitzer, 2005). LCA can be used in a number of ways to aid in 

decision making on environmental issues by the public, government and businesses. 
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2.4.3.1 Product Development and Improvement.  One application of LCA that 

is gaining importance is eco-design, which is typically an internal company initiative to 

develop environmentally friendly products (Guinée, 2002).  LCA has been identified as a 

key tool in implementing Design for Environment (DfE) or Green Design programs in 

industries (Yang et al., 2000). DfE programs are aimed at systematic design of products 

and processes in an environmentally conscious way. In these programs, LCA is used to 

identify opportunities for improving the environmental performance of products at 

various points in their life cycle. DfE is widely used in the construction and 

manufacturing industries (McLellan et al., 2009). For instance, the German automotive 

industry uses LCA in the design of new cars (Guinée, 2002; Finkbeiner et al., 2003). 

While LCA and programs that employ LCA such as DfE are widely used in other 

industries, they have gained little attention in mining (McLellan et al., 2009). This could 

possibly be attributed to the concept of product improvement not being particularly 

applicable to many mining products. Unlike consumer products from manufacturing 

processes, most mining products cannot be made from any materials other than mineral 

ores and they are typically processed to meet purity specifications set by customers. For 

instance, there is not much improvement that could be done within the mining processes 

to produce a better diamond, or to refine metals in order to enhance their environmental 

friendliness. Rather, what is applicable to mining products in general, is process 

improvement to increase resource use efficiency and minimize emissions from processes. 

However, for coal, in addition to process improvement, product improvement may be 

applicable to some extent as coal generally is produced with impurities which influence 

emissions at the use stage. In this respect, LCA may be used for the improvement of a 

coal product’s environmental flows over its life cycle by, for instance, optimizing coal 

washing to remove incombustibles and sulfur containing materials at the mine, versus 

coal recovery from washing, and fly ash and sulfur dioxide (SO2) outputs from coal 

burning at a power generation plant. 

2.4.3.2 Strategic Planning.  LCA can be used for strategic planning, either 

internally within a business, or within an industry (Rebitzer and Buxmann, 2005), or at a 

national level by government (Baumann and Tillman, 2004). LCA results can be used to 

set priorities and decide on product or process design or redesign as a part of strategic 
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planning. When used this way, LCA can provide information that serves as the basis for 

company, industry or government strategies on pollution prevention, resource 

conservation and waste minimization. 

2.4.3.3 Policy Making.  Leading multinational firms have embraced LCA and 

integrated it into decision-making and processes for the formulation of internal policies 

(Hunkeler and Rebitzer, 2005). LCA can provide insight into environmental problem 

areas and improvement opportunities that could guide internal environmental policy 

formulation by businesses. Coal mining companies can also benefit from using LCA this 

way. 

LCA can help in broadening the range of environmental issues considered in 

developing regulations or setting public policies (EPA, 1996). For example, The US DOE 

uses, as part of the criteria for selection of viable research proposals on development of 

biofuels and bio-based products, LCA backed credibility of environmental benefits 

(DOE, 2009a).  

In the US, the use of LCA as a regulatory tool remains limited due to reluctance 

on the part of EPA to adopt it for such purpose (Baumann and Tillman, 2004), but this 

application in Europe is widespread. Examples of government policies include the 

‘greening’ of the building industry in the Netherlands, which requires all building 

materials to be chosen based on LCA (Guinée, 2002), and the European Commission’s 

Integrated Product Policy (IPP) for sustainable development which relies on LCA among 

other tools for implementation (Andræ, Andersson and Liu, 2005; Frischknecht and 

Rebitzer, 2005).  

2.4.3.4 Marketing.  Baumann and Tillman (2004) suggested that marketing was 

the driver for the development of LCA methodology in general, particularly its 

standardization. Their argument stems from the criticisms of early LCA-type studies used 

in environmental product declarations, because of ambiguities in the applied 

methodologies (EPA, 2006). The now standardized LCA can be used to support product 

certifications or marketing declarations. Environmental product declarations are meant 

for environmentally conscious customers to make choices among several products and 

the choice ideally is based on environmental consequences of the products (Weidema, 

2001). While purchase decisions for products are typically based on price, quality and 
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convenience, there is a portion of consumers who are willing to consider environmental 

impact information in their decisions, if such information is readily available in the form 

of point of purchase labels (Larson, 2009). 

One prominent marketing scheme that uses LCA is the European Union Ecolabel 

(the EU flower), which promotes environmentally sound goods and services. In the 

Ecolabel scheme, after being subjected to rigorous studies over their entire life cycles, 

goods are awarded a distinctive symbol of environmental quality (EU Ecolabel, 2010) 

Other examples of eco-labeling based on LCA include the Blue Angel eco-labeling 

program of Germany and Green Swan eco-label of Scandinavia (Guinée, 2002).  

Although the marketing and sale of mining products such as coal takes a different form 

from that for consumer products, LCA may be used to market mining products, 

especially where the consumers use LCA in their processes and therefore are interested 

on inputs for which LCI data is available. Some mining companies use LCA to improve 

product stewardship and to have the impacts of their products known along the supply 

chain (BHP Billiton, 2008; Rio Tinto, 2008), and there have been claims of improvement 

in access to commodity markets as a result of this initiative (Rio Tinto, 2008).  

2.4.3.5 Enhancement of Environmental Management Systems.  LCA can be 

used to enhance environmental management systems for businesses (EPA, 2006). LCA 

has been used successfully in pollution prevention by reducing hazardous wastes and 

increasing recycling in some manufacturing industries (Curran, 1996). Alcan, one of the 

leading producers of aluminum materials and products, has employed LCA to expand the 

scope of its environmental management system to address their products’ upstream and 

downstream impacts associated with suppliers and customers (Rebitzer and Buxmann, 

2005). The unique capabilities make LCA an ideal tool to consider as part of a company’s 

environmental management system. 

2.4.3.6 Learning.  Another important application of LCA is that of learning about 

environmental issues in general and about the relationships of product systems (Tillman, 

2000; Ekvall et al., 2005). Many LCAs may be conducted with goals relating to product 

marketing, product improvement or policy making. However, there are LCAs that are 

carried out solely for learning purposes, with no specific action in mind (Finnveden et al., 

2009). Also, irrespective of the intended goals, all LCAs provide a body of knowledge 
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from which learning points may be derived (Baumann and Tillman, 2004). Given the 

limited use of LCA in the coal mining industry, LCAs that focus on coal mining could 

offer industry players an opportunity to learn and appreciate the impacts of different 

mining processes. 

2.4.4. Strengths and Weaknesses of LCA.  The strength of the LCA technique 

lies in its holistic approach to evaluating the environmental burdens of a product or 

service (Guinée, 2002) and its quantitative nature (Muga, 2009). LCA considers aspects 

of the natural environment, human health, and resources use (Finnveden et al., 2009), and 

it incorporates a broad array of environmental elements and impact categories (Owens, 

1997), compared to other environmental evaluation methods such as ecological footprint 

(which focuses only on land area) and chemical risk assessment (which only covers 

toxicity of chemicals). The comprehensive scope of LCA is useful in avoiding problem-

shifting (Guinée, 2002; Finnveden et al., 2009). The cradle-to-gate approach and the wide 

array of impact categories, enables tracking and capture of any transfers of environmental 

problems between stages of the life cycle of a product, from one place to another, and 

from one media to another, which could inadvertently happen as a result of changes in 

processes.  

The holistic approach of LCA, which is its strength, is at the same time its 

limitation (Guinée, 2002). The approach leads to requirements for lots of data, which is 

often not readily available (Ayres, 1995; Tan, Culaba, Purvis, 2002; Ahmadi et al., 2003; 

Durucan, Korre and Munoz-Melendez, 2006). The success of any given study is driven 

by the availability of good data, and the lack of readily accessible and credible data has 

limited the number of LCA studies (Curran, Mann and Norris, 2005). This problem of 

data availability may be addressed to some extent by streamlining the scope on an LCA 

study to take into account the data that can reasonably be acquired given the time and 

other resource constraints. 

One shortfall that has been cited with LCA is that the potential impacts are 

presented in the form of aggregated environmental loads or impacts, without considering 

their distribution over time and space (Owens, 1997; Zhang et al., 2006). However, 

detailed temporal and spatial differentiation cannot be feasible for all processes in an 

ordinary product LCA (Sonnemann, Castells and Schuhmacher, 2004). Thus, aggregation 
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of impacts across temporal and spacial aspects is sometimes inevitable, especially when a 

product has to be evaluated across all stages in its life cycle. This is because a product 

does not exist in isolation at a particular facility, it is rather linked to other processes and 

activities through suppliers of materials and customers (Curran, 1996), and these 

processes and activities, while they occur at different locations and at different times, 

have to be all taken into account. However, where there is a need for site specific or 

process specific data, aggregation may be reduced or eliminated by focusing the system 

boundaries on the particular site or process using a streamlined LCA, (e.g. gate-to-gate 

assessment).  

With respect to all the aspects of sustainability, the conventional LCA framework 

has the limitation that it deals only with the environmental aspects of products and 

service but does not cover economic and social impacts (Guinée, 2002; Reich, 2005; 

Muga, 2009; Finnveden et al. 2009). Further, from an industrial perspective, conventional 

LCA models do not address product performance and costs (Gäbel and Tillman, 2005). 

While these assertions are true, it has to be borne in mind that LCA is not meant to 

replace other tools that may have the capability to evaluate social and economic aspects, 

but rather it is intended to compliment them in the overall evaluation of products. 

However, there is ongoing work to broaden the scope of LCA to take into account social 

and economic aspects (Höjer et al., 2008; Finnveden et al., 2009). There are other tools 

that are being developed or have been developed that are modeled around the LCA 

framework. For instance, The Pembina Institute has developed and uses Life Cycle Value 

Assessment (LCVA), a multidisciplinary tool modeled around the LCA framework, 

which integrates economic, social and environmental aspects as well as systems thinking 

(Pembina Institute, 2007). There is also the economic input-output LCA (EIO-LCA) 

model, initially developed by the Carnegie Mellon’s Green Design Initiative, which 

integrates economic and environmental aspects of products (Hendrickson, Lave and 

Matthews, 2006). Another tool that is emerging as a likely contender for adding the 

second dimension of economic aspect to LCA is Life Cycle Costing (LCC) (Hunkeler 

and Rebitzer, 2005). LCC attempts to link economic information to LCA by monetizing 

environmental effects (emissions and resources) in the life time of a product (Reich, 

2005; Krozer, 2008; Höjer et al., 2008). 
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The integration of economic, social and environmental impacts in LCA still has 

some challenges. For instance, the EIO-LCA model has limited use because it lacks 

precision (Huijbregts et al., 2001; Hendrickson et al., 2006), and the current software and 

databases have data for a few countries only (Finnveden et al. 2009). Work on LCC is 

still at early stages as there is still a need to refine and standardize the methodology 

(Reich, 2005; Hunkeler and Rebitzer, 2005). 

2.5. LCA APPLICATIONS TO MINING AND COAL 

The first LCA type study was on beverage containers and the studies that 

followed between 1969 and 1972 all focused on packaging (Baumann and Tillman, 

2004). Since then, LCA has been applied to evaluate various products, including, solar 

thermal collectors (Battisti and Corrado, 2005); a digital system telephone (Andræ, 

Andersson, and Liu (2005); computer monitors (Socolof, Overly and Geibig, 2005); 

biofuels (Tan et al., 2002; Fast, 2008) and natural gas used in thermal energy generation 

(Dinca, Rousseaux and Badea, 2007). Others have used LCA to evaluate building and 

construction products, including wallboard (Chevalier and Le Teno, 1996); cement 

(Gäbel and Tillman, 2005); linoleum floors (Gorree et al., 2000); aggregate materials 

(Carpenter, 2009); and red clay used in the manufacture of ceramic tiles (Bovea et al., 

2007).  

Apart from evaluation of products, LCA has been used to evaluate and compare 

management options for waste and polluted sites. Studies in this regard include, 

evaluation of management options for municipal solid waste landfills (Reich, 2005; 

Wanichpongpan and Gheewala, 2007; den Boer, den Boer and Jager, 2007); wastewater 

treatment (Lundie, Peters and Beavis, 2004; Pitterle, 2009); and coal combustion 

products (fly ash) from coal fired power generation (Hansen, Notten and Petrie, 2002; 

Babbitt and Lindner, 2008). Bayer and Finkel (2006); Cadotte, et al. (2007) and Lesage et 

al. (2007) used LCA to evaluate and compare alternative scenarios for rehabilitation and 

remediation of polluted sites. These applications to different products and processes 

prove the versatility of LCA. 
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Electricity use features prominently in LCA studies for a majority of products 

(Curran, Mann and Norris, 2005), and this is because most industrial systems link directly 

or indirectly to the electricity system (Kim and Dale, 2005). This link between electricity 

and products points out to the importance of electricity data in LCAs for products in 

general. Coal-fired power generation accounts for a significant portion of electricity 

generated in the US and around the world, and therefore, LCI data for coal are vital for 

achieving comprehensive LCI data for electricity generation and many products. In fact, 

the lack of LCI data on coal mining has been cited as one of hindrances to the accuracy of 

LCI data on electricity generation (Kim and Dale, 2005). 

There have been a number of LCA studies on electricity generation systems. 

Among the studies are, fossil-fired generation plants (Widiyanto et al., 2003) and the US 

electricity system, which is dominated by coal fired generation (Kim and Dale, 2005). 

Studies focusing specifically on coal fired generation include, generation in a Finnish 

plant (Sokka, Koskela and Seppälä et al., 2005); generation plants in Germany 

(Schreiber, Zapp and Kuckshinrichs, 2009); power plants in Florida, US (Babbitt and 

Lindner, 2005); plants in the Great Lakes region of the US (Froese et al., 2010); and coal 

gasification plants that use Illinois coal (Ruether, Ramezan and Balash, 2004). In these 

studies, generally, mining processes are treated as background to the main system under 

study (electricity generation), and as such, the detail on mining processes and the 

associated environmental flows is limited and in some instances environmental flows that 

are important in mining processes are excluded.  

Some electricity LCAs use national or state average figures for coal mining with 

no specificity to any particular method of coal mining. For instance, Shreiber, et al. 

(2009) used average figures for German coal mix with no reference to the mining 

methods used; Ruether et al. (2004) used Illinois coal mining averages; and Babbitt and 

Lindner (2005) used the US coal mix which includes aggregated data for both surface and 

underground coal mining methods.  

With respect to the level of coverage of environmental impacts that pertain to 

mining, the LCAs on electricity generation mostly include energy use in mining and 

associated emissions, but they leave out some impacts that are predominant in the mining 

stage, such as land use. For instance, Froese et al. (2010) considered coal from surface 
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mining operations in the Powder River Basin, but their study was limited to greenhouse 

gas emissions only. None of the studies on electricity generation includes land use 

impacts from mining. 

Despite the applications in a variety of products and processes, Awuah-Offei et al. 

(2008) suggested that LCA applications in mining are limited. As is the case with mining 

in general, LCA studies that focus on coal mining are limited as well. A search of the 

International Journal of Life Cycle Assessment, which exclusively features LCA studies 

and related literature, confirms this. Searching the journal database using the keywords 

‘coal mining’ yields 23 results out of the 1,230 publications in 15 volumes. Of these 

results, only 2 papers (Babbitt and Lindner, 2008 and Shreiber, et al., 2009), actually deal 

with coal mining activities. On the other hand, searching with the keywords ‘building 

products’, ‘power plant’, ‘automobile’ and ‘biofuels’ yields 429, 274, 95 and 46 papers, 

respectively. These results reflect the relatively low LCA applications to coal mining 

products, compared to other products.  

Cases of LCA applications focusing on coal mining include, the evaluation and 

comparison of environmental performance of South African coal products with their 

economic values (Mangena and Brent, 2006); the use of Eco-indicator 99 to conduct an 

LCA of coal produced by longwall mining in Poland (Czaplicka-Kolarz, Wachowicz and 

Bojarska-Kraus, 2004); and an LCA of anthracite coal production in Vietnam (Chihn et 

al., 2007). The LCI of coal used in power generation in Florida (Babbitt and Lindner, 

2005) includes the coal mining stage. The studies by Chihn et al. (2007) and Babbitt and 

Lindner (2005) use aggregate data for coal from surface and underground mining 

methods, and therefore they do not clearly reflect environmental flows and impacts that 

are specific to surface coal mining. While Mangena and Brent (2006) have separate 

assessments for surface and underground mines and cover a number of impact categories 

important to coal mining, their study characterizes and normalizes the impacts in the 

context of the South African situation. In essence, none of the studies is specific to 

surface coal mining in the US. 

The National Renewable Energy Laboratory (NREL) of the DOE has developed 

the US LCI database (www.nrel.gov/lci/database) for various products including coal 

mining products. The database has cradle-to-gate LCIs for anthracite coal from 
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underground and surface mines; bituminous coal from underground and surface mines; 

and lignite from surface mines in the US (see Table 2.1).  

The inventories are not complete as they do not include some environmental 

flows that are important to coal mining. For instance, while methane emissions have been 

included, other greenhouse gas emissions (e.g. CO2 emissions from equipment operation 

and electricity generation) have not been included. The partial data for coal mining in the 

LCI database is evidence of the limited LCA studies of coal mining in the US and the 

resultant data gap.  

 

Table 2.1. Cradle-to-gate LCIs for mining of different coal types (NREL, 2008) 

Flow Info 
Explanations 

Flow Info - Name Unit Lignite 
coal 

Bituminous 
coal 

Anthracite 
coal 

Inputs from 
Technosphere 

Coal combusted in industrial 
boiler kg 3.62x10-4 4.31x10-4 1.70x10-1 

Diesel combusted in industrial 
boiler L 1.50x10-2 8.80x10-3 3.64x10-3 

Electricity at grid, US                kWh 5.33x10-2 3.87x10-2 2.12 x10-2 

Gasoline combusted in 
equipment L 1.41x10-3 8.36x10-4 2.68x10-4 

Natural gas combusted in 
industrial boiler m3 2.51x10-4 1.62x10-4 2.32x10-4 

Residual fuel oil combusted in 
industrial boiler L 1.45x10-3 8.70x10-4 1.34x10-3 

Dummy disposal, solid waste kg 2.35x10-1 2.35x10-1 2.71x10-1 

Inputs from 
Nature 

Coal resource in ground kg 1.00 1.24 1.27 

Energy content of coal in 
ground 

MJ/k
g 1.45x101 2.48x101 3.07x101 

Outputs to 
Nature 

Methane to air kg 1.13x10-3 3.99x10-3 1.59x10-3 

Particulates, unspecified, to 
air kg 9.80x10-5 1.63x10-3 2.10x10-3 

Volatile organic compounds 
(VOC) to air kg  2.57x10-5 3.18x10-5 

Iron to water kg 2.65x10-8 8.64x10-6 2.22x10-5 

Manganese to water 
 kg 1.76x10-7 5.76x10-6 1.48x10-5 

Suspended solids, 
unspecified, to water kg 1.98x10-6 1.00x10-4 2.59x10-4 

Product Output Coal at mine kg 1 1 1 
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In view of the limited LCAs of coal products in the US and the data gaps reflected 

in the US LCI database, there is need for more LCA studies that focus on coal products in 

the US. It is also vital to have LCIs for different mining methods in order to give an 

understanding of the environmental flows for each mining method used in the extraction 

of coal in the US. 

