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ABSTRACT

A COMBINED QUADTREE/DELAUNAY METHOD
FOR 2D MESH GENERATION

MAY 2012

SIMON TANG

B.Sc., UNIVERSITY OF MASSACHUSETTS AT AMHERST

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Marinos N. Vouvakis

Unstructured simplicial mesh is an integral and critical part of many computa-

tional electromagnetics methods (CEM) such as the finite element method (FEM)

and the boundary element method (BEM). Mesh quality and robustness have direct

impact on the success of these CEM methods.

A combined quadtree/Delunay 2D mesh generator, based on the early work of

Schroeder (1991, PhD), is presented. The method produces a triangulation that

approximates the original geometric model but is also topologically consistent. The

key advantages of the method are: (a) its robustness, (b) ability to create a-priori

graded meshes, and (c) its guaranteed mesh quality.

The method starts by recursively refining the grid and using a 2:1 balanced

quadtree data structure to index each cell. Once the quadtree grid is refined at

a user-defined level associated with each geometrical model topological entity, each

cell in the grid is successively triangulated using the Delaunay method. Finally, the

iv



method handles some modeling errors by merging vertices and allowing overlapped

faces.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

The goal of this thesis is to automatically produce a topologically compatible

two-dimensional mesh approximation (triangulation) given a geometric model and

user defined attributes such as boundary conditions, a merge tolerance, and a mesh

control parameter on each topological element. Topological entities in a geometrical

representation are the faces, edges, and vertices from the geometric representation.

To fully understand the role of mesh generation as stated above, it is important

to outline the nature of a geometric model and the necessary topological consistency

between the geometric model and the mesh approximation.

A geometric model D = {G, T,A} is a representation that describes the geometry

G, topology T , and the associated attributes A, of all objects/shapes in the model.

The geometry G is a mathematical description of position in Euclidean. The most

common description are nodes of straight line segments, Bézier curves or non-uniform

rational B-splines (NURBS). Topology is the connectivity information between geo-

metric entities, and it is invariant under geometrical transformations. The topology

of an object is represented as a set of hierarchically ordered elements T = {V,E, F},

where V is a vertex, E is an edge and F is a face. Finally, attributes are information

associated with each topological entity, and they can be related to the mesh, such

as the mesh refinement size, color, and boundary conditions for partial differential

equation (PDE) solvers.
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The most important property of a “valid” mesh in the context of PDE solvers such

as finite element method (FEM) is the topological consistency between the mesh M

and the original geometric model D, meaning that each topological entity of the mesh

should be associated (linked) to one topological entity of the geometric model, and

that these mesh entities should form a proper topological hierarchy. Figure 1.1 shows

this hierarchy.

Face Surface

Curve

Point

Edge

Vertex

Face
Attributes

Edge
Attributes

Vertex
Attributes

Attributes Topology Geometry

Figure 1.1: Relationship between the geometry, attributes, and the topology.

Figure 1.2 shows an example of two shapes that are topologically consistent. The

right has the same topology as the left of matching color. Each topological element on

the right has a different geometry than its topological element on the left. However,

they are topologically consistent because they share the same neighbors. For example,

the green edge on right figure is adjacent to a blue edge and a yellow edge, which

matches the adjacency of the green edge on the left figure. Finally, Figure 1.3 shows

an example where the mesh is topological consistent with the geometric model.
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Figure 1.2: The two shapes are topologically consistent although the geometry may
be different.

(a) Geometric domain. (b) Mesh approximation.

Figure 1.3: Triangulation is topologically consistent with the domain.
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1.2 Significance

In the modern engineering design processes, engineers model their designs on

computer aided design (CAD) software and run simulations of their designs. These

engineering simulations are subject to the law of physics. Using computational meth-

ods to solve the equations that are govern by the law of physics on a given problem is

automatic, cheap, and fast in comparison to approximation and analytical methods.

Finite element method (FEM) [1, 2, 3] and boundary element method [4, 5, 6, 7] are

two computational methods that requires a mesh. Figure 1.4 shows an overview of

the process in mesh-based scientific computing methods. The focus of this research

is to generate a high quality mesh for these methods.

Model the
Problem

Mesh the
Model

Solve the 
Problem

Figure 1.4: Stages of mesh-based scientific computing method. The highlighted stage
is the focus of this research.

In all mesh-based scientific computing methods, the shape of the elements in the

mesh directly affect the numerical efficiency and accuracy of the method. For example,

skinny triangles are undesirable because they lead to ill-conditioned matrices and have

poor interpolation error estimates [8]. Moreover, the computational resources used by

all mesh-based scientific computing methods are proportional to the size of the mesh.

Thus, greater number of elements will require more run time and memory. Therefore,
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it is important to avoid having many elements in an area where many elements are

not needed.

1.3 Challenges

A common problem of mesh algorithms is the robustness of handling models that

are created from poor quality CAD tools. This is commonly due to problems with

tolerances, such as the one shown in Figure 1.5. The two squares in Figure 1.5 are

supposed touching. However, due to problems with the tolerances, there is a spacing

between the bottom-right vertex on the red square and the bottom-left vertex on the

green square. A mesh generator may treat these two vertices as two topologically

different vertices. As a result, these mesh generator may crash, produce poor quality

elements, and produce too many elements. As a result, FEM users spend a lot of

time fixing their models to get their mesh software to correctly produce a mesh of the

model.

Figure 1.5: Modeling error in two touching squares. However, the solid modeling tool
made two overlapping squares, instead of the touching squares.

Mesh size is another common challenge in mesh generation. Generally, with

greater number of elements, the quality of the elements will improve. The most

well-known mesh generation algorithms in the literature has mathematical quality
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guarantees. Some of these algorithms are proven to be size-optimal, which means

the number of elements in the triangulation is a constant from having the minimum

number of elements for a given quality guarantee. Often, these size-optimal meshes

create too many elements in practice. Though, they may be size-optimal, but the

constant from having the minimum elements for a quality guarantee is very large.

1.4 Literature Review

Over the years, many researches have tried to address the challenges of automatic

mesh generation with simplexes in both two and three dimensions. Although this

thesis deals with 2D meshes, the literature review will include important works from

3D meshes, too. There are three common categories of automatic mesh generations:

Delaunay triangulation, advancing front, and grid/quadtree mesh generation. They

are outlined in the sections below.

1.4.1 Delaunay Triangulation

A Delaunay triangulation is a triangulation that meets the Delaunay condition.

Under the Delaunay condition, the circumscribed circle of each triangle in the two-

dimensional mesh does not contain any points on its interior. The Delaunay trian-

gulation has a special property that the minimum angle is maximized. As mention

in the previous section, small angles can produce numerical inaccuracies for scientific

computing applications. Thus, this is the motivation for the use of a Delaunay trian-

gulation algorithm. However, this property does not extend to the three-dimensional

case [9].

Two of the most commonly known Delaunay triangulation algorithms are Law-

son’s algorithm[10] and Bowyer-Watson algorithm[11, 12]. Delaunay triangulation

algorithms read in a set of vertices and produce a Delaunay triangulation from these

vertices. Delaunay triangulation algorithms do not read in any edges or faces. There-
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fore, edges and faces from the geometric domain may not be preserved, or is not

topologically represented by a set of mesh elements, in the triangulation. Figure

1.6(b) illustrates a Delaunay triangulation of the guitar and its missing edges in the

triangulation. In Figure 1.6(c), the edges are preserved.

(a) Geometric model

(b) Delaunay triangulation

(c) Edges are preserved

Figure 1.6: Missing Edges in Delaunay Triangulation [13].

Both algorithms are incremental algorithms. At each increment, the Delaunay

triangulation inserts a point from the set of vertices given at input and is updated to

include an inserted point. The two algorithms terminate when all points are inserted.

At each increment, Bowyer-Watson algorithm finds all of the triangles whose cir-

cumscribed circles contain the inserted point. All of these triangles will be deleted

and form a convex polygon. The convex polygon will be triangulated where all trian-
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gles incident on the inserted point. The Boywer-Watson algorithm is demonstrated

in Figure 1.7.

Figure 1.7: Bowyer-Watson algorithm [13].

The Bowyer-Watson algorithm is less robust in the case of degeneracies, where the

vertices are exactly on the perimeter of the circumscribed circle. Figure 1.8 depicts

an example of this degeneracy. However, the algorithm can be easily generalized

to higher dimensions. The three dimensional Bowyer-Watson algorithm substitutes

a circumscribed sphere for a circumscribed circle in the two-dimensional Bowyer-

Watson algorithm.

Figure 1.8: Degeneracy in Bowyer-Watson algorithm [13].

In summary, the Bowyer-Watson algorithm is a very intuitive approach and can

be generalized to arbitrary dimensionality, but it is not very robust because of its

issues with degeneracies. The time complexity of the Bowyer-Watson algorithm is

O (n log n).

On the other hand, Lawson’s algorithm first locates the triangle that contains

the inserted point and divides the triangle into three at each increment. Then, the

algorithm flips edges until the current triangulation is Delaunay by checking Delaunay
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condition on every edge flip. The check is performed on the two triangles that had

been edge flipped. If the triangle does not satisfy the Delaunay condition, then the

triangle and the adjacent triangle that are incident on the encroached vertex will be

edge flipped. The walkthrough of Lawson’s algorithm on an example is depicted on

Figure 1.9.

Figure 1.9: Lawson’s algorithm [13].

Lawson’s algorithm can be very advantageous because of its robustness. Unlike

Bowyer-Watson algorithm, degeneracies do not have any negative impacts on Law-

son’s algorithm. In comparison to Bowyer-Watson algorithm, Lawson’s algorithm is

theoretically harder to generalize to arbitrary dimensionality. Like Bowyer-Watson

algorithm, the time complexity of Lawson’s algorithm is O (n log n).

There are two types of Delaunay triangulation algorithms that preserve the edges

from the domain: constrained Delaunay triangulation[14] and conforming Delaunay

triangulation[14]. The conforming Delaunay triangulation introduces points that are

not originally from the input point set for the purpose of preserving the edges. Points

that were not part of the input point set are called Steiner points[15]. The constrained

Delaunay triangulation does not introduce any Steiner points to the triangulation.
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It is not always possible to achieve a Delaunay triangulation with constrained edges

and without inserting Steiner points. Therefore, the constrained Delaunay triangula-

tion may not always be a Delaunay triangulation. Examples of a constrained and a

conforming Delaunay triangulation are shown in Figure 1.10.

