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ABSTRACT

INTEGRATION AND MEASUREMENTS OF A KA-BAND INTERFEROMETRIC RADAR IN

AN AIRBORNE PLATFORM

FEBRUARY 2013

ROCKWELL B. SCHROCK, B.S., UNIVERSITY OF CONNECTICUT

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Paul R. Siqueira

The Topographic Interferometry Mapping Mission (TIMMi) instrument is a unique mil-

limeter wave interferometric radar system operating at 35 GHz (Ka-band). It was constructed

in part to advance the technology readiness level of NASA’s Surface Water and Ocean Topog-

raphy (SWOT) mission, a spaceborne platform that will globally map the altimetry of Earth’s

water to gain insight into surface water interactions and dynamics. Previous ground deploy-

ments of TIMMi were successful in demonstrating the abilities of the system from a stationary

platform. The next logical step was to move TIMMi closer to space by installing it on an airborne

platform prove its capability in mapping wide swaths of land at a higher incidence angle. This

thesis outlines the design considerations and challenges in adapting TIMMi to a small airborne

platform. Documentation is included from many points throughout the development cycle, in-

cluding hardware and software development, flight planning, data acquisition, and post-flight

data processing.
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C H A P T E R 1

INTRODUCTION AND MOTIVATION

1.1 SWOT Mission Overview

NASA’s Surface Water and Ocean Topography (SWOT) mission plans to map the altime-

try of at least 90% of Earth’s ocean and fresh water to within centimeter height accuracy. Ocean

topography measurements are currently taken by buoys placed throughout the globe and are

used to determin sea surface temperature and changes in ocean currents. Measurements made

by buoys miss mesoscale trends in the vast areas between points. Gauges along rivers also give

point measurements along a river’s course, which can be used to determine flow rates and pre-

dict the availability of freshwater resources. Similar to ocean buoy measurements, gauges of

river height are point measurements, and interpolation between measurements must be done to

determine the overall gradient of river height.

Scientists are particularly interested in monitoring ocean heights for insights into climate

change. Warm water expands, so it tends to bulge upward slightly. The NASA SWOT mission

will be accurate enough to measure these tiny height differentials over a wide swath. A global

picture of ocean topography tells us a lot about heat storage and transport in the Earth’s oceans,

allowing us to study how these processes tie in to climate change. Local water heights of inland

rivers are also valuable for flood risk mitigation and the study of seasonal flooding patterns.

The primary instrument on this mission will be a Ka-band interferometer (Figure 1.1)

with operating characteristics comparable to the instrument discussed in this thesis. The Mi-

crowave Remote Sensing Laboratory (MIRSL) here at the University of Massachusetts in Amherst

has been funded in part by NASA to develop prototype RF subsystems for SWOT. In doing so,

we hope to increase the technology readiness level (TRL) for this relatively new technology. De-

veloping, building, and testing our own system enables us to document real-world challenges

1



Figure 1.1: SWOT Ka-band interferometric diagram (Source: NASA JPL)

and measurements throughout the process. This is an ongoing project at MIRSL, with many

different areas being explored at this time of writing.

1.2 The March Towards Higher Frequencies

Spaceborne interferometry has historically been conducted at frequencies lower than

Ka-band. In 2000, the Shuttle Radar Topography Mission (SRTM) provided the first global digital

elevation model (DEM) at a spatial resolution of 90 m using C-band technology (5.3 GHz) [4]. At

the time of writing, another ambitious global mapping mission is underway by the German

Aerospace Center (DLR), TanDEM-X, whose twin X-band (9 GHz) satellites flying in formation

will produce a global DEM at 15 m pixel resolution with unprecedented vertical resolution[10].

As solid-state RF technology matures, it becomes more reliable and power-efficient to

move microwave systems to higher frequencies. Consequently, the transition up the spectrum

is a moving target for radar systems, and it offers a number of advantages. Most importantly,

the range resolution of a radar improves linearly with bandwidth, which is an important metric

in determining the accuracy and error of a radar to take range measurements. A 1% fractional

bandwidth at Ka-band is 350 MHz, but the same fractional bandwidth at C-band is just 50 MHz

2



– a range resolution that is seven times worse. In addition, radio spectrum licensing follows the

same trend as higher-frequency devices become commercially available, so radars must move

even higher to escape spectrum congestion.

Size and weight constraints are extremely important considerations for spaceborne ap-

plications, especially in the absence of the Space Shuttle to deliver large payloads to low Earth

orbit. Regardless, heavier satellites will always be more expensive to put into orbit, and cost

is always a consideration. RF circuitry, transmission lines, and antennas can be scaled down to

provide similar operating characteristics in a smaller package at reduced wavelengths.

For interferometry, the baseline separation between the two antennas can also be re-

duced. SRTM was flown by NASA in February of 2000 at an orbital height of 230 km, requiring

a baseline of 60 m at a wavelength of 5 cm. In contrast, SWOT is meant to have an altitude of

800 km, which would require a baseline of roughly 240 m to maintain the same performance. Tar-

gets that change quickly over time (e.g. bodies of water) must be imaged in a single pass, because

multi-pass interferometry is subject to temporal decorrelation. However, 240 m is not realistic for

a single stable platorm, so it is necessary to use a higher frequency so a proportionally shorter

baseline can be used. This is another driving factor in the move towards higher-frequency in-

struments. In fact, the compactness of TIMMi’s antennas was the enabling factor in deploying

this instrument on a small airborne platform, as discussed later.

1.3 Prior TIMMi Development

Development of the TIMMi system thus far has been documented by UMass students

Karthik Venkatasubramanian[16], Harish Vedantham[15], Anthony Swochak[14] for the Ka-band

and Ku-band subsystems. Development of the Ku-band system was done first, with the design

of the dual upconverter (DUC) and dual downconverter (DDC) circuitry, the supporting sys-

tems, and a set of planar patch array antennas. Then the Ka-band system was designed and

built. The Ku-band patch antennas were then replaced with the slotted waveguide antennas.

Both systems share data acquisition hardware, software, and data processing code, reducing the

overhead of having two completely separate systems.

Both systems have been deployed at a number of ground locations, including the roof

of the Lederle Graduate Research Center on the UMass Amherst campus, Mount Holyoke in

3



Figure 1.2: A deployment of TIMMi Ku-band on Mount Sugarloaf on June 30, 2011

Hadley, MA, and Mount Sugarloaf in Sunderland, MA (Figure 1.2). These locations were chosen

on the merit of having low incidence angles in the interest of maximizing signal return. In

addition, a high lookout enables the mapping of a wide swath of land.

One interesting undergraduate experiment demonstrated the ability of TIMMi to resolve

small displacement over longer periods. By pointing the radar at the 300-foot tall W. E. B. Du

Bois library during a windy day on campus, a periodic building sway on the order of millimeters

could be detected.

1.4 Present TIMMi Development

Given a working Ka-band interferometric system, the challenge has been to adapt the

ground-based system (Figure 1.3) onto an airborne platform (Figure 1.4). This seemingly sim-

plistic goal was met with a number of challenges in all areas of the radar. Before doing anything

new, intimate knowledge of the RF subsystems had to be obtained in order to resolve any issues

with these components. Platform constraints required rethinking of the mechanical support

structures and power supply architecture. The acquisition of long, continuous data sets was

contingent upon rewriting the data acquisition software that could also merge in real-time GPS

data. Post-flight data processing programs had to be written to take into account platform mo-

tion from discrete onboard instruments. These programs also had to handle the sheer amount of
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Figure 1.3: A test deployment of the Ka-band system on the UMass Amherst campus

Figure 1.4: The author setting up for the first flight of the Ka-band system

5



data from these long acquisitions.

This thesis touches on all of these areas, as well as showing some promising results from

some actual airborne deployments. The topographic measurements presented are primarily im-

ages of the Earth and not of water. In order to achieve coherence over a body of water, the

incidence angle must be very steep. In other words, the radar must be looking almost straight-

down, which is not physically possible with our current antenna hardware. Despite this, we are

confident that the results are indicative of the overall performance of this SWOT prototype.

6



C H A P T E R 2

RADAR CONCEPTS

2.1 FMCW Basics

The word radar was derived as an acronym of RAdio Detection And Ranging. The name

alone reveals radars are very good at: determining range to a target. A traditional pulsed radar

sends a short, high-powered pulse of RF energy and records the time response of the echo. The

time-of-flight of the pulse,

t =
2r
c

, (2.1)

can be measured very accurately by sequential sampling of the received signal. Given prior

knowledge of c, the speed of light, the range r can be determined[12].

By contrast, a frequency-modulated, continuous wave (FMCW) has a 100% duty cycle,

which means it transmits continuously. The transmitted signal is a frequency-modulated linear

“chirp” that spans a wide bandwidth. The received signal can be integrated over the entire

chirp duration τ to provide significant signal gain. In an abstract sense, the chirp essentially

encodes additional information into the transmitted signal which can be extracted in the receiver

to increase range resolution.

