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ABSTRACT OF DISSERTATION 
 

SODIUM HYDROXIDE PRETREATMENT OF CORN STOVER AND 
SUBSEQUENT ENZYMATIC HYDROLYSIS: 

AN INVESTIGATION OF YIELDS, KINETIC MODELING  
AND GLUCOSE RECOVERY 

 
Many aspects associated with conversion of lignocellulose to biofuels and other 

valuable products have been investigated to develop the most effective processes for 
biorefineries.  The goal of this research was to improve the efficiency and effectiveness 
of the lignocellulose conversion process by achieving a more basic understanding of 
pretreatment and enzymatic hydrolysis at high solids, including kinetic modeling and 
separation and recovery of glucose. 
 Effects of NaOH pretreatment conditions on saccharide yields from enzymatic 
hydrolysis were characterized in low- and high-solids systems.  Factors associated with 
pretreatment and hydrolysis were investigated, including duration of pretreatment at 
different temperatures and NaOH loadings, as well as different solids and enzyme 
loadings.  Under relatively mild pretreatment conditions, corn stover composition was 
essentially equivalent for all time and temperature combinations; however, components 
were likely affected by pretreatment, as differences in subsequent cellulose conversions 
were observed.  Flushing the hydrolyzate and reusing the substrate was also studied as a 
method for inhibitor mitigation while increasing overall glucose yields.  Flushing the 
PCS throughout the hydrolysis reaction eliminated the need to wash the pretreated 
biomass prior to enzymatic hydrolysis when supplementing with low doses of enzyme, 
thus reducing the amount of process water required. 
 The robustness of an established kinetic model was examined for heterogeneous 
hydrolysis reactions in high-solids systems.  Michaelis-Menten kinetics is the traditional 
approach to modeling enzymatic hydrolysis; however, high-solids reactions violate the 
main underlying assumption of the equation: that the reaction is homogeneous in nature.  
The ability to accurately predict product yields from enzymatic hydrolysis in high-solids 
systems will aid in optimizing the conversion process. 

Molecularly-imprinted materials were studied for use in both bulk adsorption and 
in column chromatography separations.  Glucose-imprinted materials selectively 
adsorbed glucose compared xylose by nearly 4:1.  Non-imprinted materials were neither 
selective in the type of sugar adsorbed, nor were they capable of adsorbing sugar at as 
high a capacity as the glucose-imprinted materials.  Liquid chromatography with 
imprinted materials was not a suitable means for separating glucose from solution under 
the conditions investigated; however, many factors impact the effectiveness of such a 
separation process and warrant further investigation. 



 
 
KEYWORDS: high-solids loadings; enzymatic hydrolysis; pretreatment; heterogeneous 
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CHAPTER 1:  INTRODUCTION 
 
 In early 2012, the global population surpassed seven billion people which is 

increasing the demands for food and energy worldwide.  Currently, first-generation starch 

and sugar crops (like corn and sugarcane) are being used to produce the liquid 

transportation fuel ethanol as a substitute for gasoline.  Nearly 40% of the corn produced 

in the United States is converted to fuel ethanol (United States Department of Agriculture 

2013).  Sugar and starch are easily fermented into ethanol, and the technology is mature.  

However using these crops as a renewable feedstock for ethanol pits the fuel supply in 

direct competition with the food supply.  One proposed alternative is the use of 

lignocellulose as a renewable feedstock to supply energy demands.  Lignocellulose is the 

most abundant and renewable source of carbon on the planet, being the main structural 

component of plants.  Harnessing the energy stored in lignocellulose has been tapped as 

one solution for meeting the growing energy demands without decreasing the food 

supply.   

 Developing second generation feedstocks, (for example agricultural residues like 

corn stover and wheat straw, or dedicated energy crops, like switchgrass and miscanthus), 

as an energy supply has many advantages over continued use of fossil resources 

including improving sustainability and potentially slowing climate change.  For instance, 

use of lignocellulose as an energy source has the potential to reduce greenhouse gas 

emissions because the plant cycle is a net zero carbon dioxide emitter (Chang 2007).  

Essentially, carbon released upon combusting fuel derived from lignocellulose is used 

during the production of lignocellulose, resulting in a carbon cycle on the order of a year 

in contrast to the carbon cycle of fossil fuels that required millions of years to form.  As 

of 2011, the United States were the largest consumers of energy in the world, consuming 

95 quadrillion BTUs.  Nearly 30% of all the energy used was imported from other 

countries (United States Energy Information Administration 2013).  Concurrently, fossil 

reserves are in limited supply and tend to be located in volatile regions of the world, so 

lignocellulose could potentially provide a more politically sustainable (domestic) source 

of energy.  A localized, domestic energy source could also stimulate rural economic 

development (Brown 2003). 
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 The major issues associated with the use of lignocellulose as an energy source are 

the recalcitrant nature of the material (Jorgensen et al. 2007a; Zhao et al. 2012) and the 

ability to replace the wide range of products manufactured cheaply from fossil resources 

(Kadam et al. 2008; Menon and Rao 2012).  Lignocellulose structure, by design, is 

difficult to depolymerize, so as to provide the plant protection against attack by 

microorganisms and other pests.  Much research has gone into developing technologies 

capable of breaking down lignocellulose into its major components for economical use in 

downstream conversion processes.  As more and more petroleum is replaced by 

renewable energy sources, many commodity chemicals will need to be manufactured 

from other sources because fossil fuel serves as a basic building block for the commercial 

chemicals industry.  One proposed solution to this problem, and the economical 

production of biofuel, is the concept of the biorefinery.  In the biorefinery concept, every 

component of the material is exploited, much like in the traditional petroleum refinery.  

The suite of products manufactured including liquid transportation fuels, commodity 

chemicals and precursory chemical building blocks would be dictated by the market and 

selected to extract the greatest value possible out of lignocellulose. 

 

1.1 CONVERSION OF LIGNOCELLULOSE 
 
 Several unit operations are required in the conversion of lignocellulose to 

valuable products, including pretreatment, hydrolysis, fermentation and product recovery 

(Figure 1.1).  Multiple options are available for each of these unit operations, and each 

has its own advantages and challenges associated with it.  
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Figure 1.1.  Unit operations typical of the lignocellulosic conversion process. 
 

1.1.1 Pretreatment   

 The goal of pretreatment is to increase the accessibility of the polysaccharides 

within the lignocellulose to make them more susceptible to hydrolysis.  Generally 

speaking, pretreatments work by separating the lignocellulose into its structural 

components: cellulose, hemicellulose and lignin.  Without pretreatment, the sugar yields 

from enzymatic hydrolysis are less than 20% of the theoretical yields; however, with 

pretreatment, the sugar yields are reportedly ≥90% of the theoretical sugar yields (Zhang 

and Lynd 2004).  There are several key characteristics necessary for an effective 

pretreatment (Alvira et al. 2010; Galbe and Zacchi 2007; Jorgensen et al. 2007a).  

Pretreatments should: 

• have a low capital and operating cost compared to the product of interest; 

• not be energy intensive; 

• work on a wide variety of feedstocks; 

• not result in significant monosaccharide degradation or inhibitory compounds; 

• not use chemicals toxic to fermentation organisms; 
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• maximize digestibility of lignocellulose material; 

• maximize  recovery of valuable by-products like lignin; and 

• be scalable to industrial size. 

 Many different pretreatment methods have been developed, but most processes 

can fall into one of three categories: mechanical, biological or thermochemical.  Some 

pretreatment methods are briefly discussed here but those included are by no means an 

exhaustive list.  Many reviews are available that provide detailed overviews of the types 

of pretreatments available (Carvalheiro et al. 2008; Galbe and Zacchi 2007; Hendriks and 

Zeeman 2009; Mosier et al. 2005).   

 Initially, mechanical means, like chipping, milling and grinding, may be used to 

reduce the size of the particles, essentially increasing the surface area of the 

lignocellulose (Galbe and Zacchi 2007).  The crystallinity of the cellulose may also be 

affected during these processes, resulting in the reduction of the degree of polymerization 

(DP) of the cellulose.  Hammer mills and ball mills used to reduce particle size have been 

shown to enhance the digestibility of the lignocellulose in enzymatic hydrolysis (Alvira et 

al. 2010).  However, the energy requirements for these mechanical processes are 

exceedingly high and may not be economically feasible at larger scales (Hendriks and 

Zeeman 2009). 

 Biological pretreatments with lignin-degrading fungi have been receiving 

renewed interest recently as an environmentally friendly option.  White-rot, brown-rot 

and soft-rot organisms that produce ligninases have been used to remove lignin, exposing 

the cellulose and hemicellulose fractions of lignocellulose (Alvira et al. 2010; Galbe and 

Zacchi 2007).  This option is not very energy intensive because it can be performed at 

low temperatures and does not require any toxic chemicals that may be problematic in the 

other downstream processes.  However, the slow rate of this reaction renders this process 

ineffective at larger scales.  The organisms have been shown to consume some of the 

sugars during the delignification process, resulting in lower sugar yields (Balat et al. 

2008; Galbe and Zacchi 2007) than other non-biological pretreatments. 

 Thermochemical pretreatment methods are numerous, and many have been 

studied intensively.  Some of the more common methods are dilute acid, liquid hot water 

(LHW), steam explosion, ammonia fiber explosion (AFEX) and alkaline pretreatment.  
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Dilute acid pretreatment is typically performed by soaking lignocellulose in acid (sulfuric 

or phosphoric acid) at concentrations usually below 4 wt % at high temperature (140-

200°C) for up to 1 hour (Galbe and Zacchi 2007).  The acid mainly removes lignin, 

which then condenses and precipitates, and hydrolyzes the hemicellulose fraction into its 

respective monosaccharides. (Balat et al. 2008; Hendriks and Zeeman 2009).  Even 

though dilute acid pretreatment separates the hemicellulose from lignocellulose (one of 

the objectives of this current work), the solubilized sugars cannot always be recovered in 

a useable form.  While this pretreatment is highly effective in making cellulose 

susceptible to hydrolysis, it is possible to produce compounds inhibitory to fermentative 

organisms.  For instance, xylose  can be further degraded into furfural and 5-

hydroxymethyl furfural (HMF) (Vertes et al. 2010).  The nature of the acids used in this 

pretreatment require specialized equipment resistant to corrosion, as well as substrate 

neutralization prior to other downstream processes (Hendriks and Zeeman 2009; Mosier 

et al. 2005). 

 Liquid hot water pretreatments also require specialized equipment because 

elevated pressures (2.4-2.8 MPa) are used to keep the water in a liquid phase at high 

temperatures (180-230°C).  Water under these conditions is acidic (pH 4-7), resulting in 

the hydrolysis of hemicellulose, and removal of a significant portion of the lignin, much 

like the dilute acid pretreatment (Allen et al. 2001; Mosier et al. 2005).    Neutralization is 

not required following pretreatment and fewer inhibitors and degradation products form 

with LHW than dilute acid pretreatment because the pH is not as acidic for the former 

option.  However, the solubilized sugars are relatively dilute because of the high volumes 

of water typically used (Hendriks and Zeeman 2009; Mosier et al. 2005). 

 Another pretreatment option is steam explosion, which uses high-temperature 

steam (220-270°C) to pressurize the reactor (Galbe and Zacchi 2007).  The quick change 

in pressure when the pressure is released from the reactor causes the lignocellulose to 

explosively expand, disrupting the structure.  The slightly acidic nature of the steam, 

along with the release of acetyl groups from lignocellulose also enhances hydrolysis of 

hemicellulose (Alvira et al. 2010).  Lignin is also partially removed, leaving large pores 

that make the cellulose accessible to enzymes for subsequent enzymatic hydrolysis of the 

lignocellulose material (Jorgensen et al. 2007a).  While steam production requires energy, 
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this pretreatment does not produce large streams of process water that later necessitates 

treatment. 

 The process of ammonia fiber expansion (AFEX) is similar to that of steam 

explosion, except the lignocellulose soaks in liquid ammonia in a pressurized reactor 

prior to rapid decompression.  The explosion effectively breaks bonds between the lignin 

and hemicellulose fractions, allowing the material to expand and expose the cellulose 

(Jorgensen et al. 2007a).  Although very little lignin and hemicellulose are removed, this 

pretreatment has been shown to be very effective for increasing the digestibility of the 

material (Alvira et al. 2010).  Recycle of the ammonia would be required to make this 

option economically feasible (Balat et al. 2008). 

 Alkaline pretreatment using sodium hydroxide or calcium hydroxide causes the 

lignocellulose to swell, thereby increasing the surface area while reducing the degree of 

polymerization (DP) and crystallinity of the material (Balat et al. 2008; Galbe and Zacchi 

2007; Hendriks and Zeeman 2009).  Alkaline pretreatment is not as energy-intensive as 

some of the other pretreatment options because it can be performed at ambient 

temperatures and pressures, although longer reaction times may be needed to obtain the 

same level of digestibility offered by other forms of pretreatment (Jorgensen et al. 

2007a).  During alkaline pretreatment, very little of the saccharide fractions are 

solubilized, meaning that nearly 100% of the saccharides can be recovered during 

subsequent processing steps, which is desirable so full advantage can be taken of all the 

energy-rich components of lignocellulose.  Sodium hydroxide and calcium hydroxide 

affect lignocellulose in essentially the same manner; however, sodium hydroxide has a 

higher reaction rate as compared to calcium hydroxide, which may take weeks to 

sufficiently pretreat lignocellulose instead of hours or days like sodium hydroxide.  The 

lower reaction rate for calcium hydroxide may be due to its instability in water and its 

tendency to absorb carbon dioxide from the air to form calcium carbonate.  For these 

reasons, sodium hydroxide pretreatment was selected for investigation in this current 

work. 
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1.1.2 Hydrolysis        

 Hydrolysis is the unit operation that depolymerizes the polysaccharide chains of 

cellulose and hemicellulose into fermentable oligosaccharides and/or monosaccharides.  

Acid hydrolysis and enzymatic hydrolysis are the two predominant methods for this 

operation.  Acid hydrolysis typically uses dilute (4 wt %) or concentrated (60-90 wt %) 

sulfuric acid at high temperatures (120-200°C) and pressures (0.1-0.5 MPa) for up to 2 

hrs (Kumar et al. 2009b) to break the cellulose chains into glucose.  The challenges 

associated with this method include cost and production of compounds inhibitory to 

fermentation organisms.  Some of the costs of using acid can be mitigated through acid 

recovery and by-product recovery.  Gypsum is produced in large quantities during 

neutralization of the hydrolyzate with lime at the end of the process (Kumar et al. 2009b), 

which could be used to make building supplies like wallboard.  Additionally, the 

remaining lignin can be burned for process heat.  However, just like with dilute acid 

pretreatment, the production of inhibitory compounds like furfural, HMF, acetic acid, 

formic acid is possible (Balat et al. 2008), which impacts sugar recovery and ethanol 

yields. 

 Enzymatic hydrolysis uses cellulolytic enzymes produced from microorganisms 

to catalyze the depolymerization of cellulose into glucose oligomers, dimers, and 

monomers.  This method is often used because enzymes provide a biological alternative 

to acid hydrolysis.  The reaction conditions tend to be milder (pH of 4.8 and temperatures 

of ~50°C) and are not corrosive (Balat et al. 2008).  However, enzyme costs still 

contribute significantly to the overall cost of lignocellulose conversion, even though 

extensive research in recent years has reduced their cost (Jorgensen et al. 2007a).  

Additionally, enzymatic saccharification can be much slower (on the order of days) than 

acid hydrolysis.  Lignin and hemicellulose act as barriers to cellulose chains and hinder 

cellulase performance.  Enzyme recycling and specialized enzyme cocktails can be used 

to overcome some of these limitations (Jorgensen et al. 2007a).  Ultimately, enzymatic 

hydrolysis was chosen as the hydrolysis method of this current work because of the 

milder operating conditions and the ability to recover pentoses (since pentoses are 

retained during sodium hydroxide pretreatment) resulting from the hydrolysis of 

hemicellulose.            
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1.1.3 Fermentation and Product Recovery 

 The sugar-rich hydrolyzate obtained in the previous step can be fermented by 

microorganisms to produce ethanol.  Even though fermentation is a well-established 

process, several challenges still limit its use for large-scale ethanol production.  One of 

the biggest challenges associated with fermentation is effective use of sugars other than 

glucose.  Saccharomyces cerevisiae, Zymomonas mobilis and modified Escherichia coli 

are the most common fermentative organisms used and have been studied intensively 

(Chang 2007; van Zyl et al. 2007), but all still lack the ability to effectively use both 

hexoses and pentoses for industrial production of ethanol.  Additionally, the hydrolyzate 

obtained from lignocellulose typically does not contain as much sugar (~70 g/L) as 

compared to sugarcane or starch fermentations (>150 g/L) (Bayrock and Ingledew 2001; 

Brethauer and Wyman 2010).  Subsequently, the alcohol concentrations are lower, 

making alcohol recovery one of the most expensive and energy-intensive operations of 

lignocellulose conversion.           

 This current work does not directly investigate fermentation or product recovery 

methods and includes only brief comments regarding these unit operations.  However, 

readers are encouraged to refer to more detailed reviews that are available for 

fermentation (Balat et al. 2008; Brethauer and Wyman 2010; van Zyl et al. 2007), 

fermentation of sugars derived from hemicellulose (Girio et al. 2010; Saha 2003), and 

product separation and recovery (Balat et al. 2008; Huang et al. 2008).  

 This current work investigates several aspects associated with the conversion of 

lignocellulose, including pretreatment and enzymatic hydrolysis of lignocellulose at high-

solids loadings, separation and recovery of purified sugar streams, and application of an 

existing kinetic model for the hydrolysis of lignocellulosic material.  Chapters 2 and 3 

provide extensive reviews of the use of high-solids loadings in pretreatment and 

enzymatic hydrolysis, respectively.  Chapter 4 provides further details regarding sodium 

hydroxide pretreatment, state of the art technology for separating pentoses and hexoses 

and kinetic models developed for heterogeneous reactions.  Chapter 5 outlines the 

objectives for this current work.  Chapters 6 details the experimental work associated 

with characterization of effects of sodium hydroxide pretreatment conditions on 
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enzymatic hydrolysis performed at high-solids loadings.  Chapter 7 discusses the 

calibration and validation of a kinetic model for the hydrolysis of lignocellulosic material 

(a heterogeneous reaction).  Chapter 8 details the experimental work associated with 

separation of pentoses and hexoses using novel materials.  Chapter 9 concludes this work 

with some final thoughts regarding the results of this work, as well as discussing potential 

future directions for this work.                            
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CHAPTER 2:  THE USE OF HIGH-SOLIDS LOADINGS IN BIOMASS 
PRETREATMENT – A REVIEW1 
 
2.1 SUMMARY 

 The use of high-solids loadings (≥15% solids w/w) in the unit operations of 

lignocellulose conversion processes potentially offers many advantages over lower solids 

loadings, including increased sugar and ethanol concentrations and decreased production 

and capital costs.  Since the term lignocellulosic materials refers to a  wide range of 

feedstocks (agricultural and forestry residues, distillery by-products, and dedicated 

energy crops like grasses), the term “solids loading” here is defined by the amount of dry 

material that enters the process divided by the total mass of material and  water added to 

the material.  The goal of this paper is to provide a consolidated review of studies using a 

high-solids pretreatment step in the conversion process.  Included in this review is a brief 

discussion of the limitations such as the lack of available water to promote mass transfer, 

increased substrate viscosity and increased concentration of inhibitors produced affecting 

pretreatment as well as, descriptions and findings of pretreatment studies performed at 

high solids, the latest reactor designs developed for pretreatment at bench- and pilot-

scales to address some of the limitations, and high-solids pretreatment operations that 

have been scaled up and incorporated into demonstration facilities. 

 

Keywords: high solids, lignocellulose conversion, pretreatment, pilot scale, high density   

                                                 
1 This chapter has previously been published as a peer-reviewed journal article in Biotechnology and 
Bioengineering.  It should be cited as: 
Modenbach AA, Nokes SE. 2012. The use of high-solids loadings in biomass pretreatment - A review. 

Biotechnology and Bioengineering 109(6):1430-1442. 
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2.2 INTRODUCTION 

The production of commodity chemicals, (such as ethanol) from starch or 

lignocellulose, has a narrow profit margin.  Studies utilizing low solids loadings (≤5% 

solids w/w) are numerous and helpful; however, improved efficiency has prompted new 

studies using high-solids loadings. Since the term lignocellulosic materials refers to a  

wide range of feedstocks (agricultural and forestry residues, distillery by-products, and 

dedicated energy crops like grasses), the term “solids loading” here is defined by the 

amount of dry material that enters the process divided by the total mass of material and  

water added to the material.    Over the last few years, several studies have begun to 

investigate the effects of high-solids loadings (≥15% solids w/w) on different unit 

operations within the process stream (Hodge et al. 2008; Jorgensen et al. 2007b; 

Kristensen et al. 2009b; Lu et al. 2010; Zhang et al. 2010) as a means of improving the 

economics.   

The main advantage of using high-solids loadings over low and moderate solids 

loadings is improved efficiency.   Because there is a greater amount of biomass available 

in the reaction, higher sugar concentrations can be produced, which leads to increased 

ethanol concentrations (Hodge et al. 2008; Roche et al. 2009a).  The conversion process 

is more environmentally friendly, as less water is consumed (Stickel et al. 2009; Um and 

Hanley 2008) under certain processing conditions.  It should be noted that the water 

absorption capacity is a function of the lignocellulosic material, and significant water can 

be brought into the process, just through the selection of a particular type of material.  

However, some conversion processes have been developed to reduce process water and 

waste water by recovering and recycling liquid streams (Mohagheghi and Schell 2010; 

Stenberg et al. 1998).  Capital and production costs are greatly reduced.  Smaller reactors 

and equipment can be utilized for equivalent sugar and ethanol production.  Energy usage 

for heating, cooling, mixing and ethanol distillation is reduced, which renders the overall 

conversion process more efficient on an energy basis.       

 Current technology has allowed the use of up to 30% solids content in the 

fermentation of starch, whereas only 15-20% solids in lignocellulose conversion has been 

handled at the pilot plant scale (Jorgensen 2009; Kristensen et al. 2009b). Zhang et al. 

(2010) estimate that a solids loading of approximately 30% lignocellulose should 
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translate to an ethanol yield of 5-10% (w/w).  This yield is the minimum desired for the 

distillation process to be economical, as the energy requirement for distillation is 

significantly reduced for ethanol concentrations above 4% (Larsen et al. 2008).  To 

achieve this minimum ethanol concentration, some studies show that at least 15% solids 

(dry matter) is required for enzymatic hydrolysis (Jorgensen et al. 2007b; Kristensen et 

al. 2009a), while others estimate that minimum to be about 20% (Larsen et al. 2008).  

Although data for high-solids pretreatment and hydrolysis are limited, it has been 

suggested that the combination of a high-solids pretreatment followed by high-solids 

hydrolysis has great potential at improving the process economics by increasing sugar 

and ethanol yields while decreasing capital costs (Hodge et al. 2008; Roche et al. 2009a)  

However, utilizing high-solids loadings in this conversion process is still relatively new, 

and more research is required to overcome certain challenges, like high concentrations of 

inhibitors and equipment mass transfer limitations that are not as apparent at the low and 

moderate solids loadings. 

 The goal of this review is to provide a consolidated source of information in 

regards to the latest advances in pretreatment technologies for high-solids operations.  

Following a brief discussion of limitations affecting pretreatments performed at high 

solids, various pretreatment studies performed with moderate and high-solids loadings 

are detailed and the latest reactor designs that address some of these limitations are 

discussed.  Lastly, pretreatment operations that are known to have been successful at the 

pilot scale are summarized.   

 

2.3 FACTORS LIMITING HIGH-SOLIDS PRETREATMENTS 

Conventional pretreatments developed at lower solids loadings (5-10% solids) 

have long been shown to facilitate higher conversion of biomass into usable sugars 

compared to biomass which was not pretreated (Carvalheiro et al. 2008; Chen et al. 2009; 

Dadi et al. 2006; Galbe and Zacchi 2007; Schell et al. 1992; Schwald et al. 1989; Wyman 

et al. 2005a).  Some pretreatments, like AFEX, have been developed to require very little 

water (as low as 10% has been reported) (Wyman et al. 2005b) and have been referred to 

as “dry” pretreatments.  However, as more pretreatment options are investigated with 

increased solids loadings, several challenges become apparent.  For example, as the 
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concentration of solid material increases, little to no free water may be available in the 

reactor (Kristensen et al. 2009b), which can limit the effectiveness of the chosen 

pretreatment.  Actually, the type of biomass utilized can have a large effect on the 

amount of feedstock-associated water that enters the process, as well as on the way the 

solid and liquid phases interact.  Water binds differently to the different fractions of 

lignocellulosic material.  Hemicellulose tends to have a high water-holding capacity, 

while cellulose and lignin do not (Weber et al. 1993).  Water plays an essential role in 

pretreatment reactions, aiding in chemical and enzymatic reactions, reducing the viscosity 

of the slurry by increasing the lubricity of the particles, providing a medium for 

solubilization of sugars and other compounds and for mass transfer by diffusion.  Many 

of the limitations associated with pretreatments that were not initially developed to 

perform at high-solids loadings appear to be correlated with the lack of available water, 

which warrants further study in order to minimize these effects.     

High-solids slurries tend to be very viscous with some being paste-like in nature 

(Jorgensen et al. 2007a; Knutsen and Liberatore 2010a).  Pretreated corn stover at 20% 

insoluble solids can be formed into shapes that remain even after applied forces are 

removed (Stickel et al. 2009).  However, particle shape and size have a significant impact 

on the viscosity of a slurry since these characteristics influence the particle networking 

and type of packing that take place within the slurry (Ehrhardt et al. 2010; Szijarto et al. 

2011b; Viamajala et al. 2009).  For example, fibrous particles from straw or corn stover 

can easily become entangled, creating a very complex network of particles, which 

interact very differently than more nonfibrous particles like wood chips and corn cobs.  A 

reduction in particle size has been shown to reduce viscosity (Viamajala et al. 2009), 

although, size reduction may not be feasible in all cases due to the large energy 

requirement for milling or grinding (Miao et al. 2011).  High viscosities are associated 

with challenges like mixing and material handling that must be addressed for high-solids 

pretreatments to be as effective as possible (Jorgensen et al. 2007a; Roche et al. 2009a).  

Energy demands increase as mixing becomes more difficult, which may counteract the 

benefits of using high-solids loadings.  Reactors suitable for effective pretreatment of 

these complex networks of lignocellulosic materials are imperative, and designs 

implemented to overcome these limitations are discussed in a later section.  Material 
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handling also becomes an issue because viscous materials are difficult to pump or pour, 

which may limit the pretreatments’ applicability in a conventional continuous system.  In 

the paper and pulping industry, the addition of additives like dimethylformamide to Kraft 

process black liquors has been investigated to reduce the viscosity of high-solids slurries 

(Llamas et al. 2007).  The size, shape and concentration of particles, as well as the 

addition of additives, should be taken into consideration to keep viscosity from limiting 

the conversion process. 

While pretreatments at high-solids loadings may be attractive for producing 

higher sugar concentrations, there is a risk for also producing higher concentrations of 

hydrolysis and fermentation inhibitors (Jorgensen et al. 2007b).  Figure 2.1 shows some 

of the inhibitors that may be formed during the pretreatment of lignocellulose.  It is well 

documented that dilute acid pretreatment leads to the production of degradation products 

like acetic acid, furfural, hydroxymethylfurfural (HMF) and phenolic compounds (Bjerre 

et al. 1996; Georgieva et al. 2008; Hodge et al. 2008; Vertes et al. 2010), which have 

been shown to inhibit the other downstream steps in the conversion process.  In addition 

to the type and severity of the pretreatment, the composition of lignocellulosic material 

may also contribute to the variety of inhibitors produced.  For example, the hemicellulose 

found in herbaceous biomass like agricultural residues is composed mainly of xylose, 

whereas in softwoods, the hemicellulose is composed of mainly mannose (Galbe and 

Zacchi 2007).  Several studies have recently shown that sugars resulting from the 

hydrolysis of hemicellulose, like xylose, xylan and xylooligomers, have a significant 

impact on the conversion rates and yields of cellulase and β-glucosidase enzymes (Kim et 

al. 2011; Qing et al. 2010; Ximenes et al. 2011b).  Pretreating agricultural residues under 

acidic conditions can lead to increased xylose yields, which can inhibit cellulase and β-

glucosidase activity if these xylan hydrolysis products are not removed.  However, 

inhibitor production is not limited to dilute acid pretreatment.  Alkaline pretreatments 

performed at room temperature can produce aromatic compounds like furans, phenols 

(Klinke et al. 2004), low molecular weight acids (Knill and Kennedy 2003) and aldehyde 

compounds (Vertes et al. 2010).  Ximenes et al. (2011a) and Kim et al. (2011)  have 

reported a significant decrease in activity and even deactivation in some instances for 

cellulase and two types of β-glucosidase exposed to low concentrations (2-5 mg/mL) of 
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phenolic compounds. The enzymes were especially sensitive to the polyphenolic 

compound tannic acid.  Tannins can be found in almost any part of the plant, so these 

findings are applicable to many biomass feedstocks.  Optimization of pretreatment 

conditions to minimize inhibitor production, with consideration of the specific type and 

severity of the pretreatment and type and concentration of the biomass feedstock is 

necessary, as the combination of all of these variables is important when developing 

effective and efficient conversion processes (Figure 2.2). 

 
 

 
Figure 2.1. Schematic showing some of the products and potential inhibitors formed 
from the cellulose, hemicellulose and lignin fractions of lignocellulosic biomass 
during pretreatment. 
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2.4 PRETREATMENTS 

The most important result of a pretreatment is that it enables maximum sugar 

yield following enzymatic hydrolysis and minimizes the loss of sugars and the formation 

of inhibitory products.  Pretreatments facilitate the degradation of lignocellulose by 

modifying or removing lignin and/or hemicellulose, increasing the surface area or 

decreasing the particle size (Balat et al. 2008; Jorgensen et al. 2007a) so that cellulose is 

more accessible to enzymatic hydrolysis.      

Numerous pretreatments have been developed, and each has its advantages and 

disadvantages, making it beneficial to tailor the pretreatment to the biomass source and 

desired end use.  Table 2.1 shows the effects various pretreatments have on the different 

fractions of lignocellulosic material. 
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Figure 2.2.  Schematic of a general pretreatment process. 
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Table 2.1. Effects of various pretreatment methods on the three fractions of 
lignocellulosic material. 

Pretreatment Cellulose Hemicellulose Lignin Other 
Effects 

Dilute Acid Very little 
solubilization 

High 
solubilization 

Condensation and 
precipitation -- 

Liquid Hot 
Water (LHW) 

Very little 
solubilization 

High 
solubilization Delignification -- 

Steam 
Explosion 

Slight 
degradation 

Slight 
degradation Redistribution Increase in 

pore size 
Biphasic CO2-
H2O 

Very little 
solubilization 

High 
solubilization -- Increase in 

surface area 

SPORL Slight 
degradation 

Nearly complete 
solubilization 

Partial 
delignification 
and sulfonation 

Reduction 
in particle 

size 

Alkaline 
Reduction in 

DP and 
crystallinity 

Partial 
hydrolysis 

Some 
solubilization 

Increase in 
surface area 

AFEX -- 
Disruption of 
bonds with 

lignin 

Disruption of 
bonds with 

carbohydrates 
-- 

DP = degree of polymerization 
 

2.4.1 Acid Pretreatments 

Pretreatments utilizing acids, especially dilute acid pretreatment, are the most 

commonly used pretreatment (Ehrhardt et al. 2010; Lloyd and Wyman 2005; Wyman et 

al. 2005a; Zhu et al. 2004).  During acid pretreatment, hemicellulose hydrolyzes into its 

respective monosaccharides, while the lignin condenses and precipitates (Balat et al. 

2008; Galbe and Zacchi 2007; Hendriks and Zeeman 2009).  Dilute acid reagents like 

sulfuric and phosphoric acids at concentrations ≤4% are typically utilized at elevated 

temperatures (140-200ºC) for up to 1 hr (Galbe and Zacchi 2007).  Sulfur dioxide has 

also been used as an acid catalyst in conjunction with steam pretreatment (Chandra et al. 

2007).  While acid pretreatment is effective in the breakdown of lignocellulosic material, 

it can result in many degradation products, like furfural, HMF and acetic acid (Vertes et 

al. 2010), which can be inhibitory in downstream processes.  Other disadvantages 

associated with acid pretreatment include the loss of some fermentable sugars due to 

degradation, high costs of reactor materials which are resistant to corrosion, and the 
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additional cost of neutralizing the acid prior to downstream processing (Galbe and Zacchi 

2007; Hendriks and Zeeman 2009; Mosier et al. 2005). 

One of the earliest studies published regarding pretreatment at high-solids 

loadings was one utilizing SO2 at 33% solids loading (Wayman et al. 1987).  Aspen and 

corn stover were pretreated for 30 min at 160ºC using 3% (w/w) SO2 in a direct steam 

reactor.  Solubilized hemicellulose sugar yields from aspen were ≥90% of the theoretical 

yield, with a significant reduction (25.5% to 5.6%) in soluble oligomer yield during 

pretreatment when compared to steam pretreatment without SO2, which is a favorable 

result.  The pretreatment of corn stover also resulted in solubilization of 79% of the 

hemicellulose sugars.  Subsequent enzymatic hydrolysis and fermentation of aspen 

resulted in 91% and 73% theoretical glucose and ethanol yields, respectively, while corn 

stover resulted in 86.5% and 81% theoretical glucose and ethanol yields, respectively.  

One benefit of SO2 over H2SO4 as an acid catalyst is that the pH is not lowered and the 

washing step between pretreatment and hydrolysis can be omitted without limiting 

enzymatic hydrolysis.  SO2 is also more compatible with stainless steel than H2SO4, and 

lignin may be better preserved, allowing for uses like heating and/or powering the 

conversion process or other higher value applications.               

Another early pretreatment study utilizing high-solids loadings selected dilute 

sulfuric acid as a catalyst (Schell et al. 1992).  The pretreatment consisted of two steps.  

The first step was soaking corn stover at 10% solids loading for 24 hr.  The second step 

involved applying steam followed by flash cooling the corn stover.  Although exact solids 

loading was not given, the researchers estimated that it was between 20 and 30%.  Under 

the pretreatment conditions tested, the xylan was reduced by nearly 50% at the lower 

severities to nearly 100% at the higher severities.  The subsequent glucose yields from 

enzymatic hydrolysis increased with increasing pretreatment severity from approximately 

55% to 96% yield with the exception of the highest severity (77% glucose yield).  It is 

possible the production of degradation products from these pretreatment conditions 

(180ºC for 20 min) inhibited the enzymes digesting the corn stover.  The authors also 

noted that optimization of pretreatment conditions for enzymatic hydrolysis may not 

optimize fermentation, since the presence of these degradation products (i.e. HMF, 
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furfural) are toxic to fermentative yeasts.  The entire process should be evaluated as one 

system rather than optimizing each unit operation individually.   

Continued research resulted in studies of a pilot-scale system (1 ton/day) capable 

of continuously pretreating corn stover at 20% solids loading (Schell et al. 2003).  A 

range of temperature, acid concentration and retention times were studied and compared 

by a value known as the combined severity factor (CSF).  The severity factor was 

developed as a means for combining the temperature of a reaction with the time spent at 

that temperature into a single value (Overend and Chornet 1987).  It is used to rate 

processes as times and temperatures can be altered, while still maintaining a constant 

pretreatment severity.  The CSF was further developed to include the pH at which the 

reaction takes place.  It is used to facilitate the comparison among different pretreatment 

processes and conditions as it incorporates the pretreatment temperature, reaction time 

and the pH as follows: 

log Ro= log �t × e�
T-100
14.75�� - pH    Equation 2.1 

where t is the reaction time in min and T is the temperature in ºC (Galbe and Zacchi 

2007; Kabel et al. 2007).  It was determined that the optimum xylose yield (~70%) 

occurred for pretreatment conditions with a CSF in the range of 1.4-1.7.  As the CSF 

increased above this range, xylose yields decreased, which was most likely the result of 

the monosaccharides forming degradation products like furfural.  While CSF is a means 

of comparison among different pretreatment conditions, it does not necessarily provide an 

indication of the pretreatment effectiveness.  Only a slight positive relationship was 

observed between CSF and cellulose conversion.  

A percolation reactor designed by Zhu et al. (2004) was evaluated using 25% 

solids loading and an acid flowrate of 10 mL/min .  It was observed that the acid exiting 

the reactor within the first several minutes had a higher pH than when the acid entered the 

reactor.  The researchers attributed this pH change to the buffering capacity of the corn 

stover at high-solids loading.  This same buffering capacity was also observed by Schell 

et al. (2003), where the main focus of the study was the production of xylose.  While 

xylose yield increased with increasing time and temperature of pretreatment, the 

increased time also resulted in further dilution of the monosaccharides.  Other 
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monosaccharides (glucose, arabinose, galactose and mannose) were also detected in the 

eluent.  Further testing would be required to optimize the process for maximum sugar 

production, whether it is for a single desired monosaccharide or a combination. 

In a later study (Zhu et al. 2005), it was determined that the optimum pretreatment 

conditions for corn stover in the percolation reactor were 170ºC and 1.0% (w/w) acid 

applied at 10 mL/min.  Mass balance closures accounted for ≥94% of the xylose and 

glucose monosaccharides, with nearly 100% glucan digestibility.  Two observations arose 

from the biomass pretreatment that may warrant further investigation.  (1) Due to the 

axial position of the reactor, the corn stover at the inlet experiences a reaction time nearly 

double that of the corn stover at the outlet.  (2) The CSF changed over the length of the 

reactor because of changes in the buffering capacity of the corn stover.  These two issues 

led to a non-uniform pretreatment of the corn stover that may have several implications in 

the overall process.  The corn stover located nearer to the inlet of the reactor is exposed to 

acids at lower pH for prolonged periods of time, thus potentially resulting in an increased 

production of degradation products.  Furthermore, the corn stover nearer to the outlet of 

the reactor may not be fully converted to fermentable sugars since the acid is buffered 

and the reaction time is shorter 

Acidic pretreatments typically remove the hemicellulose fraction by hydrolyzing 

it into its monosaccharide components, which facilitates enzymatic hydrolysis of the 

remaining cellulose.  However, it has been shown that as reaction time, temperature, acid 

concentration or a combination of these three is increased beyond a certain point, xylose 

yield in the pretreatment liquor decreases.  This decrease in xylose yield is typically 

attributed to xylose decomposing into other degradation products.  Lu et al. (2009) 

observed similar trends.  They reported xylose yields increasing when they increased the 

acid concentration or increased the reaction time.  At a 2% acid concentration, xylose 

yields decreased with increasing reaction times.  Acetic acid, HMF and furfural 

production were observed, but the concentrations were below inhibitory levels for yeast 

fermentation. 

While sulfuric acid is most commonly used in dilute acid pretreatments, other 

organic acids, like fumaric acid and maleic acid, have been tested (Kootstra et al. 2009).  

Kootstra et al. (2009) measured glucose and xylose yields after pretreating wheat straw at 
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20% and 30% solids loadings with sulfuric, maleic and fumaric acids.  Maleic and 

fumaric acids do not promote the reactions that lead to sugar degradation products (i.e. 

furfural and HMF) that often result from pretreatment with sulfuric acid.  An additional 

benefit of these two acids over sulfuric acid is that the quality of the by-product stream 

changes from excessive amounts of gypsum to fertilizer or feed components.  The acid to 

wheat straw ratio used was 5.17% (w/w), which is slightly higher than acid 

concentrations typically used in dilute acid pretreatment.  For a given set of pretreatment 

conditions, glucose yields varied by up to as much as 30 percentage points among the 

three acid pretreatments.  The xylose yields decreased with increasing solids loadings for 

sulfuric and maleic acid but increased slightly for the fumaric acid pretreatment.  

Additionally, furfural production was more significant for the sulfuric acid pretreatment 

than the other two treatments, which was expected based on the reaction mechanisms of 

the different acids.  While the overall results for maleic acid were promising, price is a 

limiting factor, since maleic acid can cost at least ten times that of sulfuric acid.     

 Although the number of studies using acid pretreatment in a high-solids 

environment is limited, there appears to be an emerging consensus for the optimal 

conditions to utilize in dilute acid pretreatment (Table 2.2) to maximize glucose yields.  

Based on the conclusions of the high-solids studies reviewed, at solids loadings ≥20%, an 

acid concentration of 1% (w/w) at ~180ºC with a reaction time ≤10 min resulted in 

optimal xylose yields from pretreatment and glucose yields from subsequent enzymatic 

hydrolysis (Lu et al. 2009; Schell et al. 2003; Schell et al. 1992; Zhu et al. 2004; Zhu et 

al. 2005). 
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Table 2.2.  Conditions of optimal sugar yields from pretreatments utilizing high-solids loadings. 

Pretreatment Substrate Solids 
Loadinga 

Residence 
Time 

Temperature & 
Pressure 

Other 
Conditions 

% Sugar Yieldb Reference Glucose Xylose 
Acidic Pretreatments:         
 SO2 + Steam Hardwood 33% 30 min  160ºC, 0.5 

MPa 
3% (w/w) 

SO2 
91.2% 91.6% (Wayman et 

al. 1987) 
 SO2 + Steam Corn stover 33% 30 min  160ºC, 0.5 

MPa 
3% (w/w) 

SO2 
86.5% 79.0% (Wayman et 

al. 1987) 
 Steam Corn fiber 70% 2 min 215ºC -- 87% 40% (Allen et al. 

2001) 
 Dilute Acid + 

Steam 
Corn stover 20-30% c 10 min 180ºC -- 98% NRd (Schell et al. 

1992) 
 Dilute Acid Corn stover 20% 6.2 min 179ºC 1.16% (w/w) 

acid 
87% 70% (Schell et al. 

2003) 
 Dilute Acid Corn stover 25% (v/v) 3 min 180ºC 1% (w/w) 

acid, 10 
mL/min 

NR 73% (Zhu et al. 
2004) 

 Dilute Acid Corn stover 25% (v/v)  170ºC 1% (w/w) 
acid 

98.7% 94% (Zhu et al. 
2005) 

 Organic Acids Wheat straw 20% 30 min 150ºC 5.17% (w/w) 
H2SO4 

>90% 80% (Kootstra et 
al. 2009) 

 Liquid Hot 
Water (LHW) 

Corn fiber 10% 2 min 215ºC -- 93% 62% (Allen et al. 
2001) 
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Table 2.2, continued.   Conditions of optimal sugar yields from pretreatments utilizing high-solids loadings. 

Pretreatment Substrate Solids 
Loadinga 

Residence 
Time 

Temperature & 
Pressure 

Other 
Conditions 

% Sugar Yieldb 
Reference Glucose Xylose 

 LHW WDG 20% 
(w/v) 

20 min 160ºC -- 83% 50% (Kim et al. 
2008) 

 Hydrothermal Wheat straw 25-40% e 6-12 min 195ºC -- 94% 70% (Petersen et 
al. 2009) 

 Acid-Catalyzed 
Hydrothermal 

Rapeseed 
straw 

20% 10 min 180ºC 1% (w/w) 
acid 

63.17% 75.12% (Lu et al. 
2009) 

 Biphasic CO2-
H2O 

Corn stover 20% 1 hr 160ºC, 20 MPa -- 85% 10% (Luterbacher 
et al. 2010) 

 Biphasic CO2-
H2O 

Switchgrass 20% 1 hr 160ºC, 20 MPa -- 81% 13% (Luterbacher 
et al. 2010) 

 Biphasic CO2-
H2O 

Hardwood 40% 1 hr 170ºC, 20 MPa -- 73% 14% (Luterbacher 
et al. 2010) 

 SPORL Softwoods 20% 
(w/v) 

30 min 180ºC 8-10% (w/w) 
bisulfate + 
1.8-3.7% 

(w/w) 
sulfuric acid 

90% 76% (Zhu et al. 
2009) 

 SPORL Hardwoods 20% 
(w/v) 

30 min 180ºC 4% (w/w) 
sodium 
bisulfite 

89% NR (Wang et al. 
2009) 
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Table 2.2, continued.  Conditions of optimal sugar yields from pretreatments utilizing high-solids loadings. 

Pretreatment Substrate Solids 
Loadinga 

Residence 
Time 

Temperature & 
Pressure 

Other 
Conditions 

% Sugar Yieldb 
Reference Glucose Xylose 

Basic Pretreatments:         
 AFEX DDGS 55% 5 min 70ºC -- 68% 12.2% (Kim et al. 

2008) 
 NaOH Rice straw 20% 3 hr  4% (w/w) 

NaOH 
39.2% NR (Cheng et al. 

2010) 
 Steam Explosion 

with NaOH and 
H2O2 

Corn stover 10% 24 hr Room 
temperature 

-- 60% NR (Yang et al. 
2010b) 

a Solids loading is indicated in (w/w) unless otherwise noted 
b Sugar yields are yields resulting from pretreatment and/or enzymatic hydrolysis 
c Solids concentration following 24 hr soaking in 1% (w/w) sulfuric acid at 10% solids loading 
d Not reported 
e Concentration of dry matter exiting continuous reactor  
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2.4.2 Alkaline Pretreatments 

Lime and NaOH are common reagents used for alkaline pretreatments, which can 

be conducted over a wide range of operating conditions (Galbe and Zacchi 2007; 

Hendriks and Zeeman 2009; Jorgensen et al. 2007a; Mosier et al. 2005).  Reaction time 

can vary from several minutes to days, while temperatures can range from ambient to 

150ºC (Galbe and Zacchi 2007; Jorgensen et al. 2007a).  Alkaline pretreatment 

effectively increases the surface area by swelling the biomass particles and increasing 

carbohydrate accessibility to enzymes, while reducing the degree of polymerization (DP) 

and crystallinity of the cellulose fraction.  The hemicellulose fraction can be partially 

hydrolyzed under strong alkaline conditions.  The bonds between the lignin and 

carbohydrates are broken, and some lignin is solubilized (Balat et al. 2008; Galbe and 

Zacchi 2007; Hendriks and Zeeman 2009; Jorgensen et al. 2007a).  Other advantages 

associated with this pretreatment over other pretreatments like dilute acid and AFEX are 

low cost, use of less caustic materials, and recoverable and recyclable reagents (Mosier et 

al. 2005).  Alkaline pretreatments do not require specialized equipment, as the alkaline 

reagents typically used do not cause corrosion like dilute acids, and high pressures like 

those used in AFEX are not utilized.  Drawbacks of alkaline pretreatments include a large 

number of inhibitors which can be produced at the harsher operating conditions 

(Hendriks and Zeeman 2009), and the effectiveness of these methods can be decreased 

with feedstocks with high levels of lignin, like woody biomass (Balat et al. 2008; Galbe 

and Zacchi 2007). 

 A study conducted by Cheng et al. (2010) compared the common reagents for 

alkaline pretreatment.  For the lime pretreatment, a solids loading of 10% (w/w) and 

alkaline loadings of 0-10% were tested for reaction times of 1-3 hours at 95ºC.  The 

NaOH pretreatments were performed on 20% (w/w) solids with 0-4% alkaline loadings 

for 1-3 hours at 55ºC.  Delignification increased up to 27.0% and 23.1% for the lime and 

NaOH reagents, respectively, as reaction time and alkaline loading increased.  The 

authors also reported an increase in enzymatic hydrolysis conversion with increasing 

alkaline loading, with a maximum glucose conversion of 48.5% and 39.2% for lime- and 

NaOH-pretreated solids, respectively.  It should be noted that the solids were not washed 

between the pretreatment and enzymatic hydrolysis steps.  A washing step is often used 
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in other pretreatment protocols, but it introduces another point where the biomass must be 

handled, resulting in loss of material.  While washing the biomass post-pretreatment can 

remove inhibitors, it also removes any solubilized sugars, reducing the overall yield. 

However, a post-pretreatment washing step in this study did not significantly increase the 

glucose yield for the NaOH-pretreated solids.  Even though the pretreatment conditions 

are not identical for the different reagents, the results have interesting implications.  

NaOH pretreatments are promising for high-solids pretreatments because glucose yields 

were similar to the yields produced from the harsher conditions of the lime pretreatment 

and because NaOH does not require a washing step after pretreatment.       

 

2.4.3 Hydrothermal Pretreatments 

Hydrothermal pretreatments utilize water at elevated temperatures to improve the 

conversion of lignocellulose.  Several pretreatment technologies are included in this 

category, including steam, steam explosion and hydrothermolysis.  Further details on 

each of these pretreatments are provided below. 

Steam and steam explosion pretreatments offer short reaction times on the order 

of 1-5 min but also require high temperatures (160-240ºC) and pressures (~1-3.5 MPa) 

(Galbe and Zacchi 2007; Jorgensen et al. 2007a).  The high temperature of steam 

promotes the deacetylation of hemicellulose, resulting in acidic conditions that further 

catalyze the reaction (Alvira et al. 2010).  These pretreatment conditions may produce 

degradation products from the cellulose and hemicellulose, while lignin is redistributed 

but not removed (Mosier et al. 2005).  Temperature and pressure combinations should be 

carefully chosen to maximize accessibility for enzymes and minimize the degradation 

products, which can inhibit the enzymes and fermentative organisms in other downstream 

processes.  Steam pretreatment has been proven to be effective on most types of 

lignocellulosic material, with the exception being softwoods.  The hemicellulose fraction 

of softwoods contains few acetyl groups (Alvira et al. 2010). However, steam 

pretreatment is ideal if the desired end-products are fibers; feedstocks can be separated 

into individual fibers with minimal loss of material (Balat et al. 2008).  Steam and steam 

explosion pretreatments are also advantageous because they increase pore size, allowing 

for better accessibility of the saccharides for hydrolysis, making this pretreatment a cost-
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effective option for agricultural residues since steam is the reagent (Jorgensen et al. 

2007a). The high energy content of the steam makes these pretreatments appropriate for 

use with high solids, as the amount of water added to the process can be reduced. 

Hydrothermolysis, also known as liquid hot water (LHW) pretreatment can be 

used to hydrolyze lignocellulosic material.  Like steam pretreatment, liquid water at 

elevated temperatures and pressures (180-230ºC and 2.4-2.8 MPa) acts much like an acid, 

as the pH of the water at 220ºC is about 5.5 (Allen et al. 2001; Mosier et al. 2005).  

Acetic acid, produced from deacetylation of the hemicellulose, also enhances the acid-

catalyzed reactions.  Under these conditions, LHW removes a significant portion of lignin 

(Mosier et al. 2005).  Hemicellulose is also hydrolyzed into soluble sugars.  However, 

pressure (~2.5 MPa) must be applied to keep the water in the liquid phase at the 

temperatures used (Mosier et al. 2005), requiring specialized equipment.  

Hydrothermolysis produces minimal inhibitors as compared to steam pretreatment and 

requires limited neutralization since no additional chemicals are used, but the overall 

concentration of soluble products tends to be lower than other pretreatments because a 

high volume of water is typically used (Hendriks and Zeeman 2009; Mosier et al. 2005).  

Based on the volume of water required for this pretreatment, solids loadings are limited 

to about 20%. 

A study comparing steam and LHW pretreatments at high and moderate solids 

loadings was conducted by Allen et al (2001).  However, a direct comparison is difficult 

to make, considering the steam pretreatment was performed at 50% (w/w) and 70% 

(w/w) corn fiber solids loadings, while the LHW pretreatment was performed at 10% 

(w/w) solids loadings, due to reactor volume limitations.  This study determined that the 

reaction medium, steam or liquid water, directly impacted the solubility of the substrate, 

the capacity to recover C5 sugars and the downstream processes.  For example, the LHW 

pretreatment resulted in 61% solubilization of the corn fiber, while steam pretreatment 

resulted in 44% and 37% solubilization for solids loadings of 50% and 70%, respectively.  

This trend of similar or decreasing yields for increasing solids loadings in pretreatment is 

not uncommon (Kootstra et al. 2009; Luterbacher et al. 2010).  This same negative 

correlation was also reported for C5 and C6 sugar recoveries as the solids loadings 

increased.  Much of the hemicellulose fraction either underwent a transformation and 
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reorganization within the insoluble portion of the corn fiber or degraded beyond useful 

monosaccharides at the higher solids loadings, resulting in a loss in fermentable C5 

sugars.  The final ethanol yield from the LHW pretreatment liquor was not impacted by 

the loss of C5 sugars; however, the rate of ethanol production from the liquid fraction (as 

compared to the simultaneous saccharification and fermentation of the pretreated corn 

fiber) was severely limited, likely because of solubilized inhibitory products.  The liquid 

fraction produced from the steam pretreatment resulted in a reduced final fermentation 

rate and yield; however, the cause of the lower rate and yield is unknown because the 

inhibitor concentrations were similar to those found in the liquid fraction of the LHW 

pretreatment.  

Another study utilizing LWH pretreatment with high-solids loadings was 

conducted by Kim et al. (2008), with a mixture of wet distillers’ grains (WDG) and thin 

stillage as the biomass source at 13% to 30% solids loading.  The by-products of the 

distilling process are typically used for nutritional supplements in the livestock and 

poultry industries; however, the high energy value of the residual sugars and fibers make 

these materials attractive as a feedstock for the production of energy or other high-value 

products.  The LHW pretreatment did not degrade glucan or produce degradation 

products.  Only 2.9% of the total glucan was converted to glucose during the pretreatment 

process, and no sugar degradation products were detected, which is a favorable 

characteristic of a pretreatment.  In addition to the high-solids loading for the 

pretreatment process, the WDG and stillage mixture was subjected to high-solids 

enzymatic hydrolysis.  The researchers report an increase in the glucose and xylose yields 

as solids loading for enzymatic hydrolysis increases to 20%, but the yields decrease at 

30% solids loading.  While the percentage glucose yields are comparable between the 

13% and 30% solids loadings, the xylose yield is nearly double for the 30% solids 

loading.  This increase can be explained by the fact that additional enzymes (xylanase 

and feruloyl esterase) were added to the mixture, which strengthens the argument that 

optimal enzyme mixtures may be required to reach the full potential of the biomass.  

The Integrated Biomass Utilization System (IBUS) Project resulted in  a 

continuous hydrothermal pretreatment reactor and process that is capable of processing 

wheat straw up to 100 kg/hr (Petersen et al. 2009).  This process uses high temperatures 
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(185-205ºC) and short residence times (6-12 min) to maximize both glucan and xylan 

recovery.  The current process produces two process streams: the liquid fraction 

containing soluble xylan oligomers and degradation products and the solid fraction 

containing cellulose, insoluble hemicellulose and lignin.  The solid fraction exits the 

reactor at approximately 25-40% DM.  All pretreatment conditions studied except for one 

(205ºC for 6 min) produced glucose recoveries ≥90%; however, hemicellulose recoveries 

covered a wide range (60-90%).  Lower hemicellulose recovery is most likely due to the 

increase in production of degradation products at the higher severity pretreatment 

conditions, which was confirmed with further study of the inhibitors produced from the 

pretreated wheat straw (Thomsen et al. 2009).                        

 

2.4.4 Other/Combination Pretreatments 

Other pretreatments utilized in high-solids studies do not fall into any one 

particular category, as some pretreatments combine multiple processes to selectively 

produce sugars.  The results of these studies are presented below. 

 

2.4.4.1 Biphasic CO2-H2O 

Several pretreatment approaches utilize water with acid or base additions to 

initiate the breakdown of biomass.  The biphasic CO2-H2O pretreatment offers many 

advantages by combining these two reagents in the pretreatment process. The 

supercritical points for water and CO2 are 22.1 MPa at 373.9ºC and 7.4 MPa at 31.1ºC, 

respectively.  Utilizing elevated temperatures and pressures, water remains in the liquid 

phase, acting much like a LHW pretreatment, and CO2 is in its supercritical fluid phase.  

The addition of the CO2 acts as an acid catalyst in the reaction (Luterbacher et al. 2010), 

while the CO2 found in the supercritical phase has also been shown to have a swelling 

effect on biomass.  Lastly, the reagents can be easily separated and reused, keeping costs 

low, as CO2 is immiscible in water at atmospheric conditions (Kim and Hong 2001; 

Luterbacher et al. 2010).  However, there is some additional capital costs associated with 

equipment suitable for pressurized systems.  

The study performed by Luterbacher et al. (2010) is the first to combine this 

biphasic CO2-H2O pretreatment with high-solids loadings (40% w/w).  It is also one of 
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the highest solids loadings reported for any pretreatment process.  This pretreatment 

resulted in glucose yields above 70% for hardwoods and above 80% for switchgrass and 

corn stover, which are within ten percentage points from yields reported in other studies 

utilizing other leading pretreatment technologies (Luterbacher et al. 2010).  These yields 

make this a promising pretreatment option, especially with good results from high-solids 

loadings and inexpensive chemical reagents.  However, conditions should be optimized 

for different biomass feedstocks in order to limit the amount of degradation products 

produced in this process.  Furfural and HMF were both produced in measurable quantities 

in this study.  Not only are these products inhibitory to the downstream conversion 

processes, but the sugar yields are reduced when these products are formed.    

                  

2.4.4.2 Sulfite Pretreatment to Overcome Recalcitrance of Lignocellulose (SPORL) 

 SPORL is a recently developed, yet promising, process that combines a sulfite 

treatment of wood chips under acidic conditions with mechanical size reduction with disk 

refining (Zhu et al. 2011a; Zhu et al. 2009).  This technique was specifically intended for 

the pretreatment of softwoods, for which other existing pretreatment technologies have 

had limited success in enhancing enzymatic hydrolysis yields.  Conditions have since 

been investigated to include pretreatment of hardwoods (Wang et al. 2009).  The SPORL 

process is a modification of the sulfite pulping process, which has been practiced at the 

industrial level for more than a century.  The modifications made allow for nearly 

complete hemicellulose removal with minimal lignin condensation and removal.  Some 

glucose is hydrolyzed in the process, but it is recovered at a later step.  This pretreatment 

can be carried out with equipment (pulp digester and mechanical disk refiner) typically 

used in the pulp and paper industry. The pretreatment liquor can also be prepared and 

recovered with existing techniques, reducing costs associated with chemical needs and 

cleaning waste streams. 

 Zhu et al. (2009) investigated the combination of a sulfite treatment with 

mechanical size reduction by disk refining to enhance enzymatic hydrolysis of softwoods.  

This study was the first to establish this novel pretreatment process.  Pretreatment 

conditions of spruce chips (20% w/v) that produced optimal cellulose conversion during 

enzymatic hydrolysis (>90%) was treatment with 8-10% bisulfite and 1.8-3.7% sulfuric 
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acid for 30 min at 180ºC.  Nearly all hemicellulose was removed, which exposed the 

underlying cellulose fraction to enzymatic attack.  Additionally, furfural and HMF were 

produced in minimal concentrations, about 1 and 5 mg/g untreated wood, respectively.     

 In a later study performed by Wang et al. (2009), the SPORL process was 

expanded to include conditions appropriate for pretreatment of hardwood.  At 20% (w/v), 

a bisulfite charge of 4% for 30 min at 180ºC produced the highest glucose yield following 

enzymatic hydrolysis.  Unlike the SPORL process for the softwoods, sulfuric acid was 

not necessary to maintain the acidic pH due to the high acetyl concentration of 

hardwoods.  Several benefits were recognized by not having to supply additional acid to 

the reaction.  SPORL, under these conditions, could avoid reactor corrosion and substrate 

neutralization for optimal enzymatic hydrolysis, as well as negligible production of 

inhibitory products like furfural and HMF.  It is apparent from the results of these studies 

that the SPORL process is effective for the pretreatment of woody biomass, but further 

studies should be conducted to determine appropriate conditions prior to use with other 

lignocellulosic materials.  

      

2.4.4.3 Ammonia Fiber Expansion (AFEX) 

Ammonia fiber explosion (or expansion) techniques have, in general, been well 

investigated as a pretreatment option for lignocellulosic material (Galbe and Zacchi 2007; 

Jorgensen et al. 2007a; Kumar and Wyman 2009b).  AFEX is a promising pretreatment 

option because it is effective in situations with high-solids content and the ammonia 

reagent can be recycled (Jorgensen et al. 2007a), which can help in the reduction of 

processing costs.  This method has also been shown to be effective on corn stover and 

other agricultural residues (Balat et al. 2008).   AFEX works by applying a pressure, 

which is released after a short reaction time to cause the “explosion” of the 

lignocellulosic components.  Temperatures typically range from 70-100ºC, with pressures 

of ~2 MPa and relatively short reaction times (5-10 min) (Galbe and Zacchi 2007; Kim et 

al. 2008).  While the lignin and hemicellulose fractions are not removed, some lignin-

carbohydrate bonds are broken, subsequently making the cellulose and the hemicellulose 

available for enzymatic hydrolysis (Jorgensen et al. 2007a).  However, it has been 

reported that AFEX can lead to the production of some inhibitors such as furfural if the 
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processing conditions are not optimized for the material being pretreated (Jorgensen et al. 

2007a).   

Kim et al. (2008) conducted a study using AFEX to pretreat distiller’s dried grains 

and soluble (DDGS) at high-solids loading (Table 2.2).  The ammonia was applied at 0.8 

g/g biomass, and the reaction was performed at 70ºC for 5 min.  This pretreatment 

significantly increased the rate at which the biomass was hydrolyzed as compared to 

untreated DDGS, and complete conversion was achieved by 72 hrs. In the study 

presented here, with the high-solids loading and ammonia recovery, the process is 

essentially a dry process, meaning the solids enter the reactor dry and leave the reactor 

dry.  This aspect has interesting implications for the overall conversion process.  The 

biomass can more easily be mixed to a desired solids loading for enzymatic hydrolysis or 

SSF, including higher solids loadings, thus reducing the amount of water needed in these 

downstream conversion processes.  However, more research is necessary prior to 

utilization of biomass in this manner.     