(a) Geometric domain (b) Constrained Delaunay
triangulation

(c) Conforming Delaunay
triangulation

Figure 1.10: Constrained and conforming triangulation [16].

Although conforming Delaunay triangulation itself triangulates the domain, pre-

serves its topological elements, and maximizes the minimum angle in the triangu-

lation, skinny triangles may still result in the triangulation. Delaunay refinement

algorithms [15, 17, 18] strategically insert Steiner points into the triangulation to im-

prove the quality. These Steiner points will cause these poor quality elements to be

deleted and construct new elements to fill the empty spaces that are resulted from

deleting elements. One of the commonly known refinement algorithm is Ruppert’s

Delaunay refinement algorithm [15]. His paper presents a two dimensional Delaunay

refinement algorithm and proves that it have some mathematical guarantees. His

algorithm can be generalized to a three dimensional refinement algorithm. However,

the quality guarantee may not extend to its three dimensional generalization.

Ruppert’s Delaunay refinement algorithm reads in a geometric domain and a lower

bound on the angles. The algorithm produces a conforming Delaunay triangulation

with a minimum angle that is specified at input if it terminates. The algorithm

stitches missing edge segments by inserting Steiner points at the midpoint of the
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missing segments. Similarly, any encroached edges in the triangulation will be split

the same way as the missing segments. An encroached segment is a segment from

the triangulation whose diametral circle that has a point from the triangulation in its

interior or a missing segment. A diametral circle of a segment is a circle whose center

is the midpoint of the segment and its radius is half of the length of the segment.

Figure 1.12 demonstrates an encroached segment and a diametral circle.

Figure 1.11: Vertex a encroaches segment s1 [15].

Triangles with angles smaller than the lower bound are refined by inserting the

Steiner point at its circumscribed center. Such triangles are considered as skinny

triangles in this algorithm.

Ruppert’s Delaunay refinement algorithm offers guarantees on quality and size-

optimality, which means the number of elements in the triangulation are within a

constant factor from the minimum number of elements to meet the same bound.

These guarantees are mathematically proven[15]. It is also noted in Ruppert’s original

paper that the algorithm fails to terminate for lower bounds greater than 30◦. His

paper mathematically proves that the algorithm terminates for any lower bounds less

than 20◦.

In conclusion, Delaunay triangulations are great for two dimensional problems

because it maximizes the minimum angle. However, this property does not extend to

three dimensional problems. Delaunay refinement algorithms are generally fast and
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(a) Shaded triangle is triangle that
has an angle smaller than the lower
bound.

(b) The triangle is refined by in-
serting a point at its circumscribed
center. However, the circumscribed
center encroaches s3 and s4.

Figure 1.12: Ruppert’s refinement of skinny triangles [15].

efficient. Finally, it generate large meshes, especially if there are small angles in the

geometric model.

1.4.2 Advancing Front

Advancing front algorithms [19, 20, 21, 22] start by discretizing the boundaries of

the domain. These set of edges are called the front. These algorithms insert Steiner

points at places that would construct the best quality triangles possible based on the

current front. As new triangles are created, edges are obscured and removed from the

front. Figure 1.13 shows an example of a front in an advancing front algorithm. In this

figure, the front is colored in red, and the triangles are created based on the previous

front, which is the perimeter of the domain. Additionally, new edges are created from

creating triangles. Therefore, the front will include the new edges. Based on the

new front, the algorithm constructs its next set of triangles. The algorithm pushes

the front toward the interior of the domain until the whole domain is triangulated.

Figure 1.14 demonstrates the advancing front process.
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Figure 1.13: The front in this iteration is colored in red.

Figure 1.14: Advancing front walkthrough [9].

Before the constructing the last set of triangles, the algorithm may attempt to

insert vertices in the interior of another constructed triangle because this will result

in the best quality triangle based on the front. Constructing triangles with vertices

like these will cause triangles to overlap. This occurrence is called a collision. When

there is a collision, some advancing front algorithm will use an existing vertices to con-

struct the new triangle to fill the space, and others may insert it and use a Delaunay

triangulation method or other some methods to resolve the collision [20].
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The poorest quality elements can be found in the interior where the fronts collide,

and the best are found along the perimeter on the domain. In general, the advancing

front algorithms create very smooth meshes. Of the three categories, advancing front

is the least robust.

1.4.3 Grid and Quadtree Mesh Generation

Grid and quadtree mesh generation [23, 24, 25, 26, 27, 28, 29, 30] subdivides the

problem into smaller subproblems before the triangulation process, and it uses a tree

data structure to reference each of the subdivided spaces. A quadtree data structure,

which has a maximum of four children, is used to reference the subdivided spaces for

two dimensional problems. Figure 1.15 shows the referencing from quadtree to the

subdivided spaces.

Grid-based mesh generation algorithms place all geometric models into a root

quadrant, or a bounding box. Using Figure 1.15(a) as an example, the keyhole shape

is the geometric model in this problem, and the yellow square that encloses the keyhole

model is the root quadrant. The size of the root quadrant may vary from one grid-

based mesh generation algorithm to another. For this example, this root quadrant

is graphically represented as the yellow node in Figure 1.15(c), and the single yellow

node is the quadtree configuration of Figure 1.15(a) because there are no subdivisions.

When the yellow quadrant in Figure 1.15(a) is subdivided, it creates four quadrant

as shown in Figure 1.15(b), which are colored in green, navy-blue, orange, and red.

Each of the quadrant is a represented as a node (of matching color) in the graph

representation. These four nodes branch off from the yellow node because the four

corresponding quadrants derived from subdividing the yellow quadrant.

“Provably Good Mesh Generation” [23], by Bern, Eppstein, and Gilbert, is one of

the commonly known quadtree approach. This is a two-dimensional mesh algorithm,

and it can be generalized for three dimensions. This specific algorithm offers math-
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(a) Quadrant that encloses the model is
created.

(b) The root quadrant is subdivided
into four smaller quadrants.

(c) The yellow node is a graph repre-
sentation of the yellow quadrant.

(d) In the graph representation, four
children nodes, each correspond to
a child quadrant of matching color,
branch off from the node that repre-
sents the quadrant that is subdivided,
which is the yellow node.

(e) Navy blue quadrant is subdivided.

(f) Four children nodes, each corre-
spond to a child quadrant of match-
ing color, branch off from the navy-blue
node, which is the graph representation
of the quadrant that is subdivided.

Figure 1.15: Quadtree for referencing subdivision of a 2D space. The graph represen-
tations of the Figures (a),(b), and (e) are shown below their corresponding figures.
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ematical bounds on quality and size-optimal triangulation, which both are proven.

The quality guarantee and the size-optimality do exist for the three-dimensional gen-

eralization. The main purpose for the use of the grid is to control the quality of the

elements. The subdivisions of the grid are controlled by the geometry of the problem.

In this algorithm, the quadrant will be subdivided if the quadrant is crowded.

Figure 1.16 shows some examples of a crowded quadrant. By definition, the quadrant

q, whose edge length is l, is crowded if q contains a vertex p from the domain G and

one or more of the following conditions are met:

• q contains two or more vertices from G.

• A vertex from G is within 2
√

2l units of p.

• An extended neighbor q is subdivided.

An extended neighbor is an adjacent quadrant that of the same size. The extended

neighbor also include quadrants of the same size that share a corner.

In Figure 1.16(a), the quadrant that is colored in red is crowded because the

quadrant contains two vertices from the domain. In Figure 1.16(b), the yellow area

is the interior of a circle with the radius 2
√

2l, where l is the length of the red

quadrant, units and the vertex in the red quadrant as its center. The vertex in the

orange quadrant is within 2
√

2l from the vertex in the red quadrant because it is

inside the yellow area. Therefore, the red quadrant is crowded. In Figure 1.16(c),

the figure on the left is the grid before inserting the yellow vertex, and the figure

on the right is the grid after inserting the yellow vertex (but before subdividing the

red quadrant). The gray disks on the left figure have a radius 2
√

2l respectively to

the quadrant that contains the corresponding center. The magenta quadrant is an

extended neighbor of the red quadrant. After inserting the yellow vertex, the two

blue and green quadrants are subdivided because they are crowded for being less

than 2
√

2l apart. Afterwards, the orange and magenta quadrants are subdivided to
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(a) The crowded quadrant contains two
vertices from the domain.

(b) The yellow disk has a radius of 2
√

2l
units with the vertex in the crowded
box as its center. The vertex in the
orange quadrant is within 2

√
2l of the

vertex in the red quadrant because the
yellow disk contains the vertex in the
orange quadrant in its interior.

(c) Grid before inserting the yellow vertex is on the left. Grid after inserting the
yellow vertex is on the right. Extended neighbor is subdivided. Thus, red quadrant
is crowded.

Figure 1.16: Crowded quadrants. Each example violates one of the three conditions.
The crowded are colored in red. (a) Two vertices in a quadrant. (b) Vertices are
within 2

√
2l where l is the [larger] length of the quadrant they are in. (c) An extended

neighbor is subdivided.
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enforce the 2:1 balance condition, which forbids adjacent quadrants to be more than

twice as large or less than twice as small. Since the magenta quadrant is subdivided,

the red quadrant becomes crowded.

When the grid is subdivided fine enough, the grid will warp itself to the domain.

If a quadrant contains a vertex, the closest corner will merge to that vertex. Figure

1.17 demonstrates the grid being merged to the vertices of the domain, and Figure

1.18 illustrates an example of the grid warping to the domain. After the warping

process, the quadrants are triangulated using a constrained Delaunay triangulation

algorithm.

(a) Grid before the any warping takes
place.

(b) Warping of the grid to the vertices
of the domain.

Figure 1.17: Warping of the grid to vertices of the domain.

The work of Bern, Eppstein, and Gilbert guarantees all angles are greater than

18.4◦ given that there are no angles that are smaller than 18.4◦ in the geometric

model. This algorithm also produces a size-optimal mesh. However, the resulting

mesh size is very large in practice.

Schroeder had done previous work on a combined octree/Delaunay algorithm [24].

This is a three dimensional algorithm, and it can be generalized to two dimensions.

His algorithm reads in a geometric domain, mesh control parameter, and merge tol-
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Figure 1.18: Warping of grid to the edges of the domain [9].

erance. Unlike the work of Bern, Eppstein, and Gilbert, the grid subdivide to the

user defined mesh control parameter. The subdivision does not depend on the model

except in the case where the mesh of the model is topologically inconsistent with the

original model. The function of the grid in this work is to allow the method to be

run in parallel.