Figure 2.1 shows an FMCW radar with a transmit antenna, receive antenna, and two

targets at ranges r1 and r2. The targets are assumed to be stationary relative to the radar. At time

t0, the transmitter begins emitting a linear FM chirp of bandwidth B in the frequency range from

f1 up to f2. The chirp has a time duration τ, so the slope of the sweep is B/τ [Hz/s]. The echo

from each target is a replica of the transmitted chirp, but it is delayed due to the time of flight of

the signal. In particular, for a target at range r,

∆t = t− t0 =
2r
c

. (2.2)
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Figure 2.1: Two targets (top) and the FMCW frequency response of those targets in com-
parison to the transmitted signal (bottom).

The transmit frequency is constantly changing, so at time t the frequency of the echo

differs from the frequency of the currently-transmitted signal. This frequency difference, also

known as the beat frequency, is related to the slope of the chirp by

∆ f =
B
τ

∆t. (2.3)

For a target at a given range, a faster chirp (smaller τ) will result in a bigger ∆ f , pushing the

frequency response of that target higher. Targets at zero-range have ∆ f = 0, or DC.

Because we are sampling continuously, it is not possible to measure ∆t directly. How-

ever, it is very easy to measure ∆ f by simply multiplying the received echo by the transmitted

signal. Recall that a mixing operation produces the sum and difference frequencies between two

signals. By adding a low-pass filter to the output of the FMCW mixer, the sum frequencies are

rejected, and the desired difference frequencies remain. A block diagram of this operation is

shown in Figure 2.2. The mapping between ∆ f and ∆t, above, means the range of that particular

frequency can be recovered.

Given that sampling occurs at fs, the maximum recoverable ∆ f is ∆ fmax = fs/2 per the
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Figure 2.2: Block diagram of a generic FMCW transmitter and receiver

Nyquist-Shannon sampling theorem. Thus,

∆ fmax =
fs

2
=

2rmax

c
· B

τ
, (2.4)

which means

rmax =
cτ

2B
· fs

2
. (2.5)

One chirp of duration τ sampled continuously at a rate of fs results in Ns = τ fs time

samples. Taking the fast Fourier transform (FFT) and discarding the redundant frequency com-

ponents, we are left with Ns/2 frequency bins ranging from DC to fs/2. Each frequency bin

corresponds to a range of

∆r =
rmax

Ns/2
=

c
2B

. (2.6)

This is known as the range resolution of the radar. In fact, this equation is fundamental to

all radar modes including pulsed, pulse-compressed, and FMCW. As long as the bandwidth is

known, the range resolution can be determined.

In the case of TIMMi, the bandwidth is fixed at B = 100 MHz for a range resolution of

∆r = 1.5 m. Adjustments to rmax are made by varying fs or τ. A time series taken from the

radar is seen in Figure 2.3. Low frequency components dominate the signal, and some clipping

is present since the sampling threshold was set to 1 Vp−p.

The primary advantages of FMCW are twofold. First, the sampling rate is much lower
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Figure 2.3: A time series of a single linear chirp, downconverted, compressed, and sam-
pled at baseband

than pulsed radars that acheive similar ranges because ∆ fmax is relatively low – on the order of

1 MHz. The compression of the signal is done in hardware, which means that slower, cheaper

analog-to-digital converters (ADC’s) may be used, and processing of the time-domain samples is

as easy as taking an FFT in software. Second, FMCW radars offer compression gain over pulsed

radars having the same bandwidth. The compression gain Gc is the time-bandwidth product of

the chirp

Gc = Bτ (2.7)

and is often on the order of tens of decibels. This enables the use of solid-state power amplifiers

that are lightweight, reliable, and consume considerably less power than a high-peak-power

amplifier like a Klystron.

It was mentioned that targets are assumed to be stationary. Targets moving in the range

dimension inherently have a Doppler shift associated with them. We are entirely dependent

on the frequency of the signal to determine its range, so a Doppler shift will cause the target

to be misrepresented in range. A target moving towards the radar ( dr
dt < 0) will have a higher

frequency and will appear closer (smaller ∆ f ) than its true range. Conversely, targets moving

away from the radar ( dr
dt > 0) have a lower-frequency echo (larger ∆ f ) and will appear to have a

farther range. Targets moving perpendicular to the beam have no Doppler velocity component,

but they may suffer from blurring due to movement across the beam throughout the relatively

long chirp duration.
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Figure 2.4: Interferometric antenna configuration

2.2 Interferometry Basics

A traditional monostatic radar has a single antenna to both transmit and receive signals.

An interferometric radar adds additional information by having two receive antennas physically

separated by a baseline Ba (Figure 2.4). We are using the far-field approximation where R is very

large, so we can assume that parallel plane waves are incident at both antennas. Echoes reach

antennas A1 and A2 at different times, but this time delay is too small to measure directly. It

is convenient instead to measure the phase difference between the received signals of the two

antennas.

The free-space wave number

k =
2π

λ
(2.8)

permits conversion between signal phase (radians) and physical wavelength (m)[11]. The phase

difference between the two channels is φ = k∆R. It is calculated by taking the complex correla-

tion of the received waveforms,

γejφ = v1v∗2 = γ1e−jφ1 γ2ejφ2 . (2.9)
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Figure 2.5: Interferometric geometry over (a) a flat earth and (b) an existing DEM
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In general, the extra path length ∆R is larger than one wavelength, and there are phase ambigu-

ities at multiple wavelengths where the phase wraps from 0 to 2π.

The relationship between phase and target height is known as the phase sensitivity,

kz =
2πBa cos(θ − α)

λr sin θ
, (2.10)

for a target at range r and look angle θ. The baseline Ba is tilted at angle α relative to the ground.

kz is an important factor that permits the generation of height maps based on interferometric

information.

Height must be measured in relation to some reference, so we create a fictitious flat

earth – a plane of constant height at some altitude beneath the platform (Figure 2.5a). We can

then create a simulated interferogram for this reference plane that has an interferometric phase

of φ f . By calculating

ejφi = ejφe−jφ f , (2.11)

we can then unwrap the differential phase φi in two dimensions to get a height measurement

directly using

z =
φi
kz

. (2.12)

Another option is to use an existing digital elevation model (DEM) in place of the flat

earth (Figure 2.5b). In this case, z is calculated in reference to the DEM and is thus relatively

small. If kz is small enough such that |kzz| < π, then there are no phase ambiguities present,

and 2-D phase unwrapping becomes unnecssary. A detailed DEM may be generated by simply

adding the heights of the base DEM and the differentially-measured heights.

2.3 Platform Geometry

Figure 2.6 defines the common geometric language used throughout this thesis. Begin-

ning with the along-track view, clockwise aircraft roll is indicated by positive Ω and is measured

parallel to the ground. We have already defined baseline tilt as α, and it is related to Ω by

α = Ω + 90◦ + αB (2.13)
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Figure 2.6: Airborne platform geometry nomenclature

where αB is the baseline tilt off of vertical. If the baseline were perfectly vertical in horizontal

flight, then αB = 0◦. Otherwise, αB is a correction factor that can be determined by measuring the

baseline when the aircraft is in the hangar. It may also be inferred from interferometric images.

The look angle to a target on the ground is given by θ, which varies continuously across the

swath.

From above, κ is the compass direction where the aircraft’s nose is pointing. The antenna

pointing angle κa is also an absolute measurement, but it is related to κ by an additive factor.

Ideally, the antennas point directly broadside to the aircraft, and κa = κ + 90◦, but in reality

this is not the case. Just like for αB, the appropriate correction factor can be measured on the

tarmac or inferred from the data. In this example, the aircraft’s track along the ground is κt. This

number is not very valuable, since we only care where the antennas are pointing at any moment

in time, and not where the aircraft is heading. The important thing to note is that, in general,

κt 6= κ. This effect is called yaw, and must be measured and accounted for.

The final panel shows a side view of the aircraft. The nose pitching down is represented

by positive Φ, and is known as the pitch angle.
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C H A P T E R 3

TIMMI SYSTEM OVERVIEW AND MODIFICATIONS

A system-level block diagram is given in Figure 3.1. The signal source is a Tektronix

AFG3252 arbitrary function generator that supports a 240 MHz bandwidth. The baseband (BB)

signal is a linear FMCW chirp from 5 to 105 MHz. At the beginning of each chirp, a TTL rising-

edge trigger is sent to the acquistion computer to specify the start of a new record. The baseband

signal travels to the transceiver (Figure 3.2), where the dual upconverter (DUC) generates the Ka-

band signal via a set of internal oscillators at IF (1.3 GHz) and RF (33.7 GHz). These oscillators

are phase-locked to a standard 10 MHz reference signal which is provided externally. The RF

signal is amplified and sent to the transmit antenna. The transmit and receive antennas are a

matching set of three slotted waveguide antennas.

Upon signal reception, the dual downconverter (DDC) in the transciever brings the RF

signal back to baseband. For FMCW signal compression to occur, the baseband signal is then

mixed with a copy of the transmit signal. The difference frequency, or beat frequency, is filtered,

amplified, and passed on to the acqusition computer for each of the receive channels. The FMCW

receive chain can be seen at the top of Figure 3.2.