 

2.4.4.4 Steam Explosion Combined with NaOH and H2O2 

 The advantages of using NaOH and steam explosion individually as pretreatments 

were previously outline in the Alkaline Pretreatments section and the Hydrothermal 

Pretreatments section, respectively. 

 The combination of the steam explosion with the alkaline peroxide process 

allowed for the removal of hemicellulose and lignin, respectively (Yang et al. 2010b).  

The cellulose content of the corn stover was effectively increased from 37.5% in its raw 

state to 45.2% to 73.2% following steam explosion and alkaline peroxide pretreatment, 

when pretreatments were applied in that order (Table 2.2).  A fed-batch process was also 

incorporated into the conversion process to gradually increase solids loading in 

enzymatic hydrolysis from the initial 12% to 30% at completion.  This modification 

allowed for easier handling and mixing of the bulk material, while maintaining the 

viscosity at workable levels.  Reducing-sugar yields increased from 90 g/L to 220 g/L at 

12% and 30% solids loading, respectively.  The combination of treatments used 

effectively removed lignin and hemicellulose and improved sugar conversion 

downstream.    
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2.5 REACTOR DESIGN FOR HIGH-SOLIDS PRETREATMENT 

Reactors suitable for low to moderate solids loadings can limit the conversion 

process at high-solids loadings due to ineffective mixing, which can result in increased 

concentrations of localized inhibitors, poor heat and mass transfer and requiring 

excessive amounts of energy to operate.  Other considerations that should be included in 

the reactor design are the types of biomass and the size of particles that will be treated 

(Jorgensen et al. 2007a).  Some types of biomass, like straw and rice, contain silica that 

can cause wear on moving parts.  Also, larger particle sizes are preferred so the ratio of 

energy consumed to energy produced is as small as possible, and the more particle size 

reduction needed, the more significant energy input needed.  Reactors capable of 

handling high-solids loadings are being developed for research purposes and use at 

bench- and pilot-scales are reviewed below (Hsu et al. 1996; Jorgensen et al. 2007b; Zhu 

et al. 2004). 

 One of the earliest reactors designed specifically for high-solids pretreatment was 

proposed by Hsu et al. (1996) and with which they successfully pretreated biomass at a 

solids loading of 10-15% (w/w).  The design is based on classic paddle-blender designs 

and consists of a custom-fabricated, 100 L horizontal shaft reactor intended for dilute 

acid pretreatment of biomass at high-solids loading at the pilot-scale.  The reactor was 

constructed of Carpenter 20 Cb-3 stainless steel to accommodate dilute sulfuric acid at 

elevated temperatures and pressures (approximately 175ºC and 1.1 MPa).  The horizontal 

orientation is advantageous as it limits the amount of particle settling and dead mixing 

zones found in other types of reactors (Dasari et al. 2009), while the scraping action of 

the paddle design aids in maintaining a clear reactor surface ensuring maximum heat 

transfer from the reactor jacket to the slurry (Hsu et al. 1996).  The horizontal orientation 

also takes advantage of free-fall mixing, reducing the effect viscosity has on mixing.  

Power input to operate the reactor can be reduced since lower paddle speeds can still 

provide adequate mixing as compared to a vertically oriented reactor.  

 Jorgensen et al. (2007b) reported using a reactor similar in design to Hsu et al. 

(1996).  Their reactor was also placed in a horizontal orientation to utilize free-fall 

mixing.  However, it is divided into five separate chambers with a total capacity of nearly 
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280 L.  Each chamber is fitted with three paddles on a variable-speed, rotating shaft to aid 

in the mixing process. Although the solids loading for pretreatment was not reported, the 

wheat straw exiting the reactor was at 23-28% DM.  Along with operating as a 

pretreatment reactor, it can double as a reactor for simultaneous saccharification and 

fermentation (SSF), so that the entire conversion process can be conducted within one 

reactor.  This design is beneficial in that it reduces the overall capital costs by eliminating 

the need for multiple reactors.    

 A bench-scale percolation reactor was designed and tested by Zhu et al. (2004) for 

dilute acid pretreatment of corn stover.  It was constructed using Monel tubing, since this 

material is resistant to corrosion by acid.  The reactor can be operated at pressures 

approaching ~2 MPa and at solids loadings of 25% (v/v).  The acid flows through a 

heating coil prior to entering the reactor for pretreatment at the desired temperature (160-

180ºC), while the effluent is cooled by a heat exchanger at the reactor exit.  The flow rate 

of the dilute acid through the biomass can be controlled in order to optimize the 

saccharide yields while minimizing the production of inhibitory degradation products.  

This flow-through design also eliminates the potential problems associated with mixing a 

complex network of particles.  The percolation reactor described by Zhu et al. (2004) has 

the advantage of operating in semi-batch mode, which provides several benefits to the 

dilute acid pretreatment process including:  (1)  Sugar products are discharged throughout 

the reaction process.  By allowing the dilute acid to flow through the biomass, the 

pretreatment liquor contains fewer degradation products while the sugar yields are 

increased; (2) Larger amounts of lignin can be removed in semi-batch mode than in batch 

mode, which enhances cellulose availability in downstream processes; and (3) A packed 

bed reactor allows higher solids to liquid ratios, which can lead to increased sugar yields.  

It is worth noting that these benefits are specific to dilute acid pretreatment.  Further 

study using the percolation reactor would be necessary to determine if these benefits 

transfer to other pretreatment regimes. 
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2.6 PILOT-SCALE OPERATIONS 

 Several pilot-scale operations have incorporated high-solids pretreatments into 

their conversion processes for research and development purposes.  Some of the leading 

operations are discussed in further detail here. 

 In 2004, a demonstration plant designed by SEKAB E-Technology began 

operation in Sweden (S. Wännström, personal communication).  This facility is the 

largest of its kind in Sweden (300-400 L/d bioethanol production capacity) and continues 

to be used as a development plant for industrial technology with a focus on bioethanol 

and biochemicals.  The plant is fully equipped with all process steps from intake of the 

raw materials to the distillation of the final products and is designed to be flexible so that 

various kinds of feedstocks, pretreatments and other process concepts can be utilized for 

process optimization.  The pretreatment system operates in a continuous mode at 25-40% 

solids loading under pretreatment conditions specifically selected for the available 

feedstock.  For example, prior to the dilute acid pretreatment, the biomass can be 

conditioned with steam and/or acid (typically H2SO4 or SO2) should it be necessary.   

Optimized procedures have been developed at this facility for both forestry and 

agricultural feedstocks.  To date, SEKAB’s demonstration plant has accumulated over 

30,000 hours of operation, several patents and extensive knowledge for the production of 

ethanol from lignocellulose. 

 DONG Energy located in Denmark has a semi-continuous counter-current reactor 

that is capable of processing 100-1000 kg/hr and utilizing various pretreatments and 

feedstocks (Jorgensen et al. 2007a).  This pilot plant is designed to test different 

pretreatment methods, to operate with larger particles and to operate at solids loadings up 

to 50% DM.  It also has two separate pretreatment facilities for research purposes.  One 

line is for research and development for continuous mode operation (≤100 kg/hr 

capacity), while the other is for mechanical development and scale-up (≤1 tonne/hr 

capacity) (Larsen et al. 2008).  In 2009, DONG Energy opened a demonstration-scale 

operation in Kalundborg, Denmark.  At this facility operated by Inbicon (a subsidiary of 

DONG Energy), the hydrothermal pretreatment of wheat straw is conducted at 30-40% 

solids loading.  The pilot-scale facility is still used to optimize the process employed at 

the demonstration-scale facility. 
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 The National Renewable Energy Laboratory (NREL) in the United States has a 

pilot-scale pretreatment reactor that operates at high-solids loadings and has been the 

source of pretreated biomass for many high-solids studies (Roche et al. 2009a; Schell et 

al. 2003; Schell et al. 1992).  It is used for continuous, dilute acid pretreatment of ≤30% 

solids loadings.  Schell et al. (2003) provide a detailed description of the process.  In 

August 2010, NREL completed the first phase in its Integrated Biorefinery Research 

Facility (IBRF).  This expansion provides space for new pilot-scale biomass conversion 

equipment, including a continuous 1 ton/day horizontal pressure pretreatment reactor.  

This new facility will continue to be used as a research and development facility, 

studying various feedstocks and pretreatment options. 

 

2.7 DIRECTION OF FUTURE WORK 

 In order to fully realize the advantages provided by pretreatment at high-solids 

loadings, several issues must be addressed.  The efficiency and effectiveness of a 

pretreatment process not only depends on the pretreatment conditions, but also on the 

type of biomass entering the pretreatment process.  The pretreatment type and severity 

must be considered in combination with the biomass type and concentration to produce 

the most accessible and highest yielding saccharides while limiting the inhibitors entering 

other downstream steps in the conversion process.  Other factors to consider during 

pretreatment optimization is the cost of biomass, reagents and any specialized equipment 

and the best use of any potential by-products produced in the process.  Additionally, 

reactor systems robust enough to withstand a range of pretreatment conditions 

(temperature, pressure, reagent concentrations) and biomass properties (concentration, 

particle size, composition) are needed, especially for large scale production.  

 

2.8 CONCLUSIONS 

 The feasibility of lignocellulosic conversion would greatly improve if high-solids 

loadings could be used successfully in all the various unit operations.  Increased sugar 

and ethanol yields combined with decreased capital and production costs and decreased 

water and power use contribute to a more efficient process compared to the conventional 

conversion process.  As the benefits of utilizing high-solids loadings in the 
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lignocellulosic conversion process are realized, so too are the limitations. Issues 

associated with the lack of free water, the high viscosities and the increased production of 

inhibitors must be overcome in order to achieve economically viable sugar and ethanol 

yields.  Researchers are tackling these problems on two fronts: reactor design and 

pretreatment optimization.  Horizontal paddle reactors and percolation reactors have both 

been shown to be possible alternatives to standard reactor designs when it comes to high 

solids.  The choice of pretreatment can also affect the effectiveness of the overall 

conversion process.  The effort in optimizing these various pretreatment options for high 

solids is evident by the many studies discussed in this paper, but many questions still 

require answers before the full power of utilizing high solids is recognized.  
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CHAPTER 3:  ENZYMATIC HYDROLYSIS OF BIOMASS AT HIGH-SOLIDS 

LOADINGS – A REVIEW2 

 

3.1 SUMMARY 

 Enzymatic hydrolysis is the unit operation in the lignocellulose conversion 

process that utilizes enzymes to depolymerize lignocellulosic biomass.  The saccharide 

components released are the feedstock for fermentation.  When performed at high-solids 

loadings (≥15% solids, w/w), enzymatic hydrolysis potentially offers many advantages 

over conversions performed at low- or moderate-solids loadings, including increased 

sugar and ethanol concentrations and decreased capital and operating costs.           

The goal of this review is to provide a consolidated source of information on 

studies using high-solids loadings in enzymatic hydrolysis.  Included in this review is a 

brief discussion of the limitations, such as a lack of available water, difficulty with 

mixing and handling, insufficient mass and heat transfer, and increased concentration of 

inhibitors, associated with the use of high solids, as well as descriptions and findings of 

studies that performed enzymatic hydrolysis at high-solids loadings.  Reactors designed 

and/or equipped for improved handling of high-solids slurries are also discussed.  Lastly, 

this review includes a brief discussion of some of the operations that have successfully 

scaled-up and implemented high-solids enzymatic hydrolysis at pilot- and demonstration-

scale facilities.   

 

Keywords: High-solids loadings; enzymatic hydrolysis; lignocellulose conversion; 

reactor design; corn stover; straw; woody biomass 

  

                                                 
2 This chapter has previously been published as a peer-reviewed journal article in Biomass and Bioenergy.  
It should be cited as: 
Modenbach AA, Nokes SE. 2013. Enzymatic hydrolysis of biomass at high-solids loadings – A review. 

Biomass and Bioenergy 56:526-544. 
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3.2 INTRODUCTION 

 Lignocellulose is the largest renewable source of carbon on the planet, as it is the 

main structural component of plants.  Energy from lignocellulosic biomass has been 

tapped as one possible solution to decrease the United States’ foreign dependence on 

petroleum, as well as serve as a more environmentally friendly source of energy.  

Lignocellulose can either be processed thermochemically or biochemically, depending on 

the desired product.  The biorefinery concept is thought to be the desired model for 

biomass processing, where all of the biomass is exploited.  The suite of products would 

be dictated by the market and selected to extract the greatest value possible out of 

lignocellulose (Figure 3.1). 
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Figure 3.1. Schematic of the biorefinery concept.  Lignocellulose enters the 
conversion process and undergoes pretreatment, enzymatic hydrolysis and 
fermentation.  Distillation produces liquid transportation fuels, as well as other 
valuable products.  The residual solids can be burned to produce energy that can be 
cycled back into the conversion process or shipped out to the grid for residential or 
commercial use. 
  

 

Enzymatic hydrolysis of lignocellulose has long been studied as a method to 

depolymerize the biomass into fermentable sugars for conversion to biofuels and 

biochemicals, with a more recent focus on operating at high-solids loadings.  It has been 

suggested that enzymatic hydrolysis conducted at high-solids loadings will be necessary 

to render the lignocellulosic conversion process more economically feasible.  A process 

is considered “high solids” if the ratio of solids/liquid is such that very little to no free 
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water is present in the slurry (Hodge et al. 2009) or roughly a solids loadings ≥15% 

(w/w).      

 Enzymatic hydrolysis performed at high-solids loadings offers several advantages 

over low- and moderate-solids loadings, the main one being final sugar concentrations 

are higher (Hodge et al. 2008; Roche et al. 2009a).  In theory, higher sugar concentrations 

translate into higher ethanol concentrations, which could reduce energy use and costs 

associated with the distillation process (Humbird et al. 2010; Kristensen et al. 2009a).  

For the purpose of this paper, the term “concentration” refers to the amount of a 

component dissolved in a given volume of liquid, while the terms “yield” and 

“conversion” refer to the quantity of a product obtained expressed as a percentage of the 

theoretical maximum.  Distillation is most economical when the ethanol concentration is 

≥4% (w/w).  In order to obtain this ethanol yield, glucose yields must be at least 8% 

(w/w), which translated into a lignocellulose loading of ≥20% (w/w) for enzymatic 

hydrolysis (Larsen et al. 2008).  These estimates only account for conversion of cellulose; 

however, as improvements are made to hemicellulose conversion (hydrolysis and 

fermentation) technologies that work in combination with cellulose conversion, this 

initial solids loadings estimate may decrease.  Another potential advantage is the 

reduction of capital and production costs.  Smaller equipment and/or fewer reactors can 

be utilized to produce an equivalent output (Banerjee et al. 2010; Um and Hanley 2008).  

Fewer reactors also translate into reduced energy demands for heating, cooling and 

mixing (Kristensen et al. 2009a; Roche et al. 2009a), although the latter aspect may be a 

point of contention as increased solids makes effective mixing more difficult.  

Additionally, less water is needed, which reduces the cost of disposal or treatment of 

process water.  

 The goal for this review is to provide a consolidated source of information for the 

latest technological advances for managing enzymatic hydrolysis at high-solids loadings.  

Following a brief discussion of the factors limiting enzymatic hydrolysis at high solids, 

various aspects and approaches pertaining to hydrolysis operating conditions are detailed.  

Additionally, reactors designed to overcome some of the limitations associated with high-

solids hydrolysis, as well as pilot- and demonstration-scale plants operating at high-solids 

loadings are discussed.  Lastly, the authors comment on the envisioned direction for high-
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solids hydrolysis research, as well as the necessary advances this technology must make 

to become commercially viable. 

 

3.3 FACTORS LIMITING HIGH-SOLIDS ENZYMATIC HYDROLYSIS 

As solids loading increases, challenges that were negligible in low-solid systems 

become more prominent, which has also been noted in high-solids pretreatment 

(Modenbach and Nokes 2012).  One of the major challenges for enzymatic hydrolysis at 

high-solids loading is the lack of available water in the reactor.  Water is essential to 

effective hydrolysis for two reasons: mass transfer and lubricity.  Water increases the 

effectiveness of the enzymatic and chemical reactions, mainly by providing a medium for 

solubilizing and aiding in the mass transfer of products.  Water also reduces the viscosity 

of the slurry by increasing the lubricity of the particles, which decreases the required 

shear stress necessary to produce a given shear rate, allowing lower power input for 

mixing (Hodge et al. 2009; Kristensen et al. 2009b).  The physical and chemical 

properties of the specific biomass affect the way biomass absorbs water.  As solids 

loadings approach 20% (w/w), the liquid fraction becomes fully absorbed into the 

biomass leaving little free water (Hodge et al. 2009).  With lower amounts of free water, 

the apparent viscosity of the mixture increases, and consequently mixing and handling of 

material become more difficult.   

Gervais et al. (1988) investigated the relationship between water content and 

water activity on microorganisms in a high-solids cellulose environment.  No free water 

occurs when the matric potential of the substrate holds the water more tightly within its 

pores than the gravitational force acts on it.  The water potential (= osmotic potential + 

matric potential) of the system is such that content affects mass transfer by limiting 

diffusion of products away from enzyme (Gervais et al. 1988).  Not only can the enzymes 

release compounds from the biomass that are inhibitory to the organisms used in the 

fermentation step, but the sugar products they produce are known inhibitors in the 

enzymatic feedback mechanism (Gruno et al. 2004; Hodge et al. 2008; Holtzapple et al. 

1990).  For example, cellobiose inhibits the cellulase.  Typically, cellulase is 

supplemented with β-glucosidase to reduce the inhibition by cellobiose.  However, it has 

recently been shown that hydrolysis rates of cellulase and β-glucosidase are greatly 
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impacted by hemicellulose-derived products, like xylose, xylan and xylo-oligomers (Kim 

et al. 2011; Qing et al. 2010; Ximenes et al. 2011b).  Pretreatment methods that do not 

remove these products or enzyme cocktails that include xylanases may have detrimental 

effects on glucose yields.  While inhibition occurs at low solids, as well as at high solids, 

the increased concentration of inhibitors, in addition to the reduced mass transfer rate 

away from the enzyme, makes inhibition more apparent at high-solids loadings. 

The challenges apparent at high solids are interrelated, so a less-than-ideal 

condition in one property exacerbates the negative effects of another property.  For 

example, the substrates’ physio/chemical properties affect the water retention value 

(WRV) of the biomass.  A high WRV (due to high-solids content and the specific 

properties of the substrate) reduces the diffusion of inhibitors away from the enzymatic 

reaction, and increases the apparent viscosity of the mixture, thereby increasing the 

difficulty of stirring the mixture to assist with diffusion.  Zhang et al. (2010) found that 

the energy required to mix increased one order of magnitude when they increased the 

solids loading of pretreated corn stover from 15% to 30% w/w (79.5 MJ/t slurry to 

1009.2 MJ/t slurry, respectively) to produce 854.9 and 1723.2 MJ/t slurry of ethanol 

respectively.  The higher solids loading did indeed achieve the goal of producing a higher 

concentration of ethanol in the broth; however, over half of the energy produced in the 

ethanol was consumed in the mixing to achieve the higher concentration of ethanol 

(compared to 9% of the energy needed to mix the system producing the lower 

concentration of ethanol.   

While it is widely recognized that increasing the solids content in a conversion 

process increases product concentration (Gupta and Lee 2009), it is also widely 

recognized that the increase in yield is not linear with increasing initial solids content 

because yield (percent conversion) decreases with initial solids content (slope is a 

function of substrate type, pretreatment, and enzyme loading, among other things) 

(Kristensen et al. 2009b).   In fact, this well-recognized challenge was observed so often 

that Kristensen et al. (2009b) coined the term solids effect to describe the persistence of a 

measured reduction in conversion when solids loadings are increased.  The scientific 

community has yet to come to agreement as to the cause of the solids effect; however, 
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theories include substrate effects, product inhibition, water content and enzyme 

adsorption characteristics, just to name a few (Kristensen et al. 2009b). 

Other challenges specific to high-solids enzymatic hydrolysis include long 

hydrolysis times.  Enzymatic hydrolysis is typically thought to be the bottleneck of the 

entire conversion process in terms of both time and money, since the reaction time 

needed for most enzymes to convert lignocellulose into sufficient glucose concentrations 

for fermentation is on the order of days (usually ≥3 days).  Long hydrolysis times can 

only be reduced so much by increasing enzyme loading.  Recent studies have suggested 

that enzymes can overcrowd accessible cellulose sites, thus not reaching the full 

hydrolytic potential for the given enzyme loading (Bommarius et al. 2008; Xu and Ding 

2007).  Adjacent cellulose chains are ~4-6 Å apart, whereas the diameter of the cellulases 

is about 10-fold larger at about 45 Å (Figure 3.2).  Furthermore, as in low-solids 

hydrolysis, the cost of the enzyme is also a limiting factor.  Enzyme is typically added on 

a per weight of substrate basis.  As the solids loading increases so must the amount of 

enzyme.  While the cost of enzymes has decreased drastically over the years due to 

intense research developing cheaper production schemes, the cost is still at a level that 

makes this step in the conversion process one of the most expensive.  Finding or 

developing enzymes with a high activity and inexpensive method of production would 

greatly benefit the entire conversion process.  Moreover, it is also important to evaluate 

the economics when determining the balance between the loadings applied to the 

lignocellulose and the amount of time needed to reach sufficient glucose concentrations.  
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Figure 3.2.  The processive movement of cellulases along a bundle of cellulose.  The 
large dimensions of the cellulases cause overcrowding of the accessible cellulose 
chains. 
 

3.4 IMPACTING RHEOLOGY OF HIGH-SOLIDS MIXTURES 

 Rheology is the branch of physics that deals with the deformation and flow of 

matter.  At higher lignocellulose loadings, fundamental understanding of the rheology of 

these suspensions becomes a powerful tool in designing conversion equipment and 

processes (Ehrhardt et al. 2010; Knutsen and Liberatore 2009; Stickel et al. 2009; 

Viamajala et al. 2009).  Factors which contribute to the rheological properties of a 

suspension include particle size distribution, particle aspect ratio, fiber flexibility 

(Knutsen and Liberatore 2009; Samaniuk et al. 2012) and physio/chemical properties of 

the substrate.  Water retention value (WRV) of the substrate directly impacts the apparent 

viscosity of a suspension, affecting mixing and handling of the slurries (Rosgaard et al. 

2007).  For example, pretreated corn stover (PCS) slurries are considered “pourable” 

when yield stresses are at or below ~10 Pa or ~10% insoluble solids (Roche et al. 2009a; 

Stickel et al. 2009).  Dilute acid PCS at 20% insoluble solids is a thick, paste-like 

substance that can be molded and formed into shapes that remain even after the applied 

forces are removed (Stickel et al. 2009).  At even higher solids loadings (>30%), particles 

are not as lubricated because of the lack of free water, resulting in increased friction due 

Cellobiohydrolase II 

Cellobiohydrolase I 

β-glucosidase 
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to particles interacting with both water and other particles.  At this point, the mixture can 

no longer be called a slurry because it is unsaturated and acts more like a wet, granular 

substance.   Substances with these varied rheological properties present many unique 

challenges in materials handling throughout a conversion process, particularly when 

continuous, industrial-scale processes are desired. 

 Several rheological models of interest, like the Bingham, Herschel-Buckley, 

Power Law, Wildemuth-Williams and Casson models (Dibble et al. 2011; Ehrhardt et al. 

2010; Roche et al. 2009a; Um and Hanley 2008; Viamajala et al. 2009), have been 

developed to describe the non-Newtonian behavior of these types of systems , but 

discussion of these models is beyond the scope of this paper. 

 Um and Hanley (2008) analyzed rheological properties of high solids (10-20% 

w/v) enzymatically hydrolyzed slurries of the model cellulose feedstock Solka Floc, a 

delignified spruce pulp.  Commercially-available Trichoderma longibrachiatum–sourced 

enzymes (30 FPU/g cellulose supplemented with β-glucosidase) were evaluated at 10, 15 

and 20% solids loadings.  The enzymatic suspensions exhibited a pseudoplastic behavior 

overall, with viscosities ranging from 0.04 to 0.01, 0.23 to 0.03, and 0.29 to 0.04 Pa∙s for 

substrate concentrations of 10, 15 and 20% (respectively) initial solids measured at 50°C.  

As the hydrolysis progressed, a decrease in viscosity was observed for all solids loadings 

(dropping by approximately half in 3 hours).  Zhang et al. (2010) showed the same trend 

with high-solids steam exploded corn stover.  Several studies using dilute acid-pretreated 

corn stover also observed a reduction in yield stress (and therefore viscosity) as solids 

loadings in enzymatic hydrolysis decreased (Figure 3.3) (Dibble et al. 2011; Ehrhardt et 

al. 2010; Knutsen and Liberatore 2009; Roche et al. 2009a; Viamajala et al. 2009). 
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Figure 3.3. Yield stress measurements as a function of solids loadings from studies 
investigating rheological properties of dilute acid-pretreated corn stover (used in all 
studies, except Samaniuk et al. (2012), who used untreated corn stover).  Additional 
yield stress measurement conditions include addition of 2% carboxymethyl cellulose 
(CMC) to untreated corn stover (Samaniuk et al. 2012), elevated temperatures 
(Ehrhardt et al. 2010), solids loadings at 25°C (Knutsen and Liberatore 2009), and 
enzymatic hydrolysis at 0 and 24 hr for different enzyme loadings (Roche et al. 
2009a).  Yield stress was measured by parallel plate flow and vane-in-cup 
geometries (Knutsen and Liberatore 2009; Roche et al. 2009a) or torque rheometry 
(Ehrhardt et al. 2010; Samaniuk et al. 2012). 
  

 Additionally, Roche et al. (2009a) found that at 20% solids, >40% conversion was 

necessary for the slurry to become pourable.  They also reported a distinct difference 

between PCS that was enzymatically hydrolyzed as compared to PCS that was just 

diluted.  The yield stress for diluted PCS is higher by a full order of magnitude than that 

of hydrolyzed PCS at corresponding particle volume fractions.  Although specific 

mechanisms for this difference were not investigated, one theory is that the enzymes alter 

the particles during hydrolysis, converting them from complex networks of material with 

distinct liquid and solid phases, to a homogeneous slurry as the liquid and solid phases 

become indistinguishable.   
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Particle size affects the rheological properties of the suspensions, directly 

impacting mixing and pumping costs (Dibble et al. 2011).  Viamajala et al. (2009) found 

that smaller particle sizes resulted in smaller apparent viscosities under equivalent 

conditions.  Mechanical pretreatment is often utilized to reduce particle size to make the 

rheological properties more favorable for other steps downstream in the process.  

However, temperature and acid concentration in dilute acid pretreatment directly affect 

yield stress of a slurry, possibly as a result of a reduction in particle size, as well as 

enhancing enzymatic hydrolysis due to the modification of the surface chemistry of the 

particles (Dibble et al. 2011; Ehrhardt et al. 2010).  While a reduction in particle size 

lowers viscosity, as well as increases conversion efficiency, the manner in which the size 

reduction occurs is also important.  Size reduction via pretreatment provides better 

digestibility and a reduced yield stress as compared to mechanical size reduction, which 

did not significantly impact either property (Dibble et al. 2011).  In some cases, the 

pretreatment, like dilute acid pretreatment, hydrothermal pretreatment or SPORL (sulfite 

pretreatment to overcome recalcitrance of lignocelluloses) performed prior to the 

hydrolysis step alters the structure of the biomass significantly so that liquefaction occurs 

quickly upon addition of the enzymes and mixing can resume (Jorgensen et al. 2007b; 

Zhu et al. 2011a).  However, in most cases, the solid fraction is still a complex network 

of fibrous material (Ehrhardt et al. 2010; Szijarto et al. 2011b; Viamajala et al. 2009).  

Sufficient mixing is required for timely hydrolysis of the biomass, and traditional mixing 

methods like stirred-tank reactors with impellers require excessive power and shaking 

does not provide adequate mixing.  Several mixing alternatives are discussed in a later 

section. 

 The pulp and paper industry has long used additives to modify rheological 

properties of lignocellulosic slurries (Samaniuk et al. 2012).  Knutsen and Liberatore 

(2010b)found that the most effective additive groups (in descending order) to reduce 

yield stress were surfactants, additives with polar head groups, additives with 

hydrophobic tails, unmodified protein and polymers.  CTAB (cetyl trimethylammonium 

bromide) and CPCl (cetylpyridinium chloride), both surfactants, were two of the most 

effective additives for reducing yield stress.  Samaniuk et al. (2012) used water soluble 

polymers (WSPs) like carboxymethyl cellulose (CMC), polyethylene oxide (PEO) and 
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polyacrylamide (PAM), to modify rheological properties of lignocellulosic slurries.  

Additives like CMC reduced the friction between cellulose surfaces, making it easier to 

mix high-solids suspensions.  The addition of 2% CMC reduced the yield stress by ~67% 

from 55 kPa to ~18 kPa.  A four-fold increase in CMC resulted in reducing by another 

50%.  They also found that a lower degree of substitution for CMC had a positive impact 

on the yield stress; however, this trend was more apparent at higher CMC loadings.  

Furthermore, a reduction in yield stress was observed as the molecular weights of the 

WSPs increased up to a certain point.  For example, yield stress decreased with the 

addition of 600 kDa, as well as 2000 kDa, PEO, but no further change in yield stress was 

observed with the addition of 7000 kDa PEO.  Several other additives were screened by 

monitoring the reduction in torque as measured by a torque rheometer to determine 

whether they warranted further investigation.  Fly ash and microcrystalline cellulose were 

evaluated as possible additives, but their impact was limited.  The surfactant Polysorbate 

80 reduced the yield stress by 36% but required high concentrations (10%).  Guar gum, 

hydroxypropyl methyl cellulose (HPMC), a guar gum-xanthan gum mixture and a guar 

gum-HPMC mixture were all more effective than CMC, where guar gum and the two 

mixtures containing guar gum resulted in the highest reduction in torque (~80%).  The 

addition of additives may be costly, but like the pulp and paper industry, it may become 

economically feasible to utilize such methods of modification for high-solids conversion 

processes.  It is important, however, that these additives be as inexpensive as possible and 

do not negatively impact the conversion process by inhibiting the hydrolytic enzymes or 

fermentative organisms.                 

      

3.5 IMPACTING ENZYMATIC HYDROLYSIS RATE AND EXTENT 

 The term “lignocellulosic biomass” refers to many different types of biomass, 

including forestry and agricultural residues (woody biomass, straw, stover), fermentation 

by-products (DDGS) and dedicated energy crops (grasses), just to name a few.  Each type 

of lignocellulosic material is slightly different in regards to composition, resulting in 

unique challenges in the enzymatic hydrolysis step of the conversion process.  The 

following sections are organized based on various aspects in need of consideration during 

the conversion of lignocellulose and highlight some of the challenges and breakthroughs 
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associated with enzymatic hydrolysis performed at high-solids loadings for different 

types of biomass.  It is important to note that while each of these processing approaches 

are discussed individually, it is often difficult to separate out the combined effects of 

multiple process conditions.  

 Furthermore, when determining cellulose conversion, it is important to note that 

the standard method of calculating conversions as described by (Brown and Torget 1996) 

can grossly overestimate actual conversion for high-solids systems.  In some instances, 

conversions can be overestimated by up to 36% (Kristensen et al. 2009a).  Determining 

cellulose conversion in high-solids systems can become very complicated, but several 

studies have proposed new methods for determining cellulose conversion (Kristensen et 

al. 2009a; Zhang et al. 2007; Zhu et al. 2011b) under these high solids operating 

conditions.  The standard method for conversion calculations typically compares the 

amount of glucose measured in the hydrolyzate (the liquid fraction) to the potential 

glucose found in the biomass (the solid fraction).  This method requires the assumption 

that all components have a consistent density throughout the reaction and that it is 

approximately equal to that of water.  As solids loadings increase, this assumption no 

longer remains valid, resulting in overestimated conversions. 

 

3.5.1 Biomass Processing 

Enzymatic hydrolysis is an intermediate step in the conversion process, and while 

producing high sugar yields is favorable, the resulting hydrolyzate must be subsequently 

capable of supporting fermentative organisms while they produce biofuels.  Some of the 

more expensive steps in substrate preparation are washing the substrate following 

pretreatment and detoxifying the hydrolyzate produced during enzymatic hydrolysis.  It is 

likely that for industrial processes unwashed, whole slurries (liquid + solids) from 

pretreatment will be used in enzymatic hydrolysis (Hodge et al. 2008), indicating a need 

for robust enzymes capable of maintaining their activity in the presence of possible 

inhibitors and degradation products or developing pretreatments that do not produce such 

products.  Furthermore, the cost of hydrolyzate detoxification alone can be up to 22% of 

the total ethanol production cost (Lau et al. 2008).   
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Several studies have investigated the effects of eliminating washing and/or 

detoxifying steps in the lignocellulose conversion process, with some promising results.  

Hodge et al. (2008) studied the effects of soluble and insoluble inhibitors on enzymatic 

hydrolysis by comparing the glucose yields produced from a washed pretreated substrate 

(which introduces only potentially insoluble inhibitors into the hydrolysis reaction since 

all soluble inhibitors are washed away) and an unwashed whole slurry substrate (which 

introduces both potentially soluble and insoluble inhibitors to the hydrolysis reaction).  

However, to maintain the high-solids loading and modify the pH, the solid and liquid 

fractions were separated, the liquid fraction pH was adjusted, and the two fractions were 

combined.  Should the whole slurry be used at the industrial scale (as this study states in 

its rationalization for this work), this method of pH modification may not be feasible.  

This challenge is just one of many that must be solved prior to implementing a complete 

conversion process.  Regardless, this study utilized an insoluble solids loading of 5-13% 

(~9-24% total solids loading) and relatively low enzyme loadings (<20 FPU/g cellulose).  

Based on the glucose production from hydrolysis, the authors suggested that the 

limitations due to mass diffusion are more prevalent than the sugar inhibition beyond a 

specific solid content.  For instance, sugar inhibition would result in a “leveling-off” of 

the hydrolysis rate, much like what would be seen in a typical hydrolysis curve.  

However, a sharp decrease in the hydrolysis rate was reported here.  Using the washed 

substrate, this decrease is not prevalent until ~20% insoluble solids loadings are reached, 

where convective mixing and available water are negligible, likely indicating the point of 

mass transfer limitations.  This decrease occurs at much lower solids loadings (<10% 

insoluble solids) for unwashed substrate, indicating that the soluble components 

contributed to a higher rate of enzyme inhibition or limited mass transfer by reducing the 

amount of water available for reaction.  (Further discussion on the restriction of water can 

be found in Section 4.4 Solids Effects.) 

Pristavka et al. (2000) also conducted enzymatic hydrolysis studies with SO2-

catalyzed steam exploded willow.  These studies were concerned with simplifying the 

conversion process by neglecting to wash the pretreated willow between the pretreatment 

and hydrolysis steps and eliminating mechanical stirring of the biomass slurry.  The 

reason for eliminating the washing step was two-fold.  First, less water would be used in 
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the conversion process, making the process more economical and more environmentally 

friendly.  Secondly, washing usually leads to the solubilization and removal of a 

significant portion of sugars.  These sugars ultimately end up accumulating in 

wastewater, resulting in an expensive processing step to recover them and/or treating the 

water.  The high-solids loadings (up to 25% ODM (organic dry matter)) used in this study 

would make mechanical stirring of the slurry extremely energy intensive, so it was 

removed.  With these process modifications, a lower degree of conversion was observed 

as compared to biomass that was washed prior to hydrolysis (53% vs. 74%).  However, 

the degree of cellulose conversion increased to >95% when the pH of the unwashed, 

pretreated willow was adjusted with solid NaOH to the optimal pH of the enzymes.  The 

significant increase in conversion following pH adjustment highlights the importance of 

maintaining optimal hydrolysis conditions for the enzymes, even if that means finding 

new, inexpensive and less resource-intensive methods of doing so. 

Lu et al. (2010) investigated the effects (post-pretreatment) washed substrate had 

on enzymatic hydrolysis and fermentation.  Using steam-exploded corn stover, 

substantial differences in conversion efficiencies were not observed for washed and 

unwashed substrates up to a solids loading of 30% (w/w).  However, closer examination 

of the conversion calculations revealed differences between washed and unwashed 

substrates, since conversions were based on water insoluble solids and not total solids 

content.  (Essentially the denominators were different for the two treatments.)  

Additionally, the pH of the unwashed corn stover was not adjusted prior to addition of 

enzymes and buffer at pH 4.8.   Cellulose conversion remained fairly consistent (70-75%) 

for all solids loadings, although glucose content was higher for the washed substrate than 

the unwashed substrate.  Ethanol production was also independent of solids loading (up 

to 30% w/w) for the water-washed corn stover, reaching 92-94% of theoretical yield.  

However, the results were quite different for the unwashed substrate.  At the lower solids 

loadings studied (10-15% w/w), ethanol production fell to 88% and 86%, respectively, 

and decreased as the solids loading increased, until no ethanol could be measured (≥25% 

solids loading).  The levels of acetic acid and furfural measured at the higher solids 

loading reached inhibitory concentrations.  Inclusion of the water-washing step following 
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pretreatment appears to eliminate the need for another costly detoxification step 

following enzymatic hydrolysis for steam-exploded corn stover.  

 In contrast to this study, others report contradicting results regarding the wash 

step (Lau and Dale 2009; Lau et al. 2008).  Lau et al. (2008) reported that when AFEX-

pretreated corn stover was fermented following enzymatic hydrolysis at 18% (w/w) 

solids loading, the ethanol yield of ~93%, even though the solids loading during 

hydrolysis and glucose concentration before fermentation were similar to those reported 

in Lu et al. (2010) who reported a 68% ethanol yield.  While these results are so different, 

it should be noted that different pretreatments, as well as fermentative organisms were 

used (E. coli vs. S. cerevisiae, respectively), making it difficult to directly compare these 

fermentation results.  However, Lau and Dale (2009) achieved higher ethanol production 

rates fermenting unwashed substrates (~0.17 g/L/hr as compared to 0.12 g/L/hr for 

washed substrate) with S. cerevisiae 424A (LNH-ST) (a genetically modified strain for 

improved xylose fermentation), suggesting that the elimination of the washing step 

following pretreatment, and with no adjustments made to the pH prior to hydrolysis, is 

beneficial for fermentation under the conditions examined in this study.  Ethanol 

concentration from unwashed substrate was 40 g/L (no data given for washed substrate).  

Xylose metabolism from the genetically modified strain is likely the largest contributing 

factor to the discrepancy in reported ethanol yields, but it was also reported that the this 

strain of S. cerevisiae performed similarly on washed substrate as compared to unwashed 

substrate.  This study suggests that the washing step can be eliminated without any loss in 

ethanol yield.  Contradictory results indicate the need for further study of this issue, or at 

the very least, optimization studies under specific process conditions. 

 In another study, LHW-pretreated sweet sorghum bagasse was hydrolyzed at 15-

30% solids (w/v) with either 20 or 30 FPU/g glucan cellulase (Wang et al. 2012).  

Washing the substrate prior to hydrolysis also did not improve the conversion rates.  

Washed substrate yielded 63.2 g/L of sugar, whereas the unwashed substrate resulted in a 

sugar concentration of 66.1 g/L.  It was suggested, although not verified, that the washing 

step actually removed some of the smaller cellulose particles that may have been easier to 

hydrolyze than larger cellulose particles. 
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 The inconclusive results of these studies illustrate the complexity of defining 

appropriate processing conditions that work in all situations.  Operating conditions must 

be chosen carefully in order to realize the full potential of using lignocellulose as a 

valuable energy source.   Table 3.1 illustrates the wide variety of operating conditions 

that have been studied with regards to high-solids loadings enzymatic hydrolysis.  

Depending on various factors, like substrate choice, pretreatment conditions and 

hydrolysis conditions, it may be possible to eliminate certain steps like washing 

pretreated substrate or detoxifying hydrolyzate prior to fermentation, thus simplifying the 

overall conversion process.  However, elimination of these steps may present new 

problems that must be solved.  For instance, should the washing step following 

pretreatment be eliminated, it may be necessary to adjust the pH in another manner so the 

hydrolytic enzymes can work most effectively.     
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Table 3.1. Conditions of conversions from enzymatic hydrolysis using high-solids loadings. 

Substrate Solids 
Loadinga 

Pretreatment Enzyme Loading Hydrolysis 
Conditions 

% Conversion Reference 

Woody Biomass       

 Aspen wood chips 10% (w/v) Steam + SO2 17 FPU/g solids + 
β-glucosidase 

96 hr at 45°C 
and 140 rpm 

100% (Schwald et 
al. 1989) 

 Willow 21% SO2 steam 
explosion 

42 FPU/g DM + 
pectinase + β-
glucosidase 

24 hr at 50°C 100% (Pristavka et 
al. 2000) 

 Olive tree pruning 
biomass 

20% (w/v) Liquid hot 
water 

15 FPU/g solids 72 hr at 50°C 
and 150 rpm 

64% (Cara et al. 
2007) 30% (w/v) 50% 

20% (w/v) Steam 
explosion 

55% 

30% (w/v) 40% 

 Mixed hardwood chips 20% Green liquor 20 FPU/g 
cellulose + β-
glucosidase + 

xylanase 

48 hr at 50°C 
and 90 rpm 

63% (Xue et al. 
2012) 

 Hardwood pulp 20% 
 

-- 20 FPU/g 
cellulose + 80 

CBU/g cellulose 

96 hr at 50°C 
and 20 rpm 
(peg mixer) 

 

80% (Zhang et al. 
2009) 

 Poplar 20% Organosolv 83% 

 Poplar 20% Steam 
explosion 

NR 48 hr at 50°C 44% (Di Risio et al. 
2011) 
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Table 3.1, continued.  Conditions of conversions from enzymatic hydrolysis using high-solids loadings. 

Substrate Solids 
Loadinga 

Pretreatment Enzyme Loading Hydrolysis 
Conditions 

% Conversion Reference 

Agricultural Residues       

 Corn stover 28% Dilute acid 22 FPU/g 
cellulose 

168 hr at 45°C 
and 130 rpm 

73% (Hodge et al. 
2008) 

 Corn stover 12-15% Dilute acid 10.7 FPU/g 
cellulose 

266 hr at 45°C 
and 400 rpm 

~80% (Hodge et al. 
2009) 

 Corn stover 20% Dilute acid 12 FPU/g 
cellulose 

168 hr at 48°C 
and 4 rpm 

77% (Knutsen and 
Liberatore 

2010b) 

 Corn stover 10% Ethanol 5 FPU/g cellulose 
+ 5 CBU/g 
cellulose 

72 hr at 50°C 
and 150 rpm 

51% (Chandra et al. 
2011) 

 Steam 66% 

 Corn stover 30% (w/v) 
1-stage 

hydrolysis 

Steam 
explosion 

30 FPU/g 
cellulose 

72 hr at 50°C 
and 150 rpm 

60% (Yang et al. 
2011) 

  30% (w/v) 
3-stage 

hydrolysis 

  30 hr at 50°C 
and 150 rpm 

81%  

 Corn stover 15% Steam 
explosion 

20 FPU/g solids 96 hr at 50°C 
and 220 rpm 

75% (Lu et al. 
2010) 

20% 74% 

25% 74% 

30% 73% 
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Table 3.1, continued.  Conditions of conversions from enzymatic hydrolysis using high-solids loadings. 

Substrate Solids 
Loadinga 

Pretreatment Enzyme Loading Hydrolysis 
Conditions 

% Conversion Reference 

 Corn stover 20% Screw 
extrusion at 
100 rpm and 

100°C 

15 FPU/g 
cellulose 

96 hr at 70°C 
and 150 rpm 

29% (Zambare et 
al. 2011) 

 Corn stover 16.2% Washed AFEX 15 FPU/g 
cellulose + 

32pNPGU/g 
cellulose + 
xylanase + 
pectinase 

96 hr at 50°C 
and 250 rpm 

NR (Lau and Dale 
2009) 

 17.6% Unwashed 
AFEX 

NR 

 Corn stover 18% AFEX 15 FPU/g 
cellulose + 

32pNPGU/g 
cellulose + 
xylanase + 
pectinase 

96 hr at 50°C 
and 250 rpm 

NR (Lau et al. 
2010) 

 Corn stover and DDGS 18% AFEX 15 FPU/g 
cellulose + 64 

pNPGU/g 
cellulose 

144 hr at 50°C 
and 200 rpm 

>95% (Lau et al. 
2008) 
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Table 3.1, continued.  Conditions of conversions from enzymatic hydrolysis using high-solids loadings. 

Substrate Solids 
Loadinga 

Pretreatment Enzyme Loading Hydrolysis 
Conditions 

% Conversion Reference 

 DDGS 20% AFEX 15 FPU/g 
cellulose + 40 U 
β-glucosidase/g 
cellulose + 40 U 

xylanase/g 
cellulose + 1.2 U 

FAE/g solids 

72 hr at 50°C 75% (Dien et al. 
2008) 

 Barley straw 10% Steam 7.5 FPU/g solids + 
13 CBU/g solids 

72 hr at 50°C 73% (Rosgaard et 
al. 2007) 15% 81% 

5 + 5 + 5% 65% 

10 + 5% 68% 

 Barley straw 15% (w/v) Steam 
explosion 

7 FPU/g solids + 
8.4 IU β-

glucosidase/g 
solids + 72 U 

xylanase/g solids 

120 hr at 50°C 
and 150 rpm 

59% (Garcia-
Aparicio et al. 

2011) 

 Wheat straw 20% Steam 7 FPU/g DM + β-
glucosidase 

96 hr at 50ºC 
and 6.6 rpm 

60% (Jorgensen et 
al. 2007b) 30% 42% 

40% 35% 

 Wheat straw 30% Steam 5 FPU/g DM + β-
glucosidase 

96 hr at 50°C 
and 6.6 rpm 

41% (Jorgensen 
2009) 
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Table 3.1, continued.  Conditions of conversions from enzymatic hydrolysis using high-solids loadings. 

Substrate Solids 
Loadinga 

Pretreatment Enzyme Loading Hydrolysis 
Conditions 

% Conversion Reference 

 Wheat straw 9 + 8 + 7 + 
6% (w/v) 

NaOH 9.6 FPU/g solids 144 hr at 50°C 
and 120 rpm 

39% (Zhang et al. 
2012) 

 Rye straw 17.5% Soda pulp 13 FPU/g 
cellulose + 35 

CBU/g cellulose 

48 hr at 45°C 
and 120 rpm 

40% (Ingram et al. 
2011) 17% LHW 65% 

Other Biomass       

 Creeping wild ryegrass 20% Dilute acid 150 FPU/g 
cellulose + 150 

CBU/g cellulose 

NR 90% (Quiroga et al. 
2010) 

 Prairie cord grass 20% Screw 
extrusion at 
100 rpm and 

100°C 

15 FPU/g 
cellulose 

96 hr at 70°C 
and 150 rpm 

47% (Zambare et 
al. 2011) 

 Sugarcane bagasse 9 + 8 + 7 + 
6% (w/v) 

NaOH 9.6 FPU/g solids 144 hr at 50°C 
and 120 rpm 

55% (Zhang et al. 
2012) 

 Sweet sorghum bagasse 20% (w/v) LHW 30 FPU/g 
cellulose 

72 hr at 50°C 
and 100 rpm + 

0.175 mL 
Tween80/g 

solids 

60% (Wang et al. 
2012) 
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Table 3.1, continued.  Conditions of conversions from enzymatic hydrolysis using high-solids loadings. 

Substrate Solids 
Loadinga 

Pretreatment Enzyme Loading Hydrolysis 
Conditions 

% Conversion Reference 

 Cassava bagasse 15% (w/v) Dilute acid 20 FPU/g DM 72 hr at 50°C 65% (Ma et al. 
2011) 

  20% (w/v)    56%  

  25% (w/v)    50%  

  10 + 7.5 + 
7.5% (w/v) 

   74%  

 Filter paper 15% -- 10 FPU/g DM + 
β-glucosidase 

96 hr at 50°C 
and 60 rpm 

48% (Kristensen et 
al. 2009b) 20% 44% 

35% 96 hr at 50°C 
and 6 rpm 

33% 

 Bacterial cellulose 20% -- 10 mg cellulase + 
10 mg β-

glucosidase/g 
cellulose 

72 hr at 50°C 85% (Roberts et al. 
2011) 

 Solka Floc 28% -- 18 FPU/g 
cellulose 

120 hr at 50°C 33% (Lavenson et 
al. 2012) 

        
aSolids loadings are reported on (w/w) wet basis unless otherwise noted. 
Abbreviations: NR, Not reported; DDGS, Distiller’s dried grains and solubles; AFEX, Ammonia fiber explosion; LHW, Liquid hot 
water; FPU, Filter paper unit; CBU, Cellobiase unit; pNPGU, p-nitrophenyl-β-D-galactopyranoside unit; U or IU, International unit; 
FAE, Feruloyl esterase; DM, Dry matter 
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3.5.2 Feeding Strategies 

Fed-batch feeding schemes have been investigated as an alternative method of 

achieving high-solids loadings in enzymatic hydrolysis (Chandra et al. 2011; Hodge et al. 

2009; Rosgaard et al. 2007; Yang et al. 2011) because of some of the advantages it offers 

over single feeding schemes.  For instance, the initial viscosity is lower, so diffusion and 

mixing limitations can be minimized or altogether avoided.  A fed-batch feeding regime 

also allows time for the slurry to liquefy before adding additional solids, which maintains 

a level of free water that is available for the reaction process and for diffusion (away from 

the enzymes) of potentially inhibitory products that result from the hydrolysis reaction.  

However, when a fed-batch approach is selected, one must consider how and when to add 

substrate, as well as enzymes, to the reaction in order to maintain high rates of 

conversion.  Table 3.2 illustrates the variety of substrate and enzyme application rates 

used in fed-batch studies. 
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Table 3.2. Substrate and enzyme application times for fed-batch hydrolysis. 

Substrate Pretreatment 
Substrate 
Additions 

Total 
Solids 

Loadinga 
Time of 

Additions 
Duration of 
Hydrolysis 

Enzyme 
Applicationb 

% 
Conversion Reference 

Corn 
stover 

Dilute acid variable - 
maintained 

15% insoluble 
solids 

25% approximately 
every 24 hr 

288 hr proportional ~80% (Hodge et 
al. 2009) 

Corn 
stover 

Steam 2.5% + 2.5% + 
2.5% + 2.5% 

10% 0, 3, 6, 9 hr 72 hr whole 60% (Chandra 
et al. 
2011) 

10% 0, 24, 48, 72 hr 192 hr whole 62% 

Corn 
stover 

Steam 
explosion 

12% + 6% + 
6% + 6% 

30% 0, 12, 36, 60 hr 144 hr proportional 60% (Yang et 
al. 2011) 

Wheat 
straw 

NaOH 9% + 8% + 7% 
+ 6% 

30% 0, 8, 24, 48 hr 144 hr whole 35% (Zhang et 
al. 2012) 

Barley 
straw 

Steam 5% + 5% + 5% 15% 0, 6, 24 hr 72 hr proportional 64% (Rosgaard 
et al. 
2007) 

10% + 5% 15% 0, 24 hr 69% 

5% + 5% + 5% 15% 0, 6, 24 hr whole 65% 

10% + 5% 15% 0, 24 hr 68% 
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Table 3.2, continued.  Substrate and enzyme application times for fed-batch hydrolysis. 

Substrate Pretreatment 
Substrate 
Additions 

Total 
Solids 

Loadinga 
Time of 

Additions 
Duration of 
Hydrolysis 

Enzyme 
Applicationb 

% 
Conversion Reference 

Sweet 
sorghum 
bagasse 

LHW 7.5% + 3.75% 
+ 3.75% 

15% 0, 24, 48 hr 120 hr proportional 59% (Wang et 
al. 2012) 

10% + 5% + 
5% 

20% 60% 

15% + 7.5% + 
7.5% 

30% 54% 

Cassava 
bagasse 

Dilute acid 10% + 7.5% + 
7.5% 

25% 0, 6, 12 hr 72 hr proportional 84% (Ma et al. 
2011) 

 whole 74% 

Sugarcane 
bagasse 

NaOH 9% + 8% + 7% 
+ 6% 

30% 0, 8, 24, 48 hr 144 hr whole 51% (Zhang et 
al. 2012) 

aTotal solids loadings are based on the amount of total insoluble solids had all substrate been added initially 
bEnzyme application is based on when the enzyme was applied to the system:  ‘whole’ denotes one enzyme application added initially; 
‘proportional’ denotes that enzyme was applied with each substrate application 
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 Hodge et al. (2009) conducted a study in which the fed-batch approach was 

utilized in order to achieve a final insoluble solids content of 15% (w/w) (equivalent to a 

25% (w/w) initial solids loading).  This solids loading was the upper limit of 

unhydrolyzed pretreated corn stover that could be effectively mixed in the stirred tank 

reactors (STRs) available to the researchers.  High cellulose conversion (>80% cellulose 

conversion) was reported; however, the reaction time was more than double the typical 

hydrolysis reaction time (168 hrs vs. 72 hrs).  The extended time problem may be 

overcome through the use of higher enzyme loadings or enzymes that can tolerate higher 

sugar concentrations. The enzyme loading used in this study was 10.7 FPU/g cellulose, a 

relatively low loading, and it was applied proportionally with each addition of substrate.  

A study conducted by Yang et al. (2011) obtained a similar cellulose conversion (70.6%), 

with a higher solids loading (30%), an enzyme loading almost twice (20 FPU/g cellulose) 

that used in the former study and with a much shorter reaction time (30 hrs).  Both studies 

attribute the high conversion rate, at least in part, to the fact that the substrates were 

washed prior to hydrolysis, possibly eliminating any potential inhibitory products that 

resulted from the pretreatments.  The latter study also supplemented fresh enzyme with 

each addition of new biomass, which increased the final enzyme loading from 10 to 15 

FPU/g cellulose.  The fresh enzyme may have also enhanced the glucose yield, replacing 

the enzyme that may be non-productively bound to the lignin or deactivated by extended 

hydrolysis times. 

 Zhang et al. (2012) studied another fed-batch approach for the conversion of 

NaOH-pretreated sugarcane bagasse and wheat straw.  Pretreated biomass was fed into 

the reactor at 9%, 8%, 7%, and 6% solids over the course of 48 hrs to achieve a final 

solids loading of 30% (w/v).  All enzymes were added with the first addition of 

lignocellulose.  Glucose conversion from wheat straw reached a maximum (~60%) after 

the first feeding, but decreased with each successive feeding.  The higher rate of 

conversion was likely due to the low solids loading and high enzyme loading at the 

beginning of the reaction.  With each successive feeding, the enzyme: substrate ratio 

decreased.  After 72 hr of hydrolysis, the conversion began to level off, resulting in a 

final glucose conversion of 39%.  A slightly different conversion profile was observed 
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with the bagasse.  The conversion continued to increase over the course of the hydrolysis 

reaction, with the exception of the last feeding time (6% solids at 48 hr).  The final 

feeding resulted in a sharp decrease in conversion, but it recovered within 24 hr following 

the feeding, leading to an increase in conversion over the batch.  The final glucose 

conversion of the sugarcane bagasse was 55%.  Differences in the way the pretreatment 

affected the lignocellulose may have led to the different glucose yields between the two 

substrates.  It was reported that the pretreatment caused the surface of the two substrates 

to become rough and fragmented as lignin was removed, allowing for better access to the 

cellulose; however, the bagasse appeared to have a rougher, more fragmented surface 

than the wheat straw.  Following 144 hr of hydrolysis, the surfaces were relatively 

smooth as compared to the start of the hydrolysis. 

 Wang et al. (2012) considered the use of a fed-batch feeding scheme.  Initially, 

the reactors were charged with half of the final solids loading, followed by two additional 

feedings at 24 and 48 hr of one-fourth of the final solids loading.  The system containing 

30% solids achieved the highest final sugar concentration with nearly 115 g/L.  Even 

with the fed-batch system, the conversion decreased with increasing solids loadings; 

however, the conversion of the 30% solids reaction was only 5% less than the systems at 

15% and 20% solids (55% vs. ~60%, respectively).  

 Fed-batch was utilized by Ma et al. (2011) to achieve a 25% (w/v) solids loading.  

Enzymes were added either all at once at the beginning of the reaction or with each 

addition of the dilute acid pretreated cassava bagasse.  At this solids loading, the batch 

reaction reached ~50% conversion, whereas the fed-batches with a single enzyme 

addition and multiple enzyme additions achieved ~75% and 84% conversion, 

respectively.  These results are similar to those reported in other fed-batch studies (Hodge 

et al. 2009; Yang et al. 2011), indicating that under the right conditions fed-batch systems 

may be a plausible solution for achieving higher conversion rates for hydrolysis 

performed at high-solids loadings.   

 Rosgaard et al. (2007) investigated several different regimes for batch and fed-

batch hydrolysis, including variations of sequential addition of substrate as well as 

substrate plus fresh enzyme.  The addition of fresh enzyme with each substrate addition 

maintained a constant enzyme: substrate ratio throughout the whole reaction, as opposed 
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to the other fed-batch feeding schemes where all the enzyme was added in one 

application.  In these cases, the effective enzyme: substrate ratio decreased with each 

subsequent addition of substrate.  Not surprisingly, the fed-batch schemes that received 

the full enzyme application at the start of the reaction produced higher glucose yields 

during the first few hours as compared to the fed-batch reactions that received fresh 

enzyme with each substrate addition.  However, the extent of the hydrolysis reaction was 

not affected by the method of enzyme application as the final glucose concentrations 

were not different for the fed-batch reactions with and without additional enzyme 

applications (62-67 g/L).  Furthermore, lower viscosity is often touted as an advantage of 

fed-batch systems over batch systems because mixing becomes easier as viscosity 

decreases.  The viscosities of the fed-batch systems in this study were lower than in the 

batch systems, but no benefits were observed in regards to glucose production as the 

batch system at 15% solids resulted in higher glucose production (78 g/L) after 72 hr 

hydrolysis.  Final glucose concentrations of the fed-batch systems, though, were impacted 

by each addition of substrate.  Hydrolysis rates decreased and never fully recovered, 

resulting in lower final yields than the batch systems.   

 Additionally, Chandra et al. (2011) reported on a fed-batch approach at a 

moderate solids loading that did not perform as well as a single stage feeding approach.  

The total solids loadings achieved for both feeding schemes was 10%.  Two enzyme 

loadings were tested (5 and 60 FPU/g cellulose), and at both loadings, the batch reaction 

produced the higher yields, approximately 66% and 90% for steam-pretreated corn 

stover, respectively.  However, when the solids are fed at 24 hr intervals, the respective 

yields are lower (approximately 55% and 80%) and the hydrolysis rates slower.  The 

authors suggest these reductions in yields and rates are the result of non-productive 

binding of enzyme to xylan or lignin fractions of the substrate or the inability of the 

enzyme to desorb from partially hydrolyzed substrate and find accessible cellulose sites 

in the fresh substrate.  Free protein measurements taken at 72 hr indicate that 50-70% of 

the cellulase was still adsorbed to the substrate for both enzyme loadings, while the 

cellulose conversion ceased.  The lower hydrolysis rate at the higher enzyme loading 

seems to indicate that the enzymes are saturating the accessible cellulose sites, thus 
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reaching a maximum hydrolysis rate that is lower than that of the batch reaction when all 

the accessible cellulose sites are available at once. 

 The results of fed-batch feeding schemes are currently still inconclusive, as 

indicated by the preceding studies, making the decision to use a fed-batch approach 

unclear.  Many advantages are realized regarding the use of fed-batch systems, but 

questions persist.  For instance, at what point in the reaction should subsequent additions 

of substrate be applied to maintain a high rate of conversion?  Should enzymes be added 

in a single application, as a supplement to the original application, or proportionally to 

the substrate?  Does the benefit of reduced viscosity make a difference in energy 

consumption during the conversion process to overcome the potentially reduced sugar 

yield that may result from the fed-batch as compared to the batch system? 

  

3.5.3 Effects of Enzyme Synergism 

 Enzymatic hydrolysis, especially at high-solids loading, has been identified as the 

largest impediment to achieving high yields in a timely manner in the lignocellulose to 

ethanol conversion process, mainly because a significant portion of sugars produced are 

in oligomeric or polymeric form, which cannot be used in the fermentation process.  

Several studies have investigated this issue from the perspective of the enzyme (Table 

3.1), experimenting with enzyme supplementation (in addition to cellulase) and 

alternative organism sources for cellulase (Dien et al. 2008; Lau and Dale 2009; Lau et 

al. 2010; Zambare et al. 2011).  Supplementing cellulase with β-glucosidase has long 

been used to minimize end-product inhibition of the cellulase and achieve higher 

conversions.  Lau et al. (2010) investigated the use of several different enzymes other 

than cellulase and β-glucosidase to enhance the conversion of lignocellulose.  Their 

enzyme cocktail included xylanase and pectinase to target the hemicellulose that acts as a 

barrier to cellulose if not removed during pretreatment.  The focus of this work was on 

the fermentation step, so the details regarding the enzymatic hydrolysis are limited.  