Additionally, his work also consider merge operations. Unlike the warping in the

work of Bern, Eppstein, and Gilbert, merging occurs only when two vertices are within

the merge tolerance. No mathematical guarantees are proven or stated in his thesis.

It is mentioned that the merging process will eliminate some poor quality elements.

Mitchell and Vavasis developed an algorithm [25] in this category that also offers

quality guarantees and size-optimal triangulation. Similarly to the algorithm of Bern,

Eppstein, and Gilbert, the mesh size in practice is very large. However, not all grid-

based mesh generations offer guarantees. Shephard and Georges [26] offer no bounds

but produce a smaller mesh size in practice than the work of Bern, Eppstein, and

Gilbert. However, they use a smoothing algorithm to eliminate poor quality elements.

The advantages of grid and quadtree algorithms are their parallelism and mathe-

matical guarantees. They are very robust. They can be designed to handle geometries

that are created from a poor quality CAD tool. Of the three categories, algorithms
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in this category are the only ones that can mesh a model using a top-down approach.

However, they generate verge large mesh size in practice.

1.5 Contributions

In this research, the 2-dimensional combined quadtree/Delaunay method based

on Schroeder’s combined octree/Delaunay algorithm [24] will be implemented. The

following work will provide the following features:

• Control the mesh size through the mesh control parameter

• Subdomains have flat interfaces

• Control element merging likelihood through merge tolerance

• Work with parametric curves and non-manifold geometries

• Fully automated

This work allows the users to control the size and number of elements through the

mesh control parameters. Higher mesh control parameters yield a better approxima-

tion of the domain but a greater number of elements and a longer run time to obtain

a mesh. The number of elements and the element size are inversely proportional.

In some computational problems, it may be necessary to have small element size to

capture the effects of rapid changing solutions. Finally, greater number of elements

may increase the numerical accuracy of mesh-based scientific computing methods but

requires more memory and run time.

The boundaries of the subdomains in this approach are flat as shown in Fig-

ure 1.19(b). This property contributes to a finite element method called domain

decomposition. Domain decomposition solves the boundary value problem on each

meshed subdomain. Jagged subdomains, as shown in Figure 1.19(a), is computation-

ally difficult to solve due to the boundaries of the subdomains. Using this method,
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the subdomains are [square] quadrants, and the domains are easier to solve because

boundaries are flat.

Like the size and number of elements, the users can control the number of subdo-

mains through the mesh control parameters. Increasing the mesh control parameters

will increase the number of subdomains. If the user have access to many parallel

machines, this method can benefit greatly from having more subdomains.

(a) Four domains are assigned differ-
ent colors: red, blue, green, and yellow.
The interfaces that are shared between
two domains are jagged.

(b) Four domains are assigned the dif-
ferent colors: red, blue, green and yel-
low. The interfaces that are shared be-
tween two domains are flat.

Figure 1.19: A domain with jagged interfaces and a domain with flat interfaces.

This approach allows the users to control over the merge tolerance. Higher merge

tolerance yields better mesh quality by eliminating some poor quality elements. How-

ever, eliminating some of these elements may lead to a less accurate approximation

of the domain.

This approach will work on non-manifold shapes with parametric curves, such as

a circle. By allowing parametric curves, the users may be able to model geometries

more accurately. In addition, it may lead to a better mesh approximation.
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Finally, this approach is fully automated. Once the model of the domain is created

and its attributes (mesh control parameters and merge tolerances) are assigned, the

algorithm will terminate without requiring any more user input during its execution.
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CHAPTER 2

APPROACH

2.1 Algorithm

The combined quadtree/Delaunay method can be divided into three components,

spatial partitioning, successive triangulation, and mesh quality improvement. The

spatial partitioning subdivide geometric domain into subdomains with square grid

cells; this is illustrated in Figure 2.1(a). The successive triangulation follows after

the spatial partitioning. The successive triangulation independently triangulates each

of the grid cell as shown in Figure 2.1(b). At the final stage of the algorithm, the

mesh quality improvement procedure that involves merging of geometry intersection

verticies to grid vertices is to eliminate poor quality elements from the mesh. Each

step of the method will be discussed in detail in the following sections.

(a) Spatial partitioning (b) Successive triangulation (c) Quality improvement

Figure 2.1: Overview of the proposed combined quadtree/Delaunay triangulation.
(a) Space partitioning of the geometric model, and classification of quadrants (inte-
rior/boundary/exterior). (b) Independent constrained DT triangulation of each quad-
trant. (c) Elimination of poor quality triangles by merging select quadtree/geometry
intersection point into the quadtree vertices.
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2.1.1 Spatial Partitioning via Tree Data Structure

The purpose of the spatial partitioning component is to divide the geometric model

into smaller and topologically simpler geometric subdomains that can be meshed inde-

pendently and more easily. Additionally, the spatial partitioning component control

the element mesh size according to the mesh control parameter.

There are three parts to spatial partitioning: inserting vertices, inserting edges,

and inserting faces. Before these three processes, a root quadrant, or bounding box,

is constructed as shown in Figure 2.2.

(0,vMCP=0)

(1,vMCP=1) (2,vMCP=2)

(3,vMCP=3)

(4,vMCP=1)

(a) Model with its assigned
vertex mesh control parame-
ter.

(0,vMCP=0)

(1,vMCP=1) (2,vMCP=2)

(3,vMCP=3)

(4,vMCP=1)

(b) Model is placed in a root
quadrant.

Figure 2.2: Geometric model with attributes and the respective root quadrant in the
spatial partitioning. The vertex mesh control parameter (vMCP) is a mesh control
parameter assigned to a vertex by the user.

2.1.1.1 Inserting Vertices

The first third of the spatial partitioning procedure is the insertion of the vertices.

This algorithm is described in Algorithm 1. At each point increment, thus the loop

over V in Algorithm 1, a vertex is inserted into a terminal quadrant, or a quadrant

that is not yet subdivided, that has a depth greater than or equal to the mesh control

parameter of the inserted vertex (thus the if-condition in the algorithm). If none exist,

then the algorithm will subdivide the terminal quadrant that currently contains the

inserted vertex until there is one.

24



Partition(qr, V,Q,E)

INPUT:
qr: Root quadrant, or bounding box, that contains the model
V : Set of topological vertices in the model
Q: Set of quadrants, initially {}
E: Set of topological edges in the model

DEFINITIONS:
mcp(t): Returns the mesh control parameter of the topological element t
children(q): Returns an empty set or a set of four child quadrants of the quadrant q
depth(q): Returns the depth of the quadrant q
vertex(q): Returns the set of inserted vertices that are interior to the quadrant q
EnforceBC(q): See Algorithm 3

Subdivide(q): See Algorithm 2

ALGORITHM:
for v ∈ V do

if mcp(v) > depth(qr) then
Subdivide(qr,depth (qr) + 1, E)
for c ∈ children (qr) do

Partition(c, {v} , Q,E)
Q = Q ∪ {c}

end for
return

else
vertex(qr) = vertex (qr) ∪ {v}

end if

end for

Algorithm 1: Partitions model into quadrants by its vertices.
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During the subdivision process, a parent quadrant will be subdivided into 4 equal

child quadrants (if it is not already subdivided). Geometric vertices that are contained

in each parent quadrant will be redistributed to the four child quadrants appropri-

ately. Intersection between geometric edges and the quadrants will be computed to

be determine the share vertices between adjacent quadrants. Determining the shared

vertices here will localize the stitching process in the successive triangulation to each

quadrant and avoid tolerance problems. The subdivision process is described in Al-

gorithm 2.

Additionally, after each subdivision, the 2:1 balance condition is enforced. The

2:1 balance condition will be discussed in details in a later section. Any quadrant

that has adjacent quadrants whose depths are less than its parent’s depth will be

subdivided. The 2:1 balance condition is described in Algorithm 3.

Subdivide(q, d, E)

INPUT:
q: Quadrant to be subdivided
d: Depth of the terminal quadrants under q needs to be after subdivision
E: Set of topological edges in the model

DEFINITIONS:
children(q): Returns an empty set or a set of four child quadrants of the quadrant q
depth(q): Returns the depth of the quadrant q

ALGORITHM:

1: If d ≤ depth (q), then return.
2: If children(q) = {}

i. Create two bisecting edges, b1 and b2 , of q.
ii. Cut q into four quadrants q1, q2, q3, q4 with the two bisecting edges.
iii. children(q) = {q1, q2, q3, q4}
iv. ∀i ∈ {1, 2, 3, 4}depth(qi) = depth (q) + 1
v. Redistribute v ∈ vertex (q) to q1, q2, q3, or q4 that contains v.
iv. Distribute each intersection p between e and b1 and between e and b2 to
q1, q2, q3, or q4 that contains p [on its perimeter].
vii. ∀i ∈ {1, 2, 3, 4}EnforceBC(qi, Q,E)

3: Else, then call Subdivide(c, d, E) for each c ∈ children (q).

Algorithm 2: Subdivides the quadrant.
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EnforceBC(q,Q,E)

INPUT:
q: Quadrant that will be inspected and forced to meet the 2:1 balance condition
Q: Set of quadrants
E: Set of topological edges in the model

DEFINITIONS:
vertex(q): Returns the set of inserted vertices that are interior to the quadrant q
adjacent(q): Returns a set of terminal quadrants that are in Q and intersect with
p on an edge that has a non-zero length.
depth(q): Returns the depth of the quadrant q

ALGORITHM:
for q′ ∈ adjacent (q) do

Subdivide(q′,depth (q)− 1, E)

end for

Algorithm 3: Enforces the 2:1 balance condition.

Figure 2.3 continues off from Figure 2.2 and demonstrates the walkthrough of this

third of the spatial partitioning process on a concrete example. After constructing

the root quadrant, the spatial partitioning can start inserting vertices. The spatial

partitioning procedure will start with Node 0. Node 0 is inserted into the terminal

quadrant, which is the root quadrant in this step. No subdivision is necessary because

the depth of the root quadrant, 0, is equal to the mesh control parameter of Node

0 and the 2:1 balance condition is not violated. This step is shown in Figure 2.2(a).