The digitizer is a National Instruments PXI-5152 that records 8-bit samples on two chan-

nels at rates up to 2 GS/s. The acquisition computer is a National Instruments PXIe-8130 con-

troller in a a NI PXIe-1062Q chassis. The chassis contains the controller, digitizer, a NI 8262

Redundant Array of Independent Disks (RAID) controller, and a NI PXI-6259 data acqusition

card for low-frequency analog and digital signals. The former two cards are not used by the

airborne TIMMi. To maintain portability, the computer is controlled remotely over an ethernet

connection using Windows Remote Desktop.

The GPS antenna is a standard, circularly-polarized “puck”. The GPS receiver sends

NMEA-formatted strings over a serial connection to the acquisition computer. In addition to
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Figure 3.1: System overview block diagram. Connection types between each component
are given in the legend.

the standard position updates, the receiver is configured by the acquisition software to send

additional strings such as platform track direction and dilution-of-precision (DOP) figures.

3.1 Redesigning the Supporting Electronics

The first working prototype for TIMMi was initially designed for ground deployments,

where weight and size were not constrained. A 15U rack-mount aluminum case housed a dis-

play, keyboard, power supply, computer, function generator, and four-disk RAID.

In the rear of the Cessna 206, floor space is at a premium, so the supporting electronics

were rearranged into a vertical configuration. A 26× 32 in. plywood board was outfitted with

tie-down straps to attach the computer, function generator, and a network switch. The board is

placed on its end and tied down in the rear of the aircraft cargo area.

The power supply and GPS receiver were housed in a 2U enclosure for protection (Fig-

ure 3.4). The large, heavy, linear power supply was replaced with a Vicor “Flat Pack” switching

power supply, which has two independent 15 V outputs, each rated at ___ A. One downside of
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Figure 3.3: The new “flat” supporting archetecture

switching power supplies is that they can introduce RF interference on the DC outputs, provid-

ing noisy power that may introduce undesired signals into the system. To reduce these effects,

each output of the Vicor is wired to a ripple attenuator module (RAM) to clean up the power

supply voltage and to also provide isolation between the two outputs. The enclosure also in-

cludes the 9 V regulator for the power amplifier, as well as the GPS receiver and a USB-to-serial

adapter. There is also a 10 MHz oscillator in the enclosure which provides the local oscillators in

the transceiver with a standardized reference signal.

There is no display connected directly to the computer. Instead, a laptop and the com-

puter are connected to a network switch, and then the laptop is used to control the acquisition

computer using Windows Remote Desktop control software.

The acquisition data rate is about 4 MB/s (§4.3.3), which is sufficiently slow to record to

a single disk in real time, so the RAID was removed completely. The 80 GB hard disk drive in the

computer was upgraded to a 256 GB solid-state drive, providing increased storage, read/write

speed, and reliability.
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3.1.1 Power Amplifier Power Supply

All of the components in the transceiver require 15 V DC except for the final stage power

amplifier. The Millitech AMP-28-01090 operates from 8–13 V (8 V nominal) and has a maximum

current draw of 1.5 A. Until now, an external lab bench power supply was used to power the

amplifier.

The L78S09 is a 9 V regulator with up to 2 A of output current. The device experiences a

voltage drop of nearly 1 V during high current draw, so a 9 V regulator was chosen to keep the

supply voltage within the operating range of the amplifier. The regulator, while small, requires

a large heat sink to dissipate the heat and prevent damage to the device. A thermal shut-down

built into the device itself prevents damage if the temperature rises too high.

The regulator itself is a standard TO-220 package that is quite small. Most of its footprint

in Figure 3.4 is occupied by a large heat sink. Without the heat sink, the circuit thermal protection

kicks in after only a few seconds of operation, causing a failure. However, with sufficient heat

dissipation, the L78S09 performed well under continuous heavy load, and did not show any

sign of degradation or failure in any testing or deployment.

3.1.2 Power Connector Pinout

To accomodate the 9 V regulator and the separate 15 V supplies, the pinout of the circular

military connector had to be modified. The connector and pinout are listed in Table 3.1. The

pinouts for two other TIMMi connectors are also included for completeness.

There are now three separate rack-mount power supply units floating around the lab.

One was the original supply for the Ka-band ground deployments. It also includes a separate

supply and serial connections for the positioner, but does not include 9 V for the power amplifier.

The second supply was developed for Ku-band ground deployments in an attempt to filter out

spurious tones, but for the original supply is also needed alongside it to power the positioner.

The new supply is designed exclusively for the Ka-band transceiver and is not compatible with

the Ku-band system.

Overall system power measurements are listed in Table 3.2.
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L A

K M N B

J T U P C

H S R D

G F E

Pin
Ka Airborne Ka Ground Ku Ground

V Use V Use V Use

A +15 LOs, BB amps +15 LOs, BB amps +15 BB amps, power amp

B GND DUC & DDC

C +15* DUC & DDC +5 L-band amp, L-band LO

D

E +15 DDC

F +15* Unused +12 Ku-band LO, fans

G

H GND L-band amp, L-band LO

J +9 Power amp +9 Power amp

K GND Power amp GND Power amp GND BB amps, power amp

L GND LOs, BB amps GND LOs, BB amps GND Ku-band LO, fans

M

N

P

R

S

T

U GND DDC

Table 3.1: Power supply 18-pin circular connector pinouts for three iterations of TIMMi
power supplies. Voltages marked with an asterisk (*) are always on during
standby, and blank entries are not connected (N/C). All ground (GND) termi-
nals are connected.
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Mode
Current

Power
115 VAC 12 VDC

Standby 2 A 20 A 230 W

Radiate 2.5 A 24 A 290 W

Table 3.2: TIMMi system power draw; during standby, all subsystems are on except the
transceiver

Figure 3.5: The rear cargo doors of the Cessna 206 open like a clamshell with no center pillar

3.2 Modifying the Aircraft Door

An early challenge of the airborne TIMMi project was finding a way to physically mount

the antennas to the aircraft. Permanent modifications to the Cessna 206 were out of the question.

They would be very expensive, would take a long time to complete, and would be difficult or

impossible to get approved by the FAA. Instead, we opted to make modifications to a more

temporary part of the aircraft: the rear cargo door.

The Cessna 206 Stationair is designed for carrying large, heavy cargo. Its cargo doors

(Figure 3.5) open outward in a clamshell configuration that does not have a center pillar, and

each door can be taken off by simply removing two pins from its hinges.

A spare door for the 206 was purchased and adapted for the radar. Thomas Liimatainen,

a machinist at Mount Holyoke College, made modifications to the existing antenna mount (used

for ground deployments) so that it is easily attached to the door. The mount itself allows the

antennas to be positioned vertically in increments of 2 cm, and can accommodate both the Ka-

band and Ku-band slotted waveguide antennas. The boresight elevation can be adjusted to any
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Figure 3.6: TIMMi Ka-band antennas mounted on a Cessna 206 cargo door. The top two
slotted waveguide antennas receive, and the bottom antenna transmits.

Figure 3.7: The interior of the aircraft door showing mounted transceiver and flexibile
WR-28 waveguides
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angle. The slotted waveguide antennas have a low profile that is naturally aerodynamic, so they

do not negatively impact the aerodynamics of the aircraft.

Three holes were drilled through the door and fitted with bulkhead waveguide adapters.

Flexible WR-28 waveguides route the transmit and receive channels through the door to the

transceiver, which is mounted directly on the inside of the door (Figure 3.7). The waveguides

were kept as short as possible to minimize conductive losses in the feedline that would hurt the

overall receiver noise figure.

The fully-assembled door weighs about 50 pounds and is easily carried.

3.3 Rewriting the Acquisition Software

The software for acquiring data in the field was written in LabVIEW. The previous ap-

plication controls a positioner atop a tripod that sweeps out a predetermined number of looks

for each acquisition. The code was modified to support continuous acquisition and to display

additional diagnostic information such as waveforms and backscatter power for each channel.

The software also reads NMEA sentences from the GPS receiver and stores the data

inline with the binary RF data. The primary reason for recording the GPS data is to provide a

global timestamp so that the RF data can be matched up with the motion compensation data

provided by AHRS. There is an inherent delay between the one second GPS “ticks” and the

beginning of the next look. The LabVIEW program keeps track of this time offset and adds it to

the look timestamp when the next look begins.

3.3.1 Digitizer Re-arm Time

In order for the RF data at every chirp to be acquired at the correct time, a systemwide

rising-edge trigger is employed at the beginning of each FMCW chirp. The trigger is supplied

by the Tektronix AFG3252 arbitrary waveform generator, which also generates the baseband FM

sweep. The trigger is read by the digitizer card and is used to begin a new acquisition.

The NI PXI-5152 digitizer card cannot continuously acquire triggered data. There is a

hardware delay between the final acquired sample and the beginning of the next acquisition,

called the re-arm time. The re-arm time for this digitizer is specified at tr = 8 µs, which was

confirmed via experimentation. This means that the trailing samples of each acquisition must be
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truncated to prepare for the next trigger, which results in a slight undersampling of the received

signal.

Recall that the range resolution of a radar is

∆r =
c

2B
. (3.1)

By truncating the trailing samples, only a portion of the full chirp bandwidth is sampled, which

degrades the range resolution. The simple linear relationship is given by

∆rtrunc =
rmax

Ns/2
= ∆r

Ns

Ns,trunc
. (3.2)

Here, rmax is the maximum range in the ideal case, which does not change, and Ns is the number

of samples..