2.6. CHALLENGES IN APPLYING LCA TO COAL MINING  

There are some challenges in applying LCA to mining processes that could 

perhaps be hampering acceptance and use of LCA in the coal mining industry. These 

include a lack of data, shortfalls in the current LCA framework to address issues peculiar 

to mining, and possible limited awareness of the LCA methodology in the coal mining 

industry. 

2.6.1. Lack of Data.  Many LCA practitioners have cited the scarcity of data as a 

major challenge in conducting LCAs (Curran, 1996; González, Adenso-Díaz and 

González-Torre, 2002; Durucan et al., 2006). Most of the good quality data necessary for 

LCA is confidential to companies (Ayres, 1995; Durucan et al., 2006). This situation 

holds true for the coal mining industry as companies typically try to keep away 

information on processes and performance data from competitors. Some industries, 

through collective efforts of industry players, have developed LCI databases and LCA 

reports for their products. Examples include, LCI database of North American plastic 

products sponsored by the American Plastics Council (APC) and the Environment and 

Plastics Institute of Canada (EPIC) (Vigon, 1996); global LCI database for steel products 

by the World Steel Association (Worldsteel, 2009); LCA report of nickel by the Nickel 

Institute (Middleton and McKean, 2005); and LCI reports for worldwide production of 

primary aluminum by the International Aluminium Institute (IAI, 2003). However, there 

is no similar collaboration by the coal mining industry to develop an industry sponsored 

LCI database of coal products. Such an initiative by the coal mining industry associations 

could encourage individual companies to conduct their own LCA studies and benchmark 

against others for improvement. That could be the starting point for generation of 

industry specific data.  
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The LCA framework has a wide array of impact categories and the environmental 

flows for some impact categories have not been regulated before or are not regulated at 

all, and so, data for these may not be routinely collected and analyzed by mining 

companies (Owens, 1997). The wide array of LCA impact categories should not be 

viewed as an impediment, but rather as a framework that provides companies an 

opportunity to look beyond regulatory compliance and to improve operational 

efficiencies, reduce operating costs and improve their public image. 

2.6.2. Limited Specificity to Mineral Products.  Lindeijer (2005) made the 

observation that the current LCA framework does not address mining issues adequately, 

citing the lack of specificity to mineral products. Traditional LCA impact categories 

defined by SETAC include global warming, ozone depletion, human toxicity, ecotoxicity, 

photo-oxidant formation, acidification, eutrophication, odor, noise, and radiation 

potential impacts (Baumann and Tillman, 2004). These impact categories do not 

sufficiently address all potential impacts that are important in mining (Stewart, 2005; 

Bovea et al., 2007). Various LCA practitioners have argued for land use, water use, 

energy use and resource depletion as impact categories that need attention in mining 

LCAs (Spitzley and Tolle, 2004; Bauer and Zapp, 2005; Morris, 2005; Mangena and 

Brent, 2006; Durucan et al., 2006; Strauss, Brent and Hietkamp, 2006; Bovea et al., 

2007).  

In weighing the arguments for and against inclusion of resource depletion in 

mining LCAs, Morris (2005) concluded that resource depletion is not important for 

minerals such as metals, but rather, it is important for fossil fuel energy sources. This 

argument holds true considering that while metal grades on the ground progressively 

become diminished with mining of high grade ores, mined metals accumulate above the 

ground (in the technosphere) where they can be recovered, recycled and put back to use. 

Also, some metals can substitute each other, or can be substituted by other materials in 

products (Middleton and McKean, 2005). However, fossil fuels, unlike metals, are not 

recyclable and once used they are destroyed. Given that fossil fuels take millions of years 

to form, they can be considered as non-renewable, so that the available reserves would 

eventually get depleted.  Thus, the impact category of resource depletion is relevant and 

particularly important to coal and other fossil fuels.  
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Bourassa (2005); Lindeijer (2005) and Bovea et al. (2007) suggested that land use 

impacts in mining are a dominant contributor to changes on global biodiversity, and 

therefore deserve attention in LCAs. Land use as an impact category is especially 

relevant and important to surface coal mining given the exceptionally large surface area 

footprint associated with surface coal mining compared to underground mining methods 

or surface mining of other mineral resources. Therefore, land use impacts should be not 

neglected when conducting LCAs of coal from surface mining operations.  

Water consumption has been identified as one of the important considerations in 

evaluating the environmental performance of mining operations (Baur and Zapp, 2005).  

Water is a resource whose availability varies from site to site, and mining uses compete 

with other uses (Baur and Zapp, 2005; Mangena and Brent, 2006). High water 

consumption rates in mining operations could lead to water depletion in arid areas, 

especially where fossil ground water is the most important water source (Mangena and 

Brent, 2006). Baur and Zapp (2005) have suggested that water consumption could be 

considered under LCIA category of extraction of abiotic resource. However, the 

challenge in this characterization of water depletion is that, water is a renewable resource 

that continues to be replenished as it is consumed. Thus, the concept of depletion would 

be valid when there are certainties that a water source does not get any recharging or that 

the extraction rates exceed recharging rates. Another problem is that characterizing water 

consumption in mining may tend to be value-based because concerns over scarcity of 

water may vary from site to site. So, to deal with water consumption in LCAs of mining 

products, it may suffice to include it as part of resource inputs in the inventory, as 

characterizing it in the LCIA phase can only be justified within the context of a particular 

area or region. 

2.6.3. Ambiguity of Results Due to Aggregation.  The problem of ambiguity 

and concealment of site specific impacts due to aggregation of data in life cycle impact 

assessment has been put forward by various LCA practitioners (Owens, 1997; van Zyl, 

2002; Lindeijer, 2005; Durucan, et al., 2006). Due to the unique situation of each mine, 

there is usually interest in site-specific information (van Zyl, 2002; Durucan, et al., 2006). 

Site-specific impacts are relevant for ensuring that effective measures are developed to 

address environmental problems for a particular site (McLellan, 2009). One level of 
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aggregation of results occurs in the mandatory steps of LCIA: classification and 

characterization. To prevent total concealment of site-specific environmental flows in 

LCA results, the inventory data for different life cycle stages could be presented 

separately so that it is available in non-aggregated form to allow for assessment of 

impacts for any life cycle stage of interest. 

Ambiguity in LCA results has mainly been attributed to aggregation using the 

value-based optional steps of the LCIA phase (Stewart, 2005; Lindeijer, 2005).  Steps 

such as grouping and weighting are the main problem in this regard, because there are no 

standardized factors for grouping and weighting. The problem of ambiguity in the results 

due to optional LCIA steps can be averted by limiting the use of such steps.  

2.6.4. Arbitrariness in Selection of Functional Unit.  One aspect of LCA that 

causes problems in LCA studies is the selection of functional unit. Other than the 

requirement for a functional unit to be expressed in quantitative terms, the ISO 

14041:1998 standard does not prescribe values for functional units. With LCA 

practitioners left to make their own choices of functional units, the result is arbitrariness 

(Olsen et al, 2001). For instance, six LCA studies on electricity generation used five 

different functional units, and these included, 1 kWh (Froese et al., 2010; Schreiber et al., 

2009); 1 MWh (Sokka et al., 2005); 1TWh (Maurice et al., 2000); 1 MJe (Kim and Dale, 

2005) and 1000 kg of coal combusted (Babbitt and Lindner, 2005). The NREL’s LCI for 

coal products are based on one kilogram (1 kg) of product, while some LCA studies on 

coal mining (Mangena and Brent, 2006; Czaplicka-Kolarz et al., 2005; Babbitt and 

Lindner, 2008) use one metric ton (1 tonne). While these studies were looking at similar 

products, the different functional units make it not so easy to readily compare the results. 

The lack of standardized common functional units allows for flexibility in order to 

cater for the myriad possible functions that LCA practitioners may wish to investigate, 

but it also makes the comparison of LCA results of similar products cumbersome. While 

the constraints that could result from standardizing functional units are appreciated, there 

is need to at least have some recommended common functional units to allow for easily 

comparable results and to enable easy borrowing of data from other  studies. Functional 

units derived from units of measure typically used in respective industries may be useful 

in this regard. 
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2.6.5. Arbitrariness in Selection of System Boundaries.  One of the problems 

that have been identified in the application of LCA to mineral products is the different 

definitions of boundaries for some mining processes in some studies (Stewart, 2005). 

Typically system boundaries are selected using some qualitative criteria decided on by 

individual LCA practitioners, and this leads to inconsistent results for products and 

processes that are supposed to be similar. A method that ensures transparency and 

consistency such as the RMEE method proposed by Raynolds et al. (2000) could be used 

to quantitatively determine the unit processes that are of significance and therefore should 

not be left out of the system boundaries. 

2.6.6. Limited Awareness of LCA Methodology.  LCA developed with a  

relatively small circle of academics and consultants and many, including mining 

engineers, are still coming to grips with it as it is being rolled out to different industries 

(Middleton and McKean, 2005). Thus, LCA is generally not yet well understood and 

appreciated within the mining industry. It is only a few leading mining corporations that 

appreciate its benefits. It is through exposure of industry players to the tool through LCA 

studies of mining products that perhaps interest in the tool could be generated.  

2.6.7. Lack of Expertise and Resources.  LCAs are not simple, nor are they 

cheap, and this inhibits their use by small companies (Hoskins, 2005). Given the limited 

expertise on LCA in the mining industry, the industry has had to rely on expensive 

consultants to carry out LCAs to satisfactory standards (Middleton and McKean, 2005). 

The lack of adequate resources, including knowledgeable personnel, is likely to limit the 

use of LCA for the many small operators in the US coal mining industry. 
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3. GOAL AND SCOPE DEFINITION 

In this chapter the goal and scope of the LCA study are set out, and the life cycle 

impact assessment categories of interest are defined. The background information of the 

case study mining operations is given and the data relevant for the LCA is identified. The 

product system is described and unit processes to be included in the system boundaries 

are selected (scoping). 

3.1. GOAL OF THE STUDY 

The LCA work was intended to give an appreciation of the contribution of the 

coal mining stage and sub-processes to the overall life cycle impacts of coal. The goal of 

this LCA study was to estimate the cradle-to-gate life cycle impacts associated with 

surface coal mining for five mines in the US, and to compare the potential impacts for the 

operations. LCA was applied to explore the environmental flows associated with the 

production of bituminous grade coal from different operations that use area strip mining 

method. The study involved using general principles of ISO 14040 - 49 series of 

standards for LCA and adapting them where appropriate to the unique situation of surface 

coal mining. Specifically, the study aimed to: 

a. Collect data on energy sources, water use and land use and where energy data are 

missing, to model energy requirements for the operations based on available data 

on major equipment used in the operations; 

b. Conduct an inventory assessment of resource inputs and emissions for the 

production of coal in each mine; 

c. Assess the life cycle impacts for categories of climate change, energy use, 

resource use and depletion, water use, as well as land use for each operation. 

d. Compare environmental performances (measured by life cycle impacts) of the 

operations and explore the sources of differences in performance. 
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e. Conduct sensitivity analysis and discuss issues of data uncertainty. 

f. Suggest improvement measures to address sources of impacts. 

3.2. TYPE OF LCA 

A retrospective (accounting) type of LCA was used to explore the environmental 

flows associated with the production of bituminous coal for the different mines. Thus, 

rather than being an effect-oriented type LCA, this study aimed at giving a descriptive 

assessment of each operation. The study is also comparative, comparing the magnitudes 

of potential environmental impacts for the mines and evaluating the effects of scale of 

operation, energy sources and geological conditions on the environmental performance of 

the operations. 

3.3. TARGET AUDIENCE 

It was hoped that the results of this study would contribute towards addressing the 

LCI data gap on coal mining products, as well as pinpoint critical sources of impacts that 

could aid the coal mining industry and public policy makers in the development of 

strategies and policies to curb the environmental impacts of coal. Further, it was hoped 

that the study would find audience among LCA practitioners who could build upon the 

results of this study and improve LCA applications in coal mining, and mining in general. 

3.4. SOURCES AND SPECIFICITY OF DATA 

The data for the LCA was obtained from environmental impact statements, coal 

mining permit applications, government reports, and published literature. Data of interest 

for the LCA included geological information, coal production, land disturbance activities, 

water consumption, fuel and electricity consumption, as well as other major mining 

material inputs. Other relevant data included major production equipment, and operating 

schedules.  
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The comparative nature of this LCA necessitated that, as much as possible, data 

collected be specific to the respective operations. Where generic data was used, the data 

was adapted to the specific situation or conditions of the operation. To ensure the 

technological aspects of the data used were comparable, mines that employ similar 

mining methods were selected, although the mines operate at different scales of 

production, and they are located in coal basins of varying geological conditions. For 

consistency in the temporal aspect of the data, the data chosen on energy use is for the 

time period when all the mines were in operation (2003 to 2005). 

3.5. BACKGROUND ON THE CASE STUDY MINES 

In the study, data for five surface mines designated as Mines A1, A2, B, C, and D, 

were used to evaluate the LCA impacts of coal mining. The locations of the mines are 

shown in Figure 3.1. 

3.5.1. Mines A1 and A2: Black Mesa and Kayenta.  Black Mesa (Mine 1A) and 

Kayenta (Mine A2), owned by Peabody Western Coal Company, operated in two 

contiguous mine leases located in the Hopi and Navajo Nation tribal lands in Northern 

Arizona. Black Mesa started operating in 1970 while Kayenta began in 1973. Black Mesa 

produced 4.8 million tons of coal annually until it stopped operating in December 2005 

due to suspension of the operations at Mohave Generating Station in Nevada, which was 

its sole customer. Following the cessation of operations at Black Mesa, the permit areas 

for the two mines were consolidated into one and Kayenta continues to produces 8.5 

million tons, annually. 

The coal mined is from the Wepo formation, which has up to seven coal horizons. 

The thicknesses of the seams vary from area to area, and in some areas, some seams are 

completely absent due to erosion. The combined seam thickness ranges from 3 to 18 ft 

and averages 6.5 ft, with an average combined overburden and interburden thickness of 

about 38 ft. Overburden and interburden materials are removed primarily using draglines. 

Partings of 3 to 15 ft thickness are removed using shovels, front-end loaders and dump 

trucks, while those less than 3 ft are removed using dozers. Shovels, front end loaders and 

dump trucks are used to move the exposed coal and transport it to the coal preparation 
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Figure 3.1. Locations of the case study mines (Map adapated from The University of Alabama, 2010) 

Mine Location

Black Mesa 
 And Kayenta 

Cottonwood Creek 
Hume Cottage Grove Pit 

 
52 



53 

 

 

plants. General parameters for the two mines are shown in Table 3.1 and average data on 

 coal production, energy consumption, water consumption and coalbed methane 

emissions for the years 2004 and 2005 are presented in Table 3.2. 

 

Table 3.1. Black Mesa and Kayenta parameters (OSMRE, 2005 and 2008) 

PARAMETER VALUE 
Average coal seam thickness 6.5 ft (2.0 m) 
Average overburden thickness 37.9 ft(11.6 m) 
Energy content 12, 805 Btu/lb (29,784 MJ/tonne) 
Ash content 7.53% 
Sulfur 0.66% 
Coalbed methane 1.55 lb/ton coal (0.78 kg/tonne) 
Annual production  13 million tons (11.8 million tonnes) until Dec. 2005. 

8.5 million tons (7.7 million tonnes) starting 2006. 
Reserves Total Reserves: 803 million tons (728 million tonnes) 

� 368 million tons (334 million tonnes) mined up to 
Dec. 2005. 
� 435 million tons (395 million tonnes) left as at Jan. 
2006. 

Permit land area Total permit area: 64,585 acres (2.61 x 108 m2) 
Coal mining area:  37,240 acres (1.51 x 108 m2) 
Disturbed mining area: 11,865 acres (4.80 x 107 m2) 
                                       up to Dec. 2005 
Facilities:  1, 680 acres (6.80 x 106 m2) 
Non disturbance area:  25,665 acres (1.04 x 108 m2) 

 

 

Table 3.2. Black Mesa and Kayenta average data for 2004 and 2005 (OSMRE, 2008) 

PARAMETER VALUE 
Coal Production 12.1 million tons (11.0 million tonnes) 
Electricity Consumption 1.406 x 108 kWh 
Diesel Consumption 7.9 million US gallons (29.7 million liters) 
Gasoline Consumption 0.46 million US gallons (1.7 million liters) 
Propane Consumption 0.93 million US gallons (3.5 million liters 
Water Consumption 1750 acre-foot (2.16 x 109 liters) 
Coalbed Methane Emissions 0.93 million US gallons (3, 535 m3) 
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3.5.2. Mine B: Wildcat Hills Mine, Cottage Grove Pit.  The Wildcat Hills 

Mine, Cottage Grove Pit, operated by Black Beauty Coal Company, LLC., is located in 

Saline County, Illinois. The mine was developed in 2000 and coal production started in 

July 2001. The mine operates two 8-hour shifts per day for seven days a week producing 

about 670, 000 tons of processed bituminous coal, annually. Production from the mine is 

by means of shovels, front-end loaders, dozers and haulage trucks. Coal from the mine is 

processed at the 1,400 ton per hour Willow Lake Preparation Plant, which also processes 

coal from Wildcat Hills Underground Mine and Willow Lake Mine. The plant produces 

3.7 million tons of coal per annum. 

Five coal seams are mined and they include Danville No.7, Allenby, and Herrin 

No. 6 in one section of the mine, as well as Briar Hill No. 5a and Springfield No. 5 in the 

other section. Overburden thickness ranges from 63ft to 139ft and averages 88.5ft, while 

the combined seam thickness averages about 6.5ft. Table 3.3 shows parameters for 

Cottage Grove Pit  

 

Table 3.3. General parameters for Cottage Grove Pit (Arclar, 2009) 

1 Coalbed methane emissions for Illinois Basin coal (Kirchgessner, Piccot and Masemore, 2000).

PARAMETER VALUE 
Average coal seam thickness 6.48 ft (2.0 m) 
Average overburden thickness 88.5 ft (27.0 m) 
Energy content 12, 183 Btu/lb (28,337 MJ/tonne) 
Ash content 17.1% 
Sulfur 3.8% 
Coalbed methane1  1.32 lb/ton (0.66 kg/tonne) 
Annual production  �  0.67 million tons (0.61 million tonnes) 
Reserves Total Reserves: 7.7 million tons (7.0 million tonnes) 

5.4 million tons (4.9 million tonnes) mined up to 
Dec. 2008. 
2.333 million tons (2.1 million tonnes) left as at Jan. 
2009. 