This algorithm continues with inserting the next node, Node 1. Node 1 is inserted

into the root quadrant because the root quadrant is a terminal quadrant that contains

Node 1. The root quadrant must be subdivided because the mesh control parameter

of Node 1, 1, is greater than its depth, 0. During the subdivision of the root, the

geometric edges intersect the two bisecting edge that subdivides the root quadrant to

determine the shared vertices on the shared interfaces between two quadrants. The

vertices that were insert into the root quadrant, Nodes 0 and 1, are redistributed

to the corresponding child quadrants that contain them. In this case, both vertices

are redistributed to the bottom left quadrant. After the subdivision, the quadrant
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(0,vMCP=0)

(1,vMCP=1) (2,vMCP=2)

(3,vMCP=3)

(4,vMCP=1)

(a) Node 0 is inserted.

(0,vMCP=0)

(1,vMCP=1) (2,vMCP=2)

(3,vMCP=3)

(4,vMCP=1)

(b) Node 1 is inserted. The
root quadrant is subdivided
because MCP is not met.

(0,vMCP=0)

(1,vMCP=1) (2,vMCP=2)

(3,vMCP=3)

(4,vMCP=1)

(c) Node 2 is inserted. Bot-
tom right quadrant is sub-
divided because MCP is not
met.

(0,vMCP=0)

(1,vMCP=1) (2,vMCP=2)

(3,vMCP=3)

(4,vMCP=1)

(d) Node 3 is inserted. A
quadrant is subdivided be-
cause MCP is not met.

(0,vMCP=0)

(1,vMCP=1) (2,vMCP=2)

(3,vMCP=3)

(4,vMCP=1)

(e) 2:1 balance condition is
enforced.

(0,vMCP=0)

(1,vMCP=1) (2,vMCP=2)

(3,vMCP=3)

(4,vMCP=1)

(f) Node 4 is inserted.

Figure 2.3: Insertion of geometric vertices, quadrant subdivision, computation of the
corresponding intersections, and 2:1 balance condition.
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that contains Node 1, the depth of the bottom left quadrant, is equal to the the mesh

control parameter of Node 1. The 2:1 balance condition is not violated yet. Therefore,

the algorithm is finish with Node 1, and the figure is shown in Figure 2.2(b). The

algorithm then continues to the next node, Node 2. The terminal quadrant that

contains Node 2 is the bottom right quadrant. This quadrant must be subdivided

because the mesh control parameter of Node 2, 2, is greater than its depth, 1. Like

the previous subdivision, intersections are performed and vertices are redistributed.

After the subdivision, the mesh control parameter of Node 3 is equal to the depth of

the terminal quadrant that contains it. Like the rest, Node 3 is inserted to its terminal

quadrant. That terminal quadrant is subdivided because the depth is smaller than

the mesh control parameter. After the subdivision (including the redistribution of

vertices and intersections), the smaller quadrants violate the 2:1 balance condition.

Therefore, the 2:1 balance condition is enforced by subdividing the larger adjacent

quadrants, which are the bottom left and top right quadrants. The bottom left

quadrant have vertices in it. Therefore, during its subdivision, it will redistribute its

vertices to the smaller quadrants. Like always, intersections take place in both of

these quadrants. After subdivision of these two quadrants, the subdivided quadrants

meet the 2:1 balance condition. Returning to meeting the mesh control parameter

of Node 3, the terminal quadrant that now contains Node 3 has a depth that equals

to the node’s mesh control parameter. All quadrants meet the 2:1 balance condition,

and the algorithm can continue to the next node. Node 4 is inserted like the previous

nodes. After inserting Node 4, the algorithm finishes with inserting all of the vertices

in domain, and the algorithm will move onto inserting edges, which will be discussed

in the sections ahead.
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2.1.1.2 Mesh Control Parameter

The mesh control parameter (MCP) is a parameter that the user assigns to a

topological element. It controls the maximum size of the grid cells that contain the

topological element. Alternatively, the mesh control parameter control the number

of subdivisions the quadrant that contain the topological element must undergo. The

mesh control parameter can be specified by its unit length (maximum length or width

of the quadrant) or the number of subdivisions (depth in the tree data structure). In

this thesis, the mesh control parameter will be specified by its depth. The conversion

from unit length to its depth is found in (2.1) where Lr is the length of the starting

quadrant that contains the whole domain and Lmcp is the specified mesh control

parameter in unit length.

MCP =

⌈
log2

(
Lr
Lmcp

)⌉
(2.1)

where de operator is the ceiling operator that rounds up a real number to an integer.

As mentioned in the introduction, the mesh control parameter is topological at-

tribute. The mesh control parameter only affect the quadrants which contain or

partially contain its topological entity, namely vertex (vMCP), edge (eMCP) or face

(fMCP). This is illustrated in Figure 2.4.

The mesh control parameter is 0 by default if one is not assigned to a topological

entity. Additionally, if the mesh control parameter of a smaller dimensional topolog-

ical entity is less than the mesh control parameter of its associated greater dimen-

sional topological entity, then the smaller dimensional topological entity will inherit

the mesh control parameter of its associated greater dimensional topological entity.

For example, if the assigned mesh control parameter of an edge Ei is eMCPi = 2, and

the assigned mesh control parameter of its incident face Fj is fMCPj = 5, then the

mesh control parameter of Ei is eMCPi = 5.
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(a) MCP = 3 on vertex (b) MCP = 3 on edge (c) MCP = 4 on face

Figure 2.4: Mesh control parameter (MCP) on different topological entities. (a)
Vertex. (b) Edge. (c) Face.

2.1.1.3 2:1 Balance Condition

The 2:1 balance condition ensures that the edge length of a quadrant is no more

than twice as large or no less than twice as small as the length of any adjacent

quadrants. The purpose of the 2:1 balance condition is to eliminate bad quality

elements from smaller adjacent quadrants as shown in Figure 2.5(a). Figure 2.5(b)

shows the improvement in element quality if the 2:1 balance condition is enforced.

2.1.1.4 Inserting Edges

The second third of the spatial partitioning process is the insertion of edges. Dur-

ing this part of the process, the algorithm enforces that the depths of the quadrants

that an edge passes is greater than or equal to the mesh control parameter of that

edge and identifies the segments that need to be preserved for the successive trian-

gulation process. The quadrants that contain the edge can be retrieved from the

intersections with the grid and the two end points. If a retrieved quadrant does not

meet the mesh control parameter of that edge, then that retrieved quadrant will be

subdivided. This continues until all of the retrieved terminal quadrants meet the

mesh control parameter of the edge. Figure 2.6 illustrates this process.
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(a) A possible scenario where 2:1 balance condition between quadrants is
violated (in this case the ration of the largest to the smallest neighboring
quadrant edges are 4:1). The highlighted quadrant violates the 2:1 balance
condition, and its successive triangulation creates four skinny triangles.

(b) This figure is the same scenario as Figure (a), but 2:1 balance condition
between quadrants is enforced.

Figure 2.5: Benefits from enforcing the 2:1 balancing condition on the quadtree spatial
partitioning. Additional vertices that are added due to the 2:1 balance condition are
colored in red.
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(a) Obtain the terminal quad-
rants that contains the geo-
metric edge. These quadrants
are colored in yellow.

(b) Some quadrants are sub-
divided because they do not
meet the MCP of the edge.
Continue subdividing until
the quadrants that contain
the edge meet the MCP.

(c) All of the highlighted
quadrants meet the mesh con-
trol parameter of the edge.

Figure 2.6: Insertion of an edge (curve) with eMCP=3 into the quadtree space par-
titioning. Note that while the quadrants are refined, the new quadrrants mast be
re-clasified as boundary (yellow).

2.1.1.5 Inserting Faces

The final third, and final step, of the spatial partitioning process is the insertion

of faces. This part of the process enforces that the depths of the quadrants contain

a geometric face greater than or equal to the user-defined mesh control parameter of

that face. This part of the process starts off by classifying all of the empty quadrants

on the perimeter of the bounding box as exterior quadrants. The algorithm then

sweeps the grid for empty quadrants and classifies them as exterior quadrants. The

quadrants that contain edges are classified as boundary quadrants. The algorithm

then sweeps the grid, starting from previously encountered boundary quadrants, and

classifies the swept empty quadrants as interior quadrants. The interior quadrants

are then recursively subdivided until its depth is greater than or equal to the greatest

mesh control parameter of the faces they contain. Figure 2.7 is a demonstration of

this process on a geometric domain with a circular disk.
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(a) The algorithm classifies
the quadrants on the perime-
ter of the bounding box as ex-
terior quadrants.

(b) The algorithm sweeps for
exterior quadrants.

(c) The algorithm sweeps for
interior quadrants.

(d) The algorithm recursively
subdivides interior quadrant
to mesh control parameter of
its contained face.

Figure 2.7: Insertion of an face (circular disc) with fMCP=4 into the quadtree space
partitioning. Note that while the quadrants are refined, they mast be classified as
interior, exterior and bounary quadrants.

2.1.2 Successive Triangulation

The purpose of the successive triangulation is to produce a triangulation in pieces.

The separate triangulations as a whole form the triangulation of the domain. The

successive triangulation procedure follows after the spatial partitioning procedure is

finished. The successive triangulation starts with a triangulation of two isosceles right

triangle as Figure 2.8(a). It then inserts all vertices as illustrated in Figures 2.8(b)

and (c). Finally, the successive triangulation preserve the edges by stitching them

as shown in Figure 2.8(d). The critical step in the successive triangulation process
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is to produce a globally consistent mesh while independently meshing the quadrants.

This can be achieve with two different approaches: (a) having a conforming DT at

each quadrant with no Steiner points at the quadrant boundaries; or (b) with a set of

predefined Steiner points on quadrant edges, that will be used by the DT refinement

algorithm of each neighboring quadrant. Each quadrant edge should be constrained

to have no Steiner verticies on it.

(a) Each quadrant is triangu-
lated using a template.

(b) The vertices on the
perimeter of the quadrant are
inserted.

(c) The vertices in the interior
of the quadrant are inserted.

(d) The missing edges are
stitched.

(e) Triangulation

Figure 2.8: Overview of the successive triangulation steps through an example
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2.1.2.1 Conforming Delaunay Triangulation

Introducing Steiner points on the boundary will produce a similar triangulation

shown in Figure 2.9. If quadrants are forced to match, then there will be some

dependencies on adjacent quadrants. The conforming Delaunay triangulation will

achieve this constraint by using the quadrant as the bounding box of the triangulation

and inserting vertices on the boundary before any interior vertices.

Figure 2.9: The right quadrant introduces the red point. The triangulation on left
does not match the triangulation on the right on the interface, or the green edge.