For example, with fs = 2 MHz and τ = 1 ms, each pulse would nominally consist of

Ns = τ fs = 2000 samples and have ∆r = 1.5 m. The trigger re-arm time takes the place of

tr fs = 16 samples, which is rounded up to 20 samples as a buffer. The final sample count is

Ns,trunc = 1980. After taking the FFT and removing the duplicate frequency components, we are

left with 990 range bins covering the full range up to rmax = 1.5 km. Therefore, each range bin

has a resolution of ∆rtrunc = 1.515 m.

The compression gain is also degraded a small amount because the both B and τ are

reduced. The truncated bandwidth is given by

Btrunc = B
(

1− tr

τ

)
(3.3)

and the truncated chirp duration is

τtrunc = τ

(
1− tr

τ

)
, (3.4)

so the effective compression gain is

Gc,trunc = Bτ

(
1− tr

τ

)2
. (3.5)

As long as tr � τ, the impact on Gc is minimal. In this example, tr = 10 µs including a buffer in
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the delay, which is just 1% of the full acquisition time. This results in a loss of only 0.09 dB over

the ideal case.

3.3.2 RF Data File Format

The LabVIEW acquisition program writes raw RF samples to disk in a binary format.

This file is not self-descriptive and has no metadata attached to it, so the file format specification

must be followed very closely. There are currently two versions of this file format. Version 1

was only used on the February 3 flight, and version 2 was used for all subsequent flights. The

first 4 bytes of the file indicate its version so that it can be properly loaded into memory. If any

modifications are made to this file format, the LabVIEW program must be modified to write a

new file version number in the file header, and the MATLAB processing code must be able to

correctly read the new version. The byte order of the file is little-endian.

The format specifications are given in Tables 3.3 and 3.4. RF data is merged with GPS

data and transferred from the digitizer to disk once every “look”. A look is simply a collection

of consecutive pulses. Looks are usually configured to occur once every second so that no GPS

data is missed. Every look has a header that contains some basic GPS information so that it can

be merged back in with the AIMS data in post-processing. Then the look contains a sequence

of samples, first from channel 0, then from channel 1. Knowledge of Nsamp and Vp−p – obtained

from the configuration text file – are necessary to read the file. A concrete example of the file

format is given in Table 3.5.

The NI PXI-5152 ADC takes 8-bit (1 byte) time samples, so each channel’s pulse is Nsamp

bytes long. Each sample is a scaled measurement based on the peak-to-peak voltage Vp−p speci-

fied at the beginning of the acquisition, where −Vp−p/2 corresponds to signed byte value −128,

and +Vp−p/2 is equal to signed byte value +127. Thus, the scaling for a sample byte b to a true

voltage V is

V =
b + 0.5
27 − 0.5

·
Vp−p

2
. (3.6)

Previous versions of the acquisition software written for the Ku-band interferometer wrote 16-

bit values to disk despite only sampling 8 bits, resulting in unused bits and an unnecessary

doubling of file size.

The Format column is given in terms of the MATLAB representation of that data type.
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Bytes Format Description Notes

File header
4 uint32 File version Equal to 1

Look
23 char Timestamp ASCII, UTC time, no null terminator

8 double Latitude Zero if no GPS fix

8 double Longitude Zero if no GPS fix

Pulse
nsamp int8 Ch. 0 samples

nsamp int8 Ch. 1 samples

Table 3.3: TIMMi RF file format, version 1

Bytes Format Description Notes

File header
4 uint32 File version Equal to 2

Look
23 char Timestamp ASCII, UTC time, no null terminator

4 uint4 Length of UTC string Equal to 9

9 char UTC time string HHMMSS.ss

8 double Latitude Zero if no GPS fix

8 double Longitude Zero if no GPS fix

1 uint8 Position type 0 = no fix, 1 = fix, 2 = diff.-corr. fix

1 uint8 Num. of satellites

8 double HDOP Horizontal dilution of precision

8 double Meters above MSL WGS-84 datum

8 double Meters above ellipsoid WGS-84 datum

8 double Age of differential correction Zero, since we are not using diff. corr.

Pulse
nsamp int8 Ch. 0 samples

nsamp int8 Ch. 1 samples

Table 3.4: TIMMi RF file format, version 2
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Bytes
Description

Start Length

1 4 File format version

5 23 Look 1 UTC timestamp string

28 4 Length of following UTC string (9)

32 9 UTC time string (9 characters)

41 8 Latitude

49 8 Longitude

57 1 Position fix type

58 1 Number of satellites

59 8 HDOP

67 8 Meters above MSL

75 8 Meters above ellipsoid

83 8 Age of differential correction

91 Nsamp Look 1, pulse 1, channel 0 samples

91 + Nsamp Nsamp Look 1, pulse 1, channel 1 samples

91 + 2Nsamp Nsamp Look 1, pulse 2, channel 0 samples

91 + 3Nsamp Nsamp Look 1, pulse 2, channel 1 samples

. . . repeat for Npulse pulses. . .

91 + 2NpulseNsamp 23 Look 2 UTC timestamp string

91 + 2NpulseNsamp + 23 4 Length of following UTC string (9)

. . . repeat for an intederminate number of looks. . .

Table 3.5: An example layout of a version 2 RF data file with Nsamp samples per pulse and
Npulse pulses per look
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Figure 3.8: Residual delay in recording data due to the operating system, where zero is
the nominal time
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The format for the Timestamp field is a 23-character string of the format ‘YYYY-mm-dd HH:MM:

SS.uuu’. The fractional second part, uuu, is added on to the GPS timestamp that comes from

TIMMi (and not the AIMS systme). It is the differential time between when the NMEA sentence

arrives over the serial port and when the RF data arrives from the digitizer. We are not using a

real-time operating system, so sometimes there is an indeterminate delay in transferring the RF

samples from the digitizer into system memory (Figure 3.8). By keeping track of the “extra” time

that elapses between GPS acquisition and RF acquisition, we can more accurately characterize

the platform’s position.

3.4 Integration with AIMS-1

The Airborne Imaging Multispectral Sensor (AIMS) system developed at Mount Holyoke

is used for forest research[9], and is currently deployed on the Cessna 206 alongside TIMMi. Its

Altitude and Heading Reference System (AHRS) is an inertial measurement unit (IMU) that

records aircraft pitch, yaw, roll at a rate of 71 Hz. The yaw angle is measured by using a differ-

ential GPS receiver that has two antennas separated by a baseline.

AIMS-1 also features a LIDAR rangefinder to measure aircraft height above ground level

at approximately 240 Hz. However, the LIDAR pulse power is weak at the altitudes we want to

fly for TIMMi (larger than 1000 feet), so GPS altitude data is used instead.

The TIMMi system itself also features a GPS receiver which is used to timestamp every

RF pulse. Post-flight, AHRS data are interpolated into the RF time basis for processing.

The AIMS instruments produce three separate plain-text data files, documented in the

following sections.

3.4.1 LIDAR Data File (.las)

The LIDAR rangefinder data is parsed using the read_lidar function. The LIDAR

generates a large text file with a .las extension. Each line in the ASCII text file is one LIDAR

measurement, 39 bytes long plus carriage return and line feed characters (ASCII 13 and 10) for

41 bytes total per line. The format for each line is shown in Table 3.6.

The Windows timestamp, used throughout the AIMS data files, is specified as the num-

ber of 100 ns intervals since January 1, 1601. The function win_timestamp_to_datenum will

29



Description Bytes Example

Height (ft) 7 02597.3

First or last return (f or F) 1 F

Separator 1 ,

Strength (units?) 4 0276

Separator 6 __UTC:

Windows timestamp 20 00129787911606979800

New line 2 \n

Table 3.6: AIMS-1 LIDAR data file format

$GPGGA,130115.00,4224.353127,N,07228.103662,W,1,09,0.9,919.24,M,-33.74,M,,*5E
$GPVTG,200.8,T,,,141.92,N,262.84,K,A*4F
$GPGSA,A,3,09,05,27,08,15,21,26,29,18,,,,1.8,0.9,1.5*36
$GPRMC,130115,V,4224.353127,N,07228.103662,W,141.92,200.8,130412,14.7,W,N*08
_TIME:000000129787956750000000
$GPGGA,130116.00,4224.316464,N,07228.123224,W,1,09,0.9,914.50,M,-33.74,M,,*54
$GPVTG,202.4,T,,,142.49,N,263.90,K,A*40
$GPGSA,A,3,09,05,27,08,15,21,26,29,18,,,,1.8,0.9,1.5*36
$GPRMC,130116,V,4224.316464,N,07228.123224,W,142.49,202.4,130412,14.7,W,N*07
_TIME:000000129787956760000000

Figure 3.9: An example of two sets of NMEA 0183 strings with GPS data

convert this number into a MATLAB “datenum” representation. This is used in the read_lidar

function.

If the size of the data file is not an exact multiple of 41 bytes, read_lidar will throw an

exception. Sometimes the AIMS logging software will truncate a line if it is closed in the middle

of writing that line to disk. In this case, the user must manually edit the .las file and remove

the truncated line at the end of the file, ensuring that the format of newline characters (\n) is

maintained, and that the last line of the file is blank.