However, the hydrolyzates produced from AFEX-pretreated corn stover with these 

enzyme cocktails were able to produce 40 g/L (5.1% v/v) of ethanol with Saccharomyces 

cerevisiae.   
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 Another study investigated the effects of supplementing the typical cellulase and 

β-glucosidase enzyme cocktail with xylanase on the hydrolysis of steam-exploded barley 

straw (Garcia-Aparicio et al. 2011).  The addition of the xylanase to the enzyme mixture 

enhanced the conversion rate of the cellulose, especially at low solids loading and early 

in the hydrolysis reaction.  Conversion at higher solids loadings may be reduced by the 

higher concentration of xylooligomers produced with the addition of xylanases, as has 

recently been shown (Qing et al. 2010).  However, the xylanase used in the 

supplementation study did contain some β-xylosidase activity, which, if present, might 

counteract the inhibition caused by xylooligomers.  The positive effects of the xylanase 

addition reported in this study support the idea that overall enzyme loadings could be 

reduced if better conversion is achieved by incorporating an array of different enzymes.  

However, a different study conducted by Di Risio et al. (2011) also evaluated various 

enzyme cocktails made from commercially-available enzyme solutions.  All three 

cocktails assessed consisted of the same base solution: cellulase and β-glucosidase.  Each 

solution was supplemented with a third commercial enzyme solution with different active 

components: cellulase + xylanase, cellulase + xylanase + β-glucosidase, and xylanase.  

The highest glucose yields (44%) resulted from the enzyme cocktail consisting of the 

base solution supplemented with the commercial solution containing cellulase + xylanase 

+ β-glucosidase activity.  Surprisingly, the enzyme solution supplemented with the 

enzyme promoted as a “xylanase” actually yielded significantly less xylose than the other 

two enzyme solutions (39% as compared with 54% and 85%).  However, there is no 

indication that the xylanase activity of this commercial product was independently 

verified prior to use.  Glucose yields ranged from 32%-42%.      

 Taking it a step further, another group studied the effects of various addition 

schemes and enzyme loadings using an enzyme cocktail containing cellulase, β-

glucosidase and xylanase on the hydrolysis of mixed hardwood chip pulps (Xue et al. 

2012).  The enzyme cocktails consisted of fungal cellulase (C), xylanases (X) and β-

glucosidase (B) solutions mixed in the ratio of 10:3:3 (by volume).  The mixtures were 

added to the substrate in the following manners: (1) cellulase, xylanases and β-

glucosidase was mixed with substrate at the desired solids loading (CXB); (2) cellulase 

was added to 5% solids, pressed or filtered to obtain the desired solids loading, and 
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hydrolyzed for a period of time before the xylanases and β-glucosidase mixture was 

added (C+XB); and (3) half of the cellulase was added to 5% solids, pressed or filtered to 

obtain the desired solids loading, and hydrolyzed for a period of time before the cellulase 

(half dose), xylanases and β-glucosidase mixture was added (C+CXB).  With the CXB 

mixture, a decrease in conversion was observed with an increase in solids loading.  

Enzyme loading also plays an important role in the optimization of biomass conversion.  

For example, with the CXB enzyme mixture, the difference in sugar yields decreased 

with increased enzyme loadings.  At 40 FPU/g solids, conversion decreased from 70% to 

68% for 5% and 20% solids loading, respectively, which represents no significant 

difference in conversion.  However, at 5 FPU/g solids, conversion decreased from 40% to 

19% for 5% and 20% solids loadings, respectively.  The authors hypothesized the 

decreased conversion was the result of ineffective mixing of the enzyme mixture with the 

substrate as the solids loadings increased.  Based on this hypothesis, the authors added 

the enzyme to a low solids mixture, allowing time for the enzymes to adsorb to the 

substrate, before filtering off 80% of the liquid to obtain 20% solids loadings.  Enzyme 

activity was tested following filtration to determine whether any enzyme was lost during 

this process.  Cellulase activity registered at 80% of the original activity, whereas only 

20% of the xylanases activity was retained.  This observation resulted in the modified 

application of the enzyme mixture (C+XB).  At 20% solids and 20 FPU/g solids, sugar 

conversion increased from 44% for the CXB mixture to 59% for the C+XB mixture.  

Sugar concentrations increased from 84 g/L to 114 g/L.  This modified enzyme 

application process was also beneficial at low solids loadings (5%), increasing conversion 

from 19% with CXB to 38% with C+XB.  Taking this enzyme application process one 

step further, additional cellulase was added with the xylanases and β-glucosidase mixture 

(C+CXB).  In this instance, although the sugar concentration increased to 121 g/L 

glucose (63% conversion), the conversion at 20% solids was similar to that at 5% solids 

at all enzyme loadings tested.  These experiments indicate the importance of determining 

enzyme mixtures and application schemes that provide the optimal sugar yields and 

concentrations for the conversion process. 

 Along with the feeding scheme and the enzyme loading, the type of enzyme used 

can have a significant impact on the liquefaction of biomass.  The term “cellulase” can 
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refer to a wide variety of enzymes, and commercially available enzymes can often be a 

crude mixture of enzymes (i.e. T. reesei cellulase that is commonly used in hydrolysis 

studies).  To be more specific, for example, the T. reesei “cellulase” can refer to a 

mixture of cellobiohydrolases (CBH), endoglucanases (EG), xylanases (XYLs), and β-

glucosidase, among other enzyme components.  Using an array of CBHs, EGs, XYLs and 

a β-glucosidase, both individually and in combination, Szijarto et al. (2011b) assessed the 

enzymes on their ability to liquefy hydrothermally pretreated wheat straw.  For the T. 

reesei components, it was determined that the EGs (especially Cel5A) were the most 

important in liquefying lignocellulose.  This enzyme alone reduced the viscosity of the 

slurry by nearly 90%.  The CBHs and XYLs had little to no effect on the viscosity, even 

though the sugar production was similar to that of some of the EGs.  Furthermore, a 

mixture of enzymes produced the highest sugar yields, even though the viscosity was 

reduced by only about 82%, indicating that the amount of sugar hydrolyzed is not the 

main factor in reducing viscosity, but that the sites at which the polysaccharides are 

cleaved is more important.   

 Since enzymes play such a vital role in the conversion of lignocellulose, much of 

the process integration depends on these biological catalysts.  For instance, a balance 

must be struck between the enzyme loading used and enzyme cost.  High enzyme 

loadings not only increase the total cost, but as discussed in the introduction, studies 

suggest that enzymes are overcrowding accessible cellulose chains, thus reducing the rate 

at which cellulose is hydrolyzed.  One such study was conducted by Olsen et al. (2011).  

At a solids loading of 29% (w/w) pretreated corn stover, a range of enzyme loadings (5-

83 FPU/g cellulose) were evaluated for hydrolysis yields.  At enzyme loadings >66 

FPU/g cellulose, the hydrolysis curves started to coincide.  It was suggested that the lack 

of improvement in hydrolysis rate and conversion was due to the substrate being 

completely saturated with enzymes bound to all the accessible sites.  High enzyme 

loadings also do not make sense economically.  Based on a techno-economic model of 

the bioethanol conversion process, an optimum total solids loading of about 20% with an 

enzyme loading of 20 mg/g solids (8.8 FPU/g solids) was determined to produce the 

minimum ethanol selling price with currently available, commercial enzymes (Humbird 

et al. 2010).  This model evaluated the cost of production at 2007 enzyme production 



 

                   81 
 

costs ($0.35/gal), as well as the enzyme production cost projected by the Multi-Year 

Program Plan (MYPP) from the DOE’s Office of Biomass Program for 2012 ($0.12/gal) 

(United States Department of Energy Office of the Biomass Program 2011).  At the lower 

enzyme production cost, solids loadings could potentially be increased up to 26% and 

remain economically viable.  In the time since this study was published, the MYPP re-

evaluated the cost of enzyme production and the current projection for 2012 was fairly 

consistent with the “high” cost of enzyme production reported in the study at $0.34/gal of 

ethanol (2007$). Under the assumptions made constructing this model, 20% solids 

loading remains the maximum that is economically feasible for the ethanol production 

process. 

 Zhang et al. (2009) evaluated enzyme loading to determine the effect it had on 

glucose concentration.  A 50% reduction in enzyme loading decreased the glucose 

concentration by only 21%.  The implication of this observation is that enzyme loading 

can be optimized to provide the maximum concentration at the lowest unit cost.  For 

example, it may not be worth converting an extra 5% of glucose if it accounts for ~15% 

of the total enzyme cost unless the return on the extra glucose recovers the cost of the 

additional enzyme. 

 While the cellulase system of T. reesei is one of the most commonly studied 

enzyme systems, other organisms also produce cellulolytic enzymes that could 

potentially impart superior activity under certain conditions.  Ingram et al. (2011) 

compared the conversion efficiencies of enzymes from two different organisms, T. reesei 

and a genetically-modified (for increased cellulase production) strain of Penicillium 

janthinellum.  Enzyme mixtures from both organisms contained cellulases, β-

glucosidases and xylanase activity.  With the cellulase from T. reesei, an increase in 

glucose concentration as biomass loading increased was observed for the organosolv and 

the LHW-pretreated rye straw.  After 48 hrs of hydrolysis at 17.5% solids, the P. 

janthinellum cellulase converted 72% of the soda-pretreated rye straw.  Higher enzyme 

loadings of P. janthinellum cellulase were necessary to achieve the same level of 

conversion produced by the T. reesei cellulase (27 FPU/g cellulose vs. 13 FPU/g 

cellulose); however, the P. janthinellum cellulase appeared to be more tolerant to changes 

in pH.  This study highlights the fact that the conversion process is dependent on many 
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factors, including, but not limited to, the type of biomass, the conditions of the 

pretreatment, and the source of enzymes. 

In another study partially purified cellulase from the thermostable Geobacillus R7 

was evaluated as an alternative cellulase source (Zambare et al. 2011).  For short 

hydrolysis times (36 hr), the Geobacillus cellulase was comparable to a commercial 

enzyme preparation.  However, for hydrolysis of pretreated prairie cord grass using this 

cellulase, the glucose recovery at 96 hrs for solids loadings ≥10% was between 46.2% 

and 48.7%.  It does not appear that the solids loading had much of an impact on 

conversion of the prairie cord grass; although the conversion of cellulose into glucose 

utilizing the Geobacillus R7 cellulase was better than the conversion of the pretreated 

corn stover at 27%-31%.  Geobacillus R7 also has the added benefit of being 

ethanologenic.  During the hydrolysis, Geobacillus R7 produced a small amount of 

ethanol (0.035 g/L) from the pretreated prairie cord grass, which has possible 

implications for consolidated bioprocessing of lignocellulose materials.  Subsequent 

fermentation of the hydrolyzate with S. cerevisiae resulted in an ethanol production of 7.8 

g/L (or 0.47 g ethanol/g glucose) for the 20% solids loading of prairie cord grass. 

 Lastly, Matano et al. (2012) engineered fermentative yeast to express three 

different types of cellulase on its surface.  This yeast was subsequently evaluated in SSF 

processes utilizing 25% (w/v) pretreated rice straw.  Initially, a control yeast strain was 

supplemented with a commercial cellulase (100 FPU/g biomass).  This combination 

resulted in an ethanol yield of 80% and liquefaction after 72 hr.  When combined with the 

modified yeast strain, the commercial cellulase loading could be reduced to 10 FPU/g 

biomass and produce the same ethanol yield (79%).  Further study showed that a 

maximum ethanol concentration (43.1 g/L) was obtained following a 2 hr liquefaction 

period prior to the addition of the modified yeast, corresponding to an ethanol yield of 

89%.  Residual glucose was reduced by an order of magnitude with the modified strain 

(16 g/L to 1.6 g/L).  The authors hypothesized that the close proximity of the cellulases 

on the surface of the yeast provided a synergistic effect that resulted in an increased 

hydrolysis of cellulose.  As commercial enzymes are still a relatively large portion of the 

overall cost of the conversion process, the ability to reduce the commercial enzyme 
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loading and replace it with an organism capable of both the hydrolysis and fermentation 

is very attractive. 

 

3.5.4 Solids Effect 

 For conversion of lignocellulose into usable and valuable products, it makes 

economical sense to utilize locally-available biomass, as shipping biomass over long 

distances greatly reduces the beneficial impacts.  Cara et al. (2007) studied the 

conversion of olive tree pruning biomass (consisting of leaves and thin branches) up to 

30% (w/v) solids loadings.  The final glucose concentrations increased with increasing 

solids loading, achieving 61 g/L and 52 g/L glucose at 30% solids loading of the liquid 

hot water (LWH) pretreated biomass and steam exploded biomass, respectively.   

However, the conversions of the LHW-pretreated biomass decreased nearly linearly from 

76.2% at 2% solids to 49.9% at 30% solids.  Conversions of the SE-pretreated biomass 

held steady between 60% and 63% up to 10% solids loading before decreasing to 39.6% 

at 30% solids.  In a different study, the researchers also observed that the glucose 

concentration decreased as the solids loading was increased beyond 10% solids for the 

soda pretreated rye straw (Ingram et al. 2011).  The overall conversion of cellulose 

decreased from ~65% to 40% as solids loadings increased from ~10% to 17.5%.  This 

result is not unusual, as most studies performed at high-solids loadings sacrifice 

conversion for a more concentrated glucose product (Cara et al. 2007; Jorgensen et al. 

2007b; Kristensen et al. 2009b). 

 Kristensen et al. (2009b) also studied four mechanisms that possibly contribute to 

the so-called solids effect: (1) compositional and substrate effects, (2) product inhibition, 

(3) water concentration, and (4) cellulase adsorption.  These mechanisms were studied 

with filter paper, which is essentially a pure cellulose substrate.  The researchers 

observed the same decreasing trend in conversion as solids increased using the filter 

paper, much like that observed with lignocellulose.  Therefore, it was concluded that 

lignin, which is absent in filter paper, is likely not the reason for the solids effect.    Study 

of the second mechanism, product inhibition, resulted in significantly different 

conversions after 48 hours of hydrolysis for 5% DM and 20% DM (64.5% vs. 38.6% or 

30 g/L vs. 86 g/L, respectively).  However, the final conversions for these solids loadings 
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with an additional 50 g/L glucose added resulted in fairly similar conversions (29.7% and 

26.3% or 64 g/L vs. 109 g/L for 5% DM + 50 g/L glucose and 20% DM + 50 g/L 

glucose, respectively).  This experiment did not elucidate the exact reason for the 

observed similar conversions, but two hypotheses were offered.  It was suggested that 

other components in the hydrolysis mask the product inhibition or that enzymes are 

inhibited similarly once a certain glucose concentration is reached.   

 Kristensen et al. (2009b) next attempted to quantify the effects of water on the 

hydrolysis reaction.  Water content was decreased by 25% and replaced by oleyl alcohol. 

The alcohol allowed the viscosity of the slurry to remain constant, thus removing the 

effects of the viscosity, while the water to solids (or enzyme) ratio was altered.  With this 

decrease in water, a 5% decrease in glucose yield was observed.  However, increasing the 

solids content from 20% to 25% (which is essentially equivalent to a 25% reduction in 

water), typically decreases glucose yields by ≥12%.  The authors argue this discrepancy 

in glucose reduction indicates that lower water content is apparently not the limiting 

factor responsible for the solids effect. 

Lastly, cellulase adsorption was investigated as a possible source of the solids 

effect (Kristensen et al. 2009b).  Cellulase adsorption to filter paper was determined by 

measuring the total nitrogen content of the biomass after 24 hr of hydrolysis.  The amount 

of adsorbed cellulase measured was halved (40% to 17%) as solids loading increased 

from 5% to 25%.  At the same time, conversion was reduced from ~60% to <50%.  A 

strong correlation between decreasing adsorption and conversion was observed, 

indicating that cellulase is not effectively adsorbing onto cellulose causing a decrease in 

yield.  The authors hypothesize that increasing concentrations of glucose and cellobiose 

inhibit the adsorption of enzymes.  Knowledge of the mechanisms of high-solids product 

inhibition and the mechanisms of high-solids enzyme adsorption inhibition can provide 

the key to improving the overall conversion process, thus unlocking the full potential of 

high-solids conversions. 

 In contrast to the previous study, Roberts et al. (2011) investigated the 

interactions of water with biomass at high-solids loading without maintaining a constant 

viscosity.  Time domain NMR was used to measure the transverse (or spin-spin) 

relaxation times (T2) of protons in water molecules to indicate the extent of water 
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constraint (or degree to which water is tightly bound to biomass).  Essentially, the nuclei 

of water molecules that are tightly bound have a shorter relaxation time than nuclei that 

are less tightly bound.  By measuring these relaxation times, constraint can be 

determined.  It was found that water was more tightly bound as solids loadings increased, 

suggesting that an indirect relationship between water constraint and yield exists.  

However, the relaxation time of the primary bound water (water that interacts directly 

with the surface of the cellulose) was constant regardless of the solids loading.  

Interactions at the water-solids interface appear to remain constant, suggesting the 

chemistry at the surface of the cellulose does not change as water content changes.  These 

results further suggest that the water primarily interacts with the cellulose, and the impact 

of the solute is minimized.  However, these studies were conducted with bacterial 

cellulose, a substrate that is essentially pure cellulose.  It is unclear whether cellulose 

derived from pretreated lignocellulose would interact with water in a similar manner or to 

what extent the type of pretreatment may affect these cellulose-water interactions.  With 

the addition of excess glucose or mannose to 5% solids, the hydrolysis rate reduced to 

one similar to 15% solids loading.  The authors hypothesize that the negative effects on 

the hydrolysis rate are caused by water constraint as opposed to the monosaccharides 

impacting the enzyme activity.  It is also possible that the lack of available water limited 

the uniform distribution of synergistic enzymes, thus hindering the hydrolysis rate.  Also, 

in contrast to the previous study, the results presented in this study indicate that water (or 

the lack of it) has a great impact on the overall hydrolysis rate.  Even though the addition 

of oleyl alcohol in the former study reduced the water content in the reaction, the constant 

viscosity helped maintain adequate mixing and therefore did not limit the diffusion of 

enzymes throughout the suspension.  While these studies draw conflicting conclusions on 

the effect of water on lignocellulose conversion, they do highlight the need for effective 

mixing.  Adequate mixing was provided in the former study, even with a low water: 

substrate ratio because of the low viscosity afforded by the addition of alcohol, whereas 

the latter study simply reduced the water: substrate ratio without regard for the viscosity.  

These studies also highlight the difficulty of quantifying and assigning the challenges of 

operating at high solids to any one factor (lack of water, high viscosity, adequate mixing, 

etc.) when all these factors are so interrelated. 
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3.5.5 Effect of Viscosity on Mixing 

High viscosity of high-solids slurries is another hurdle that must be overcome.  

Much of the previous discussion (i.e. effects of enzymes on liquefaction and solids 

loadings) also affects the rheology, but this section discusses specific viscosity modifiers 

and their effects on enzymatic hydrolysis.  Ineffective mixing increases the limitations 

associated with mass transfer, including removal of local inhibitors and hydrolysis 

products and transfer of heat throughout the reactor.  The pulp and paper industry has 

long been using viscosity modifiers to enhance the processability of fibrous slurries 

(Knutsen and Liberatore 2010b), much like the types of slurries produced by 

lignocellulose materials prevalent in the conversion to biofuels and biochemicals.  One 

study (Knutsen and Liberatore 2010b) investigated the use of 18 different chemical 

additives and evaluated the effects on the slurry rheology and hydrolysis rates.  Several 

surfactants added to lignocellulosic slurries at 2% (w/w), including CPCl, CTAB, sodium 

dodecylbenzene sulfonate (NaDBS) and sodium dodecyl sulfonate (SDS), positively 

affected the rheological properties of the slurry by reducing the viscosity by nearly four-

fold as compared to the viscosity of the unmodified slurry.  Although slight decreases in 

the extent of the hydrolysis reactions were observed, only the CPCl and the CTAB did 

not reduce hydrolysis rates.  Additionally, Ma et al. (2011) tested the surfactant Tween-

80 and found that it did not produce a significant increase in conversion at a 10% solids 

loading to warrant its use.  However, at 25% solids loading, the addition of the surfactant 

(2 g/L) increased cellulose conversion by 30%.  Contrary to what Kristensen et al. 

(2009b) said, the inhibition caused by non-productive binding of the enzyme to lignin 

does not seem to have as large of an effect at low solids as it does at high solids.  These 

results show some promise in modifying viscosity properties of lignocellulose slurries; 

however, more work is warranted to understand the mechanism by which these 

surfactants work, as well as determining the economical value of the use of such 

additives.  

 Another approach to reducing viscosity is to raise the temperature at which the 

hydrolysis reaction takes place (Szijarto et al. 2011a).  In order to work at higher 

temperatures, enzymes that can tolerate the increased temperatures must be used.  It has 
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been shown that EGs from more thermotolerant organisms worked better at reducing the 

viscosity of a lignocellulose slurry, while other types of enzymes appeared to have little 

effect (Szijarto et al. 2011a).  T. aurantiacus proved to be more thermotolerant than A. 

thermophilum, as the T. aurantiacus EG continued to reduce the viscosity at temperatures 

up to 75ºC.  A. thermophilum enzymes were less active above 65ºC, resulting in a 

reduced effect on the viscosity.  The ability to use alternate sources of cellulase enzymes 

illustrates the number of reaction condition variables (i.e. temperature, components in 

enzyme cocktail, and solids content in slurry) open to modification. 

 The method of mixing the slurry can also have a substantial impact on the 

conversion of lignocellulose.  For example, Zhang et al. (2009) observed a significantly 

reduced liquefaction time when comparing hydrolysis at high solids (17-20% w/w) 

performed in shake flasks with a lab-scale peg mixer.  Peg mixers are commonly used in 

the pulp and paper industry, which routinely utilizes solids loadings up to 35% (Zhang et 

al. 2009).  (Readers are referred to the section entitled “Reactor design for enzymatic 

hydrolysis at high solids” for more details on the peg mixer.)  Liquefaction occurred after 

1 hr of hydrolysis in the peg mixer, whereas the shake flask required 40 hr.  The decrease 

in liquefaction time can most likely be attributed to the effective mixing provided by the 

peg mixer and the breaking down of the large fiber network that tends to occur as solids 

loadings surpass 8%.  At 20% (w/w) solids loadings, hydrolysis performed in the peg 

mixer resulted in 144 g/L and 158 g/L of glucose from unbleached hardwood and 

Organosolv pretreated poplar, respectively.  These concentrations are the highest glucose 

concentrations achieved known to the authors at the time of writing this review. 

One of the highest solids loadings in enzymatic hydrolysis reported to date is 40% 

(w/w) (Jorgensen 2009; Jorgensen et al. 2007b).  A horizontally-oriented rotating drum 

was utilized as the reactor in these studies in order to effectively mix the solids.  The 

studies found that cellulose and hemicellulose conversion decreased from ~90% to ~33% 

and ~70% to 35%, respectively, with the increase in solids loading from 2% to 40%, but 

the reactor was providing adequate mixing as evidenced by the conversion of 

lignocellulose into fermentable saccharides (86 g glucose/kg at 40% solids) (Jorgensen et 

al. 2007b).  At 40% solids, liquefaction occurred after only 4 hrs.  The viscosity was still 

high, as the slurry turned into a thick, clay-like paste and remained as a thick paste 
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following 96 hrs of hydrolysis.  Additionally, the reactor was a very energy efficient 

solution to the mixing problem.  Mixing speed did not affect the liquefaction time, so 

relatively low speeds (6.6 rpm) could be used.  It was also shown that ethanol could be 

produced in the same rotating drum reactor from the resulting slurries, where the highest 

ethanol yield (48 g/kg DM) reported was from the slurry at 35% solids.  Even at reduced 

enzyme loadings (5 FPU/g DM supplemented with β-glucosidase at a 5:1 loading), ~40% 

conversion for both cellulose and hemicellulose can be achieved at 30% solids loading 

(Jorgensen 2009).  These results suggest using one reactor for all processing steps in the 

conversion of lignocellulose, with the implication that capital and equipment costs can 

potentially be greatly reduced as both the number of reactors and amount of enzyme used 

decreases.  However, with the yield penalty for conversion at higher solids loadings being 

high, a full techno-economic analysis would be needed to fully validate such a system 

operating under the given conditions. 

 

3.5.6 Tools and Methods for Measuring the Progress of Enzymatic Hydrolysis at 

High-Solids Loadings 

 As more and more interest is expressed in the use of high-solids loadings in the 

conversion of lignocellulose, it is also important that tools are available to properly 

measure and study the progress of the hydrolysis reaction.  Calorimetry has been studied 

as a new tool for determining enzymatic kinetics of high-solids loadings in hydrolysis 

(Olsen et al. 2011).  It provides higher sensitivity than HPLC in the early stages of the 

hydrolysis, making calorimetry a useful tool to evaluate initial rates of hydrolysis.  Avicel 

showed that enzyme hydrolysis slowed when enzyme loading of >30 FPU/g cellulose 

were used.  It is believed that this reduction in rate is due to the lack of available binding 

sites on the cellulose, as illustrated by the heat-flow curves converging upon a single 

value, regardless of the enzyme loading.  

 Lavenson et al. (2012) also implemented the use of new tools to monitor 

liquefaction and the extent of hydrolysis of cellulose.  Liquefaction and the spatial 

homogeneity of the enzyme distribution in Solka-Floc suspensions (28% w/w) were 

monitored with magnetic resonance imaging (MRI).  The MRI signal is proportional to 

the amount of free water in the reaction, which correlates to the degree of liquefaction in 
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the system.  Additionally, a penetrometer was used to monitor the mechanical strength of 

the suspension.  Measurements were taken on two hydrolysis systems, where one 

contained a mixed Solka-Floc and enzyme suspension and the other contained a Solka-

Floc suspension that received an application of enzyme but no mixing.  Mechanical 

strength of the mixed suspension decreased by 20% of the initial strength after ~30 hrs, as 

compared to ~170 hrs for the unmixed suspension.  Based on the MRI results, the mixed 

samples did not show a spatial gradient, indicating uniform liquefaction when the enzyme 

and substrate are initially well-mixed.  The unmixed samples showed a slow change in 

spatial gradients, which were attributed to ineffective diffusion of the enzyme to the 

substrate.  Since liquefaction occurs nearly six times faster for the mixed samples, it is 

not surprising that higher final glucose concentrations are also obtained as compared to 

the unmixed samples and in much less time.  For example, the mixed suspension reached 

~75 g/L glucose in only ~120 hrs, whereas the unmixed suspension produced only ~50 

g/L in 300 hrs.  Furthermore, adequate initial mixing of the enzyme and substrate resulted 

in an initial rate of hydrolysis an order of magnitude higher (1.8 g/L/hr as compared to 

0.21 g/L/hr).      

 

3.6 REACTOR DESIGN FOR ENZYMATIC HYDROLYSIS AT HIGH SOLIDS 

 Several groups studying the use of high-solids loadings for enzymatic hydrolysis 

have embraced a horizontal orientation of the reactor (Dasari et al. 2009; Jorgensen et al. 

2007b; Larsen et al. 2008; Roche et al. 2009b).  Gravitational or free-fall mixing provides 

many advantages over typical vertical stirred tank reactors and are used in other industrial 

processes that require mixing highly viscous slurries, like peanut butter, ketchup and 

concrete (Dasari et al. 2009; Roche et al. 2009b).  The horizontal orientation minimizes 

particle settling and local accumulation of reaction products within the reactor, as well as 

ensuring better enzyme distribution.  These types of reactors are also easily scalable from 

bench-scale to pilot-scale and larger.  Power requirements are lower for horizontal 

reactors equipped with paddles over vertical stirred tank reactors that provide the same 

level of effective mixing (Dasari et al. 2009).          

 Roche et al. (2009b) employed free-fall mixing in their design for bench-scale 

reactors for enzymatic hydrolysis.  Polypropylene bottles (125 mL and 250 mL) were 
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placed on a roller apparatus in a horizontal orientation.  The roller apparatus and bottles 

were placed in an incubator for temperature control during enzymatic hydrolysis.  This 

roller-bottle system produced results comparable to shake flasks when utilizing 

intermittent hand mixing, especially following enzyme addition and prior to sampling, for 

up to 30% solids (data not shown).  At 20% solids loading, these two mixing schemes 

resulted in 80-85% cellulose conversion.  The roller-bottle reactors eliminated the human 

component of mixing, resulting in more consistent mixing and better enzyme and 

reaction product distribution.                    

 Hydrolysis studies conducted by Dasari et al. (2009) utilized a horizontal reactor 

of intermediate capacity (8 L).  The reactor was constructed from a cylinder made of 

Pyrex glass with aluminum lids fitted over the ends.  An adjustable speed, rotating shaft 

with rubber-tipped, stainless steel blades attached was inserted into the reactor.  Three 

sampling ports were located along the length of the reactor.  Hydrolysis studies 

comparing the horizontal reactor to shake flasks found, at 25% solids loading, 

approximately 10% more glucose was produced in the horizontal reactor.   

Jorgensen et al. (2007b) developed a reactor for use in pretreatment and 

enzymatic hydrolysis processes with a total volume of 280 L.  Several features have been 

implemented into the pilot-scale drum reactor, as well as the smaller glass reactor, to 

address issues associated with high-solids loadings.  The horizontal orientation of the 

reactors takes advantage of free-fall mixing, eliminating the need for mechanical mixing.  

Evaluation of a range of mixing speeds (3.3-11.5 rpm) by Jorgensen et al. (2007b) 

resulted in no significant differences in cellulose conversion over the tested range, so 

energy input for mixing is significantly reduced as compared to vertically oriented stirred 

tank reactors.  In addition to free-fall mixing, a rotating shaft affixed with paddles 

supplies additional mixing capabilities, as the shaft in the pilot-scale reactor can be 

programmed to change rotational direction two times per minute.  The paddles also 

provide a scraping action that removes lignocellulosic material from the reactor walls, 

improving heat transfer between the reactor and the biomass. 

 The Integrated Biomass Utilization System (IBUS) Project coordinated by DONG 

Energy in Denmark also utilizes free-fall reactors.  DONG Energy has free-fall reactors 

in a variety of sizes for research and development purposes (400 L) and has successfully 
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scaled one up to a capacity of 11,000 L (Jorgensen et al. 2007a; Larsen et al. 2008).  

These reactors routinely operate at approximately 40% solids loading.  Larger particle 

sizes can be used, since the mechanical work of the mixing helps tear biomass fibers and 

particles apart (Larsen et al. 2008).  This tearing action also increases the surface area of 

the lignocellulose, resulting in increased enzyme accessibility to the cellulose and 

hemicellulose.          

 While most reactors implemented for high-solids enzymatic hydrolysis have 

employed some form of free-fall mixing, Zhang et al. (2010) investigated the effects of a 

helical impeller in a vertical reactor on SSF at solids loadings up to 30% (w/w) and 

compared it to a typical Rushton (paddle) impeller (Figure 3.4a-b).  Helical impellers are 

suggested for use in highly viscous, non-Newtonian fluid agitation, which describes high-

solids biomass slurries.  The helical impeller performed better than the Rushton impeller 

with regard to every aspect tested.  The feeding rate of lignocellulose into the reactor was 

adjusted so that a liquefied slurry could be maintained throughout the feeding period.  

The helical impeller provided better mixing, as the feeding period was completed more 

than 2 hr sooner than that of the Rushton impeller. The helical impeller also resulted in 

higher ethanol concentration (51.0 g/L vs. 43.9 g/L) and productivity, as well as 

consuming less power.  At 30% solids (prior to inoculation with the fermentative 

organism), the Rushton impeller required nearly 40 W/kg corn stover (CS) before 

decreasing to ~29 W/kg CS after 72 hr of saccharification and fermentation.  The helical 

impeller required ~8 W/kg CS and ~1 W/kg CS prior to inoculation and after 72 hr, 

respectively.  (It should be noted that the stirring rates for the two impellers were 

different; however, the power requirements were normalized based on the “no-load” 

power consumption for each impeller.)  Lastly, the mixing efficiency of the helical 

impeller was superior to the Rushton impeller.  The geometry of the impeller can play a 

significant role in effectively mixing biomass slurries.  Other geometries tested by Wang 

et al. include a plate-and-frame impeller and a double-curved-blade impeller (Figure 

3.4c-d).  The impellers were tested at various speeds and 100 rpm resulted in the best 

conversion efficiencies for both geometries.  However, the plate-and-frame impeller 

achieved a higher conversion than the double-curved-blade impeller by nearly 18%, 

indicating that the geometry of the impeller can have an effect on the hydrolysis.  The 
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authors suggested that the plate-and-frame impeller provides a more consistent mixing 

regime at every depth in the reactor, whereas the axial flow induced by the double-

curved-blade impeller is a function of the distance from the blades. 

 

 

   
 Another study investigated the use of a peg mixer (Figure 4e) for enzymatic 

hydrolysis at high-solids loadings [43].  The mixer used in this study was a 9 L reactor  

 

 Another study investigated the use of a peg mixer (Figure 3.4e) for enzymatic 

hydrolysis at high-solids loadings (Zhang et al. 2009).  The mixer used in this study was a 

9 L reactor fitted with a rotating shaft with pegs extending out radially.  The time for 

liquefaction of 20% (w/w) of unbleached hardwood pulp was significantly reduced when 

comparing shake flasks to the peg mixer (40 hr vs. 1 hr).  The benefit of this mixer is that 

it has been proven effective with lignocellulosic material.  High-solids enzymatic 

hydrolysis is just another application for the peg mixer.    

 From the various aforementioned reactors utilized with high-solids enzymatic 

hydrolysis reactions, there are several suggestions to improve the mixing of highly 

viscous slurries.  Free-fall mixing relies on gravity to effectively mix the slurry, which 

consumes less energy than a stirred tank reactor providing a similar degree of mixing.  

An effective mixing regime can greatly depend on the impeller geometry, as the shape of 

an impeller can cause large differences in speed and shear effects at various impeller-

slurry interfaces throughout the reactor.  High shear rates have been shown to disrupt the 

adsorption of cellulase onto biomass or to even cause the denaturation of cellulase (Cao 

and Tan 2004; Kaya et al. 1996).  Lastly, technology should be borrowed from other 

applications, where possible.  For instance, peg mixers are a “tried-and-true” technology 

(a) (b) (c) (d) (e) 

Figure 3.4. Different types of impellers studied for use with high-solids enzymatic 
hydrolysis. (a) Helical impeller, (b) Rushton impeller, (c) plate-and-frame impeller, 
(d) double-curved-blade impeller, and (e) peg mixer. 
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that is commonly used in the long-established pulp and paper industry.  All of these ideas 

have shown some promise but require more study and fine-tuning before being 

implemented into the lignocellulose conversion process.    

 

3.7 PILOT AND DEMONSTRATION-SCALE OPERATIONS 

 Several plants operating at pilot- and demonstration -scale level have recently 

come online.  These installations will help the industry gain valuable insights and 

improve upon the challenges and limitations that are not recognized at the laboratory 

scale. 

 One such pilot plant constructed in Denmark is operated by Inbicon (a subsidiary 

of DONG Energy), with a distillation capacity of ~1 ton fermentation broth/hr.  

Additionally, in 2010, Inbicon opened its demonstration-scale plant that is capable of 

producing 5.3 million liters of ethanol each year.  Enzymatic hydrolysis is performed 

here at 25-30% (w/w) solids content with a relatively low enzyme loading of 3-6 FPU/g 

DM.  However, the plant is capable of handling up to 40% (w/w) solids in any of its 

process streams (Jorgensen et al. 2007a; Larsen et al. 2008).  Since this operation is also 

used for developmental purposes, they have reactors that range from 400 L up to 11,000 

L.  Additionally, pretreatment and fermentation are performed at high-solids loadings, 

20-40% and ~18% DM, respectively.  At the end of the conversion process, the 

remaining lignin-rich material (40-95% DM) is burned to produce heat and electricity 

that can be cycled back into the conversion operation.  

 The National Renewable Energy Laboratory (Golden, CO, USA) recently 

expanded their lignocellulose processing facilities to achieve a capacity of 4,000 L and to 

operate at solids loading of ≥20% (w/w) (National Renewable Energy Laboratory).  The 

conversion process is designed as a semi-continuous operation with pretreatment 

occurring in horizontal reactors with paddles, taking advantage of the reduced energy 

inputs required with free-fall mixing of lignocellulose.  Following liquefaction at ~24-30 

hrs, the slurry is pumped into vertical, stirred tank reactors to complete the enzymatic 

hydrolysis of the material.  This operation is capable of processing about 0.5 to 1 ton dry 

biomass into ethanol each day.   
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3.8 DIRECTION OF FUTURE WORK 

 In order to fully realize the benefits of operating enzymatic hydrolysis at high 

solids, several issues must be addressed.  There are many variables associated with 

enzymatic hydrolysis that can affect the efficiency of the conversion, including (but not 

limited to) biomass source, pretreatment method, enzyme source and enzyme mixture.  

Each of these components must be considered when designing a process for 

lignocellulose conversion, which makes optimal processing conditions difficult to devise.  

Further study for the optimization of glucose yields, especially in regards to the use of 

fed-batch systems, enzyme supplementation, washing and detoxification steps, and 

additives, both individually and in combination, is still very much needed.  It is also 

important that a better understanding of some of the mechanisms that seem to have the 

greatest impacts on the conversion process is achieved.  Robust reactors capable of 

effectively mixing biomass slurries to minimize end-product inhibition and heat and mass 

transfer limitations are needed.  Additionally, the cost of enzymes, biomass and any 

necessary specialty equipment, as well as the best uses for any potential by-products 

produced in the conversion process, should be considered in the design stages.                

 

3.9 CONCLUSIONS 

 Recent national and international focus on producing biofuels and chemicals from 

lignocellulose has led to significant research on the development and optimization of 

effective conversion processes.  Several definitive conclusions regarding enzymatic 

hydrolysis performed at high-solids loadings can be made following a thorough review of 

the available literature on this topic: 

 

• Free-fall mixing is effective.  The advantages of this type of mixing system are 

numerous, and it has been employed successfully in other industrial processes. 

• The solids effect is real.  Although, the exact cause of this phenomenon has not 

been determined, there are several hypotheses that have been suggested, 

including 
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o lower cellulase adsorption (increased concentrations of glucose and 

cellobiose have been shown to inhibit the adsorption of enzymes onto 

cellulose); 

o product inhibition of enzymes occurs earlier because of the higher 

concentration of products; 

o inadequate mixing, which can emphasize diffusional limitations 

exacerbating product inhibition and access of enzyme to substrate; 

o interaction of water with substrate (water has been shown to be more 

tightly bound to lignocellulose as the solids loadings increase, thus less 

water is available to the enzymes to perform the hydrolysis reaction). 

• Contradictory evidence continues to raise questions regarding the lignocellulose 

conversion process.  For example, some studies have shown that washing solids 

following pretreatment can enhance sugar production and fermentation, while 

others have found the opposite to be true.  Additionally, arguments persist 

regarding the effects water has on the overall conversion process.  Lastly, as long 

as enzyme cost remains a large portion of the overall conversion cost, enzymes 

also demand further attention, especially with regards to proper loadings and 

combinations. 

• Fed-batch systems are worth investigating.  While there have been some 

conflicting results, many studies show overwhelming support for conducting 

high-solids operations as a fed-batch system. 

• The use of additives to reduce slurry viscosity has achieved some success at the 

lab-scale.  However, the economics of the use of additives on an industrial-scale 

should be validated prior to implementation at that level.        

The use of high-solids operations would make biofuels produced from the 

conversion of lignocellulose more economical and more price-competitive with 

petroleum.  Increasing sugar and ethanol yields while reducing capital and production 

costs, lowering energy demands and lowering water requirements will contribute to a 

more economically feasible process as compared to one operated at low- or moderate-

solids loadings.  Despite all the benefits of operating at high solids, the process remains 

restricted due primarily to the lack of available water within the culture, high viscosities, 
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which translate to difficulties with mixing and handling, and increased concentration of 

inhibitors, which extends reaction times and increases enzyme costs.  Researchers are 

attacking these issues from many angles, experimenting with different pretreatment 

methods and various enzyme sources and cocktails, while modifying operating conditions 

and slurry properties.  Although there has been some success at performing enzymatic 

hydrolysis at high solids at the pilot and demonstration scale, many questions must be 

resolved before the full potential of high-solids lignocellulose conversion will be realized.        
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CHAPTER 4:  LITERATURE REVIEW 

 

4.1 STRUCTURE OF LIGNOCELLULOSE 

 Lignocellulose is composed of three main fractions: cellulose, hemicellulose and 

lignin.  Cellulose typically makes up the largest portion of these fractions at about 30-

50% for herbaceous crops and about 40-50% for woody crops.  Cellulose is a linear 

polymer, formed from β-1,4-linked glucose units (Figure 4.1a) and can contain up to 

15,000 of these monomers (O'Sullivan 1997; Sticklen 2007).  The polymer chains bundle 

together into microfibrils.   In its native form, cellulose is relatively recalcitrant to 

depolymerization, stabilized by the inter- and intra-strand hydrogen bonding and the 

resulting van der Waals forces (Chang 2007; Zhang and Lynd 2004).  However, through 

a combination of pretreatment and enzymatic hydrolysis, cellulose can be depolymerized 

into fermentable sugars.   

 Hemicellulose, another carbohydrate polymer that makes up about 20-30% of 

lignocellulose (Girio et al. 2010), is more randomly assembled and structurally more 

complex than cellulose (Figure 4.1b) since it can be composed of several different types 

of sugars compared to only glucose for cellulose.  Hemicellulose is primarily comprised 

of xylan or glucomannan chains, intermixed with other components like hexose (glucose, 

mannose and galactose) and pentose (xylose and arabinose) sugars and uronic acids 

(glucuronic and galacturonic acids) (Hendriks and Zeeman 2009).  The variety and 

amount of each component is dependent on the lignocellulose source.  For example, 

glucoronoxylans form a major portion of hemicellulose in hardwoods, while 

galactoglucomannans account for a large portion of the hemicellulose of softwoods 

(Girio et al. 2010).  Unlike cellulose, hemicellulose is a branched polymer (Moxley and 

Zhang 2007; Sticklen 2007).  The hemicellulose often associated with agricultural 

residues (corn stover, wheat straw) contains branch points formed by arabinose and 

glucose chains substituted along the β-1,4-linked xylose backbone.  Cellulose is 

embedded within the hemicellulose matrix, which acts as a connection between the 

cellulose and lignin fractions.  Hemicellulose also helps provide rigidity to the 

lignocellulose structure (Hendriks and Zeeman 2009).         
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 Lignin is a complex, phenolic polymer (Figure 4.2) that acts as a protective 

barrier encasing cellulose and hemicellulose.  It also provides structural support and aids 

in the transport of water within the plant (Buranov and Mazza 2008; Grabber 2005; 

Petridis et al. 2011).  However, by nature’s design, lignin is a major obstacle in the 

degradation of cellulose and hemicellulose, with its irregular linkages and non-repetitive 

order of components.  The complexity of this polymer is due to three monolignol 

components, including p-coumaryl, coniferyl and sinapyl alcohols and many of their 

derivatives, polymerizing into an irregular network via a number of different linkages (β-

O-4, α-O-4, β-5, β-1, 5-5, 4-O-5 and β-β linkages).  Once integrated into the lignin 

polymer, these monolignols are referred to as p-hydroxyphenyl (H), guaiacyl (G) and 

syringyl (S) moieties, respectively (Buranov and Mazza 2008; Grabber 2005; Zhao et al. 

2012).  The ratio of H:G:S constituents of the lignin structure can vary depending on the 

source of the lignocellulose (Adler 1977).  For example, corn stover typically contains 

Figure 4.1.  Chemical structures of (a) cellulose and (b) 
hemicellulose.  The xylan backbone contains various side chains 
and branch points, including glucose, arabinose and acetate, 
making this carbohydrate chain more complex and variable than 
the linear cellulose chain.  Figures adapted from Menon and Rao 
(2012). 
 

(a) 

(b) 
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about 7-23% lignin (Cheng 2010; Lee et al. 2007) that is comprised of H:G:S constituents 

in a ratio of 4:35:61 (Table 4.2) (Grabber 2005).  However, softwoods are comprised of 

nearly 30% lignin and have a much different H:G:S ratio of 5:93.5:1.5 (Adler 1977).  

Rice straw has a more balanced proportion of these units in terms of guaiacyl and 

syringyl moieties, with an H:G:S ratio of 15:45:40.  Additionally, syringyl content has 

been linked to a plant’s resistance to fungal infection (Buranov and Mazza 2008).  It is 

important to note that the combination of these constituents is not only critical to the 

structure of the plant, but also has implications for tailoring conversion process steps to 

achieve optimum product yield.          

 

1. R1 = R2 = H
2. R1 = OCH3; R2 = H
3. R1 = R2 = OCH3

O H

R1

O H

R2

              
Figure 4.2.  Lignin (right) is a complex structure composed from three main 
monolignol components (left) being (1) p-coumaryl, (2) coniferyl and (3) sinapyl 
alcohols.  Possible sites for linking lignin to hemicellulose are denoted by ‘Ara’ 
(which represents arabinose).  Figures adapted from Adler (1977) and Buranov and 
Mazza (2008). 
 

 Lignin is attached to hemicellulose through a structure called the lignin-

carbohydrate complex (LCC) (Buranov and Mazza 2008; Grabber 2005).  In herbaceous 

biomass, the LCC is composed of a phenolic lignin unit linked to an arabinoxylan by 

ferulic acid (Figure 4.3), which reportedly varies from the type of LCCs present in woody 

biomass.  Additionally, the location of the ferulic acid has shown slight differences 
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depending on the lignocellulose source.  For example, in wheat bran the ferulic acid 

forms an ester linkage with the second carbon of an arabinose branch-point off a xylan 

backbone, whereas the ester linkage occurs on the third carbon in bagasse and on the fifth 

carbon for grasses.  It is believed that the ferulic acid acts as an anchoring point for the 

lignin into cell walls in the early stages of lignification, and have a significant impact on 

the ability to hydrolyze the carbohydrate fractions (Wu et al. 2011).  Grabber (2005) 

compared biomass with 4.5 g/kg with 15.9 g/kg ferulate cross-linkages and found 

biomass with only 4.5 g/kg ferulate cross-linkages produced 46% and 20% more sugar 

after 6 hr and 72 hr hydrolysis, respectively,  indicating that the reduction in ferulate 

cross-linking significantly impacted both the initial rate and the extent of hydrolysis of 

the modified biomass.  However, the degree of ferulate cross-linking is a function of the 

type of biomass and is not something that can be controlled, unless it is manipulated 

through genetic modifications of the plant.   

 

 
 

 
 

 

Lignin Unit Ferulic Acid Arabinoxylan

O

O

O

O H

O H

O
O

O

Xyl

H 3 CO

H 3 CO

Acid-labile 
ether bond 

Figure 4.3.  The lignin-carbohydrate complex.  Ferulic acid 
links the phenolic lignin unit with an arabinoxylan chain.  The 
resulting ether and ester bonds are susceptible to acid or alkali 
as denoted in the figure above.  Figure adapted from Buranov 
and Mazza (2008). 
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4.2 EFFECTS OF SODIUM HYDROXIDE PRETREATMENT ON STRUCTURAL COMPONENTS 

OF LIGNOCELLULOSE 

 Alkaline pretreatment with sodium hydroxide is a viable, low-cost option for 

modifying the structure of lignocellulose prior to hydrolysis and fermentation of the 

carbohydrate fractions.  It can be performed using a wide range of operating conditions 

(Hendriks and Zeeman 2009; Modenbach and Nokes 2012; Mosier et al. 2005).  For 

instance, reaction times can be as short as a few minutes or on the order of hours or days, 

with temperature ranging from ambient to 150°C (Galbe and Zacchi 2007; Jorgensen et 

al. 2007a).  Using sodium hydroxide for pretreatment is also advantageous over other 

pretreatments, like dilute acid and ammonia fiber expansion (AFEX).  The alkaline 

reagents are less caustic than dilute acid, and alkaline pretreatment can be performed at 

ambient pressure, unlike AFEX, eliminating the need for specialized corrosion-resistant 

equipment or that can withstand high pressures (Mosier et al. 2005).  It is also possible to 

recover and recycle alkaline reagents, potentially reducing costs associated with 

pretreatment (Mosier et al. 2005). 

 Alkaline pretreatment can play an important role in the conversion of 

lignocellulose.  With a narrow profit margin for commodity chemicals like ethanol, it is 

imperative to develop a conversion process that can be integrated into a biorefinery 

concept.  A biorefinery, modeled after the traditional petroleum refinery, should be 

capable of economically producing a variety of valuable and useful products, including 

liquid transportation fuels, commodity chemicals and precursory chemical building 

blocks.  Pretreatments using dilute acid and liquid hot water tend to remove the 

hemicellulose fraction, eliminating a potentially valuable energy stream.  Xylose, the 

predominant carbohydrate found in hemicellulose of herbaceous biomass, can either be 

fermented by organisms capable of utilizing pentoses or be converted into other chemical 

building blocks like xylitol and glycerol (Werpy and Peterson 2004).  Residual solids 

(like lignin) produced from alkaline pretreatment can even be used to generate a number 

of other products.  For example, lignin and/or its components can be used as a solid fuel 

source that can be burned to produce heat and electricity for the biorefinery or distributed 

to the grid for residential or commercial use (Jorgensen et al. 2007a; Ragauskas et al. 

2006); as a component of phenolic powder resins, polyurethane foams, epoxy resins, or 
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biodispersants (Kadam et al. 2008; Lora and Glasser 2002); or as valuable food and 

industrial products like vanillin, ferulic acid or vinyl guaiacol (Buranov and Mazza 

2008). 

 

4.2.1 Mechanism of Sodium Hydroxide Pretreatment 

 The ferulic acid linkage between the lignin and the hemicellulose fractions is the 

point of reaction during NaOH pretreatment (Buranov and Mazza 2008).  The ester bond 

between the ferulic acid and the carbohydrate is highly susceptible to alkali degradation, 

as the hydroxide ion (dissociated from NaOH) increases the rate at which the hydrolysis 

reaction occurs as compared to water (Bruice 2004).  The mechanism of alkaline 

pretreatment (Figure 4.4) is such that the hydroxide ion attacks the carbon of the ester 

bond (step 1), whether between the lignin and carbohydrate or even between two lignin 

components or two carbohydrate components.  A tetrahedral intermediate forms (step 2), 

but quickly collapses when a negatively-charged oxygen atom expels an alkoxide (–

OCH3) from the carboxylic acid (step 3).  In a very fast reaction, the resulting alkoxide 

acts as a base, deprotonating the carboxylic acid (step 4).  The result is the irreversible 

hydrolysis of the ester bond, weakening the structural integrity of the lignocellulose. 
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Figure 4.4.  Mechanism of base hydrolysis of an ester bond.  The hydroxide ion 
attacks the C of the C=O.  A tetrahedral intermediate forms but immediately 
collapses as an alkoxide leaves the carboxylic acid.  In a very fast reaction, the 
alkoxide acts as a base and deprotonates the carboxylic acid.  Arrows pointing from 
molecular components to other components or bonds indicate movement of 
electrons.  Figure adapted from Carey (2000). 
 

4.2.2 Structural Changes Associated with Sodium Hydroxide Pretreatment 

 Pretreatment with sodium hydroxide results in several structural modifications of 

lignocellulose beneficial for enzymatic hydrolysis.  Bonds linking the protective lignin 

barrier with hemicellulose are broken.  Depending on the pretreatment conditions, lignin 

is partially or totally solubilized, and degradation of the hemicellulose fraction may 

occur. Sodium hydroxide pretreatment also swells the lignocellulose particles, leading to 

an increase in surface area and greater accessibility to the cellulose fraction.  



 

 111 

Additionally, a decrease in the degree of polymerization and crystallinity of the cellulose 

is likely, increasing the enzymatic digestibility of the polysaccharide. 

 Solids loading of the system can also have significant impacts on the effectiveness 

of the pretreatment.  At low solids loadings (<10%), where most conventional 

pretreatments have been developed, pretreatment processes have been shown to facilitate 

conversion of biomass into fermentable sugars (Modenbach and Nokes 2012).  However, 

these systems with higher water contents also require higher costs for handling and 

removing excess water and neutralizing the material prior to subsequent conversion steps.  

There is also the concern of treating a large effluent of wastewater, especially in instances 

where recycling and/or recovery of the pretreatment chemical are not possible.  Some 

research has been conducted using NaOH pretreatment with higher solids loadings 

(Cheng et al. 2010; Cui et al. 2012) as a way to reduce the water requirements necessary 

during pretreatment.  At high-solids loadings (>15%), many challenges that are not 

apparent with low solids loadings emerge.  For instance, there may be little to no free 

water in the reactor, which could significantly impact the effectiveness of the 

pretreatment (Kristensen et al. 2009b), since water aids in chemical reactions, reduces the 

viscosity of the slurry by increasing the lubricity of the particles, provides a medium for 

mass transfer by diffusion of the NaOH to the lignocellulose material and improves the 

handling capability of the bulk material (Modenbach and Nokes 2012).  While it is not 

possible to give a definitive recommendation for the optimal moisture content during 

NaOH pretreatment without further study, it is possible to say that many factors must be 

considered when choosing pretreatment conditions in order to obtain an optimal sugar 

recovery and yield in subsequent processing steps.  

             

4.2.2.1 Structural Changes of Lignin 

 Lignin is the main component of lignocellulose affected by NaOH pretreatment, 

and the pulp and paper industry have long taken advantage of alkaline delignification in 

the Kraft process used in paper-making (Zhao et al. 2012).  The Kraft process uses NaOH 

at elevated temperatures (160°C-170°C) together with sodium sulfide to remove lignin 

and produce cellulose fibers from woody biomass (Hamaguchi et al. 2012; Wu et al. 

2011).  However, by-products of the Kraft process, like sulfur compounds and 
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chlorinated compounds (Kadam et al. 2008), may have negative effects on other 

downstream processes in the conversion process.  Additional processing to remove these 

compounds, as well as the wastewater treatment that would be required, can complicate 

pretreatment processes that directly mimic the Kraft process.  Sodium hydroxide alone is 

capable of removing lignin from lignocellulose of hardwood and herbaceous biomass, 

much simplifying the process.  However, as alkaline pretreatment is developed for use 

prior to enzymatic hydrolysis in the conversion of lignocellulose into transportation fuels 

and other chemicals, researchers are more closely investigating the effects of alkaline 

pretreatment conditions on the delignification of biomass. 

 The alkaline pretreatment reacts with the ester bonds linking the lignin to the 

hemicellulose in the LCC network.  As these bonds are broken, the LCC networking is 

disrupted, allowing lignin components to be solubilized.  Duguid et al. (2009) saw <2% 

reduction in lignin in corn stover when pretreated with 5.8 g NaOH/100 g biomass at 

room temperature for 2 hr, whereas Chen et al. (2009) observed 73.9% lignin removal in 

corn stover when pretreated with 16 g NaOH/100 g biomass at 121°C for 30 min (Table 

4.1).  Alkaline pretreatment can also cause xylan solubilization, especially where xylan is 

associated with the LCC complex (Cui et al. 2012).  For instance, Cui et al. (2012) 

reported up to 34% loss of xylan coupled with 22% lignin degradation during 

pretreatment with 5 g NaOH/100 g biomass and 75% moisture content for 90 days.   It 

has been hypothesized that disruption of this cross-linking enhances enzyme adsorption 

and enzyme effectiveness by reducing inhibition of xylooligomers and unproductive 

binding with lignin (Kim and Holtzapple 2006; Kumar et al. 2009a; Wu et al. 2011).  

Removal of lignin by NaOH often leads to the release of acetyl groups and uronic acid 

substitutions, which can enhance the digestibility of cellulose and hemicellulose (Cui et 

al. 2012; Kumar et al. 2009a; Wan et al. 2011).  However, hydrolytic enzymes can be 

inhibited by some of these degradation products, like xylooligomers (Qing et al. 2010), 

organic acids, phenols (Kim et al. 2011), furfural and hydroxymethyl furfural (HMF) 

(Hodge et al. 2008), making the selection of process conditions, like alkaline loading, 

moisture content, temperature and time, extremely important.  Balance is the key to 

achieving optimal lignin removal, while limiting the production of inhibitory compounds.  

For instance, Cui et al. (2012) found that delignification was influenced by NaOH 
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loading, time and moisture content during long-term wet-storage of corn stover.  Addition 

of 2-5 g NaOH/100 g biomass increased lignin degradation by ~10-25% over a 90 day 

storage period; however, most of this lignin degradation occurred within the first five 

days of storage.  A higher loss in xylan (up to 34%) was also observed with the increase 

in lignin degradation.  Wan et al. (2011) also observed a sharp increase in xylan 

degradation with an increase in lignin degradation.  As NaOH loading increased from 4 g 

NaOH/100 g biomass to 40 g NaOH/100 g biomass, lignin degradation increased 

moderately from ~7% to ~15%, but xylan removal increased from 5% to nearly 50% over 

the same NaOH loadings.  Although no inhibition was observed during enzymatic 

hydrolysis and inhibitor concentrations were not measured, the presence of inhibitory 

compounds from the degradation of xylan is possible.  However, they were likely 

removed during the washing and neutralizing of the soybean straw prior to use in the 

hydrolysis reaction. 
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Table 4.1.  Effects of pretreatment conditions on biomass composition and enzymatic hydrolysis of cellulose to glucose. 
   ---- Pretreatment Conditions ---- ----- Biomass Composition -----   

Glucose 
Conversiona 

Glucose 
Yield (mg/g 
substrate)b 

  

Substrate 

NaOH Loading (g 
NaOH/100 g 

biomass) 
Time 
(hr) 

Temp 
(°C) Glucan Xylan Lignin Delignification Ref. 

Woody Biomass           
 Poplar - - - 43.8% 14.9% 29.1% - - - Gupta and 

Lee (2010)   15 24 60 40.2% 13.2% 21.7% 25.4% 22.0% 98 
 50 41.8% 8.1% 23.1% 20.6% 25.6% 119 
 Mixed 

hardwood 
- - - 42.8% 14.6% 23.9% - - - Sills and 

Gossett 
(2012) 

 10 24 25 48.1% 15.2% 21.3% 10.9% 51.0% 272 
 20 49.4% 15.3% 20.4% 14.6% 53.0% 291 
 Birch - - - 41.0% 27.9% 29.7% - - - Mirahmadi 

et al. 
(2010) 

 7 2 100 56.1% 8.0% 25.2% 15.0% 80.0% 498 

 Spruce - - - 43.0% 20.8% 28.8% - - - Mirahmadi 
et al. 
(2010) 

 7 2 5 50.0% 15.9% 28.2% 2.1% 35.0% 194 

 Spruce - - - 49.8% 5.4% 30.6% - - - Zhao et al. 
(2008)  140 24 -15 54.1% 3.8% 29.0% 19.0% 61.0% 366 

 23 53.4% 3.8% 29.2% 18.7% 18.0% 107 
 2 60 53.2% 3.7% 28.8% 19.5% 19.0% 112 
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Table 4.1., continued.  Effects of pretreatment conditions on biomass composition and enzymatic hydrolysis of cellulose to 
glucose. 
   ---- Pretreatment Conditions ---- ----- Biomass Composition -----   

Glucose 
Conversiona 

Glucose 
Yield (mg/g 
substrate)b 

  
 

Substrate 

NaOH Loading (g 
NaOH/100 g 

biomass) 
Time 
(hr) 

Temp 
(°C) Glucan Xylan Lignin Delignification Ref. 

Herbaceous Biomass 
 Corn stover - - - NRc NR NR - - - Cui et al. 

(2012)  2 90 d 23 NR NR NR 11.6% 20.7% NR 
 3.5   NR NR NR 20.2% 25.7% NR 
 5   NR NR NR 22.1% 37.4% NR 
 Corn stover - - - 36.0% 21.0% 23.0% - - - Duguid et 

al. (2009)  2.9 2 room NR NR NR <2% NR 180 
 5.8 NR NR NR <2% NR 240 
 Corn stover - - - 34.6% 21.8% 17.7% - - - Gupta and 

Lee (2010)  10 24 60 31.0% 17.4% 6.3% 64.4% 82.0% 282 
 15 30.1% 16.2% 4.9% 72.3% 93.8% 313 
 50 27.9% 7.6% 3.3% 81.4% 99.8% 309 
 Corn stover - - - 36.2% 20.1% 21.2% - - - Zhang et 

al. (2011)  2.5 9 21 NR NR NR 18.0% NR 200 
 5 NR NR NR 31.0% NR 225 
 10 NR NR NR 48.0% 80.0% 320 
 Corn stover - - - 39.2% 23.2% 13.5% - - - Sills and 

Gossett 
(2012) 

 10 24 25 45.7% 27.2% 11.2% 17.0% 67.0% 340 
 20 50.9% 27.4% 7.7% 43.0% 80.0% 452 
 Corn stover - - - 38.7% 21.7% 19.3% - - - Chen et al. 

(2009)  16 0.5 120 64.1% 24.6% 8.6% 55.4% 80.0% 569 
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Table 4.1., continued.  Effects of pretreatment conditions on biomass composition and enzymatic hydrolysis of cellulose to 
glucose. 
   ---- Pretreatment Conditions ---- ----- Biomass Composition -----   

Glucose 
Conversiona 

Glucose 
Yield (mg/g 
substrate)b 

  
 

Substrate 

NaOH Loading (g 
NaOH/100 g 

biomass) 
Time 
(hr) 

Temp 
(°C) Glucan Xylan Lignin Delignification Ref. 