In the successive triangulation process, the Delaunay triangulation, using Bowyer-

Watson algorithm, is performed on the points that are local to the quadrant. The

Delaunay triangulation starts with a triangulated template of a bounding box, defined

by the corners of the quadrant. This triangulated template is shown in Figure 2.10.

The vertices on the boundaries are inserted before the vertices that are interior to the

quadrant. After inserting the interior vertices, the algorithm does a check for missing

edges and preserves them. The algorithm stitches the missing edges by inserting

points where the missing edges or segments intersect the triangulation. An example

of the stitching of edges are shown in Figure 2.11.
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Figure 2.10: Triangulated template of a quadrant

Figure 2.11: Preservation of geometric edges in a quadrant by stitching. The missing
blue edge on the left figure is recovered on the right by recursively inserting the
intersection vertex of the edge with the existing mesh edges via the Bowyer-Watson
algorithm.

2.1.2.2 Delaunay Refinement

Any conforming triangulation method can be used as a successive triangulation

method. Delaunay refinement algorithms produce conforming Delaunay triangula-

tions. In addition, Delaunay refinement algorithms introduce Steiner points into the

triangulation to improve element quality. Ruppert’s Delaunay refinement algorithm

is one of the earliest work in Delaunay refinement, and it is described in the introduc-

tion. In this section, the Delaunay refinement algorithm will be used as the successive

triangulation method. Figure 2.12 shows an overview of this process. Before perform-

ing a Delaunay refinement algorithm on each quadrant, the algorithm needs to take
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each quadrant from the spatial partitioning process and refine the perimeter of the

quadrants.

(a) Spatial partitioning (b) Refine the perimeters of
quadrants

(c) Triangulate each quad-
rant with a Delaunay refine-
ment algorithm

Figure 2.12: Overview of the successive triangulation method with a Delaunay re-
finement algorithm. (a) Space partitioning of the geometric model. (b) Refinement
of the quadrant boundaries. (c) Delaunay refinement of each quadrant.

When using Delaunay refinement algorithms, it is important to control where

Steiner points are inserted. Otherwise, there will be problems on the perimeter of

the quadrant as shown in Figure 2.13. This is an example of nonconforming trian-

gulation. A nonconforming triangulation is a triangulation with triangles that may

have additional vertices on their edges. Figure 2.13 illustrates the three triangles that

make this triangulation a nonconforming triangulation; they are colored in blue and

orange.

This problem arise only when an upper bound on the size of element is specified in

the Delaunay refinement algorithm. Without the upper bound on the size of element,

the Delaunay refinement algorithm will return a conforming Delaunay triangulation

that was used as a successive triangulation method earlier in this section.

To address this issue, the edges along the perimeter of the quadrant are constrained

edges. These edges must be in the triangulation, and each edge cannot be represented

by more than one edges from the mesh. However, more work is needed to produce

a better quality triangulation. Figure 2.14 illustrates the poor quality elements that
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Figure 2.13: Possible non-conforming meshing between quadrants if the Delaunay
refinement is independently applied on each neighboring quadrant.

Figure 2.14: Triangulation of an empty quadrant with the edges on the perimeter of
the quadrant as constrained edges.

are caused by only making the edges on the perimeter of the quadrant as constrained

edges.

In the figures that are shown in this subsection, the triangulation is generated

by using a Delaunay refinement algorithm with the maximum area as a criteria. To

address the problem with the quality, the edges along the perimeter of the quadrant

need to be subdivided until their lengths are less than:

lt =

√
4√
3
Amax (2.2)

39



where Amax is the specified upper bound on the element area. The threshold length

lt in (2.2) has the same length as a side of an equilateral triangle with the area Amax.

Figure 2.16 illustrates a triangulation with two discussed resolutions accommodated.

Figure 2.15: Refinement of the quadrant boundaries. Vertices on the quadrant bound-
aries are no more than the threshold length lt apart as defined in (2.2).
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Figure 2.16: Combined quadtree and successive triangulation, where the triangulation
is performed by the Delaunay refinement from the Triangle [16] code. Delaunay
refinement algorithm as a successive triangulation method. The edges along the
perimeter of the quadrant are set to be constrained edges and subdivided until it is
smaller than the threshold length.
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2.1.3 Mesh Quality Improvement

The purpose of mesh quality improvement module is to eliminate poor quality

elements from the triangulation by merging nearby vertices or collapsing skinny tri-

angles as shown in Figure 2.17. However, the approximation of the domain will be

traded off for each merge operation. The merge tolerance controls the merging dis-

tance and is specified by the user at input along with the geometric domain and the

mesh control parameters. The merge tolerance is an user-defined ratio between the

quadrant’s length and the merge distance. The merge tolerance is one parameter for

the whole domain and can be any real value between 0 and 0.5. The merging distance

is defined as follow:

dm = mt Length (SharedTreeElement (u, v)) (2.3)

where mt is the merge tolerance. The “SharedTreeElement” function returns the

edge of a quadrant or a quadrant which is shared by the two vertices u and v. The

“Length” function measures the length of an edge or the length of any edge which is

incident to the given quadrant.

(a) Before merging the two vertices. (b) After merging the two vertices.

Figure 2.17: Elimination of poor quality (skinny) triangles by merging select ver-
tex points from resulting from the intersection of the quadrant and geometry to a
quadrant vertex.

There are three types of vertices in this algorithm: the corners of the quadrants,

intersection points on the boundary of the quadrants, and the vertices of the domain.

The corners of the quadrants are fixed, and they will never merge or warp to any
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other vertices. If any of the vertices from the other two categories are within the

merging distance from the corners, then these vertices will merge to the corners. If

the vertices from the domain are within the merging distance from an intersection

vertex on the boundary of the quadrant, then the vertices from the domain will merge

to the intersection vertex. If a vertex from the domain is within a merging distance

from a corner of a quadrant and an intersection vertex, the vertex will merge to the

corner.

(a) Intersection vertex merges
to corner vertex.

(b) Domain vertex merges to
corner vertex.

(c) Domain vertex merges to
intersection vertex.

Figure 2.18: Merge cases that is considered in this research. The top figures show
the states before the merge process, and the bottom figures show the states after the
merge process. The blue and green vertices are within the merging distance. The
blue vertices are merged to the green vertices.
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2.1.4 Quality Guarantees

Although there are no mathematical quality guarantees that is offered by merging

nearby vertices in general, there are mathematical quality guarantees for a limited

number of use cases that meet the following conditions:

Condition 2.1.1:

• Quadrants do not have more than two intersections;

• Quadrants do not have more than one intersection on the same edge;

• Quadrants do not contain vertices from the domain or vertices from preserving

edges.

Only these quadrant that meet these conditions were considered because they

have a lower bound on the quality under the merging conditions shown in Figure

2.18. The lower bound does not exist for quadrants with multiple intersections on

a single edge because the intersection can be very close. If this distance approaches

0, then the quality of the element that incident on these two vertices approaches 0.

This is illustrated in Figure 2.19.

w

Figure 2.19: Case I, where the present merge strategy fails to filter poor quality
triangles. limw→0Q (4) = 0, where 4 is the red triangle and Q measures the quality
of the triangle.
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Additionally, the lower bound does not exist for quadrants that contain vertices

from the domain. Figure 2.20 illustrates an example that shows there is no lower

bound. It shows a vertex from the domain that is equidistant from the bottom-left

and top-left corners of the quadrant. The merge tolerance is at the maximum, 0.5,

and any vertices that is interior to the yellow circles are merged to the bottom-left

corner or top-left corner. As the vertex approaches the midpoint of the edge that

incident on the two corners, the quality of the red triangle approaches 0. The domain

vertex will not merge to either corner as it approaches the midpoint because it is not

within its merge distance. Therefore, there are no lower bound for quadrants that

contain vertices from the domain.

w

Figure 2.20: Case II, where the present merge strategy fails to filter poor quality
triangles. limw→0Q (4) = 0, where 4 is the red triangle and Q measures the quality
of the triangle. The yellow areas marks the maximum merging distance of their
corresponding centers.

Out of the quadrants that meet Condition 2.1.1, the assumed candidates for the

quadrant with the poorest quality element are found in Figure 2.21. For each of the

figure, its poorest quality element is colored red. Defining the merge tolerance to

be mt and the length of the quadrant to be 1 unit, the distance from each point on

the edge to its closest corner is mt. The computed qualities of these triangles are

found in Table 2.1. The lower bound would be the minimum of these qualities at a
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given merge tolerance. In the domain from 0 to 0.5, the expression in Table 2.1(a)

will always yield the smallest value. Therefore, if all of the terminal quadrants meet

Condition 2.1.1, the quality cut-off is:

qt =
mt (1−mt)

√
3

2m2
t −mt + 1

. (2.4)

Figure 2.21 Computed Quality

(a) mt(1−mt)
√
3

2m2
t−mt+1

(b) mt(1−mt)
√
3

m2
t−2mt+1

(c) mt

√
3

m2
t+1

(d) mt

√
3

m2
t+1

(e) mt

√
3

m2
t+1

Table 2.1: The table computes the quality of the worst triangles of each triangulation
in Figure 2.21.

2.2 Implementation

An implementation of this algorithm, for two-dimensional problems, will be deliv-

erable at the end of the master thesis. The implementation will be written in C++

and uses the Open CASCADE framework [32]. Open CASCADE is a solid modeling

framework, and it will be used to create an abstraction for intersection operations

and modeling generic curves.

2.2.1 Data Structures

The data structures are divided into three categories: modeling, quadtree, and

triangulation. Data structures in the modeling category will describe the model. As

described in the introduction, a geometric model D = {G, T,A} is a collection of

geometries G, topologies T , and attributes A. Data structures will be created for

elements in the attributes domain and the topology domain. No data structures will
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(a) (b)

(c) (d)

(e)

Figure 2.21: Merge candidate for triangles based on Condition 2.1.1. The red triangles
will be removed to provide a low bound on the mesh quality.
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be created for the geometry domain because this will be done by a third party library.

Therefore, data structures that are created for modeling purposes are:

• Vertex - a 0-dimensional topological element that describes the topology of the

model

• Edge - a 1-dimensional topological element that describes the topology of the

model

• Face - a 2-dimensional topological element that describes the topology of the

model

• Attributes - a collection of attribute elements

• AttributeElements - abstract data type for attribute elements.