Permit land area Total permit area:  895.1 acres (3.62 x 106 m2) 
Coal mining area:  548.7 acres (2.22 x 106 m2) 
Facilities:  105.6 acres (4.27 x 105 m2) 
Non disturbance area:  240.8 acres(9.74 x 105 m2) 
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3.5.3. Mine C: Cottonwood Creek Mine.  The Cottonwood Creek Mine, owned 

by Continental Coal Company, is located in Bates County in Western Missouri. It started 

operating in 2003 and produces an average of 200,000 tons of bituminous coal, annually. 

The mine works two 8-hours shifts per day for seven days in a week. 

Overburden material is blasted and removed using dozers, excavators, front-end 

loaders and dump trucks. Coal is ripped by dozers and loaded into trucks for 

transportation to the plant. Coal is crushed, gob material removed, and then screened to 

size. The processing plant has three 300 ton/hour crushing plants, but only one operates at 

a time. Electrical power is supplied by an internal combustion diesel generator on site 

(1.65MMBtu/hour capacity), which powers the crushing and screening plants. 

Coal extracted is from the Mulberry coalbed, which has a mineable seam ranging 

in thickness from 12 to 42 inches and averages 26 inches. Overburden thickness averages 

about 48 ft. The parameters for Cottonwood Creek Mine are shown in Table 3.4. 

 

Table 3.4. General parameters for Cottonwood Creek Mine (Continental, 2009) 

PARAMETER VALUE 
Average coal seam thickness 26 inches (0.66 m) 
Average overburden thickness 48 ft (14.6 m) 
Energy content 10,900 Btu/lb (25,353 MJ/tonne) 
Ash content 16.0% 
Sulfur 3.7% 
Coalbed methane1 1.49 lb/ton (0.75 kg/tonne) 
Annual production  �  0.2 million tons (0.18 million tonnes) 
Reserves: Total Reserves:  1.5 million tons (1.4 million tonnes) 

1.01million tons (0.92 million tonnes) mined through 
Dec. 2008. 
0.49 million tons (0.44 million tonnes) left as at Jan. 
2009. 

Permit land area Total permit area:  694 acres (2.81 x 106 m2) 
Coal mining area:  560 acres (2.27 x 106 m2) 
Facilities:  42 acres (1.70 x 105 m2) 
Non disturbance area:  92acres (3.72 x 105 m2) 

1  Coalbed methane emissions for the Mulberry coal seam (Tedesco, 2003).  
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3.5.4. Mine D: Hume Mine.  Continental Coal Company’s Hume Mine is located 

in Bates County in Missouri. It started operating in 2000 and produces about 62,000 tons 

of bituminous coal, annually. The mine uses dozers, excavators, front-end loaders and 

trucks. The mine exploits the Mulberry coalbed with a mineable seam averaging 35 

inches in thickness, covered with about 56 ft thick overburden. Processing involves 

crushing, sizing and removal of non-coal material in a 120 ton/hour capacity portable 

crushing facility. The mine operates one 8-hour shift per day for six days in week. 

General parameters for the mine are in Table 3.5. 

 

Table 3.5. General parameters for Hume Mine (Oswego Coal, 2008) 

PARAMETER VALUE 

Average coal seam thickness 35 inches (0.89 m) 

Average overburden thickness 56 ft (17.1 m) 

Energy content 10,700 Btu/lb (24,888 MJ/tonne) 

Ash content 15.9% 

Sulfur 3.5% 

Coalbed methane1 1.49 lb/ton (0.75 kg/tonne) 

Annual production  �  62,000 tons (56, 000 tonnes) 

Reserves Total Reserves: 1.8 million tons (1.6 million tonnes) 

0.52 million tons (0.47 million tonnes) mined 

through Oct. 2008. 

1.25 million tons (1.13 million tonnes) left as at 

Nov. 2008. 

Permit land area Total permit area:  651 acres (2.63 x 106 m2) 

Coal mining area:  460 acres (1.86 x 106 m2) 

Facilities:  29.7 acres (1.20 x 105 m2) 

Non disturbance area:  161.3 acres (6.53 x 105 m2) 
1  Coalbed methane emissions for the Mulberry coal seam (Tedesco, 2003). 
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3.6. PRODUCT SYSTEM AND SCOPING 

This study explored major processes linked to the production of coal from a 

surface mine. The processes covered included those within the mining lease area, such as 

exploration, mine development, and the operational phase activities (coal extraction, coal 

processing and land reclamation), as well as upstream processes for supplying material 

and energy inputs. 

3.6.1. Functional Unit.  In this study, the functional unit was defined based on 

mass, rather than energy. A mass-based functional unit is easy to work with since mining 

companies typically report their reserves and production information on the basis of 

mass. Also, the practice in the mining industry is that material inputs, waste products and 

economic information are expressed on the basis of a unit mass of product (typically a 

ton or tonne). Applying a mass basis provides clarity, easy comparability of LCA results 

and also allows for scaling of results over any production scale or time period of interest. 

The functional unit for this study was defined as, ‘one tonne of processed coal at the 

mine gate’. This choice of functional unit ensures consistency with the functional units 

used in many other coal LCA studies. 

3.6.2. Selection of System Boundaries.  Trying to collect all the data for all the 

unit processes connected to coal is impractical because of time and resource limitations. 

As a result, the system boundaries for the LCA had to be scoped to ensure a manageable 

volume of data within the constraints of available resources. The system under study is a 

cradle-to-gate system, which results in processes downstream of mining, (i.e. coal 

transportation to places of use, the use of coal and disposal of any end use waste 

products, such as fly ash), being excluded from the system boundaries. The initial system 

boundaries model before scoping (Figure 3.2) was drawn up by including all the 

processes that are believed to be significant in coal mining, specifically for the impact 

categories of energy use, climate change, resource depletion, water use and land use. 

In the selection of system boundaries, care had to be taken to ensure that the 

critical environmental flows in the life cycle of coal were not excluded. Two steps were 

used for the selection of inputs and unit processes to include in the system boundaries. 

The first step was to determine if the inputs or unit processes contribute significantly to 
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impact categories that can be characterized on a local level or global scale. The second 

step was to apply quantitative methods to the unit processes in the model (Figure 3.2) to 

select those that are likely to be of significance to the respective impact categories. 

 

 

 
Figure 3.2. Initial product system model for cradle-to-gate assessment 

 

 

3.6.2.1 Step No. 1.  Trying to characterize water use and land use impacts on a 

global scale has presented challenges in LCA. This is because issues of scarcity of and 
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competition for use of water and land tend to be more relevant locally rather than 

globally, and therefore aggregating water use and land use across different regions is 

likely to lead to controversial results. Thus, it is justified to assess potential land use and 

water use impacts from coal mining activities in the context of the local situation, 

wherein the mine is located. So, in this LCA study, these impact categories were assessed 

by considering activities within the mining permit area only, because upstream unit 

processes are outside the lease area, and therefore do not have an impact on water and 

land use within the mining area (no local contribution). On the other hand, the impacts 

related to energy use (climate change and resource depletion), are global in nature, 

justifying that such impacts could be aggregated irrespective of where the different unit 

processes are located, spatially. So, the unit processes for material and energy inputs were 

considered for inclusion irrespective of where they occur. 

3.6.2.2 Step No. 2.  In this step the selection of unit processes is done using 

quantitative methods. Due to the differences in the nature of energy use and related 

impacts, water use and land use impacts, different criteria were used for selection of unit 

processes important for each. 

3.6.2.2.1 Selection of Boundaries for Land Use and Water Use.  With the 

assessment of land and water use restricted to the mining permit area, the next step was to 

select processes within the mine permit area which contribute significantly to these 

impacts. Water use from exploration stages, and mine development were disregarded as 

they are likely to be insignificant on a functional unit basis, compared to the operational 

phases of the mine. These are capital unit processes and are routinely disregarded in LCA 

studies (Baumann and Tillman, 2004). The available data on water consumption was 

presented as an aggregated figure for all mine processes, and this rendered the need for a 

cut off value unnecessary. 

All stages of mining, from exploration, mine development, coal extraction and 

processing, to reclamation, were considered for land use impacts. The cut-off was set at 

0.01% of the total potential land disturbance area within the mine lease area. The total 

potential land disturbance was determined by adding together the area disturbed by 

exploration, the area occupied by facilities and the coal resource area. The data for Mines 

A1 and A2 (Table 3.6) was used to determine activities to include and exclude in the 
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assessment. It was determined that land disturbance from exploration activities 

(0.0048%) was insignificant compared to the overall land disturbance, and so it was 

eliminated. In addition to the footprint of exploration being relatively small in size,  the 

sites disturbed by exploration activities within a mining permit area, are likely to be 

covered under coal resource area, so that the elimination of exploration reduces chances 

of double counting. 

 

Table 3.6. Land disturbance activities at Black Mesa and Kayenta complex  

Activities in lease area Area affected 

(acres) 

Percent of 

lease area (%) 

Exploration (Drilling pads)   1.9 0.005 

Mine development (Facilities) 1,680 4.3 

Coal extraction (Coal resource area) 37,240 95.7 

Total Potential disturbance area 38,922 100 

 

 

3.6.2.2.2 Selection of Unit Processes for Energy Sources.  In the scoping of unit 

processes related to material and energy inputs, production and installation of capital 

goods were excluded from the system model as is the practice in LCA. Thus, energy use 

and material inputs in exploration, mine development, manufacture of mining equipment, 

processing plants, buildings and other equipment were excluded because it is expected 

that such processes would only have marginal impacts when their impacts are spread out 

over the coal reserves in the mines. Therefore, in the LCA, only material and energy 

inputs and emissions for the operational phase were considered. The unit processes for 

material and energy sources were selected using the Relative Mass-Energy-Economic 

(RMEE) method proposed by Raynolds et al. (2000). This method is specific to energy 

sources, which makes it applicable to coal. In the method, the relative mass, energy and 

economic value of a unit process product or input is used as a measure of the significance 

of its potential contributions to life cycle impacts. In the RMEE method, pre-set ratios of 

a unit process product’s mass, energy and economic value to those of the functional unit 

are used to determine streams that could be excluded or included. 
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To establish the cut-off criteria, the energy content and spot price for coal from 

the Illinois coal basin (EIA, 2010) were used as they represent the averages for the coals 

produced from the mines in this study. Reasonable cut off-ratios were selected to ensure 

that unit processes of great importance to mining were not excluded. The cut-off ratios 

were set at 0.01% for mass, energy and economic value (Table 3.7). 

 

Table 3.7. Cut-off criteria used in the RMEE scoping 

Parameter Value Cut-Off  

Ratio 

(0.01%) 

Remarks 

Mass 1 tonne 0.0001 tonne Bituminous coal 

Energy content1 27,695 MJ 2.8 MJ Illinois basin coal  

Economic value1 $ 49.23 $ 0.005 Illinois basin coal spot price  
1 Illinois basin coal energy content of 11,800 Btu/lb and 12/31/2009 spot price of $44.65/ton (EIA, 2010)  

 

 

To enable drawing up of the system boundaries, data for Mines A1 and A2 was 

used to determine unit processes to include and exclude from the system boundaries. This 

was because the mine complex has data that covers more unit processes due to the use of 

more energy sources than the other mines in this study. Tires were eliminated from the 

system boundaries because of a lack of data on tire consumption in the mines. Uranium 

and biomass amounts were calculated based on electricity consumption at the mine 

complex using the share of the energy sources in the 2005 US generation mix from the 

Emissions & Generation Resource Integrated Database model, eGRID2007, version 1.1  

(19.3% for nuclear and 1.3% for biomass) (EPA, 2009). Uranium in reactors is estimated 

to have an energy intensity of 8.7 MWh/g of U-235 (Argonne, 2009). Lubricant mass and 

economic value were based on a consumption rate of 0.018g/bhp.hr (DOE, 2004) and an 

estimated cost of $4.00/L. Biomass parameters were based on 8600 Btu/lb dry biomass 

with a cost of $1.25 per MMBtu contained in biomass (EIA, 2001). The economic values 

for electricity and fuels were Mine Cost Service estimates for March 2009 (InfoMine, 

2009). The parameters used in the unit process selection for explosives were based on 
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energy content of 803.6 kcalories/kg ANFO (Aimone, 1992) and a price of $48.00 per 

100 lb ANFO (InfoMine, 2009). Based on the set cut-off ratios, the unit processes for 

lubricants, uranium and biomass were eliminated (Table 3.8). So, the boundaries of the 

product system model were redrawn to include only those unit processes with flows 

above the cut-off ratios (Figure 3.3). 

 

 

Table 3.8. Scoping of unit processes for energy sources and material inputs 

Unit Process Product Mass Cut-off 

(kg) 

Energy Cut-off 

(MJ) 

Economic 

Value Cut-off 

($) 

Cut off value 0.1 2.8 0.005 

Electricity (12.84 kWh) - 46.2 0.50 

Diesel  (2.71 L) 2.30 106.3 1.10 

Gasoline (0.16 L) 0.12 5.3 0.11 

Propane (0.323 L) 0.16 7.6 0.16 

Explosives - ANFO (1,814g) 1.8 6.1 1.92 

Lubricants1 0.0084  0.036 

Tires2 - - - 

Uranium1 (2.47 kWh)  0.000019 8.9 - 

Biomass1  (0.16 kWh)  0.084 1.7 0.002 
1 Unit process product excluded from product system using cut off ratios 
2 Unit process product eliminated from product system due to a lack of data. 
 

 

3.6.2.2.3 Consolidation of Unit Processes.  The Greenhouse Gases, Regulated 

Emissions, and Energy Use in Transportation (GREET) model, version 1.8c.0, developed 

by DOE’s Argonne National Laboratory (Argonne, 2009), was used to trace electricity 

and fuels back to their primary energy sources. The model allows for evaluation of Well-

To-Pump (WTP) energy inputs and emissions, giving aggregated results for the energy  
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Figure 3.3. Product system model after scoping 

 

 

 

inputs and associated gaseous emissions, from extraction of primary energy sources 

(coal, petroleum, natural gas, biomass), through refining and production of useable fuels 

or generation of electricity, to delivery of fuels or electricity to the fuel station pump 

(place of use). Also, data for some processes within the mining lease area were available 

as aggregated figures, and in some cases it was difficult to divide and assign data to the 
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individual mining processes without the risk of introducing uncertainty in the data. So, 

these connected unit processes for which a single data point exists were consolidated into 

one equivalent process. The “equivalent unit process” representing several unit processes 

brought together is identified by the double line boundary box in the final system 

boundaries (Figure 3.4). 

 

 

 
Figure 3.4. Final system boundaries after scoping and consolidation 
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4. LIFE CYCLE INVENTORY ANALYSIS 

Data on water use, land area use, and energy production and consumption, as well 

as greenhouse gas emissions associated with energy use and those from geological 

formations (coalbed methane) had to be sourced or calculated in order to compile life 

cycle inventories for the mines. The environmental flows were calculated per functional 

unit for all the unit processes shown in the final system boundaries (Figure 3.4). 

4.1. WATER USE 

Data of interest was on water consumption for all the processes related to coal 

mining within the permit areas. However, data could not be sourced for most of the case 

study mines. Only Mines A1 and A2 had data available on water consumption. The data 

was presented as an aggregated figure, and not broken down according to the different 

uses in the mines.  

4.2. LAND USE 

The land surface area that can potentially be disturbed in the life of a mine was 

determined from coal resource area and area occupied by development of facilities 

(processing plants, workshops, office building, access roads, stockpiles, impoundment 

structures, and other structures associated with the operation). Land use calculations for 

the life cycle inventory analysis were determined by dividing the total land area that is 

likely to be disturbed throughout the life of a mine (land already disturbed by 

construction of facilities and coal extraction, plus coal resources areas that are yet to be 

disturbed) by the total reserves for the mine. Table 4.1 summarizes the land disturbances 

for the mines. 
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Table 4.1. Land area disturbance by mine 

  Mines 

A1&A2 

Mine B Mine C Mine D 

Lease area (acres) 64585 895.1 694 651 

Coal extraction area (acres) 37240 548.7 560 460 

Facilities area (acres) 1680 105.6 42 29.7 

Non disturbance area (acres) 25665 240.8 92 161.3 

Total disturbance area (acres) 38920 654.3 602 489.7 

Coal Reserves (million tons) 807 7.7 1.5 1.77 

Disturbed acres/ton 4.82x10-5 8.50 x10-5 4.01 x10-4 2.77 x10-4 

Disturbed m2/tonne coal 0.215 0.379 1.79 1.23 

 

4.3. COALBED METHANE EMISSIONS 

Besides GHG emissions from energy use, methane from strata is another 

important contributor to climate change impacts. The data on coalbed methane emissions 

for Mines AI and A2 was sourced from the EIS for the mines (OSMRE, 2008), while the 

gas content for the Illinois coal basin (Kirchgessner, Piccot and Masemore, 2000) was 

used for Mine B and that for the Mulberry coal seam (Tedesco, 2003) was assumed for 

mines C and D since they are in the same coal basin.  

4.4. ENERGY SOURCES 

4.4.1. Electricity and Fuels.  Data for consumption of electricity and fuels 

(diesel, gasoline and propane) in Mines A1 and A2 were sourced from the Environmental 

Impact Statement for the mines (OSMRE, 2008). The data selected for the mines were 

averages for 2004 and 2005, the years when both mines were operational. For the other 

mines (B, C and D) however, data on consumption of fuels and electricity were not 
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available, and so energy use had to be estimated based on the major equipment used in 

the mines and the operating schedules. 

The estimation of diesel use was based on the equipment make, model and 

capacity. The data on power ratings, load factors, fuel consumption rates were obtained 

from the Caterpillar Performance Handbook (Caterpillar, 2008) and other Original 

Equipment Manufacturer (OEM) specifications and manuals for the specified equipment. 

The power ratings and fuel consumption rates for lighting plants and associated 

generators, bulk explosives trucks, maintenance and welding trucks, lube trucks, fuel 

trucks and water trucks were estimated from the Mining Costing Service’s Equipment 

Estimator’s Guide (InfoMine, 2009). To avoid under estimation of diesel use in the 

operations, the highest load factor ranges and the associated fuel consumption rates were 

used. For all equipment, an operating efficiency (availability and utilization) of 85% was 

assumed, and the diesel consumptions were calculated based on the scheduled operating 

hours for each mine.  