 Wheat straw - - - 36.0% 26.0% 7.6% - - - McIntosh 
and 
Vancov 
(2011) 

  7.5 1.5 60 NR NR NR 23.0% NR 275 
  10   NR NR NR 35.0% NR 290 
  20   NR NR NR 42.0% NR 350 
 Soybean 

straw 
- - - 34.1% 11.4% 21.6% - - - Wan et al. 

(2011)  4 24 24 NR NR NR 8.0% 47.0% NR 
 12 NR NR NR 10.0% 50.0% NR 
 20 NR NR NR 12.0% 52.0% NR 
 40 NR NR NR 14.8% 64.6% NR 
 Rice straw - - - 36.3% 19.5% 17.6% - - - Cheng et 

al. (2010)  4 2 55 32.5% 22.4% 14.0% 19.2% 36.3% 118.1 
 4d 3  32.8% 22.4% 13.3% 23.1% 39.2% 142.3 
 Sweet 

sorghum 
bagasse 

- - - 38.7% 22.6% 15.4% - - - Wu et al. 
(2011)  40 2 25 NR NR NR 66.0% 92.0% NR 

 80 NR NR NR 76.0% 95.0% NR 
 200 NR NR NR 80.0% 99.0% NR 
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Table 4.1., continued.  Effects of pretreatment conditions on biomass composition and enzymatic hydrolysis of cellulose to 
glucose. 
   ---- Pretreatment Conditions ---- ----- Biomass Composition -----   

Glucose 
Conversiona 

Glucose 
Yield (mg/g 
substrate)b 

  
 

Substrate 

NaOH Loading (g 
NaOH/100 g 

biomass) 
Time 
(hr) 

Temp 
(°C) Glucan Xylan Lignin Delignification Ref. 

 Switchgrass - - - 32.0% 17.9% 21.4% - - - Xu et al. 
(2010)  20 96 21 NR NR NR 63.0% 74.0% 262.9 

 12 50 NR NR NR 71.0% 77.7% 276.1 
 0.5 121 NR NR NR 82.0% 78.5% 279.1 
 Switchgrass - - - 38.7% 22.6% 21.1% - - - Sills and 

Gossett 
(2012) 

 10 24 25 43.3% 23.1% 16.6% 12.2% 47.0% 226 
 20 48.7% 23.5% 14.1% 25.4% 61.0% 330 
aGlucose conversion is the ratio of the amount of glucose released during enzymatic hydrolysis to the theoretical amount of glucose available 
bGlucose yield is the ratio of the mass of glucose released during enzymatic hydrolysis to the mass of the initial biomass  
cNR = not reported 
dBiomass pretreated under indicated conditions was not washed prior to enzymatic hydrolysis 
Values in bold denote composition of raw biomass prior to pretreatment 
Theoretical glucan-to-glucose yield (in mg glucose/g biomass) can be calculated by: Glucan % × 100 g biomass × 1.11 g glucose/g glucan × 1000 mg/g 
Theoretical glucan-to-ethanol yield (in g ethanol/g biomass) can be calculated by: Glucan % × 100 g biomass × 1.11 g glucose/g glucan × 0.511 g ethanol/g 
glucan 
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 As mentioned previously, lignin structures vary with different sources of 

lignocellulose, which means that NaOH pretreatment works more effectively on some 

sources of biomass than others.  Shimizu et al. (2012)  investigated the effects of NaOH 

on the degradation of the β-O-4 bonds between model lignin dimers.  They reacted 

guaiacyl-guaiacyl (G-G), guaiacyl-syringyl (G-S), syringyl-guaiacyl (S-G) and syringyl-

syringyl (S-S) dimers with a 1 M NaOH solution at 40-70°C for 3-7 hr and found that the 

compounds containing a syringyl unit reacted more readily in the alkaline solution as 

compared to G-G dimers.  The orientation of the dimer components also affected the rate 

of degradation, as the S-G and G-S dimers did not degrade at an equivalent rate.  The 

order of the rates of degradation was determined as follows: S-S > G-S > S-G > G-G, 

where S-S degraded nearly 7.5-fold faster than G-G at 130°C.  As with these model 

lignin compounds, real sources of lignocellulose containing a higher proportion of 

syringyl units is more easily delignified.  Lignin from hardwoods is composed of ~7-40 

times more syringyl units than lignin from softwoods (Adler 1977), making hardwoods 

more susceptible to alkaline pretreatment than softwoods (Shimizu et al. 2012).  Rice 

straw, bagasse and some grasses, which tend to have S-G ratios more similar to 

hardwoods than to softwoods, have shown significant lignin removal following alkaline 

(NaOH) pretreatment at short reaction times and moderate temperatures (data not given) 

(Wu et al. 2011).  These sources of lignocellulose also contain high levels of syringyl 

units (10-65%) in the lignin fraction (Adler 1977). 
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Table 4.2.  Typical ratios of lignin 
moieties found in various biomass 
sources.  Ratios compiled from 
Buranov and Mazza (2008) and 
Lapierre et al. (1995). 
Biomass H:G:S 
Woody Biomass  
Poplar 0:37:63 
Oak 0:32:68 
Birch 0:22:78 
Spruce 2:98:0 
Pine 18:82:0 
Herbaceous Biomass  
Corn 4:35:61 
Wheat 5:49:46 
Rice 15:45:40 
Flax 4:67:29 

 

4.2.2.2 Degradation of Cellulose 

 Alkaline degradation of cellulose is dependent on several factors, including the 

nature and concentration of the alkali, the nature and origin of the cellulose and 

temperature (Ciolacu and Popa 2005; Fengel et al. 1995; Knill and Kennedy 2003).  At 

relatively low temperatures (<100 °C) and low alkali concentrations (<4%), structural 

changes for cellulose are insignificant, as glycosidic β (1, 4) linkages are alkali stable 

under these conditions (Knill and Kennedy 2003).  Kim and Holtzapple (2006) reported 

no significant structural changes or degradation to cellulose pretreatment with 50 g 

Ca(OH)2/100 g biomass at low temperatures (25°C-55°C), even for extended 

pretreatment times up to 16 weeks.  Another study (Cui et al. 2012) reported that long-

term storage (90 days) of wet corn stover without the addition of NaOH resulted in ~10% 

loss of cellulose; however, storage with the application of 2 g NaOH/100 g biomass 

caused only ~5% degradation of cellulose.  The addition of NaOH likely made the 

environmental conditions unfavorable for microorganisms that would have grown on the 

cellulose, thus protecting it from microbial degradation.  These conditions (low alkali 

concentrations and low to moderate temperatures) are favorable for lignocellulose 

pretreatment because lignin is affected, but most of the cellulose remains unaltered and 

available for hydrolysis into fermentable carbohydrates. 
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 At higher alkali concentrations (>6%), many structural and morphological 

changes begin to occur in cellulose.  As alkali concentrations increase, crystallite 

structures (regions of highly ordered polymer chains interspersed with more amorphous 

regions) begin to swell.  The swelling starts first in amorphous regions, followed by the 

crystalline region.  The degree of polymerization (DP) and the degree of crystallinity 

(CrI; crystallinity index) decrease with increasing alkali concentration (Eronen et al. 

2009; Mittal et al. 2011).  Ciolacu and Popa (2005) studied the structural changes of 

microcrystalline cellulose, cellulose linters (secondary growth of short, thick-walled 

fibers produced by cotton) and spruce pulp treated with several alkali concentrations (0-

18% NaOH).  At 18% NaOH, they observed similar reductions (~19%) in both the DP 

and CrI for microcrystalline cellulose and cellulose linters as compared to treatment 

without the addition of alkali, whereas the DP and CrI of spruce pulp were reduced by 

27% and 36%, respectively.  These structural changes are advantageous for the 

conversion of lignocellulose into fermentable sugars because enzymatic hydrolysis is 

enhanced as amorphous regions of cellulose are more easily digested by cellulolytic 

enzymes. 

 Additionally, increased alkali concentrations can lead to partial or total 

transformation of cellulose I to cellulose II through a process known as mercerization 

(Ciolacu and Popa 2005; Eronen et al. 2009).  Cellulose I is natural cellulose produced by 

bacteria, algae and higher-order plants, where the cellulose chains are parallel to one 

another (Figure 4.5).  Cellulose II is a form of regenerated cellulose in which the chains 

lie antiparallel to one another (O'Sullivan 1997).  This transformation begins at NaOH 

concentrations of about 7.5%-10% and 10%-12.5% for spruce pulp and cotton linters, 

respectively (Ciolacu and Popa 2005).  At these concentrations, the cellulose lattice-work 

swells as intermolecular hydrogen bonds are broken and chain conformations are altered, 

resulting in amorphous regions.  Cleavage of intramolecular hydrogen bonds further 

degrades the structural regularity of the crystalline regions of cellulose, subsequently 

reducing the DP and the crystallinity of the cellulose.  Eronen et al. (2009) used Raman 

spectroscopy to show the structural changes that resulted from breaking these hydrogen 

bonds.  They also reported that AFM imaging revealed that cellulose II appeared to be 

more granular as compared to cellulose I, indicating that transformation from cellulose I 
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to cellulose II not only changes the chemical structure but also the physical appearance of 

the cellulose.  

 

 
  

 The nature and the origin of the cellulose plays a significant role in structural 

changes caused by alkaline treatment, as evidenced by the differences in reduction of DP 

and CrI in pure cellulose substrates (microcrystalline cellulose and cellulose linters) as 

compared to lignocellulose (spruce pulp) substrates discussed previously.  Additionally, 

Ishikura et al. (2010) reported longitudinal contraction and changes in mechanical 

properties of wood; however, lattice transformations typical of alkali-treated cotton fibers 

were not observed.  It was hypothesized that the lignin matrix likely prevented sufficient 

swelling of the cellulose fibers and crystallites that leads to lattice transformations.  

However, some pockets of swelling do occur and result in regions of amorphous cellulose 

where crystalline cellulose was previously, since the fibers could not return to the 

crystalline structure upon removal of the NaOH.  Degradation of cellulose treated with 

NaOH is also dependent on the initial DP of the cellulose.  Mittal et al. (2011) reported 

that cellulose sources with greater initial DP were not solubilized as readily as cellulose 

Figure 4.5.  Schematic of two cellulose polymorphs (a) 
cellulose I and (b) cellulose II.  The dotted lines indicate 
possible hydrogen bonds between neighboring strands of 
cellulose. 
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sources with lower initial DP.  For example, Avicel, which had a lower DP (~90) than 

other cellulose sources investigated, released nearly 20% of its cellulose when treated 

with 1926 g NaOH/100 g cellulose at 25°C for 2 hr.  Cellulose was more easily 

solubilized for Avicel fractions with a DP <40.  Conversely, cotton linters, which had an 

initial DP of 600, experienced very little cellulose solubilization during the NaOH 

treatment.  Comparatively, the DP of corn stover is reported to be ~7,000, much higher 

than other sources of pure cellulose (Kumar et al. 2009a).   

 The temperature at which the alkaline treatment of cellulose is conducted can also 

cause significant changes to the structure.  Low to moderate temperatures (<100°C) are 

preferential for alkaline pretreatment prior to the conversion of lignocellulose to 

fermentable sugars, since cellulose is affected very little at these temperatures, as 

mentioned earlier.  However, at higher temperatures (>100°C), cellulose is more likely to 

undergo significant degradation and structural changes.  Boiling cellulose in a NaOH 

solution can lead to a reaction known as “peeling” or “unzipping”, where reducing ends 

of the cellulose chain are subjected to β-alkoxy-carbonyl elimination.  The resulting 

products are a glucoisosaccharinic acid and another reducing end that propagates the 

peeling reaction (Knill and Kennedy 2003; Machell et al. 1957), with an average of 

nearly 50 glucose molecules removed before termination occurs (Whistler and Bemiller 

1958).  However, some reducing ends may remain stable if they are inaccessible to the 

alkali due to the nature of the cellulose, leading to the termination of further degradation.  

At even higher temperatures (>170°C), hydrolysis or alkaline scission can occur at 

random locations along the cellulose chain (Knill and Kennedy 2003).  This hydrolysis 

can lead to new reducing ends that are vulnerable to degradation.  Peeling, termination 

and scission tend to occur in anaerobic conditions; however, under oxidized conditions, 

carbonyl groups are often hydrolyzed.  More specifically, carbonyl groups located at any 

position along the cellulose chain (except those positioned as an end group) are extremely 

alkali labile even under mild conditions, and nearly all cellulose molecules containing 

these carbonyl groups are hydrolyzed (Knill and Kennedy 2003), indicating that alkaline 

pretreatment may be more effective in an oxidative environment. 
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4.2.2.3 Changes to Hemicellulose 

 Hemicellulose, with its branched and somewhat irregular structure, tends to be the 

most sensitive of the three lignocellulose fractions to changes in pretreatment conditions 

(Chandra et al. 2007).  In dilute alkaline pretreatment conditions, hemicellulose remains 

mostly intact with the cellulose fraction (Chandra et al. 2007; Varga et al. 2002); 

however, some studies have shown that hemicellulose can be solubilized as NaOH 

concentrations increase.  For example, both Varga et al. (2002) and Li et al. (2004) found 

that hemicellulose content in the solid fraction was reduced by more than 60% when 

pretreating lignocellulose with 10% NaOH.  Solubilization of hemicellulose in these 

more severe pretreatment conditions can also lead to further degradation of sugars into 

furfural and HMF, two components known for their inhibitory effects on fermentation 

(Chandra et al. 2007).   Additional changes occurring during the alkaline pretreatment of 

lignocellulose that have been noted include saponification of the ester bonds that link 

hemicellulose to other lignocellulosic components, removal of acetyl and uronic acid 

substitutions on hemicellulose and the formation of salts both in solution and 

incorporated into the lignocellulose (Carvalheiro et al. 2008). 

 

4.2.3 Limitations of Sodium Hydroxide in Pretreatment 

 Currently, pretreatments are typically chosen in such a way as to limit inhibitor 

production while optimizing glucose retention for subsequent processing steps.  Even 

though progress has been made through supplementing cellulases with xylanases during 

enzymatic hydrolysis and genetically modifying fermentation organisms, glucose is still 

the favored feedstock of existing fermentation technology.  One limitation of sodium 

hydroxide pretreatment is that in mild operating conditions, this pretreatment requires 

long reaction times, usually on the order of hours or days (Balat et al. 2008).  Also, 

cellulose and hemicellulose are left relatively intact, while only the lignin is modified 

(Chandra et al. 2007).  Not only can hemicellulose act as a barrier if left in the solid 

fraction with cellulose, but any portions that are solubilized during pretreatment can act 

as inhibitors to the cellulase enzymes used in enzymatic hydrolysis (Qing et al. 2010).  

However, other pretreatments like dilute acid and liquid hot water simply solubilize the 

hemicellulose fraction and discard it with the waste stream, essentially eliminating a large 
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portion of potential energy.  If harsher conditions are used to remove more of the 

hemicellulose in sodium hydroxide pretreatment, then not only does the potential 

carbohydrate yield decrease, but solubilized hemicellulose components can be degraded 

further into furan derivatives and their acids (furfural, HMF, formic acid and levulinic 

acid), which are inhibitory to fermentative organisms at concentrations as low as 1 g/L 

(Cantarella et al. 2004).  Since the main mechanism of this pretreatment is delignification 

of biomass, it is most effective on herbaceous biomass.  Woody biomass or biomass high 

in lignin reduces the usefulness of the sodium hydroxide pretreatment (Balat et al. 2008; 

Galbe and Zacchi 2007).  Additionally, lignin may not be completely solubilized, but 

simply redistributed and condensed onto the cellulose, eliminating any positive effects  

from structural changes associated with lignin removal and swelling of the biomass 

(Hendriks and Zeeman 2009).  Lastly, not all of the sodium hydroxide can be recovered 

and recycled like in alkaline pretreatment with lime.  Some of the sodium hydroxide is 

consumed during the pretreatment, being incorporated into the biomass as salts (Balat et 

al. 2008; Carvalheiro et al. 2008; Mosier et al. 2005). 

 

4.3 INHIBITORS 

 One of the major challenges associated with the processing of lignocellulose for 

conversion into other products is the unintentional production of inhibitors during the unit 

operations upstream of fermentation.  Both pretreatment and hydrolysis processes are 

known to produce compounds inhibitory to subsequent processes when performed under 

certain conditions (Elander et al. 2009; Hodge et al. 2008; Holtzapple et al. 1990; Kim et 

al. 2011; Palmqvist and Hahn-Hagerdal 2000; Qing et al. 2010; Thomsen et al. 2009; 

Ximenes et al. 2011b).  Limiting the production of inhibitors not only provides a better 

environment for the enzymes and fermentative organisms to perform at their optima, but 

it also limits the amount of fermentable sugars lost to degradation products.  Both of 

these aspects have a significant impact on final useful product yields and ultimate 

feasibility of the process. 

 Each pretreatment method has its own advantages and disadvantages, especially 

in terms of production of inhibitors.  The duration, pH and temperature of the 

pretreatment, as well as the lignocellulose material being pretreated, all contribute to the 
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types of inhibitors that are produced (Vertes et al. 2010).  Figure 2.1 illustrates the variety 

and origins of just a few examples of degradation products formed during pretreatment 

processes.  Furfural and hydroxymethyl furfural (HMF) are two of the most common 

inhibitors produced from the degradation of pentoses and hexoses, respectively, under 

acidic conditions (Klinke et al. 2004).  Solubilization of lignin can lead to the production 

of  phenolic degradation products (Ximenes et al. 2011b), like vanillin and guaiacol, as 

well as organic acids, like acetic and formic acids (Vertes et al. 2010). 

 Inhibitors produced during pretreatment and enzymatic hydrolysis can greatly 

impact enzyme activity, slowing down the rate and/or extent of hydrolysis.  

Monosaccharides (glucose, xylose) and oligosaccharides (glucooligomers, 

xylooligomers) produced from the solubilization of cellulose and hemicellulose under 

certain pretreatment conditions have been shown to be inhibitory to cellulolytic enzymes 

(Kim et al. 2011; Qing et al. 2010).  Even though the goal of enzymatic hydrolysis in the 

conversion process is to break down the cellulose into glucose to be used in fermentation, 

glucose and cellobiose produced from the catalytic activity of the enzymes are also 

known inhibitors of the cellulase enzymes due to product inhibition inherent in enzymes.  

For instance, Holtzapple et al. (1990) reported that cellulase retained only 37% of its 

activity when subjected to a 55% glucose solution.  Cellobiose is a strong inhibitor of 

cellulase, so β-glucosidase is often used to supplement the cellulase to reduce the 

inhibitory effects of cellobiose.  Additionally, phenol-based compounds also inhibit 

cellulase enzymes.  In one study, it was shown that vanillin at a concentration of 10 g/L 

reduced cellulose hydrolysis of wet cake by 50% (Ximenes et al. 2011b).  Enzymatic 

hydrolysis is already considered the bottleneck of the lignocellulose conversion process.  

Production of compounds that could retard the rate of hydrolysis any further is highly 

undesirable. 

 Fermentative organisms are also highly susceptible to inhibitory compounds 

produced during the degradation of lignocellulosic material.  Sugar degradation products 

furfural and HMF can affect cell growth and ethanol production rates at relatively low 

concentrations.  At ~4 g/L, HMF can increase the lag phase prior to growth and 

metabolic activities of Saccharomyces cerevisiae.  Slightly higher concentrations of HMF 

(15 g/L) can completely inhibit growth and product formation of the yeast (Vertes et al. 
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2010).  Um and van Walsum (2012) reported a production of ~18 g/L HMF resulting 

from a dilute acid pretreatment performed at 185°C for 35 min with 0.7% (w/v) sulfuric 

acid on 8% solids.  However, the effects of inhibitors can be cumulative, and complete 

inhibition can occur at even lower concentrations when multiple inhibitors are present in 

combination (Klinke et al. 2004).  Phenols, like vanillin, can be inhibitory at still lower 

concentrations (~1.5 g/L) (Palmqvist and Hahn-Hagerdal 2000; Vertes et al. 2010).  

Organic acids, like acetic and formic, tend to have a lesser effect on S. cerevisiae than 

some bacterial fermentative organisms, although the growth of the yeast can be impacted 

(Vertes et al. 2010).                

 

4.4 MODELING OF HETEROGENEOUS SYSTEMS 

Modeling has been used for many years to predict or to gain a better 

understanding of enzymatic hydrolysis of cellulose.  Many existing kinetic models are 

based on the Michaelis-Menten equation.  However, one of the underlying assumptions 

for deriving this equation is that the reaction is homogeneous (single-phase) in nature 

(Fan and Lee 1983; Xu and Ding 2007).  Enzymatic hydrolysis of cellulose is, in fact, a 

heterogeneous reaction because the cellulase is soluble whereas the cellulose is insoluble.  

Therefore, the enzyme and the substrate are found in two different phases, making this 

reaction heterogeneous. 

 While models that consider the heterogeneous nature of the reaction have been 

developed in recent years, it is interesting to note two older studies that recognized the 

problem of heterogeneity (Fan and Lee 1983; Huang 1975).  However, these studies then 

made assumptions that essentially resulted in models constructed for homogeneous 

systems. 

 More recently, Valjamae et al. (2003) applied fractal kinetics to the enzymatic 

hydrolysis of cellulose.  Fractal kinetics had previously proven to be effective in 

modeling chemical reactions that are diffusion-limited or dimensionally-restricted 

(Movagarnejad et al. 2000; Valjamae et al. 2003), both of which can be used to describe 

the hydrolysis reaction of lignocellulose.  Dimensional restriction is very probable in the 

case of cellulose hydrolysis, since once attached, the exoglucanase enzyme proceeds 

along the cellulose fibril in one direction.   In fractal kinetics, the rate coefficient is time-
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dependent and decreases with time.  It is possible that dimensional restriction is 

responsible, at least in part, for the decrease seen in reaction rates.  Diffusion limitations 

may also play a part in the reduction of the reaction rate.  The availability of water in 

these processes, especially as solids loadings are increased, can impact the effectiveness 

of these conversions.  Selig et al. (2012) found that all solids (soluble and insoluble) 

constrain water in such a way that it is not as readily available for the reaction, with 

soluble components constraining water more tightly than insoluble solids.  It is 

hypothesized that as the reaction progresses, more solubilized species are present, 

impacting the availability of water and the environment of the system in a way that is 

detrimental to the overall reaction rate.  The results of the work by Selig et al. (2012) 

further support the incorporation of a fractal component in lignocellulose hydrolysis 

models. 

In 2007, Xu and Ding (Xu and Ding 2007) returned to the idea of fractal kinetics, 

but they also incorporated the concept of “jamming” into their model.  (See Chapter 7 for 

model equations.)  They contend that the size of the cellulase enzymes is large in 

comparison to the distance between individual cellulose chains, so as the enzymes bind to 

available active sites, they block other’s active sites (Figure 4.8).  The enzymes 

essentially cause a traffic jam, decreasing the rate at which the cellulose is broken down.  

Xu and Ding recognize the fact that their model is not complete and could greatly benefit 

from some improvements, but it is a good first attempt at explaining the fractal kinetics 

and jamming concepts.  Also, they use Avicel, a model cellulose, for the experimental 

portion of this study.  Using a more realistic substrate like pretreated corn stover to 

validate the mathematical model presented herein could provide great insights into the 

adequacy of the proposed hydrolysis mechanism. 
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Bommarius and coworkers (2008) use the fractal and jamming model proposed by 

Xu and Ding (2007) to fit their experimental hydrolysis data, performed at 10% (w/v) 

cellulose and enzyme loadings of 0.125-62.5 FPU/g cellulose.  However, they were 

studying the effects of pretreatment methods on cellulose and, therefore, also used a 

model substrate (Avicel).  They concluded that as enzyme concentrations increase 

jamming plays a larger role than either the fractal kinetics or the pretreatment method.  

As the reaction progresses, fewer sites are available for the enzymes to adsorb to without 

being spatially hindered by other enzymes. 

 To date, no studies have been found that fit the fractal and jamming models 

proposed by Xu and Ding (2007) to data collected from the enzymatic hydrolysis of 

lignocellulosic material.  This current work tested the fractal and jamming models on a 

more realistic substrate that would be used in large-scale production of biofuels or for 

other biobased products. 

  

Figure 4.6.  (a) Schematic of fractal 
kinetics.  The enzyme (ellipsoid) attaches 
to the cellulose chain (dashed line), 
hydrolyzing one glucose monomer at a 
time. (b) Schematic of jammed kinetics.  
The size of the enzymes may overcrowd 
the cellulose chains.  Figure adapted from 
Xu and Ding (2007). 
 

(a) 

(b) 

4-6 Å 
67 Å x 45 Å x 45 Å  
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4.5 SEPARATION TECHNOLOGY FOR MONOSACCHARIDE RECOVERY 

4.5.1 Current Technology for Monosaccharide Recovery 

 Methods and processes employed in the separation of components of mixtures 

vary across a wide range (Table 4.3), but most used for the separation of saccharides tend 

to fall within three main categories.  Extraction (Huang et al. 2008; Ragauskas et al. 

2006), membrane filtration (Novalin and Zweckmair 2009; Sanz and Martinez-Castro 

2007) and chromatographic separation technologies (Cano et al. 2006; Swallow and Low 

2002) have been developed and modified to fit many different situations.  The following 

is provided as a very brief review of select separations technologies and is not meant to 

be all inclusive. 

 
Table 4.3.  Various methods used for separation of components from a mixture. 

Method of Separation Mechanism of Separation 

Adsorption Adhesion of components to a surface 

Centrifugation Differences in density between components 

Chromatography Interaction of components with chromatographic 
material based on size of the component, affinity of 
the component for the material, or ion exchange 
between the component and the material 
 

Distillation Difference in boiling points of components 

Extraction Use of one substance to solubilize certain components 
from another substance 
 

Flocculation Promotion of clumping of solid particles followed by 
precipitation 
 

Filtration (micro-, ultra-, nano-) Size 

Sieving Size 

 

 Pretreatments are the most prominent form of sugar extraction used in the 

processing of lignocellulosic material prior to conversion to biofuels.  Huang et al. (2008) 

reviewed several pretreatment options, including steam-explosion based extraction, 

alkaline extraction, and liquid hot water extraction, that successfully extract 
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hemicellulose components from biomass.  Pretreatments have also been combined with 

other separation technologies in order to isolate specific carbohydrate fractions.  For 

instance, a 2006 study reports that a twin-screw extruder in combination with 

ultrafiltration holds great potential for the extraction of hemicellulose components 

(oligosaccharides, polysaccharides) (Ragauskas et al. 2006).  Another combined process 

includes an alkaline pretreatment system and a nanofiltration membrane that is capable of 

separating xylooligomers with a molecular weight as low as 200 (Huang et al. 2008).  

However, neither of these methods is effective for separating monosaccharides from 

solution.  The pretreatment conditions must be severe enough to remove the 

hemicellulose fraction from lignocellulose, but mild enough to avoid complete 

solubilization of hemicellulose into its monomer components.    

 Membrane filtration is often utilized as a sample preparation technique (Sanz and 

Martinez-Castro 2007), but it is also used to separate valuable substances from liquid 

fractions in biorefineries (Novalin and Zweckmair 2009).  Samples are typically filtered 

prior to entering the chromatography column in order to remove any insoluble materials 

that may cause blockages.  Sample preparation techniques can be applied to carbohydrate 

fractionation; however, these techniques are tedious and lack automatization (Sanz and 

Martinez-Castro 2007).  For carbohydrate fractionation applications, ultra- and 

nanofiltration has become more popular recently.  However, these filtration methods are 

limited to separating oligosaccharides from polysaccharides (Sanz and Martinez-Castro 

2007).  One study reviewed by Sanz and Martinez-Castro (2007) shows that a 

combination of ultra- and nanofiltration membranes produced promising results for 

purifying and concentrating oligosaccharides from chicory rootstock.  Nanofiltration has 

also been applied to the separation of hemicelluloses from concentrated alkaline process 

liquors (Schlesinger et al. 2006).  Plasticized liquid membranes have been used to 

separate fructose from glucose for the production of high fructose corn syrup (Sanz and 

Martinez-Castro 2007).  These types of membranes had previously proven successful in 

the sugar industry by separating sugars relatively close in molecular weights.  Plasticized 

liquid membranes are often utilized in separating sucrose, glucose and fructose from 

molasses, sugar cane and sugar beet juice samples (Sanz and Martinez-Castro 2007).  

While membrane filtration technology is getting better at separating sugars at smaller 
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molecular weights, membrane filters are still not selective for any characteristic other 

than size, making monosaccharides like glucose (MW = 180 g/mol) and xylose (MW = 

150 g/mol) nearly indistinguishable.  In order to collect a specific hydrolyzate 

component, other technologies must be explored. 

 Chromatographic separation is a technology that allows for a higher degree of 

specificity as compared to filtration.  Several different types of chromatography columns 

have been developed for carbohydrate separation, including gel permeation, reverse-

phase, silica, amino-bonded silica and fixed ion resin columns (Sanz and Martinez-Castro 

2007; Swallow and Low 2002).  Size exclusion chromatography is widely used for the 

fractionation and analysis of molecular weight distributions of polysaccharides of 

industrial or biochemical importance (Churms 1996b) because it is easily automated and 

environmentally friendly (Sanz and Martinez-Castro 2007).  Unfortunately, similarly 

sized components are eluted at approximately the same time.   

One commercial-scale process that separates sugars from a complex mixture is 

the honey industry. The honey industry analyzes the carbohydrate constituents by HPLC.  

These columns are typically packed with amine-modified silica (Cano et al. 2006).  

While amine-modified silica is used because of its relatively low cost and high capacity 

for carbohydrate analytes (Churms 1996a), this method only allows identification and 

quantification of some of the carbohydrates (Cano et al. 2006).  Also, this method of 

separation is limited to laboratory scale; it has not been applied to separation at the 

industrial level.  At the industrial scale, the separation of glucose and fructose occurs with 

the use of sulfonated cross-linked styrene divinylbenzene cation exchange resins in the 

calcium form (Lei et al. 2010; Luz et al. 2008; Vankova et al. 2010).  Carbon 

fractionation is another method used to separate out sugars from complex matrices, like 

honey.  Activated charcoal and ethanol gradients have successfully separated 

monosaccharides from honey (Ruiz-Matute et al. 2008; Sanz and Martinez-Castro 2007).  

While each of these options has their own advantages, many of these options poorly 

resolve similarly structured carbohydrates and are less efficient at ambient temperatures 

(Swallow and Low 2002), which limits their use for separation of glucose or xylose from 

other hydrolyzate constituents.     
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 Much research is being conducted in the area of separating sugars that result from 

biomass hydrolyzate.  Wooley et al. (1998) studied the use of a simulated moving bed 

(SMB) ion exchange chromatography process to separate and purify hydrolyzate sugars 

from other components like sulfuric and acetic acid.  A commercially available 

adsorbent, Dowex 99, was used in the SMB, and it was shown that this method could 

effectively isolate the sugars from the other impurities in the hydrolyzate.  However, all 

the sugars eluted at approximately the same time, so separation among sugars did not 

occur.  Xie et al. (2005a) also saw the same results using two different adsorbent 

materials (Xie et al. 2005b); the sugars were collected as a “center cut” since they eluted 

at the same time.  Lei et al. (2010) extended the search for an adsorbent material that 

effectively fractionated hydrolyzate sugars by characterizing the adsorption behavior of 

glucose, arabinose and xylose on five different cation exchange resins.  They found that 

as cross-linking decreases, the separation of these three sugars is much better.  The Ca2+ 

ion loaded resin also provided the best separation of these sugars over K+ and Fe3+ ion 

loaded resins.  However, the degree to which these sugars are resolved is not clear since 

isotherms for each monosaccharide were determined individually, and selectivity factors 

were calculated to determine each material’s ability to separate the monosaccharides.                 

 In the last couple of decades, molecularly imprinted polymers (MIPs) have been 

explored as a means to achieve a more specific separation.  MIPs have become a well-

developed tool for complex separation processes (Sanz and Martinez-Castro 2007), such 

as the separation of dyes, vitamins, nucleotide bases and other components that are 

typically difficult to separate (Li and Li 2007; Wizeman and Kofinas 2001).  MIPs are 

becoming more popular because they are tailor-made for specific separations.  For 

example, Wizeman and coworkers (2001) developed a novel MIP that was capable of 

binding glucose.  The results showed that the mass of glucose binding was significantly 

higher on the imprinted material as opposed to the non-imprinted material and that 

glucose binding increases and fructose binding decreases as cross-linking within the 

material increases.  This concept is constantly being expanded upon as more imprinting 

techniques, imprinting molecules and imprinted materials are researched and developed.          
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4.5.2 Benefits of Sugar Separations 

There are several benefits associated with separating the C5 sugars from the C6 

sugars prior to fermentation.  Saccharomyces cerevisiae, the most common fermentative 

organism currently used, is unable to utilize pentoses without being genetically modified 

(Girio et al. 2010; Ho et al. 1998).  Xylose is essentially wasted upon entering the 

fermentation process since S. cerevisiae does not have the proper metabolic pathways to 

process it.  This process stream can either be fed into a co-fermentation reaction scheme 

that contains an organism capable of converting pentoses to ethanol or the C5 sugars can 

be utilized as building blocks (Figure 4.6) for commodity or high-value chemicals 

(Carvalheiro et al. 2008; Kadam et al. 2008).  By diverting this energy-rich stream to 

other higher value bioproducts, biorefineries become more viable and more competitive 

with petroleum refineries. 

 

 
 
4.5.3 Liquid Chromatography 

Liquid chromatography is an important tool in preparative chemistry.  It is often 

used to separate a particular compound from a mixture of compounds prior to further use 

(Belter et al. 1998; Harrison et al. 2003).  Liquid chromatography involves applying a 

Figure 4.7.  Chemicals that can be produced 
from xylose that are used commercially and 
produced at the commodity scale volume. 
(Adapted from Werpy and Peterson (2004)). 
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liquid sample to an adsorbent material, or stationary phase, and following it with another 

liquid, or mobile, phase.  As compounds flow past the stationary phase, they interact with 

the adsorbent based on the compound’s own properties.  The strength of interaction will 

cause the compounds to separate from one another and exit the column at different times 

(Figure 4.7).  Fractions of the exiting mobile phase containing the separated compounds 

can then be collected. 

  

 

 
 
 

 The type of adsorbent material and its characteristics are very closely tied to its 

ability to separate a mixture of compounds.  Silica is compatible with water and organic 

solvents and works well with hydrophilic compounds (Harrison et al. 2003).  Silica 

particles are also capable of having a large surface area, which is important for 

adsorption, while maintaining a small particle size.  However, particle size must be taken 

into consideration when designing a chromatography process.  A small, uniform particle 

size is critical for adequate separation, but the pressure drop across the packed bed 

increases with a decrease in particle size.  Separation resolution and pressure drop must 

be balanced in order to get the most effective separation possible.  Mesoporous silica 

nanoparticles are one class of materials that can be used for liquid chromatography.  

Figure 4.8.  Illustration of column chromatography.  
Over time, as the mobile phase runs through the column, 
the solutes separate from each other based on how they 
interact with the stationary phase.  Figure adapted from 
Harrison et al. (2003). 
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These materials can be tailor-made to give various structural characteristics (i.e. particle 

size, pore size, surface area) based on the conditions used for synthesis (i.e. temperature, 

pH, surfactants) (Bogush et al. 1988; Wu et al. 2013). 

 This current work investigated the use of silica nanoparticles synthesized by 

different methods for their effectiveness of selectively separating specific 

monosaccharides from mixtures.  Both bulk adsorption and liquid chromatography 

techniques were studied.   
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CHAPTER 5:  PROJECT OBJECTIVES 
 

The overall goal of this research was to improve the efficiency and effectiveness 

of the lignocellulose conversion process through a more basic understanding of 

pretreatment and enzymatic hydrolysis at high solids including kinetic modeling and 

separation and recovery of the glucose stream. 

The impact of high-solids loadings on the effectiveness of sodium hydroxide 

pretreatment and enzymatic hydrolysis of corn stover were investigated in this study.  

High-solids loadings have been receiving much attention recently as a solution to 

increasing saccharide and ethanol yields from lignocellulosic feedstocks.  It was 

hypothesized that high-solids pretreatment followed by high-solids enzymatic hydrolysis 

would result in characteristically different behaviors from when one or both of these 

subsequent processes are performed at low-solids loadings.  The goal of this study was 

two-fold: (1) investigate existing methods of pretreatment and enzymatic hydrolysis for 

use at high solids and (2) determine the effects of sodium hydroxide pretreatment 

conditions performed at high-solids loadings on saccharide yields from enzymatic 

hydrolysis performed at low- and high-solids loadings to gain an understanding of the 

inhibition observed in high-solids conversion processes.  Corn stover was used in this 

project because in addition to being recognized as a potential feedstock for biofuel and 

biochemical production, it is a by-product of a major production crop in the state of 

Kentucky.  Sodium hydroxide pretreatment was selected for use in this work for several 

reasons.  Sodium hydroxide pretreatment does not produce as many types of inhibitors as 

other pretreatment options.  Lignin can be solubilized by this pretreatment but typically is 

not under the conditions chosen for this work.  Hemicellulose also remains intact, very 

nearly eliminating the possibility of producing sugar degradation products.  

Hemicellulose can then be fractionated from cellulose and recovered as a separate 

processing stream in a useful form that can be diverted for use as an industrial feedstock 

for other chemical or biochemical processes.  Other pretreatments, like dilute acid 

pretreatment, can separate hemicellulose from cellulose, but it is solubilized and not in a 

form that can be readily used.   
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The data from the previous experiments were used to test the robustness of an 

enzyme kinetics model that included fractal kinetics and jamming effects as a means to 

explain the decline in the rate of reaction of enzymatic hydrolysis of high solids.  This

current work was the first that used data collected from the enzymatic hydrolysis of 

lignocellulosic material to fit models that included fractal kinetics and jamming effects.  

It was hypothesized that the addition of one or both of these additional parameters would 

provide a better fit (and therefore a better description of the complex, heterogeneous 

reaction of enzymatic hydrolysis of lignocellulose) than the classical Michaelis-Menten 

kinetics model.  Evaluation of this model with a real lignocellulosic substrate will provide 

insight into how well the mechanisms involved in high-solids hydrolysis are understood, 

which could lead to an improved understanding of the enzyme-substrate interactions and 

glucose yields from high-solids conversion processes. 

The purpose of the final study was to develop effective separation techniques for 

saccharides produced from enzymatic hydrolysis of lignocellulosic material.  It was 

hypothesized that the development of a new imprinting technique used in the synthesis of  

imprinted silicate materials could selectively separate and recover specific 

monosaccharides produced during enzymatic hydrolysis of lignocellulose.  Specifically 

for this work, the recovery of hydrolyzate sugars using newly developed, molecularly-

imprinted materials in bulk and solid phase extraction were quantified. The overall 

project was a collaborative, multidisciplinary effort among several groups (Biosystems 

and Agricultural Engineering, Chemical Engineering and Material Science and 

Occupational and Environmental Health) and universities (University of Kentucky and 

University of Iowa).  The portion of this current work contributing to the overall project 

was the testing of the new materials in real hydrolyzate solutions.  Successful separation 

of pentose (predominately xylose) and hexose (glucose) saccharides found in hydrolyzate 

would allow for the development and improvement of biorefinery processes that exploit 

every component of lignocellulose, expanding the range of products to more closely 

resemble those of a standard petroleum refinery. 
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CHAPTER 6:  THE IMPACT OF HIGH-SOLIDS LOADINGS ON THE 
EFFECTIVENESS OF SODIUM HYDROXIDE PRETREATMENT AND 
SUBSEQUENT ENZYMATIC HYDROLYSIS OF CORN STOVER 
 

6.1 SUMMARY 

Sodium hydroxide (NaOH) pretreatment and subsequent enzymatic hydrolysis 

were performed at high-solids loadings using corn stover as the substrate.  Factors 

investigated included duration of pretreatment at different temperatures and NaOH 

loadings, as well as hydrolysis solids and enzyme loadings.    Durations of <120 min at 

low to moderate temperatures (25°C-70°C) did not have significant effects on the 

subsequent composition of corn stover when pretreated at 20% (w/w) solids.  However, 

while the post-treatment composition was essentially equivalent for all time and 

temperature combinations tested, the structure of the components was likely affected by 

the pretreatment, as differences in subsequent cellulose conversions were observed.  At 

high-solids loadings, cellulose conversions ranged from ~28-37% for corn stover 

pretreated at 25°C, whereas conversions were ~5-8% for corn stover pretreated at 70°C.  

Additionally, when enzyme loadings were investigated, cellulose conversions decreased 

to ~4% at the median enzyme loading before increasing as high as ~37% for the highest 

enzyme loading for corn stover pretreated at 25°C.  However, conversion of corn stover 

pretreated at 70°C was not significantly different among the subsequent enzyme loadings 

tested and ranged from 5%-8%. 

NaOH loading during pretreatment was examined to determine its effects on the 

post-treatment composition of biomass, as well as cellulose conversion efficacy in the 

subsequent enzymatic hydrolysis step.  Increased NaOH loadings improved the cellulose 

content of the corn stover compared to the raw corn stover for the 2 hr pretreatment from 

38% to 49% by reducing other components like ash, lignin and other unquantified 

components.  NaOH loadings up to 10 g NaOH/100 g corn stover during the 24 hr 

pretreatment increased percent cellulose content from 37.9% to 46.6% but at higher 

NaOH loadings  the percent cellulose content did not increase by as much.  At a NaOH 

loading of 20 g NaOH/100 g corn stover, xylose content decreased for the 24 hr 

pretreatment.  The degradation of xylose is of concern because it could result in an 

increased concentration of inhibitory products.  Even with modifications made to the corn 
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stover composition, cellulose conversion of the corn stover pretreated for 2 hr decreased 

from 5.7% to 0.6% with NaOH loadings increasing from 4 to 20 g NaOH/100 g corn 

stover when hydrolyzed at 20% (w/w).  The same trend was observed at low-solids 

loadings; however, the conversions were significantly higher (40.6% to 21.6%).  Low 

conversions (<9%) were also observed for corn stover pretreated for 24 hr and 

hydrolyzed at high-solids loadings.  Even though the corn stover was water-washed 

following pretreatment, no additional measures were taken to adjust the pH of the corn 

stover prior to use in enzymatic hydrolysis.  Inadequate neutralization of the corn stover 

following pretreatment is a likely cause of the reduced conversions. 

 Flushing of the hydrolyzate and reusing of the substrate was also studied as a 

method for reducing inhibitory compounds affecting hydrolysis in order to increase 

overall glucose yields.  Glucose conversions increased from 37%-49% for conventional 

batch reactions up to 73%-99% for flushed reactions.  While conversion of the unwashed 

PCS was not as high as that of the washed PCS, the unwashed PCS with flushed 

hydrolysis still achieved significantly higher glucose concentrations than that of the 

washed PCS in conventional batch hydrolysis (73 g/L vs. 48 g/L) with an enzyme loading 

of 15 FPU/g solids.  It can be inferred from this study that flushing of the PCS throughout 

the hydrolysis reaction eliminates the need to wash the pretreated biomass prior to 

enzymatic hydrolysis, thus reducing the amount of process water required.      

 

6.2 INTRODUCTION 

Lignocellulose can provide an abundant and renewable source of energy.  While 

conversion of lignocellulose into liquid fuels is not a new idea, the use of high-solids 

loadings in the unit steps of pretreatment and subsequent enzymatic hydrolysis is 

relatively recent (Jorgensen et al. 2007b; Kristensen et al. 2009b; Pristavka et al. 2000).  

Systems are considered to be “high solids” at solids loadings ≥15% (w/w).  The 

advantages of operating at high solids are increased sugar and ethanol concentrations and 

reduced capital and operating costs (Banerjee et al. 2010; Hodge et al. 2008; Humbird et 

al. 2010).  However, at this level of solids loadings, several challenges emerge that are 

not as apparent at low- or moderate-solids loadings.  For example, the lack of available 

water in the system and inadequate mixing of the solids can limit heat and mass transfer.  
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In pretreatment, these limitations can lead to temperature gradients that may result in 

non-uniform treatment of biomass.  In hydrolysis, these limitations can lead to regions of 

sub-optimal temperatures and pockets of increased inhibitor concentrations, both of 

which are detrimental to enzyme activity.  Additionally, while interest in the use of high-

solids loadings for pretreatment or enzymatic hydrolysis is increasing, few investigations 

into the operation of the combination of these two processing steps at high-solids 

loadings are available (Larsen et al. 2008; Lau and Dale 2009). 

Pretreatment with sodium hydroxide reportedly results in several structural 

modifications of lignocellulose that are beneficial for enzymatic hydrolysis (Cheng et al. 

2010; Cui et al. 2012; Xu et al. 2010).  Bonds linking the protective lignin barrier with 

hemicellulose are broken.  Depending on the pretreatment conditions, lignin is partially 

or totally solubilized, and degradation of the hemicellulose fraction may occur. Sodium 

hydroxide pretreatment also swells the lignocellulose particles, leading to an increase in 

surface area and greater accessibility to the cellulose fraction (Hendriks and Zeeman 

2009).  Additionally, a decrease in the degree of polymerization and crystallinity of the 

cellulose is likely, increasing the enzymatic digestibility of the polysaccharide (Eronen et 

al. 2009; Mittal et al. 2011).  

Enzymatic hydrolysis is often identified as a bottleneck in the lignocellulose 

conversion process (Jorgensen et al. 2007a).  The release rate of glucose is not constant.  

The initial rates tend to be very quick; however, glucose released slows as the reaction 

progresses.  The use of high-solids loadings in enzymatic hydrolysis has aided in 

producing a more concentrated glucose product, but the reduction in glucose release rate 

is still observed, likely caused by the inhibition of enzymes by glucose and other 

inhibitory products.  Simultaneous saccharification and fermentation is one method that 

has been studied extensively to alleviate inhibition of enzymes by these products; 

however, the optimum conditions for the hydrolytic enzymes and the fermentative 

organisms are not identical, thereby causing some loss of efficiency.  Another method 

that has  recently been suggested for high-solids systems is flushing of the hydrolyzate to 

reuse the substrate (Yang et al. 2010a).  This method could remove potentially inhibitory 

products from the reactor, relieving some of the stress on the enzymes, thereby boosting 

the rate of glucose release and using the biomass more effectively. 
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The objective of this study was to identify and characterize the effects of NaOH 

pretreatment on the post-pretreatment composition of biomass and the performance of the 

subsequent enzymatic hydrolysis when both processing steps are performed at high-solids 

loadings.  A relatively new enzymatic hydrolysis design employing high-solids loadings 

with hydrolyzate flushing and substrate reuse was also investigated to determine its 

effectiveness at removing inhibitory products while maintaining a consistent rate of 

glucose production.  The hypothesis was that substrate reuse would allow the solids effect 

to be mitigated. 

 

6.3 MATERIALS AND METHODS 

6.3.1 Enzyme 

The enzyme system consisted of crude cellulase liquid from T. reesei (Celluclast 

1.5L) supplemented with β-glucosidase from A. niger (Novozyme 188).  Both enzymes 

were purchased from Sigma (St. Louis, MO). 

 

6.3.2 Substrate 

 Corn stover collected directly from the field at the Woodford County Animal 

Research Center in Woodford County, KY in September 2010 was used as the substrate.  

The corn (P1253 Pioneer) had been planted using conventional tillage practices in April 

2010.  Stover is composed of material other than grain (MOG).  After collection, the 

samples were prepared for laboratory storage by drying at 45ºC and grinding through a 

hammer mill with a 5 mm screen. 

 

6.3.3 Peterson Method for Protein Determination 

The Peterson method was conducted according to the protocol provided with the 

total protein kit purchased from Sigma (TP0300; St. Louis, MO).  The standard curve 

ranged from 0-400 μg/mL at100 µg/mL intervals, and included 50μg/mL.  Sample tubes 

with the T. reesei cellulase and A. niger β-glucosidase of varying activities (listed below) 

were prepared in triplicate.  To all tubes, 1.0 mL of the Lowry reagent was added and 

mixed.  The tubes were incubated for 20 min at room temperature.  Folin and Ciocalteu’s 

phenol reagent (0.5 mL) was added to each tube and immediately and rapidly mixed.  
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The tubes were then incubated for 30 min at room temperature to allow color to develop.  

The absorbance was measured at 750 nm against the 0 μg/mL protein blank. 

 

6.3.4 Cellulase Activity Assay 

The cellulase activity assay was conducted as outlined by the NREL LAP-006 

(Adney and Baker 1996).  Standard curve tubes using 10 g/L stock glucose solution were 

prepared in triplicate and ranged from 0-10 mg/mL.  A filter paper strip (1 cm × 6 cm; 

approximately 50 mg) and 1.0 mL of the Na-citrate buffer were added to all the sample 

test tubes.  All tubes were equilibrated to 50ºC in a water bath.  Cellulase samples 

prepared at different initial activities were diluted in 0.05 M Na-citrate buffer at pH 4.8 

so that the final volume was 0.5 mL and was added to each of the sample test tubes.  Five 

cellulase dilutions were tested in triplicate, as well as a substrate blank and an enzyme 

blank.  All tubes were incubated at 50ºC for 1 hr, at which time 3.0 mL DNS reagent was 

added to stop the hydrolysis reaction. The tubes were placed in a 93ºC water bath for 15 

min to allow for color formation.  The tubes were cooled in an ice water bath prior to 

vortexing and centrifuging the samples for 10 min at 6000 rpm.  A 0.2 mL aliquot of the 

assay solution was diluted in 2.5 mL DI water, and the absorbance was measured at 540 

nm against the 0 mg/mL glucose standard blank. 

Cellulase activity was determined by comparing the sugar concentrations of the 

sample tubes to the standard curve.  The amount of sugar released was plotted against the 

enzyme concentration (log scale).  The enzyme concentration that released 2.0 mg 

glucose was estimated, and cellulase activity was calculated using the following equation  

 

 Filter paper activity (FPU mL⁄ ) = 0.37
[E] releasing 2.0 mg glucose

          Equation 6.1 

 

where [E] is the enzyme concentration.  The activity is expressed in filter paper units 

(FPU)/mL of original enzyme solution, where 1 FPU/mL is the amount of enzyme 

required to release 1 µmol reducing sugar/min.  
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6.3.5 Composition of Corn Stover 

Laboratory Analytical Procedures (LAP) established by the National Renewable 

Energy Laboratory (NREL) were used to determine total solids, structural carbohydrates, 

soluble- and insoluble lignin and ash of raw and pretreated biomass (Sluiter et al. 2005; 

Sluiter 2008a; Sluiter 2008b).  HPLC was used to measure the sugars derived from 

cellulose and hemicellulose (glucose, xylose, arabinose, mannose and galactose).  A 

Dionex U3000 HPLC system was equipped with a Bio-Rad Aminex HPX-87P column 

and Micro-Guard de-ashing column and operated at 78ºC with deionized water as the 

mobile phase at a flow rate of 0.45 mL/min.  The sample components were detected with 

a Shodex-101 refractive index detector.    

 

6.3.6 Pretreatment of Corn Stover 

Sodium hydroxide pretreatment was performed according to Duguid et al. (2009) 

with some modifications.  Ten gram samples of dried, ground corn stover were placed in 

500 mL Erlenmeyer flasks.  The dry samples were autoclaved on a liquid cycle at 121ºC 

for 30 min to ensure no loss of biomass due to microbial contamination.  The flasks were 

allowed to cool to room temperature prior to equilibration at the selected pretreatment 

temperature.  Following equilibration, 50 mL 0.2 N NaOH was added to each flask to 

obtain a solids loading of 20% (w/v), unless otherwise stated.  The samples were 

incubated at the treatment temperature (see below) for a selected pretreatment time while 

being mixed at 150 rpm.  The pretreated corn stover (PCS) was washed with DI water (3-

5 volumes) and vacuum filtered.  The pH of the corn stover was adjusted to the desired 

pH (see below) with concentrated acetic acid during the washing process.  The samples 

were dried in a 45ºC oven for 24 hr.  The solids content was determined by drying 

samples at 105ºC for 24 hr.  The treated corn stover was stored at 4ºC until further use, 

typically 24 hours or less. 

 

6.3.7 Enzymatic Hydrolysis 

The hydrolysis was performed according to an NREL-LAP (Selig 2008), with 

some modifications.  Pretreated biomass was added at the desired solids loading on a 

weight basis.  Cellulase was added to achieve an appropriate enzyme loading and was 
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supplemented with β-glucosidase at ratio of 2:1CBU/g biomass to FPU/g biomass.  

Following hydrolysis, the samples were immediately transferred to a boiling water bath 

for 5 min to denature the enzymes and then in an ice bath to cool.  Samples of the slurries 

were collected and placed in 15 mL centrifuge tubes.  The slurry samples were diluted 

10-fold with DI water, mixed well, and centrifuged.  Samples of the liquid fraction were 

then collected, diluted and analyzed by HPLC, according to the procedure outlined above 

(See 6.3.5 Composition of Corn Stover). 

 

6.3.8 Calculation of Cellulose Conversion 

 Cellulose conversion is typically calculated as the ratio between the amount of 

glucose (and sometimes cellobiose) released during hydrolysis to the theoretical amount 

of glucose that could be released during hydrolysis.  This calculation is based upon 

several assumptions: (1) the specific gravity of all components in the reaction are the 

same (1.0 g/mL), (2) the volume of the liquid is equivalent to the volume of the 

hydrolysis slurry, and (3) the volume of the liquid remains constant throughout the entire 

reaction.  However, these assumptions do not necessarily hold true at high-solids 

loadings.  Cellulose conversions were calculated according to (Kristensen et al. 2009a).  

Following enzymatic hydrolysis at high solids, the sample was diluted 10 times, which 

allows cellulose conversions to be calculated with the following equation 

 

% 𝒄𝒆𝒍𝒍𝒖𝒍𝒐𝒔𝒆 𝒄𝒐𝒏𝒗𝒆𝒓𝒔𝒊𝒐𝒏 =  
𝒎𝒘𝒔−𝒎𝒊𝒔
𝑺𝑮𝒂𝒒.𝒑𝒉𝒂𝒔𝒆

×([𝑮𝒍𝒖]+𝟏.𝟎𝟓𝟔 ×[𝑪𝒆𝒍])

𝟏.𝟏𝟏𝟏 × 𝒎𝒄𝒔×𝑭𝒄×𝑫𝑴
× 𝟏𝟎𝟎%  Equation 6.2 

 

where mws, mis and mcs are the mass of the whole slurry (in grams), the mass of the 

insoluble solids after hydrolysis (in grams) and the mass of the corn stover (in grams), 

respectively, [Glc] and [Cel] are the glucose and cellobiose concentrations (in g/L), 

respectively, 1.056 and 1.111 are conversion factors accounting for the water molecule 

required to hydrolyze glucose and cellobiose from cellulose, Fc is the fraction of cellulose 

in the corn stover, and DM is the initial dry matter solids loading.    
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6.3.9 Experimental Design 

6.3.9.1 Low-Solids Loading in Pretreatment 

One pretreatment preparation followed that of Sills and Gossett (2012), with 

slight modifications (Figure 6.1).  Briefly, 10 g samples of corn stover were measured 

and placed in 500 mL Erlenmeyer flasks.  The flasks were equilibrated to 25ºC prior to 

the addition of 0.25 N NaOH (20 g NaOH/100 g CS) to obtain a solids loading of 5% 

(w/v).  Samples were incubated for 24 hr with shaking at 200 rpm.  Following 

pretreatment, the corn stover was washed with approximately 500-600 mL DI water and 

vacuum filtered.  The PCS was divided into two portions.  One portion was reserved for 

low-solids enzymatic hydrolysis (2.5 and 5% solids (w/w)), and the other was dried at 

45ºC for 24 hr prior to enzymatic hydrolysis at low (5% solids) and high solids (20% 

solids).  This method was selected to match the low-solids hydrolysis conditions of Sills 

and Gossett (2012) and the low- and high-solids hydrolysis conditions of this current 

study, as well as to determine whether drying the biomass following pretreatment 

affected the subsequent hydrolysis of the material.  Samples were collected from the 

dried PCS for compositional analysis. 

 Statistical Analysis.  The data were analyzed in a completely randomized design 

using PROC GLM of SAS to determine whether any differences in cellulose or 

hemicellulose conversion existed.  If differences existed, least squares means were 

computed, and all possible pairwise comparisons were made among the treatments. 
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Figure 6.1.  Process conditions for the investigation into the effects of drying PCS on 
glucose yields from subsequent enzymatic hydrolysis. 
 

6.3.9.2 Effects of Pretreatment and Enzymatic Hydrolysis Conditions 

Effects of pretreatment time and temperature.  Corn stover was pretreated at 

various times and temperatures to determine their effects on corn stover composition and 

enzymatic digestibility (Figure 6.2).  In these tests, pretreatment was conducted at two 

temperatures (25°C and 70°C) over four times (30, 60, 90 and 120 min).  Pretreatment 

conditions were intentionally mild to minimize loss of structural carbohydrates and to 

minimize the production of potentially inhibitory products.  PCS was washed with 3 

volumes DI H2O, vacuum filtered and dried.  Samples of dried PCS were collected to 

determine composition. 
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Figure 6.2.  Process conditions for the investigation into pretreatment and 
enzymatic hydrolysis performed at high-solids loadings and their impact on glucose 
yields.   
 

Effects of enzymatic hydrolysis solids loadings and enzyme loadings.  PCS was 

then enzymatically hydrolyzed at two solids loadings (5% or “low solids” and 20% or 

“high solids”; 0.25 g PCS samples) and three enzyme loadings.  All hydrolysis samples 

were analyzed by HPLC, according to the procedure outlined above (See 6.3.5 

Composition of Corn Stover). 
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 Statistical Analysis.  The data were analyzed as a 8×2 factorial with nested 

variables in a generalized randomized complete block design (pretreatment time × 

temperature  = block) using PROC GLM of SAS to determine whether any differences in 

cellulose conversion existed.  If differences existed, least squares means were computed, 

and all possible pairwise comparisons were made among the combinations of 

pretreatment and hydrolysis conditions. 

 

6.3.9.3 NaOH Loading in Pretreatment 

Additionally, the effects of NaOH loading during pretreatment were investigated 

(Figure 6.3).  Corn stover samples were prepared as above.  Following equilibration at 

25ºC, 50 mL of NaOH solution (0.2 N, 0.5 N or 1.0 N to achieve a NaOH loading of 4, 

10 or 20 g NaOH/100 g CS) were added to each flask to obtain a solids loading of 20% 

(w/v).  The samples were incubated for either 2 or 24 hr while shaking at 150 rpm.  The 

preparation of the pretreated corn stover continued as outlined above.  Enzymatic 

hydrolysis was subsequently performed at solids loadings of 5% and 20% (w/w) and an 

[E] = 5.2 FPU/g solids. 
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Figure 6.3.  Process conditions for the investigation into the impact of NaOH loading 
in pretreatment on glucose yields in the subsequent enzymatic hydrolysis. 
 

 Statistical Analysis.  The data were analyzed as a 2×3×2 factorial in a generalized 

randomized complete block design (pretreatment time = block) using PROC GLM of 

SAS to determine whether any differences in cellulose conversion existed.  If differences 

existed, least squares means were computed, and all possible pairwise comparisons were 

made among the combinations of pretreatment and hydrolysis conditions. 
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6.3.9.4 Hydrolyzate Flushing and Substrate Reuse 

Hydrolyzate flushing and substrate reuse experiments were performed in order to 

investigate the effects soluble end-products have on enzyme performance.  Preliminary 

tests were conducted with corn stover pretreated at 10% (w/v) solids with 10 g 

NaOH/100 g CS for 24 hr at 25°C.  Washed PCS was weighed and placed into columns 

(10 cm x 2.5 cm I.D. fitted with a porous polyethylene filter disc) for enzymatic 

hydrolysis.  The columns were fitted with three-way valves at each end to allow for 

addition of fresh buffer through the top and collection of samples from the bottom.  

Hydrolysis was performed at 20% (w/w) solids with a working volume of 10 mL and an 

enzyme loading of 15 or 60 FPU/g solids.  Control samples were incubated in batch 

(without interruption) for 72 hr.  Hydrolyzate samples were collected by flushing the 

biomass every 24 hr over the 72 hr hydrolysis period.  Flushing was performed by adding 

10 mL of 0.05 M sodium citrate buffer through the input valve located at the top of the 

column with a syringe.  A 10 mL sample was then collected from the outlet valve at the 

bottom of the column, which forced the buffer to move through the biomass, collecting 

and removing solubilized products.  Hydrolyzate samples were boiled for 5 min to 

denature the enzymes before being stored at -45°C until analysis.  Samples were analyzed 

for glucose content using a YSI 7100 Multiparameter Bioanalytical System (MBS; YSI 

Incorporated, Yellow Springs, OH). 

Additional hydrolyzate flushing and substrate reuse experiments were performed 

using PCS that was either washed (WPCS) or unwashed (UPCS).  The washing process 

consisted of neutralization through the addition of glacial acetic acid followed by 

washing with 5 volumes of DI water and vacuum filtration.  UPCS was also neutralized 

with glacial acetic acid before removal of any excess liquid via vacuum filtration.  All 

pretreated corn stover was dried at 45°C for 24 hr.  The solids content was determined by 

drying samples at 105ºC for 24 hr.  Pretreated corn stover was stored at 4ºC until all 

hydrolyzate flushing experiments were completed (typically within 6 weeks).  Enzymatic 

hydrolysis was performed as outlined above in the preliminary tests with and without 

enzyme supplementation during the flushing of the columns.  For those samples that 

received additional enzyme, buffer used in the flushing procedure was supplemented with 

an enzyme loading of 2.5 FPU/g solids.  Samples of the liquid fraction were then 
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collected, diluted and analyzed by HPLC, according to the procedure outlined above (See 

6.3.5 Composition of Corn Stover). 

 Statistical Analysis. The data were analyzed as a 2×2×3 factorial in a generalized 

randomized complete block design (washing treatment = block) using PROC GLM of 

SAS to determine whether any differences in glucose released existed.  If differences 

existed, least squares means were computed, and all possible pairwise comparisons were 

made for all treatment combinations. 