Data structures in the quadtree category describe the bookkeeping that is needed

in the spatial partition process. These data structures are:

• Corner - a corner of a quadrant. This is needed for the bookkeeping of vertices

that are merged to the corner of the quadrants.

• Sectant - an edge of a quadrant. This is needed for the bookkeeping of the

intersections with the grid and model. These intersections are generally shared

by two quadrants. The successive triangulation for a quadrant will call this data

structure to insert these intersections into the triangulation of the quadrant.

• Quadrant - a representation of a quadrant. It has a reference to the four child

quadrants if it is subdivided. It also have one of the following classification:

OUTSIDE, BOUNDARY, and INSIDE.

• IntersectionVertex - a point that is created from intersecting the geometric edge

with the grid
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• PreserveEdge - an edge that needs to be preserved in the triangulation of the

quadrant. This is a first-order approximated, discretized edge of a geometric

edge

Finally, the successive triangulation will need these data structures to represent

the triangulation.

• MeshPoint - This is an inserted point in the triangulation.

• Triangle - This is a triangle from a triangulation.

2.2.2 Functions

The functions also divided into three categories: spatial partitioning, successive

triangulation, and mesh quality improvement. The following functions are needed to

perform the spatial partitioning component:

• intersect tree with domain ( 2 Sectants, Curve ) - intersects the sectant with

the curve and stores the intersections in the corresponding halves of the sectants

• subdivide ( Quadrant, level ) - divides quadrant into four equal quadrants until

the depth reach the specified level

• enforce 2 1 ( Quadrant ) - enforces the 2:1 balance condition

• partition ( Quadrant ) - partitions the quadrant until it meets the mesh control

parameter of the topological elements in it.

The successive triangulation only needs the following functions:

• refine ( Quadrant ) - divides the perimeter of the quadrants into smaller seg-

ments
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• triangulate ( Quadrant ) - triangulates the quadrant and preserve the edges

in it. This is a virtual function that needs to be overridden with a triangula-

tion algorithm, such as Ruppert’s Delaunay refinement algorithm, Paul Chew’s

Delaunay refinement algorithm, and a basic conforming Delaunay triangulation.

The mesh quality improvement only needs the following function:

• mergeVertices( Quadrant ) - merge nearby vertices
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CHAPTER 3

RESULTS

Before looking at the results, a systematic way to compare the quality of the trian-

gulation is needed. This is needed to study the relationship between the mesh control

parameter and the merge tolerance with the triangulation. Having a heuristic that

quantitatively measures the quality of the triangles can achieve this. The heuristic

needs to put the good quality elements on one end of the spectrum and bad quality

elements on the other end of the spectrum. The quality assessment that is used in

this research is:

Q (T ) =
4
√

3 A (T )

h21 + h22 + h33
(3.1)

where T is a triangle in the mesh, A(T ) is the area of the triangle, and h1, h2, and

h3 denote the three lengths of the triangle’s edges [8]. The range of this assessment

yields from 0 to 1. The quality is at minimum for skinnier/collinear triangles, and the

quality is at maximum for equilateral triangles. In addition to knowing the quality of

the most desirable and undesirable elements, it is good to know the quality of some

common triangles to this research. A common triangle to this research is the isosceles

right triangle, or the 45◦-45◦-90◦ triangle. The quality of this triangle is 0.866. This

triangle can be mostly found in quadrants that are interior or exterior to the domain.

The other common triangles and their quality assessments are found in Figure 3.2.

Figure 3.1 shows the quadrants that contain these common triangles.
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Interior/Exterior Quadrants

Graded Quadrants

Figure 3.1: The compilation above composes all of the possible graded, interior, and
exterior quadrants in a triangulation. These quadrants are very common in this work.
Thus, the frequency of the common triangles is high because they can be found in
these quadrants.
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Common Triangles
Picture Name Quality (Q)

45◦-45◦-90◦ Triangle
√
3
2
≈ 0.8660

1:2 Right Triangle 2
√
3

5
≈ 0.6928

Isosceles Triangle 01 4
√
3

7
≈ 0.9897

Isosceles Triangle 02
√
3
2
≈ 0.8660

Isosceles Triangle 03
√
3
2
≈ 0.8660

Figure 3.2: The list above calculates the quality Q of each common triangle.
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3.1 Delaunay Triangulation

The conforming Delaunay triangulation algorithm was the first module to be im-

plemented because this module is the easiest module to implement and has a straight

forward functional requirement. Additionally, the functional requirement can be

tested independently and throughly from the rest of the code. Figure 3.3 is a Delau-

nay triangulation of a square that is generated from this module, and Figure 3.4 is a

conforming Delaunay triangulation of the serial Planar ultra-wideband modular an-

tenna (PUMA) [33]. The red vertices in the triangulation are Steiner points that are

inserted to preserve missing edge segments in the triangulation. No Steiner vertices

are needed for the square because no edges are missing from the triangulation when

the all of the vertices in the model are inserted. In both of these triangulations, there

are some poor quality elements, especially in the PUMA as shown in Figure 3.4(c).

(a) Triangulation. Generated 10 trian-
gles in 0.051 seconds.
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(b) Quality distribution.

Figure 3.3: The conforming Delaunay triangulation of a square is shown on the left,
and its quality distribution is shown on the right.
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(a) Geometric model of PUMA. (b) Triangulation. Red vertices are
Steiner points that are inserted to pre-
serve edges. Generated 120 triangles in
0.050 seconds.
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Figure 3.4: Conforming Delaunay triangulation of PUMA.
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3.2 Uniform Grid

After the implementation of the successive triangulation process, an uniform sub-

division of the entire computational domain is implemented as the spatial partition-

ing process. The uniform subdivision will subdivide all quadrants until its depths are

equal to a common mesh control parameter. From these two implementations, the

effects that mesh control parameter on the quality and approximation of the domain

can be studied.

Figures 3.6 and 3.7 are triangulations of a continuous disk, shown in Figure 3.5,

with the mesh control parameter 3 and 5 on the entire computational domain. The

two figures demonstrate that increasing the mesh control parameter will produce

better geometric approximation of the circular disk. This feature of adaptively con-

forming the mesh to parametric curves is a very attractive feature that has significant

impact in FEM problems. Increasing the mesh control parameter will decrease the

element size by definition, and it can also be seen in the two figures. In the re-

spective quality distribution shown in Figures 3.6(b) and 3.7(b), increasing the mesh

control parameter will increase the frequency of the triangles with the quality of ap-

proximately 0.866 in relative to the number of elements in its triangulation. These

triangles with the quality of approximately 0.866 are mostly 45◦-45◦-90◦ triangles,

which are mentioned earlier in this section. They are found mostly in quadrants that

interior or exterior to the domain.
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Figure 3.5: Smooth circular disk that is used to create the triangulations shown in
Figures 3.6 and 3.7.

(a) Triangulation. Generated 152 trian-
gles in 0.194 seconds.
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Figure 3.6: Uniform quadtree triangulation of a circular disk inside a box as depicted
in Figure 3.5. (a) Triangulation with uniform (balanced) quadtree spatial partitioning
of level 3 (b) Mesh quality distribution.
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(a) Triangulation. Generated 2152 triangles in 1.652 sec-
onds.
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Figure 3.7: Uniform quadtree triangulation of a circular disk inside a box as depicted
in Figure 3.5. (a) Triangulation with uniform (balanced) quadtree spatial partitioning
of level 5 (b) Mesh quality distribution.
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3.3 Non-uniform Refinement

Figure 3.8(a) to (c) are the generated results from assigning a mesh control pa-

rameter on the vertices (vMCP), a mesh control parameter on the edges (eMCP),

and a mesh control parameter on the faces (fMCP) respectively. Figure 3.8(d) is the

histogram of their respective quality. Assigning the mesh control parameter on the

face will put the minimal number of elements exterior to the domain. This option

may be useful in FEM computations, where the field regularity can be known a-priori

from the shape of the domain, and effectively leading to a näıve refinement strategy

that could be used as the starting point for more advanced adaptive mesh refine-

ment computations. Assigning the mesh control parameter on the edge will put the

minimal number of elements everywhere except along the perimeter of the domain.

From Figure 3.8(c) to Figure 3.8(b), the triangulations do not look much differ-

ent except for the interior of the model. The square in Figure 3.8(c) is uniformly

triangulated with isosceles right triangles, and the square in Figure 3.8(b) is triangu-

lated with graded elements. The quadrants that are interior to the square are empty.

Therefore, each of these quadrants are triangulated with one of the graded quadrants

that is shown in Figure 3.1. These quadrants will create only the triangles that are

shown in Figure 3.2. There are three different qualities for these triangles: 0.866,

0.69, and 0.9897. As shown in Figure 3.8(d), this are the only three qualities where

the frequencies of these two triangulations are different.

3.4 Merge Operations

Poor quality triangles may still result in denser meshed regions. Figure 3.9 high-

lights two poor quality triangles that contributed to the quality below 0.2 shown in

Figure 3.7(b). However, point merges can eliminate these triangles and reduce the

frequency at low qualities. Figure 3.10 highlights the same area as the Figure 3.9

and depicts that two poor quality triangles are eliminated by the point merge. The
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(a) Mesh control parame-
ter is assigned on the ver-
tices. Generated 312 tri-
angles in 0.251 seconds.

(b) Mesh control param-
eter is assigned on the
edges. Generated 944 tri-
angles in 0.613 seconds.

(c) Mesh control param-
eter is assigned on the
faces. Generated 1584 tri-
angles in 1.100 seconds.
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(d) Side-by-side comparison of quality

Figure 3.8: Non-uniform refinement. (a) Node refinement, where MCP is assigned to
all four nodes. (b) Edge refinement, where MCP is assigned at the four edges of the
square. and (c) Face refinement, where the MCP is assigned on the face of the square
(d)Histogram of the resulting mesh qualities.
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Figure 3.9: Poor quality triangles (highlighted in the yellow area) from the uniform
triangulation of a circle in Figure 3.7 in a transparent yellow area.