3.4.2 GPS Data File (.gps)

The GPS data file has a .gps extension, and is parsed using the read_nmea function.

This text file is simply a concatenated list of all the NMEA-formatted strings collected from the

serial port of the GPS receiver. The National Marine Electronics Association protocol NMEA

0183 is the standard method to capture information from a GPS receiver. Each sentence consists

of a sentence identifier, a series of comma-delimited parameters, and a checksum. Figure 3.9 has

an example listing from an actual data file.

30



Description Bytes “Old” col. “New” col. Example

Data quality 1 1 1 I

Time since turn-on (sec) 5 2 N/A 00288

Clockwise roll (Ω, deg) 5 3 2 +02.7

Nose pitch down (Φ, deg) 6 4 3 -003.0

Azimuth (κ, deg) 5 5 4 053.8

Roll rate (units?) 5 6 5 +0.05

Pitch rate (units?) 5 7 6 +0.05

Azimuth rate (units?) 5 8 7 +1.00

Velocity (units?) 6 9 8 +178.7

Table 3.7: AIMS-1 IMU data file format

There are four types of sentences in the data file: $GPGGA, $GPVTG, $GPGSA, and $GPRMC.

NMEA 0183 is widely adopted and well documented, so refer to one of the many references1 for

descriptions of these sentences. The log file also contains lines beginning with _TIME:, which

are not NMEA sentences, but are Windows timestamps interleaved with the NMEA data.

Only some of the NMEA sentences contain UTC timestamps, so we must choose a

standard timestamp to apply to any ancillary sentences. Every time read_nmea encounters

a $GPGGA string, it uses that timestamp and applies any sentences following it to the same in-

stant in time, until a new $GPGGA string is encountered. In reality, all the data contained in

the following sentences was captured and measured at the same time, but it is just transmitted

serially in separate sentences, so this is a safe assumption to make.

The NMEA checksums are not computed or checked, and the Windows timestamps are

ignored. The UTC timestamp strings are converted into the MATLAB datenum representation.

As before, sentences at the end of the file may be truncated, so manual editing may be required

to remove incomplete sentences at the end of the file.

There is no date information contained in the NMEA sentences, so when calling read_

nmea, you must also specify a string to indicate on what date the data file was taken, e.g. ‘July

11, 2012’. This does not handle the edge case where the UTC date changes in the middle of

an acquistion.
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3.4.3 IMU Data File (.wbd)

The third instrument in the AIMS package is the inertial measurement unit (IMU) man-

ufactured by Watson Industries. It measures acceleration in the pitch and roll axes and measures

heading using magnetic sensors.

The Watson IMU generates a .wbd file that can be read using the read_imu function.

There are two versions of the IMU device, an “old” one and a “new” one. The ASCII text data file

has a number of space-delimited fields (Table 3.7), followed by the Windows UTC timestamp,

followed by a \n newline character.

The file format for each IMU version is similar, but there are a few slight differences.

The old IMU has an extra column to specify the number of seconds since system turn-on. The

first column in both cases is a boolean value indicating the quality of data received from the

LIDAR for that particular pulse. For the old IMU, the lower-case “i” indicates low-quality data,

and an upper-case “I” indicates high-quality data. The new IMU uses the letters “g” and “G”,

respectively.

The roll measurement, Ω, is taken with a positive value indicating a clockwise roll, and

a positive pitch Φ corresponds to the nose pitching down. Azimuth is an absolute compass

direction. It was found that the June 11 azimuth measurement was the complement angle mea-

surement to what was expected, perhaps because the differential GPS antennas were accidentally

switched. For this flight, the azimuth angle is calculated as 360◦ − κ.

1http://aprs.gids.nl/nmea/
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C H A P T E R 4

CHALLENGES

4.1 DUC/DDC Voltage Regulator Interference

An FMCW received baseband signal is at relatively low frequencies, beginning at DC

for targets at the first range bin. The Nyquist sampling theorem states that the signal must be

sampled at least twice its maximum frequency in order to properly reconstruct the original signal

without any aliasing. This means that the sampling frequency can also be kept low. For example,

a common configuration for TIMMi is to use fs = 2 MHz, so the maximum beat frequency is

fmax = 1 MHz and the chirp length is τ = 1 ms. This yields a maximum range of rmax =

cτ
2B fmax = 1.5 km.

One problem with this approach is that many sources of signal interference occur within

the passband of the receiver. When these signals leak into the receive chain, they often cannot be

simply filtered out, because they occur where a signal is expected.

The DUC and DDC printed circuit boards both contain voltage regulators that bring the

15 V supply down to lower voltage levels for integrated circuits on the board. These are switch-

ing regulators that operate by turning the supply voltage on and off very quickly. An oscillator

internal to the voltage regulator has a specific duty cycle that enables the voltage regulation. The

datasheet for the LM2676 device specifies an internal oscillator of 260 kHz. Experimentally, it

was determined that the DUC regulator has a principal tone of 269 kHz, with weaker images at

539 kHz and 809 kHz. The DDC regulator showed up at 266 kHz, with an image at 530 kHz. All

of these signals appeared in both the baseband RF channels, as well as on the 15 V DC power

supply lines (Figure 4.2a).

It was suspected that the undesired regulator tones were leaking through the DC power

supply, which also supply power to the final stage baseband amplifier blocks right before the
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Figure 4.1: Power distribution block diagram

National Instruments digitizer. This was confirmed by powering the DUC and DDC from a

bench-top power supply, effectively isolating the two power channels and removing all traces of

the tones from the baseband signal.

A common way to prevent undesired radio frequency interferences (RFI) is to install an

RF choke in which the wire is wrapped around a ferrite toroid. The ferrite has an inductive effect

that blocks RF signals, effectively behaving like a low-pass filter. The part LFB143064-000 from

Laird Technologies was selected for its high impedance at low frequencies, although impedances

were only specified at the lowest frequency of 500 kHz, suggesting that this material might not

provide enough attenuation at 270 kHz. Using a spectrum analyzer, it was shown that a single

turn of the wire through the toroid yielded an attenuation of 33 dB, and three turns achieved

43 dB of attenuation, with no appreciable attenuation for additional turns after that (Figure 4.2).

When first implemented, this seemed like the ideal solution until some odd measure-

ments started showing up. The choke on the transmitter line was emitting a high-pitched audi-

ble tone when powered on. This was an indication that the choke itself was actually oscillating

at an audible frequency. The 5.8 kHz tone showed up in many places. It even mixed with the

Ka-band LO at 33.7 GHz and showed up as sidebands in the LO output signal. The impact of

this ringing turned out to be far more troublesome than the original problem, so the RF chokes
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(a) (b)

Figure 4.2: Undesired voltage regulator tones from DUC and DDC in a baseband receive
channel with (a) no RF chokes installed, and (b) three turns of the DC wire
around the DUC choke

were removed.

The second attempt to isolate the tones from the other circuitry involved integrating a

Vicor power supply with two independent 15 V outputs. Vicor also manufactures Ripple Atten-

uator Modules (RAM), which combine passive and active filtering elements to smooth out the

power supply, since the Vicor itself is a switched supply. VE-RAM-E1 ripple attenuator mod-

ules were installed on both outputs in an attempt to reduce the coupling between the two 15 V

sources. This same configuration was used by Anthony Swochak for the Ku-band interferometer

[14]. This configuration attenuated – but did not completely remove – the interference.

4.2 Near-Field Antenna Coupling

Another major source of interference in the baseband receive signal is the presence of

strong, correlated, low-frequency signals that dominate from DC up to 150 kHz. These signals

only show up in field deployments of the radar, which suggests that they are the result of inter-

action between the transmit and receive antennas. The exact nature of this coupling has not yet

been explored. At the time of this writing, it is suspected that it is due to the physical spacing of

the antennas acting like a filter that is oscillating or ringing.

The pattern of directional antennas is usually made up of one main lobe and many side-

lobes. They are typically designed such that the sidelobe levels are low enough (in relation to

the main beam) to be disregarded. However, a weak signal leaking from the transmit antenna
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into the receive antenna’s sidelobes will be many times stronger than a desired signal received

from the main beam simply due to the proximity of the antennas. This is a problem that can be

solved by physical isolation of the transmit antenna from the receive antennas.

It should be noted that this is a problem that is exclusive to FMCW radar, which is

constantly transmitting and receiving. For a pulsed or pulse-compressed radar, the transmitter

is off during the receive cycle, so this coupling does not have an effect.

For most of the flights, the transmit antenna was placed as far as possible from the closest

receive antenna for the given antenna mount, 20 cm. For the April 13 flight, the antennas were

set up in an alternate configuration, where the transmit antenna was placed in between the two

receive antennas. This was done to increase the baseline and thus the rate of interferometric

fringes. However, this also reduced the distance between the transmit and receive antennas

to 10 cm, and therefore increased coupling. The consequence was a decreased dynamic range

in both receive channels, and poor SNR that did not have enough phase information in the

correlation between the two channels.