 

6.4 RESULTS 

6.4.1 Enzymes 

Multiple sources of cellulase and β-glucosidase were used throughout the course 

of this study.  Table 6.1 shows the protein content, measured activity over time and the 

specific activity for each enzyme source utilized.  Activity 2 was measured 

approximately 14 months after Activity 1.  The reduction in activity emphasizes the point 

that enzyme activity is a dynamic characteristic of the enzyme.   

 

Table 6.1.  Characteristics of the Celluclast 1.5L and the Novozyme 188 used in the 
enzymatic hydrolysis studies. 

Enzyme 

Protein 

Content (± Std 

Dev) (mg/mL) 

Activity 1 

(FPU/mL or 

CBU/mL)a 

Activity 2 

(FPU/mL or 

CBU/mL) 

Specific Activity 

(FPU/mg protein 

or CBU/mg) 

T. reesei 1 169.3 (±2.1) 82.2 40.2 0.24b 

T. reesei 2 181.8 (±6.3) 105.7 32.7 0.18b 

T. reesei 3 175.2 (±16.6) 59.7 -- 0.34 

T. reesei 4 181.7 (±22.1) 68.5 -- 0.38 

T. reesei 5 201.7 (±10.1) 73.3 -- 0.36 

     A. niger 1 262.4 (±8.5) 65.6 -- 0.25 

A. niger 2 282.4 (±17.5) 76.0  -- 0.27 
aCellulase activity is measured in FPU/mL and β-glucosidase activity is measured in CBU/mL. 
bSpecific activity is calculated using Activity 2 where available 
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6.4.2  Effects of Low-Solids Loading in Pretreatment 

 From a practical standpoint, in order to perform enzymatic hydrolysis with high-

solids loadings, the biomass following pretreatment had to be dried to remove any excess 

water and achieve appropriate solids loadings.  The effect of this drying is shown in the 

next figure. Figure 6.4 presents the cellulose and hemicellulose conversion obtained 

using different solids loadings in hydrolysis, where the corn stover in the reactors 

containing 2.5% and 5% solids was still wet and 5% and 20% had been dried.  It was 

possible to operate at 5% solids using either wet or dry corn stover, so both forms were 

hydrolyzed to determine whether drying affected the conversions.  As Figure 6.4 

indicated, there are no significant differences in conversion of cellulose or hemicellulose 

that can be attributed to drying the corn stover at 45°C for 24 hr based on the conversions 

obtained from hydrolyzing wet and dry PCS at 5% solids.     

 

 
Figure 6.4.  Conversion of cellulose and hemicellulose from corn 
stover pretreated at 5% (w/v) and 25°C for 24 hr with a NaOH 
loading of 20 g NaOH/100 g CS.  Hydrolysis was performed with an 
enzyme loading of 5.2 FPU/g solids on both wet and dry solids, where 
the dried solids are indicated with the letter ‘d’.  Error bars represent 
standard deviation of three replicates.  Column groupings with the 
same letters are not significantly different from one another.  (See 
Figure 6.1 for experimental conditions.) 
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6.4.3 Effects of Pretreatment and Enzymatic Hydrolysis Conditions 

 

6.4.3.1 Characterization of Raw and Pretreated Corn Stover 

Compositional analysis performed on raw corn stover resulted in cellulose, 

hemicellulose, lignin and ash fractions of 37.9%, 21.6%, 21.1% and 4.8%, respectively, 

with the remaining portion accounting for components that were not quantified 

(Appendix A.1).  Figure 6.6 contains the composition of raw and NaOH-pretreated corn 

stover at all time and temperature combinations.  The NaOH pretreatment appears to 

mostly affect the acid soluble lignin and the ash fractions, as well as the fraction of 

components that were not quantified.  The acid soluble lignin was reduced by 14.3%-

23.9%, while the ash was reduced by 31.5%-46.3% (Appendix A.1).  However, there 

does not appear to be much difference in the overall composition among the various 

pretreatment conditions.   

 

Figure 6.5.  (From left to right) Raw corn stover, NaOH-pretreated corn stover, 
and solid fractions following enzymatic hydrolysis performed at 5% and 20% 
(w/w) solids and [E] = 60 FPU/g solids.  
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Figure 6.6.  Composition of raw and pretreated corn stover.  Results 
are calculated as % oven dried material. 

 

 Figure 6.7 shows the composition of pretreated corn stover with and without the 

addition of NaOH (referred to from this point on as “untreated”).  A slight loss of glucose 

and arabinose (1.3%-1.8% and 4.3%-34.3%, respectively) was observed in the untreated 

corn stover when compared to the NaOH-pretreated corn stover.  It should also be noted 

that while acid soluble lignin and ash were removed from the untreated corn stover, it 

was less than the amounts removed from the NaOH-pretreated corn stover.  Lastly, 

90.5%-91.7% of the NaOH-pretreated corn stover and 84.0%-88.1% of the untreated corn 

stover is accounted for in the quantified component fractions.  Based on the percent total 

of the measured components calculated, the NaOH pretreatment removes more of the 

unquantified components than the pretreatment lacking NaOH.    
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Figure 6.7.  Composition of NaOH-pretreated and untreated corn 
stover.  Results are calculated as % oven dried material. 

 

6.4.3.2 Solids Loading in Enzymatic Hydrolysis 

Figure 6.8 shows the conversion of cellulose achieved for material pretreated at 

25°C for up to 2 hr and enzymatically hydrolyzed at low- and high-solids loadings.  

Conversion was consistent among all pretreatment conditions for hydrolysis performed at 

low- and high-solids loadings.  At 5% solids, conversion yields fell between 27% and 

33%.  Conversions for the 20% solids reactions were fairly similar to those of the 5% 

solids, with cellulose conversions ranging from 28%-37%.  Corn stover pretreated for 30 

min and hydrolyzed at 5% solids did not reach the same level of conversion as the corn 

stover pretreated for 120 min and hydrolyzed at 20% solids, resulting in the only pair of 

significantly different treatments.  
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Figure 6.8.  Conversion of cellulose pretreated at 25°C for up to 2 hr 
and enzymatically hydrolyzed at low- and high-solids loadings with 
[E] = 60 FPU/g solids.  Error bars represent the standard deviation of 
three replicates.  Bars labeled with asterisks (*) are significantly 
different from each other.  (See Figure 6.2 for experimental 
conditions.) 

 

 Conversions for corn stover pretreated at 70°C showed a much different trend as 

compared to pretreatment at 25°C (Figure 6.9).  Corn stover hydrolyzed at low-solids 

loadings achieved conversions ~2-3 times higher than corn stover pretreated under 

corresponding times at 25°C.  For instance, the 90 min pretreatment resulted in cellulose 

conversion of 28% and 85% for pretreatment temperatures of 25°C and 70°C, 

respectively (comparing Figure 6.8 (25°C) to Figure 6.9 (70°C)).  Hydrolysis performed 

with high-solids loadings of corn stover pretreated at 70°C was not very productive, with 

all conversions <8%.  Corn stover pretreated at the high temperature produced 3.7-6.7 

times less glucose than corresponding samples pretreated at the low temperature. 
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Figure 6.9. Conversion of cellulose pretreated at 70°C for up to 2 hr 
and enzymatically hydrolyzed at low- and high-solids loadings with 
[E] = 60 FPU/g solids.  Error bars represent the standard deviation of 
three replicates.  Bars with the same letter are not significantly 
different.  (See Figure 6.2 for experimental conditions.) 

 

6.4.3.3 Enzyme Loading 

Figure 6.10 quantifies the conversion of cellulose pretreated at 25ºC during four 

sampling times over the course of 2 hrs and subsequently enzymatically hydrolyzed at 

5% (w/w) solids comparing three enzyme loadings.  Within an enzyme loading,  

pretreatment times showed no difference in conversion.  Conversions ranged from ~27-

33% at 60 FPU/g solids to ~34-41% at 5.2 FPU/g solids.  Additionally, for the 30, 60 and 

90 min pretreatments, enzyme loading does not appear to have any effect on the cellulose 

conversion, as the conversion remains stagnant as enzyme loading increases.  Similarly, 

for the 120 min pretreatment, a slight decrease in conversion is observed as the enzyme 

loading increases from 5.2 to 60 FPU/g solids.  For instance, the conversions at the 120 

min pretreatment decreased from nearly 41% at 5.2 FPU/g solids to ~29% at 60 FPU/g 

solids. 
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Figure 6.10.  Conversion of cellulose pretreated at 25ºC for up to 2 hrs 
and enzymatically hydrolyzed at low-solids loadings (5% w/w) with 
the enzyme loadings shown in the legend.  Error bars represent the 
standard deviation of three replicates.  Columns labeled with an 
asterisk (*) are significantly different from those labeled with a carat 
(^).  (See Figure 6.2 for experimental conditions.) 
 

For 25ºC PCS hydrolyzed at 20% (w/w) solids loading (Figure 6.11), the overall 

conversions were lower than those observed at low solids hydrolysis (Figure 6.10), with 

the exception of the 60 FPU/g solid treatment.  The highest enzyme loading also resulted 

in conversions that were >3 and >7 times higher than enzyme loadings of 7.2 and 28.9 

FPU/g solids, respectively.  Inexplicably, the lowest conversions resulted from the 

intermediate enzyme loading.  The reactions performed at 60 FPU/g solids resulted in 

conversions (28%-37%) similar to those observed in this study at low-solids hydrolysis 

independent of enzyme loadings (27%-41% conversion).   
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Figure 6.11.  Conversion of cellulose pretreated at 25ºC for up to 2 hrs 
and enzymatically hydrolyzed at high-solids loadings (20% w/w) with 
the enzyme loadings shown in the legend.  Error bars represent the 
standard deviation of three replicates.  Columns denoted with 
asterisks (*) are significantly different from those not marked.  
Columns not marked are not significantly different from other 
unmarked columns.  (See Figure 6.2 for experimental conditions.) 

 

 Figure 6.12 shows the cellulose conversion of corn stover pretreated at 70ºC over 

the course of 2 hrs and enzymatically hydrolyzed at 5% (w/w) solids loadings.  At the 30 

and 60 min pretreatments, the conversions increase from ~25% to ~60% as the enzyme 

loading is increased from 5.2 to 60 FPU/g solids.  The increase in conversion is even 

larger for the 90 and 120 min pretreatments.  This trend is the inverse of that observed for 

the identical treatment at 25ºC.  Furthermore, the overall conversions at the moderate and 

high enzyme loadings are greater for the corn stover pretreated at 70ºC as compared to 

that pretreated at 25ºC with subsequent low-solids hydrolysis (Figure 6.12 compared with 

Figure 6.10).  
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Figure 6.12.  Conversion of cellulose pretreated at 70ºC for up to 2 hrs 
and enzymatically hydrolyzed at low-solids loadings (5% w/w) with 
the enzyme loadings shown in the legend.  Error bars represent the 
standard deviation of three replicates.  (See Figure 6.2 for 
experimental conditions.)  

 

 Figure 6.13 presents corn stover pretreated at 70ºC and subsequently hydrolyzed 

at 20% (w/w) solids.  The conversions ranged from 5.5-8.1% and were relatively 

independent of pretreatment time or enzyme loading.  This trend is different from that 

observed for the 25ºC PCS hydrolyzed at high solids (Figure 6.11), where the cellulose 

conversion increased sharply for the 60 FPU/g solids enzyme loading. 
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Figure 6.13.  Conversion of cellulose pretreated at 70ºC for up to 2 hrs 
and enzymatically hydrolyzed at high-solids loadings (20% w/w) with 
the enzyme loadings shown in the legend.  Error bars represent the 
standard deviation of three replicates.  (See Figure 6.2 for 
experimental conditions.) 

 

6.4.4 NaOH Loading in Pretreatment 

6.4.4.1 Characterization of Pretreated Corn Stover 

 Figure 6.14 shows the composition of pretreated corn stover at pretreatment times 

up to 2 hours and three different NaOH loadings.  Pretreatment with NaOH effectively 

increased cellulose content 4.2%-29.4%for all reaction conditions investigated, with the 

most effective pretreatment occurring at 20 g/100 g CS for 2 hr.  Reduction in acid 

soluble lignin content (and the unquantified components) was observed in all samples, as 

well as some minor sugars (mannose and galactose) and ash under some pretreatment 

conditions.  The most severe pretreatment (20 g NaOH/100 g CS for 24 hr) resulted in a 

reduction of xylan content.        
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Figure 6.14.  Composition of raw and pretreated corn stover.  Results 
are calculated as % oven dried material.  Pretreatment was 
performed at 20% (w/v) solids for either 2 or 24 hr at 25ºC.  Sums of 
components may not equal 100% due to some components not being 
quantified during this analysis. 

 

6.4.4.2 Solids Loading in Enzymatic Hydrolysis 

Figure 6.15 and Figure 6.16 show the conversion of cellulose and hemicellulose 

for corn stover pretreated at various NaOH loadings for 2 hr at 25ºC and hydrolyzed at 

low and high solids, respectively.  For both hydrolysis solids loadings, there is an 

apparent decrease in conversion of cellulose from 40.6% to 21.5% and 5.7% to 0.6% at 

low and high-solids loadings, respectively.  Hemicellulose displayed a similar trend, 

decreasing from 35.1% to 12.7% and 3.6% to 0% for low and high-solids loadings, 

respectively.  At the lowest NaOH loading, the conversion of cellulose was nearly 7 times 

greater for the lower hydrolysis solids loading than for the higher solids loading, and 

these disparities only increased as NaOH loading increased to 20 g NaOH/100 g CS.   
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Figure 6.15.  Conversion of cellulose pretreated with three NaOH 
loadings for 2 hr and enzymatically hydrolyzed at low-solids (5% 
w/w) with an [E] = 5.2 FPU/g solids.  Pretreatment was performed at 
20% (w/v) solids.  Column groupings denoted with the same letters 
are not significantly different from one another.  (See Figure 6.3 for 
experimental conditions.) 

 

 
Figure 6.16.  Conversion of cellulose pretreated with three NaOH 
loadings for 2 hr and enzymatically hydrolyzed at high solids (20% 
w/w) with an [E] = 5.2 FPU/g solids.  Pretreatment was performed at 
20% (w/v) solids.  (See Figure 6.3 for experimental conditions.) 
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Figure 6.17 and Figure 6.18 show the conversion of cellulose and hemicellulose 

for corn stover pretreated at three NaOH loadings for 24 hr at 25ºC and hydrolyzed at low 

and high solids, respectively.  In contrast to the trends observed for the 2 hr 

pretreatments, the conversion of cellulose increased from 20% to ~63% with increasing 

NaOH loading for the hydrolysis performed at low-solids loading.  The conversion of 

hemicellulose did not follow this same trend, as it achieved a maximum conversion 

(~55%) at 10 g NaOH/100 g CS.  For the hydrolysis performed at high-solids loadings, 

the conversions are more than 5-fold smaller than the conversions observed at low-solids 

loadings.        

 

 
Figure 6.17.  Conversion of cellulose pretreated for 24 hr and 
enzymatically hydrolyzed at low-solids (5% w/w) with an [E] = 5.2 
FPU/g solids.  Pretreatment was performed at 20% (w/v) solids.  
Column groupings denoted with the same letters are not significantly 
different from one another.  (See Figure 6.3 for experimental 
conditions.) 
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Figure 6.18.  Conversion of cellulose pretreated for 24 hr and 
enzymatically hydrolyzed at high solids (20% w/w) with an [E] = 5.2 
FPU/g solids.  Pretreatment was performed at 20% (w/v) solids.  
Column groupings denoted with the same letters are not significantly 
different from one another.  (See Figure 6.3 for experimental 
conditions.) 

 
6.4.5 Hydrolyzate Flushing and Substrate Reuse 

Washing corn stover following the pretreatment process appears to affect its 

composition (Figure 6.19).  The largest difference between the washed and unwashed 

PCS is the amount of ash that remains in the unwashed sample.  Nearly five times the 

amount of ash was measured in the unwashed sample than the washed sample.   
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Figure 6.19.  Composition of pretreated corn stover that was either 
washed or unwashed following pretreatment.  Results are calculated 
as % oven dried material.  Pretreatment was performed at 10% (w/v) 
solids pretreated with 10 g NaOH/100 g CS for 24 hr at 25°C. 

 

 Figure 6.20 shows the glucose concentrations obtained from enzymatic hydrolysis 

with the 15 FPU/g solids enzyme loading on washed and unwashed PCS following each 

hydrolyzate flushing cycle.  The columns flushed every 24 hr of the 72 hr hydrolysis 

period produced significantly more glucose than those operated under conventional batch 

conditions for the full 72 hr (control).  It is also evident from this figure that the majority 

of the glucose produced in the conventional batch system is likely hydrolyzed within the 

first 24 hr of the hydrolysis reaction, since there is very little or no difference between the 

glucose concentration for the 72 hr hydrolysis and the first 24 hr of the flushed systems.  

This result is not altogether surprising, considering the hydrolysis rate is fastest within the 

initial hours of the reaction (data not shown).  Washing the corn stover following 

pretreatment did not show consistent improvement of glucose yields from hydrolysis.  

For instance, washed PCS in the control system released more glucose than unwashed 

PCS when the reaction was not supplemented with additional enzyme.  However, 

washing the corn stover did not seem to improve the amount of glucose released in the 

control system when the reactions were supplemented with enzyme.  Supplementation 
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with additional enzyme improved the amount of glucose released from 73 g/L to 97 g/L 

for the unwashed, flushed PCS samples.      

 

 
Figure 6.20.  Glucose production from enzymatic hydrolysis performed for 72 hr 
under conventional batch conditions (control) or with flushing of hydrolyzate 
and reuse of the substrate.  Corn stover was pretreated at 10% (w/v) solids with 
a loading of 10 g NaOH/100 g CS for 24 hr at 25°C.  Enzymatic hydrolysis was 
performed at 20% (w/w) solids on washed PCS.  Initial enzyme loading was 15 
FPU/g solids.  Each flushing cycle contained an additional enzyme loading of 2.5 
FPU/g solids for the samples that received enzyme supplementation.  Bars 
labeled with the same letter show no statistical difference.   
  

 Glucose yields from washed and unwashed PCS hydrolyzed with 60 FPU/g solids 

enzyme loading following each flushing cycle are shown in Figure 6.21.  The higher 

enzyme loading resulted in higher overall glucose yields for the flushed samples 

compared to the flushed hydrolysis performed with 15 FPU/g solids enzyme loadings.  

Removal of the hydrolyzate shows significant improvement in glucose yields compared 

to the conventional batch hydrolysis, increasing yields by more than 47% in all cases.  

Many of the same trends observed with the 15 FPU/g solids enzyme loading are also seen 

here.  For instance, washed PCS in the control system released more glucose than 

unwashed PCS when the reaction was not supplemented with additional enzyme.  

However, washing the corn stover did not seem to improve the amount of glucose 

released in the control system when the reactions were supplemented with enzyme.    
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Supplementation with enzyme improved the amount of glucose released from 85 g/L to 

103 g/L for the unwashed, flushed PCS sample.  The washed, flushed PCS sample was 

the most easily digested, releasing 113 g/L glucose. 

 

 
Figure 6.21.  Glucose production from enzymatic hydrolysis performed for 72 
hr under conventional batch conditions or with flushing of hydrolyzate and 
reuse of the substrate.  Corn stover was pretreated at 10% (w/v) solids with 10 g 
NaOH/100 g CS for 24 hr at 25°C.  Enzymatic hydrolysis was performed at 
20% (w/w) solids on washed PCS.  Initial enzyme loading was 60 FPU/g solids.  
Each flushing cycle contained an additional enzyme loading of 2.5 FPU/g solids 
for the samples that received enzyme supplementation.  Bars labeled with the 
same letter show no statistical difference. 

 

While higher total glucose concentrations were achieved when the hydrolyzate 

was flushed, it is apparent from Figure 6.20 and Figure 6.21 that the rate of glucose 

production slowed with each successive cycle.  For washed PCS with no enzyme 

supplementation, independent of enzyme loading, the glucose production during cycle 2 

and 3 were 68% and 39% of cycle 1, respectively.  However, for the flushed hydrolysis 

performed with the high enzyme loading and receiving additional enzyme 

supplementation, this reduction in rate was not apparent until the last cycle (i.e. cycle 1 

and 2 produced approximately the same amount of glucose). 

Flushing the hydrolyzate and reusing the substrate increased cellulose conversion 

significantly compared to conventional batch hydrolysis for both the washed and 
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unwashed PCS (Figure 6.22).  For the washed PCS receiving no enzyme 

supplementation, conversion increased 1.7 and 1.9 times for 15 and 60 FPU/g solids 

enzyme loadings, respectively, where the higher enzyme loading achieved nearly 

complete conversion of cellulose. For the unwashed PCS receiving no enzyme 

supplementation, conversion increased 1.6 and 2.0 times for 15 and 60 FPU/g solids 

enzyme loadings, respectively.  Supplementing with additional enzyme resulted in 

slightly larger increases for each case.  Interestingly, for all cases, the 15 FPU/g solids 

enzyme loading produced the same or higher conversion in the conventional batch 

(control) hydrolysis reaction than the 60 FPU/g solids enzyme loading.  However, the 

opposite was observed for the flushed samples.  The 60 FPU/g solids enzyme loading 

produced the higher conversion. 

     

 
Figure 6.22.  Conversion of cellulose for PCS hydrolyzed for 72 hr under 
conventional batch conditions or with flushing of hydrolyzate and reuse of the 
substrate.  Corn stover was pretreated at 10% (w/v) solids with 10 g NaOH/100 g CS 
for 24 hr at 25°C.  Enzymatic hydrolysis was performed at 20% (w/w) solids on 
washed PCS.  Initial enzyme loading was either 15 or 60 FPU/g solids.  Each 
flushing cycle contained an additional enzyme loading of 2.5 FPU/g solids for the 
samples that received enzyme supplementation. 
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6.5 DISCUSSION 

6.5.1 Low-Solids Loading in Pretreatment 

 Solids loadings in successive pretreatment and hydrolysis operations can affect 

the overall effectiveness of the conversion process.  Increased solids loadings in 

pretreatment do not appear to negatively impact cellulose conversion for low-solids 

hydrolysis systems.  For example, low-solids pretreatment followed by low-solids 

hydrolysis resulted in ~40% cellulose conversion, whereas high-solids pretreatment 

followed by low-solids hydrolysis resulted in ~60% cellulose conversion.  However, 

increased solids loadings in hydrolysis appear to have a large negative impact on 

cellulose conversion, irrespective of solids loadings in pretreatment, with the low-

solids/high-solids and the high-solids/high-solids conversion schemes resulting in ~8% 

and 0% cellulose conversion, respectively.            

 

6.5.2 Pretreatment Time and Temperature 

Sodium hydroxide alters the lignocellulosic structure by breaking bonds between 

the lignin and carbohydrates, specifically the ester bonds within the xylan backbone and 

that link the hemicellulose to the lignin (Sills and Gossett 2012).  In this process, some 

lignin can be solubilized (Balat et al. 2008; Galbe and Zacchi 2007; Hendriks and 

Zeeman 2009; Jorgensen et al. 2007a), as well as some of the hemicellulose.  Duguid et 

al. (2009) saw <2% reduction in lignin with a 5.8 g NaOH/100 g biomass pretreatment at 

25°C, whereas Chen et al. (2009) observed 73.9% lignin removal with a 16 g NaOH/100  

g biomass treatment at 25°C.  However, this present study observed an apparent increase 

in total lignin of up to 9% in some cases, likely caused by the loss of components other 

than lignin (Figure 6.6and Figure 6.7).  These results indicate that the chosen 

pretreatment time and temperature combinations may not have been adequate for the 

removal of lignin, since final biomass composition is dependent on the selected 

pretreatment conditions and the type of substrate (Table 4.1).  As mentioned earlier, these 

direct comparisons of substrate composition are complicated by the fact that the 

denominator changes as the treatment changes.  However, it is hypothesized that the 

tested pretreatment conditions may have instead caused the rearrangement of lignin 

components, enabling enzymatic hydrolysis to proceed. 
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It is not unusual to observe a reduction in cellulose conversion to glucose (percent 

of theoretical) as solids loadings are increased in enzymatic hydrolysis.  This decrease in 

conversion yields with increasing solids loadings is referred to as the solids effect and is 

an undesirable characteristic that negates the advantages of working at high solids (Cara 

et al. 2007; Jorgensen et al. 2007b; Kristensen et al. 2009b).  However, final glucose 

concentrations tend to increase with an increase in solids loading, even as conversion 

decreases, due to the change in total solids loading.  To date, most studies sacrifice 

conversion for a more concentrated glucose product; although, determining the cause of 

the solids effect may lead to improved conversion efficiencies.  In this current study, the 

conversion of cellulose (the percent of cellulose released as glucose) decreased as 

expected with increasing solids loadings.  However, the apparent glucose concentration 

(g glucose/L) also decreased with increasing solids loadings, indicating additional 

problems that are not apparent in other studies arising during pretreatment and enzymatic 

hydrolysis.  The observed inhibition could likely be due to a number of factors, including 

by-products of the neutralization process, increased inhibitor concentrations and mass 

transfer limitations.   

The NaOH pretreatment is a strongly alkaline processing step.  The pH of this 

treatment is ~13-14, much higher than the optimal pH (~5) of the enzymes.  

Neutralization of the biomass following pretreatment is crucial for the optimal 

performance of enzymes during hydrolysis.  In many instances, large volumes of water 

(10-20 volumes) are used to rinse the pretreated biomass (Banerjee et al. 1995; Cheng et 

al. 2010; Sills and Gossett 2012).  One of the reasons for working with high-solids 

loadings is to reduce the amount of water consumed in the conversion process.  Washing 

biomass until a neutral pH is obtained is counterproductive to reaching this goal.  In this 

study, neutralization occurred with the addition of glacial acetic acid and washing of the 

solids with less water (3-5 volumes) compared to other studies.  When acids react with 

bases, the main products that form are water and salts, which in this case would be 

sodium acetate.  Sub-optimal pH and residual salts are possible causes for the reduced 

glucose production in enzymatic hydrolysis.  One study found that production of 

cellulase by Bacillus coagulans and the subsequent hydrolysis of cellulose slowed as 

acetate concentration increased (Romsaiyud et al. 2009).  Cellulase production and 
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cellulose hydrolysis were still measurable at an acetate concentration of 10 mmol/L, but 

cellulase production slowed by as much as 75% at 30 mmol/L acetate and was 

completely eliminated at 60 mmol/L acetate.    

It is also possible that the combination of high-solids loadings in both 

pretreatment and enzymatic hydrolysis led to increased inhibitor yields.  NaOH 

pretreatment typically results in partial to total solubilization of lignin and hemicellulose, 

depending on the severity of the pretreatment conditions; although very little 

solubilization of these fractions was observed in this current work.  Removal of lignin by 

NaOH often leads to the release of acetyl groups and uronic acid substitutions, which can 

enhance the digestibility of cellulose and hemicellulose (Cui et al. 2012; Kumar et al. 

2009a; Wan et al. 2011).  However, hydrolytic enzymes can be inhibited by some of 

these degradation products, making the selection of process conditions, like alkaline 

loading, moisture content, temperature and time, extremely important.  Balance is the key 

to achieving optimal lignin removal, while limiting the production of inhibitory 

compounds.  For instance, Cui et al. (2012) found that delignification was influenced by 

NaOH loading, time and moisture content during long-term wet-storage of corn stover.  

Addition of 2-5% (w/w) NaOH increased lignin degradation by ~10-25% over a 90-d 

storage period; however, most of this lignin degradation occurred within the first five 

days of storage.  A higher loss in xylan (up to 34%) was observed concurrently with the 

increase in lignin degradation.  Wan et al. (2011) also observed a sharp increase in xylan 

degradation with an increase in lignin degradation.  As NaOH loading increased from 4% 

to 40% (w/w), lignin degradation increased moderately from ~7% to ~15%, but xylan 

removal increased from 5% to nearly 50% over the same NaOH loadings.  Although no 

inhibition was observed during enzymatic hydrolysis and inhibitor concentrations were 

not measured, the presence of inhibitory compounds from the degradation of xylan is 

possible.  However, they were likely removed during the washing and neutralizing of the 

soybean straw prior to use in the hydrolysis reaction. 

The temperature at which the pretreatment is performed may also affect the sugar 

yield from hydrolysis.  The pretreatment conditions investigated in this current study 

were intentionally chosen to be mild to limit the loss of hemicellulose sugars.  

Additionally, low to moderate temperatures (<100°C) are preferential for alkaline 
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pretreatment prior to the conversion of lignocellulose to fermentable sugars, since 

cellulose is affected very little at these temperatures.  The lignocellulose may have 

undergone subtle changes that were not detected in the compositional analysis but 

became evident following enzymatic hydrolysis when higher cellulose conversions were 

achieved for corn stover pretreated at a higher temperature (Figure 6.8 and Figure 6.9).  

For example, bonds may have been broken and the components condensed onto the 

lignocellulose without becoming soluble, which could have exposed cellulose but not 

changed the overall composition of the material.  However, the increase in cellulose 

conversion was only observed for PCS hydrolyzed at low solids.  Sweet sorghum bagasse 

has been shown to have significant lignin removal following alkaline (NaOH) 

pretreatment at short reaction times and moderate temperatures.  Wu et al. (2011) 

reported that an increase in temperature from 25°C to 50°C resulted in the delignification 

of sweet sorghum bagasse to increase from 65% to 90% when pretreated with a NaOH 

loading of 40 g NaOH/100 g biomass for  2 hr.  The glucose recovery was not impacted 

by the change in pretreatment temperature.  Xu et al. (2010) also observed an improved 

sugar yield when pretreating with higher temperatures.  By changing the pretreatment 

temperature from 50°C to 121°C, lignin content was reduced by 25% and 35%, 

respectively, which resulted in the glucose yield nearly doubling for switchgrass 

pretreated with the increased temperature (~90 mg/g biomass vs. ~175 mg/g biomass).  In 

the current study, a change in lignin content was not measured between the two 

pretreatment temperatures tested, but it is possible that bonds between the lignin and the 

hemicellulose were broken, allowing access to the cellulose, before solubilized lignin 

compounds condensed back onto the solids.  

 

6.5.3 NaOH Loading in Pretreatment 

Alkaline degradation of cellulose is dependent on several factors, including the 

nature and concentration of the alkali, the nature and origin of the cellulose and the 

reaction temperature (Ciolacu and Popa 2005; Fengel et al. 1995; Knill and Kennedy 

2003).  At relatively low temperatures (<100 °C) and low alkali concentrations (<4%), 

structural changes for cellulose are insignificant, as glycosidic β-(1, 4) linkages are alkali 

stable under these conditions (Knill and Kennedy 2003).  In this current study, the 
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composition of corn stover pretreated with low NaOH loadings (4 g NaOH/100 g CS) 

was not significantly different when pretreatment times were extended from 2 hr to 24 hr, 

indicating the stability of the cellulose under the conditions investigated.  Kim and 

Holtzapple (2006) reported no significant structural changes or degradation to cellulose 

pretreatment using 5% (w/v) lime (50 g Ca(OH)2/100 g biomass) at low temperatures 

(25°C-55°C), even for extended pretreatment times up to 16 weeks.  Another study (Cui 

et al. 2012) reported that long-term storage (90 days) of wet corn stover without the 

addition of NaOH resulted in ~10% loss of cellulose; however, storage with the 

application of 2% NaOH caused only ~5% degradation of cellulose.  The addition of 

NaOH likely made the environmental conditions unfavorable for microorganisms that 

would have grown on the cellulose, thus protecting it from microbial degradation.  These 

conditions (low alkali concentrations and low to moderate temperatures) are favorable for 

lignocellulose pretreatment because lignin is affected, but most of the cellulose remains 

unaltered and available for hydrolysis into fermentable carbohydrates. 

At higher alkali concentrations (>6%), many structural and morphological 

changes begin to occur in cellulose.  As alkali concentrations increase, crystallite 

structures (regions of highly ordered polymer chains interspersed with more amorphous 

regions) begin to swell.  The swelling starts first in amorphous regions, followed by the 

crystalline region.  The degree of polymerization (DP) and the degree of crystallinity 

(CrI; crystallinity index) decrease with increasing alkali concentration (Eronen et al. 

2009; Mittal et al. 2011).  In this current study, conversion of corn stover pretreated for 

24 hr increased with increasing NaOH loadings when hydrolyzed at low solids loadings 

(Figure 6.17).  An apparent change in composition was observed at the higher NaOH 

loadings.  For example, carbohydrates that predominately comprise cellulose and 

hemicellulose were lower for corn stover pretreated for 24 hr with a loading of 20 g 

NaOH/100 g CS than corn stover pretreated for 2 hr with the same NaOH loading, as 

well as corn stover pretreated for 24 hr with half the NaOH loading.  Ciolacu and Popa 

(2005) studied the structural changes of microcrystalline cellulose, cellulose linters 

(secondary growth of short, thick-walled fibers produced by cotton) and spruce pulp 

treated with several alkali concentrations (0-18% NaOH).  At 8.5% NaOH (which is 

similar to the highest NaOH loading in the current study), they observed reductions in the 
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DP (6.6%-18.2%) and CrI (7.5%-10.0%) for all three substrates tested when compared to 

cellulose treated without the addition of NaOH.  These structural changes are 

advantageous for the conversion of lignocellulose into fermentable sugars because 

enzymatic hydrolysis is enhanced as amorphous regions of cellulose are more easily 

digested by cellulolytic enzymes. 

Lignin content varied with NaOH loading; however, with the NREL biomass 

composition analysis, it is difficult to say with certainty that the component either 

increased or decreased relative to another sample treated under different conditions.  The 

corn stover was treated in large batches, and samples of equivalent mass were collected 

from the batches for compositional analysis.  The amount of solids recovered from 

pretreatment was not measured, and without that information, it is difficult to directly 

compare between treatments since the numerators and denominators change from sample 

to sample.  For instance, 1 g of untreated, raw corn stover is not that same as 1 g of corn 

stover pretreated with 4 g NaOH/100 g biomass, which is not the same as 1 g of corn 

stover pretreated with 20 g NaOH/100 g biomass. 

Percent ash content for a given mass of PCS increased with increasing NaOH 

loading.  Ash is the residue remaining after lignocellulose is ignited at 575°C and can 

consist of minerals such as aluminum, calcium and sodium (Lee et al. 2007).  The higher 

NaOH loadings likely contributed to the higher apparent ash content of the PCS if 

residual NaOH was still present following washing with DI water.   

Even with modifications made to the corn stover composition, cellulose 

conversion of the corn stover pretreated for 2 hr decreased from 5.7% to 0.6% with 

NaOH loadings increasing from 4 to 20 g NaOH/100 g corn stover when hydrolyzed at 

20% (w/w).  The same trend was observed for corn stover hydrolyzed at low-solids 

loadings; however, the conversions were significantly higher.  Low conversions (<9%) 

were also observed for corn stover pretreated for 24 hr and hydrolyzed at high-solids 

loadings.  Inadequate neutralization of the corn stover following pretreatment is a 

possible cause of the reduced conversions.  However, inadequate neutralization does not 

account for the higher conversions observed for the corn stover pretreated for 24 hr and 

hydrolyzed at low-solids loadings.  It is likely that the buffer used in enzymatic 

hydrolysis was able to counteract the high pH of the PCS in this case, allowing enzymatic 
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hydrolysis to proceed, whereas the buffer may not have been adequate in regulating the 

pH for high-solids loadings.  Additionally, the increase in cellulose conversion observed 

for corn stover pretreated for 24 hr and hydrolyzed at low-solids loadings as NaOH 

loadings increased does not agree with the decreasing conversion of the corn stover 

pretreated for only 2 hr.  The additional compositional modifications that resulted from 

the extended pretreatment time, in combination with the adequate buffering capacity for 

low-solids loadings, is a possible cause for the improved conversions. 

 

6.5.4 Hydrolyzate Flushing and Substrate Reuse 

Many studies have been conducted to examine the potential of recycling enzyme 

to reduce the cost of the hydrolysis operation and limit inhibition of the enzymes (Gregg 

and Saddler 1996; Lee et al. 1995; Qi et al. 2011; Qi et al. 2012; Tu et al. 2007; Tu et al. 

2009), but few have looked at the possibility of reusing the substrate as a way to 

capitalize on the full energy potential contained in biomass when working at high-solids 

loadings (Yang et al. 2010a; Yang et al. 2011).  One study investigated the use of 

hydrolyzate flushing and substrate reuse to not only improve cellulose conversion for 

high-solids systems but to also reduce the retention time (Yang et al. 2011).  Steam-

exploded corn stover was hydrolyzed with an enzyme loading of 15 FPU/g cellulose for 

24 hr in three stages.  Flushing of the hydrolyzate occurred after 9, 18 and 24 hr.  

Conventional batch hydrolysis conducted at 30% (w/v) solids for 72 hrs resulted in 45% 

cellulose conversion. Flushing of the hydrolyzate and reusing of the solids resulted in 

71% conversion after only 24 hr.  In other words, flushing the hydrolyzate increased the 

cellulose conversion by ~1.5 times in only one third the amount of time compared to 

conventional batch hydrolysis.  In this current study, flushing increased cellulose 

conversion of NaOH-pretreated corn stover by 1.5-2 times over 72 hr compared to 

conventional batch hydrolysis. 

It was hypothesized that flushing the hydrolyzate may eliminate the need for 

washing lignocellulose material following pretreatment by reducing inhibitory 

components that may be present, thus reducing the amount of process water required.  

However, washing the corn stover following pretreatment appeared to affect its 

composition Figure 6.19.  This compositional difference has implications for the 
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subsequent enzymatic hydrolysis, especially when dealing with high-solids loadings.  

When considered on a weight basis (total solids), the washed PCS has a higher cellulose 

loading than the unwashed PCS.  Since the total solids were equivalent for hydrolysis 

reactions containing washed and unwashed PCS and the enzyme was applied based on 

the total solids content, the reactors containing the washed PCS would have a lower 

enzyme: cellulose ratio than the reactors containing unwashed PCS, which could 

potentially result in a reduced cellulose conversion.  The data presented in this current 

work do not substantiate this claim, since washed PCS released just as much, if not more 

glucose than unwashed PCS.  At the scale this experiment was performed, the difference 

in cellulose content for washed and unwashed PCS was not substantial.  However, it is 

still a concern that should be addressed, especially at larger scales where discrepancies 

between cellulose content may be much more significant.  

Flushing the hydrolyzate and reusing the substrate has been shown to improve 

glucose yields of enzymatic hydrolysis performed at high-solids loadings compared to 

conventional batch hydrolysis.  However, with each successive cycle, the rate of glucose 

production was reduced.  Several factors may play a role in reducing the conversion rate, 

including non-reversible and/or unproductive binding of enzyme to the substrate, removal 

of the more easily converted cellulose fraction (amorphous regions vs. crystalline 

regions), a lack of new, accessible cellulose chains and/or loss of enzyme during flushing 

of the reactor.  Although results are inconclusive, many studies suggest that cellulase may 

bind to lignin irreversibly, rendering it ineffective in converting cellulose to glucose 

(Converse et al. 1990; Kumar and Wyman 2009a; Kumar and Wyman 2009b; Qi et al. 

2011; Tu et al. 2009).  Amorphous regions and solubilized saccharide chains are more 

easily converted than crystalline regions of the cellulose.  As hydrolysis progresses, these 

regions are depleted and the rate of glucose production is impacted.  Additionally, as the 

rate slows, the number of new cellulose chains accessible to the enzymes is limited and 

overcrowding of the enzyme can occur, further impacting glucose production.  It is also 

possible that the flushing process removes a significant portion of the solubilized 

enzyme, specifically the β-glucosidase, and especially in cases where additional enzyme 

has not been reapplied to the hydrolysis reaction following each flushing cycle.   The 

removal of β-glucosidase could lead to the inhibition of cellulase due to accumulation of 
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cellobiose, resulting in a lower glucose yield in each successive cycle.  Cellobiose was 

measured in some of the hydrolysis samples (data not shown), which is a potential source 

of inhibition.        

However, not all treatments resulted in a reduction of glucose production with 

each successive cycle.  The high enzyme loading in conjunction with additional enzyme 

supplementation for each cycle maintained a steady production of glucose through cycle 

1 and 2 that was not observed in hydrolysis without enzyme supplementation.  The 

reduction in production rate was not observed until cycle 3 when sufficient amounts of 

enzyme were likely either removed or deactivated, resulting in that reduction.  The same 

trend was not observed, however, with the lower enzyme loading.  It is likely that the 

lower initial enzyme loading was not sufficient to fully saturate all accessible cellulose 

sites.  Even with the additional enzyme supplementation, the accessible sites were likely 

never fully saturated, resulting in a reduction of glucose production rate with each 

successive cycle as enzyme was either removed or deactivated. 

The difference seen in washed and unwashed samples was not as apparent in 

samples receiving additional enzyme supplementation during each successive flushing 

cycle compared to those with no enzyme supplementation, even though the extra enzyme 

applications were very low (2.5 FPU/g solids).  The fresh enzyme likely replenished 

enzyme activity lost to deactivation or denaturation of enzyme from the initial dosage 

during the first cycle or removed during the flushing process.    

There are also implications for large-scale processing of biomass.  Flushing of the 

hydrolyzate could eliminate the need for washing pretreated biomass prior to enzymatic 

hydrolysis, reducing the process water demand, as well as the amount of wastewater that 

would require treatment.  It is important that the process water demand be minimized for 

any process to be considered environmentally friendly and economically feasible 

(Mohagheghi and Schell 2010).  For the low enzyme loading, the unwashed hydrolysis 

receiving doses of 2.5 FPU/g solid supplemental enzyme during each flushing cycle 

performed just as well as the washed PCS that was not supplied with additional enzyme 

doses during flushing, achieving nearly 85% conversion.  In each case, the conversion 

was substantially higher than that of the conventional batch reactions.  The hydrolyzate 

flushing method may also potentially be used as a way to reduce the retention time 
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necessary to produce high cellulose conversions.  Optimization of the flushing time can 

ensure that the rate of glucose production remains high (i.e. the process remains in the 

first-order section of the hydrolysis curve).    

Reduced enzyme loadings may also be a possibility with flushing of the 

hydrolyzate.  In this study, a four-fold increase in enzyme loading resulted in only a 

slight increase in overall conversion.  The return for using the higher enzyme loading was 

not recognized, especially since enzyme cost is such a large portion of the overall 

conversion cost.  The high cost of the enzyme can make high enzyme loadings 

prohibitive at an industrial scale (Weiss et al. 2013).   

One limitation of using a flushing process to mitigate the production of inhibitors 

is dilution of the final product, which may negate some of the advantages of working at 

high-solids loadings.  However, it is likely that a larger total saccharide mass would be 

achieved.  A complete techno-economic analysis would be necessary to validate the use 

of hydrolyzate flushing and substrate reuse (with possible enzyme supplementation) over 

conventional batch hydrolysis at either low- or high-solids loadings. 

 Water plays a critical role in the hydrolysis reaction.  Water availability can 

impact the effectiveness of process designs.  It is therefore essential to understand the 

true impact of processing parameters on water activity and availability for the overall 

process to be economically viable.  Selig et al. (2012) hypothesized that soluble species 

have a significant negative effect on the availability of water, which consequently 

negatively affects enzyme systems.  They found that soluble species did, in fact, reduce 

the availability of water, resulting in lower cellulose conversion.   Conversely, increasing 

non-hydrolysable insoluble solids did not appear to affect the overall cellulose 

conversion.  These soluble species include not only solubilized sugars resulting from the 

hydrolysis process, but also the soluble enzyme systems and other components found in 

commercial cellulase preparations, like fermentation by-products, stabilizers and 

preservatives.  Additional evidence supporting this hypothesis was provided by purifying 

commercial cellulase preparations and applying different enzyme loadings (1-50 mg 

protein/g cellulose) to 5% and 20% initial dry solids loadings (Sigmacel 50 cellulose).  

Cellulose conversion for the two solids loadings increased with increasing enzyme 

loadings, indicating that the soluble enzyme systems may become inhibitory at higher 
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enzyme concentrations.  Furthermore, upon addition of increasingly concentrated non-

enzymatic components that were previously removed during purification of the 

commercial enzyme preparation, a significant decline in cellulose conversion was 

observed.  The authors also investigated some common compounds used as preservatives 

in commercial enzyme preparations (glycerol and sorbitol).  It was shown that these 

preservatives negatively impacted cellulose conversion (5% solids loading), reducing 

conversion of pure cellulose by 15% when sorbitol was present at 25 mg/mL of 

hydrolyzate liquid (500 mg sorbitol/g cellulose) compared to when no sorbitol was 

present.  Conversion of pure cellulose was reduced by as much as 40% when sorbitol was 

present at 160 mg/mL hydrolyzate liquid (3,200 mg/g cellulose).  This sorbitol 

concentration would be equivalent to having an enzyme loading ~6 times higher than the 

highest enzyme loading examined in this current work under the same solids loading.   

 According to another study that characterized multiple commercial enzyme 

preparations (Nieves et al. 1998), the cellulase system produced from T. reesei and 

marketed as Celluclast 1.5L (the enzyme preparation used in this current work) contained 

~280 mg sorbitol/mL enzyme preparation.  The protein content and the specific activity 

of the commercial cellulase preparation surveyed in the Nieves et al. (1998) study were 

very similar to the measurements obtained in this current work (Table 6.2).  Assuming a 

similar sorbitol concentration as reported in the Nieves et al. (1998) study in the enzyme 

preparation used in this current work, that translates to an application of ~120-500 mg 

sorbitol/g cellulose for enzyme applications of 15-60 FPU/g solids (82-328 mg protein/g 

cellulose) on 5% solids loadings (Figure 6.23).  Increasing the sorbitol concentration 

from 120 mg/g cellulose to 500 mg/g cellulose in combination with the enzyme (protein) 

concentration from 82 mg/g cellulose to 328 mg/g cellulose reduced the conversion of 

cellulose in PCS by nearly 70% and 30% at 5% and 20% solids loadings, respectively.  

The unintentional application of high sorbitol concentrations could explain the low 

cellulose conversions observed in the hydrolysis studies presented here, as well as the 

decrease in conversion observed with the data presented in chapter 7.                 
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Table 6.2.  Characteristics of commercially available cellulase preparations. 
 Protein Content  

(mg/mL enzyme preparation) 
Specific Activity  
(FPU/mg protein) 

Modenbach et al. (2012) 182 0.38 
Nieves et al. (1998) 166 0.37 

 
 

 
Figure 6.23.  Cellulose conversion of PCS at 5% and 20% solids 
loadings at four different enzyme concentrations.  Pretreatment was 
performed at 10% solids loadings with 10 g NaOH/100 g CS at 25°C 
for 24 hr.  Hydrolysis was performed for 96 hr. 
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CHAPTER 7:  MODELING HETEROGENOUS ENZYMATIC CELLULOLYTIC 
HYDROLYSIS REACTIONS USING THE INTEGRATED FORM OF THE 
MICHAELIS-MENTEN EQUATION  
 

7.1 SUMMARY 

 Experimental cellulose hydrolysis data were collected for five solids loadings 

(2%, 5%, 10%, 15%, and 20%) and four cellulase loadings (15, 30, 45 and 60 FPU/g 

solids) over 96 hr.  Kinetic parameters Km and Vm were determined by simultaneously 

fitting the integrated form of the Michaelis-Menten kinetics model to these experimental 

data.  Lambert’s ω function was used to solve the integrated equation because of the 

implicit nature of the resulting equation.  Due to the heterogeneous nature of the cellulose 

hydrolysis reaction, non-classical kinetic characteristics, like fractal kinetics, may be 

encountered.  Additionally, the large size of the enzymes relative to the reactive surface 

of the cellulose chain may lead to overcrowding or jamming of the system, affecting the 

rate of reaction.  Additional parameters to represent the kinetic effects of fractal kinetics 

(f) and for jammed enzymes (j) were included in the modeling.  

 

7.2 INTRODUCTION 

The conversion of lignocellulosic material to valuable products is a very 

promising process since cellulose is an abundant and renewable source of energy.  

Developing an economically viable commercial process will undoubtedly require issues 

related to its optimization to be solved (Gusakov et al. 1985).  Modeling the hydrolysis 

reaction enables researchers to understand and predict the course of the reaction at any 

given point, providing a very powerful tool to the industry.  To date, many models have 

been proposed for the enzymatic hydrolysis operation based on enzyme kinetics and 

knowledge of the mechanism of the cellulolytic enzymes (Bansal et al. 2009; Converse 

and Optekar 1993; Fan and Lee 1983; Gan et al. 2003; Kadam et al. 2004; Nidetzky and 

Steiner 1993; Zhang and Lynd 2006).  Modelers have incorporated concepts like enzyme 

adsorption onto the substrate, the synergism between various enzyme components, and 

inhibition caused by degradation products from pretreatment and/or end-products from 

hydrolysis to improve the model’s ability to describe the progress of the hydrolysis 

reaction.  However, the complex nature of the interactions between cellulose and 



 

          198 
 

cellulase makes it difficult to capture the full scope of the reaction in a simplistic, easy-

to-use mathematical model. 

Classical Michaelis-Menten kinetics have been the basis for many kinetic models 

and have generally described the process adequately.  However, some of the underlying 

assumptions of the Michaelis-Menten model do not hold true for the hydrolysis of 

lignocellulose.  A major assumption of Michaelis-Menten kinetics is that the reaction is 

homogeneous in nature (Xu and Ding 2007), meaning that the enzyme and substrate are 

in the same phase (i.e. soluble enzyme and soluble substrate).  Additionally, the kinetics 

of homogenous reactions are based on classical mass-action law, or Fickian diffusion.  

The depletion rate of the substrate is proportional to the probability of a collision between 

a substrate molecule and enzyme in a three-dimensional space, leading to a reaction.  

This probability is a function of the diffusion of the reactants through the solution (Xu 

and Ding 2007).     

The lignocellulose hydrolysis reaction is initially completely heterogeneous in 

nature (Bansal et al. 2009; Valjamae et al. 1998), meaning that the enzyme and substrate 

are in two different phases (i.e. soluble enzyme, insoluble substrate).  Figure 8.1 

illustrates some other examples of heterogeneous reactions and the interfaces at which the 

enzymes catalyze reactions.  The enzyme must diffuse through the mixture and adsorb 

onto the substrate at an available reaction site.  This interfacial reaction is one cause of 

deviation from classical Michaelis-Menten kinetics.  As the reaction progresses, the 

adsorbed enzymes act upon the insoluble polysaccharides (cellulose, hemicellulose) in a 

processive manner to produce soluble saccharide species (mono-, di-, tri-, 

oligosaccharides).  The processive movement of the cellulase results in a reaction that is 

dimensionally restricted; the enzyme can only move in one direction until it reaches the 

end of the cellulose chain.  It is no longer necessary for that cellulase to collide with a 

substrate molecule to catalyze successive reactions.  Restricted dimensionality is another 

cause of deviation from classical Michaelis-Menten kinetics.  Furthermore, the system 

contains both soluble and insoluble forms of the substrate, resulting in a system that has 

aspects of both homogeneous and heterogeneous reactions. 
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 The development of fractal kinetics has been useful for describing diffusion-

limited reactions (Kopelman 1988; Wang and Feng 2010; Xu and Ding 2007; Yao et al. 

2011).  Diffusion limitations may result from the heterogeneity of the reaction, as well as 

high-solids loadings, like those investigated in this current work, where the availability of 

free water is limited.  Dimensional restriction can also trigger non-classical kinetic 

behaviors, prompting the use of fractal kinetics. 

 The jamming effect is another kinetic behavior investigated in this work.  

Insoluble substrates in heterogeneous reactions are often packed with fixed 

intermolecular distances (Bommarius et al. 2008; Xu and Ding 2007).  For example, the 

cellulose fraction of lignocellulose is actually composed of cellulose bundles, called 

fibrils, where multiple cellulose chains are packed together in a parallel fashion.  When 

the cross-section of an enzyme is larger than the distance between these fixed strands, the 

adsorbed enzyme may actually block adjacent strands of cellulose (Figure 3.2).  This 

behavior is very much like a traffic jam, where large vehicles block adjacent lanes.  

When the enzymes reach a critical level, the cellulase can overcrowd available cellulose 

chains, effectively reducing the rate of the reaction.            

Figure 7.1.  Examples of enzymes that catalyze heterogeneous reactions 
and the interfaces at which they work.  The reaction marked with an 
asterisk (*) denotes a classical homogeneous reaction.  Figure adapted from 
McLaren and Packer (1970). 
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7.3 MATERIALS AND METHODS 

7.3.1 Enzyme 

The enzyme system consisted of crude cellulase liquid from T. reesei (Celluclast 

1.5L) supplemented with β-glucosidase from A. niger (Novozyme 188).  Both enzymes 

were purchased from Sigma (St. Louis, MO). 

 

7.3.2 Substrate 

 Corn stover collected directly from the field at the Woodford County Animal 

Research Center in Woodford County, KY in September 2010 was used as the substrate.  

The corn (P1253 Pioneer) had been planted using conventional tillage practices in April 

2010.  Stover is composed of material other than grain (MOG).  After collection, the 

samples were prepared for laboratory storage by drying at 45ºC and grinding through a 

hammer mill with a 5 mm screen. 

 

7.3.3 Pretreatment of Corn Stover 

Sodium hydroxide pretreatment was performed according to Duguid et al. (2009) 

with some modifications.  Dried, ground corn stover was placed in 500 mL Erlenmeyer 

flasks.  The dry samples were autoclaved on a liquid cycle at 121ºC for 30 min to ensure 

no loss of biomass due to microbial contamination.  The flasks were allowed to cool to 

room temperature prior to equilibration at the selected pretreatment temperature.  

Following equilibration, a sodium hydroxide solution was added to the flasks to obtain a 

solids loading of 10% (w/v) and 10 g NaOH/100 g CS.  The flasks were incubated at 

25°C for 24 hr.  The pretreated corn stover (PCS) was neutralized by washing with 5 

volumes of DI H2O and vacuum filtered before drying at 45°C for 24 hr.  Samples were 

collected to determine composition of corn stover.  PCS was stored at 4°C.  

 

7.3.4 Enzymatic Hydrolysis 

Enzymatic hydrolysis was performed according to an NREL-LAP (Selig 2008), 

with some modifications.  Pretreated biomass was added at the desired solids loading 

(2%, 5%, 10%, 15%, or 20% w/w).  Cellulase was added to achieve an appropriate 
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enzyme loading (15, 30, 45 or 60 FPU/g solids) and was supplemented with β-

glucosidase at ratio of 2:1CBU/g biomass to FPU/g biomass.  Samples were collected at 

predetermined times over the course of 96 hr.  Following hydrolysis, the samples were 

immediately transferred to a boiling water bath for 5 min to denature the enzymes.  The 

samples were placed in an ice bath to cool.  Slurries were transferred to 15 mL centrifuge 

tubes and diluted 10-fold with DI water, mixed well, and centrifuged.  Samples of the 

liquid fraction were then collected, diluted and syringe-filtered (0.2 µm) prior to analysis 

by HPLC to measure the sugars derived from cellulose and hemicellulose (glucose, 

cellobiose, xylose, arabinose, mannose and galactose).  A Dionex U3000 HPLC system 

was equipped with a Bio-Rad Aminex HPX-87P column and Micro-Guard de-ashing 

column and operated at 78ºC with deionized water as the mobile phase at a flow rate of 

0.45 mL/min.  The sample components were detected with a Shodex-101 refractive index 

detector. 

 

7.3.5 Model Development 

 A model was developed based on the work of Xu and Ding (2007) that 

incorporated parameters for fractal kinetics and jamming characteristics to describe the 

hydrolysis of pretreated lignocellulose by cellulolytic enzymes.  The product time course 

profiles generated were used to fit the kinetic parameters. 

 

7.3.5.1 Classical Michaelis-Menten Kinetics 

 The basis of this model was the classical Michaelis-Menten kinetic scheme, where 

the enzyme (E) binds to the substrate (S) to form an enzyme-substrate complex (ES) 

before the enzyme releases the newly formed product (P). 

 

         PEkES
k
kSE 2

1

1 +→→←+
−

         Equation 7.1. 

Rate equations for product formation or substrate consumption can then be derived from 

Equation 7.1as 

 

           𝑣 = 𝑑[𝑃]
𝑑𝑡

= − 𝑑[𝑆]
𝑑𝑡

= 𝑉𝑚[𝑆]
𝐾𝑚+[𝑆]            Equation 7.2, 
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where 𝑉𝑚 = 𝑘2[𝐸𝑜] and 𝐾𝑚 = (𝑘−1 + 𝑘2) 𝑘1⁄ .  Full derivations, including necessary 

assumptions, can be found in any basic enzymatic kinetics text (Bailey and Ollis 1986; 

Shuler and Kargi 2002).  Integration of Equation 7.2  in terms of substrate leads to 

 

            𝑉𝑚𝑡 = [𝑆𝑜] − [𝑆] + 𝐾𝑚𝑙𝑛
[𝑆𝑜]
[𝑆]        Equation 7.3. 

 

The implicit nature of this equation means that the substrate concentration cannot be 

solved for directly at any given time and so must be numerically approximated (Goudar 

et al. 1999).  However, a closed solution for [S] 

 

           [𝑆] = 𝐾𝑚𝜔 �
[𝑆𝑜]
𝐾𝑚

𝑒𝑥𝑝 �[𝑆𝑜]−𝑉𝑚𝑡
𝐾𝑚

��            Equation 7.4 

 

proposed by Schnell and Mendoza (1997) allows the use of Lambert’s ω function as a 

solution to the transcendental equation 

 

       𝜔(𝑥) exp�𝜔(𝑥)� = 𝑥                Equation 7.5. 

 

The substrate concentration at any given time can also be determined from the 

relationship between the substrate and product, which can be written as 

 

    [𝑆] = [𝑆𝑜] − ([𝑃] − [𝑃𝑜])                 Equation 7.6, 

 

assuming the initial substrate concentration and the product concentration are known.  

Alternatively, if the product concentration is desired, Equation 7.4 can be substituted into 

Equation 7.6 and rearranged to become 

 

            [𝑃] = [𝑃𝑜] + [𝑆𝑜] − 𝐾𝑚𝜔 �
[𝑆𝑜]
𝐾𝑚

𝑒𝑥𝑝 �[𝑆𝑜]−𝑉𝑚𝑡
𝐾𝑚

��    Equation 7.7. 
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 Equation 7.7 may still appear to be extremely cumbersome and of not much 

benefit, but highly accurate algorithms have been published to solve Equation 7.5 (Barry 

et al. 1995; Corless et al. 1996; Fritsch et al. 1973).  With the use of computational 

software packages, like MATLAB, the kinetic parameters Km and Vm can be determined 

by fitting Equation 7.7 with experimental data.  Examples of the MATLAB code used 

can be found in Appendix C.    

  

7.3.5.2 Fractal Michaelis-Menten Kinetics 

 Michaelis-Menten kinetics are based on the underlying assumption of a 

homogeneous reaction, where the enzyme and the substrate are in the same phase.  

Hydrolysis of cellulose by cellulolytic enzymes are often modeled using classical 

Michaelis-Menten kinetics even though it is a heterogeneous reaction with the enzyme 

and substrate in different phases.  For example, lignocellulose is an insoluble substrate 

(solid phase), but the cellulolytic enzymes are soluble (liquid phase).  Generally 

speaking, homogeneous reactions typically have rates that are proportional to the 

diffusion constant, since the substrate and enzyme in three-dimensional space must come 

together in the correct orientation before the reaction can take place.  Heterogeneous 

reactions tend to occur at interfaces, which can trigger some non-classical kinetic 

behaviors (Kopelman 1988; Xu and Ding 2007), especially where diffusion limitations 

exist.  Adsorption of cellulase onto the cellulose chain followed by the processive 

movement of the cellulase along the chain reduces the number of dimensions of the 

reaction from three to one (Bommarius et al. 2008), which can incite fractal kinetic 

behavior.         

 Xu and Ding (2007) proposed a new model for cellulose hydrolysis that included 

a fractal term to account for the heterogeneous nature of the reaction.  The integrated 

form of that model can be written as 

  

           𝑉𝑚𝑡
1−𝑓

1−𝑓
= [𝑆𝑜] − [𝑆] + 𝐾𝑚𝑙𝑛

[𝑆𝑜]
[𝑆]         Equation 7.8. 

The fractal component, f, is a non-integer kinetic order that accounts for the time 

dependence of the rate coefficient (Kopelman 1988), resulting from the restrictions 
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imparted by the heterogeneous nature of the reaction.  Rearranging Equation 7.8 and 

substituting it into Equation 7.7 gives 

 

          [𝑃] = [𝑃𝑜] + [𝑆𝑜] − 𝐾𝑚𝜔 �
[𝑆𝑜]
𝐾𝑚

𝑒𝑥𝑝 �
[𝑆𝑜]−𝑉𝑚𝑡1−𝑓

1−𝑓

𝐾𝑚
��    Equation 7.9, 

 

which can be implemented into the MATLAB program discussed previously to determine 

the kinetic parameters.   