Estimations of gasoline consumption for gasoline trucks (crew cabs) for Mines B, 

C, and D were obtained from the GREET model, version 1.8c.0 (Argonne, 2009). The 

Well-To-Wheel modeling was used to estimate the energy consumed per mile during the 

operation of a light duty truck. The energy was converted to gasoline volume using a fuel 

economy of 19.7 miles per gallon for light duty trucks as used in the model. It was 

assumed that each vehicle travels an average of 50 miles per 8-hour shift.  

Due to the limited information on electrical equipment used at the mines, 

estimates of electrical power consumption for Mines B and D were based on the rated 

production capacities of the coal processing plants while that for Mine C was based on 

the rated power of the internal combustion diesel generator that is used to provide 

electricity on site. Using the raw tons per hour rating of the plants, the power rating of the 

processing plants were estimated from the InfoMine’s Mining Costing Service. Annual 

power consumptions for the plants were calculated using the number of hours required to 

meet the annual production for each mine, assuming 100% utilization of plant capacity 

and 5% coal loss from processing. The annual power consumption for Mine C was based 

on 90% of the rated power of the diesel generator and the scheduled number of the hours 
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in a year. Table 4.2 presents the consumption of electricity and fuels for the mines based 

on a tonne of coal produced. 

 

Table 4.2. Energy consumption in the different mines per tonne of coal produced 

  
Mines 

A1&A2 
Mine B Mine C Mine D 

Electricity (kWh) 12.84 1.60 2.62 2.34 
Diesel (Liters) 2.71 10.72 13.67 21.02 
Gasoline (Liters) 0.16 0.17 0.23 0.17 
Propane (Liters) 0.323    

 

 

The emissions of greenhouse gases from the use of fuels including diesel, 

gasoline and propane were calculated using the carbon content, oxidation factors and 

emission factors for the fuels as determined by EPA (EPA, 2005). The volume of fuel 

used per tonne of coal (Table 4.2) was used to calculate the amount of greenhouse 

emissions and the results are as summarized in Table 4.3. 

The GREET model was used to model the Well-To-Pump (from extraction of 

primary fuels to delivery of fuels and electricity to place of use) energy consumption and 

associated greenhouse gas emissions. For preservation of the temporal aspects of the 

energy use data, the modeling was run for the base year 2005. In the modeling of fuels, it 

was assumed that the mines use conventional motor gasoline and diesel fuel with no 

blends of biofuels. 

Unless there was available information indicating that a mine generates its own 

electricity on site, it was assumed that the mine was connected to the grid. To model the 

energy consumption and emissions associated with the generation and delivery of grid 

electricity to a particular mine, the generation resource mix for the state in which the 

mine is located was used in the GREET model. The state generation resource mix was 

used instead of the national resource mix to make the data as specific as possible to each 

operation. The 2005 State generation resource mixes from the eGRID2007 model (EPA, 

2009) were used (see Table 4.4). The model assumes electricity transmission and 

distribution losses amount to 8% of power plant output. The amount of primary energy 
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sources and total energy input necessary for Well-To-Pump delivery of electricity and 

fuel to the mines is shown in Table 4.5 while the GHG emissions associated with the 

same processes are shown in Table 4.6. 

 

Table 4.3. GHG emissions from fuel use in the mines based on 1 tonne of coal  

  Mines   
A1&A2 

Mine B Mine C Mine D 

Diesel 
Use 

CO2 (g) 7,219.98 28,560.23 36,419.63 56,001.50
CH4 (g) 0.000 0.000 0.000 0.000
N20  (g) 0.000 0.000 0.000 0.000

 
Gasoline 
Use 

CO2 (g) 371.49 394.71 534.01 394.71
CH4 (g) 0.000 0.000 0.000 0.000
N20  (g) 0.000 0.000 0.000 0.000

 
Propane 
Use 

CO2 (g) 0.62  
CH4 (g) 0.000  
N20  (g) 0.000  

 
Totals: 
All Fuel 
Types 

CO2 (g) 7,592.09 28,954.94 36,953.64 56,396.21
CH4 (g) 0.000 0.000 0.000 0.000
N20  (g) 0.000 0.000 0.000 0.000

 

Table 4.4. The 2005 eGRID generation resource mixes for the US and three States 

 US Arizona Illinois Missouri 
Coal (%) 49.61 39.56 47.52 85.23 
Oil (%) 3.03 0.04 0.17 0.19 
Gas (%) 18.77 28.48 3.66 4.29 
Other fossil (%) 0.60 0 0.12 0.08 
Biomass (%) 1.30 0.06 0.35 0.01 
Hydro (%) 6.50 6.41 0.07 1.37 
Nuclear (%) 19.28 25.43 48.03 8.84 
Wind (%) 0.44 0 0.07 0 
Solar (%) 0.01 0.01 0 0 
Geothermal (%) 0.36 0 0 0 
Other unknown fuel (%) 0.10 0 0 0 
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Table 4.5. Primary energy inputs for delivery of electricity and fuels to the mines based 
on 1 tonne of coal produced  

  Mines   
A1&A2 

Mine B Mine C Mine D 

Electricity 
generation 
and 
delivery 

Consumption (kWh) 12.841 1.601 2.622 2.341

Coal (g) 33,678.5 4,636.9   14,703.1
Natural Gas (g) 22,705.5 345.5  705.7
Petroleum (g) 602.8 87.1  239.0
Energy input (Btu) 66,255.2 6,706.9  16,252.2

 
Diesel 
production 
and 
delivery 

Consumption(L) 2.7 10.7 13.7 21.0
Coal (g) 2,981.7 11,794.6 15,040.4 23,127.2
Natural Gas (g) 7,055.2 27,908.4 35,588.4 54,723.3
Petroleum (g) 7,599.8 30,062.8 38,335.7 58,947.8
Energy input (Btu) 17,961.4 71,050.3 90,602.3 139,316.8

 
Gasoline 
production 
and 
delivery 

Consumption(L) 0.2 0.2 0.2 0.2
Coal (g) 207.4 220.3 298.1 220.3
Natural Gas (g) 417.6 443.7 600.3 443.7
Petroleum (g) 501.8 533.2 721.3 533.2
Energy input (Btu) 1,214.1 1,290.0 1,745.3 1,290.0

 
Propane 
production 
and 
delivery 

Consumption(L) 0.323    
Coal (g) 76.4    
Natural Gas (g) 538.9    
Petroleum (g) 203.0    
Energy input (Btu) 829.4    

 
Totals:  
All energy 
sources 

Coal (g) 36,944.0 16,651.8 15,338.5 38,050.6
Natural Gas (g) 30,717.2 28,697.6 36,188.7 55,872.7
Petroleum (g) 8,907.4 30,683.1 39,057.0 59,720.0
Energy input (Btu) 86,260.1 79,047.2 92,347.6 156,859.0

1 - Electricity inputs include 8% for transmission and distribution losses along grid. 
2 - Electricity generated on site from internal combustion diesel generator and inputs included under diesel.  
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Table 4.6. GHG emissions for production and delivery of electricity and fuels to produce 
1 tonne of coal 

  Mines   
A1&A2 

Mine B Mine C2 Mine D 

Electricity 
generation and 
delivery 

CO2 (g)1 8,421.657 962.852   2,471.463
CH4 (g) 1 13.042 1.119   2.803
N20  (g) 1 0.114 0.011   0.025

 
Diesel production 
and delivery 

CO2 (g) 1436.000 5680.600 7243.800 11138.600
CH4 (g) 9.690 38.330 48.890 75.180
N20  (g) 0.023 0.092 0.117 0.180

 
Gasoline 
production and 
delivery 

CO2 (g) 85.400 90.700 122.700 90.700
CH4 (g) 0.560 0.595 0.805 0.595
N20  (g) 0.005 0.005 0.007 0.005

 
Propane 
production and 
delivery 

CO2 (g) 63.768    
CH4 (g) 0.822    
N20  (g) 0.001    

 
Totals:                 
All energy sources 

CO2 (g) 10,006.825 6,734.152 7,366.500 1,3700.763
CH4 (g) 24.114 40.044 49.695 78.578
N20  (g) 0.143 0.108 0.124 0.210

1 - Emissions include 8% for electricity transmission and distribution losses along grid. 
2 - Electricity generated from diesel generator and GHG emissions included under diesel. 
 

 

4.4.2. Explosives.  The assessment of energy and GHG emissions associated with 

explosives were limited to explosives use in the mines, due to a lack of data on the 

processes for making explosives and the main ingredients. To estimate energy use and 

emissions from blasting activities, it was assumed that all operations use ANFO. The 

amount of explosives necessary to expose a given tonnage of coal were based on the 

typical blast design parameters given for the operations, and where there were no blast 

parameters given, a powder factor of 0.026 lb/ft3 was assumed. The average overburden 

and inter-burden thickness as well as the coal seam thickness were used in the 
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determination of the amount of explosives required per tonne of coal. The energy content 

of 803.64 kcalories/kg ANFO as per Aimone (1992) and an emission factor of 0.17 

tonnes CO2 per tonne of ANFO detonated (Day et al., 2009) were used. The energy 

content and emissions from detonators and primers were disregarded as they would be 

insignificant in amount compared to ANFO used per hole. The explosives requirements 

per tonne of coal and the energy content as well as CO2 emissions are presented in Table 

4.7. 

 

Table 4.7. Explosives energy and emissions per tonne of coal mined 

 Mines   

A1&A2 

Mine B Mine C Mine D 

Powder factor (lb/ft3) 0.026* 0.026* 0.026 0.023 

Amount ANFO (g) 1,814 4,241 6,914 4,656 

Energy Content (Btu) 5,778 13,505 22,028 14,828 

CO2 emission (g) 308.38 720.97 1,175.38 791.52 
           * - Powder factor assumed where blasting parameters not available. 

 

4.5. LIFE CYCLE INVENTORY ANALYSIS RESULTS  

 To compile the inventories for the mines, the unit process environmental 

exchanges were summed together for each resource input or emission. The inventory 

analysis results for the mines are shown in Table 4.8. 
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Table 4.8. Inventory analysis results for the different mines. 

  MINES   
A1&A2 

MINE B MINE C MINE D 

INPUTS FROM TECHNOSPHERE 
Electricity (kWh) 13.96 1.75 2.62 2.54
Diesel (L) 2.71 10.72 13.67 21.02
Gasoline (L) 0.16 0.17 0.23 0.17
Propane (L) 0.32
Explosives (ANFO) (kg) 1.81 4.24 6.91 4.66

INPUTS FROM NATURE 
Total Energy Input (MJ) 97 98 121 181
Coal (kg) 1,036.94 1,016.65 1,015.34 1,038.05
Natural Gas (kg) 30.72 28.70 36.19 55.87
Petroleum (kg) 8.91 30.68 39.06 59.72
Water (L) 178.00
Land area (m2) 0.22 0.38 1.79 1.23

GHG EMISSIONS TO AIR 
CO2 (g) 17,907.30 36,410.06 45,495.52 70,888.49
CH4 (g) 797.61 697.85 793.70 822.58
N20  (g) 0.14 0.11 0.12 0.21

  
PRODUCT OUTPUT 
Bituminous Coal (tonnes) 1.00 1.00 1.00 1.00
Energy Content (MJ/tonne) 29,784 28,337 25,353 24,888
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5. LIFE CYCLE IMPACT ASSESSMENT  

In this chapter, the inventory analysis results are translated to contributions to the 

selected environmental impact categories. The impact assessment results are compared 

for the mines in the study. Sensitivity analysis is conducted for some impact categories to 

identify unit processes and factors, which are critical to the LCA results. Data quality and 

uncertainty issues are addressed, then improvement recommendations to address 

dominant sources of impacts are advanced. 

5.1. ASSESSMENT OF IMPACTS 

In this study, the life cycle impacts were assessed for the categories of water use, 

land use, energy use, abiotic resource depletion and climate change. The dominant 

sources of impacts were identified for further analysis. To avoid problems of ambiguity 

in the LCA results, the mandatory steps of LCIA (classification and characterization) 

were used, and the optional steps of normalization, grouping and weighting, which 

typically are subjective, were omitted. However, the optional step of data quality analysis 

was included because of its importance in explaining the significance of LCA results for 

appropriate interpretation and conclusions. Where characterization factors were used, to 

assure confidence in the LCA results, the use of damage-oriented (end-point) 

characterization models was avoided because of their high levels of uncertainties due to 

limited scientific data. Mid-point characterization models were preferred. 

5.1.1. Water Use Impacts. No characterization factors were used for water use 

impacts, because currently there are no characterization methods standardized in LCA 

methodology for this impact category. Water consumption from the inventory analysis 

phase was used as an indicator for water use impact. Water use impact was evaluated for 

Mines A1 and A2 only, as there was no data available to this research for the other mines. 

Water use impact was determined to be 178 liters per tonne of coal produced. 

5.1.2. Land Use Impacts.  Trying to characterize land use impacts from the 

transformative perspective, considering parameters such as shifts in competition between 

land uses, and changes in quality, productivity and biodiversity, is complex and not 
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practical because of the array of data that would need to be collected (Baumann and 

Tillman, 2004). In this study, life cycle land use impacts were assessed from the 

occupancy perspective in which the area and duration of occupation are accounted for. 

Using this approach in the context of current surface coal mining practices does not 

ignore the land quality, as the restoration element of reclamation is taken into account. 

The formula used for land occupation impacts is derived from the original 

formula by Lindeijer (2000), which gives land occupation impact as:  

  

    (1)

 

 where;  

 LOI is the land occupation impact. 

  A is the area of occupied land. 

t is the duration of time before the land quality is restored.  

 Q is the initial quality of land before impact. [Note: Lindeijer (2000) allows for 

 land to be restored to quality other than the original]. 

 

Spitzley and Tolle (2004) suggest that the quality term (Q) in the original formula can be 

dropped if the land could be restored to the original quality after mining. Since the 

regulations of the Surface Mining Control and Reclamation Act (SMCRA) of 1977 

require coal mine sites to be reclaimed to original use or better, the assertion by Spitzley 

and Tolle (2004) can be assumed to be reasonable. Equation (2) is the resulting equation 

proposed by Spitzley and Tolle (2004). 

 

    (2)

 

To take into account the cumulative impacts over years as disturbances due to mining 

activities progress and land is restored to the desired quality by reclamation activities, the 

formula for land occupation impacts per functional unit can be modified to the following: 
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  1
  (3)

 

where; 

   is the land area disturbed during year t.  

   is the reclaimed area that is ready for release of bond during year t. 

 T is the total number of years from the beginning of the mine to the release of 

 the final reclamation bond. 

 R is the total reserves in tonnes.  

 

In this study, it was assumed that the reclaimed land reaches desired quality for 

reclamation bond release five years after the initial revegetation for mines in Missouri 

and Illinois (Mines B,C, D), and 10 years for mines in Arizona  (Mines A1 and A2) as 

per the SMCRA regulations. Also, the calculations on land use impacts were based on the 

assumption that reclamation was equally successful for the land impacted by coal 

extraction activities and that impacted by mine facilities. Where year by year data on 

areas already mined and areas reclaimed were not available, the total coal resource areas 

disturbed and reclaimed were divided among the years based on annual production rates. 

Also, all the areas occupied by facilities were assigned to the first year of operation. The 

current production rates were used to estimate future annual disturbance rates and it was 

assumed that the same amount of area was reclaimed as was disturbed in a year. It was 

further assumed that all the land not reclaimed on the year of exhaustion of coal 

resources, was reclaimed and revegetated within 2 years of exhaustion of coal, except for 

Mine D (Hume) for which reclamation and revegetation is to be done within a year of 

cessation of coal extraction. The results of the assessment of potential land use impacts 

for the mines are shown in Table 5.1. 

Mine C, which has the largest land area disturbance of 1.8 m2/tonne (see Table 

4.1), also has the highest potential land use impact of 10 m2–year/tonne of coal produced, 

followed by Mine D with area disturbance of 1.2 m2/tonne (Table 4.1) and a potential 

impact indictor of 9 m2–year/tonne. 
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Table 5.1. Land use impacts per tonne of coal produced 

Extraction 
(m2-year) 

Facilities    
(m2-year) 

Total       
(m2-year) 

Mines A1 & A2 4.1 0.8 4.9 
Mine B 1.9 1.0 2.9 
Mine C 8.4 1.6 10.0 
Mine D 6.4 2.5 9.0 
Average  5.2 1.5 6.7 

 

 

The high potential land use impacts for the two mines can be linked to their relatively 

high stripping ratios of 22:1 for Mine C and 19:1 for Mine D, as well as their small scales 

of production. The small scale of production leads to prolonged life of the mine, and 

hence a lengthened duration of land occupation, but only for a small coal reserve. Mine B 

has the lowest potential for land use impact, with an impact indicator of about 3 m2–year/ 

tonne, and this may be explained by the better stripping ratio (14:1), the bigger scale of 

production, and the smaller footprint for facilities, compared to Mines C and D. On the 

other hand, Mines A1 and A2, which have the highest production capacity of the case 

study mines, the most favorable stripping ratio of 6:1, and hence the smallest disturbance 

footprint (0.22 m2/tonne), have a higher potential land use impact than Mine B, at 5 m2–

year/ tonne. The higher land use impact relative to the land disturbance area for Mines A1 

and A2 can be attributed to the slow recovery time for vegetation, following reclamation, 

due to the arid climate in the region, which necessitates 10 years for reclamation bond 

release. The average land use impact for all the mines is about 6.7 m2–year/tonne.  

Figure 5.1 shows the comparisons, for each mine, of contributions to land 

disturbance area and land use impacts (land occupation) by coal extraction activities and 

mine facilities. Coal extraction dominates both the land disturbance area, as well as the 

land use impacts for all the mines. However, the proportion of contribution to land use 

impacts by coal extraction is lower compared to the proportion of area disturbed by the 

same. Per unit area disturbed, mine facilities have a higher land use impact potential than 

coal extraction. This is due to the extended duration of land occupation by facilities, 

(typically from mine development stage up to cessation of mining operations), while 
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mined out coal resource areas are usually reclaimed concurrently with coal extraction in 

other pits. However, this is only valid under the assumption that reclamation efforts on 

coal extraction areas and areas affected by mine facilities are equally successful. On 

average, for all the mines, mine facilities contribute 22% towards the land use impacts 

and coal extraction areas contribute 78%. 