Figure 3.10: Improving the mesh quality of Figure 3.9 by merging geometry points to
the quadtree corners and effectively eliminating the skinny triangles, but introducing
some geometric error.

zoomed-in area shown in Figure 3.10 belongs to the triangulation shown in Figure

3.11. Its quality distribution is displayed on the right of the triangulation, and the

merge tolerance for this example is 0.10. The quality distributions in Figure 3.11

and Figure 3.7 confirm that some poor quality elements are filtered out from merging

nearby vertices. In this example, 18 triangles (of 2152 triangles in the triangula-

tion without any point merges) were eliminated, and 11 (0.5%) of those triangles

contributed to the 11 worst triangles in the triangulation.
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(a) Triangulation. Generated 2134 trian-
gles in 1.638 seconds.
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Figure 3.11: The same circle as in Figure 3.7 is uniformly triangulated with the same
mesh control paramter, 5. In this case, the point merges are enabled and its merge
tolerance is 0.10. The triangulation is on the left, and its quality distribution is on
the right.

As illustrated in Figure 3.11(a), small deformations to the original approximation

of the circular disk are formed due to the point merges. Visually, the original approxi-

mation (without merges) is closer to the original circle model than the approximation

due to point merges. A comparison of their approximation errors can confirm this

observation scientifically. The following error expression measures the approximation

error for the circle:

εcirc =

∫ 2π
0

∣∣∣dAm

dθ
− r2

2

∣∣∣ dθ
πr2

(3.2)

r2

2
is the ideal dA

dθ
of the circle, and dAm

dθ
is the measured dA

dθ
from the triangula-

tion. Using this expression for the approximation error, the error for Figure 3.7(a) is

0.00363321, and the error for Figure 3.11(a) is 0.00464447. Figure 3.12 shows a plot

(three sample points) of the relationship between the error and merge tolerance. The

approximation error grows larger as the merge tolerance increases.
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Figure 3.12: Plot of the relationship between approximation error and merge tolerance
for the circle model.

As previously discussed, increasing the merge tolerance filters out the poor quality

elements by eliminating them. Figures 3.13(b), (d), and (f) shows that increasing the

merge tolerance does more than reducing the frequency of poor quality elements; it

completely filters out elements whose quality is lower than a cut-off threshold. The

cut-offs are calculated using (2.4), and they are shown as a dotted red line in Figures

3.13(b), (d), and (f). These figures confirms that the cut-off is directly proportional to

the merge tolerance because no elements below the cut-off exist. In the triangulations

shown in Figure 3.13, there are no quadrants that have multiple intersections on a

single edge or have more than two intersections. Additionally, there are no vertices

from the domain in the circle model, and, thus, there are no vertices that are interior to

a quadrant. Therefore, the calculated cut-off in (2.4) applies to the four triangulations

in Figure 3.13. As shown in their histograms, there are no elements with a quality

below the cut-off.
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(a) No Merge. Generated 606 triangles in 0.452 sec-
onds.
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(b) Quality distribution.

(c) Merge Tolerance = 0.10. Generated 604 triangles
in 0.456 seconds.
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(d) Quality distribution.

Continue to next page for more results with higher merge tolerance.
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(a) Merge Tolerance = 0.20. Generated 601 triangles
in 0.472 seconds.
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(b) Quality distribution.

(c) Merge Tolerance = 0.30. Generated 599 triangles
in 0.491 seconds.
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Figure 3.13: Effect of merge on mesh quality. (a) There are no calculated quality
cut-off when the merge tolerance is 0. (b) The quality cut-off is at 0.1694. (c) The
quality cut-off is at 0.3149. (d) The quality cut-off is at 0.4133.
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3.5 Realistic Two-Dimensional Models

Figure 3.14 shows a model of a torus and its triangulation. The figure demon-

strates that part of the triangulation can be removed. In this case, the hole in the

torus was marked for removal. As shown in the triangulation, the hole is removed.

There are no triangulations in the interior of the hole. An user may be interested in

this option if the user are not interested in the elements in a particular area. Figure

3.15 shows a triangulation of a printed circuit board (PCB) [34]. The mounting holes

on the PCB are removed in its triangulation because they are of no interest.

(a) Geometric model of a torus. (b) Triangulation. Generated 712 triangles
in 0.524 seconds.

Figure 3.14: Triangulation of a torus. The mesh generator can mesh shapes with
holes and remove them from the triangulation. (a) Geometric model of a torus with
a fMCP = 5. (b) Triangulation of a torus.

All of the demonstrated examples up until now have the same mesh control param-

eter assigned to all of its edges. Figure 3.16 shows it is possible to assign mesh control

parameters to a subset of edges in the domain. The red edges in Figure 3.16(a) are

the only edges that are assigned mesh control parameters. In this example, a mesh

control parameter of 7 is assigned to all of the red edges, and its triangulation is

shown in Figure 3.16(b).
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(a) Triangulation with merge tolerance = 0.1. Generated
16620 triangles in 11.137 seconds.

Figure 3.15: Triangulation of traces on printed circuit board (PCB). The mounting
holes are removed from the triangulation.

(a) The red edges are the only entities assigned
mesh control parameter. The red edges have
the mesh control parameter 7.

(b) Triangulation of BAVA. Generated 3298
triangles in 2.206 seconds.

Figure 3.16: Different mesh control parameters on different topological elements. (a)
Model of balanced antipodal Vivaldi antenna (BAVA) [35] (b) Triangulation of BAVA.
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Figure 3.17 is a model of the exponential flare piece from a Vivaldi antenna [36].

Figure 3.18 shows a triangulation of the Vivaldi flare with the merge tolerance of

0.2. On the right figure, the generated mesh is not topologically consistent with the

original Vivaldi flare because there are two shapes in the output whereas there is one

in the model. The two shapes resulted in the output because the sampled points at

the thin area are merged to the same points. Increasing the mesh control parameter

on the two edges will recover the thin area. This is shown on Figure 3.18(a), whose

mesh control parameters on the edges increased from 4 to 6.

Figure 3.17: Model of the flare piece from a Vivaldi antenna.
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(a) Mesh control parameter 6 is assigned to all edges of the
domain. Generated 1319 triangles in 1.07 seconds.

(b) Mesh control parameter 4 is assigned to all edges of the
domain. Generated 268 triangles in 0.261 seconds.

Figure 3.18: Topological inconsistencies resulting from poor usage of MCP and merge
tolerance. (a) Case where the merge=0.2 and the eMCP=6, leading to a topologicaly
consistent mesh. (b) Case where the merge=0.2 and the eMCP=4, leading to a
topologicaly inconsistent mesh.
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3.6 Discretized Curve and Smooth Curves

A smooth curve may have many advantages over its discretized counterpart. A

discretized curve at input may lead to bad quality elements because there are no

lower bound on the quality on quadrants that contain a vertex from the domain with

point merges as discussed in the previous chapter. Figure 3.18(b) shows a similar

scenario as Figure 2.20 in a practical run. Such problems do not exist in the case of a

smooth curve. To show this, Figure 3.18(e) compares the quality distribution of the

two versions side-by-side. The discrete Vivaldi flare has four bars below 0.4 whereas

there is none for the smooth Vivaldi flare. Other than the four bars below 0.4, the

shape of the two distribution are identical.

The number of discretized edges and vertices increases the modeling accuracy and

the approximation of its original model. The approximations are fixed for all mesh

control parameters in the triangulation without point merges. Table 3.1 shows that

the errors are approximately equal across all mesh control parameters for a fixed

number of discretized points. However, the merging process moves vertices around to

eliminate bad quality elements. In almost all cases, the approximation will be worse

than it is without the merging process. Increasing the mesh control parameter will

restore the approximation because some segments of the edges in the design model

are restored.

Approximation Error Due to Number of
Discretized Points and Mesh Control Parameter

Number of MCP
Discretized Points 2 3 4 5 6

10 0.0630883 0.0608727 0.0624917 0.0645107 0.0641969
20 0.0156848 0.0152223 0.014714 0.0161502 0.0163587

Table 3.1: Approximation error due to the number of discretized points and mesh
control parameter.
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(a) Discrete curve. Generated 1310 trian-
gles in 1.204 seconds.

(b) Zoomed area of the highlighted area in
the left figure.

(c) Smooth curve. Generated 1290 trian-
gles in 1.101 seconds.

(d) Zoomed area of the highlighted area in
the left figure.

Continue to next page for the quality distribution.
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(e) Side-by-side comparison of the smooth Vivaldi flare and the discretized Vivaldi flare.

Figure 3.18: Meshing of discretized vs. smooth parametric curves. In all cases,
the merge tolerance is 0.3 and the edge MCP=6. (a) Mesh of discrete parametric
curve. (b) Zoomed view of a region around the curve (a). (c) Mesh of the smooth
parametric curve (d) Zoomed view of a region around the curve in (c). (e) Side-
by-side comparison of the mesh quality histograms, showing the smooth parametric
curve model has the better mesh quality.
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Using smooth curves may not necessarily produce a better approximation of the

domain than discretized curves at a low mesh control parameter. At a greater mesh

control parameter, mesh created from smooth curves, if exactly model the ideal curves

of the domain, will always approximate the domain better than discretized curves.

Unlike discretized curves, increasing the mesh control parameter will increase its

approximation whether there are point merges.

Figure 3.19 is a model of the Vivaldi with both its conducting piece and dielectric

piece, and its triangulations are shown in Figure 3.20. Figure 3.20(a) is a triangulation

of the Vivaldi that has the same merge tolerance in the entire domain. The left and

right side of the flare are the only topological elements that carry a non-zero mesh

control parameter. Segments of the left and right edges conducting piece (red face)

merge to the grid because segments of both edges are in quadrants of different sizes.

Users may find this undesirable. To fix this, each topological element has its own

merge tolerance. In Figure 3.20(b), the left and right edges of the conducting piece

have the merge tolerance of 0.

Figure 3.19: Model of the Vivaldi antenna, with both conducting (red) and dielectric
(green) pieces.
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(a) All edges and vertices conform to
the global merge tolerance. Gener-
ated 2382 triangles in 0.812 seconds.

(b) Outer edges on the dielectric
piece are marked for “no merge.”
Generated 2387 triangles in 0.806
seconds.

Figure 3.20: User enabled merge option for a Vivaldi antenna. (a) Merging all edges
of the model to the quadtree nodes. (b) selectively merging only the exponential flare
and circular region edges.

3.7 Handling Models from a Poor Quality CAD Tool

When creating a model on a poor quality CAD tool, it is possible for a created

model to be topologically different from the model that the user is trying to make. For

example, in Figure 3.21, the user is trying to create two touching squares. Instead,

the user created two shapes that are not geometrically squares. Figure 3.21(a) zooms

in on the spacing of the two points that should have been the same vertex. The

two points are far enough apart to be considered as two different topological vertices.