 

7.3.5.3 Jammed Michaelis-Menten Kinetics 

 It has also been proposed that the decrease in the rate of the hydrolysis reaction 

could be the result of enzymes blocking adjacent active sites on the substrate due to the 

physical dimensions of the enzyme compared to the cellulose chains.  For instance, 

cellulose is composed of tightly packed polymers of glucose spaced ~4-6 Å apart, 

whereas the diameter of the forward surface of the cellulase is about 10 times greater 

(~45 Å) (Xu and Ding 2007).  It is easy to see with this discrepancy in size between the 

enzyme and substrate how the adsorption of enzymes can be slowed by overcrowding the 

substrate, thus leading to a slower overall reaction rate. 

 To account for this possibility, the following model was proposed (Xu and Ding 

2007): 

 

   �1 − [𝐸𝑜]
𝑗[𝑆𝑜]� 𝑉𝑚𝑡 = [𝑆𝑜] − [𝑆] + 𝐾𝑚𝑙𝑛

[𝑆𝑜]
[𝑆]              Equation 7.10. 

 

Once the enzyme loading reaches a critical concentration, [Eo] ≥ j[So], the jamming effect 

becomes evident.  However, as long as the enzyme loading is well below this critical 

value, [Eo] << j[So], the jamming effects should not significantly impact the reaction rate. 

 

7.3.5.4 Jammed, Fractal Michaelis-Menten Kinetics 

 These reactions may also exhibit both fractal characteristics and jamming effects.  

The model combining these two effects can be expressed as    
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   �1 − [𝐸𝑜]
𝑗[𝑆𝑜]�

𝑉𝑚𝑡1−𝑓

1−𝑓
= [𝑆𝑜] − [𝑆] + 𝐾𝑚𝑙𝑛

[𝑆𝑜]
[𝑆]    Equation 7.11. 

 

7.3.5.5 Solid Substrate Kinetics 

 Enzymes that act on insoluble substrates may demonstrate kinetic characteristics 

much different from those acting on soluble substrates (as described in the previous 

sections) (Blanch and Clark 1995; McLaren and Packer 1970).  In this instance, the 

number of available reaction sites may be limited since cellulolytic enzymes can only 

adsorb at specific locations on the cellulose chain, resulting in an apparent enzyme 

concentration that is in excess ([E] >> [S]).       

 The reaction scheme for this type of situation is still represented by Equation 7.1, 

but the derivation of the initial rate of the reaction (shown below) yields a slightly 

different result.  Assuming that the reaction has reached steady state (𝑑[𝐸𝑆]
𝑑𝑡

= 0), the 

equilibrium rate expression can be written as 

     

  𝑘1([𝐸𝑜] − [𝐸𝑆])([𝑆𝑜] − [𝐸𝑆]) = 𝑘−1[𝐸𝑆] + 𝑘2[𝐸𝑆]           Equation 7.12, 

 

where E = Eo – ES and S = So – ES.  Expanding the left hand side gives 

 

     𝑘1[𝐸𝑜]([𝑆𝑜] − [𝐸𝑆]) − 𝑘1[𝐸𝑆]([𝑆𝑜] − [𝐸𝑆]) = 𝑘−1[𝐸𝑆] + 𝑘2[𝐸𝑆] Equation 7.13. 

 

With soluble enzyme in excess ([Eo] >>> [ES]), then [𝐸𝑜] − [𝐸𝑆] ≅ [𝐸𝑜], allowing the 

simplification of Equation 7.13 to 

 

           𝑘1[𝐸𝑜]([𝑆𝑜] − [𝐸𝑆]) = 𝑘−1[𝐸𝑆] + 𝑘2[𝐸𝑆]   Equation 7.14. 

 

Further rearrangement and solving for ES gives 

 

        𝑘1[𝐸𝑜][𝑆𝑜] − 𝑘1[𝐸𝑜][𝐸𝑆] = 𝑘−1[𝐸𝑆] + 𝑘2[𝐸𝑆]   Equation 7.15 
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𝑘1[𝐸𝑜][𝑆𝑜] = (𝑘−1 + 𝑘2[𝐸𝑆] + 𝑘1[𝐸𝑜][𝐸𝑆]) = (𝑘−1 + 𝑘2 + 𝑘1[𝐸𝑜][𝐸𝑆])  Equation 7.16 

 

        𝑘1[𝐸𝑜][𝑆𝑜]
𝑘−1+𝑘2+𝑘1[𝐸𝑜]

= [𝐸𝑆]     Equation 7.17 

 

          [𝐸𝑜][𝑆𝑜]
𝑘−1+𝑘2

𝑘1
+[𝐸𝑜]

= [𝐸𝑆]     Equation 7.18 

 

             [𝐸𝑜][𝑆𝑜]
𝐾𝑚+[𝐸𝑜]

= [𝐸𝑆]     Equation 7.19. 

 

Substituting Equation 7.19 into the rate expression gives 

 

     𝑣𝑜 = 𝑘2[𝐸𝑆] = 𝑘2
[𝐸𝑜][𝑆𝑜]
𝐾𝑚+[𝐸𝑜]

    Equation 7.20. 

 

where k2Eo = Vm.  The velocity then becomes 

 

                𝑣𝑜 = 𝑉𝑚[𝑆𝑜]
𝐾𝑚+[𝐸𝑜]

     Equation 7.21 

 

               𝑣 = 𝑑[𝑃]
𝑑𝑡

= − 𝑑[𝑆]
𝑑𝑡

= 𝑉𝑚[𝑆]
𝐾𝑚+[𝐸𝑜]   Equation 7.22, 

 

which resembles the classical Michaelis-Menten form, except with the enzyme and 

substrate interchanged in the denominator.  For clarity, this model will be referred to as 

the modified Michaelis-Menten model. The integrated form of Equation 7.22 is much 

simpler than the classical Michaelis-Menten equation and does not require the use of the 

Lambert’s ω function to solve it. 

 

     [𝑃] = 𝑉𝑚𝑡[𝑆]
𝐾𝑚+[𝐸𝑜]      Equation 7.23 
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 The fractal kinetics and jamming components can be applied to the integrated 

form of Equation 7.23 much like they were incorporated to the classical Michaelis-

Menten model previously. 

 

     [𝑃] =
𝑉𝑚𝑡1−𝑓

1−𝑓
[𝑆]

𝐾𝑚+[𝐸𝑜]     Equation 7.24 

 

            [𝑃] =
�1− [𝐸𝑜]

𝑗[𝑆𝑜]�𝑉𝑚𝑡[𝑆]

𝐾𝑚+[𝐸𝑜]     Equation 7.25 

 

 The kinetic parameters in the models, Km, Vm, f and j, were simultaneously fit to 

the experimentally measured glucose released from the enzymatic hydrolysis of 

pretreated corn stover using the lsqcurvefit function in MATLAB by minimizing the least 

squares estimates between the modeled and measured glucose concentrations.  A single 

value for each of the model parameters Km, Vm, f and j was determined across 

experiments by simultaneously fitting the models with the respective parameters to 

hydrolysis data collected as a function of solids loading.  MATLAB code developed for 

these models can be found in Appendix C.   

 

7.4 STATISTICAL ANALYSIS 

 The data were analyzed as a 4×5 factorial in a generalized randomized complete 

block design (solids loading = block) using PROC GLM of SAS to determine whether 

any differences in initial rate of hydrolysis or extent of hydrolysis existed.  If differences 

existed, least squares means were computed, and all possible pairwise comparisons were 

made among hydrolysis conditions.  SAS input code can be found in Appendix E. 

 

7.5 RESULTS 

7.5.1 Enzymatic Hydrolysis 

7.5.1.1 Effect of Initial Substrate Concentration 

 Figure 7.2 shows the initial rates of the hydrolysis reactions performed at the five 

solids loadings investigated and an enzyme loading of 15 FPU/g solids.  The initial rates 
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were determined from the slope of the hydrolysis curve over the first hour of the 

hydrolysis reaction.  The initial rates of hydrolysis reactions performed at the other 

enzyme loadings (30, 45 and 60 FPU/g solids) can be found in Appendix D.  The initial 

rates increased from 1.1 to 12.5 g glucose/L-hr as the solids loadings increase from 2% to 

20%, respectively. 

     

 
Figure 7.2.  Initial rates of hydrolysis.  Hydrolysis was performed at the various 
solids loadings indicated with an enzyme loading of 15 FPU/g solids for 96 hr.  
Initial rates were determined manually from the first hour of hydrolysis.  Rates with 
the same letter are statistically the same at α=0.05. 
 

 The extent of glucose released after 72 hr hydrolysis is shown in Figure 7.3 for 

the five solids loadings investigated hydrolyzed with an enzyme loading of 15 FPU/g 

solids.  The extents of reaction for the other enzyme loadings can be found in Appendix 

D.  The glucose released increased from 3.3 g glucose/L to ~19 g glucose/L with 

increasing solids loadings up to 10% solids and remained steady at ~19 g glucose/L for 

higher solids loadings. 
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Figure 7.3.  Extent of glucose released after 96 hr of hydrolysis.  
Columns labeled with the same letter are statistically the same at 
α=0.05. 

 

7.5.1.2 Effect of Initial Enzyme Concentration 

 The enzyme utilization efficiency illustrates the amount of glucose a given 

amount of enzyme can release.  It is apparent from Figure 7.4 that enzyme loading has a 

negative effect on the enzyme utilization efficiency.  For instance, an enzyme loading of 

15 FPU/g solids at 5% solids (1974 mg protein/L) produced ~220 mg glucose/mg protein.  

Increasing the enzyme loading four-fold to 60 FPU/g solids (7895 mg protein/L) reduced 

the glucose production by more than 10-fold to 18 mg glucose/mg protein.  Furthermore, 

a four-fold increase in solids loading from 5% to 20% with an enzyme loading of 15 

FPU/g solids (7895 mg protein/L) resulted in a glucose production of 40 mg glucose/mg 

protein.  The enzyme utilization efficiency was only two times greater even though the 

solids loading was four times higher (at equivalent protein concentrations).  Additionally, 

the enzyme utilization efficiency was ~5.5 times less at 20% solids loading compared to 

5% solids loading even with an equivalent enzyme: substrate ratio.   
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Figure 7.4.  Effect of the enzyme loading on the enzyme utilization 
efficiency.  Hydrolysis was performed for 96 hrs at 5% and 20% 
solids loadings and four enzyme loadings. 

 

7.5.2 Model Analysis and Parameter Determination  

 The integrated form of the classical Michaelis-Menten kinetics model was used as 

a base model, upon which other parameters (fractal and/or jamming parameters) were 

incorporated to describe the time course hydrolysis curves.  For conciseness, a 

representative data set (data from hydrolysis using 15 FPU/g solids) was chosen to 

present the resulting parameters in this chapter.  Additional sets of data and the associated 

kinetic parameters for other enzyme loadings (30, 45 and 60 FPU/g solids) can be found 

in Appendix D. 

 Following Goudar et al. (1999), the initial substrate concentration was set to [P∞], 

which was the average glucose released at the full extent of the reaction.  This value was 

chosen to represent the accessible cellulose in the lignocellulose.  Additionally, lower and 

upper bounds were placed on the kinetic parameters during the lscurvefit process.  For 

example, the constraint that none of the estimated parameters may be negative was set.  A 

negative Km and Vm would imply that the reaction is going in reverse; cellulose would be 

polymerized instead of hydrolyzed.  Therefore, the lower bound for all four parameters 

was set to 0.  In addition, by definition Km cannot realistically be larger than the substrate 

concentration if a Vm is determined for the reaction.  Therefore the upper bound for Km 
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was set to [So].  Fractal kinetics infers a non-integer reaction order, so an upper bound for 

f was set to 1 such that only non-integer values could be fit.  In the instance that f = 0, 

then the fractal model would reduce to the Michaelis-Menten kinetics model.  Likewise, 

as the jamming term �1 − [𝐸𝑜]
𝑗[𝑆𝑜]� → 1, then jamming becomes negligible, and the model 

would reduce to the Michaelis-Menten model.  Lastly, the initial product concentration 

([Po]) was assumed to be 0.    

 Figure 7.5 shows the correlations between the observed and the predicted rate of 

product (glucose) formed for each of the four models examined using the classical 

Michaelis-Menten model (based on Equation 7.7).   
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Figure 7.5.  Correlation between predicted and observed PCS hydrolysis by T. reesei cellulase at 15 FPU/g solids.  
Experimental hydrolysis data were used to fit the kinetic parameters of (a) the classical Michaelis-Menten model; (b) the 
Michaelis-Menten model with a fractal component; (c) the Michaelis-Menten model with a jamming component; and (d) the 
Michaelis-Menten model with fractal + jamming components. 
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 Table 7.1 lists the kinetic parameters estimated from fitting experimental 

hydrolysis data to the classical Michaelis-Menten models discussed previously.  The 

estimated dissociation constant (Km) is equivalent for all four models.  However, it 

should be noted that this value is the upper bound set for this parameter within the model.  

Additionally, the estimated fractal (f) parameter was equivalent for the two models that 

have that parameter.  The maximum velocity (Vm) and jamming (j) parameters varied 

slightly with each model.    

 F-statistics were calculated to determine whether the slope and intercept of the 

line fitting the predicted vs. observed glucose concentrations were statistically different 

from 1.0 and 0.0, respectively.  The null hypothesis will not be rejected if the calculated 

F-statistic is smaller than the critical F-statistic for the given degrees of freedom (df = 2, 

48), indicating that the model has some merit in fitting the data.  Smaller values of F 

mean the model is a good fit (Haefner 2005).  Calculated F values for each model 

considered indicated that the null hypothesis could not be rejected and that the models 

had merit in fitting the experimental data (data not shown).  Even though F-statistics 

provide a better indication of fit, the decision to fail to reject the null hypothesis led to the 

use of R2 values to evaluate the models.                

 The R2 value gives an indication of the fit of the predicted glucose concentrations 

to the observed glucose concentrations.  A value closer to 1.0 indicates a better fit.  

Predicting the glucose concentrations using the classical Michaelis-Menten model 

provides a relatively good fit (R2 = 0.9485) when compared to the observed glucose 

concentrations, even though the underlying assumptions are not valid for hydrolysis of 

cellulose.  Inclusion of the fractal parameter improved the fit of the model (R2 = 0.9774).  

Inclusion of both the fractal and the jamming parameters only improved the fit slightly 

compared to the model with only the fractal parameter, indicating that the jamming 

parameter does not adequately describe the cellulose hydrolysis reaction at enzyme 

loading of 15 FPU/g solids. 
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Table 7.1.  Kinetic parameters of PCS hydrolysis by T. reesei cellulase at 15 FPU/g 
solids using the classical Michaelis-Menten kinetics model. 
Model Km (g/L) Vm (g/L-hr) f j R2 
MM 20.50 8.03 -- -- 0.9485 
MM+f 20.50 7.35 0.47 -- 0.9774 
MM+j 20.50 8.94 -- 8.63 0.9494 
MM+f+j 20.50 8.17 0.47 8.83 0.9789 
Abbreviations: MM, Michaelis-Menten; MM+f, Michaelis-Menten with fractal 
component; MM+j, Michaelis-Menten with jamming component; MM+f+j, Michaelis-
Menten with fractal and jamming components 
  

 The correlations between the observed and the predicted glucose released for each 

of the four models based on the modified Michaelis-Menten model are shown in Figure 

7.6.  Upon inspection of these figures, it is apparent that the modified Michaelis-Menten 

model with no additional parameters, as well as the model with the jamming parameter 

are not linear, indicating a very poor fit using these two models.  The poor fit is further 

substantiated by the R2 values; both models resulted in an R2 that is < 0.3 (Table 7.2).  

However, the two models that include the fractal parameter fit the data equally well (R2 = 

0.9620), indicating that the jamming parameter is again inadequate in describing the 

cellulose hydrolysis reaction at an enzyme loading of 15 FPU/g solids.       
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Figure 7.6.  Correlation between predicted and observed PCS hydrolysis  by T. reesei cellulase at 15 FPU/g solids.  
Experimental hydrolysis data were used to fit the kinetic parameters of (a) the classical Michaelis-Menten model modified for 
insoluble substrates; (b) the modified Michaelis-Menten model with a fractal component; (c) the modified Michaelis-Menten 
model with a jamming component; and (d) the modified Michaelis-Menten model with fractal + jamming components. 
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 Table 7.2 lists the kinetic parameters estimated from fitting experimental 

hydrolysis data to the modified Michaelis-Menten models (based on Equation 7.23) 

discussed previously.  The estimated parameters varied more with the models based on 

the modified Michaelis-Menten than compared to the classical Michaelis-Menten models.  

These values for Km were on the same order of magnitude as the previous models, but 

ranged from 13.8 to 20.0.  These parameter estimates did not converge at the upper bound 

set by the model.  The values of Vm appear to depend on whether the fractal component 

was included.  For models without the fractal component, the Vm was an order of 

magnitude lower than compared to the models with the fractal component.  However, the 

models with the fractal component fit the data better.   

 
Table 7.2.  Kinetic parameters of PCS hydrolysis by T. reesei cellulase at 15 FPU/g 
solids using the modified Michaelis-Menten kinetics model. 

 
Km (FPU/g solids) Vm (g/L-hr) f j R2 

MM 20.01 0.51 -- -- 0.2583 
MM+f 17.40 2.96 0.77 -- 0.9620 
MM+j 13.83 0.43 -- 149.54 0.2583 
MM+f+j 17.09 2.95 0.77 121.88 0.9620 
Abbreviations: MM, Michaelis-Menten; MM+f, Michaelis-Menten with fractal 
component; MM+j, Michaelis-Menten with jamming component; MM+f+j, Michaelis-
Menten with fractal and jamming components 
 
 
 Figure 7.7 and Figure 7.8 shows the experimental hydrolysis data for different 

levels of solids loadings with the curves generated from the estimated parameters.  The 

calculated fractal reaction profile (Figure 7.7b) showed better agreement to the observed 

data compared to the classical Michaelis-Menten profile (Figure 7.7a), especially in the 

transition phase from first-order to zero-order kinetics.   
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Figure 7.7.  PSC hydrolysis by T. reesei cellulase at 15 FPU/g solids.  Experimental hydrolysis data are fitted with (a) the 
classical Michaelis-Menten model; (b) the Michaelis-Menten model with a fractal component; (c) the Michaelis-Menten model 
with a jamming component; and (d) the Michaelis-Menten model with fractal + jamming components. (Symbols: ‘blue *’ 2% 
solids; ‘cyan ○’ 5% solids; ‘green ◊’ 10% solids; ‘magenta +’ 15% solids; ‘black □’ 20% solids; solid lines are model 
predictions)  
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 The modified Michaelis-Menten model resulted in a much different profile curve 

compared to the classical Michaelis-Menten model.  The hydrolysis profile curves 

produced by the base model and the jammed model (Figure 7.8a, c) do not have the 

characteristic shape of a hydrolysis curve; the rate does not appear to decrease with time 

for these models.  The fractal models do have this characteristic shape; however, the 

tendency for these curves is to continue to increase with time.  These profiles do not 

appear to “level off” at the extended hydrolysis times to the same extent as the classical 

Michaelis-Menten models.    
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Figure 7.8.  PSC hydrolysis by T. reesei cellulase at 15 FPU/g solids.  Experimental hydrolysis data are fitted with (a) the 
classical Michaelis-Menten model modified for insoluble substrates; (b) the modified Michaelis-Menten model with a fractal 
component; (c) the modified Michaelis-Menten model with a jamming component; and (d) the modified Michaelis-Menten 
model with fractal + jamming components. (Symbols: ‘blue *’ 2% solids; ‘cyan ○’ 5% solids; ‘green ◊’ 10% solids; ‘magenta 
+’ 15% solids; ‘black □’ 20% solids; solid lines are model predictions) 
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7.6 DISCUSSION 

7.6.1 Effects of Initial Substrate and Enzyme Loading on Enzymatic Hydrolysis 

 For the lignocellulose conversion process to be economically feasible, a balance 

must be struck between initial substrate concentration and enzyme loading to produce 

maximal glucose yields with minimal inputs.  A commonly observed characteristic of 

hydrolysis reactions is that higher solids loadings in the conversion process tend to lead 

to higher initial rates (Gan et al. 2003) and higher final product concentrations (Gupta 

and Lee 2009; Kristensen et al. 2009b) but a lower percent conversion.  That trend was 

only partially observed in this current study.  An increase in solids loadings with an 

enzyme loading of 15 FPU/g solids resulted in an increase in glucose released only up to 

10% solids loading.  The final glucose concentration did not change at solids loadings 

higher than 10%.  Similar trends were observed with enzyme loadings of 30 and 45 

FPU/g solids, except glucose concentrations increased with solids loadings up to 15% 

and remained unchanged at 20% solids (data shown in Appendix D).  At the highest 

enzyme loading, 60 FPU/g solids, the glucose concentration increased with solids 

loadings up to 15% but decreased for 20% solids.  Initial rates did not strictly follow the 

expected trend, either. 

 Enzyme loading also impacted final glucose concentrations.  Enzyme efficiency 

(defined as the amount of glucose released for a given amount of enzyme, mg glucose/mg 

protein) decreased significantly with increasing enzyme loadings, as seen in Figure 7.4.  

Essentially, higher enzyme loadings did not result in a proportionally higher glucose 

concentration, meaning that the enzyme efficiency was greatly diminished at higher 

enzyme loadings.  Gan et al. (2003) also reported a decrease in enzyme efficiency from 

68 mg glucose/mg protein to 27 mg glucose/mg protein when the enzyme loading 

increased from 100 mg/L to 500 mg/L at 2% solids (α-cellulose fibers from wood pulp) 

loading.  It is hypothesized that increasing solids and/or enzyme loadings significantly 

impacts the availability of free water in the system, to the detriment of the hydrolysis 

reaction, as discussed in Chapter 6. 
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7.6.2 Determination of Kinetic Parameters 

 An experimental and theoretical analysis of enzymatic hydrolysis using the 

classical Michaelis-Menten kinetics model and a modified (for insoluble substrates) 

Michaelis-Menten model was conducted.  Nidetzky and Steiner (1993) also estimated 

kinetic parameters associated with the hydrolysis of cellulose.  They reported a value for 

Km of 37.6 FPU/g solids and 6.3 FPU/g solids for cellulose that is easily or more difficult 

to hydrolyze.  It should be noted that the substrate used in their study was 

microcrystalline cellulose with particle sizes of approximately 50 μm.  These values of 

Km are in the same range determined with the modified Michaelis-Menten models in this 

current work for lignocellulose with particle sizes of < 5 mm.  However, the maximum 

velocities of 2,680 g/L-hr and 240 g/L-hr for easily and more difficult hydrolyzed 

cellulose reported by Nidetzky and Steiner (1993) were much higher than those 

determined in this current work at 0.4 to 9.0 g/L-hr.  Okazaki and Mooyoung (1978) also 

reported values for Km ranging from 3.8 to 7.4 g/L using purified endoglucanase from 

Trichoderma viride  to hydrolyze CMC (carboxymethylcellulose).  These values are 2-5 

times smaller than those determined in this current work with the classical Michaelis-

Menten models, likely due to the lack of synergistic effects associated with non-purified 

cellulase systems.           

 Additional parameters were incorporated to each of these models to determine 

whether effects such as fractal kinetics or jamming of the enzyme could explain the 

reduction in the hydrolysis reaction rate over time.  In both instances, inclusion of the 

fractal kinetics component improved the model’s ability to fit the experimental hydrolysis 

data, indicating that the heterogeneity of the reaction should be accounted for in the 

model. 

 Valjamae et al. (2003) investigated the use of fractal kinetics to model the 

hydrolysis of bacterial cellulose by purified T. reesei cellulase (Cel7A).  They observed a 

fractal parameter, f, ranging from 0.35-0.6 for solids loadings of 2 mg/mL to 0.25 mg/mL 

(<1% w/w solids loadings).  This range is consistent with the fractal component 

determined by Xu and Ding (2007).  Modeling the hydrolysis of phosphoric acid swollen 

cellulose (PASC) resulted in an f = 0.44.  The solids loading in the Xu and Ding (2007) 

study was <1% (w/w).  Wang and Feng (2010) modeled the hydrolysis of acid-pretreated 
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Avicel performed at a solids loading of ~10% (w/w) with an enzyme loading of 37.5 

FPU/g cellulose.  The resulting fractal component was 0.42.  Furthermore, they observed 

that the fractal component appeared to increase with increasing enzyme loading.  This 

trend was not observed in this current work.  In fact, there did not appear to be any real 

relationship between enzyme loading and the fractal component (data not shown).  A 

final study to incorporate a fractal component into a hydrolysis model reported an f of 

~0.55 for hydrolysis of dilute acid PCS performed at 20% solids loading (Yao et al. 

2011).  These values are all fairly consistent with the values determined by the classical 

Michaelis-Menten models analyzed in this current work (0.41-0.52).  However, the 

Michaelis-Menten models modified for insoluble solids resulted in higher values of f 

(0.77-0.85).   

 The term �1 − [𝐸𝑜]
𝑗[𝑆𝑜]� describes the degree of jamming that occurs in the hydrolysis 

reaction.  The relationship between the enzyme and substrate concentration determines 

whether jamming significantly impacts the reaction rate.  For instance, when [Eo] >> 

j[So], jamming is expected to occur.  From this relationship, one could infer that a smaller 

jamming parameter value would indicate a system impacted by jammed enzymes.  Xu 

and Ding (2007) reported a jamming parameter value of 4.4 x 10-5 for hydrolysis 

performed at 2 g/L cellulose with an enzyme concentration of 0.1-0.2 μM.  Another study 

found that the jamming parameter increased from 0 to 0.093 when enzyme concentrations 

increased from 2.3 μM to 1.19 mM (assuming an enzyme molecular weight of ~61.5 

kDa).  Jamming parameter values determined in this current work were several orders of 

magnitude larger at 8.6 and 149.5 for the classical and modified Michaelis-Menten 

models, respectively.  It is clear from Figure 7.7c and Figure 7.8c that the addition of the 

jamming parameter did not improve the fit of the predicted hydrolysis curves to the 

experimental hydrolysis data, indicating that jamming was not likely under the conditions 

tested in this study.   

 Although the assumptions associated with the classical Michaelis-Menten kinetics 

model are not valid for the hydrolysis of cellulose, it can still be used as a good first 

estimate of the kinetic parameters.  The cellulose hydrolysis reaction begins as a 

completely heterogeneous reaction and slowly transforms into a system with both 

heterogeneous and homogeneous components as time progresses.  The concentration of 
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solubilized oligosaccharides increases as the enzymes act upon the cellulose polymers, 

reestablishing the validity of the assumptions associated with the classical Michaelis-

Menten kinetics model, which is presumably the reason the classical Michaelis-Menten 

model with the fractal component (a model based upon homogeneous reaction schemes 

with a component that accounts for the heterogeneity of the reaction) provided the best fit 

(based on the R2 values) of the experimental hydrolysis data under the conditions 

investigated. 

 There are still some limitations to these models associated with the assumptions 

made for simplification.  The upper bounds set for the dissociation constant, Km, appear 

to impact the fitting of the classical Michaelis-Menten models.  The estimated values for 

Km are equivalent to the upper bound.  When this upper bound is removed, the estimated 

Km is several orders of magnitude larger than the initial substrate concentration.  Upon 

inspection of the hydrolysis progress curves, a Km of that large a magnitude does not 

seem reasonable. 

 The kinetic parameters Km and Vm were determined; however, it is difficult to 

decouple these two values with the numerical method used to fit these parameters.  This 

issue arises due to the highly dependent relationship between these two parameters and is 

only apparent under certain conditions.  For instance, for very small values of Km, values 

of Vm can change very quickly.  For very large values of Km, values of Vm become more 

constant, often causing the estimated parameters to approach the upper boundaries set.  

These limitations of the numerical method and the highly dependent relationship between 

the two parameters can result in instability in the estimated parameters.     

 The assumption that So is equivalent to P∞ does not capture the solid substrate 

traits associated with the hydrolysis of lignocellulose, since P∞ only accounts for the 

substrate that is solubilized.  By making this assumption, the mechanism of the enzymatic 

hydrolysis reaction has been disregarded.  For instance, the kinetics of this type of 

reaction depend on the nature of the enzymes, the structure of the substrate, and the 

physical interactions between the enzyme and substrate (Fan and Lee 1983).  Others have 

taken the mechanistic approach to modeling the hydrolysis of cellulose (Fan and Lee 

1983; Gan et al. 2003; Igarashi et al. 2011; Levine et al. 2010; Okazaki and Mooyoung 
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1978) and exploring some of these mechanistic concepts could improve the assumptions 

associated with the  model presented in this current work.    

 Additionally, the initial product concentration, [Po], was assumed to be negligible.  

However, this assumption may not be valid since the enzyme solution may have some 

residual sugars present from the industrial fermentation production.  These residual 

sugars could be impacting the measured glucose concentrations, especially at higher 

enzyme loadings, where the inadvertent application of these residual sugars would be 

higher.  Nieves et al. (1998) reported that the Celluclast 1.5L commercial cellulase 

preparation contained 8.0 mg glucose/mL of enzyme preparation.  Assuming the cellulase 

preparation used in this current work has a similar residual glucose concentration, it 

translates into an initial glucose concentration of ~4-15 mg/g cellulose, depending on the 

enzyme loading.  The glucose concentrations for each measured time point were 

normalized based on the amount of glucose measured in the samples collected at time t = 

0 to justify the [Po] = 0 assumption. 

 Lastly, the units of some of the input variables, especially the enzyme 

concentration (FPU/g solids) are not typically used for modeling, making it difficult to 

compare the kinetic parameters determined in this current work to those from other 

works.           
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Table 7.3.  Nomenclature. 
Symbol Definition 
[E] Enzyme concentration (FPU/g solids) 
[Eo] Initial enzyme concentration (FPU/g solids) 
[P] Product concentration (g/L) 
[P∞] Product concentration at t = ∞ (g/L) 
[Po] Initial product concentration  (g/L) 
[S] Substrate concentration (g/L) 
[So] Initial substrate concentration (g/L) 
E Enzyme 
ES Enzyme-substrate complex 
f Fractal parameter 
j Jamming parameter 
k1 Rate constant (hr-1) 
k-1 Rate constant (hr-1) 
k2 Rate constant (hr-1) 
Km Dissociation constant (g/L or FPU/g solids) 
P Product 
S Substrate 
t Time (hr) 
v Velocity (g/L-hr) 
Vm Maximum velocity (g/L-hr) 
vo Initial velocity (g/L-hr) 
ω Lambert’s function 
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CHAPTER 8:  EVALUATION OF MESOPOROUS SILICA MATERIALS FOR 
THE SEPARATION AND RECOVERY OF MONOSACCHARIDES IN 
HYDROLYZATE OF PRETERATED CORN STOVER 
 
8.1 SUMMARY 

 Mesoporous silica materials (2 to 50 nm pore diameters) synthesized with three 

different methods were evaluated, using both liquid chromatography and bulk adsorption, 

for their effectiveness in selectively separating specific monosaccharides from solution.  

A novel synthesis technique termed microphase-directed molecularly imprinting (MDMI) 

was used to produce non-imprinted, glucose-imprinted and xylose-imprinted silica 

materials.  Liquid chromatography was performed with each of these materials, as well as 

a commercially available, amine functionalized silica material, using both a prepared 

glucose and xylose solution and an enzymatically-produced hydrolyzate.  Some 

separation of the glucose and xylose peaks was observed when eluting the prepared sugar 

solution through the commercially available material but not the hydrolyzate.  However, 

no separation was apparent for any of the MDMI materials using either the prepared 

sugar solution or the hydrolyzate.  Many factors (i.e. stationary phase, mobile phase, 

temperature, pH) affect elution profiles, making the development of liquid 

chromatography protocols complex.  Different mobile phases (pH 5 buffer at room 

temperature, pH 5 buffer at room temperature followed by buffer at 50°C, and 90:10 

acetonitrile-water mixture) were also evaluated for their effect on the elution profiles of 

glucose.  The acetonitrile-water mobile phase resulted in a shorter, broader peak 

compared to the pH 5 buffer, but the peak maximum was not substantially shifted in 

either direction, so separation was not improved. 

 Another class of mesoporous silica materials was synthesized using the well-

established Santa Barbara Acid (SBA) method.  This method was used to produce 

materials with different sized pores in order to evaluate the effect that pore size has on the 

diffusion and separation of monosaccharides.  No change in the glucose peaks was 

apparent with the pH 5 buffers, but the peak shifted to the right as the pore size increased 

when using the acetonitrile-water mixture as the mobile phase. 

 Fluorescently-tagged dextrans (MW = 40,000) were added to a prepared glucose 

solution to compare the elution profiles of large and small saccharide species.  The 
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normalized elution profiles for these two species overlapped, indicating that the glucose 

was not interacting with the mesoporous silica material any differently than the larger 

dextrans. 

 Lastly, mesoporous silica materials were synthesized using the established Stöber 

method and bulk adsorption of selected monosaccharides was evaluated.  Glucose and 

xylose concentrations in enzymatically-produced hydrolyzate were measured before and 

after mixing hydrolyzate with the silica particles for 24 hr.  The non-imprinted particles 

adsorbed small, but similar amounts of both glucose and xylose.  The glucose-imprinted 

materials adsorbed four times more glucose than xylose from the hydrolyzate, indicating 

that the synthesis method coupled with the novel imprinting technique could selectively 

adsorb (and separate) a desired monosaccharide from solution.   

 

8.2 INTRODUCTION 

 The abundance of lignocellulose, and the energy-rich saccharides that comprise 

the material, make it a leading candidate as a feedstock for energy production in 

biorefineries.  One of the primary products from these refineries will likely be liquid 

transportation fuels like ethanol or butanol, but for long-term economic viability these 

refineries will also be required to produce a range of products similar to that of traditional 

petroleum refineries (Kadam et al. 2008; Menon and Rao 2012).  To be as efficient as 

possible, all components of the lignocellulose material must be utilized, including the 

saccharides of the hemicellulose fraction and the phenolic compounds of the lignin.  The 

lignin has traditionally been fractionated and recovered for heat and power generation for 

the unit operations of the conversion process.  However, hemicellulose is composed of 

many different types of saccharides, including the five-carbon (C5) sugars xylose and 

arabinose and the six-carbon (C6) sugars glucose, mannose and galactose.  These C5 

sugars have deleterious effects on traditional glucose-based fermentation processes since 

C5 sugars are not metabolized as easily and may even be toxic to the yeast.  The C5 

sugars, especially xylose, can be better utilized as building blocks for other commodity or 

high-value chemicals (Figure 4.6) (Carvalheiro et al. 2008; Kadam et al. 2008).  

Separation and recovery of this energy-rich stream of C5 sugars (Figure 8.1) is a 
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promising method for improving the economic viability and competitiveness of 

biorefineries with traditional petroleum refineries. 

    

 
Figure 8.1.  Unit operations typical of the lignocellulose conversion 
process with the proposed addition of saccharide separation and 
recovery. 

 
 

Molecularly imprinted polymers (MIPs) are of interest as a means to achieve 

more precise separations for complex separation processes (Sanz and Martinez-Castro, 

2007).  Separation processes that use MIPs include the separation of dyes, vitamins, 

nucleotide bases and other components that are typically difficult to separate (Wizeman 

and Kofinas, 2001; Li and  Li, 2007).  MIPs are tailor-made for specific separations.  For 

example, Wizeman and coworkers (2001) developed a novel MIP that was capable of 

binding glucose.  The imprinted materials were synthesized with the cross-linking 

polymer ethylene glycol diglycidyl ether (EDGE) and imprinted with the templating 

molecule glucose phosphate monosodium salt (GPS).  The results showed that the mass 

of glucose binding was significantly higher on the imprinted material as opposed to the 

non-imprinted material (0.56 g glucose/g material using 1.5 mol% GPS vs. 0.18 g 
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glucose/g material, respectively) and that glucose binding increased from 0.48 to 0.56 g 

glucose/g material and fructose binding decreased from 0.34 to 0.23 g fructose/g material 

as the amount of templating molecules used in the synthesis of the material increased.  

The molecular imprinting of polymers is well-established; however, polymers are less 

thermally, chemically and mechanically stable and more susceptible to solvent 

degradation than ceramic (silica) material (Tan and Rankin 2005).  For these reasons, 

molecular imprinting of silica material was examined in this current work.   

The concept of synthesizing tailor-made imprinted materials for specific 

applications is constantly being expanded upon as more imprinting techniques, 

imprinting molecules and imprinted materials are developed.  Mesoporous (2 to 50 nm 

diameter pores) silicate material can be imprinted by cationic surfactants used as 

templates (Wu et al. 2013) to produce tailor-made separation materials specific to a single 

type of molecule.  Silica is attractive for these imprinted materials because the synthesis 

conditions ( i.e. reaction temperature, pH, silica source, surfactant type) can be 

customized to produce materials with various morphologies like spheres, fibers and 

tubules (Wu et al. 2013; Zhao et al. 2000), as well as various pore structures, like 

hexagonal, cubic and wormhole-like pores (Sang and Coppens 2011; Wu et al. 2013).     

Microphase-directed molecular imprinting (MDMI) is a relatively new approach 

to molecular imprinting where specific molecular shapes are imprinted on silica and 

provide site selectivity only for molecules matching the initial imprinting molecule 

(Figure 8.2).  MDMI uses surfactant imprinting molecules (SIMs) and cationic 

surfactants, which when combined form mixed micelles (Figure 8.3).  Surfactant 

templating creates high surface area, silicate material with uniform mesopores (Meynen 

et al. 2007).  The SIMs are composed of functionalized surfactants whose headgroup 

imprints sites complementary to the molecule of interest.  In this current work, the 

molecules of interest are the specific monosaccharides glucose and xylose, and the 

functionalized surfactants have the respective saccharide headgroups (either glucose or 

xylose).  Removal of the mixed micelle from the silica material with an ethanol-HCl 

solution results in an imprinted site, which is specific for the saccharide headgroup of the 

surfactant-imprinting molecule.  The silica materials should selectively adsorb only those 

molecules that match the configuration of the –OH groups in the binding sites.  
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Santa Barbara Acid (SBA) materials are a class of highly-ordered, mesoporous 

silica materials that are well-defined and characterized (Meynen et al. 2007).  These 

materials are highly tunable, and different pore structures can be developed depending on 

the synthesis conditions (Meynen et al. 2007).  For instance, SBA-15 materials (used in 

Mixed 
Micelle 

Co-
Assembly 

Imprinted 
Sites 

 

Figure 8.3.  Microphase-directed molecular imprinting of silica (green) by mixed 
micelles, consisting of surfactant (purple) and surfactant imprinting molecules 
(yellow + red).  Removal of the mixed micelle creates selectively imprinted sites. 
 

 
Figure 8.2.  Traditional molecular 
imprinting processes of silica (green) 
around a molecule of interest, like a six-
carbon monosaccharide.  The sugar –OH 
groups create binding sites (red) that do 
not match an undesired five-carbon 
monosaccharide, leading to selectivity of 
the six-carbon monosaccharide. 
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this current work) have a two-dimensional hexagonal pore structure, but other synthesis 

conditions can result in three-dimensional hexagonal pores, cubic pores or cubic cage-

structured pores (Meynen et al. 2007).  SBA materials have many industrial applications, 

including use as structural scaffolding for immobilizing proteins on sensors (Sang and 

Coppens 2011), thin-film composite materials for ceramic coatings (Aksay et al. 1996), 

and optics and electronics (Lee et al. 1997).  The imprinting technique described 

previously was coupled with SBA-15 materials, since the synthesis techniques for these 

silica materials are well-established. 

Stöber particles are another well-established class of silica materials synthesized 

using the method of Stöber et al. (1968).  The Stöber method has been widely 

investigated, and excellent control is exhibited in the production of both silica and non-

silica particles (Wu et al. 2013).  These particles are monodisperse, spherical particles 

with a diameter on the order of ~500 to 2000 nm.  This method can be coupled with the 

imprinting technique described previously to produce imprinted particles of uniform size 

and shape.  Once imprinted, the particles can be used for molecule-specific 

chromatographic separation and recovery.  Size and shape uniformity, which is important 

for maintaining appropriate flow rates and pressures, is desirable for chromatographic 

separation applications.              

 
8.3 MATERIALS AND METHODS 

8.3.1 Chemicals and Materials 

All chemicals were reagent-grade and purchased from Sigma-Aldrich (St. Louis, 

MO), unless otherwise noted.  A NH2 spherical silica gel (SSG) was purchased from 

Sorbent Technologies (Atlanta, GA).  Fluorescent dextrans (FITC-dextran 40) with a 

molecular weight of 40 kDa were purchased from TdB Consulting AB (Uppsala, Spain).  

Commercially-available cellulase from T. reesei (Celluclast 1.5L) and β-glucosidase from 

A. niger (Novozyme 188) were purchased from Sigma-Aldrich (St. Louis, MO).   

Corn stover (CS) was collected directly from the field at the Woodford County 

Animal Research Center in Woodford County, KY in September 2010.  The corn (P1253 

Pioneer) had been planted using conventional tillage practices in April 2010.  The stover 

was collected from the field by hand after grain harvest and was composed of plant 
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material other than grain (MOG; whole stalks, including stems and leaves).  After 

collection, the samples were prepared for laboratory storage by drying at 45ºC and 

grinding through a hammer mill with a 5 mm screen.     

 

8.3.2 Pretreatment of Corn Stover 

 Pretreatment of the corn stover was conducted according to Duguid et al (2009), 

with slight modifications.  Corn stover (10% w/w) was pretreated with 8 g NaOH/100 g 

CS for 2 hr at room temperature with manual stirring every 15 min.  All samples were 

vacuum-filtered and washed with 3 volumes of DI water.  Samples were then transferred 

into 500 mL Erlenmeyer flasks and prepared for enzymatic hydrolysis. 

 

8.3.3 Enzymatic Hydrolysis 

 Enzymatic hydrolysis was conducted according to the NREL LAP-009 (Brown 

and Torget 1996), with slight modifications.  The appropriate volumes of 0.1 M Na-

citrate buffer and 2.0% NaN3 were added to each hydrolysis flask.  Enough substrate was 

added to reach a solids loading of 5% (w/w).  The pH of each flask was adjusted to 4.8 

using concentrated HCl.  After determining the amount of enzyme solution necessary to 

achieve 15 FPU/g cellulose, DI water was added to the flask to bring the working volume 

up to 100 mL.  The enzyme solution consisted of cellulase and β-glucosidase at a 1:2 

FPU to CBU ratio.  Results from previous studies have shown that by adding β-

glucosidase, the enzymatic activity is sufficient to avoid inhibition of the cellulase caused 

by cellobiose (Elander et al. 2009; Kumar and Wyman 2009c; Yang et al. 2006).     

 All components of the hydrolysis solution, with the exception of the enzyme 

solution, were added to the flasks and allowed to equilibrate in a 50ºC incubator.  The 

enzymes were added, and the hydrolysis flasks were incubated for 72 hrs. Following the 

hydrolysis period, samples were collected and placed in a boiling water bath for 5 min to 

denature the enzymes, which was immediately followed by an ice water bath.  The 

samples were centrifuged and aliquots of the supernatant were placed in a -45ºC freezer 

for later use.  After thawing, the concentrations of glucose and xylose were determined 

using a YSI MBS 7100 Analyzer (YSI Incorporated, Yellow Springs, OH).   
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8.3.4 Material Synthesis 

8.3.4.1 Microphase-Directed Molecularly Imprinted (MDMI) Silica Particles 

Non-imprinted, glucose-imprinted and xylose-imprinted MDMI silica particles 

were produced.  To synthesize the material, 0.01 M HCl was added to a flask.  The 

surfactant cetyl triethylammonium bromide (CTAB) was added and stirred vigorously.  

For the imprinted materials, the appropriate sugar surfactant [octyl-β-D-glucopyranoside 

(C8G1) for glucose-imprinted and octyl-β-D-xylanofuranoside (C8X1) for xylose-

imprinted] was also added to the mixture.  The flasks containing the mixtures were 

placed in a 50ºC water bath for 30 min and stirred continuously.  The required amount of 

silica precursor (tetramethoxysilane, TMOS) was added to the mixture, and stirring 

continued for an additional 20 min.  The mixtures were then exposed to a gentle vacuum 

to remove any remaining methanol, and poured into petri dishes.  The petri dishes were 

placed in an ammonium bath in an oven set to 50ºC for 24 hrs to encourage gelation of 

the materials.  The petri dishes were removed from the ammonium bath and placed back 

in the oven for a 9 d aging period.  After the aging period, the materials were ground and 

placed into a 250 mL flask.  To extract the surfactants from the materials, 210 mL of 200 

proof ethanol and 7 mL of 12.1 M HCl was added to each flask and stirred for 24 hrs.  

The materials were filtered and returned to the appropriate flask.  This extraction process 

was repeated two more times.  After the final filtration, the materials were dried at 50ºC 

for 24 hrs.   

Particle Characterization.  Pore diameter and surface area were measured by 

nitrogen adsorption at 77 K (Micromeritics Tristar 3000).  Before analysis, samples were 

degassed at 120°C for a minimum of 4 hr under flowing nitrogen gas (Bhambhan et al. 

1972).  Specific surface area was estimated using the Brunauer, Emmett and Teller (BET) 

theory (Brunauer et al. 1938).  Pore diameter was estimated as the peak in the pore size 

distribution determined by the Barrett, Joyner and Halenda (BJH) method (Barrett et al. 

1951). 
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8.3.4.2 SBA-15 Silica Particles 

Non-imprinted SBA-15 silica material was prepared according to Sang and 

Coppens (2011) and obtained from Daniel Schlipf3.  At 40ºC, 120 g 2M HCl was mixed 

with 4 g block-copolymer P123 in DI H2O for 2 hrs.  Nine grams of TEOS was slowly 

dropped into the mixture and rapidly mixed for 10 min.  The mixture was kept static at 

40ºC for 24 hrs, followed by hydrothermal aging at a previously selected temperature 

(50ºC, 75ºC, 100ºC or 150ºC) for 48 hr.  After aging the materials, the solids were 

filtered and washed several times with DI H2O.  The materials were allowed to dry 

overnight at 100ºC before being calcined at 540ºC for 24 hrs.  Characterization of the 

materials was immediately conducted by performing x-ray diffraction (XRD) and 

nitrogen adsorption analyses on the materials. 

 

8.3.4.3 Silica Stöber Particles 

   Non-imprinted and glucose-imprinted Stöber particles were prepared according to 

Stober et al. (1968) and obtained from Suvid Joshi4.  Briefly, 58.22 g ethanol, 9.8 mL 

concentrated ammonia and 10.8 g DIUF water were mixed.  After stirring the solution for 

15 min, 5.26 g tetraethoxysilane (TEOS) was added and mixed vigorously.  Twenty 

milligrams of imprinting surfactants (CTAB or a 1:1 mass ratio of CTAB:C8G1) were 

added exactly 1 min after the TEOS.  Particle precipitation was already apparent as per 

the increased turbidity of the mixture.  The mixture was stirred for 24 hr at room 

temperature to allow solidification of the silica.  The particles were recovered by 

centrifugation and aged in an oven at 50°C for 24 hr to promote additional solidification 

and interactions with the surfactants.  Aged particles were washed three times in ethanol 

with sonication and centrifugation to remove the surfactant, followed by three washes in 

DIUF water with sonication and centrifugation until the pH of the supernatant was 

neutral, as indicated with pH paper.  Finally, the particles were dried at 50°C for 24 hr.   

 

                                                 
3 Department of Chemical  and Materials Engineering.  177 F. Paul Anderson Tower, University of 
Kentucky, Lexington, KY 40506. 
4 Department of Chemical  and Materials Engineering.  177 F. Paul Anderson Tower, University of 
Kentucky, Lexington, KY 40506. 
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8.3.5 Liquid Chromatography 

8.3.5.1 Cartridge Preparation 

 Empty 3 mL cartridges (Machery-Nagel, Bethlehem, PA) fitted with polyethylene 

frits were packed with 250 mg of the synthesized silica materials or 500 mg of a 

commercially-available amine-functionalized, spherical silica gel material and 

conditioned with 3 volumes of the appropriate mobile phase.  Following conditioning, the 

cartridges were wrapped with parafilm and stored in a zip-top bag for at least 24 hrs prior 

to use to thoroughly wet the material.  One additional volume of the mobile phase was 

applied to the cartridge immediately prior to use to ensure all void spaces were saturated 

with buffer. 

 

8.3.5.2 Chromatographic Separation of Selected Monosaccharides 

 A prepared sugar solution, pH 5 buffer containing 125 g/L each of both glucose 

and xylose (G + X), or hydrolyzate from pretreated corn stover (PCS) was applied to the 

cartridge.  The volume of the sample was chosen such that the mass of the sugar applied 

to the cartridge was 5-10% of the mass of the adsorbent material.  Next, the mobile 

phase, and if necessary, pressure was applied to the cartridge.  Fractions of the eluent 

were collected using a Bio-Rad Model 2110 Fraction Collector (Bio-Rad, Hercules, CA).  

Each fraction sample was analyzed on a YSI MBS 7100, and chromatograms for each 

monosaccharide were created.                 

 

8.3.6 Experimental Design 

8.3.6.1 Separation and Recovery of Monosaccharides Using Liquid Chromatography 

 Effects of particle imprinting on separation and recovery of selected 

monosaccharides.  Liquid chromatography was used to evaluate the effectiveness of non-

imprinted, glucose-imprinted and xylose-imprinted MDMI silica materials in separation 

and recovery of selected monosaccharides (glucose and xylose).  These materials were 

compared to a commercially-available silica gel that had no specificity for either 

monosaccharide.  A prepared sugar solution (pH 5 buffer containing 125 g/L each 

glucose and xylose) and hydrolyzate (from enzymatic hydrolysis of pretreated corn 
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stover) were used for the analysis.  The mobile phase was an 80:20 acetonitrile-water 

mixture.      

 Effects of the mobile phase on separation and recovery of selected 

monosaccharides.  To evaluate different mobile phase options, cartridges were packed 

with 250 mg of the non-imprinted MDMI silica material and conditioned with 3 volumes 

of pH 5 buffer.  Non-imprinted MDMI material was selected since any differences in 

chromatogram profiles would be due to the effects of the mobile phase on the glucose.  

Following conditioning, the cartridges were wrapped with parafilm and stored in a zip-

top bag for at least 24 hrs before use.  One additional volume of pH 5 buffer was applied 

to the cartridge immediately prior to use to ensure all void spaces were saturated with 

buffer.  A glucose sugar solution (100 g/L) was applied to the cartridge such that the 

mass of the sugar applied to the cartridge was 5% of the mass of the adsorbent material.  

Next, one of three mobile phases (pH 5 buffer; pH 5 buffer at room temperature and 

50ºC; and acetonitrile-water (90:10)) was applied to the cartridge, and fractions of the 

eluent were collected.  pH 5 buffer was selected to mimic pH conditions of enzymatic 

hydrolyzate.  The increased temperature was selected to promote recovery of any glucose 

that may have been adsorbed to the material.  Acetonitrile-water mixtures are common 

chromatographic mobile phases.  The fraction samples were analyzed for glucose content 

using a YSI 7100 MBS, and a chromatogram for the glucose was created.  The 

acetonitrile-water (90:10) mobile phase was also tested with the G + X sugar solution 

containing 100 g/L each of glucose and xylose in pH 5 buffer.  

 Effects of pore size on separation and recovery of selected monosaccharides.  

SBA-15 materials were aged at different temperatures to produce silica materials with 

various average pore sizes.  Three pore sizes were examined with regards to ability to 

separate selected monosaccharides from solution.  Liquid chromatography was performed 

as described above.  A glucose sugar solution (100 g/L) was applied to the cartridge such 

that the mass of the sugar applied to the cartridge was 5% of the mass of the adsorbent 

material.  Collected fractions were analyzed, and chromatograms for glucose elution were 

produced.  Three different mobile phases were tested: pH 5 buffer, pH 5 buffer at room 

temperature followed by pH 5 buffer at 50°C, and 90:10 acetonitrile: water.  The 
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acetonitrile-water (90:10) mobile phase was also tested with the G + X sugar solution 

containing 100 g/L each of glucose and xylose in pH 5 buffer.   

 Characterization of column features using fluorescently-tagged dextrans.  The 

dead volume and the glucose adsorption ability of the SBA-15 packed cartridges were 

quantified.  A glucose (100 g/L) and fluorescent dextran (FD40; 2200 µg/mL) solution 

was applied to the cartridge such that the mass of the sugar applied to the cartridge was 

5% of the mass of the adsorbent material.  Next, the mobile phase (pH 5 buffer) was 

applied to the cartridge, and fractions of the eluent were collected.  The fraction samples 

were analyzed for glucose content using a YSI 7100 MBS and the FD40 content using a 

Cary Eclipse Fluorescence Spectrophotometer (Varian, Inc., Santa Clara, CA).  A 

chromatogram for the each of the compounds was created. 

 

8.3.6.2 Bulk Adsorption of Glucose from Real Hydrolyzate 

Glucose-imprinted and non-imprinted Stöber particles were evaluated for their 

ability to selectively separate glucose from other sugars present in hydrolyzate produced 

from enzymatic hydrolysis of pretreated corn stover.  Stöber particles were produced  

according to Stober et al. (1968).  Glucose-imprinting was achieved by using a 1:1 ratio 

of CTAB to C8G1 surfactant templating molecules.   

Hydrolyzate was prepared as previously outlined, with slight modifications.  The 

corn stover was pretreated at 10% (w/v) solids using 10 g NaOH/100 g corn stover for 24 

hr at 25°C.  Enzymatic hydrolysis was performed at 5% (w/w) solids with an [E] = 30 

FPU/g solids (and 60 CBU/g solids).  The hydrolyzate was collected and stored at -45°C 

until needed.  Upon thawing, the hydrolyzate was diluted to 5 different concentrations 

prior to addition to the Stöber particles. 

Bulk adsorption samples were prepared by mixing 50 mg particles with 1 mL of 

DI H2O in 4.5 mL Wheaton vials for 24 hr.  The samples were then transferred into 

centrifuge tubes and centrifuged at 13,300 rpm for 1 min.  The water was decanted before 

the particles were re-suspended into 1 mL of the prepared hydrolyzate and transferred 

back to the Wheaton vials.  The samples were stirred for an additional 24 hr.  The 

samples were centrifuged again at 13,300 rpm for 8 min.  The supernatant was collected, 

syringe filtered (0.2 µm) and analyzed by HPLC.  The sugars derived from cellulose and 
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hemicellulose (glucose, xylose, arabinose, mannose and galactose) were measured using 

a Dionex U3000 HPLC system equipped with a Bio-Rad Aminex HPX-87P column and a 

deashing Micro-Guard column and operated at 78ºC with deionized water as the mobile 

phase at a flow rate of 0.6 mL/min.  The sample components were detected with a 

Shodex-101 refractive index detector. 

 Statistical Analysis.  The data were analyzed with t-tests to determine whether any 

significant differences existed among the means of adsorbed monosaccharides.    

 

8.4 RESULTS 

8.4.1 Separation and Recovery of Monosaccharides Using Liquid Chromatography 

8.4.1.1 Effects of Imprinted Particles 

All materials were characterized prior to use.  Pore size and surface area was 

determined for all synthesized materials using nitrogen adsorption (Table 8.1).  XRD was 

performed to ensure the materials had the expected structure (data not shown).     

 
Table 8.1.  Characteristics of the MDMI silica materials. 

Material Pore Size (nm) Surface Area (m2/g) 

Commercial 7.0†
 500† 

Non-imprinted 6.8 922 

Glucose-imprinted 3.8 995 

Xylose-imprinted 8.2 916 
† Provided by Sorbtech (http://www.sorbtech.com/catalog.aspx?family_id=181#topofpage 

 
 Table 8.2 contains the concentrations of glucose and xylose found in both the 

prepared sugar solution and the hydrolyzate from PCS used to evaluate the ability of each 

of the four adsorbent materials to separate these two monosaccharides.  While the 

concentrations for the prepared sugar solution were high, the sample volume was selected 

such that the total mass of the sugars applied to the cartridges was only 5-10% of the 

adsorbent mass.   
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Table 8.2.  Concentrations of monosaccharides in a model and a real hydrolyzate. 

 Sugar Solution -----   ------- Hydrolyzate -------   ----- 

Saccharide Concentration 
(g/L) 

Actual Yield 
(g/L) 

Theoretical Yielda 
(g/L) 

Percent 
Yieldb 

Glucose 125 7.3 16.9 43.2% 

Xylose 125 3.1 8.0 38.8% 
aTheoretical yield of glucose and xylose was determined according NREL LAP-019 
“Determination of Structural Carbohydrates and Lignin in Biomass” (Sluiter et al. 2005). 
bPercent yield = Actual yield/Theoretical yield 
 

 Chromatograms (Figure 8.4) and recovery profiles (Figure 8.5) from the 

application of the glucose + xylose sugar solution were produced for each of the four 

adsorbent materials.  For the commercial material, some separation of the two peaks is 

apparent, although it is not complete separation.  No apparent separation was observed 

for any of the MDMI silica materials.  For each of the four materials tested, at least 80% 

and 90% of the glucose and xylose, respectively, loaded onto the materials was recovered 

in the fractions. 

 Chromatograms (Figure 8.6) and recovery profiles (Figure 8.7) from the 

application of the hydrolyzate from PCS were produced for each of the four adsorbent 

materials.  No separation was apparent for any of the materials, including the commercial 

material.  Recovery for glucose and xylose loaded onto the material was closer to 100%.        
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Figure 8.4.  Chromatograms produced from the application of glucose + xylose sugar solution to cartridges containing four 
different adsorbent materials.  NH2 Spherical Silica gel (a); Non-imprinted MDMI Silica (b); Glucose-imprinted MDMI 
Silica (c); Xylose-imprinted MDMI Silica (d). 
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Figure 8.5.  Recovery profiles produced from the application of glucose + xylose sugar solution to cartridges containing four 
different adsorbent materials.  NH2 Spherical Silica gel (a); Non-imprinted MDMI Silica (b); Glucose-imprinted MDMI 
Silica (c); Xylose-imprinted MDMI Silica (d). 
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Figure 8.6. Chromatograms produced from the application of hydrolyzate from PCS to cartridges containing four different 
adsorbent materials.  NH2 Spherical Silica gel (a); Non-imprinted MDMI Silica (b); Glucose-imprinted MDMI Silica (c); 
Xylose-imprinted MDMI Silica (d). 
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Figure 8.7.  Recovery profiles produced from the application of hydrolyzate from PCS to cartridges containing four different 
adsorbent materials.  NH2 Spherical Silica gel (a); Non-imprinted MDMI Silica (b); Glucose-imprinted MDMI Silica (c); 
Xylose-imprinted MDMI Silica (d). 
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8.4.1.2 Effects of Mobile Phases 

Three different mobile phases were evaluated to attempt to enhance separation: 

pH 5 buffer at room temperature, pH 5 buffer at room temperature followed by pH 5 

buffer at 50°C, and acetonitrile-water (90:10).  The glucose chromatograms and recovery 

profiles for the different mobile phases are shown in Figure 8.8.  The glucose peaks for 

the two pH 5 buffers are essentially identical.  The increased temperature of the pH 5 

buffer did not promote any additional recovery of glucose, as seen by the lack of an 

apparent peak.  The acetonitrile-water mobile phase did appear to affect the elution 

profile of the glucose.  The maximum elution occurs at the same point as the pH 5 buffer 

mobile phases, but the peak height is about a quarter of the height of the pH 5 buffer 

peaks.  The acetonitrile-water peak also has a long lagging tail, indicating a longer 

interaction with the adsorbent material. 
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8.4.1.3 Effects of Pore Size 

 It was hypothesized that the smaller pore size of the MDMI materials might 

hinder the monosaccharides from interacting with the imprinted spots and therefore 

reduces the ability of the materials to adsorb and separate out the desired 
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Figure 8.8.  Chromatograms (a) and recovery profiles (b) produced 
from eluting a prepared glucose sugar solution (100 g/L) with 
different mobile phases.  The adsorbent material was non-imprinted 
MDMI silica.  The error bars indicate the standard deviation of two 
replicates. 
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monosaccharides.  SBA-15 materials were chosen because the pore sizes are highly 

tunable depending on the temperature used in an aging step during synthesis.  Increasing 

the aging temperature from 50°C to 150°C increased the pore size from 6.5 nm to 10.4 

nm, as seen in Table 8.3.  

 
Table 8.3.  Characteristics of the SBA-15-xxa silica materials. 

Material Pore Size (nm) Surface Area (m2/g) 

Non-imprinted MDMI Silica 2.9 902.1 

SBA-15-50 6.5 752.5 

SBA-15-75 8.3 700.0 

SBA-15-100 9.6 630.1 
aThe xx values indicate the temperature at which the SBA-15 materials were aged. 