 

 
Figure 5.1. Contributions to area disturbance and land occupation impacts  

 

 

5.1.3. Energy Use Impacts.  This impact category assesses the total energy used 

to produce a tonne of coal at the mine gate. This study used energy intensity values as 

indicators for energy use impacts. The potential energy use impacts based on the 

inventories for the mines are shown in Table 5.2. The proportions of contributions to 

impacts by different energy sources are shown in Figure 5.2 

The assessed potential energy use impacts are 97 MJ/tonne for Mines A1 and A2, 

98 MJ/tonne for Mine B, 121 MJ/tonne for Mine C and 181MJ/tonne for Mine D. The 

biggest contributor to potential energy use impact for Mines A1 and A2 is electricity use, 

which makes up 72% of the impact (see Figure 5.2), while the impact indicators for the 

other mines are dominated by diesel use, which makes up 77% for Mine B, 79% for  
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Table 5.2. Energy use impact indicators for the mines 

Energy Use Impact Indicators (MJ) 
Mines   

A1&A2 
Mine B Mine C Mine D Average 

Electricity  69.9 7.1 - 17.1 31.4 
Diesel 19.0 75.0 95.6 147.0 84.1 
Gasoline 1.3 1.4 1.8 1.4 1.5 
Propane 0.9 - - - 0.2 
Explosives 6.1 14.2 23.2 15.6 14.8 
Total (MJ/tonne) 97.1 97.6 120.7 181.1 124.1 

 

 

 
Figure 5.2. Contributions to energy use impacts by different energy sources 

 

 

Mine C, and 81 % for Mine D. The contributions from explosives use, which vary from 

6% for Mines A1 and A2, to a maximum of 19% for Mine C, reflect the differences in 

stripping ratios for the mines. The energy use impacts due to gasoline and propane use 

are only marginal (maximum of 1.5% for gasoline and 0.9% for propane). The average 

potential energy use impact for all the mines is 133 MJ, with 63% of the impacts being 

contributed by diesel use, 24% by electricity use, 11% by explosives use, and the rest by 

gasoline and propane use. 
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Coal extraction and reclamation activities are the major contributors to energy use 

impacts, compared to other activities such as coal processing. This is reflected in the 

dominance of potential impacts by sources of energy connected with the prevalent earth 

moving equipment. For instance, Mines A1 and A2, which use large production units 

(draglines and shovels) that are electrically driven, have a big portion of their energy use 

impact associated with electricity. On the other hand, Mines B, C, D, which depend on 

smaller diesel equipment for earth moving, have their energy use impacts heavily 

influenced by diesel contributions. 

Figure 5.3 shows the variations of energy use with the production scales for the 

mines. While differences in geological conditions (e.g. stripping ratios) and the extent of 

coal processing (which depends on the in-situ quality of coal and the quality desired by 

customers), determine the amount of energy required in the production of coal, it can be 

deduced from the trend in Figure 5.3 that, to some extent, the scale of production has an 

influence on the energy use impacts. The larger scales of production offer the benefits of 

better energy efficiencies, and this is reflected in the progressively lower potential energy 

use impacts as the scale of production increases from Mine D to Mines A1 and A2. 

 

 
Figure 5.3. Potential energy use impact versus normalized scale of production. 
 A production scale is normalized by dividing the annual production rate for  

a mine, by the smallest production rate (62,000 tons for Mine D). 
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In their Mining Industry Energy Bandwidth Study (DOE, 2007), the Department 

of Energy (DOE) modeled energy use for hypothetical US coal mines that produce about 

10,000 tons per day. The study estimates that a typical Western US surface coal mine has 

an energy intensity of 41,960 Btu per ton of coal (49 MJ/tonne), while a surface mine in 

the US Interior uses 69,746 Btu/ton (81 MJ/tonne). These figures appear lower than the 

energy use impacts assessed in this study, and this may be attributed mainly to the fact 

that the energy intensities are not life cycle energy consumptions, but rather, they are 

estimates of energy consumption directly in the operations. Further, the energy estimates 

pertain only to diesel equipment used for earth moving, and do not include other energy 

sources necessary for coal beneficiation and other processes in a mine. 

Mangena and Brent (2006) evaluated energy use in real surface coal mines, and 

the values assessed spanned the impact indicators calculated in this work. They assessed 

an energy intensity of 46 MJ/tonne for a 11 million tonne-per-annum surface mine that 

produces low grade coal (the coal is crushed and screened, but it is not washed), and 219 

MJ/tonne for a 4.4 million tonne/year mine which produces washed coal.  Their study is a 

gate-to-gate assessment and it pertains to the South African situation (geological 

conditions, electricity generation resource mixes, petroleum refineries, and other 

parameters may be different). These estimates can only be compared to Mines A1 and A2 

which produce 4.8 to 8.5 million tonnes per annum, with an energy intensity of 97 

MJ/tonne. 

5.1.4. Abiotic Resource Depletion Impacts.  The abiotic resource depletion 

impact indicators relate life cycle inputs to the extraction of minerals and fossil fuels. The 

Center of Environmental Science of Leiden University (CML) has developed 

characterization factors, called Abiotic Depletion Potentials (ADPs), for different 

minerals and materials, including energy sources (Guinée, 2002). The CML 2001 

characterization factors were used in this study. The ADPs (Table 5.3) are based on mid-

point modeling and a standard of ‘kg antimony equivalent/kg resource extraction’. The 

characterization modeling is based on reserves and rates of extraction on a global scale. 

CML 2001 characterizes abiotic resource depletion by the formula: 
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   (4) 

 

where; 

 ADPi is the Abiotic Depletion Potential of resource i. 

 mi is the quantity of resource i extracted to provide inputs for the life cycle 

 system. 

 

 

Table 5.3. CML 2001 Abiotic Depletion Potentials for fossil fuels (Guinée, 2002) 

ABIOTIC RESOURCE ADP – CML 2001 
Soft coal 0.00671 kg Sb-eq./kg 
Natural gas 0.0187 kg Sb-eq./m3 
Crude oil (petroleum) 0.0201 kg Sb-eq./kg 

 

 

The assessment of resource depletion was characterized with respect to fossil 

fuels (coal, natural gas and crude oil) only, since they are the important energy sources in 

the life cycle of coal. While explosives contribute a significant amount of energy, they 

have not been included due to the lack of an appropriate characterization factor. The 

results of resource depletion impact assessment are shown in Table 5.4. 

 

 

Table 5.4. Resource depletion impacts for the mines 

Resource Depletion (kg Sb-eq. Per Functional Unit) 

  
Mines 

A1&A2 
Mine B Mine C Mine D Average 

Coal  6.96 6.82 6.81 6.97 6.89 
Natural Gas  0.67 0.62 0.79 1.21 0.82 
Petroleum 0.18 0.62 0.79 1.20 0.70 
Overall Resource 
Depletion Impact 

7.80 8.06 8.38 9.38 8.41 
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The overall resource depletion impacts relate to the energy intensities for the 

mines. Mines A1 and A2, which have the lowest energy use impact (97 MJ/tonne) also 

have the lowest overall fossil energy resource depletion impact of 7.8 kg Sb-eq./tonne of 

coal. Their performance is followed by Mine B (98 MJ/tonne) with 8.1 kg Sb-eq./tonne 

and Mine C (121 MJ/tonne) with 8.4 kg Sb-eq./tonne. Mine D’s high energy intensity of 

181 MJ/tonne results in the highest resource depletion impact of 9.4 kg Sb-eq./tonne. The 

average potential abiotic depletion impact for all the mines is 8.4 kg Sb-eq./tonne of coal.  

The contributions to the overall abiotic resource depletion impacts by individual 

fossil fuels (Figure 5.4) are determined by the energy source mixes for the different 

mines. Mines A1 and A2 have the lowest contribution to resource depletion impact from 

petroleum at 2%, and the highest contribution attributed to coal at 89%. This can be 

explained by the mines’ low use of petroleum derived fuels (diesel, gasoline and propane) 

and heavy reliance on electricity generated, partly, from coal. The heavy use of diesel in 

Mines B, C, D, is reflected in their relatively higher resource depletion impact 

contribution from petroleum (8% of total resource depletion impact for Mine B; 9% for 

Mine C; and 13% for Mine D). 

 

 
Figure 5.4. Contributions to abiotic resource depletion impacts by fossil fuels 
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As is the case with energy use, the abiotic resource depletion impacts are linked to 

the benefits of economies of scale as shown by the trend in Figure 5.5. Mines A1 and A2 

which have the highest production scales, record the lowest potential resource depletion 

impact, followed by Mine B, and Mine C and Mine D, in the order of decreasing 

production scales. 

 

 
Figure 5.5. Resource depletion impact versus production scale 

 

 

The mines do not use natural gas directly in the operations, so, the resource 

depletion figures for natural gas represent the use of the energy source in the pathways 

for producing and delivering different fuels and electricity to the mines. For instance, the 

higher proportion of natural gas depletion in relation to the overall resource depletion 

impacts indicators for Mines A1 and A2 (8.5%) compared to Mine B (7.7%), is due to the 

greater use of electricity at Mines A1 and A2, which is from a generation resource mix 

with a high natural gas component (28 % for Arizona), compared to only 3% natural gas 

in the generation resource mix for Illinois (Mine B’s grid electricity). The high natural 

gas depletion impacts for Mine D (13%) and Mine C (9.4%) are mostly attributable to the 

diesel production processes, given the high use of diesel in the mines. 

5.1.5. Climate Change Impacts.  The life cycle climate change impacts were 

assessed for each mine using the greenhouse gas emissions in the inventory. Mid-point 
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characterization modeling was chosen in which the potential for a gas to contribute to 

climate change, or its Global Warming Potential (GWP) is measured using ‘kg CO2 

equivalent’ as a standard. In this LCA study, the assessment was based on the 100-year 

time horizon adopted for the Kyoto Protocol gases (IPCC, 2007). The latest GWPs 

proposed by the Intergovernmental Panel on Climate Change (IPCC), in the Forth 

Assessment Report (AR4) (IPCC, 2007), were used (Table 5.5). The potential climate 

change impact in CO2 equivalent is given by: 

 

 
  (5)

 

where; 

 GWPi is the Global Warming Potential for gas i.  

 mi is the mass of gas i released per functional unit. 

 

The results of the assessment of potential climate change impacts for the mines 

are presented in Table 5.6. Mines A1 and A2 have the lowest potential climate change 

impact of 38 kg CO2-eq./tonne of coal, followed by Mine B with 54 kg CO2-eq./tonne, 

and Mine C with 65 kg CO2-eq./tonne. The worst performing mine on this impact 

category is Mine D, which has a potential climate change impact of 92 kg CO2-eq/tonne. 

The average potential climate change impact for all the mines is 62 kg CO2-eq./tonne. 

 

 

Table 5.5. AR4 - GWPs for 100 year time horizon (IPCC, 2007)  

GHG GAS GWP- AR4 
Carbon Dioxide (CO2) 1 
Methane (CH4) 25 
Nitrous Oxide (N2O) 298 
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Table 5.6. Climate change impacts based on AR4 GWPs for 100 year time horizon. 

Climate change impacts (kg CO2 eq./tonne coal) 

  
Mines 

A1&A2 
Mine B Mine C Mine D Average 

CO2  17.9 36.4 45.5 70.9 42.7 

CH4  19.9 17.4 19.8 20.6 19.5 

N20  0.043 0.032 0.037 0.063 0.044 
Total  37.9 53.9 65.4 91.5 62.2 

 

 

 
Figure 5.6. Contributions to climate change impacts by different gases 

 

 

Contributions to climate change impacts by different gases (Figure 5.6) are such 

that the impact for Mines A1 and A2 is dominated by methane which makes up 53% of 

the impact indicator. For Mines B, C and D, the CO2 emissions make up the greater share 

of the climate change impacts, due largely to the higher energy intensities in the 

operations. Contributions from N2O emissions are only marginal for all the mines, with a 

maximum contribution of 0.1%. 

Figure 5.7 shows that coalbed methane emissions directly from the mine, alone, 

contribute 51% of the overall potential climate change impacts for Mines A1 and A2, 

with electricity and diesel use contributing almost all the remaining share. The 
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progressively increasing energy use for Mines B, C and D, is reflected in the dominance 

of impact indicators for the mines by emissions from diesel use (65% for Mine B, 69% 

for Mine C and 76% for Mine D). For all the mines, the impacts associated with gasoline, 

propane and explosives are comparatively negligible, with a maximum combined 

contribution of about 2.8%.  

 

 

 
Figure 5.7. Contributions to potential climate change impacts by source 

 

 

The trend for potential climate change impacts for the mines is fairly comparable 

to that for energy use (Figure 5.8). The worst performing mine’s potential climate impact 

(Mine D) is just over double that for the best performing Mines A1 and A2, (compare 

with the energy use impacts, where the assessed impact indicator for Mine D is almost 

twice that for Mines A1 and A2). In addition to coalbed methane emissions and energy 

intensity, the mix of energy sources used at a mine has an influence on the potential 

climate change impacts. Mines A1 and A2 and Mine B have almost equal energy 

intensities (see Figure 5.8), but, Mines A1 and A2, despite having 15% more coalbed 

methane emissions, have a potential climate change impact which is 70% of that for Mine 
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B. This difference in potential impacts can be attributed mostly to the balanced use of 

diesel and electricity (from a generation resource mix of moderate greenhouse gas 

emissions) by Mines A1 and A2, while Mine B greatly relies on diesel, whose 

production, delivery and use results in more CO2 emissions per unit of energy. 

The potential climate change impact for a mine is influenced by among others, 

coalbed methane emissions, stripping ratios, energy requirements for processing, and the 

economies of production scale. Given the small variations of coalbed methane emissions 

between the mines, it can be deduced from Figure 5.9 that the effect of the scale of 

production on energy use efficiency consequently influences the potential climate change 

impacts for the mines. The mines with larger scales of production have significantly 

lower potential climate change impacts.  

 

 

 
Figure 5.8. Climate change impact versus energy use impact 
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Figure 5.9. Potential climate change impact versus production scale 

 

 

5.1.6. Performance Ranking.  To allow for easy comparison of the performance 

of the mines, the assessed impact indicators were ranked on a scale of 1 to 4 for each 

category (1 being the best and 4 the worst). Rankings were done for land use, energy use, 

abiotic resource depletion and energy use. The comparison of the performances of the 

mines on water use could not be done because of unavailable data for some mines. The 

rankings of the mines’ performances are presented in Table 5.7 

 

Table 5.7. Rankings of the mines’ performances for each impact category 

Ranking of indicators* 
Mines 

A1&A2 
Mine B Mine C Mine D 

Land use 2 1 4 3 

Energy use 1 2 3 4 

Abiotic resource depletion 1 2 3 4 
Climate change 1 2 3 4 

          * Mines are ranked from1 to 4 with the best performance (lowest impact) given a rank of 1 
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5.2. SENSITITIVITY ANALYSIS  

Sensitivity analysis was conducted to identify significant unit processes and 

assumptions, and their effects on the LCA results. This analysis was carried out for 

energy use, resource depletion and climate change impacts. Sensitivity analysis is 

important for these because of the many unit processes which contribute towards the 

potential impacts, and the various assumptions that could affect the overall results. On the 

other hand, sensitivity analysis could not be carried out for water use and land use 

because: 

• Only limited data on water use impacts was available for this research work, and the 

available data was presented as aggregate figures for all processes in the mines.  

• Some of the parameters used in the characterization of land use impacts do not lend 

themselves to variation. For instance, the coal resource area that can potentially be 

affected by coal extraction cannot be changed without changing the coal reserves, 

and changing the area disturbed by development of facilities would only be 

reasonable if it is accompanied by a change in the scale of production.  

 

5.2.1. Energy Use Impacts.  Three different scenarios were modeled and their 

effects on the energy use impacts evaluated. They included, assuming all the mines used 

the same electricity generation resource mix (the 2005 US generation resource mix), and 

varying electricity and diesel, individually. In addition to evaluating implications of LCA 

data variance from the actual, the sensitivity analysis scenarios were also intended to 

inform improvement scenarios corresponding to reductions of inputs by the given 

proportions. 

The results of changing the electricity generation resource mixes for the mines to 

the average US generation resource mix, are presented in Figure 5.10. The results 

indicate that the potential energy use impact is influenced to some extent by the 

electricity generation resource mix. The potential energy use impact for Mine C, which 

uses electricity from diesel, is more sensitive to the change in generation resource mix,  
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Figure 5.11. Sensitivity of energy use impacts to variations in electricity and diesel use 
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5.2.2. Resource Depletion Impacts.  The same scenarios used for potential 

energy use impacts were applied for the abiotic resource depletion impacts. The results of 

the variation of the electricity generation resource mix as presented in Figure 5.12 show 

that the abiotic resource depletion impact for Mines A1 and A2 is more sensitive to the 

variation when compared to the impacts for the other mines. Mines A1 and A2 

experience a 1% reduction in the impact, and the impacts for the other mines show 

smaller increments of 0.5% for Mine B, and 0.2% for Mine C. The impact indicator for 

Mine D hardly responds under this scenario because of the relatively insignificant 

contribution of electricity to the impact indicator for the mine, compared to the 

overwhelming contribution from diesel use. 

The spidergrams in Figure 5.13 show the sensitivity analysis results for variations 

of electricity and diesel consumption. The resource depletion impact for Mines A1 and 

A2 responds more to the variation in electricity consumption, giving a 0.1% change for a 

percentage point variation in electricity consumption, compared with a 0.04% change for 

similar variation in diesel consumption. 

 

 
Figure 5.12. The effects of change in electricity generation resource mix on potential 

resource depletion impacts 
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Figure 5.13. Sensitivity of resource depletion impacts to variations in electricity and diesel use 
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The abiotic resource depletion impacts for Mines B, C, and D respond at least ten times 

more to diesel consumption variations than to electricity consumption variations (0.2% 

change in impact for a unit percentage variation in diesel consumption, compared with a 

maximum change of about 0.02% for a similar variation in electricity consumption). 

5.2.3. Climate Change Impacts.  In addition to the scenarios of electricity 

generation resource mix, variation in electricity use and variation in diesel use, coalbed 

methane emissions were also varied in the sensitivity analysis, because of their 

significance to climate change impact. It was assumed that the proportion of methane cut 

from the emissions was converted to the less potent CO2 either by flaring or during use 

for energy generation. The conversion to CO2 is via the reaction in Equation (6). 

 

    (6)

 

From Equation (6), 16 g·of CH4 should produce 44 g·of CO2. Applying the AR4 -GWPs, 

CH4 of 400 g CO2-eq. potential impact should be converted to CO2 of potential climate 

change impact equal to 44 g CO2-eq. This should result in 89% reduction of potential 

climate change impact. 

The variation in the electricity generation resource mix has a marked effect on the 

potential climate change impact for Mines A1 and A2, resulting in a 3% increase in the 

impact (Figure 5.14). The scenario leads to a 0.5% increase in the climate change impact 

for Mine B, and reductions in impacts equal to almost 2% for Mine C and 1% for Mine 

D. 