This ringing dominates low frequencies in the range bins between the airplane and the

ground, so it is easy to filter them out in post-processing. However, the large amplitude of these

signals is what causes the biggest problem. The digitizer has a limited dynamic range that is

specified at the time of acquisition in terms of peak-to-peak voltage, Vpp. It is also limited to

8 bits per sample. As Vpp is increased, quantization error for small signals increases, reducing

the ability of the radar to measure weak frequency components. Eliminating the ringing would

decrease the dynamic range of the received signals, essentially compressing the magnitude re-

sponse and bringing out weaker echoes.

4.3 Determining Deployment Configurations

4.3.1 Flight Lines and Times

Finding suitable flight lines began as a trial-and-error process and evolved into a more

methodical approach as confidence in TIMMi’s performance improved. To maximize the perfor-

mance of the overall instrument, a tradeoff between SNR and swath width is made.
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Figure 4.3: Antenna cross-track look geometry

Among the adjustable factors that influence these quantities, altitude is the most influ-

ential. A higher flight line yields a wider cross-track swath along the ground, but the SNR de-

creases because the received power degrades at a rate of r4. We have seen so far that a 3000 feet

AGL (above ground level) is too high, but 2000 feet AGL (approximately 600 m) is a reasonable

compromise, as the signal approaches extinction at the far end of the beam. 1000 feet AGL also

proved successful, although the cross-track range is significantly shorter.

The time of day also plays a role in the overall quality of the data. The first flight was

conducted in the afternoon, when daytime heating created pockets of turbulence and made it

difficult to maintain a steady course and altitude. Subsequent flights were flown early in the

morning, around 7:30 AM, when winds were much calmer. Interpolation of platform orienta-

tion data is more accurate when the deviation of the aircraft motion from a straight flight path

is small. In particular, a number of SAR processing equations assume the platform follows a

straight course, which is easier to achieve in calm air.

4.3.2 Flight Altitude and Antenna Configuration

The antenna boresight angle, θL, is one of the few system parameters that cannot be

adjusted during flight. Adjusting the boresight angle simply controls where power from the an-

tennas is delivered. If the boresight angle is too high, the power is delivered at grazing incidence

angles, and most of it is reflected away from the receiver. If the boresight angle is too low, there

is no return power at farther ranges where the gain is needed most. Additionally, because of

the vertical alignment of the baseline, there is no interferometric information directly below the
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θ (deg) h (m) xmin (m) xmax (m) rmin (m) rmax (m) Notes

45 300 125 725 325 785 Good; LIDAR coverage

45 600 250 1450 650 1570 Recommended
45 900 370 2170 975 2350 Okay

60 300 230 2300 380 2300 Good; LIDAR coverage

60 600 460 4560 760 4600 Alt. and angle too high

60 900 690 6800 1135 6900 Alt. and angle too high

Table 4.1: Example configurations for the look geometry of Figure 4.3 for θB = 45◦; dis-
tances are approximated for convenience; the recommended configuration is in
bold

aircraft, and kz is very large for small θ, so it is very difficult to unwrap phase ambiguities close

to nadir.

The cross-track look geometry is shown in Figure 4.3, and a number of typical configu-

rations are listed in Table 4.1. The numbers in this table are approximations designed to inform

a range of acceptable values for the maximum unambiguous range of the radar. For flight plan-

ning, it was necessary to keep in mind that h is the altitude above ground level (AGL) which

varies as the ground rises and falls beneath the aircraft. The aircraft altitude also varies by 50 m

or more despite the best efforts of the pilot to maintain a constant altitude. The values from the

table are derived from simple trigonometric analysis of Figure 4.3, and are given by

xmin,max = h tan
(

θ ∓ θB
2

)
(4.1)

and

rmin,max =
h

cos (θ ∓ θB/2)
. (4.2)

In order to provide a buffer so that measurements are not missed, it is important select a PRF

and sampling rate such that rmax is greater than the maximum desired value. The variables xmin

and xmax are useful for pre-flight mapping in determining the swath along the ground that will

be imaged throughout a flight line.

The slotted waveguide antennas have a 3 dB elevation beamwidth of 45º[13], so reason-

able boresight angles are in the range 22.5º < θL < 67.5º. Two flights each have been completed

for θL = 45º and 60º, revealing that the 60º boresight angle is too high to achieve sufficient SNR

for good interferometric data. θL = 45º appears to be a good compromise.

38



The baseline separation, Ba, determines the rate of phase wrapping in interferometric

fringes. A larger baseline is more sensitive to small height variations, which makes it difficult to

unwrap the phase ambiguities in areas with steep or abrupt changes in height. The maximum

unambiguous height change is given by ∆hu = 2π/kz. The baseline must be chosen such that

∆hu is much larger than the maximum expected difference in height between two adjacent pixels.

For example, flying at a height of 600 m and looking at a pixel in the center of the beam at θ = 45º,

setting the baseline to Ba = 8 cm results in ∆hu = 91 m, which is more than sufficient for the

rolling hills, treelines, and buildings in the acquisition area.

4.3.3 Baseband Signal Acquisition

The duration of the baseband chirp, τ, impacts the performance of the radar in several

ways. In general, τ should be as long as possible to maximize compression gain, Gc = Bτ.

However, just like every other radar parameter, a trade-off must be taken into account. The

maximum range is given by

rmax =
cτ

2B
fmax. (4.3)

Due to the Nyquist criteria, fmax = fs/2, so in order to increase rmax, either fs or τ can be

increased. The bandwidth, B, is fixed at 100 MHz to take advantage of the full bandwidth of the

system. If τ is too long, platform motion throughout the duration of the chirp begins to become

a concern. In an FMCW radar, the beat frequency response of a target is accumulated during the

sweep. However, the target appears to move across the beam throughout τ, so its beat frequency

coherently adds although the response is changing, resulting in distortion of the target response.

If SAR processing is to be considered, this also imposes an upper bound on τ (§7.2.2).

As τ is decreased, fs must be increased in order to maintain a constant maximum range.

The drawback to increasing fs is an increased data rate. However, the data rate for FMCW is so

low that there is a lot of flexibility in increasing fs. A typical deployment has fs = 2 MHz for

each 8-bit receive channel – a total data rate of 4 MB/s. Write speeds of up to 40 MB/s have been

demonstrated on the data acquisition computer.
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Function
Sine

Run Mode
Sweep

Amplitude Menu
Amplitude 4 Vpp

Offset 0 V

Sweep Menu
Page 1

Start Frequency 5 MHz

Stop Frequency 105 MHz

Sweep Time 1 ms

Return Time 0 ms

Page 2

Center Frequency 55 MHz

Span 100 MHz

Hold Time 0 ms

Type Linear

Page 3

Mode Repeat

Source Internal

Slope Positive

Trigger Interval 1 ms

Table 4.2: Tektronix AFG3252 configuration settings for a 1 ms chirp (1 kHz PRF)
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4.3.4 Function Generator Configuration

The Tektronix AFG3252 is a full-featured arbitrary function generator that has a lot of

flexibility and, thus, a lot of settings. In order to aid future users of the system, Table 4.2 specifies

the desired settings for a typical deployment. The configuration may be stored in one of four

memory banks by using the Save/Menu button.
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C H A P T E R 5

DATA PROCESSING TECHNIQUES

5.1 Data Processing Flow

Post-flight, the raw data is processed using a series of MATLAB functions and toolboxes

(Figure 5.1). The inputs consists of the AHRS time-domain platform motion information, a DEM

provided by MassGIS, and the TIMMi time-domain RF samples. Every radar pulse is assigned

an interpolated timestamp from the TIMMi GPS, and this time domain is used as the destination

domain for interpolating all the other data sets.

The interpolation process is shown in more detail in Figure 5.2. First the raw time sample

data from the digitizer (Figure 5.2a) is converted to the frequency domain via the Fast Fourier

Transform (FFT) (Figure 5.2c). These frequency samples correspond directly to range. Data in

this coordinate system is termed as being in “radar coordinates.” In the map domain, we begin

with the DEM (Figure 5.2b) and interpolate the heights to an arbitrary grid in map coordinates

which will be used for the final image (Figure 5.2d). We then iterate over every radar pulse,

taking platform position and antenna beam pattern into account to project the range bins onto

ground coordinates.

During this final step, we use real aperture radar (RAR) processing and simply average

the responses from overlapping pulses. Future work will incorporate synthetic aperture radar

(SAR) processing techniques (§7.2.2).

5.2 Workflow

This section will walk the reader through the entire data processing workflow, begin-

ning with raw data and ending up with geocoded reflectivity and interferometric images. Each
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flight yielded an incrementally better code base, so we will examine the processing routines

for the most recent flight on June 11, whose scripts and functions are found in the flight4_

processing directory of the Microwave and Remote Sensing Laboratory’s (MIRSL’s) code

repository. They are prefixed with the string “flight4_”.

MATLAB structure arrays are used heavily to separate each data source into its own

namespace. For a more detailed understanding of these MATLAB structures, the reader is re-

ferred to Appendix ??.

5.2.1 Generating Previews

Immediately after a flight, it is critical to have an overall understanding of the qual-

ity and location of the acquistions taken while in the air. The function timmi_airborne_

generate_previews takes a source and generates a number of PNG images in radar coordi-

nates for quick visual analysis. There are magnitude and phase images for channel 1, channel 2,

and the cross-correlation between the channels. The script flight4_generate_previews is

a wrapper for this function that generates previews for all flight 4 data sets in one batch.