Both of the conforming Delaunay and Delaunay refinement algorithms have their own

troubles meshing this problem. The conforming Delaunay triangulation has a very

skinny triangle in its triangulation because the worst quality is in the thousandths

digit. The Delaunay refinement algorithm created many triangles in an attempt

to improve the quality of this skinny triangle. Using this combined quadtree and

Delaunay method, as shown in Figure 3.21(d) and Figure 3.21(e), this problem is

treated as two touching shapes due to the point merges. Under the corresponding

figures, the measured worst quality and the number of elements are listed. With this
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(a) Geometric model (b) Conforming DT (c) Delaunay refinement

Worst Quality: 0.00535 Worst Quality: 0.0346
Number of Elements: 20 Number of Elements: 790

(d) Both faces with fMCP = 4 (e) No mesh control parameter

Worst Quality: 0.241 Worst Quality: 0.152
Number of Elements: 406 Number of Elements: 14

Mesh Control Parameter: 4 Mesh Control Parameter: 0
Merge Tolerance: 0.1 Merge Tolerance: 0.1

Figure 3.21: Model created from a poor quality CAD. (a) Two touching squares are
created in a poor quality CAD tool. The circle zooms in on the bottom region of the
“supposedly” touching edges. (b) Conforming Delaunay triangulation of the model
shown in Figure (a). (c) Delaunay refinement triangulation of the model shown in
Figure (a). (d) The two squares are touching in the triangulation because the vertices
along the touching edges merges to a vertex on the other square. The two squares
have fMCP = 4. (e) The two squares are touching in the triangulation because the
vertices along the touching edges merges to a vertex on the other square. The two
squares have no mesh control parameters.
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combined method, the smallest quality increases, and the user have control over the

number of elements by controlling the mesh control parameter.

3.8 Elements vs. CPU Time

The graph in Figure 3.23 plots the CPU time to generate a triangulation of the

serial Planar ultra-wideband modular antenna (PUMA) [33] as a function of the

number of elements. Figure 3.22 illustrates the model of the PUMA and its trian-

gulation. Both spatial partitioning process and successive triangulation (with and

without merge) have the time complexity of O (n log n). The graph shows the run

time of the successive triangulation process is greater than the run time of spatial

partitioning process at greater mesh size. As mentioned in the previous section, the

triangulation of the quadrant is independent of the triangulation of another quad-

rant. As a result, the success triangulation can be executed in parallel. However,

the successive triangulation is done serially here, and the the execution time will be

greatly reduced if it had been implemented to run in parallel. At smaller mesh size,

the successive triangulation finishes more quickly than the spatial partitioning pro-

cess. Table 3.2 shows the recorded numerical time of the run at various mesh control

parameters. At mesh control parameters below 8, the recorded times of the successive

triangulation is less than the recorded time of the spatial partitioning process. This

combined method will be compared against Shewchuk’s mesh generator “Triangle”

[16] because “Triangle” is one of the most well known two-dimensional mesh genera-

tor. Therefore, in comparison to ”Triangle”, this mesh generator takes approximately

10 times longer to generate a mesh.
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(a) Geometric model of the PUMA. (b) Triangulation with eMCP=5.
Generated 1239 triangles in 0.753
seconds.

Figure 3.22: Model and triangulation of the PUMA.
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Figure 3.23: CPU time vs. number of generated elements for the PUMA example.
The figure also compares the cases with and without merge. Both curves for the
spatial partitioning and triangulation are O (n log n).
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CPU Time (seconds)
MCP No Point Merges Merge Tolerance = 0.30

Partition Triangle Total Partition Triangle Total
3 0.067513 0.031052 0.107759 0.072432 0.027553 0.108264
4 0.090464 0.039371 0.140695 0.095089 0.032293 0.136708
5 0.128763 0.061722 0.204646 0.129539 0.054609 0.19737
6 0.193367 0.120157 0.336218 0.185057 0.105719 0.312138
7 0.334184 0.290727 0.675689 0.297899 0.247918 0.591437
8 0.656288 0.814487 1.60603 0.58241 0.759361 1.47167
9 1.51417 2.51505 4.44364 1.3718 2.40902 4.18529
10 4.15294 8.83598 14.4356 3.84706 8.56187 13.8425

Table 3.2: Table shows the recorded CPU times for different mesh control parameter.

3.9 Delaunay Refinement as Successive Triangulation Method

Finally, users have the option to substitute the conforming Delaunay triangulation

algorithm with a Delaunay refinement algorithm, and, thus, using the mesher as a

mesher/mesh partitioning tool appropriate for domain decomposition FEM computa-

tions. Figure 3.24 shows a mesh of a Vivaldi flare that is generated by the combined

quadtree and Delaunay method using a Delaunay refinement algorithm in the succes-

sive triangulation module instead of a conforming Delaunay triangulation algorithm.

As mentioned in the introduction, a Delaunay refinement algorithm produces a con-

forming Delaunay triangulation. In addition to inserting Steiner points to preserve

edges, Delaunay refinement algorithms also insert vertices into the triangulation to

improve the quality in its triangulation.

Specifically, Shewchuk’s ”Triangle” [16] was used as the successive triangulation

algorithm in the implementation to generate Figure 3.24. Users have the option to

control the size of the elements produced by Triangle. In Figure 3.24, the maximum

area of the elements is 1 square unit, and the size of the bounding box is 113.74-by-

113.74 square units. In Figure 3.25, the maximum area of the elements is relative to

the area of the element’s quadrant. The relative ratio between the maximum element

area and the area of the quadrant in Figure 3.25 is 0.1. In both of these plots, the
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quality distribution skewed more to the right than the quality distribution of a simi-

lar triangulation in Figure 3.1. For the fixed maximum element area, the refinement

will only affect the quality of the triangles in the larger quadrants. The Delaunay

refinement algorithm will become a conforming Delaunay triangulation algorithm for

smaller quadrants. Increasing the mesh control parameter will cause the distribution

to look like the distributions that are triangulated with conforming Delaunay trian-

gulation algorithm as the successive triangulation. In Figure 3.24(b), the peak at

0.866 is becoming apparent. For the relative maximum element area, the distribution

is skewed toward the right, and the peak at the two of the three common qualities,

0.693 and 0.866, are not so apparent. The quality 0.999 is the peak of Figure 3.25(b),

but it is not due to the gradient quadrants, which create these elements in the previous

examples. These elements are created by the Delaunay refinement algorithm.
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(a) Triangulation with fMCP=4 and no merges. Generated 2162
triangles in 0.535 seconds.
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(b) Quality distribution.

Figure 3.24: Mesh of a Vivaldi flare using a Delaunay refinement algorithm as the
successive triangulation procedure.
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(a) Triangulation with fMCP=4 and no merges. Generated 7168
triangles in 0.913 seconds.
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(b) Quality distribution.

Figure 3.25: Graded mesh of a Vivaldi flare using a Delaunay refinement algorithm
as the successive triangulation procedure.
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CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

In this research, a combined quadtree and Delaunay mesh generation method for

two dimensional non-manifold geometries arising from finite element method model-

ing was proposed. The method first subdivides the geometric problem using a grid

until each grid cell meets the mesh control parameter of the topological elements it

contains. This subdivision process with the grid is referred to as spatial partitioning in

this thesis. The successive triangulation follows after the spatial partitioning process.

The successive triangulation uses any ”edge-preserving” triangulation algorithm to

triangulate each cell. The ”edge-preserving” triangulation algorithms that were con-

sidered for the successive triangulation method in this thesis are a basic conforming

Delaunay triangulation algorithm and a generic constrained Delaunay refinement al-

gorithm. Finally, the mesh quality improvement is the last of the three. The mesh

quality improvement eliminate poor quality element by merging nearby vertices.

This approach is implemented as a part of this research, and the mesh generator

has the following features:

• The mesh generator is a fully automated with minimal supervision from the

user.

• Users can control the refinement level around each geometric topological entity

or any point in space.

• Users have the option to refine further with a Delaunay refinement algorithm.
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• The mesh generator improved mesh quality (without lower bounds guarantees)

by eliminating skinny triangles through merging the geometry to quadtree ver-

tices, at the price of poorer geometric approximation.

– Under some conditions, the mesh generator has a quality guarantee, mt(1−mt)
√
3

2m2
t−mt+1

.

• The mesh generator can be used with a CAD that generates parametric curves,

non-manifold geometries, and poor tolerance geometries.

The results of the proposed mesh generator on various geometric models have lead

to the following conclusions:

• Increasing the mesh control parameter will result in better approximation for

smooth curves.

• Increasing the mesh control parameter will recover some of the geometric ap-

proximation that is lost during merging.

• Increasing the mesh control parameter will resolve topological inconsistencies

from merging.

• Having more discretized edges in model can lead to poor quality elements.

• The time complexity of this approach is O (n log n).

4.2 Future Work

This mesh generator offers many features to FEM users, but more functionali-

ties can be added to the mesh generator to meet the needs of FEM users. These

functionalities are:

1. Implementation of a parallel successive triangulation – The successive triangu-

lation process is the most time-consuming part of this method when there are
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large number of elements. Therefore, running this process in parallel will save

users a great amount of time.

2. Point merge operation includes merging vertices to any nearby vertices – Some

poor quality elements still result because the nearby vertices did not merge.

These nearby vertices did not merge because it does not fall into any of the

merge cases that were considered. A consideration when dealing with merging

any nearby vertices is chain merging. For example, vertex v1 merges to vertex

v2, vertex v2 merges to vertex v3, and vertex v3 merges to vertex v4. Vertex v1

is effectively merged to v4, but v1 is not within the merging distance of v4.

3. Subdivision of quadrants occurs automatically where there are topological in-

consistencies – Topological inconsistencies in this approach are caused by merg-

ing nearby vertices. Subdivision of quadrants where topological inconsistencies

occur will resolve topological inconsistencies by undoing the merge because the

vertices are no longer within the merging distance of one another.

4. Extension of the implementation to a fully three-dimensional tetrahedron mesh

generator – A three-dimensional tetrahedron mesh generator is useful to FEM

users because they may want to solve some three-dimensional problems. One of

the major challenges in implementing a three-dimensional mesh generator is the

debugging process, especially when the algorithm is more sophisticated. Unlike

two-dimensional meshes, the mesh needs to be inspected at different camera

angles, different camera positions, and different assemblies of the mesh for dis-

crepancies that can be spotted visually. Additionally, some operations should

be avoided because they are computationally expensive, such as intersections of

two solids or intersections of a face and a solid.
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