The results of the sensitivity analysis in Figure 5.15 show that potential climate 

change impact for Mines A1 and A2 is almost twice as sensitive to coalbed methane 

variations than it is to electricity or diesel use. Variations in electricity and diesel use 

cause equal changes in the potential impact. On the other hand, the climate change 

impacts for Mines B, C and D are more sensitive to diesel use variations because of the 

dominance of the impacts by emissions from diesel use. For these mines, the variations in 

coalbed methane emissions cause a more pronounced effect on the impacts than similar 

proportional variations in electricity consumption. 
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Figure 5.14. The effects of change in electricity generation resource mix on potential 

climate change impacts 
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Figure 5.15. Sensitivity of climate change impacts to variations in electricity, diesel and coalbed methane emissions
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5.3. DATA QUALITY AND UNCERTAINTY 

Data quality is important for the accuracy and, therefore, the significance of the 

LCA results, as well as the validity of conclusions drawn from the LCA results. 

Uncertainties in LCA results may be due to factors such as, completeness of input data, 

accuracy and relevance of input data, and assumptions used in the LCA study. In 

addition, some uncertainties are inherent in life cycle impact assessment characterization 

models. Potentially significant sources of uncertainty in the results of this LCA were 

identified and addressed qualitatively.  

5.3.1.  Completeness of Data.  Completeness of data is critical to the accuracy of 

an LCA, however it is not always possible to collect all the necessary data for an LCA. 

As is the case in most LCA studies, acquisition of data was a major challenge in this LCA 

study. Some unit processes had to be eliminated from the LCA product system model 

because of a lack of data. However, precautions had to be taken to ensure that the 

processes excluded were those whose contributions to the impact categories of interest in 

this LCA study, were only marginal, The choice of unit processes to include in the 

system boundaries was based on the use of appropriate scoping methods. As required by 

the ISO standards, quantitative scoping methods, (the RMEE method), were used to 

select significant unit processes. The use of quantitative methods should limit the level of 

uncertainty due to the exclusion of some unit processes. 

5.3.2. Relevance of Data.  Where mine specific data was not available, temporal, 

geographical, and technological relevance were considered to select appropriate data for 

the operations (e.g. use of relevant coal basin data in place of mine specific data, and use 

of State electricity generation resource mix where source of power was not 

specified).This should reduce the uncertainty from applying other data (modeled or 

empirical). 

5.3.3. Water Use Data.  Data necessary for the assessment of water use impacts 

was only available for two of the case study mines, and this prevented comparisons of 

performance of the mines on this impact category. The available data on water 
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consumption was from records of the mines’ operations over many years, and this makes 

the validity of the data high. 

5.3.4. Land Use Data.  While data on coal production, land disturbance, coal 

resource area and reserves was available for all the mines, what was missing was the 

timeline on land disturbance and land reclamation for mines, B, C and D. Assumptions 

on the distribution of land area disturbances and reclamation areas over the years could 

be the main source of the uncertainty in the assessed land use impact indicators. 

5.3.5. Energy Consumption Data.  A lack of measured data on energy 

consumption for some mines is one of the main sources of data uncertainty that could 

affect the LCA results. The lack of appropriate data on consumption of fuels, electricity 

and explosives necessitated that some data be modeled, based on the available parameters 

for the mines. Most of the data was obtained from mining permit application documents. 

In order to get reasonable estimates on energy consumption, only the mines which had 

been in operation for some years were selected for this study. Therefore, some historical 

data was available for the mines chosen. Specifications from Original Equipment 

Manufacturers and reputable sources of mine equipment estimates information 

(InfoMine), were used in the estimation of energy consumption. All this care should 

minimize the uncertainty introduced by modeling. 

5.3.6. Methane Emissions Data.  One potential source of uncertainty in the 

results of this LCA study is the data on coalbed methane emissions, especially given the 

influence of methane emissions on climate change impacts assessed for the case study 

mines. In cases where mine specific coalbed methane emissions data was not available, 

data for the coal basin within which the mine is located was used. However, emissions 

rates are not necessarily the same at different locations in the same basin, as they are 

influenced by various factors such as, seam thickness and the closeness of seam to the 

surface. However, since the emission values for coal basins are averages based on 

measurements carried out at mines within the coal basins, in the absence of mine specific 

data, these values are the best estimates. 

 Measurements of coalbed methane emissions do not take into account emissions 

that may continue in the post closure phase due to remnants of coal left on the ground and 

in the overburden spoils. Due to the high recovery rates associated with surface mining 
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methods, the coal left behind should be relatively small, and therefore the methane 

emissions should be relatively small. 

5.3.7. Uncertainties Inherent in LCIA.  Uncertainties that are inherent in the 

characterization models used for the assessment of impacts were kept to a minimum 

through selection of appropriate LCIA steps and characterization factors. The study 

avoided, end-point modeling, instead, preferring midpoint modeling for which there is 

higher confidence in the characterization factors. Where characterization factors were 

used, the latest, derived from improved characterization models were used. Some 

optional LCIA steps usually associated with ambiguities were excluded to maintain the 

integrity of the LCIA results. 

Despite the shortfalls identified in the data, in general, this study has taken into 

account the major sources of potential impacts. Subject to data availability, attempts have 

been made to use data that is consistent and relevant in terms of age, geographical and 

technological basis. Deviations of LCA data from actual mine situation are believed to be 

not so wide as to invalidate the results of this study. So, the LCIA results of this study 

should be a fair reflection of the environmental performances for the case study mines. 

5.4. IMPROVEMENT  

The recommendations for improvement are not aimed at addressing all the 

possible sources of impacts, but rather they focus on the identified major contributors to 

the evaluated potential impacts. The improvement options suggested here are in the 

context of what can reasonably be done within a mine, and so, all processes for which the 

mines do not have control over, are left out.  

5.4.1. Efficient Use of Land.  There is not much change that could be done to the 

land area impacted by mining, without reducing reserves (in the case of trying to cut 

down the coal resource area impacted), or limiting the scale of operation (in the case of 

trying to reduce the area occupied by facilities). Generally, the reclamation of land 

occupied by most facilities can only be done following cessation of coal extraction 

activities. Facilities serving large scale operations tend to use land more efficiently, as a 

smaller foot print is disturbed per tonne produced. Also, high production rates shorten the 
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duration of land occupation, leading to minimized land use impacts. So, where reserves 

permit, large scale operations should be preferred over small scale for lower land use 

impacts. 

5.4.2. Energy Use Efficiency.  Electricity and diesel have been identified as the 

main energy sources used in coal mining, which therefore contribute significantly to 

energy use impacts, fossil fuel resource depletion, and climate change impacts. Efficient 

use of energy can address all the three impact categories. From the assessment of these 

impacts, it has been established that the scale of operation is one of the major factors that 

influence these impacts. Small scale operations tend to be inefficient in the use of energy, 

leading to high resource depletion impacts for fossil fuels and high greenhouse gas 

emissions associated with climate change impacts. Therefore, where conditions permit, 

preference should be given to large scale operations. 

On their own, large production units represent efficiency. However, for such a 

piece of equipment, what may appear to be minor deviations from optimal performance 

can add up to substantial losses in production and energy wastage. A study of dragline 

operator productivity by Lumley (2005) noted variability of up to 35% about the mean. 

Such variability presents opportunities for reduction of energy use related impacts by 

simple measures such as improvement of operators’ performance. Improving operator 

competence to ensure optimal use of available equipment can be achieved with relative 

ease, compared to technological innovations which usually come at great a costs. So, in 

addition to opting for large scale operations, or even in cases where it is not feasible to 

implement large scale production, there should be measures to improve efficient energy 

use in the mining processes.  

5.4.3. Coalbed Methane.  Coalbed methane accounts for a significant portion (20 

to 51%) of the potential climate change impacts. Where conditions allow, coalbed 

methane should be tapped ahead of coal extraction through degasification systems and 

used for energy generation. The use of methane reduces the need for other fossil fuels 

(reducing the abiotic resource depletion impact), while at the same time reducing 

contributions to climate change impacts by converting the gas into the less potent CO2. 

Otherwise if it not feasible to collect coalbed methane for use, burning by flaring to 

convert it to CO2 may be the best alternative. 
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6. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

6.1. CONCLUSIONS 

Coal is an important energy source which contributes immensely to many 

industrial processes, including, electricity generation. Many products are linked to coal 

directly or indirectly. However, a review of the literature reveals that little attention has 

been given to life cycle assessment of coal mining. Available literature shows limited 

details on the coal mining stage in LCAs of electricity generation. The few LCA studies 

that focus on coal mining, either analyze the environmental flows only to the point of 

inventory analysis phase, or ignore the impacts that are important and specific to coal 

mining. The former is because the current LCA framework does not make provisions for 

these impacts to be recognized as LCA impact categories. The limited LCA work 

focusing on coal mining products has led to LCI data gaps which undermine the accuracy 

of the results for LCA studies of electricity and many other products which use coal-fired 

electricity. 

This research work was aimed at providing an understanding of environmental 

impacts of surface coal mining from an LCA perspective, as well as to contribute towards 

filling the LCI data gap on coal mining products. The study was intended to provide 

unique baseline information which could be used by the coal mining industry and public 

policy makers in devising environmental management strategies and policies to curb the 

environmental impacts associated with coal. 

The goal of this research work was to use the general principles of the ISO 14040-

49 series of standards, and to adapt them where appropriate, in a cradle-to-gate life cycle 

assessment for the production of bituminous coal from surface mining in the US. In this 

study, the functional unit was defined as ‘one tonne of processed coal at the mine gate’. 

The potential life cycle impacts were assessed for water use, land use, energy use, abiotic 

resource depletion and climate change. Five case study mines that use strip mining, with 

annual production rates ranging from 62,000 tons to 8.5 million tons, were used in this 

work. The mines include Black Mesa (Mine A1) and Kayenta (Mine A2), both in 

Arizona; Wildcat Hills Mine Cottage Grove Pit (Mine B), located in Illinois; and 



103 

 

 

Cottonwood Creek (Mine C) and Hume (Mine D), both located in Missouri. The mines’ 

performances were compared, based on impact indicators, and the parameters influencing 

performance were identified for each impact category. Sensitivity analysis was conducted 

to identify the dominant sources of impacts, and recommendations were made on 

improvements to address the dominant sources of impacts. The following conclusions are 

drawn from this work: 

• The life cycle water use impact for the production of coal from surface mining has 

been determined to be 178 liters per tonne of coal. However, the assessment for this 

impact category was limited by data unavailability for some of the case study mines.  

• The potential land use impacts, assessed from the perspective of land occupation, 

range from 3m2-year/tonne, for the best performing mine, to 10 m2-year/tonne, for the 

worst performing mine, with an average of 6.7 m2-year per tonne for all the mines. 

Land use impacts are dominated by land affected by coal extraction activities. The 

influence of climatic conditions of a region on the recovery of vegetation, following 

land reclamation, is also important for the land use impacts. 

• The potential energy use impacts per tonne of coal range from 97 MJ for Mines A1 

and A2; 98 MJ for Mine B; 121 MJ for Mine C, and 181 MJ for Mine D. The average 

for all the case study mines is 124 MJ. Electricity use contributes the largest share of 

the energy use impact indicator assessed for Mines A1 and A2, while the impacts for 

Mines B, C, and D are dominated by diesel use.  

• The potential abiotic resource depletion impacts, assessed with respect to the 

depletion of coal, natural gas and petroleum, are 7.8 kg Sb-eq./tonne for Mines A1 

and A2, 8.1 Sb-eq./tonne for Mine B, 8.4 Sb-eq./tonne for Mine C and 9.4 kg Sb-

eq./tonne for Mine D. The average resource depletion indicator for the mines is 8.4 kg 

Sb-eq/tonne of coal produced. The heavy use electricity in Mines A1 and A2 leads to 

a high proportion of total resource depletion impact attributed to coal depletion, and 

only a small contribution from petroleum depletion. Mines B, C and D have relatively 

higher depletion of petroleum resource compared to Mines A1 and A2. 
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• Mines A1 and A2, B, C and D have potential climate change impacts of 38, 54, 65 

and 92 kg CO2-eq./tonne of coal, respectively. The average potential impact for all 

the mines is 62 kg CO2-eq/tonne of coal produced. Coalbed methane is more 

important for the climate change impacts assessed for Mines A1 and A2 because of 

the relatively small use of energy at the mines. However, climate change impacts for 

Mines B, C and D are dominated by CO2 emissions from diesel use.  

• Mine B has the best performance on potential land use impacts, and it is followed by 

Mines A1 and A2, Mine D, and Mine C in that order. For energy use, abiotic resource 

depletion and climate change impacts, Mines A1 and A2 have the lowest impact 

indicators, followed by Mines B, C, and D in that order. 

• The economies of scale have a marked influence on the land use impacts, 

(particularly, the efficiency of the use of land occupied by mine facilities), energy use 

impacts, abiotic resource depletion impacts and climate change impacts.  

• Factors arising out of geological conditions, such as stripping ratios, influence the 

land use impacts, particularly the land disturbances in the coal resource areas. 

Stripping ratios determine the energy requirements for overburden removal and 

reclamation efforts. Geological conditions also determine the methane emission rates 

from strata (which contributes to climate change impacts), and the quality of coal in 

the ground (which has a bearing on the beneficiation energy necessary to meet the 

specifications desired by customers). 

• The recommended improvements include, timely reclamation behind coal extraction 

to minimize land occupation impacts, as well as adoption of large scale of production, 

where appropriate, for efficient use of land occupied by mine facilities. Measures to 

improve energy efficiency in the mines are important for curbing potential energy 

use, abiotic resource depletion and climate change impacts. The contribution of 

coalbed methane to climate change impacts can be lowered by tapping it for use as an 

energy source, or it can be flared. 
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6.2. RECOMMENDATIONS FOR FUTURE WORK  

The following recommendations are given in order to contribute towards LCA 

improvement in general, as well as to improve the work on the LCA of coal mining: 

• There is need to develop characterization models that can be standardized for impacts 

that are more relevant to coal mining. Some environmental impacts that are important 

and peculiar to coal mining have not been standardized as impact categories in LCA. 

As a result, either LCA practitioners do not assess those impacts in their studies, for 

fear of nonconformity with the LCA framework and standards, or others use various, 

individually developed characterizations for the impacts, leading to ambiguity in the 

LCA results. It is likely that the coal mining industry would be less willing to accept 

any environmental systems analysis tool that leaves out impacts regarded as critical in 

the industry.  

• Further research is required to evaluate other life cycle impact categories to address 

more resource inputs and emissions to air, water and ground. The incorporation of 

other impact categories would provide a complete evaluation of the potential 

environmental impacts of coal mining, and could further close the LCI data gap for 

coal mining products. 

• It is essential to have impacts assessed for individual processes in coal mining to 

facilitate pinpointing of critical processes. This study has assessed impacts for coal 

mining as though it is one process, and this assessment does not offer opportunities to 

scrutinize the individual processes in coal mining. 

• There is need for coverage of more mines. Coverage should be across different scales 

of production and across diverse coal basins in the US, in order to improve 

confidence in the accuracy and representativeness of the LCA results to the US as a 

geographical scope.  

• There is need for site measured data. This will help validate some of the data which 

has been obtained from literature and from modeling.  
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APPENDIX A. 

INVENTORY ANALYSIS CALCULATIONS 
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List of major equipment for the Black Mesa and Kayenta complex (Mines A1 & A2)  

VEHICLE/EQUIPMENT FUEL/ 
ENERGY 

TYPE 

AVERAGE 
ENGINE 
POWER 

(HP) 

NO. OF 
UNITS 

Processing Equipment    

• Coal processing plants Electric  4 

 

Electric mining equipment    

• Draglines Electric  6 

• Shovel Electric.  1 

 

Diesel mining equipment    

• Tractor/backhoe/trencher Diesel 100 36 

• Crane/large forklift Diesel 400 23 

• Welder/compressor Diesel 300 24 

• Dozer/loader Diesel 850 54 

• 150 to 250ton coal haul trucks Diesel 1,500 25 

• Semi-trailer/trailer Diesel 350 22 

• Drill Diesel 300 11 

• Grader/scraper Diesel 600 19 

 

Vehicles    

• Pick-up truck Diesel 200 2 

• 2 ton trucks Diesel 250 32 

• 2 to 5 ton trucks Diesel 300 22 
• 5 to 15 ton trucks Diesel 400 27 

• Pickup/crewcab/sub-urban Gasoline 200 70 
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Fuel and electricity consumption for equipment: Black Beauty Coal Company - Wildcat Hills Cottage Grove Pit  (Mine B) 

Min. Max. Min. Max. Average

Hydraulic Excavator 1 25yd3 CAT5230B 1096/1470 40-50% Diesel 208 227 698,880      762,720           730,800           
Front-end Loader 1 CAT 988 CAT 988H 395/530 65-80% Diesel 65.1 70.6 218,736      237,216           227,976           
Haul Truck 3 190 ton CAT 789C 1418/1900 40-50% Diesel 141.2 176.5 1,423,296   1,779,120        1,601,208        
Haul Truck 3 100 ton CAT 777D 700/938 40-50% Diesel 75 93.8 756,000      945,504           850,752           
Dozer 3 D10 CAT D10T 433/580 65-80% Diesel 79.5 97.7 801,360      984,816           893,088           
Dozer 3 D9 CAT D9N 403/540 65-80% Diesel 56.4 69.3 568,512      698,544           633,528           
Scraper 2 CAT637 CAT 637G 345/462 65-80% Diesel 113.5 121 762,720      813,120           787,920           
Grader 1 CAT16G CAT 16M 220/297 65-80% Diesel 32 40 107,520      134,400           120,960           
Overburden drill 1 Drilltech D75K 500/675 65-80% Diesel 74.1 85.2 248,976      286,272           267,624           
Bulk powder truck 1 156/210 50% Diesel 30 50,400             50,400             
Maintenance truck 1 245/330 50% Diesel 42 70,560             70,560             
Lube truck 1 245/330 50% Diesel 42 70,560             70,560             
Fuel truck 1 245/330 50% Diesel 42 70,560             70,560             
Water truck 1 245/330 50% Diesel 42 70,560             70,560             
Mobile crane 1 Liebherr LTF1035 91/122 50% Diesel 13.2 22,176             22,176             
Fork lift 1 CAT TH210 60/80 40-50% Diesel 11.8 13.5 22,656        45,360             34,008             
Generator and light plant 1 7.8/10.5 Diesel 1.71 2,052               2,052               
Generator and pump 1 74/100 Diesel 12.4 9,300               9,300               

6,514,032        

Pickup/crew cab trucks 15 Gasoline 105,120           105,120           

105,120           

Processing plant (18%)2 1400 ton/hour 1036/1400 100% Electric 980,138kWh 980,138kWh

980,138kWh
Diesel consumption based on two 8hour shifts per day for 360 days per year, with operational efficiency of 85%
Pickup/crew cab trucks1   -  Gasoline consumption based on 1 gallon per 19.7 miles for a maximum of 50 miles per 8 hour shift.
(18%)2 - Cottage Grove Pit's share  of Willow Lake Preparation Plant 3.7 millon ton annual production at 1400 tons/hour capacity plant