The function also plots the platform’s position in a Google Earth KML file, labeling

points on an interval with the look number corresponding to the look index in the data set.

This makes it convenient to determine the start and stop looks for a region of interest by sim-

ply examining the KML file projected over the visible imagery available from Google Earth or

Google Maps.

5.2.2 Setup

The starting point is flight4_setup, a script that populates the process structure

with all necessary data for the time-intensive geocoding and image creation routines that will

follow. In other words, the setup script does everything short of creating magnitude and inter-

ferometric products in map coordinates. It is designed to batch process many region structures

in sequence so that the routines may be run unattended.

The MATLAB script flight4_setup begins by calling flight4_regions to define

the mapping regions of interest. These regions are rough outlines defined by the user that spec-

ify an outer boundary over which processing will occur. The setup script also loads the raw

MassGIS DEM that is a superset of these regions. Next, the script parses the AIMS IMU and GPS
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text files. Since these files do not change, this step only needs to be done once, and the results

are saved to disk as a .mat workspace variable file for faster loading in the future.

Once the preprocessing step has been performed, each region is mapped to a source

to tell the script where the data files are located on disk and how to process them. An im-

portant parameter is the source.averaging_rate which specifies how many output looks

are generated per input look. As the number decreases, more pulses are averaged together

and fewer output looks result. The minimum value for this variable is 1, which means that all

pulses per look are averaged together, and the maximum value is PULSES PER POSITION as

defined in the configuration text file. The averaging_rate must also be a factor of PULSES

PER POSITION, so that an integer number of pulses can be averaged together.

Now that the map region, DEM, AIMS data, and data sources are configured, the pro-

cess structure can be populated. The structure members process.region and process.dem

are assigned to the region and DEM under consideration. The map coordinate space is config-

ured by the generate_map function and is assigned to the member process.map.

The reading of RF samples from the binary data file has the longest duration among

all setup steps. The source structure process.source is set and then timmi_airborne_

raw_read reads the binary file specified by the source and applies the requested amount of

pulse averaging. The raw time-series data is converted into the frequency domain via the Fast

Fourier Transform (FFT), and the results are stored in the process.rf structure (§B.1.5). If the

boolean variable process.source.cached is true , then the rf structure is saved to disk as

a .mat workspace file to reduce overall processing time in future runs of the setup script. If a

previously-cached .mat file is found on disk, it is loaded directly into memory and the function

returns immediately. Manual deletion of the .mat file may be done to recover disk space or to

force the reprocessing of raw FMCW data.

The final step of the setup script sets the time domain process.t and merges the

platform data from the discrete instruments to create the process.platform structure. The

process structure is now ready for further analysis.

5.2.3 Projecting to Map Coordinates

Currently, the only function that generates meaningful map products is generate_

mag_kml. Initially designed to compile only reflectivity images, it has been expanded to also
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a.   b.   c.   d.  

Figure 5.3: (a) The entire map area is examined to find (b) the first beam. Then (c) a mask
is created around that beam and (d) the next beam is located within this mask,
a subset of the map. Steps (c) and (d) continue for every subsequent position.

produce interferometric images as well.

The projection of radar coordinates into map coordinates relies on the function ele-

vation from the MATLAB Mapping Toolbox. elevation takes in the position of the aircraft

and returns the elevation angle, slant range, and azimuth angle to every point in map coordi-

nates. Because a DEM is supplied as the base map, variations in elevation are taken into ac-

count when calculating elevation angle and slant range. With a priori knowledge of the antenna

beamwidth (1◦), azimuthal angle of the antenna boresight, and the maximum unambiguous

range of the radar, we can filter the results of elevation to the pixels seen on the ground by an

individual look or pulse.

The slant_range can be easily converted into a range bin by dividing by the range

resolution, and then complex frequency samples can be simply averaged together for real aper-

ture radar processing. The elevation_angle is related to θ in Figure 2.4, and the platform roll

angle corresponds to α. These values can be used to calculate the expected interferometric phase

for every point along the ground, given by

φsim = arg [exp (j2πBa sin (π/2 + θ − α))] . (5.1)

MATLAB’s elevation function is very processor-intensive takes a long time to com-

plete, especially when done over every pixel in a map region. For the first iteration of the first

radar look, elevation is computed over the entire map coordinate space (Figures 5.3a and

5.3b). For future iterations, we rely on knowledge of the previous look’s antenna pattern and
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the fact that the beam does not move very far along the ground from one look to the next. The

ground-projected beam from the previous look is dilated using the imdilate function from the

Image Processing Toolbox. This creates an “expanded” version of the beam pattern, which is

called the map_mask (Figure 5.3c). It is assumed that the beam for the current look is a subset of

the pixels in this mask. Then elevation and the subsequent beam pattern are calculated, but

this time from within the context of map_mask (Figure 5.3d). This is much faster because it only

considers the limited set of pixels within the mask. If the beam is not found within the mask, an

‘Empty mask’ exception is thrown.

If the platform’s position ever falls outside the bounds of the region, an exception is

thrown and the process aborts, so region must be defined with padding around the platform

track to account for human measurement error.

In addition to generating 2-D map matrices like process.map.mag1 and process.

map.int, the function saves out a series of Google Earth KML images for these products. Each

pair of PNG images and KML files are compressed into KMZ files for portability. Examples of

these images are presented in Chapter ??.

5.3 Recovering Aircraft Roll Angle

One interesting consequence of the interferometric information is the ability to extract

the roll angle of the aircraft platform. This is important because the interferometer is very sensi-

tive to roll angle when measuring height.

Recall that for an interferometer’s phase sensitivity to height is

kz =
2πBa cos(θ − α)

λr sin θ
(5.2)

for a target at range r and look angle θ, baseline separation Ba, and a baseline tilt of α, as shown

in Figure 2.4.

The TIMMi antennas are located on the right-hand side of the airplane and point in that

direction (also known as the starboard side). As the airplane rolls right (clockwise when looking

from the tail towards the nose), the baseline tilt angle α decreases, decreasing kz and resulting in

faster-varying interferometric fringes in the range direction. Conversely, as the airplane rolls left
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Figure 5.4: Recovering aircraft roll angle

(counterclockwise), the fringes become less frequent as the phase sensitivity to height increases.

For every platform position, we use the existing MassGIS DEM to model the expected

differential phase along the ground. We then vary α until the difference between the modeled

and measured phase is minimized. Sometimes the global minimum is discontinuous in the

along-track direction of the aircraft and is therefore not a correct solution, in which case a local

minimum closer to the previous roll angle is found.

Figure 5.4 shows how well the estimated roll angle matches the direct measurements

from the intertial measurement unit (IMU), with errors on the order of 0.5◦. It is noted that

the IMU shows both a time delay and amplitude dampening effect. Because the IMU relies on

inertial changes to make its measurements, it takes time for the IMU to “catch up” to the true

roll angle of the platform. In addition, it has limited ability to respond to quickly-changing

conditions, which makes it act like a low-pass filter. This accounts for the dampening effect on

the angle measurements.

However, it was determined in processing that this result should not be used directly to

generate interferometric products. By modifying the roll angle to fit what is observed, we are

essentially removing the effects of what we are trying to measure. Instead, this analysis may be

used to inform the user of the quality of the IMU data and the time offset between the two data

streams.
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C H A P T E R 6

INAUGURAL RESULTS

6.1 Summary of Airborne Deployments

6.1.1 February 3, 2012

The first airborne deployment was designed to be an engineering flight to determine

the feasibility of the radar as an airborne instrument and to work out any major problems in

the system. The rack-mount configuration from previous ground deployments was reduced in

size and weight, but it was still too large to accommodate AHRS in the cabin, so there was no

platform orientation data for this flight. As we were sitting on the runway prepared for takeoff,

the coaxial connector for the navigation computer’s GPS receiver broke, so we were not able to

fly the planned flight lines.

The baseline separation was 8 cm, with a look angle of 45 º from nadir. Beginning at

an altitude of 1000 feet AGL with a 4 ms chirp, it was determined there was sufficient SNR to

achieve higher altitudes and shorter chirps. We ended up at 2000 feet AGL with a 1 ms chirp.

Despite the setbacks, this flight achieved its goal. In all, 45 minutes of RF data were

collected, including GPS latitude and longitude (but not altitude).

6.1.2 April 13, 2012

This flight was meant to test the new “flat” supporting architecture, as well as collect

AHRS data alongside TIMMi. The aircraft flew at 3000 feet AGL with a 2 ms chirp. The antennas

were pointing 60 º from nadir, and were reconfigured with the transmit antenna in between the

two receive antennas, achieving a baseline separation of 28 cm.
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Unfortunately, coupling between the antennas dominated the receive channels. To cor-

rect for these large-amplitude signals, the digitizer was configured in-flight to truncate to a cer-

tain peak voltage. This caused high-frequency returns to be effectively “thrown out”, reducing

the SNR to a point where the interferometric data is was unrecoverable.