 
 Figure 8.9, Figure 8.10 and Figure 8.11 show the glucose chromatograms and 

recovery profiles for SBA-15 materials aged at 50°C, 75C and 100°C, respectively.  The 

profiles for the different mobile phases follow similar trends to the previous experiment 

using MDMI materials.  The pH 5 buffers produced similar profiles, and the peak 

resulting from the acetonitrile-water mobile phase is much shorter and broader. 
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Figure 8.9.  Glucose chromatograms (a) and recovery profiles (b) 
produced eluting a prepared glucose solution (100 g/L) using different 
mobile phases.  The adsorbent material was SBA-15 materials aged at 
50°C.  The error bars indicate the standard deviation of two 
replicates.  No error bars could be determined for the acetonitrile-
water mobile phase, since only one run was conducted.  
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Figure 8.10.  Glucose chromatograms (a) and recovery profiles (b) 
produced eluting a prepared glucose solution (100 g/L) using different 
mobile phases.  The adsorbent material was SBA-15 materials aged at 
75°C.  The error bars indicate the standard deviation of two 
replicates.  No error bars could be determined for the acetonitrile-
water mobile phase, since only one run was conducted. 
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Figure 8.11.  Glucose chromatograms (a) and recovery profiles (b) 
produced eluting a prepared glucose solution (100 g/L) using different 
mobile phases.  The adsorbent material was SBA-15 materials aged at 
100°C.  The error bars indicate the standard deviation of two 
replicates.  No error bars could be determined for the acetonitrile-
water mobile phase, since only one run was conducted. 
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glucose and xylose solution (100 g/L each) to determine if the larger pore sizes affected 

the interaction of the two sugars with the adsorbent material.  Figure 8.12 and Figure 8.13 

show the chromatograms and recovery profiles for SBA-15 materials aged at 50°C and 
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xylose with either material, the peaks were broader than when the prepared sugar solution 

containing only glucose was applied to the columns.  

 

 
 

 
Figure 8.12.  Chromatograms (a) and recovery profiles (b) produced 
eluting a prepared glucose and xylose solution (100 g/L each) using 
90:10 acetonitrile: water as the mobile phase.  The adsorbent 
material was SBA-15 materials aged at 50°C. 
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Figure 8.13.  Chromatograms (a) and recovery profiles (b) produced 
eluting a prepared glucose and xylose solution (100 g/L each) using 
90:10 acetonitrile: water as the mobile phase.  The adsorbent 
material was SBA-15 materials aged at 100°C. 

 

8.4.1.4 Characterization of Column Features 

 Large fluorescently-tagged dextrans (FD40) were used to examine whether any 

interaction was occurring between the monosaccharides and the adsorbent materials.  The 

dextrans had a molecular weight of about 40 kDa much larger than that of glucose (MW 
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elute later than the larger fluorescent dextrans if the smaller molecules were in fact 

interacting with the pores of the adsorbent material.  However, upon inspection of the 

chromatogram in Figure 8.14, no separation between the two peaks is apparent, 

indicating that the glucose is likely not interacting with the adsorbent materials.   

 

 
Figure 8.14.  Chromatograph of glucose (MW = 180) and a 
fluorescently-tagged dextran (MW ~ 40,000).  The peaks have 
been normalized based on the maximum concentration of each 
respective component for ease of comparison.  The peaks show 
no apparent separation, indicating that the glucose molecules do 
not interact with the adsorbent material any differently than the 
larger molecules.  Non-imprinted SBA-15 materials aged at 50°C 
were used as the stationary phase.  

 

8.4.2 Bulk Adsorption of Glucose from Real Hydrolyzate 

 Non-imprinted and glucose-imprinted particles synthesized by the Stöber method 

were evaluated for their ability to selectively adsorb glucose and/or xylose from 

hydrolyzate.  The non-imprinted particles did not selectively adsorb either 

monosaccharide in significant quantities (6.8 mg glucose and 6.5 mg xylose per g 

particles).  However, the glucose-imprinted material selectively adsorbed four times more 

glucose than xylose (34.4 mg glucose and 8.7 mg xylose per g particles).  
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Figure 8.15.  Glucose and xylose adsorption by non-
imprinted and glucose-imprinted Stöber particles.  Bars 
marked with an asterisk (*) are significantly different 
from the other samples. 

 

8.5 DISCUSSION 

8.5.1 Separation and Recovery of Monosaccharides Using Liquid Chromatography 

8.5.1.1 Effects of Imprinted Particles 

From this study of the MDMI silica materials, it is hypothesized that the similarity 

between the glucose and xylose chromatograms is the result of the two monosaccharides 

interacting with the adsorbent materials in the same way (Figure 8.16) or not interacting 

with the material at all (Figure 8.17).  For instance, it may be possible that the 

monosaccharides bind indiscriminately to the silica material, regardless of the type of 

saccharide or the specificity and availability of imprinted sites.  It may also be possible 

that the monosaccharides are indiscriminately binding to imprinted sites, regardless of the 

site specificity.  Monosaccharides are difficult to separate because the structures are so 

similar, possibly only differing by the position of a single hydroxyl (–OH) group.  

Although glucose and xylose differ in the number of carbons, the structures may still be 

too similar for the imprinted sites to selectively choose the correct sugar.  Another 

alternative is that the monosaccharides are not interacting with the adsorbent material at 

all, especially if the pores are not adequately sized and/or the saccharides are hydrated.  A 

glucose molecule is about 1 nm in diameter.  The pores of the glucose-imprinted MDMI 

materials are only 3.8 nm on average.  Even though the pores are large enough for the 

glucose molecules to enter, the small pore size may impose some diffusion limitations, 

0
5

10
15
20
25
30
35
40
45

Non-imprinted Glucose-imprinted

A
ds

or
be

d 
M

on
os

ac
ch

ar
id

e 
 

(m
g 

m
on

os
ac

ch
ar

id
e/

g 
m

at
er

ia
l) 

Material Type 

Glucose
Xylose

* 



 

      257 
 

which would impact the effective binding the monomers to the imprinted sites.  

Additionally, glucose-water interactions are strong (or at least comparable in strength to 

the interactions of the glucose with the functionalized sites in the imprinted silica).  

Water molecules may be interfering with the –OH groups that need to interact with the 

functionalized groups in the imprinted sites, thus reducing the ability of the sugar to 

interact with the adsorbent material.  Evaluating the elution profiles with the 

fluorescently-tagged dextrans later indicated that the monosaccharides were, in fact, not 

interacting with the materials. 

 

 

    

(a) (b) 

Figure 8.16. C5 and C6 sugars may be (a) binding 
indiscriminately to the silica material or (b) binding 
indiscriminately to the glucose-imprinted sites in the 
silica material.  Black hexagons = C6 sugars; blue 
pentagons = C5 sugars; red hexagons = glucose-
imprinted sites. 
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 Although some separation of the glucose and xylose peaks was observed with the 

prepared sugar solution and the commercial material, this separation was not apparent 

with the real hydrolyzate.  It is possible that the prepared sugar solution was “clean” as 

compared to the hydrolyzate sample, and some of the other constituents in the 

hydrolyzate interfered with the glucose and xylose interacting with the adsorbent 

material.  Hydrolyzate may contain a variety of components, including enzymes, soluble 

saccharide species (mono-, di-, tri-, and oligosaccharides) and phenolic compounds from 

lignin degradation.  It is likely that the lack of separation is due to the hydrolyzate fouling 

the commercial material (Figure 8.18). 

 

Figure 8.17.  C5 and C6 may not interact with 
the MDMI materials at all.  It is possible the 
pores are not adequately sized, especially if the 
sugars are hydrated.  The types of saccharide 
species present in solution may also lead to no 
interaction between the sugars and the MDMI 
materials. 
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8.5.1.2 Effects of Mobile Phases 

 The pH 5 buffer at room temperature was chosen as a mobile phase in this study 

because it mimics conditions that are common for enzymatically produced hydrolyzate.  

This case represents the minimum requirements necessary for performing a 

chromatographic separation of the hydrolyzate sugars (i.e. no additional chemical or 

energy requirements are necessary to conduct the separation).  The pH 5 buffer at room 

temperature followed by pH 5 buffer at 50°C was selected because it has been shown that 

increased mobile phase temperatures can promote recovery of any bound saccharides 

(Kuhn and Maugeri 2010).  Acetonitrile-water (90:10) has been shown to separate 

carbohydrates on other chromatography columns (Bio-Rad).  A prepared glucose solution 

was chosen for this work to simplify the system; it was assumed that the mobile phase 

would cause a shift in the glucose peak if it had any effect on the saccharide elution. 

  The acetonitrile-water mobile phase resulted in the biggest change of the glucose 

chromatography profiles.  This mobile phase (70:30 acetonitrile-water) has been used 

with an Aminex disaccharide column to separate a variety of saccharides from one 

another in ice cream samples (Bio-Rad), but the type of interaction between the 

saccharides and the stationary phase with that combination is different from the one in 

this current work.  For example, Aminex carbohydrate columns use a combination of size 

 a b  c   d 

Figure 8.18.  Cartridges following 
the application of the hydrolyzate 
from PCS and collection of the 
fractions.  The cartridges contain (a) 
commercial, (b) non-imprinted, (c) 
glucose-imprinted and (d) xylose-
imprinted materials. 
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exclusion and ligand exchange mechanisms to separate the various saccharide species.  In 

this current work, the monosaccharides interact with hydroxyl groups within the 

imprinted sites.  However, the broad peak and long lagging tail with the MDMI silica 

material and the acetonitrile-water mobile phase is not desirable for chromatographic 

separations.  If these materials prove to be a viable option for chromatographic 

separation, further development of the chromatographic separation procedure used in this 

current study will likely be required to select the best mobile phase for the separation of 

carbohydrates.  Cano et al. (2006) examined a ternary mobile phase mixture of 

acetonitrile, water and ethyl acetate in various proportions.  A 50:10:40 (v:v:v) mixture of 

acetonitrile-water-ethyl acetate increased the difference in elution times of glucose and 

xylose from honey.  The glucose and xylose eluted at approximately 4 and 9 min, 

respectively.  Elution times for glucose and xylose from honey were approximately 3 and 

5 min using an acetonitrile-water (80:20) mobile phase following the official procedure 

developed by the Harmonized Methods of European Honey Commission.   

 

8.5.1.3 Effects of Pore Size 

 It was hypothesized that the small pore size of the non-imprinted MDMI silica 

material (2.9 nm) was hindering the glucose molecules from entering the pores and 

interacting the imprinted sites.  A glucose molecule is about 1 nm in diameter.  Even 

though the pore size of this material was almost three times larger than a glucose 

molecule, any interaction between glucose and water may increase the apparent size of 

the glucose molecule enough so that it is unable to enter the pores.  Increasing the pore 

size (by using the SBA-15 materials) could improve the probability that the glucose 

molecules are able to reach the imprinted sites, which is evidenced by the shift in the 

glucose peaks when using the acetonitrile-water mobile phase.  As the pore size 

increased, the peak shifts further to the right, indicating that the glucose is interacting 

with the stationary phases for longer periods of time.  For example, when the pore size is 

6.5 nm, the glucose peak reaches a maximum after 1 mL of solution is eluted, but a pore 

size of 9.6 nm resulted in a peak maximum occurring after about 3 mL of solution has 

eluted.   
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8.5.1.4 Characterization of Column Features 

 The addition of the fluorescently-tagged dextrans (MW = 40 kDa) to the prepared 

glucose solution allowed for the comparison of the elution profiles between large and 

small saccharide species.  In theory, the larger species should elute first followed by the 

smaller species at some later time, indicating that the smaller species was interacting with 

the stationary phase (i.e. diffusing in and out of the pores, adsorbing to the imprinted 

sites).  However, the elution profiles for the two species were nearly identical, meaning 

that the two species were interacting with the stationary phase in similar ways.  

Chromatographic separation is impacted by several factors, like component interaction 

with the stationary phase due to chemical composition, diffusion characteristics or bed 

height; and component interaction with the mobile phase due to the chemical composition 

or flowrate.  The correct combination of all these factors is essential to separating the 

desired components. 

 

8.5.2 Bulk Adsorption of Glucose from Real Hydrolyzate 

 Stöber particles molecularly imprinted with glucose-binding sites were used to 

evaluate the effectiveness of selectively separating glucose from other monosaccharides 

and components found in enzymatically-produced hydrolyzate.  This separation 

technology has potential applications for purifying sugar streams for optimal use of all 

energy-rich fractions of lignocellulose in biorefineries.  Monosaccharide structures are 

very similar, possibly only differing by a single carbon atom or orientation of a hydroxyl 

group, making it difficult to selectively separate a single type of monosaccharide from 

solution at an industrial scale.  The results observed in this current work indicate that the 

glucose-imprinted materials synthesized were capable of selectively separating glucose 

from other monosaccharides found in hydrolyzate.  It is hypothesized that the uniformity 

of the particles, as well as the extended retention time (24 hrs) allowed for better 

interaction between the monosaccharides and the imprinted materials, resulting in better 

adsorption of the desired monosaccharides.  This imprinting technology could be 

developed further with other monosaccharide templating molecules, like xylose, such that 

the materials could be synthesized with specific monosaccharide-binding sites and other 

desired purified sugar streams could be obtained.     
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CHAPTER 9:  CONCLUSIONS AND FUTURE DIRECTIONS 

 The use of second generation feedstocks for valuable products, like energy-dense 

liquid transportation fuels, pharmaceuticals and commodity chemicals, still requires 

much development in the conversion process to become commercially viable.  It will be 

necessary to integrate the lignocellulose conversion process with the concept of the 

biorefinery for it to be economically viable and competitive with the traditional 

petroleum refinery.  This current work investigated several aspects associated with the 

conversion of lignocellulose, including pretreatment and enzymatic hydrolysis of 

lignocellulose at high-solids loadings, separation and recovery of purified sugar streams, 

and the application of an existing kinetic model for the hydrolysis of lignocellulose 

material.   

 

9.1 SODIUM HYDROXIDE PRETREATMENT AND THE SUBSEQUENT ENZYMATIC 

HYDROLYSIS OF HIGH-SOLIDS LOADINGS 

 Sodium hydroxide (NaOH) pretreatment and the subsequent enzymatic hydrolysis 

were performed at high-solids loadings using corn stover as the substrate.  Several factors 

associated with these two processes were investigated, including the duration of 

pretreatment at different temperatures and NaOH loadings, hydrolysis solids loadings and 

enzyme loadings.  Relatively mild pretreatment conditions were intentionally chosen in 

order to avoid the production of compounds that are known inhibitors of the enzymes and 

fermentation organisms used in downstream processes.  These conditions did not have 

significant effects on the subsequent composition of the corn stover when pretreated at 

20% (w/w) solids loadings.  However, the structure of the components was likely 

affected by the pretreatment since differences in cellulose conversions were observed. 

 NaOH loadings examined effectively increased the cellulose content of the corn 

stover by removing other non-cellulose components like ash, lignin and other 

unquantified components, with the exception of the most severe (highest NaOH loading, 

longest pretreatment time).  The most severe pretreatment conditions resulted in the loss 

of some of the hemicellulose fraction, which is a concern since xylose (the main 

component of corn stover hemicellulose) is lost as a potentially viable feedstock, as well 

as degrading into a number of compounds that are inhibitory to downstream processes. 
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 Flushing the hydrolyzate and reusing the substrate was also shown to increase 

overall glucose yields.  It can be inferred from this study that flushing the pretreated corn 

stover throughout the hydrolysis reaction eliminates the need to wash the pretreated 

biomass prior to enzymatic hydrolysis, thereby reducing the amount of process water 

required. 

 

9.1.1 Future Direction 

   Further study into NaOH pretreatment and enzymatic hydrolysis conditions used 

for processing high-solids loadings of lignocellulose is warranted to advance the 

understanding of the mechanisms involved, as well as improve the conversion of 

cellulose.  One modification that can be made to the process is the use of horizontal roller 

bottles or reactors instead of shake flasks.  The horizontal reactors have been shown to 

improve cellulose conversion at high-solids loadings since it promotes a more uniform 

mixing scheme without significantly increasing the required energy inputs (Dasari et al. 

2009; Jorgensen et al. 2007b; Larsen et al. 2008; Roche et al. 2009b).  Additionally, the 

fermentability of the hydrolyzate produced with high-solids loadings should be evaluated.  

High-solids loadings in the pretreatment and enzymatic hydrolysis processes may result 

in higher concentrations of inhibitory concentrations.  Improved glucose yields are of 

little value if the ethanol yields are not significantly improved due to high inhibitor 

concentrations in the hydrolyzate. 

 Flushing the hydrolyzate and reusing the substrate is still a relatively new concept 

for improving conversion efficiency of cellulose.  Many factors associated with this 

method still warrant investigation and development.  Application and supplementation 

rates of enzymes should be examined to optimize the cellulose conversion in the flushing 

scheme.  Timing of the flushing cycles is also important to maximize the rate of cellulose 

conversion and reduce the reaction time of the enzymatic hydrolysis step.  Further study 

of the effect of water activity on the enzymatic hydrolysis reaction could lead to a better 

understanding of the reaction mechanism and other viable options for improving 

cellulose conversion.  More importantly, an economic analysis should be conducted to 

determine the validity and efficacy of using a flushing method, both with and without 
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enzyme supplementation, compared to using the conventional batch hydrolysis at low- 

and high-solids loadings. 

   

9.2 APPLICATION OF THE INTEGRATED MICHAELIS-MENTEN EQUATION FOR 

MODELING HETEROGENEOUS ENZYMATIC HYDROLYSIS REACTIONS 

 An experimental and theoretical analysis of enzymatic hydrolysis using the 

classical Michaelis-Menten kinetics model and a modified Michaelis-Menten model for 

insoluble substrates was conducted.  Kinetic parameters Km and Vm were determined by 

simultaneously fitting the integrated Michaelis-Menten model using MATLAB.  The 

implicit nature of the integrated form of the Michaelis-Menten equation necessitated the 

use of Lambert’s ω function.   In addition to the kinetic parameters, two other parameters 

were incorporated into the model and evaluated both individually and together.  The 

fractal component was added to describe the fractal kinetic characteristics that may occur 

due to the heterogeneous nature of the enzymatic hydrolysis of cellulose.  The jamming 

parameter was evaluated to determine whether the size of the cellulase was causing the 

reduction in the reaction rate by overcrowding the available cellulose sites.  Incorporation 

of the fractal component into the models improved the fit of the model to the 

experimental hydrolysis data, indicating that the heterogeneous nature of the reaction 

does impact the rate of the reaction.     

 

9.2.1 Future Direction 

 One of the major assumptions associated with the Michaelis-Menten model is that 

the reaction is homogeneous in nature.  That assumption is not valid for the hydrolysis of 

cellulose since the enzymes and substrates are in two different phases (i.e. heterogeneous 

reaction).  Two approaches were investigated for describing the heterogeneous nature of 

the reaction: (1) a fractal parameter was incorporated into the traditional Michaelis-

Menten model and (2) a modified Michaelis-Menten model adapted for use with 

insoluble substrates and evaluated both with and without the fractal parameter.  The 

traditional Michaelis-Menten model and the two other approaches for heterogeneous 

reactions all assumed one type of reaction or the other (homogeneous vs. heterogeneous); 

however, the enzymatic hydrolysis of lignocellulose begins as (nearly) completely 
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heterogeneous in nature before shifting to a partially heterogeneous, partially 

homogeneous reaction.  As the cellulase acts on the cellulose, some soluble saccharide 

species (mono-, di-, tri- and oligosaccharides) are released by the enzymes, resulting in 

enzymes and substrates that are in the same phase (i.e. homogeneous reaction).  These 

soluble species are acted upon by the enzymes until only monosaccharides remain.  This 

transition from one type of reaction (heterogeneous) to a combination of the two types 

(heterogeneous + homogeneous) is not incorporated into the models examined in this 

current work. 

 Additionally, some of the assumptions made concerning the kinetic parameters 

and the units associated with the input variables may warrant reevaluation.  For instance, 

the upper bounds placed on the dissociation constant, Km, may have limited the ability of 

the model to fit the experimental hydrolysis data since the fitted value for Km was 

consistently the upper bound set when evaluating the traditional Michaelis-Menten 

models.  The units associated with the input variables, especially the enzyme 

concentration, are not typical of most models.  The enzyme loading is measured by its 

activity and given in terms of FPU/g solids.  Most modeling studies use true 

concentration units like mM or g/L for enzyme inputs.  However, the commercial enzyme 

preparation used in this work is actually a combination of multiple types of enzymes that 

fall in the cellulase category.  To convert the enzyme loading used in this work from 

activity units to concentration units would require the assumptions that only a single 

enzyme type was used and that each enzyme molecule was equally active.  This 

inconsistency with other studies, while not inaccurate, makes comparisons between the 

kinetic parameters found in this work with others difficult.  Conversion of the activity 

units to concentration units would allow for easier comparison to other fitted kinetic 

parameters found in literature.           

 

9.3 THE SEPARATION AND RECOVERY OF MONOSACCHARIDES USING MESOPOROUS 

SILICA MATERIALS 

 Imprinted mesoporous silica materials were synthesized using three different 

methods (one novel and two established synthesis methods) and evaluated by liquid 

chromatography or bulk adsorption for effective and selective separation of specific 
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monosaccharides from solution.  No separation of glucose and xylose was observed 

during liquid chromatography of either a prepared sugar solution or hydrolyzate produced 

from enzymatically hydrolyzed lignocellulose, which was likely due to the difficulty in 

developing chromatographic methods.  Many factors, like pH, temperature and mobile 

phase composition, affect the effectiveness of chromatographic separation.  Multiple 

mobile phases were evaluated but further study is still warranted to find the optimal 

separation method. 

 Synthesis of the imprinted silica materials with the established Stöber method 

produced uniformly sized particles.  This feature is desirable for chromatographic 

separations.  Bulk adsorption tests showed that the glucose-imprinted particles were 

successful at selectively adsorbing glucose from hydrolyzate.  Chromatographic 

separation was not evaluated for this material in this current work; although, its 

investigation would be warranted as a possible application at the industrial scale.      

 

9.3.1 Future Direction 

 Developing new chromatographic separation techniques can be time-consuming 

and cumbersome.  Many factors affect the effective separation of components from 

solution, and each one requires thorough evaluation.  Synthesis of novel mesoporous 

silica materials for selective separation of specific monosaccharides has many 

applications, especially in the biofuels arena, where all components of lignocellulose 

must be exploited for the conversion process to be economical.  Even though the 

materials synthesized with a novel imprinting technique in this current work have been 

shown to selectively separate glucose from solution in bulk adsorption applications, many 

other aspects of the operation must be developed further prior to incorporation into the 

lignocellulose conversion process.  For instance, once the monosaccharides are adsorbed 

to the material, they must be recovered for use in downstream processes (fermentation, 

conversion).  Appropriate conditions for desorption of the saccharides such that they are 

in a usable form and in a solution that is not inhibitory to fermentative organisms must be 

considered and evaluated.  Should the materials be used in a chromatographic separation 

application, optimal methods must be devised, including bed height of column, 
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temperature and pH of mobile phase, and chemical composition of mobile phase, to name 

a few of the impacting factors. 
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APPENDIX A:  COMPOSITION OF PRETREATED CORN STOVER  
 
A.1 PRETREATMENT TIME AND TEMPERATURE STUDY 
 
Table A.1.  Composition of corn stover pretreated at 20% (w/v) solids using different pretreatment times and temperatures. 

 
Biomass Pretreatment Conditions 

         
 Raw CS 

25°C 70°C  70°C - Untreated 

 
30 min 60 min 90 min 120 min 30 min 60 min 90 min 120 min 30 min 60 min 90 min 120 min 

Glu 37.9 
(0.5) 

39.2 
(0.3) 

39.2 
(0.4) 

39.3 
(1.4) 

39.5 
(1.2) 

39.4 
(0.7) 

40.1 
(2.1) 

40.7 
(1.3) 

40.1 
(0.7) 

37.2 
(0.2) 

37.3 
(0.7) 

37.4 
(0.2) 

37.3 
(0.2) 

Xyl 17.8 
(0.4) 

20.5 
(0.4) 

20.5 
(0.0) 

20.8 
(0.6) 

20.9 
(0.5) 

20.6 
(0.4) 

20.7 
(1.0) 

20.9 
(0.4) 

21.4 
(0.3) 

20.6 
(0.1) 

20.5 
(0.0) 

21.2 
(0.0) 

17.7 
(4.1) 

Ara 2.6 (0.1) 3.1 (0.3) 3.3 (0.1) 3.1 (0.5) 3.3 (0.5) 3.0 (0.2) 2.9 (0.3) 2.4 (0.3) 2.8 (0.5) 2.5 (0.2) 1.7 (0.6) 2.2 (0.2) 2.5 (0.1) 
Man 0.4 (0.0) 0.7 (0.0) 0.7 (0.0) 0.7 (0.0) 0.6 (0.4) 0.7 (0.0) 0.7 (0.0) 0.7 (0.1) 0.8  (0.1) 0.5 (0.0) 0.6 (0.0) 0.9 (0.0) 0.6 (0.4) 
Gal 0.8 (0.1) 1.2 (0.0) 1.3 (0.1) 1.3 (0.0) 1.3 (0.1) 1.1 (0.1) 1.1 (0.1) 1.3 (0.0) 1.2 (0.2) 1.4 (0.0 1.4 (0.0) 0.9 (0.4) 1.4 (0.1) 

 AIL 18.9 
(0.3) 

20.9 
(0.4) 

21.2 
(0.6) 

20.6 
(1.1) 

20.3 
(0.2) 

20.8 
(1.2) 

20.8 
(1.2) 

21.2 
(0.5) 

20.7 
(0.2) 

20.6 
(0.7) 

20.4 
(0.1) 

20.3 
(0.2) 

19.7 
(0.2) 

ASL 2.2 (0.0) 1.9 (0.1) 1.8 (0.1) 1.8 (0.1) 1.8 (0.1) 1.8 (0.0) 1.8 (0.1) 1.7 (0.1) 1.7 (0.1) 1.9 (0.0) 1.9 (0.0) 1.9 (0.0) 1.9 (0.0) 

 Ash 4.8 (0.2) 3.3 (0.1) 3.0 (0.2) 3.1 (0.1) 2.9 (0.4) 3.0 (0.5) 2.6 (0.5) 2.6 (0.6) 3.0 (0.2) 3.3 (0.1) 3.2 (0.2) 3.3 (0.0) 3.0 (0.0) 

 Other 14.7 9.1 9.1 9.3 9.3 9.5 9.3 8.6 8.3 11.9 13.6 11.9 16.0 
Abbreviations: CS = corn stover; Glu = glucose; Xyl = xylose; Ara = arabinose; Man = mannose; Gal = galactose; AIL = acid insoluble lignin; 
ASL = acid soluble lignin 
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A.2 NAOH LOADING IN PRETREATMENT STUDY 
 
Table A.2.  Composition of raw and pretreated corn stover.  Results are calculated as % (w/w) oven dried material.  
Pretreatment was performed at 20% (w/v) solids for either 2 or 24 hr at 25ºC. 
Time (hr) -- 2 24 
NaOH Loading 
(g/100 g CS) -- 4 10 20 4 10 20 
Glu 37.9 (0.5) 39.5 (1.1) 47.4 (2.3) 49.0 (2.0) 40.6 (9.4) 46.6 (6.4) 44.4 (1.1) 
Xyl 17.8 (0.4) 20.9 (0.5) 21.2 (1.5) 19.4 (0.8) 21.0 (6.1) 23.0 (4.1) 17.0 (0.3) 
Ara 2.6 (0.1) 3.3 (0.4) 5.2 (1.5) 4.9 (0.3) 4.4 (0.4) 3.8 (3.0) 1.7 (0.5) 
Man 0.4 (0.0) 0.6 (0.2) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 1.5 (1.4) 2.3 (0.3) 
Gal 0.8 (0.1) 1.3 (0.1) 0.0 (0.0) 0.4 (0.7) 1.5 (0.2) 1.5 (1.3) 0.3 (0.1) 
    

  
    

 
  

AIL 18.9 (0.3) 20.3 (0.4) 18.0 (0.3) 14.7 (1.3) 20.8 (1.1) 22.6 (6.6) 22.5 (5.4) 
ASL 2.2 (0.0) 1.8 (0.1) 1.5 (0.2) 1.4 (0.1) 1.6 (0.1) 1.4 (0.2) 1.2 (0.0) 
    

  
    

 
  

Ash 4.8 (0.2) 2.9 (0.4) 6.6 (0.9) 15.6 (4.7) 2.4 (0.2) 6.1 (0.9) 10.1 (1.2) 
    

  
  

  
  

Other 14.7 9.3 0.0 0.0 7.5 0.0 0.4 
Abbreviations: CS = corn stover; Glu = glucose; Xyl = xylose; Ara = arabinose; Man = mannose; Gal = galactose; AIL = acid insoluble lignin; 
ASL = acid soluble lignin 
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A.3 HYDROLYZATE FLUSHING AND SUBSTRATE REUSE STUDY 
 
 
Table A.3.  Composition of raw and pretreated corn 
stover receiving different post-treatment processes.  
Results are calculated as % (w/w) oven dried 
material.  Pretreatment was performed at 10% (w/v) 
solids 24 hr at 25ºC.   

 
Raw CS Washeda Unwasheda 

Glu 37.9 (1.5) 51.8 (1.3) 45.1 (0.3) 
Xyl 17.8 (0.3) 23.7 (0.1) 22.8 (0.1) 
Ara 2.6 (2.3) 2.9 (0.1) 3.6 (0.1) 
Man 0.4 (0.0) 0.0 (0.0) 0.0 (0.0) 
Gal 0.8 (0.0) 0.0 (0.0) 0.0 (0.0) 

    AIL 8.9 (0.1) 16.6 (0.4) 14.9 (0.3) 
ASL 2.2 (0.1) 1.4 (0.0) 2.0 (0.0) 

    Ash 4.8 (0.4) 1.9 (0.1) 9.1 (0.6) 

    Other 14.7 1.6 2.6 
Abbreviations: CS = corn stover; Glu = glucose; Xyl = xylose; 
Ara = arabinose; Man = mannose; Gal = galactose; AIL = acid 
insoluble lignin; ASL = acid soluble lignin 
aPost-treatment conditions: ‘Washed’, neutralized with 
glacial acetic acid and washed with 5 volumes of deionized 
water; ‘Unwashed’, neutralized with glacial acetic acid and 
excess liquid removed with vacuum filtration. 
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APPENDIX B:  SACCHARIDE CONCENTRATIONS FROM ENZYMATIC HYDROLYSIS 
 
B.1 PRETREATMENT TIME AND TEMPERATURE STUDY 
 
Table B.1.  Saccharide concentrations produced from enzymatic hydrolysis of PCS.  Pretreatment was performed at 25°C. 

Pretreatment  
Time (min) 

Solids  
Loading (%) 

Enzyme Loading  
(FPU/g solids) 

Saccharide Concentration (mg X/g DM) 
Glucose Cellobiose Xylose Arabinose Mannose Galactose 

30 5 5.2 143.90 (6.59) 0.04 (0.04) 35.88 (2.42) 10.29 (1.29) 11.90 (2.08) 13.07 (1.14) 
18.3 129.31 (4.51) 13.07 (22.65) 31.54 (0.91) 7.61 (1.08) 3.80 (1.80) 3.58 (1.07) 

60 112.21 (11.83) 0.90 (1.57) 21.31 (2.76) 8.19 (2.91) 2.30 (1.93) 10.28 (3.52) 
20 7.2 27.92 (1.35) 11.71 (4.65) 7.78 (0.20) 3.38 (0.24) 0.85 (0.07) 0.78 (0.07) 

28.9 15.81 (0.58) 0.00 (0.00) 4.47 (1.07) 2.54 (2.53) 0.00 (0.00) 0.57 (0.06) 
60 34.71 (0.95) 102.90 (10.45) 8.88 (1.12) 1.28 (0.63) 0.40 (0.08) 6.12 (1.33) 

60 5 5.2 149.51 (10.91) 0.06 (0.11) 40.37 (1.63) 11.94 (1.25) 12.27 (0.87) 13.54 (1.68) 
18.3 129.18 (18.01) 8.53 (14.77) 29.90 (2.87) 7.31 (1.09) 3.55 (0.93) 2.93 (0.53) 

60 139.32 (32.60) 0.00 (0.00) 25.28 (3.68) 9.03 (2.15) 5.35 (1.98) 7.81 (5.03) 
20 7.2 29.74 (3.88) 7.41 (0.59) 8.44 (0.81) 3.72 (0.080) 2.08 (1.09) 1.18 (0.34) 

28.9 15.37 (0.33) 0.00 (0.00) 4.10 (1.02) 2.34 (0.22) 0.00 (0.00) 1.09 (0.23) 
60 37.16 (2.80) 79.30 (25.25) 8.10 (1.39) 3.79 (2.28) 2.32 (1.76) 3.92 (2.00) 

90 5 5.2 151.19 (6.45) 0.16 (0.14) 40.52 (2.04) 10.88 (1.48) 12.27 (1.42) 12.99 (1.33) 
18.3 120.87 (5.73) 7.53 (13.03) 31.23 (2.88) 6.15 (1.30) 4.71 (1.81) 3.56 (0.86) 

60 117.18 (9.64) 0.00 (0.00) 23.96 (5.89) 9.58 (2.46) 2.80 (1.57) 10.74 (6.09) 
20 7.2 37.27 (4.22) 7.95 (0.84) 10.26 (1.01) 4.12 (0.84) 1.78 (0.83) 1.59 (0.20) 

28.9 18.95 (0.83) 0.01 (0.02) 6.00 (0.65) 0.78 (1.36) 0.00 (0.00) 1.21 (0.51) 
60 37.07 (1.73) 93.09 (21.59) 9.30 (1.90) 2.69 (2.19) 0.95 (0.72) 5.00 (1.42) 

120 5 5.2 170.90 (10.47) 0.08 (0.13) 45.11 (3.88) 11.23 (1.33) 14.37 (1.85) 14.59 (0.82) 
18.3 132.05 (16.75) 5.71 (9.89) 34.35 (4.61) 7.84 (0.59) 5.63 (3.28) 4.49 (1.84) 

60 121.72 (15.01) 0.00 (0.00)  23.74 (4.32) 11.39 (2.22) 2.49 (1.73) 11.09 (4.31) 
20 7.2 31.68 (2.26) 8.39 (2.35) 8.75 (0.25) 3.54 (0.34) 1.61 (0.97) 0.86 (0.53) 

28.9 17.10 (1.36) 0.00 (0.00) 4.87 (1.00) 3.78 (2.19) 0.00 (0.00) 1.12 (0.61) 
60 37.61 (3.55) 111.28 (17.20) 9.82 (1.67) 2.51 (2.45) 0.92 (0.80) 4.99 (1.94) 
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B.2 NAOH LOADING IN PRETREATMENT STUDY 
 
Table B.2.  Saccharide concentrations produced from enzymatic hydrolysis of PCS treated at various NaOH ladings.  
Hydrolysis was performed at 5% (w/w) solids and [E] = 5.2 FPU/g solids for 72 hr at 50°C. 
Pretreatment 

Time (hr) 
NaOH Loading 
(g/100 g PCS) 

Saccharide Concentration (mg X/g DM) 
Glucose Cellobiose Xylose Arabinose Mannose Galactose 

2 
4 170.90 (±10.47) 0.08 (±0.13) 45.11 (±3.88) 11.23 (±1.33) 14.37 (±1.85) 14.59 (±0.82) 

10 134.35 (±4.35) 0.14 (±0.02) 55.10 (±2.41) 0.51 (±0.89) 3.33 (±0.89) 3.28 (±0.40) 
20 89.35 (±46.00) 1.50 (±1.28) 27.49 (±19.29) 0.00 (±0.00) 3.29 (±1.66)  0.36 (±0.02) 

24 
4 84.01 (±2.27) 0.00 (±0.00) 23.18 (±4.90) 5.48 (±1.02) 2.41 (±0.20) 3.02 (±1.37) 

10 229.71 (±18.36) 0.63 (±0.32) 112.40 (±11.68) 13.84 (±2.80) 5.48 (±1.32) 3.69 (±2.48) 
20 264.59 (±18.89) 2.14 (±0.54) 88.36 (±7.92) 9.63 (±1.02) 4.46 (±1.22) 2.57 (±2.46) 

 
 
 
Table B.3.  Saccharide concentrations produced from enzymatic hydrolysis of PCS treated at various NaOH ladings.  
Hydrolysis was performed at 20% (w/w) solids and [E] = 5.2 FPU/g solids for 72 hr at 50°C. 
Pretreatment 

Time (hr) 
NaOH Loading 
(g/100 g PCS) 

Saccharide Concentration (mg X/g DM) 
Glucose Cellobiose Xylose Arabinose Mannose Galactose 

2 
4 29.08 (±2.05) 7.70 (±2.16) 8.04 (±0.23) 3.25 (±0.32) 1.48 (±0.89) 0.79 (±0.49) 
10 21.59 (±7.61) 1.66 (±1.63) 6.77 (±2.10) 0.00 (±0.00) 0.42 (±0.25) 0.45 (±0.14) 
20 1.62 (±0.34) 0.72 (±0.21) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.03 (±0.04) 

24 
4 18.73 (±8.30) 0.05 (±0.09) 6.38 (±3.38) 1.43 (±0.80) 0.16 (±0.28) 0.50 (±0.38) 
10 32.93 (±6.03) 0.00 (±0.00) 13.96 (±2.58) 2.52 (±0.37) 0.00 (±0.00) 0.53 (±0.46) 
20 0.59 (±0.06) 0.64 (±0.13) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 
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B.3 HYDROLYZATE FLUSHING AND SUBSTRATE REUSE STUDY 
 
 
Table B.4.  Glucose concentrations obtained from flushing the hydrolyzate and reusing the substrate. 
   Glucose Concentration (g/L) 
Enzyme Supplementation Post-Pretreatment Processing Hydrolysis Treatment Cycle 1 Cycle 2 Cycle 3 Total 

No 

Washed 
Batch 0.00 (--) 0.00 (--) 57.86 (3.60) 57.86 (3.60) 

Flushed 47.11 (1.46) 32.28 (2.75) 18.15 (0.56) 97.54 (1.85) 

Unwashed 
Batch 0.00 (--) 0.00 (--) 46.91 (2.88) 46.91 (2.88) 

Flushed 36.95 (1.66) 22.75 (0.72) 13.62 (0.23) 73.31 (2.61) 

Yes 

Washed 
Batch 0.00 (--) 0.00 (--) 55.00 (0.75) 55.00 (0.75) 

Flushed 48.49 (1.56) 30.37 (0.37) 18.30 (0.59) 97.17 (2.52) 

Unwashed 
Batch 0.00 (--) 0.00 (--) 49.95 (0.48) 49.95 (0.48) 

Flushed 47.08 (0.64) 31.76 (0.50) 18.64 (0.60) 97.48 (0.55) 

No 

Washed 
Batch 0.00 (--) 0.00 (--) 59.14(3.87) 59.14 (3.87) 

Flushed 54.69 (2.88) 37.18 (1.24) 21.59 (0.94) 113.46 (5.06) 

Unwashed 
Batch 0.00 (--) 0.00 (--) 41.48 (0.65) 41.48 (0.65) 

Flushed 41.06 (0.08) 26.81 (0.32) 16.99 (0.08) 84.86 (0.16) 

Yes 

Washed 
Batch 0.00 (--) 0.00 (--) 47.85 (0.01) 47.85 (0.01) 

Flushed 43.84 (2.17) 37.29 (0.83) 22.41 (1.58) 103.54 (2.92) 

Unwashed 
Batch 0.00 (--) 0.00 (--) 43.23 (2.63) 43.23 (2.63) 

Flushed 41.95 (0.99) 40.49 (4.05) 21.60 (0.12) 104.04 (4.92) 
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Table B.5.  Cellulose conversion achieved from flushing the hydrolyzate and reusing the substrate. 
   Cellulose Conversion (%) 
Enzyme Supplementation Post-Pretreatment Processing Hydrolysis Treatment Cycle 1 Cycle 2 Cycle 3 Total 

No 

Washed 
Batch 0.0 (--) 0.0 (--) 50.2 (3.1) 50.2 (3.1) 

Flushed 40.9 (1.3) 28.0 (2.4) 15.8 (0.5) 84.7 (1.6) 

Unwashed 
Batch 0.0 (--) 0.0 (--) 46.9 (2.9) 46.9 (2.9) 

Flushed 36.9 (1.7) 22.7 (0.7) 13.6 (0.2) 73.2 (2.6) 

Yes 

Washed 
Batch 0.0 (--) 0.0 (--) 47.7 (0.7) 47.7 (0.7) 

Flushed 42.1 (1.4) 26.4 (0.3) 15.9 (0.5) 84.3 (2.2) 

Unwashed 
Batch 0.0 (--) 0.0 (--) 43.4 (0.4) 43.4 (0.4) 

Flushed 40.9 (0.6) 27.6 (0.4) 16.2 (0.5) 84.6 (0.5) 

 No 

Washed 
Batch 0.0 (--) 0.0 (--) 51.3 (3.4) 51.3 (3.4) 

Flushed 47.5 (2.5) 32.3 (1.1) 18.7 (0.8) 98.5 (4.4) 

Unwashed 
Batch 0.0 (--) 0.0 (--) 41.4 (0.7) 41.4 (0.7) 

Flushed 41.0 (0.1) 26.8 (0.3) 17.0 (0.1) 84.8 (0.2) 

Yes 

Washed 
Batch 0.0 (--) 0.0 (--) 41.5 (0.0) 41.5 (0.0) 

Flushed 38.1 (1.9) 32.4 (0.7) 19.5 (1.4) 89.9 (2.5) 

Unwashed 
Batch 0.0 (--) 0.0 (--) 37.5 (2.3) 37.5 (2.3) 

Flushed 36.4 (0.9) 35.1 (3.5) 18.8 (0.1) 90.3 (4.3) 
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APPENDIX C:  MATLAB CODE 
 
MATLAB Code for Traditional and Modified Michaelis-Menten Models 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

clear all 
close all 
clc 
  
global S0 
global E0 
  
% Data in D is time (hr) and product (g G/L) for  
% E = 15, 30, 45, and 60 FPU/g solids 
D = [0  0.000   0.000   0.000   0.000; 
0.5 0.468   0.556   0.674   5.142; 
1   1.201   1.175   1.281   6.794; 
2   1.440   1.945   1.960   7.320; 
4   1.888   2.345   2.209   7.999; 
6   2.007   2.401   2.315   7.310; 
24  3.084   3.304   3.607   9.383; 
48  3.138   4.036   3.801   6.325; 
72  3.384   4.277   3.358   5.869; 
96  3.458   4.170   6.029   5.509; 
0   0.000   0.000   0.000   0.000; 
0.5 1.300   2.210   1.877   0.593; 
1   2.656   5.474   2.873   2.905; 
2   3.715   6.608   3.950   3.136; 
4   5.827   8.278   5.231   3.253; 
6   6.156   10.287  5.463   3.040; 
24  7.499   4.632   5.993   3.345; 
48  10.894  6.140   6.358   3.035; 
72  9.665   6.504   7.636   2.514; 
96  10.238  7.190   7.218   3.057; 
0   0.000   0.000   0.000   0.000; 
0.5 3.107   2.533   4.736   7.112; 
1   5.399   3.812   6.946   9.469; 
2   8.380   7.816   8.635   11.985; 
4   10.529  11.222  9.360   13.626; 
6   11.676  11.995  -2.812  12.820; 
24  16.876  16.699  13.864  14.149; 
48  18.319  12.439  14.786  15.281; 
72  19.918  14.004  14.085  15.777; 
96  20.862  14.178  14.251  15.367; 
0   0.000   0.000   0.000   0.000; 
0.5 3.672   4.961   4.511   4.624; 
1   6.439   7.577   8.947   10.016; 
2   9.305   10.448  11.551  14.718; 
4   11.535  13.271  14.288  20.018; 
6   14.551  15.215  15.289  21.172; 
24  17.663  17.651  19.526  25.897; 
48  19.960  19.130  22.996  31.798; 
72  21.560  20.203  24.794  23.337; 
96  22.897  21.421  25.708  37.246; 
0   0.000   0.000   0.000   0.000; 
0.5 5.428   8.444   4.706   4.432; 
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1   6.496   14.407  7.142   5.761; 
2   10.054  17.509  11.947  9.113; 
4   11.846  20.920  15.945  13.800; 
6   12.591  20.477  19.118  13.441; 
24  18.571  24.545  21.701  15.813; 
48  15.635  26.703  22.798  17.289; 
72  19.265  24.287  22.490  17.107; 
96  16.603  22.727  20.526  18.662]; 
  
% Data in dPinf is delta P infinity (g G/L) 
dPinf=[0    3.3 3.9 4.2 6.8; 
0.5 3.3 3.9 4.2 6.8; 
1   3.3 3.9 4.2 6.8; 
2   3.3 3.9 4.2 6.8; 
4   3.3 3.9 4.2 6.8; 
6   3.3 3.9 4.2 6.8; 
24  3.3 3.9 4.2 6.8; 
48  3.3 3.9 4.2 6.8; 
72  3.3 3.9 4.2 6.8; 
96  3.3 3.9 4.2 6.8; 
0   9.6 6.1 6.8 3.0; 
0.5 9.6 6.1 6.8 3.0; 
1   9.6 6.1 6.8 3.0; 
2   9.6 6.1 6.8 3.0; 
4   9.6 6.1 6.8 3.0; 
6   9.6 6.1 6.8 3.0; 
24  9.6 6.1 6.8 3.0; 
48  9.6 6.1 6.8 3.0; 
72  9.6 6.1 6.8 3.0; 
96  9.6 6.1 6.8 3.0; 
0   19.0    14.3    14.2    15.1; 
0.5 19.0    14.3    14.2    15.1; 
1   19.0    14.3    14.2    15.1; 
2   19.0    14.3    14.2    15.1; 
4   19.0    14.3    14.2    15.1; 
6   19.0    14.3    14.2    15.1; 
24  19.0    14.3    14.2    15.1; 
48  19.0    14.3    14.2    15.1; 
72  19.0    14.3    14.2    15.1; 
96  19.0    14.3    14.2    15.1; 
0   20.5    19.6    23.3    29.6; 
0.5 20.5    19.6    23.3    29.6; 
1   20.5    19.6    23.3    29.6; 
2   20.5    19.6    23.3    29.6; 
4   20.5    19.6    23.3    29.6; 
6   20.5    19.6    23.3    29.6; 
24  20.5    19.6    23.3    29.6; 
48  20.5    19.6    23.3    29.6; 
72  20.5    19.6    23.3    29.6; 
96  20.5    19.6    23.3    29.6; 
0   17.5    24.6    21.9    17.2; 
0.5 17.5    24.6    21.9    17.2; 
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1   17.5    24.6    21.9    17.2; 
2   17.5    24.6    21.9    17.2; 
4   17.5    24.6    21.9    17.2; 
6   17.5    24.6    21.9    17.2; 
24  17.5    24.6    21.9    17.2; 
48  17.5    24.6    21.9    17.2; 
72  17.5    24.6    21.9    17.2; 
96  17.5    24.6    21.9    17.2]; 
  
% Determine the number of rows D(1) and columns D(2) that are in the 
data 
n=size(D); 
  
% Solve the integrated MM equation for the combined data for the  
% given enzyme loading, which returns a value for Ka and Vm 
  
% TRADITIONAL MICHAELIS-MENTEN 
  
% Define variables 
for i=1:n(:,2)-1; 
t=D(:,1); % time (hr) 
Pt=D(:,i+1); % product (g G/L) 
S0=dPinf(:,i+1); % initial substrate loading (or delta P inf) (g G/L) 
E0=[15 30 45 60]; % inital enzyme loading (FPU/g solids) 
E0=E0(:,i); 
P0=0; % initial product concentration (g G/L) 
Kaub=[20.5 24.6 23.3 29.6];  
 % upper bounds set for Ka based on max dPinf 
Kaub=Kaub(:,i); 
  
% Set initial guesses for parameters 
Ka=10; 
Vm=10; 
  
% Pass information to function 
xdata=t; 
ydata=Pt; 
x0=[Ka Vm]'; 
F=MMintegrated(x0, xdata); 
  
% Use least squares estimates to find "best fit" for Ka and Vm 
lb=[0 0]; % lower bounds on Ka and Vm fitting 
ub=[Kaub inf]; % upper bounds on Ka and Vm fitting 
options=optimset('MaxIter', 10000, 'TolFun', 1e-12, 'TolX', 1e-12,... 
    'MaxFunEvals', 10000); 
[x(:,i), resnorm, 
residual,exitflag,output,lambda,jacobian]=lsqcurvefit... 
    (@(x0,xdata) MMintegrated(x0,xdata),x0,xdata,ydata,lb,ub,options) 
  
% Use new parameters to predict P 
H=MMintegrated(x(:,i),xdata); 
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% Calculate F statistic 
Hones=[ones(size(H)) H]; 
b1(:,i)=regress(Pt,Hones) 
  
n=length(Pt); 
xbar1=mean(Hones(:,2)); % mean of predicted product values 
yhat1=(mean(Pt)+b1(2).*(Hones(:,2)-xbar1));  
    % calculated yhat2 (residual) for S-squared equation 
S=(sum((Pt-yhat1).^2))/(n-2); % standard error 
fstat(:,i)=((n-2)*(n*b1(1)^2+2*n*xbar1*b1(1)*(b1(2)-1)... 
    +sum(Hones(:,2).^2*(b1(2)-1)^2)))/(2*n*S^2) % F-statistic 
  
% Calculate R-squared of predicted vs. observed 
CT=(sum(Pt)^2)/n; 
SST=(Pt'*Pt)-CT; % sums of squares of observed 
R2(:,i)=1-(resnorm/SST) 
  
% Calculate 95% confidence intervals for parameters 
ci=nlparci(x(:,i),residual,'jacobian',jacobian) 
  
% Plot predicted vs. observed values 
figure 
plot(H,Pt,'o') 
xlabel('Predicted glucose (g G/L)') 
ylabel('Observed glucose (g G/L)') 
axis([0 25 0 25]) 
  
% Plot hydrolysis progress curves with predicted and observed values 
figure 
plot(xdata(1:10), H(1:10),'b-', 
xdata(1:10),Pt(1:10),'b*',xdata(11:20),... 
    H(11:20),'c-', xdata(11:20),Pt(11:20),'co',... 
    xdata(21:30), H(21:30),'g-', xdata(21:30),Pt(21:30),'gd',... 
    xdata(31:40), H(31:40),'m-', xdata(31:40),Pt(31:40),'m+',... 
    xdata(41:50), H(41:50),'k-', xdata(41:50),Pt(41:50),'ks') 
xlabel('Time (hr)') 
ylabel('Glucose (g G/L)') 
end 
  
% Determine the number of rows D(1) and columns D(2) that are in the 
% data 
n=size(D); 
  
% INSOLUBLE SOLIDS (HIGH SOLIDS) MICHAELIS-MENTEN 
  
% Define variables 
for j=1:n(:,2)-1; 
t=D(:,1); % time (hr) 
Pt=D(:,j+1); % product (g G/L) 
S0=dPinf(:,j+1); % initial substrate loading (or delta P inf) (g G/L) 
E0=[15 30 45 60]; % inital enzyme loading (FPU/g solids) 
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E0=E0(:,j); 
P0=0; % initial product concentration (g G/L) 
Kaub=[20.5 24.6 23.3 29.6];  
 % upper bounds set for Ka based on max dPinf 
Kaub=Kaub(:,j); 
  
% Set initial guesses for parameters 
Ka=10; 
Vm=10; 
  
% Pass information to function 
xdata=t; 
ydata=Pt; 
x0=[Ka Vm]'; 
A=MMintegrated_E(x0, xdata); 
  
% Use least squares estimates to find "best fit" for Ka and Vm 
lb=[0 0]; % lower bounds on Ka and Vm fitting 
ub=[Kaub inf]; % upper bounds on Ka and Vm fitting 
options=optimset('MaxIter', 10000, 'TolFun', 1e-12, 'TolX', 1e-12,... 
    'MaxFunEvals', 10000); 
[x2(:,j), resnorm, 
residual,exitflag,output,lambda,jacobian]=lsqcurvefit... 
    (@MMintegrated_E,x0,xdata,ydata,lb,ub, options) 
  
k2(:,j)=x2(2)./S0; % rate constant, k2 
  
% Use new parameters to predict P 
C=MMintegrated_E(x2(:,j),xdata); 
  
% Calculate F statistic 
Cones=[ones(size(C)) C]; 
b2(:,j)=regress(Pt,Cones) 
  
n=length(Pt); 
xbar2=mean(Cones(:,2)); % mean of predicted product values 
yhat2=(mean(Pt)+b2(2).*(Cones(:,2)-xbar2));  
    % calculated yhat2 (residual) for S-squared equation 
S=(sum((Pt-yhat2).^2))/(n-2); % standard error 
fstat2(:,j)=((n-2)*(n*b2(1)^2+2*n*xbar2*b2(1)*(b2(2)-1)... 
    +sum((Cones(:,2).^2)*(b2(2)-1)^2)))/(2*n*S^2) % F-statistic 
  
% Calculate R-squared of predicted vs. observed 
CT=(sum(Pt)^2)/n; 
SST=(Pt'*Pt)-CT; % sums of squares of observed 
Rsq(:,j)=1-(resnorm/SST) 
 
% Calculate 95% confidence intervals for parameters 
ci=nlparci(x2(:,j),residual,'jacobian',jacobian) 
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function F = MMintegrated(x0, xdata) 
  
% MMintegrated solves the integrated Michaelis-Menten equation for Pt 
% (equation 8 Goudar et al, Buichimica et Biophysica Acta 1429(1999) 
% 377-383) 
  
global S0 
  
P0=0; % initial product concentration (g G/L) 
omega=(S0./x0(1)).*exp((S0-x0(2).*xdata)./x0(1));  
z=lambertw(omega); 
F=P0+S0-x0(1).*z; % product concentration at time, t (g G/L) 
  
end 
 

% Plot predicted vs. observed values 
figure 
plot(C,Pt,'o') 
xlabel('Predicted glucose (g G/L)') 
ylabel('Observed glucose (g G/L)') 
axis([0 30 0 30]) 
 
% Plot hydrolysis progress curves with predicted and observed values 
figure 
plot(xdata(1:10), C(1:10),'b-', xdata(1:10),Pt(1:10),'b*',... 
    xdata(11:20), C(11:20),'c-', xdata(11:20),Pt(11:20),'co',... 
    xdata(21:30), C(21:30),'g-', xdata(21:30),Pt(21:30),'gd',... 
    xdata(31:40), C(31:40),'m-', xdata(31:40),Pt(31:40),'m+',... 
    xdata(41:50), C(41:50),'k-', xdata(41:50),Pt(41:50),'ks') 
xlabel('Time (hr)') 
ylabel('Glucose (g G/L)') 
end 
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function A = MMintegrated_E(x0, xdata) 
  
% MMintegrated_E solves the integrated Michaelis-Menten equation for  
% Pt (equation 8 Goudar et al, Buichimica et Biophysica Acta  
% 1429(1999) 377-383) 
  
global S0 
global E0 
  
P0=0; % initial product concentration (g G/L) 
  
A=((xdata.*x0(2).*S0)./(x0(1)+E0));  
    % product concentration at time, t (g G/L) 
  
end  
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MATLAB Code for Model with Fractal Parameter 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

clear all 
close all 
clc 
  
global S0 
global E0 
  
% Data in D is time (hr) and product (g G/L) for  
% E = 15, 30, 45, and 60 FPU/g solids 
D = [0  0.000   0.000   0.000   0.000; 
0.5 0.468   0.556   0.674   5.142; 
1   1.201   1.175   1.281   6.794; 
2   1.440   1.945   1.960   7.320; 
4   1.888   2.345   2.209   7.999; 
6   2.007   2.401   2.315   7.310; 
24  3.084   3.304   3.607   9.383; 
48  3.138   4.036   3.801   6.325; 
72  3.384   4.277   3.358   5.869; 
96  3.458   4.170   6.029   5.509; 
0   0.000   0.000   0.000   0.000; 
0.5 1.300   2.210   1.877   0.593; 
1   2.656   5.474   2.873   2.905; 
2   3.715   6.608   3.950   3.136; 
4   5.827   8.278   5.231   3.253; 
6   6.156   10.287  5.463   3.040; 
24  7.499   4.632   5.993   3.345; 
48  10.894  6.140   6.358   3.035; 
72  9.665   6.504   7.636   2.514; 
96  10.238  7.190   7.218   3.057; 
0   0.000   0.000   0.000   0.000; 
0.5 3.107   2.533   4.736   7.112; 
1   5.399   3.812   6.946   9.469; 
2   8.380   7.816   8.635   11.985; 
4   10.529  11.222  9.360   13.626; 
6   11.676  11.995  -2.812  12.820; 
24  16.876  16.699  13.864  14.149; 
48  18.319  12.439  14.786  15.281; 
72  19.918  14.004  14.085  15.777; 
96  20.862  14.178  14.251  15.367; 
0   0.000   0.000   0.000   0.000; 
0.5 3.672   4.961   4.511   4.624; 
1   6.439   7.577   8.947   10.016; 
2   9.305   10.448  11.551  14.718; 
4   11.535  13.271  14.288  20.018; 
6   14.551  15.215  15.289  21.172; 
24  17.663  17.651  19.526  25.897; 
48  19.960  19.130  22.996  31.798; 
72  21.560  20.203  24.794  23.337; 
96  22.897  21.421  25.708  37.246; 
0   0.000   0.000   0.000   0.000; 
0.5 5.428   8.444   4.706   4.432; 
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1   6.496   14.407  7.142   5.761; 
2   10.054  17.509  11.947  9.113; 
4   11.846  20.920  15.945  13.800; 
6   12.591  20.477  19.118  13.441; 
24  18.571  24.545  21.701  15.813; 
48  15.635  26.703  22.798  17.289; 
72  19.265  24.287  22.490  17.107; 
96  16.603  22.727  20.526  18.662]; 
  
% Data in dPinf is delta P infinity (g G/L) 
dPinf=[0    3.3 3.9 4.2 6.8; 
0.5 3.3 3.9 4.2 6.8; 
1   3.3 3.9 4.2 6.8; 
2   3.3 3.9 4.2 6.8; 
4   3.3 3.9 4.2 6.8; 
6   3.3 3.9 4.2 6.8; 
24  3.3 3.9 4.2 6.8; 
48  3.3 3.9 4.2 6.8; 
72  3.3 3.9 4.2 6.8; 
96  3.3 3.9 4.2 6.8; 
0   9.6 6.1 6.8 3.0; 
0.5 9.6 6.1 6.8 3.0; 
1   9.6 6.1 6.8 3.0; 
2   9.6 6.1 6.8 3.0; 
4   9.6 6.1 6.8 3.0; 
6   9.6 6.1 6.8 3.0; 
24  9.6 6.1 6.8 3.0; 
48  9.6 6.1 6.8 3.0; 
72  9.6 6.1 6.8 3.0; 
96  9.6 6.1 6.8 3.0; 
0   19.0    14.3    14.2    15.1; 
0.5 19.0    14.3    14.2    15.1; 
1   19.0    14.3    14.2    15.1; 
2   19.0    14.3    14.2    15.1; 
4   19.0    14.3    14.2    15.1; 
6   19.0    14.3    14.2    15.1; 
24  19.0    14.3    14.2    15.1; 
48  19.0    14.3    14.2    15.1; 
72  19.0    14.3    14.2    15.1; 
96  19.0    14.3    14.2    15.1; 
0   20.5    19.6    23.3    29.6; 
0.5 20.5    19.6    23.3    29.6; 
1   20.5    19.6    23.3    29.6; 
2   20.5    19.6    23.3    29.6; 
4   20.5    19.6    23.3    29.6; 
6   20.5    19.6    23.3    29.6; 
24  20.5    19.6    23.3    29.6; 
48  20.5    19.6    23.3    29.6; 
72  20.5    19.6    23.3    29.6; 
96  20.5    19.6    23.3    29.6; 
0   17.5    24.6    21.9    17.2; 
0.5 17.5    24.6    21.9    17.2; 
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1   17.5    24.6    21.9    17.2; 
2   17.5    24.6    21.9    17.2; 
4   17.5    24.6    21.9    17.2; 
6   17.5    24.6    21.9    17.2; 
24  17.5    24.6    21.9    17.2; 
48  17.5    24.6    21.9    17.2; 
72  17.5    24.6    21.9    17.2; 
96  17.5    24.6    21.9    17.2]; 
  
  
% Determine the number of rows D(1) and columns D(2) that are in the 
data 
n=size(D); 
  
% Solve the integrated MM equation for the combined data for the 
given 
% enzyme loading, which returns a value for Ka, Vm and the fractal 
% component, f 
  
% TRADITIONAL MICHAELIS-MENTEN 
  
% Define variables 
for i=1:n(:,2)-1; 
t=D(:,1); % time (hr) 
Pt=D(:,i+1); % product (g G/L) 
S0=dPinf(:,i+1); % initial substrate loading (or delta P inf) (g G/L) 
E0=[15 30 45 60]; % inital enzyme loading (FPU/g solids) 
E0=E0(:,i); 
P0=0; % initial product concentration (g G/L) 
Kaub=[20.5 24.6 23.3 29.6]; 
Kaub=Kaub(:,i); 
  
% Set initial guesses for parameters 
Ka=10; 
Vm=10; 
f=0.5; 
  
% Pass information to function 
xdata=t; 
ydata=Pt; 
x0=[Ka Vm f]'; 
F=MMintegrated_f(x0, xdata); 
  
% Use least squares estimates to find "best fit" for Ka and Vm 
lb=[0 0 0]; % lower bounds on Ka and Vm fitting 
ub=[Kaub inf 1]; % upper bounds on Ka and Vm fitting 
options=optimset('MaxIter', 10000, 'TolFun', 1e-12, 'TolX', 1e-12,... 
    'MaxFunEvals', 10000); 
[x(:,i), resnorm, 
residual,exitflag,output,lambda,jacobian]=lsqcurvefit... 
    (@(x0,xdata) 
MMintegrated_f(x0,xdata),x0,xdata,ydata,lb,ub,options) 
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% Use new parameters to predict P 
H=MMintegrated_f(x(:,i),xdata); 
  