Fuel Consumption 
Rate (L/hour)

Annual Fuel Consumption  (L)

Total Electricity Consumption

Total Gasoline Consumption

Total Diesel Consumption

Equipment No. of 
Units

Model/ 
Capacity 

Listed

Model Assumed Gross Power 
(kW/hp)

Load 
Factor

Fuel
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Fuel and electricity consumption for equipment: Continental Coal Company – Cottonwood Creek Mine (Mine C) 

 

Min. Max. Min. Max. Average

Excavator 2 CAT 345 CAT 345C L-VG 257/345 40-50% Diesel 50.5 55.5 288,456    317,016        302,736        

Dozer 2 CAT D10 CAT D10T 430/580 65-80% Diesel 79.5 97.7 454,104    558,062        506,083        

Front end loader 2 CAT 966D CAT 966D 195/262 65-80% Diesel 27 32 154,224    182,784        168,504        

Motor Grader 1 CAT 140G CAT 140G 82/110 65-80% Diesel 19 25 54,264      71,400          62,832          

End dump truck 4 CAT 773 CAT 773F 552/740 40-50% Diesel 56.6 70.8 646,598    808,819        727,709        

Blasthole Drill 2 Reedril SK 40 Reedril SK 40 444/600 65-80% Diesel 70 80 399,840    456,960        428,400        

Bulk powder truck 1 156/210 50% Diesel 30 42,840          42,840          

Maintenance truck 1 245/330 50% Diesel 42 59,976          59,976          

Lube truck 1 245/330 50% Diesel 42 59,976          59,976          

Fuel truck 1 245/330 50% Diesel 42 59,976          59,976          

Water truck 1 245/330 50% Diesel 42 59,976          59,976          

IC Diesel Generator 1.65MMBtu/hour C15 ACERT TA 483 kW 90% Diesel 48 188,698        188,698        

2,667,706     

Pickup/crew cab trucks1 6 42,048          42,048          

42,048          

Roll Crusher2 1 Hycaloader 186/250 100% Electric. 517,650 kWh 517,650 kWh

517,650 kWh
Diesel consumption based on two 8 hour shifts per day for 360 days per year, with operational efficiency of 85%
Pickup/crew cab trucks1   -  Gasoline consumption based on 1 gallon per 19.7 miles for a maximum of 50 miles per 8 hour shift.
Roll Crusher2 - Annual energy consumption based on 300 ton/hour capacity crusher producing a total of 200,000 tons

Total Electricity Consumption

Total Diesel Consumption

Fuel Consumption 
Rate (L/hour)

Annual Fuel Consumption  (L)

Total Gasoline Consumption

Equipment No. of 
Units

Model/ Capacity 
Listed

Model Assumed Gross 
Power 

(kW/hp)

Load Factor Fuel
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Fuel and electricity consumption for equipment: Continental Coal Company – Hume Mine (Mine D) 

 

Min. Max. Min. Max. Average

Excavator 2 CAT 345 CAT 345C L-VG 257/345 40-50% Diesel 50.5 55.5 144,228    158,508       151,368       
Dozer 1 CAT D9N CAT D9N 275/370 65-80% Diesel 56.4 69.3 80,539      98,960         89,750         
Dozer 2 CAT D8R CAT D8R 227/305 65-80% Diesel 41.5 51 118,524    145,656       132,090       
Dozer 1 CAT D4H CAT D4H 75/105 65-80% Diesel 13 15 18,564      21,420         19,992         
Front end loader 1 CAT 966 CAT 966G 195/262 65-80% Diesel 27 32 38,556      45,696         42,126         
Front end loader 1 CAT 926 CAT 926E 82/110 65-80% Diesel 15 19 21,420      27,132         24,276         
End dump truck 3 CAT 777 CAT 777D 758/1016 40-50% Diesel 75 93.8 321,300    401,839       361,570       
Drill 2 Reedril SK 40 Reedril SK 40 444/600 65-80% Diesel 70 80 199,920    228,480       214,200       
Bulk powder truck 1 156/210 50% Diesel 30 21,420         21,420         
Maintenance truck 1 245/330 50% Diesel 42 29,988         29,988         
Lube truck 1 245/330 50% Diesel 42 29,988         29,988         
Fuel truck 1 245/330 50% Diesel 42 29,988         29,988         
Water truck 1 245/330 50% Diesel 42 29,988         29,988         

1,176,743    

Pickup/crewcab trucks1 4 Gasoline 9,272           9,272           
9,272           

Portable Roll Crusher2 1 Jim Pyle 74/100 100% Electric 132,090 kWh 132,090 kWh
132,090 kWh

Diesel consumption based on one 8 hour shift per day for 310 days per year, with operational efficiency of 85%
Pickup/crew cab trucks1   -  Gasoline consumption based on 1 gallon per 19.7 miles for a maximum of 50 miles per 8 hour shift.
Portable Roll Crusher2 - Annual energy consumption based on 120 ton/hour capacity crusher producing a total of 62,000 tons

Total Electricty Consumption

Fuel Consumption 
Rate (L/hour)

Annual Fuel Consumption  (L)

Total Diesel Consumption

Total Gasoline Consumption

Equipment No. of 
Units

Model/ 
Capacity 

Listed

Model Assumed Gross 
Power 

(kW/hp)

Load 
Factor

Fuel
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Explosives Requirements: Continental Coal Company – Cottonwood Creek mine 
 
Type of overburden material blasted: shale. 
 
Thickness of coal seam : 26 inches. 
 
Hole diameter   : 6¾ inches 
 
Depth of hole    : 48 ft 
 
Burden X Spacing  : 20 ft x 20 ft  
 
Explosives used  : Bulk  ANFO and  0.75 lb PETN primer 
 
Explosives Density  :  0.90 g/cm3 (56.2 lb/ft3) 
 
Energy content of ANFO : 803.64 kcalories/kg ANFO as per Aimone ( 1992)  
       803.64 kcalories/kg ANFO = 3.36x103 MJ/tonne ANFO 
 
Explosives weight per hole :  501 lb ANFO (14 lb/ft column) 
 
Powder factor    : 0.026 lb/ft3   
 
Volume of coal exposed per blast hole = Area  x  Seam thickness 
        =  20 ft x 20 ft x (26/12)ft  = 867 ft3 

 
Amount of coal exposed per hole   = 867 ft3 x 84 lb/ft3 = 72,828 lb = 36.4 tons  
     = 33.0 tonnes 
 
Explosives per tonne of coal   = 510 lb ANFO x (0.4536 kg/lb)/33 tonnes  
     = 6.914 kg ANFO/tonne coal 
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Explosives Requirements: Continental Coal Hume Mine  
 
Type of overburden material blasted: shale, sandstone and limestone. 
 
Thickness of coal seam : 26 inches. 
 
Hole diameter   : 5½ inch to 6¾ inch 
 
Depth of hole    : 50 ft 
 
Stemming    : 10 ft 
 
Length of charge  : 40 ft 
 
Burden X Spacing  : 18 ft x 18 ft  
 
Explosives used  : Bulk ANFO and  0.75 lb PETN primer 
 
Explosives Density  : 0.90 g/cm3 (56.2  lb/ft3) 
 
Energy content of ANFO : 803.64 kcalories/kg ANFO  
       803.64 kcalories/kg ANFO  = 3.36x103 MJ/tonne ANFO 
 
Explosives weight per hole : 368 lb ANFO   (9.2 lb/ft column of charge) 
 
Powder factor    : 0.023 lb ANFO/ft3 

 
Volume of coal exposed per blast hole  = Area per hole X Seam thickness 
         =  18ft x 18ft’ x (35/12)ft = 945 ft3 

 
Amount of coal exposed per hole   = 945 ft3 x 84 lb/ft3 = 79380 lb = 39.7 tons   
     = 36.0 tonnes.  
 
Explosives per tonne of coal   = 368 lb ANFO x (0.4536 kg/lb)/36 tonnes  
     = 4.656 kg ANFO/tonne coal 
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Explosives Requirements: Peabody Western Coal Company,  Black Mesa and 
Kayenta Mines 
 
Type of overburden material blasted: unspecified 
 
Overburden and interburden :37.9 ft 
 
Thickness of coal seam : 78 inches 
 
Hole diameter   : 6¾ inches (Assumed) 
 
Depth of hole    : 38 ft  (Assumed) 
 
Powder factor    : 0.026 lb/ft3 (Assumed) 
 
Burden X Spacing  : 20.7 ft x 20.7 ft  
 
Explosives used  : Bulk  ANFO   (Assumed) 
 
Explosives weight per hole :  424 lb ANFO (14 lb/ft column) 
 
Volume of coal exposed per blast hole = Area  x  Seam thickness 
        =  20.7ft x 20.7ft x (78/12)ft = 2785 ft3 

 
Amount of coal exposed per hole    = 2785 ft3 x 84 lb/ft3 = 233,956 lb = 117 tons  
     = 106 tonnes. 
 
Explosives per tonne of coal   = 424 lb ANFO x (0.4536 kg/lb)/106 tonnes  
     = 1.814 kg ANFO/tonne coal 
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Explosives Requirements: Black Beauty Coal Company, LLC.  Wildcat Hills Mine, 
Cottage Grove Pit 
 
Type of overburden material blasted: unspecified. 
 
Overburden and interburden : 88.5 ft 
 
Thickness of coal seam : 77.8 inches. 
 
Hole diameter   : 6¾ inches (Assumed) 
 
Depth of hole    : 88.5 ft (Assumed) 
 
Powder factor    : 0.026 lb/ft3 (Assumed) 
 
Burden X Spacing  : 20.75 ft x 20.75 ft  
 
Explosives used  : Bulk  ANFO   (Assumed) 
 
Explosives weight per hole :  991 lb ANFO (14 lb/ft column) 
 
Volume of coal exposed per blast hole = Area  x  Seam thickness 
        = 20.75ft x 20.75ft x (77.8/12)ft = 2791 ft3 

 
Amount of coal exposed per hole    = 2791 ft3 x 84 lb/ft3 = 234,484 lb = 117 tons 
     = 106 tonnes.  
 

Explosives per tonne of coal   = 991 lb ANFO x (0.4536 kg/lb)/106 tonnes  
     = 4.241 kg ANFO/tonne coal 
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GREET results for light duty truck 2: Well-to-Wheel energy consumption and emissions 
(per mile) for gasoline 

 
  Btu/mile or grams/mile 
Item Feedstock Fuel Vehicle 

Operation 
Total Energy  374 1,585 8,472
Fossil Fuels 360 1,458 8,349
Coal 65 269 0
Natural Gas 193 481 0
Petroleum 103 707 8,349
CO2 (w/ C in VOC & CO) 27 111 651
CH4 0.776 0.128 0.054
N2O 0.001 0.007 0.012
GHGs 46 116 656

 

 

 

Energy densities, oxidation factors and emission factors for fossil fuels (EPA, 2005) 

 Diesel* Gasoline* Propane 
Carbon content (g/gallon) 2,778 2,421  
Energy content (mmBtu/gallon) 0.1295 0.1242 0.0735 
Oxidation  factor 0.99 0.99 1.00 
CO2 emission (g/gallon) 10,084 8,788 7.3 
CH4 emission (g/gallon)   0.00014 
N2O emission (g/gallon)   0.00017 
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GREET Well-To-Pump energy consumption and emissions per mmBtu of fuel delivered 
to fuel station pump 

 
  Gasoline Diesel Propane 
Total Energy (Btu) 231,256.21 193,718.00  115,700.36 
WTP Efficiency 81.22% 83.80% 89.63%
Fossil Fuels  (g) 214,619.37 190,215.00  114,144.14 
Coal  (g) 39,496.70 32,158.00  10,653.74 
Natural Gas ( g) 79,546.20 76,092.00  75,176.42 
Petroleum (g) 95,576.47 81,966.00  28,313.97 
CO2 (w/ C in VOC & CO) (g) 16,261.79 15,488.00  8,896.20 
CH4 (g) 106.70 104.53  114.72 
N2O (g) 0.91 0.25  0.16 
Total GHGs (g CO2 eq.) 19,199.52 18,175.00  11,810.35 

 

 

 

GREET Well-To-Pump energy consumption and emissions for generation and delivery of 
1 MMBtu of electricity in the US and three States 

 
  US Arizona Illinois Missouri 
Total Energy ((Btu) 1,626,799 1,512,265 1,228,498  2,035,486 
WTP Efficiency 38.1% 39.8% 44.9% 32.9%
Coal (g) 1,033,819 768,706 849,337  1,841,479 
Natural Gas (g) 296,961 518,250 63,290  88,381 
Petroleum 77,034 13,759 15,958  29,939 
CO2 (w/ C in VOC & CO) (g) 220,251 192,223 176,365  309,536 
CH4 (g) 288.974 297.677 205.006 351.024
N2O (g) 3.010 2.606 1.978 3.167
Total GHG (g CO2 eq.) 227,788 199,840 181,666  318,546 
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Cradle-to-gate energy inputs for the production of 1 tonne of coal 
 

Mines   
A1&A2 

Mine B Mine C Mine D 

Electricity (Btu/tonne) 66,255.20 6,706.90   16,252.20
Diesel (Btu) 17,961.40 71,050.30 90,602.30 139,316.80
Gasoline (Btu/tonne) 1,214.10 1,290.00 1,745.30 1,290.00
Propane (Btu/tonne) 829.4       
Explosives (Btu/tonne) 5778 13505 22028 14824
Total  (Btu/tonne) 92038 92552 114376 171683
Total  (MJ/tonne) 97 98 121 181
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APPENDIX B. 

LAND USE IMPACTS CALCULATIONS 
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Timeline for land disturbance and completion of reclamation for Black Mesa and 
Kayenta facilities 

 
Facilities Acres Disturbed Year of 

Disturbance 
Year of 

Reclamation 
completion 

(Bond Release) 

N14 Conveyor &Preparation facility 239 1969 2059 
J28 Conveyor &Preparation facility 256 1969 2059 
Construction and cable yards 9 1969 2059 
Public coal load out facilities 14 1969 2059 
Buildings 39 1969 2059 
Scoria borrow pits 11 1969 2059 
Black Mesa Mine facility (miscellaneous) 22 1969 2059 
Black Mesa Pipeline Company facility 40 1969 2059 
Train loading site and overland conveyor 88 1969 2059 
Water supply wells x12  0.72 1969 2059 
J3 solid waste Land fill (non-coal) 14.2 1970 2008 
Existing mine haul roads 592.3 1970 2059 
N3 Air strip 173 1977 1987 
J6 Airstrip 173 1986 2059 
69kV powerline  between J21 and J27 9 1996 2059 
Total 1680     
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Land use impact from mine facilities at 
Black Mesa and Kayenta 

Year Area 
Disturbed 
(Acres) 

Area 
Ready for 

Bond 
Release 
(Acres) 

Cumulative 
Area 

Disturbed 
(Acres) 

1969 718.7  718.7 
1970 606.3  1325.0 
1971   1325.0 
1972   1325.0 
1973   1325.0 
1974   1325.0 
1975   1325.0 
1976   1325.0 
1977 173.0  1498.0 
1978   1498.0 
1979   1498.0 
1980   1498.0 
1981   1498.0 
1982   1498.0 
1983   1498.0 
1984   1498.0 
1985   1498.0 
1986 173.0  1671.0 
1987  173.0 1498.0 
1988   1498.0 
1989   1498.0 
1990   1498.0 
1991   1498.0 
1992   1498.0 
1993   1498.0 
1994   1498.0 
1995   1498.0 
1996 9.0  1507.0 
1997   1507.0 
1998   1507.0 
1999   1507.0 
2000   1507.0 

…    …

2059  0 1507.0 
Sum 1680.02 173 135078.5 
Acre-year/ton 0.00017 
m2-year/tonne 0.75040 

Land use impact from coal extraction at 
Black Mesa and Kayenta  

Year Area 
Disturbed 
(Acres) 

Area 
Ready for 

Bond 
Release 
(Acres) 

Cumulative 
Area 

Disturbed 
(Acres) 

1970 475   475 
1971 475   950 
1972 475   1425 
1973 475   1901 
1974 475   2376 
1975 475   2851 
1976 475   3326 
1977 475   3801 
1978 475   4276 
1979 475   4751 
1980 475   5226 
1981 475   5702 
1982 475   6177 
1983 475   6652 
1984 475   7127 
1985 475   7602 
1986 475   8077 
1987 475   8552 
1988 475   9028 
1989 475   9503 
1990 475 474 9504 
1991 475 474 9504 
1992 475 474 9505 
1993 475 474 9506 
1994 475 474 9507 
1995 475 474 9508 
1996 475 474 9509 
1997 475 474 9510 
1998 475 474 9511 
1999 475 474 9511 
2000 475 474 9512 
2001 475 474 9513 
2002 475 474 9514 
2003 475 474 9515 
2004 475 474 9516 
2005 475 474 9517 
2006 489 474 9531 
2007 489 474 9546 
2008 489 474 9560 
2009 489 474 9575 
2010 489 474 9589 
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Year  Area 
Disturbed 
(Acres) 

Area 
Ready for 
Bond 

Release 
(Acres) 

Cumulative 
Area 

Disturbed 
(Acres) 

2011  489  474  9604
2012  489  474  9619
2013  489  474  9633
2014  489  474  9648
2015  489  474  9662
2016  489  474  9677
2017  489  474  9691
2018  489  474  9706
2019  489  474  9720
2020  489  474  9735
2021  489  474  9749
2022  489  474  9764
2023  489  474  9778
2024  489  474  9793
2025  489  474  9808
2026  489  474  9822
2027  489  474  9837
2028  489  474  9851
2029  489  474  9866
2030  489  474  9880
2031  489  474  9895
2032  489  474  9909
2033  489  474  9924
2034  489  474  9938
2035  489  474  9953
2036  489  474  9967
2037  489  474  9982
2038  489  474  9997
2039  489  474  10011
2040  489  474  10026
2041  489  474  10040
2042  489  474  10055
2043  489  474  10069
2044  489  474  10084
2045  489  474  10098
2046  489  474  10113
2047  94  474  9733
2048     474  9259
2049     474  8784
2050     474  8310
2051     474  7836

 

Year Area 
Disturbed 
(Acres) 

Area 
Ready for 
Bond 
Release 
(Acres) 

Cumulative 
Area 

Disturbed 
(Acres) 

2052 474  7362
2053 474  6887
2054 474  6413
2055 474  5939
2056 474  5465
2057 474  4990
2058 474  4516
2059 4516  0

SUM 37240 37240  740140
Acre‐year/ton 0.00092
m2‐year/tonne 4.11171
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Land use impact from mine facilities at 
Wild Cat Hills Mine -  

Cottage Grove Pit 

Year Area 
Disturbed 
(Acres) 

Area 
Ready for 

Bond 
Release 
(Acres) 

Cumulative 
Area 

Disturbed 
(Acres) 

2000 105.6     
2001   105.6 
2002     106 
2003     105.6 
2004     105.6 
2005     105.6 
2006     105.6 
2007     105.6 
2008     105.6 
2009     105.6 
2010     105.6 
2011     105.6 
2012     105.6 
2013     105.6 
2014     105.6 
2015     105.6 
2016     105.6 
2017     105.6 
2018   105.6 0.0 
SUM 105.6 105.6 1795.2 
Acre-year/ton 0.00023 
m2-year/tonne 1.04003 

 

 

Land use impact from coal extraction at 
Wild Cat Hills Mine -  

Cottage Grove Pit 

Year Area 
Disturbed 
(Acres) 

Area 
Ready for 

Bond 
Release 
(Acres) 

Cumulative 
Area 

Disturbed 
(Acres) 

2000       
2001 47.7   47.7 
2002 47.7   95.5 
2003 47.7   143.2 
2004 47.7   191.0 
2005 47.7   238.7 
2006 47.7   286.5 
2007 47.7 47.7 286.5 
2008 47.7 47.7 286.5 
2009 47.7 47.7 286.5 
2010 47.7 47.7 286.5 
2011 47.7 47.7 286.5 
2012 23.5 47.7 262.2 
2013   47.7 214.5 
2014   47.7 166.7 
2015   47.7 119.0 
2016   47.7 71.3 
2017   47.7 23.5 
2018   23.5 0.0 
SUM 548.7 548.7 3292.2 
Acre-year/ton 0.00043 
m2-year/tonne 1.90730 
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Land use impact from mine facilities at 
Cottonwood Creek 

Year Area 
Disturbed 
(Acres) 

Area 
Ready for 

Bond 
Release 
(Acres) 

Cumulative 
Area 

Disturbed 
(Acres) 

2000 42  42 
2001   42 
2002   42 
2003   42 
2004   42 
2005   42 
2006   42 
2007   42 
2008   42 
2009   42 
2010   42 
2011   42 
2012   42 
2013  42 0 
SUM 42 42 546 
Acre-year/ton 0.00036 
m2-year/tonne 1.62377 

 

Land use impact from coal extraction at 
Cottonwood Creek 

Year Area 
Disturbed 
(Acres) 

Area 
Ready for 

Bond 
Release 
(Acres) 

Cumulative 
Area 

Disturbed 
(Acres) 

2003 3.7  3.7 
2004 74.7  78.4 
2005 74.7  153.0 
2006 74.7  227.7 
2007 74.7  302.4 
2008 74.7  377.0 
2009 74.7 74.7 377.0 
2010 74.7 74.7 377.0 
2011 33.6 74.7 336.0 
2012  74.7 261.3 
2013  74.7 186.7 
2014  74.7 112.0 
2015  74.7 37.3 
2016  37.3 0.0 
SUM 560.0 560.0 2829.6 
Acre-year/ton 0.0019 
m2-year/tonne 8.4151 
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Land use impact from mine facilities at 
Hume 

Year Area 
Disturbed 
(Acres) 

Area 
Ready for 

Bond 
Release 
(Acres) 

Cumulative 
Area 

Disturbed 
(Acres) 

2000 29.7   29.7 
2001     30 
2002     30 
2003     30 
2004     30 
2005     30 
2006     30 
2007     30 
2008     30 
2009     30 
2010     30 
2011     30 
2012     30 
2013     30 
2014     30 
2015     30 
2016     30 
2017     30 
2018     30 
2019     30 
2020     30 
2021     30 
2022     30 
2023     30 
2024     30 
2025     30 
2026     30 
2027     30 
2028     30 
2029     30 
2030     30 
2031     30 
2032     30 
2033     30 
2034   29.7 0 
SUM 29.7 29.7 1009.8 
Acre-year/ton 0.00057 
m2-year/tonne 2.54499 

 

Land use impact from coal extraction at 
Hume 

Year Area 
Disturbe
d (Acres) 

Area 
Ready for 

Bond 
Release 
(Acres) 

Cumulati
ve Area 

Disturbed 
(Acres) 

2000 8.8   8.8 
2001 16.1   25.0 
2002 16.1   41.1 
2003 16.1   57.2 
2004 16.1   73.3 
2005 16.1   89.4 
2006 16.1 16.1 89.4 
2007 16.1 16.1 89.4 
2008 16.1 16.1 89.4 
2009 16.1 16.1 89.4 
2010 16.1 16.1 89.4 
2011 16.1 16.1 89.4 
2012 16.1 16.1 89.4 
2013 16.1 16.1 89.4 
2014 16.1 16.1 89.4 
2015 16.1 16.1 89.4 
2016 16.1 16.1 89.4 
2017 16.1 16.1 89.4 
2018 16.1 16.1 89.4 
2019 16.1 16.1 89.4 
2020 16.1 16.1 89.4 
2021 16.1 16.1 89.4 
2022 16.1 16.1 89.4 
2023 16.1 16.1 89.4 
2024 16.1 16.1 89.4 
2025 16.1 16.1 89.4 
2026 16.1 16.1 89.4 
2027 16.1 16.1 89.4 
2028 16.1 16.1 89.4 
2029   16.1 73.3 
2030   16.1 57.2 
2031   16.1 41.1 
2032   16.1 25.0 
2033   16.1 8.8 
2034   8.8 0.0 

SUM 460.0 460.0 2556.5 
Acre-year/ton 0.0014 
m2-year/tonne 6.4433 
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APPENDIX C. 

 

SENSITIVITY ANALYSIS CALCULATIONS 
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Effects of different scenarios on potential energy use impacts 

Energy Use Impact (MJ/tonne coal) 
Mines   

A1&A2 
Mine B Mine C Mine D 

Base case 97 98 121 181 
US Grid electricity 102 100 129 178 

5% Electricity reduction 94 97 120 180 
5% Diesel reduction 96 94 116 174 

 

 

Percentage change in energy use impacts for different scenarios 

Percent Change in Energy Use Impact 
Mines 

A1&A2 
Mine B Mine C Mine D 

Base case 0 0 0 0 
US Grid electricity 5.5 2.3 7.1 -1.9 

5% Electricity reduction -3.6 -0.4 -0.3 -0.5 
5% Diesel reduction -1.0 -3.8 -4.0 -4.1 

 

 

Effects of different scenarios on potential resource depletion impacts 

Resource Depletion Impact 
(kg Sb-eq./tonne coal) 

Mines 
A1&A2 

Mine B Mine C Mine D 

Base case 7.80 8.06 8.38 9.38 
US Grid electricity 7.73 8.10 8.40 9.38 

5% Electricity reduction 7.77 8.06 8.38 9.37 
5% Diesel reduction 7.79 8.00 8.31 9.25 
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Percentage change in abiotic resource depletion impacts for different scenarios 

Percent Change In Resource Depletion 
Impact 

Mines 
A1&A2 

Mine B Mine C Mine D 

Base case 0 0.00 0.00 0.00 
US Grid electricity -1.0 0.5 0.2 0.0 

5% Electricity reduction -0.5 0.0 -0.1 -0.1 
5% Diesel reduction -0.2 -0.8 -0.9 -1.3 

 

 

Effects of different scenarios on potential climate change impacts 

Climate Change Impact (kg CO2 -eq.) 

Mines 
A1&A2 

Mine B Mine C Mine D 

Base case 37.9 53.9 65.4 91.5 
US Grid electricity 39.1 54.1 64.2 90.8 

5% Electricity reduction 37.5 53.8 64.9 91.4 
5% Diesel reduction 37.4 52.1 63.1 88.1 

5% Coalbed methane reduction 37.0 53.2 64.5 90.7 
 

 

 

Percentage change in climate change impacts for different scenarios 

Percent Change in Climate Change Impact
Mines 

A1&A2 
Mine B Mine C Mine D 

Base case 0 0.00 0.00 0.00 
US Grid electricity 3.2 0.5 -1.7 -0.8 

5% Electricity reduction -1.2 -0.1 -4.9 -0.1 
5% Diesel reduction -1.2 -3.3 -3.4 -3.8 

5% Coalbed methane reduction -2.3 -1.4 -1.3 -0.9 
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Abiotic 
Depletion 
Potential (ADP) 

 Characterization factor for the depletion of an abiotic resource 
based on ultimate reserves and extraction rate, and which 
expresses the indicator results for abiotic resource depletion in kg 
of a reference resource (antimony) (Guinée, 2002). 
 
 

Abiotic resource 
depletion  

 Consumption of non-renewable resources resulting in the 
lowering of their availability for future generations (EC JRC, 
2010). 
 
 

Attributional 
LCA 

 Also retrospective or descriptive LCA. An LCA that accounts for 
flows/impacts of pollutants, resources, and exchanges among 
processes within a chosen temporal window (EPA, 2006). 
 
 

Average data  LCA data representing the average environmental burdens for 
producing a unit of product or service from a system (Ekvall et 
al., 2005). 
 
 

Carbon dioxide-
equivalent  
(CO2-eq) 
 

 The concentration of CO2 that would cause the same amount of 
radiative forcing as a given mixture of CO2 and other greenhouse 
gases (IPCC, 2001). 
 
 

Characterization  The second mandatory element of the impact assessment phase of 
LCA in which the inventory flows are used to calculate the 
magnitudes of the impact category indicator results (Guinée, 
2002). 
 
 

Characterization 
Factor 

 Also called Equivalency factor. A factor derived from a 
characterization model which is applied to convert the assigned 
LCI results to the common unit of the category indicator. It is an 
indicator of the potential of each chemical to impact the given 
environmental impact category in comparison to the reference 
chemical used. (EPA, 2006). 
 
 

Classification  The first mandatory element of the impact assessment phase of 
LCA in which the LCI results are assigned to impact categories 
(Guinée, 2002). 
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Climate change  A change of climate which is attributed directly or indirectly to 

human activity that alters the composition of the global 
atmosphere and which is in addition to natural climate variability 
observed over comparable time periods (IPCC, 2001).  
 
 

Climate change 
impacts 
 
 

 The effects of climate change on natural and human systems 
(IPCC, 2007). 
 
 

Cradle-to-gate 
assessment 
 
 

 A streamlined LCA in which the system boundaries exclude the 
use and waste treatment stage (Baumann and Tillman, 2004). 
 
 

Cradle-to-grave 
assessment 

 A "cradle-to-grave" analysis considers impacts at each stage of a 
product's life-cycle, from the time natural resources are extracted 
from the ground and processed through each subsequent stage of 
manufacturing, transportation, product use, recycling, and 
ultimately, disposal (EU, 2010). 
 
 

Cut-off criteria  Specification of amount of material or energy flow or level of 
environmental significance associated with unit processes or 
product system to be excluded from the study (ISO 14040, 1997). 
 
 

Data quality 
analysis 

 The optional element of the impact assessment phase in which the 
quality of the LCA input data and results are analyzed to enhance 
understanding of the significance, uncertainty and sensitivity of 
the LCIA results (Guinée, 2002). 
 
 

Design for 
Environment 

 Design for Environment (DfE) or Eco-design is a method 
supporting product developers in reducing the total environmental 
impact of a product early in the product development process. 
This includes reducing resource consumption as well as emissions 
and waste (EC JRC, 2010). 
 
 

Eco-labeling  A voluntary, multiple-criteria-based third party program that 
awards a license which authorizes the use of environmental labels 
on products, indicating overall environmental preference of a 
product within a particular product category based on life cycle 
assessment (Baumann and Tillman, 2004).  
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Endpoint 
modeling 
method 

 The endpoint modeling method (or damage approach) tries to 
model the effects of emissions directly for the protection targets 
(natural environment's ecosystems, human health, resource 
availability). Endpoint methods typically follow the midpoint 
modeling considering the severity and reversibility of effects and 
the models' uncertainties (EC JRC, 2010). 
 
 

Energy intensity  Energy intensity is the ratio of energy use to economic or physical 
output (IPCC, 2007). 
 

Environmental 
flows 
 
 

  Inputs from and outputs to the environment (Guinée, 2002). 
 
 
 

Environmental 
product 
declaration 
 
 

 An internationally standardized (ISO 14025) and LCA based 
method to communicate the environmental performance of a 
product or service (EC JRC, 2010).  
 
 

Functional unit  Defines the quantification of the specified function(s) fulfilled by 
a product and serves as a reference flow for calculating the inputs 
and outputs of the system (ISO 14041, 1998). 
 
 

Gate-to-gate 
assessment 

  Also called environmental accounting or auditing. It is a 
streamlined LCA in which only data within a facility is 
considered in the assessment and upstream and downstream life 
cycle stages are eliminated (Todd, 1996). 
 
 

Global Warming 
Potential (GWP) 
 

 An index approximating the time-integrated warming effect of a 
unit mass of a given greenhouse gas in today’s atmosphere, 
relative to that of carbon dioxide (IPCC, 2001). 
 
 

Goal and scope 
definition 

 The first phase of LCA stating the aim of an intended LCA study, 
the functional unit, the system alternatives considered, and the 
breadth and depth of the intended LCA study (Guinée, 2002). 
 
 

Greenhouse gas 
 

 Gaseous constituents of the atmosphere, both natural and 
anthropogenic, that absorb and emit radiation at specific 
wavelengths within the spectrum of infrared radiation emitted by 
the Earth’s surface, the atmosphere and clouds (IPCC, 2001). 
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Grouping   An optional element of the impact assessment phase of LCA in 
which the impact category indicators are grouped into one or 
more sets involving descriptive sorting or priority ranking 
(Guinée, 2002). 
 
 

Impact category  Class representing environmental issue of concern. E.g. Climate 
change, Acidification, Ecotoxicity etc. (ISO 14042, 2000). 
Classification of human health and environmental effects caused 
by a product throughout its life cycle (EPA, 2006). 
 
 

Impact 
indicators 

 Impact indicators measure the potential for an impact to occur 
rather than directly quantifying the actual impact (EPA, 2006). 
 
 

Improvement 
assessment 

 A systematic evaluation of the needs and opportunities to reduce 
the environmental burdens associated with energy and raw 
material use and environmental releases throughout the whole life 
cycle of a product, process, or activity (Curran, 1996). 
 
 

Integrated 
product policy 
(IPP) 
 

 Approach founded on the consideration of the impacts of products 
throughout their life-cycle to improve the environmental 
performance of products in a cost-effective way (EC JRC, 2010). 
 
 

Interpretation  The last phase of LCA involving the identification of significant 
issues based on the results of the LCI and the LCIA phase of 
LCA, and in which conclusions, recommendations and reporting 
are done (Guinée, 2002). 
 
 

Life Cycle 
Assessment 
(LCA) 

 A compilation and evaluation of inputs, outputs and potential 
environmental impacts of a product system throughout its life 
cycle (ISO 14040, 1997). 
 
 

Life Cycle 
Impact 
Assessment 
(LCIA) 

 The phase of LCA in which individual data in the inventory table 
or LCI results are translated into contributions to selected impact 
categories. LCIA is a quantitative and/or qualitative process to 
identify, characterize and assess the potential impacts of the 
environmental interventions identified in the inventory analysis 
(Guinée, 2002). 
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Life Cycle 
Inventory 
Analysis (LCI) 

 The phase of life cycle assessment involving the compilation and 
quantification of inputs and outputs for a given product system 
throughout its life cycle (ISO 14040:1997). 
 
  

Kyoto Protocol 
 

 The Kyoto Protocol to the United Nations Framework 
Convention on Climate Change (UNFCCC) was adopted at the 
Third Session of the Conference of the Parties (COP) to the 
United Nations Framework Convention on Climate Change, in 
1997 in Kyoto, Japan (IPCC, 2001). 
 
 

Land use impact 
 

 The impact category related to use (occupation) and conversion 
(transformation) of land area by product-related activities such as 
agriculture, roads, housing, mining etc. Land occupation 
considers the effects of the land use, the amount of area involved 
and the duration of its occupation (quality-changes multiplied 
with area and duration). Land transformation considers the extent 
of changes in land properties and the area affected (quality 
changes multiplied with the area) (EC JRC, 2010). 
 
 

Life cycle 
thinking 

 A way of thinking that considers the cradle-to-grave implications 
of different activities without going into the details of an LCA 
study (Baumann and Tillman, 2004). 
 
 

Lifetime 
 

 A general term used for various time-scales characterizing the 
rate of processes affecting the concentration of trace gases (IPCC, 
2001).  
 
 

Marginal Data  LCA data which corresponds to the effects on the environmental 
burdens of a system due to a small change in the output of a 
product (Ekvall et al., 2005). 
 
 

Mid-point 
modeling 
method 

 A modeling method which specifies the results of traditional 
LCIA characterization methods as indicators located between 
emission and endpoint damages in the impact pathway at the 
point where it is judged that further modeling involves too much 
uncertainty (EC JRC, 2010). 
 
 



134 

 

 

Normalization  An optional element of the impact assessment phase of LCA 
which involves calculations of the magnitudes of impact category 
indicators relative to reference information (Guinée, 2002). 
 
 

Potential 
Impacts 
 
 

 Modeled impacts as opposed to measured impacts (Guinée, 
2002). 
 
 

Products 
 

 Physical goods as well as services (Guinée, 2002). 
 
 

Product system   A collection of unit processes connected by flows of intermediate 
products which perform one or more defined functions (ISO 
14041, 1998). 
 
 

Prospective LCA  Also known as effect-oriented or consequential LCA. It is an 
LCA that aims to describe the consequences of changes made 
within the technological system investigated (Ekvall et al., 2005). 
 
 

Stand-alone 
LCA 

 An LCA used to describe a single product, often in an exploratory 
way, in order to get acquainted with some important 
environmental characteristics of that product (Baumann and 
Tillman, 2004). 
 
 

Streamlined 
LCA 

 An LCA that focuses  on a few critical dimensions of the 
product’s environmental impacts, rather than all dimensions, or an 
LCA in which  some life cycle stages have been limited or 
eliminated (Todd, 1996). 
 
 

Sustainability 
reporting 

 The process for publicly disclosing an organization's economic, 
environmental, and social performance (EC JRC, 2010). 
  
 

Unit process  A unit process is any kind of activity producing economically 
valuable material, component or product, or providing an 
economically valuable service, and it is the smallest portion of a 
product system for which data is collected during the execution of 
an LCA (Guinée, 2002). Unit processes are linked to one another 
by flows of intermediate products and/or waste, to other product 
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 systems by product flows, and to the environment by elementary 
flows (i.e. inputs from and outputs to the environment) (ISO 
14040, 1997).   
 
 

Weighting  An optional element of the impact assessment phase of LCA in 
which  the indicator results or normalized results are multiplied 
by numerical factors to convert and possibly aggregate indicator  
results across impact categories into a single score or a small 
number of scores (Guinée, 2002). 
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