% Calculate F statistic 
Hones=[ones(size(H)) H]; 
b1(:,i)=regress(Pt,Hones) 
  
n=length(Pt); 
xbar1=mean(Hones(:,2)); % mean of predicted product values 
yhat1=(mean(Pt)+b1(2).*(Hones(:,2)-xbar1));  
    % calculated yhat2 (residual) for S-squared equation 
S=(sum((Pt-yhat1).^2))/(n-2); % standard error 
fstat(:,i)=((n-2)*(n*b1(1)^2+2*n*xbar1*b1(1)*(b1(2)-1)... 
    +sum(Hones(:,2).^2*(b1(2)-1)^2)))/(2*n*S^2) % F-statistic 
  
% Calculate R-squared of predicted vs. observed 
CT=(sum(Pt)^2)/n; 
SST=(Pt'*Pt)-CT; % sums of squares of observed 
R2(:,i)=1-(resnorm/SST) 
  
% Calculate 95% confidence intervals for parameters 
ci=nlparci(x(:,i),residual,'jacobian',jacobian) 
  
% Plot predicted vs. observed values 
figure 
plot(H,Pt,'o') 
xlabel('Predicted glucose (g G/L)') 
ylabel('Observed glucose (g G/L)') 
axis([0 25 0 25]) 
  
% Plot hydrolysis progress curves with predicted and observed values 
figure 
plot(xdata(1:10), H(1:10),'b-', 
xdata(1:10),Pt(1:10),'b*',xdata(11:20),... 
    H(11:20),'c-', xdata(11:20),Pt(11:20),'co',xdata(21:30),... 
    H(21:30),'g-', xdata(21:30),Pt(21:30),'gd',xdata(31:40),... 
    H(31:40),'m-', xdata(31:40),Pt(31:40),'m+',xdata(41:50),... 
    H(41:50),'k-', xdata(41:50),Pt(41:50),'ks') 
xlabel('Time (hr)') 
ylabel('Glucose (g G/L)') 
end 
  
% Determine the number of rows D(1) and columns D(2) that are in the 
data 
n=size(D); 
  
% INSOLUBLE SOLIDS (HIGH SOLIDS) MICHAELIS-MENTEN 
  
% Define variables 
for j=1:n(:,2)-1; 
t=D(:,1); %time (hr) 
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Pt=D(:,j+1); %product (g G/L) 
S0=dPinf(:,j+1); %initial substrate loading (or delta P inf) (g G/L) 
E0=[15 30 45 60]; %inital enzyme loading (FPU/g solids) 
E0=E0(:,j); 
P0=0; % initial product concentration (g G/L) 
Kaub=[20.5 24.6 23.3 29.6]; 
Kaub=Kaub(:,j); 
 
% Set initial guesses for parameters 
Ka=10; 
Vm=10; 
f=0.5; 
  
% Pass information to function 
xdata=t; 
ydata=Pt; 
x0=[Ka Vm f]'; 
A=MMintegrated_E_f(x0, xdata); 
  
% Use least squares estimates to find "best fit" for Ka, Vm and f 
lb=[0 0 0]; % lower bounds on Ka and Vm fitting 
ub=[Kaub inf 1]; % upper bounds on Ka and Vm fitting 
options=optimset('MaxIter', 10000, 'TolFun', 1e-13, 'TolX', 1e-13,... 
    'MaxFunEvals', 10000); 
[x2(:,j), resnorm, 
residual,exitflag,output,lambda,jacobian]=lsqcurvefit... 
    (@MMintegrated_E_f,x0,xdata,ydata,lb,ub, options) 
  
k2(:,j)=x2(2)./S0; % rate constant, k2 
  
% Use new parameters to predict P 
C=MMintegrated_E_f(x2(:,j),xdata); 
  
%Calculate F statistic 
Cones=[ones(size(C)) C]; 
b2(:,j)=regress(Pt,Cones) 
 
n=length(Pt); 
xbar2=mean(Cones(:,2)); % mean of predicted product values 
yhat2=(mean(Pt)+b2(2).*(Cones(:,2)-xbar2));  
    % calculated yhat2 (residual) for S-squared equation 
S=(sum((Pt-yhat2).^2))/(n-2); % standard error 
fstat2(:,j)=((n-2)*(n*b2(1)^2+2*n*xbar2*b2(1)*(b2(2)-1)... 
    +(sum((Cones(:,2).^2)*(b2(2)-1)^2)))/(2*n*S^2)) % F-statistic 
 
%Calculate R-squared of predicted vs. observed 
CT=(sum(Pt)^2)/n; 
SST=(Pt'*Pt)-CT; % sums of squares of observed 
Rsq(:,j)=1-(resnorm/SST) 
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function F = MMintegrated_f(x0, xdata) 
  
% MMintegrated_f solves the integrated Michaelis-Menten equation with  
% a fractal component for Pt (equation 8 Goudar et al, Buichimica et 
% Biophysica Acta 1429(1999) 377-383) 
  
global S0 
  
P0=0; % inital product concentration (g G/L) 
Vmtf=(x0(2).*xdata.^(1-x0(3)))./(1-x0(3));  
    % incorporation of fractal component 
omega=(S0./x0(1)).*exp((S0-Vmtf)./x0(1)); 
z=lambertw(omega); 
F= P0+S0-x0(1).*z; % product concentration at time, t (g G/L) 
  
end  
 

% Calculate 95% confidence intervals for parameters 
ci=nlparci(x2(:,j),residual,'jacobian',jacobian) 
  
% Plot predicted vs. observed values 
figure 
plot(C,Pt,'o') 
xlabel('Predicted glucose (g G/L)') 
ylabel('Observed glucose (g G/L)') 
axis([0 30 0 30]) 
  
% Plot hydrolysis progress curves with predicted and observed values 
figure 
% subplot(2,2,j) 
plot(xdata(1:10), C(1:10),'b-', 
xdata(1:10),Pt(1:10),'b*',xdata(11:20),... 
    C(11:20),'c-', xdata(11:20),Pt(11:20),'co',... 
    xdata(21:30), C(21:30),'g-', xdata(21:30),Pt(21:30),'gd',... 
    xdata(31:40), C(31:40),'m-', xdata(31:40),Pt(31:40),'m+',... 
    xdata(41:50), C(41:50),'k-', xdata(41:50),Pt(41:50),'ks') 
xlabel('Time (hr)') 
ylabel('Glucose (g G/L)') 
end 
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function A = MMintegrated_E_f(x0, xdata) 
  
% MMintegrated_E_f solves the integrated Michaelis-Menten equation  
% modified for insoluble solids with a fractal component for Pt  
% (equation 8 Goudar et al, Buichimica et Biophysica Acta 1429(1999) 
% 377-383) 
  
global S0 
global E0 
  
P0=0; % inital product concentration (g G/L) 
  
Vmtf=(x0(2).*xdata.^(1-x0(3)))./(1-x0(3)); 
    % incorporation of fractal component 
A=((Vmtf.*S0)./(x0(1)+E0)); % product concentration at time, t (g 
G/L) 
  
end  
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clear all 
close all 
clc 
  
global S0 
global E0 
  
% Data in D is time (hr) and product (g G/L) for  
% E = 15, 30, 45, and 60 FPU/g solids 
D = [0  0.000   0.000   0.000   0.000; 
0.5 0.468   0.556   0.674   5.142; 
1   1.201   1.175   1.281   6.794; 
2   1.440   1.945   1.960   7.320; 
4   1.888   2.345   2.209   7.999; 
6   2.007   2.401   2.315   7.310; 
24  3.084   3.304   3.607   9.383; 
48  3.138   4.036   3.801   6.325; 
72  3.384   4.277   3.358   5.869; 
96  3.458   4.170   6.029   5.509; 
0   0.000   0.000   0.000   0.000; 
0.5 1.300   2.210   1.877   0.593; 
1   2.656   5.474   2.873   2.905; 
2   3.715   6.608   3.950   3.136; 
4   5.827   8.278   5.231   3.253; 
6   6.156   10.287  5.463   3.040; 
24  7.499   4.632   5.993   3.345; 
48  10.894  6.140   6.358   3.035; 
72  9.665   6.504   7.636   2.514; 
96  10.238  7.190   7.218   3.057; 
0   0.000   0.000   0.000   0.000; 
0.5 3.107   2.533   4.736   7.112; 
1   5.399   3.812   6.946   9.469; 
2   8.380   7.816   8.635   11.985; 
4   10.529  11.222  9.360   13.626; 
6   11.676  11.995  -2.812  12.820; 
24  16.876  16.699  13.864  14.149; 
48  18.319  12.439  14.786  15.281; 
72  19.918  14.004  14.085  15.777; 
96  20.862  14.178  14.251  15.367; 
0   0.000   0.000   0.000   0.000; 
0.5 3.672   4.961   4.511   4.624; 
1   6.439   7.577   8.947   10.016; 
2   9.305   10.448  11.551  14.718; 
4   11.535  13.271  14.288  20.018; 
6   14.551  15.215  15.289  21.172; 
24  17.663  17.651  19.526  25.897; 
48  19.960  19.130  22.996  31.798; 
72  21.560  20.203  24.794  23.337; 
96  22.897  21.421  25.708  37.246; 
0   0.000   0.000   0.000   0.000; 
0.5 5.428   8.444   4.706   4.432; 
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1   6.496   14.407  7.142   5.761; 
2   10.054  17.509  11.947  9.113; 
4   11.846  20.920  15.945  13.800; 
6   12.591  20.477  19.118  13.441; 
24  18.571  24.545  21.701  15.813; 
48  15.635  26.703  22.798  17.289; 
72  19.265  24.287  22.490  17.107; 
96  16.603  22.727  20.526  18.662]; 
  
% Data in dPinf is delta P infinity (g G/L) 
dPinf=[0    3.3 3.9 4.2 6.8; 
0.5 3.3 3.9 4.2 6.8; 
1   3.3 3.9 4.2 6.8; 
2   3.3 3.9 4.2 6.8; 
4   3.3 3.9 4.2 6.8; 
6   3.3 3.9 4.2 6.8; 
24  3.3 3.9 4.2 6.8; 
48  3.3 3.9 4.2 6.8; 
72  3.3 3.9 4.2 6.8; 
96  3.3 3.9 4.2 6.8; 
0   9.6 6.1 6.8 3.0; 
0.5 9.6 6.1 6.8 3.0; 
1   9.6 6.1 6.8 3.0; 
2   9.6 6.1 6.8 3.0; 
4   9.6 6.1 6.8 3.0; 
6   9.6 6.1 6.8 3.0; 
24  9.6 6.1 6.8 3.0; 
48  9.6 6.1 6.8 3.0; 
72  9.6 6.1 6.8 3.0; 
96  9.6 6.1 6.8 3.0; 
0   19.0    14.3    14.2    15.1; 
0.5 19.0    14.3    14.2    15.1; 
1   19.0    14.3    14.2    15.1; 
2   19.0    14.3    14.2    15.1; 
4   19.0    14.3    14.2    15.1; 
6   19.0    14.3    14.2    15.1; 
24  19.0    14.3    14.2    15.1; 
48  19.0    14.3    14.2    15.1; 
72  19.0    14.3    14.2    15.1; 
96  19.0    14.3    14.2    15.1; 
0   20.5    19.6    23.3    29.6; 
0.5 20.5    19.6    23.3    29.6; 
1   20.5    19.6    23.3    29.6; 
2   20.5    19.6    23.3    29.6; 
4   20.5    19.6    23.3    29.6; 
6   20.5    19.6    23.3    29.6; 
24  20.5    19.6    23.3    29.6; 
48  20.5    19.6    23.3    29.6; 
72  20.5    19.6    23.3    29.6; 
96  20.5    19.6    23.3    29.6; 
0   17.5    24.6    21.9    17.2; 
0.5 17.5    24.6    21.9    17.2; 
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1   17.5    24.6    21.9    17.2; 
2   17.5    24.6    21.9    17.2; 
4   17.5    24.6    21.9    17.2; 
6   17.5    24.6    21.9    17.2; 
24  17.5    24.6    21.9    17.2; 
48  17.5    24.6    21.9    17.2; 
72  17.5    24.6    21.9    17.2; 
96  17.5    24.6    21.9    17.2]; 
  
% Determine the number of rows D(1) and columns D(2) that are in the 
data 
n=size(D); 
  
% Solve the integrated MM equation for the combined data for the 
given 
% enzyme loading, which returns a value for Ka, Vm and the jamming 
% component, J 
  
% TRADITIONAL MICHAELIS-MENTEN 
  
% Define variables 
for i=1:n(:,2)-1; 
t=D(:,1); % time (hr) 
Pt=D(:,i+1); % product (g G/L) 
S0=dPinf(:,i+1); % initial substrate loading (or delta P inf) (g G/L) 
E0=[15 30 45 60]; % inital enzyme loading (FPU/g solids) 
E0=E0(:,i); 
P0=0; % initial product concentration (g G/L) 
Kaub=[20.5 24.6 23.3 29.6]; 
Kaub=Kaub(:,i); 
  
%set initial guesses for parameters 
Ka=10; 
Vm=10; 
J=10; 
  
% Pass information to function 
xdata=t; 
ydata=Pt; 
x0=[Ka Vm J]'; 
F=MMintegrated_j(x0, xdata); 
 
% Use least squares estimates to find "best fit" for Ka, Vm and J 
lb=[0 0 0]; % lower bounds on Ka and Vm fitting 
ub=[Kaub inf inf]; % upper bounds on Ka and Vm fitting 
options=optimset('MaxIter', 10000, 'TolFun', 1e-12, 'TolX', 1e-12,... 
    'MaxFunEvals', 10000); 
[x(:,i), resnorm, 
residual,exitflag,output,lambda,jacobian]=lsqcurvefit... 
    (@(x0,xdata) 
MMintegrated_j(x0,xdata),x0,xdata,ydata,lb,ub,options) 
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% Use new parameters to predict P 
H=MMintegrated_j(x(:,i),xdata); 
 
% Calculate F statistic 
Hones=[ones(size(H)) H]; 
b1(:,i)=regress(Pt,Hones) 
  
n=length(Pt); 
xbar1=mean(Hones(:,2)); % mean of predicted product values 
yhat1=(mean(Pt)+b1(2).*(Hones(:,2)-xbar1));  
    % calculated yhat2 (residual) for S-squared equation 
S=(sum((Pt-yhat1).^2))/(n-2); % standard error 
fstat(:,i)=((n-2)*(n*b1(1)^2+2*n*xbar1*b1(1)*(b1(2)-1)... 
    +sum(Hones(:,2).^2*(b1(2)-1)^2)))/(2*n*S^2) % F-statistic 
  
% Calculate R-squared of predicted vs. observed 
CT=(sum(Pt)^2)/n; 
SST=(Pt'*Pt)-CT; %Sums of squares of observed 
R2(:,i)=1-(resnorm/SST) 
  
% Calculate 95% confidence intervals for parameters 
ci=nlparci(x(:,i),residual,'jacobian',jacobian) 
  
% Plot predicted vs. observed values 
figure 
plot(H,Pt,'o') 
xlabel('Predicted glucose (g G/L)') 
ylabel('Observed glucose (g G/L)') 
axis([0 25 0 25]) 
  
% Plot hydrolysis progress curves with predicted and observed values 
figure 
plot(xdata(1:10), H(1:10),'b-', 
xdata(1:10),Pt(1:10),'b*',xdata(11:20),... 
    H(11:20),'c-', xdata(11:20),Pt(11:20),'co',... 
    xdata(21:30), H(21:30),'g-', xdata(21:30),Pt(21:30),'gd',... 
    xdata(31:40), H(31:40),'m-', xdata(31:40),Pt(31:40),'m+',... 
    xdata(41:50), H(41:50),'k-', xdata(41:50),Pt(41:50),'ks') 
xlabel('Time (hr)') 
ylabel('Glucose (g G/L)') 
end 
 
 
% Determine the number of rows D(1) and columns D(2) that are in the 
data 
n=size(D); 
  
%INSOLUBLE SOLIDS (HIGH SOLIDS) MICHAELIS-MENTEN 
  
for j=1:n(:,2)-1; 
t=D(:,1); % time (hr) 
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Pt=D(:,j+1); % product (g G/L) 
S0=dPinf(:,j+1); % initial substrate loading (or delta P inf) (g G/L) 
E0=[15 30 45 60]; % inital enzyme loading (FPU/g solids) 
E0=E0(:,j); 
P0=0; % initial product concentration (g G/L) 
Kaub=[20.5 24.6 23.3 29.6]; 
Kaub=Kaub(:,j); 
  
% Set initial guesses for parameters 
Ka=10; 
Vm=10; 
J=10; 
  
% Pass information to function 
xdata=t; 
ydata=Pt; 
x0=[Ka Vm J]'; 
A=MMintegrated_E_j(x0, xdata); 
  
% Use least squares estimates to find "best fit" for Ka, Vm and J 
lb=[0 0 0]; % lower bounds on Ka and Vm fitting 
ub=[Kaub inf inf]; % upper bounds on Ka and Vm fitting 
options=optimset('MaxIter', 10000, 'TolFun', 1e-13, 'TolX', 1e-13,... 
    'MaxFunEvals', 10000); 
[x2(:,j), resnorm, 
residual,exitflag,output,lambda,jacobian]=lsqcurvefit... 
    (@MMintegrated_E_j,x0,xdata,ydata,lb,ub, options) 
  
k2(:,j)=x2(2)./S0; 
  
% Use new parameters to predict P 
C=MMintegrated_E_j(x2(:,j),xdata); 
  
% Calculate F statistic 
Cones=[ones(size(C)) C]; 
b2(:,j)=regress(Pt,Cones) 
  
n=length(Pt); 
xbar2=mean(Cones(:,2)); % mean of predicted product values 
yhat2=(mean(Pt)+b2(2).*(Cones(:,2)-xbar2));  
    % calculated yhat2 (residual) for S-squared equation 
S=(sum((Pt-yhat2).^2))/(n-2); % standard error 
fstat(:,j)=((n-2)*(n*b2(1)^2+2*n*xbar2*b2(1)*(b2(2)-1)... 
    +(sum((Cones(:,2).^2)*(b2(2)-1)^2)))/(2*n*S^2)) % F-statistic 
  
% Calculate R-squared of predicted vs. observed 
CT=(sum(Pt)^2)/n; 
SST=(Pt'*Pt)-CT; % sums of squares of observed 
R2(:,j)=1-(resnorm/SST) 
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function F = MMintegrated_j(x0, xdata) 
  
% MMintegrated_j solves the integrated Michaelis-Menten equation with  
% a jamming component for Pt (equation 8 Goudar et al, Buichimica et 
% Biophysica Acta 1429(1999) 377-383) 
  
global S0 
global E0 
  
P0=0; % initial product concentration (g G/L) 
  
Vmtj=(1-(E0./(x0(3).*S0))).*x0(2).*xdata;  
    % incorporation of jamming component 
omega=(S0./x0(1)).*exp((S0-Vmtj)./x0(1)); 
z=lambertw(omega); 
F= P0+S0-x0(1).*z; % product concentration at time, t (g G/L) 
  
end  
 
 
 

% Calculate 95% confidence intervals for parameters 
ci=nlparci(x2(:,j),residual,'jacobian',jacobian) 
 
% Plot predicted vs. observed values 
figure 
plot(C,Pt,'o') 
xlabel('Predicted glucose (g G/L)') 
ylabel('Observed glucose (g G/L)') 
axis([0 30 0 30]) 
  
% Plot hydrolysis progress curves with predicted and observed values 
figure 
plot(xdata(1:10), C(1:10),'b-', xdata(1:10),Pt(1:10),'b*',... 
    xdata(11:20), C(11:20),'c-', xdata(11:20),Pt(11:20),'co',... 
    xdata(21:30), C(21:30),'g-', xdata(21:30),Pt(21:30),'gd',... 
    xdata(31:40), C(31:40),'m-', xdata(31:40),Pt(31:40),'m+',... 
    xdata(41:50), C(41:50),'k-', xdata(41:50),Pt(41:50),'ks') 
xlabel('Time (hr)') 
ylabel('Glucose (g G/L)') 
end 
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function A = MMintegrated_E_j(x0, xdata) 
  
% MMintegrated_E_j solves the integrated Michaelis-Menten equation  
% modified for insoluble solids with a jamming component for Pt  
% (equation 8 Goudar et al, Buichimica et Biophysica Acta 1429(1999) 
% 377-383) 
  
global S0 
global E0 
  
P0=0; % initial product concentration (g G/L) 
  
Vmtj=(1-(E0./(x0(3).*S0))).*x0(2).*xdata; 
    % incorporation of jamming component 
A=((Vmtj.*S0)./(x0(1)+E0)); % product concentration at time, t (g 
G/L) 
  
end  
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MATLAB Code for Models with Fractal + Jamming Parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

clear all 
close all 
clc 
  
global S0 
global E0 
  
% Data in D is time (hr) and product (g G/L) for  
% E = 15, 30, 45, and 60 FPU/g solids 
D = [0  0.000   0.000   0.000   0.000; 
0.5 0.468   0.556   0.674   5.142; 
1   1.201   1.175   1.281   6.794; 
2   1.440   1.945   1.960   7.320; 
4   1.888   2.345   2.209   7.999; 
6   2.007   2.401   2.315   7.310; 
24  3.084   3.304   3.607   9.383; 
48  3.138   4.036   3.801   6.325; 
72  3.384   4.277   3.358   5.869; 
96  3.458   4.170   6.029   5.509; 
0   0.000   0.000   0.000   0.000; 
0.5 1.300   2.210   1.877   0.593; 
1   2.656   5.474   2.873   2.905; 
2   3.715   6.608   3.950   3.136; 
4   5.827   8.278   5.231   3.253; 
6   6.156   10.287  5.463   3.040; 
24  7.499   4.632   5.993   3.345; 
48  10.894  6.140   6.358   3.035; 
72  9.665   6.504   7.636   2.514; 
96  10.238  7.190   7.218   3.057; 
0   0.000   0.000   0.000   0.000; 
0.5 3.107   2.533   4.736   7.112; 
1   5.399   3.812   6.946   9.469; 
2   8.380   7.816   8.635   11.985; 
4   10.529  11.222  9.360   13.626; 
6   11.676  11.995  -2.812  12.820; 
24  16.876  16.699  13.864  14.149; 
48  18.319  12.439  14.786  15.281; 
72  19.918  14.004  14.085  15.777; 
96  20.862  14.178  14.251  15.367; 
0   0.000   0.000   0.000   0.000; 
0.5 3.672   4.961   4.511   4.624; 
1   6.439   7.577   8.947   10.016; 
2   9.305   10.448  11.551  14.718; 
4   11.535  13.271  14.288  20.018; 
6   14.551  15.215  15.289  21.172; 
24  17.663  17.651  19.526  25.897; 
48  19.960  19.130  22.996  31.798; 
72  21.560  20.203  24.794  23.337; 
96  22.897  21.421  25.708  37.246; 
0   0.000   0.000   0.000   0.000; 
0.5 5.428   8.444   4.706   4.432; 
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1   6.496   14.407  7.142   5.761; 
2   10.054  17.509  11.947  9.113; 
4   11.846  20.920  15.945  13.800; 
6   12.591  20.477  19.118  13.441; 
24  18.571  24.545  21.701  15.813; 
48  15.635  26.703  22.798  17.289; 
72  19.265  24.287  22.490  17.107; 
96  16.603  22.727  20.526  18.662]; 
  
% Data in dPinf is delta P infinity (g G/L) 
dPinf=[0    3.3 3.9 4.2 6.8; 
0.5 3.3 3.9 4.2 6.8; 
1   3.3 3.9 4.2 6.8; 
2   3.3 3.9 4.2 6.8; 
4   3.3 3.9 4.2 6.8; 
6   3.3 3.9 4.2 6.8; 
24  3.3 3.9 4.2 6.8; 
48  3.3 3.9 4.2 6.8; 
72  3.3 3.9 4.2 6.8; 
96  3.3 3.9 4.2 6.8; 
0   9.6 6.1 6.8 3.0; 
0.5 9.6 6.1 6.8 3.0; 
1   9.6 6.1 6.8 3.0; 
2   9.6 6.1 6.8 3.0; 
4   9.6 6.1 6.8 3.0; 
6   9.6 6.1 6.8 3.0; 
24  9.6 6.1 6.8 3.0; 
48  9.6 6.1 6.8 3.0; 
72  9.6 6.1 6.8 3.0; 
96  9.6 6.1 6.8 3.0; 
0   19.0    14.3    14.2    15.1; 
0.5 19.0    14.3    14.2    15.1; 
1   19.0    14.3    14.2    15.1; 
2   19.0    14.3    14.2    15.1; 
4   19.0    14.3    14.2    15.1; 
6   19.0    14.3    14.2    15.1; 
24  19.0    14.3    14.2    15.1; 
48  19.0    14.3    14.2    15.1; 
72  19.0    14.3    14.2    15.1; 
96  19.0    14.3    14.2    15.1; 
0   20.5    19.6    23.3    29.6; 
0.5 20.5    19.6    23.3    29.6; 
1   20.5    19.6    23.3    29.6; 
2   20.5    19.6    23.3    29.6; 
4   20.5    19.6    23.3    29.6; 
6   20.5    19.6    23.3    29.6; 
24  20.5    19.6    23.3    29.6; 
48  20.5    19.6    23.3    29.6; 
72  20.5    19.6    23.3    29.6; 
96  20.5    19.6    23.3    29.6; 
0   17.5    24.6    21.9    17.2; 
0.5 17.5    24.6    21.9    17.2; 
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1   17.5    24.6    21.9    17.2; 
2   17.5    24.6    21.9    17.2; 
4   17.5    24.6    21.9    17.2; 
6   17.5    24.6    21.9    17.2; 
24  17.5    24.6    21.9    17.2; 
48  17.5    24.6    21.9    17.2; 
72  17.5    24.6    21.9    17.2; 
96  17.5    24.6    21.9    17.2]; 
  
% Determine the number of rows D(1) and columns D(2) that are in the 
data 
n=size(D); 
  
% Solve the integrated MM equation for the combined data for the  
% given enzyme loading, which returns a value for Ka, Vm, the fractal  
% component f and the jamming component J 
  
%TRADITIONAL MICHAELIS-MENTEN 
  
% Define variables 
for i=1:n(:,2)-1; 
t=D(:,1); % time (hr) 
Pt=D(:,i+1); % product (g G/L) 
S0=dPinf(:,i+1); % initial substrate loading (or delta P inf) (g G/L) 
E0=[15 30 45 60]; % inital enzyme loading (FPU/g solids) 
E0=E0(:,i); 
P0=0; % initial product concentration (g G/L) 
Kaub=[20.5 24.6 23.3 29.6]; 
Kaub=Kaub(:,i); 
  
% Set initial guesses for parameters 
Ka=10; 
Vm=10; 
f=0.5; 
J=10; 
  
% Pass information to function 
xdata=t; 
ydata=Pt; 
x0=[Ka Vm f J]'; 
F=MMintegrated_fj(x0, xdata); 
 
% Use least squares estimates to find "best fit" for Ka, Vm, f and J 
lb=[0 0 0 0]; % lower bounds on Ka and Vm fitting 
ub=[Kaub inf 1 inf]; % upper bounds on Ka and Vm fitting 
options=optimset('MaxIter', 10000, 'TolFun', 1e-12, 'TolX', 1e-12,... 
    'MaxFunEvals', 10000); 
[x(:,i), resnorm, 
residual,exitflag,output,lambda,jacobian]=lsqcurvefit... 
    (@(x0,xdata) 
MMintegrated_fj(x0,xdata),x0,xdata,ydata,lb,ub,options) 
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% Use new parameters to predict P 
H=MMintegrated_fj(x(:,i),xdata); 
  
% Calculate F statistic 
Hones=[ones(size(H)) H]; 
b1(:,i)=regress(Pt,Hones) 
  
n=length(Pt); 
xbar1=mean(Hones(:,2)); % mean of predicted product values 
yhat1=(mean(Pt)+b1(2).*(Hones(:,2)-xbar1));  
% calculated yhat2 (residual) for S-squared equation 
S=(sum((Pt-yhat1).^2))/(n-2); % standard error 
fstat(:,i)=((n-2)*(n*b1(1)^2+2*n*xbar1*b1(1)*(b1(2)-1)... 
    +sum(Hones(:,2).^2*(b1(2)-1)^2)))/(2*n*S^2) % F-statistic 
  
% Calculate R-squared of predicted vs. observed 
CT=(sum(Pt)^2)/n; 
SST=(Pt'*Pt)-CT; %Sums of squares of observed 
R2(:,i)=1-(resnorm/SST) 
  
% Calculate 95% confidence intervals for parameters 
ci=nlparci(x(:,i),residual,'jacobian',jacobian) 
  
% Plot predicted vs. observed values 
figure 
plot(H,Pt,'o') 
xlabel('Predicted glucose (g G/L)') 
ylabel('Observed glucose (g G/L)') 
axis([0 25 0 25]) 
  
% Plot hydrolysis progress curves with predicted and observed values 
figure 
plot(xdata(1:10), H(1:10),'b-', 
xdata(1:10),Pt(1:10),'b*',xdata(11:20),... 
    H(11:20),'c-', xdata(11:20),Pt(11:20),'co',xdata(21:30),... 
    H(21:30),'g-', xdata(21:30),Pt(21:30),'gd',xdata(31:40),... 
    H(31:40),'m-', xdata(31:40),Pt(31:40),'m+',xdata(41:50),... 
    H(41:50),'k-', xdata(41:50),Pt(41:50),'ks') 
xlabel('Time (hr)') 
ylabel('Glucose (g G/L)') 
end 
  
% Determine the number of rows D(1) and columns D(2) that are in the 
data 
n=size(D); 
  
%INSOLUBLE SOLIDS (HIGH SOLIDS) MICHAELIS-MENTEN 
  
% Define variables 
for j=1:n(:,2)-1; 
t=D(:,1); % time (hr) 
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Pt=D(:,j+1); % product (g G/L) 
S0=dPinf(:,j+1); % initial substrate loading (or delta P inf) (g G/L) 
E0=[15 30 45 60]; % inital enzyme loading (FPU/g solids) 
E0=E0(:,j); 
P0=0; % initial product concentration (g G/L) 
Kaub=[20.5 24.6 23.3 29.6]; 
Kaub=Kaub(:,j); 
  
% Set initial guesses for parameters 
Ka=10; 
Vm=10; 
f=0.5; 
J=10; 
  
% Pass information to function 
xdata=t; 
ydata=Pt; 
x0=[Ka Vm f J]'; 
A=MMintegrated_E_fj(x0, xdata); 
  
% Use least squares estimates to find "best fit" for Ka, Vm, f and J 
lb=[0 0 0 0]; % lower bounds on Ka and Vm fitting 
ub=[Kaub inf 1 inf]; % upper bounds on Ka and Vm fitting 
options=optimset('MaxIter', 10000, 'TolFun', 1e-13, 'TolX', 1e-13,... 
    'MaxFunEvals', 10000); 
[x2(:,j), resnorm, 
residual,exitflag,output,lambda,jacobian]=lsqcurvefit... 
    (@MMintegrated_E_fj,x0,xdata,ydata,lb,ub, options) 
  
k2(:,j)=x2(2)./S0; 
  
% Use new parameters to predict P 
C=MMintegrated_E_fj(x2(:,j),xdata); 
  
% Calculate F statistic 
Cones=[ones(size(C)) C]; 
b2(:,j)=regress(Pt,Cones) 
  
n=length(Pt); 
xbar2=mean(Cones(:,2)); % mean of predicted product values 
yhat2=(mean(Pt)+b2(2).*(Cones(:,2)-xbar2));  
    % calculated yhat2 (residual) for S-squared equation 
S=(sum((Pt-yhat2).^2))/(n-2); % standard error 
fstat(:,j)=((n-2)*(n*b2(1)^2+2*n*xbar2*b2(1)*(b2(2)-1)... 
    +(sum((Cones(:,2).^2)*(b2(2)-1)^2)))/(2*n*S^2)) % F-statistic 
  
% Calculate R-squared of predicted vs. observed 
CT=(sum(Pt)^2)/n; 
SST=(Pt'*Pt)-CT; % sums of squares of observed 
R2(:,j)=1-(resnorm/SST) 
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function F = MMintegrated_fj(x0, xdata) 
  
% MMintegrated_fj solves the integrated Michaelis-Menten equation  
% with the fractal and jamming components for Pt (equation 8 Goudar  
% et al, Buichimica et Biophysica Acta 1429(1999) 377-383) 
  
global S0 
global E0 
  
P0=0; % initial product concentration (g G/L) 
  
Vmtfj=(1-(E0./(x0(4).*S0))).*(x0(2).*xdata.^(1-x0(3)))./(1-x0(3)); 
    % incorporation of fractal and jamming components 
omega=(S0./x0(1)).*exp((S0-Vmtfj)./x0(1)); 
z=lambertw(omega); 
F= P0+S0-x0(1).*z; % product concentration at time, t (g G/L) 
  
end  
 
 
 

% Calculate 95% confidence intervals for parameters 
ci=nlparci(x2(:,j),residual,'jacobian',jacobian) 
  
% Plot predicted vs. observed values 
figure 
plot(C,Pt,'o') 
xlabel('Predicted glucose (g G/L)') 
ylabel('Observed glucose (g G/L)') 
axis([0 25 0 25]) 
  
% Plot hydrolysis progress curves with predicted and observed values 
figure 
plot(xdata(1:10), C(1:10),'b-', xdata(1:10),Pt(1:10),'b*',... 
    xdata(11:20), C(11:20),'c-', xdata(11:20),Pt(11:20),'co',... 
    xdata(21:30), C(21:30),'g-', xdata(21:30),Pt(21:30),'gd',... 
    xdata(31:40), C(31:40),'m-', xdata(31:40),Pt(31:40),'m+',... 
    xdata(41:50), C(41:50),'k-', xdata(41:50),Pt(41:50),'ks') 
xlabel('Time (hr)') 
ylabel('Glucose (g G/L)') 
end 
 
 
 



 

306 
 

 
 
 
 

function A = MMintegrated_E_fj(x0, xdata) 
  
% MMintegrated_E_fj solves the integrated Michaelis-Menten equation 
% modified for insoluble solids with the fractal and jamming  
% components for Pt (equation 8 Goudar et al, Buichimica et  
% Biophysica Acta 1429(1999) 377-383) 
  
global S0 
global E0 
  
P0=0; % initial product concentration (g G/L) 
  
Vmtfj=(1-(E0./(x0(4).*S0))).*(x0(2).*xdata.^(1-x0(3)))./(1-x0(3)); 
    % incorporation of fractal and jamming components 
A=((Vmtfj.*S0)./(x0(1)+E0)); 
    % product concentration at time, t (g G/L) 
  
end  
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APPENDIX D:  MODEL FIGURES AND KINETIC PARAMETERS 
 
D.1 ENZYMATIC HYDROLYSIS 
 

 
Figure D.1.  Extent of glucose released after 96 hr of hydrolysis with 
30 FPU/g solids.  Columns labeled with the same letter are statistically 
the same at α=0.05. 

 
 

 
Figure D.2.  Extent of glucose released after 96 hr of hydrolysis with 
45 FPU/g solids.  Columns labeled with the same letter are statistically 
the same at α=0.05. 

 

0

5

10

15

20

25

30

35

2 5 10 15 20

E
xt

en
t o

f H
yd

ro
ly

sis
 (g

 g
lu

co
se

/L
) 

Solids Loading (wt%) 

0

5

10

15

20

25

30

35

2 5 10 15 20

E
xt

en
t o

f H
yd

ro
ly

sis
 (g

 g
lu

co
se

/L
) 

Solids Loading (wt%) 



 

308 
 

 
Figure D.3.  Extent of glucose released after 96 hr of hydrolysis with 
60 FPU/g solids.  Columns labeled with the same letter are statistically 
the same at α=0.05. 

 
 

 
Figure D.4.  Initial rates of hydrolysis.  Hydrolysis was performed at 
the various solids loadings indicated with an enzyme loading of 30 
FPU/g solids for 96 hr.  Initial rates were determined manually from 
the first hour of hydrolysis.  Rates with the same letter are statistically 
the same at α=0.05. 

 

0

5

10

15

20

25

30

35

2 5 10 15 20

E
xt

en
t o

f H
yd

ro
ly

sis
 (g

 g
lu

co
se

/L
) 

Solids Loading (wt%) 

0

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1

In
iti

al
 R

at
e 

of
 H

yd
ro

ly
si

s 
(g

 G
/L

-h
r)

 

Time (hr) 

2% Solids

5% Solids

10% Solids

15% Solids

20% Solids



 

309 
 

 
Figure D.5.  Initial rates of hydrolysis.  Hydrolysis was performed at 
the various solids loadings indicated with an enzyme loading of 45 
FPU/g solids for 96 hr.  Initial rates were determined manually from 
the first hour of hydrolysis.  Rates with the same letter are statistically 
the same at α=0.05. 

 
 
 

 
Figure D.6.  Initial rates of hydrolysis.  Hydrolysis was performed at 
the various solids loadings indicated with an enzyme loading of 60 
FPU/g solids for 96 hr.  Initial rates were determined manually from 
the first hour of hydrolysis.  Rates with the same letter are statistically 
the same at α=0.05. 
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D.2 MODEL PARAMETERS AND FIGURES 
 
 
Table D.1.  Kinetic parameters of PCS hydrolysis by T. reesei cellulase at 30 FPU/g 
solids using the classical Michaelis-Menten kinetic models. 

 
Km (g/L) Vm (g/L-hr) f j R2 

MM 24.60 19.29 -- -- 0.9327 
MM+f 24.60 14.06 0.41 -- 0.9513 
MM+j 24.60 20.51 -- 30.38 0.9329 
MM+f+j 24.60 14.80 0.41 32.56 0.9516 
Abbreviations: MM, Michaelis-Menten; MM+f, Michaelis-Menten with fractal 
component; MM+j, Michaelis-Menten with jamming component; MM+f+j, Michaelis-
Menten with fractal and jamming components 
 
 
Table D.2.  Kinetic parameters of PCS hydrolysis by T. reesei cellulase at 30 FPU/g 
solids using the modified Michaelis-Menten kinetic models. 

 
Km (FPU/g solids) Vm (g/L-hr) f j R2 

MM 23.47 0.77 -- -- -0.0753 
MM+f 19.14 4.11 0.85 -- 0.9150 
MM+j 18.59 0.70 -- 65722 -0.0753 
MM+f+j 18.14 4.03 0.85 74228 0.9150 
Abbreviations: MM, Michaelis-Menten; MM+f, Michaelis-Menten with fractal 
component; MM+j, Michaelis-Menten with jamming component; MM+f+j, Michaelis-
Menten with fractal and jamming components 
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Figure D.7.  Correlation between predicted and observed PCS hydrolysis  by T. reesei cellulase at 30 FPU/g solids.  
Experimental hydrolysis data were used to fit the kinetic parameters of (a) the classical Michaelis-Menten model; 
(b) the Michaelis-Menten model with a fractal component; (c) the Michaelis-Menten model with a jamming 
component; and (d) the Michaelis-Menten model with fractal + jamming components. 
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Figure D.8.  PSC hydrolysis by T. reesei cellulase at 30 FPU/g solids.  Experimental hydrolysis data are fitted with 
(a) the classical Michaelis-Menten model; (b) the Michaelis-Menten model with a fractal component; (c) the 
Michaelis-Menten model with a jamming component; and (d) the Michaelis-Menten model with fractal + jamming 
components. (Symbols: ‘blue *’ 2% solids; ‘cyan ○’ 5% solids; ‘green ◊’ 10% solids; ‘magenta +’ 15% solids; 
‘black □’ 20% solids) 
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Figure D.9.  Correlation between predicted and observed PCS hydrolysis  by T. reesei cellulase at 30 FPU/g solids.  
Experimental hydrolysis data were used to fit the kinetic parameters of (a) the classical Michaelis-Menten model 
modified for insoluble substrates; (b) the modified Michaelis-Menten model with a fractal component; (c) the 
modified Michaelis-Menten model with a jamming component; and (d) the modified Michaelis-Menten model with 
fractal + jamming components. 
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Figure D.10.  PSC hydrolysis by T. reesei cellulase at 30 FPU/g solids.  Experimental hydrolysis data are fitted with 
(a) the classical Michaelis-Menten model modified for insoluble substrates; (b) the modified Michaelis-Menten 
model with a fractal component; (c) the modified Michaelis-Menten model with a jamming component; and (d) the 
modified Michaelis-Menten model with fractal + jamming components. (Symbols: ‘blue *’ 2% solids; ‘cyan ○’ 5% 
solids; ‘green ◊’ 10% solids; ‘magenta +’ 15% solids; ‘black □’ 20% solids) 
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Table D.3.  Kinetic parameters of PCS hydrolysis by T. reesei cellulase at 45 FPU/g 
solids using the classical Michaelis-Menten kinetic models. 

 
Km (g/L) Vm (g/L-hr) f j R2 

MM 23.30 10.39 -- -- 0.8769 
MM+f 23.30   8.60 0.52 -- 0.9183 
MM+j 23.30 11.94 -- 17.91 0.8790 
MM+f+j 23.30   9.84 0.53 19.42 0.9218 
Abbreviations: MM, Michaelis-Menten; MM+f, Michaelis-Menten with fractal 
component; MM+j, Michaelis-Menten with jamming component; MM+f+j, Michaelis-
Menten with fractal and jamming components 
 
 
Table D.4.  Kinetic parameters of PCS hydrolysis by T. reesei cellulase at 45 FPU/g 
solids using the modified Michaelis-Menten kinetic models. 

 
Km (FPU/g solids) Vm (g/L-hr) f j R2 

MM 22.40 0.98 -- -- 0.2259 
MM+f 17.29 5.61 0.79 -- 0.9103 
MM+j 21.52 0.97 -- 79585 0.2259 
MM+f+j 10.61 5.06 0.79 229.35 0.9104 
Abbreviations: MM, Michaelis-Menten; MM+f, Michaelis-Menten with fractal 
component; MM+j, Michaelis-Menten with jamming component; MM+f+j, Michaelis-
Menten with fractal and jamming components 
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Figure D.11.  Correlation between predicted and observed PCS hydrolysis  by T. reesei cellulase at 45 FPU/g solids.  
Experimental hydrolysis data were used to fit the kinetic parameters of (a) the classical Michaelis-Menten model; 
(b) the Michaelis-Menten model with a fractal component; (c) the Michaelis-Menten model with a jamming 
component; and (d) the Michaelis-Menten model with fractal + jamming components. 
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Figure D.12.  PSC hydrolysis by T. reesei cellulase at 45 FPU/g solids.  Experimental hydrolysis data are fitted with 
(a) the classical Michaelis-Menten model; (b) the Michaelis-Menten model with a fractal component; (c) the 
Michaelis-Menten model with a jamming component; and (d) the Michaelis-Menten model with fractal + jamming 
components. (Symbols: ‘blue *’ 2% solids; ‘cyan ○’ 5% solids; ‘green ◊’ 10% solids; ‘magenta +’ 15% solids; 
‘black □’ 20% solids) 
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Figure D.13.  Correlation between predicted and observed PCS hydrolysis  by T. reesei cellulase at 45 FPU/g solids.  
Experimental hydrolysis data were used to fit the kinetic parameters of (a) the classical Michaelis-Menten model 
modified for insoluble substrates; (b) the modified Michaelis-Menten model with a fractal component; (c) the 
modified Michaelis-Menten model with a jamming component; and (d) the modified Michaelis-Menten model with 
fractal + jamming components. 
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Figure D.14.  PSC hydrolysis by T. reesei cellulase at 45 FPU/g solids.  Experimental hydrolysis data are fitted with 
(a) the classical Michaelis-Menten model modified for insoluble substrates; (b) the modified Michaelis-Menten 
model with a fractal component; (c) the modified Michaelis-Menten model with a jamming component; and (d) the 
modified Michaelis-Menten model with fractal + jamming components. (Symbols: ‘blue *’ 2% solids; ‘cyan ○’ 5% 
solids; ‘green ◊’ 10% solids; ‘magenta +’ 15% solids; ‘black □’ 20% solids) 
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Table D.5.  Kinetic parameters of PCS hydrolysis by T. reesei cellulase at 60 FPU/g 
solids using the classical Michaelis-Menten kinetic models. 

 
Km (g/L) Vm (g/L-hr) f j R2 

MM 25.54 15.54 -- -- 0.9138 
MM+f   5.81   5.90 0.51 -- 0.9476 
MM+j 25.53 15.67 -- 48435 0.9138 
MM+f+j   5.81   5.90 0.51 43463 0.9476 
Abbreviations: MM, Michaelis-Menten; MM+f, Michaelis-Menten with fractal 
component; MM+j, Michaelis-Menten with jamming component; MM+f+j, Michaelis-
Menten with fractal and jamming components 
 
 
Table D.6.  Kinetic parameters of PCS hydrolysis by T. reesei cellulase at 60 FPU/g 
solids using the modified Michaelis-Menten kinetic models. 

 
Km (FPU/g solids) Vm (g/L-hr) f j R2 

MM 27.70 1.30 -- -- 0.1147 
MM+f   6.47 5.95 0.81 -- 0.9026 
MM+j 26.48 1.31 -- 136.79 0.1150 
MM+f+j 13.93 6.62 0.81 107990 0.9026 
Abbreviations: MM, Michaelis-Menten; MM+f, Michaelis-Menten with fractal 
component; MM+j, Michaelis-Menten with jamming component; MM+f+j, Michaelis-
Menten with fractal and jamming components 
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Figure D.15.  Correlation between predicted and observed PCS hydrolysis  by T. reesei cellulase at 60 FPU/g solids.  
Experimental hydrolysis data were used to fit the kinetic parameters of (a) the classical Michaelis-Menten model; 
(b) the Michaelis-Menten model with a fractal component; (c) the Michaelis-Menten model with a jamming 
component; and (d) the Michaelis-Menten model with fractal + jamming components. 
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Figure D.16.  PSC hydrolysis by T. reesei cellulase at 60 FPU/g solids.  Experimental hydrolysis data are fitted with 
(a) the classical Michaelis-Menten model; (b) the Michaelis-Menten model with a fractal component; (c) the 
Michaelis-Menten model with a jamming component; and (d) the Michaelis-Menten model with fractal + jamming 
components. (Symbols: ‘blue *’ 2% solids; ‘cyan ○’ 5% solids; ‘green ◊’ 10% solids; ‘magenta +’ 15% solids; 
‘black □’ 20% solids) 
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Figure D.17.  Correlation between predicted and observed PCS hydrolysis  by T. reesei cellulase at 60 FPU/g solids.  
Experimental hydrolysis data were used to fit the kinetic parameters of (a) the classical Michaelis-Menten model 
modified for insoluble substrates; (b) the modified Michaelis-Menten model with a fractal component; (c) the 
modified Michaelis-Menten model with a jamming component; and (d) the modified Michaelis-Menten model with 
fractal + jamming components. 
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Figure D.18.  PSC hydrolysis by T. reesei cellulase at 60 FPU/g solids.  Experimental hydrolysis data are fitted with 
(a) the classical Michaelis-Menten model modified for insoluble substrates; (b) the modified Michaelis-Menten 
model with a fractal component; (c) the modified Michaelis-Menten model with a jamming component; and (d) the 
modified Michaelis-Menten model with fractal + jamming components. (Symbols: ‘blue *’ 2% solids; ‘cyan ○’ 5% 
solids; ‘green ◊’ 10% solids; ‘magenta +’ 15% solids; ‘black □’ 20% solids) 
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APPENDIX E:  SAS CODE 
 
E.1 EFFECTS OF PRETREATMENT AND ENZYMATIC HYDROLYSIS CONDITIONS 
 
ODS PDF FILE ='\\Client\F$\exp1conv.pdf'; 
 
DM 'CLEAR LOG'; 
DM 'CLEAR OUTPUT'; 
 
DATA LOW_SOLIDS_HYDROLYSIS; 
INPUT BLOCK $ SOLIDS ENZYME GLU @@; 
DATALINES; 
A 5 5.2 0.326 A 5 5.2 0.343 A 5 5.2 0.357 
A 5 18.3 0.403 A 5 18.3 0.319 A 5 18.3 0.298 
A 5 60 0.250 A 5 60 0.257 A 5 60 0.299 
A 20 7.2 0.090 A 20 7.2 0.092 A 20 7.2 0.106 
A 20 28.9 0.038 A 20 28.9 0.036 A 20 28.9 0.039 
A 20 60 0.353 A 20 60 0.308 A 20 60 0.360 
B 5 5.2 0.353 B 5 5.2 0.330 B 5 5.2 0.383 
B 5 18.3 0.267 B 5 18.3 0.367 B 5 18.3 0.352 
B 5 60 0.417 B 5 60 0.308 B 5 60 0.267 
B 20 7.2 0.087 B 20 7.2 0.098 B 20 7.2 0.082 
B 20 28.9 0.037 B 20 28.9 0.036 B 20 28.9 0.036 
B 20 60 0.224 B 20 60 0.336 B 20 60 0.302 
C 5 5.2 0.342 C 5 5.2 0.369 C 5 5.2 0.368 
C 5 18.3 0.330 C 5 18.3 0.300 C 5 18.3 0.288 
C 5 60 0.252 C 5 60 0.289 C 5 60 0.294 
C 20 7.2 0.118 C 20 7.2 0.106 C 20 7.2 0.101 
C 20 28.9 0.043 C 20 28.9 0.047 C 20 28.9 0.045 
C 20 60 0.350 C 20 60 0.354 C 20 60 0.260 
D 5 5.2 0.388 D 5 5.2 0.397 D 5 5.2 0.434 
D 5 18.3 0.331 D 5 18.3 0.360 D 5 18.3 0.293 
D 5 60 0.320 D 5 60 0.250 D 5 60 0.297 
D 20 7.2 0.101 D 20 7.2 0.099 D 20 7.2 0.089 
D 20 28.9 0.044 D 20 28.9 0.040 D 20 28.9 0.038 
D 20 60 0.343 D 20 60 0.336 D 20 60 0.427 
E 5 5.2 0.273 E 5 5.2 0.257 E 5 5.2 0.228 
E 5 18.3 0.468 E 5 18.3 0.372 E 5 18.3 0.295 
E 5 60 0.707 E 5 60 0.711 E 5 60 0.367 
E 20 7.2 0.075 E 20 7.2 0.066 E 20 7.2 0.072 
E 20 28.9 0.070 E 20 28.9 0.060 E 20 28.9 0.084 
E 20 60 0.072 E 20 60 0.068 E 20 60 0.069 
F 5 5.2 0.221 F 5 5.2 0.244 F 5 5.2 0.228 
F 5 18.3 0.468 F 5 18.3 0.653 F 5 18.3 0.370 
F 5 60 0.584 F 5 60 0.799 F 5 60 0.525 
F 20 7.2 0.054 F 20 7.2 0.065 F 20 7.2 0.069 
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F 20 28.9 0.074 F 20 28.9 0.082 F 20 28.9 0.083 
F 20 60 0.077 F 20 60 0.072 F 20 60 0.084 
G 5 5.2 0.258 G 5 5.2 0.257 G 5 5.2 0.276 
G 5 18.3 0.280 G 5 18.3 0.268 G 5 18.3 0.331 
G 5 60 0.868 G 5 60 0.847 G 5 60 0.839 
G 20 7.2 0.062 G 20 7.2 0.066 G 20 7.2 0.079 
G 20 28.9 0.081 G 20 28.9 0.075 G 20 28.9 0.087 
G 20 60 0.080 G 20 60 0.061 G 20 60 0.087 
H 5 5.2 0.173 H 5 5.2 0.188 H 5 5.2 0.173 
H 5 18.3 0.595 H 5 18.3 0.292 H 5 18.3 0.306 
H 5 60 0.718 H 5 60 0.690 H 5 60 0.837 
H 20 7.2 0.058 H 20 7.2 0.057 H 20 7.2 0.052 
H 20 28.9 0.066 H 20 28.9 0.059 H 20 28.9 0.058 
H 20 60 0.062 H 20 60 0.055 H 20 60 0.048 
 
 
RUN; 
 
PROC GLM DATA = LOW_SOLIDS_HYDROLYSIS; 
CLASS BLOCK SOLIDS ENZYME; 
MODEL GLU = BLOCK SOLIDS SOLIDS(ENZYME) BLOCK*SOLIDS 

BLOCK*SOLIDS(ENZYME) SOLIDS*SOLIDS(ENZYME) 
BLOCK*SOLIDS*SOLIDS(ENZYME); 

MEANS BLOCK SOLIDS SOLIDS(ENZYME) BLOCK*SOLIDS 
BLOCK*SOLIDS(ENZYME) SOLIDS*SOLIDS(ENZYME) 
BLOCK*SOLIDS*SOLIDS(ENZYME)/TUKEY; 

LSMEANS BLOCK SOLIDS SOLIDS(ENZYME) BLOCK*SOLIDS 
BLOCK*SOLIDS(ENZYME) SOLIDS*SOLIDS(ENZYME) 
BLOCK*SOLIDS*SOLIDS(ENZYME)/PDIFF; 

RUN; 
 
ODS PDF CLOSE; 
 
  



 

327 
 

E.2 NAOH LOADING IN PRETREATMENT 
 
ODS PDF FILE ='\\Client\F$\NaOHexp.pdf'; 
 
DM 'CLEAR LOG'; 
DM 'CLEAR OUTPUT'; 
 
DATA NAOH_LOADING; 
INPUT PTRT_TIME NAOH EH_SOLIDS GLU @@; 
DATALINES; 
2 4 5 0.163 2 4 5 0.167 2 4 5 0.183 
2 4 20 0.028 2 4 20 0.031 2 4 20 0.028 
2 10 5 0.131 2 10 5 0.133 2 10 5 0.139 
2 10 20 0.019 2 10 20 0.019 2 10 20 0.033 
2 20 5 0.037 2 20 5 0.122 2 20 5 0.110 
2 20 20 0.001 2 20 20 0.002 2 20 20 0.002 
24 4 5 0.085 24 4 5 0.081 24 4 5 0.086 
24 4 20 0.026 24 4 20 0.010 24 4 20 0.026 
24 10 5 0.215 24 10 5 0.250 24 10 5 0.224 
24 10 20 0.041 24 10 20 0.038 24 10 20 0.028 
24 20 5 0.243 24 20 5 0.278 24 20 5 0.273 
24 20 20 0.001 24 20 20 0.001 24 20 20 0.001 
RUN; 
 
PROC GLM DATA = NAOH_LOADING; 
CLASS PTRT_TIME NAOH EH_SOLIDS; 
MODEL GLU = PTRT_TIME NAOH EH_SOLIDS PTRT_TIME*NAOH 

PTRT_TIME*EH_SOLIDS NAOH*EH_SOLIDS 
PTRT_TIME*NAOH*EH_SOLIDS; 

MEANS PTRT_TIME NAOH EH_SOLIDS PTRT_TIME*NAOH 
PTRT_TIME*EH_SOLIDS NAOH*EH_SOLIDS 
PTRT_TIME*NAOH*EH_SOLIDS/TUKEY; 

LSMEANS PTRT_TIME NAOH EH_SOLIDS PTRT_TIME*NAOH 
PTRT_TIME*EH_SOLIDS NAOH*EH_SOLIDS 
PTRT_TIME*NAOH*EH_SOLIDS/PDIFF; 

RUN; 
 
ODS PDF CLOSE; 
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E.3 HYDROLYZATE FLUSHING AND SUBSTRATE RECYCLE 
 
ODS PDF FILE ='\\Client\F$\flush.pdf'; 
 
DM 'CLEAR LOG'; 
DM 'CLEAR OUTPUT'; 
 
DATA HYDROLYSIS; 
INPUT TREATMENTS $ ENZ HYD $ GLU @@; 
DATALINES; 
W 15 B 60.41  W 15 B 55.32 
W 15 B 54.47  W 15 B 55.53 
W 15 FNS 96.23  W 15 FNS 98.85 
W 15 FS 98.95  W 15 FS 95.38 
W 60 B 56.40  W 60 B 61.87 
W 60 B 47.85  W 60 B 47.85 
W 60 FNS 117.04  W 60 FNS 109.89 
W 60 FS 105.61  W 60 FS 101.48 
UW 15 B 48.95  UW 15 B 44.88 
UW 15 B 49.61  UW 15 B 50.29 
UW 15 FNS 75.16  UW 15 FNS 71.47 
UW 15 FS 97.87  UW 15 FS 97.09 
UW 60 B 41.94  UW 60 B 41.02 
UW 60 B 41.37  UW 60 B 45.09 
UW 60 FNS 84.98  UW 60 FNS 84.75 
UW 60 FS 107.52  UW 60 FS 100.57 
RUN; 
 
PROC GLM DATA = HYDROLYSIS; 
CLASS TREATMENTS ENZ HYD; 
MODEL GLU = TREATMENTS ENZ HYD TREATMENTS*ENZ 

TREATMENTS*HYD ENZ*HYD TREATMENTS*ENZ*HYD; 
MEANS TREATMENTS ENZ HYD TREATMENTS*ENZ TREATMENTS*HYD 

ENZ*HYD TREATMENTS*ENZ*HYD/TUKEY; 
LSMEANS TREATMENTS ENZ HYD TREATMENTS*ENZ TREATMENTS*HYD 

ENZ*HYD TREATMENTS*ENZ*HYD/PDIFF; 
RUN; 
 
ODS PDF CLOSE; 
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E.4 INITIAL RATE OF HYDROLYSIS FOR MODEL DATA 
 
ODS PDF FILE ='\\Client\F$\initialrate.pdf'; 
 
DM 'CLEAR LOG'; 
DM 'CLEAR OUTPUT'; 
DATA INITIAL_RATE; 
INPUT ENZ SUB RATE@@; 
DATALINES; 
15 2 1.102  15 2 1.172  15 2 1.170 
30 2 1.048  30 2 1.248  30 2 1.192 
45 2 1.328  45 2 1.298  45 2 1.192 
60 2 7.464  60 2 7.342  60 2 7.668 
15 5 2.645  15 5 2.710  15 5 2.585 
30 5 5.670  30 5 6.430  30 5 3.870 
45 5 3.005  45 5 3.205  45 5 2.940 
60 5 1.895  60 5 2.385  60 5 2.745 
15 10 5.390  15 10 6.110  15 10 5.190 
30 10 6.560  30 10 3.720  30 10 2.450 
45 10 7.780  45 10 7.870  45 10 6.710 
60 10 10.490  60 10 12.990  60 10 10.030 
15 15 6.255  15 15 6.675  15 15 6.915 
30 15 8.565  30 15 8.055  30 15 7.530 
45 15 9.075  45 15 8.925  45 15 8.865 
60 15 9.840  60 15 10.305  60 15 9.450 
15 20 23.200  15 20 6.340  15 20 7.960 
30 20 15.800  30 20 9.660  30 20 18.240 
45 20 7.300  45 20 7.840  45 20 7.500 
60 20 6.840  60 20 10.480  0 20 6.100 
 
RUN; 
PROC GLM DATA = INITIAL_RATE; 
CLASS ENZ SUB; 
MODEL RATE=ENZ SUB ENZ*SUB; 
MEANS ENZ SUB ENZ*SUB/TUKEY; 
LSMEANS ENZ SUB ENZ*SUB/PDIFF; 
RUN; 
 
ODS PDF CLOSE 
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E.5 EXTENT OF HYDROLYSIS FOR MODEL DATA 
 
ODS PDF FILE ='\\Client\F$\extent.pdf'; 
 
DM 'CLEAR LOG'; 
DM 'CLEAR OUTPUT'; 
DATA EXTENT; 
INPUT ENZ SUB GLU@@; 
DATALINES; 
15 2 3.199  15 2 3.216  15 2 3.384 
15 5 9.995  15 5 9.357  15 5 9.370 
15 10 19.666  15 10 19.098  15 10 18.217 
15 15 20.611  15 15 20.980  15 15 19.969 
15 20 29.141  15 20 9.246  15 20 18.965 
30 2 3.621  30 2 4.101  30 2 4.118 
30 5 5.714  30 5 5.596  30 5 5.258 
30 10 16.113  30 10 13.164  30 10 13.714 
30 15 19.296  30 15 20.009  30 15 19.498 
30 20 16.422  30 20 22.798  30 20 27.539 
45 2 2.598  45 2 4.129  45 2 4.283 
45 5 6.894  45 5 5.088  45 5 6.684 
45 10 10.198  45 10 14.288  45 10 14.084 
45 15 23.814  45 15 23.313  45 15 22.642 
45 20 22.474  45 20 22.527  45 20 20.636 
60 2 5.627  60 2 6.603  60 2 4.361 
60 5 2.893  60 5 3.225  60 5 1.896 
60 10 15.631  60 10 16.213  60 10 15.463 
60 15 22.496  60 15 17.206  60 15 32.010 
60 20 12.955  60 20 19.538  60 20 17.513 
RUN; 
 
PROC GLM DATA = EXTENT; 
CLASS ENZ SUB; 
MODEL GLU=ENZ SUB ENZ*SUB; 
MEANS ENZ SUB ENZ*SUB/TUKEY; 
LSMEANS ENZ SUB ENZ*SUB/PDIFF; 
RUN; 
 
ODS PDF CLOSE; 
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