6.1.3 May 18, 2012

This flight was intended to test the behavior of baseband high-pass filters designed to

reduce the near-field antenna ringing. We flew at 2000 feet AGL with a 1 ms chirp with a 60 º look

angle. The baseline separation was returned to 8 cm with the transmit antenna on the bottom.

This deployment suffered from aircraft power issues. A new AHRS unit was put into

place, but combined with TIMMi it drew too much current from the airplane. The 35 A circuit

breaker was tripped multiple times, so only a few minutes of data were collected. There was

enough data to reveal that that the 60 º boresight angle did not provide sufficient signal return

for good interferometric data.

6.1.4 June 11, 2012

This was intended to be another attempt of the May 18 flight. The power issues on the

Cessna were resolved by installing a 50 A circuit breaker in the aircraft. As on the February 3rd

flight, he antenna boresight angle was adjusted to 45 º.

This was the most complete dataset to date. Near the end of the flight, it was determined

that the baseband high-pass filters installed for the May 18 flight were causing a major phase bias

in the interferometric information, so they were removed from both receive channels in-flight.

The final three flight lines of the deployment contain the best combined data of all flights so far.

An overview of this flight’s coverage is shown in Figure 6.1.

Figures 6.2, 6.3 and 6.4 are subsets of this flight that illustrate results in the following

section.

6.2 Reflectivity

Reflectivity is the most basic image that can be generated from a radar. While not the

most valuable product of an interferometer, reflectivity images are easy-to-read and are useful
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Figure 6.1: The planned flight lines for June 11 overlaid with the actual platform track
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Figure 6.2: (a), (b) Reflectivity and (c) correlation in map coordinates
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Figure 6.3: (a) Simulated, (b) measured, and (c) differential interferometric phase in map
coordinates
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Figure 6.4: (a) Heights from interferometry, (b) the DEM, and (c) these two added to-
gether. Note that (a) has a smaller vertical scale to bring out subtle height
variations.
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Figure 6.5: Reflectivity for one flight line in radar coordinates, normalized to the peak
return power

for understanding what the radar sees. Figure 6.5 illustrates reflectivity images for both chan-

nels before map projection. Compared to the real world, there is a geometric distortion in the

cross-track direction because cross-track resolution along the ground decreases as the look an-

gle increases, resulting in a “stretching” of the image with range. FMCW coupling effects are

clearly seen prior to the nadir return. The distance to nadir may be interpreted as a direct mea-

surement of the aircraft height above the ground. This particular set of images shows a range

of distributed targets such as fields and treetips, as well as some bright point targets. The dark

area to the right is a portion of the Connecticut River. The incidence angle is not steep enough to

obtain backscatter from water[1].

Another set of reflectivity images is given in Figures 6.2a and 6.2b. The RF data has been

projected into map coordinates. This region is the foothills of the Holyoke Range in southern

Amherst. This area is largely comprised of trees. Some relief is seen where shadowing occurs on

the far side of the mountain ridge and at the edges of the tree line. The point targets are buildings

and machinery in a quarry. Depressions are also visible for a road, two power lines, and a large

clearing. There exists a disparity in dynamic range between the two channels. Channel 2, the
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Figure 6.6: A composite reflectivity image for five flight lines taken on June 11, 2012; the
solid black lines indicate the aircraft track; north is up
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Figure 6.7: A worst-case example of bright targets spreading in range and azimuth

bottom antenna, has consistently exhibited more gain than channel 1, the top antenna. This may

be due to the physical placement of the antennas, or it may be simply due to gain differences in

the channels in the receiver. The receiver is presently in the process of being fully characterized

from end-to-end to determine the cause.

Figure 6.6 is a large composite image from channel 2 of five separate flight lines all in the

same region, and demonstrates the ability of the system as a whole to gather and process images

over a large area. This image, along with additional interferometric products not shown here,

took about 4 hours to generate on a personal computer. Notable geographic features include

the Connecticut River flowing from north to south and Mount Toby in the southeast part of the

image.

These images give a glimpse into the high resolution available to a 35 GHz system. How-

ever, image quality suffers primarily due to two factors: real aperture radar processing, and

blurring of targets in range (Figure 6.7). Techniques for resolving these issues are discussed in

§7.2.2 and §7.2.3.

Also evident is the dependence of backscatter power on look angle. Close to nadir where

the look angle is steep, much of the power transmitted is reflected back towards the radar, re-

sulting in a strong signal and a high SNR. As the look angle increases and approaches grazing

angles, more power is reflected away from the radar to dissipate into space. This is especially

apparent on the far side of Mount Toby, where the ground slopes away from the radar. When
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Figure 6.8: Magnitude spectrum from a single look

the terrain is so steep that it completely obscures the transmit signal, shadowing occurs, and no

information can be retrieved. This effect can also be seen in the Mount Holyoke datasets.

The magnitude spectrum in Figure 6.8 highlights how different features appear after

consecutive pulses have been averaged together to a single look. In this case, 100 pulses at a PRF

of 1 kHz have been averaged. The decibel scale is measured relative to the strongest frequency

component. The near-range FMCW coupling and the undesired voltage regulator tones occur

before the nadir return, so they are not seen in the previous figures.

6.3 Interferometry

An example of a raw interferometric phase product is given in Figure 6.9. The quality

of the fringes is considered to be exceptionally good, and has excellent coherence as compared

to prior ground deployments of the Ku- and Ka- band radars. As expected, the phase becomes

more noisy at shallow incidence angles in the far range, coincident with the aforementioned low
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Figure 6.9: Interferogram (top) and aircraft roll angle (bottom)

backscatter power. This is an image of a mountain rainge, so shadowing is also present on the

far side of the ridge. In these regions, the phase is nearly random, though there is a bias present

in the noise.

The dominant factor in the fringe rate is not actually due to topography, but instead

to the quickly-changing roll angle α. This is evident by comparing the aircraft roll angle for

the same sequence of looks, which is plotted below the interferogram. In this figure, it can be

seen that as the aircraft momentarily rolls clockwise, the fringe rate increases accordingly. These

variations must be accounted for, as discussed next.

6.3.1 Variations From The DEM

A series of interferometric images taken during the June 11 flight are presented in Figure

6.3. The data shown in this figure are an excerpt from a single 10 km flight line north of the

Holyoke Range in Hadley, MA. Seven other flight lines were mapped during this deployment

for a total along-track length of 140 km. The area shown is about 3 km in the along-track direction

and 1 km in the cross-track direction. The aircraft was travelling west to east with the antennas

pointing out the right-hand side, so the aircraft tracked to the north of the area.
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Image (a) shows a simulated interferogram as projected on the MassGIS DEM, and (b)

shows the measured interferogram. From a wide perspective, the images are very similar. How-

ever, smaller features not captured in the DEM stand out as phase shifts in (b). In particular, the

large clearing, power lines, and road stand out as variations in the fringes.

The differential phase between (a) and (b) is shown in (c). The depressions of forest

clearings are very visible as the cool, blue colors. There are also some areas of increased height

in the forested regions. Note that this image is a simple phase measurement. The factor of kz to

convert phase to relative heights has not yet been taken into account.

Figure 6.4 takes the interferometric products a step further by converting them to actual

heights. Figure 6.3c is divided by kz on a pixel-by-pixel basis to create the differential height map

in Figure 6.4a. Image (b) is the base DEM altitude on a a larger vertical scale, and the mountain

range is very obvious. Finally, by adding (a) to (b), we can generate a new height model (c) with

a high spatial resolution based off the measurements.

Some features in the base DEM, such as the drainage depressions around 72.54◦W lon-

gitude, are actually smoothed over by the measured data. This makes sense because the DEM

measures altitude at the ground level, whereas the radar’s high frequency does not allow it to

penetrate the canopy. The trees in this area have grown to similar heights and obscured the

ground variation beneath the tree tops.

Conversely, variations in the forest are not represented in the DEM, so features such as

the aforementioned forest clearing (72.535◦W), road (72.530 W), and power lines (72.525◦W and

72.522 W), stand out exceptionally well.

The interferometric phase is random in shadowed regions, resulting in the random

height jumps that seen in the far range. These numbers are not meaningful, and it would be

beneficial for higher-level products to filter out these areas based off a correlation threshold.

Figure 6.10 shows an elevation profile comparing the base DEM with radar measure-

ments. This is a cross-track profile with the radar located at the right of the plot. There is good

agreement between the plots from 1600 m to 800 m. At this point, the peak of the mountain

blocks the signal from reaching the descending slope, and the measurements begin to deviate

from the ground truth, quickly becoming a fully noisy signal.
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Figure 6.10: Elevation profile from near-range (right) to far-range (left) of base DEM
(solid) and the new DEM (X’s)

6.3.2 Error Sources (NEW)

The distinct ripple in the differential phase in the cross-track direction (Figure 6.3c) is an

outstanding source of error. This translates to an inaccurate height measurement (Figure 6.4a).

The pattern of the ripples closely follows the fringes in Figure 6.3b but at twice the fringe rate,

indicating that the measured phase falls above or below the expected value twice with every 2π

phase wrap.

(TODO: explain here)

Errors in platform orientation and position have a significant impact on image (c). If

there is a time offset between TIMMi and AHRS, then the simulated interferogram can “lag” or

“lead” the measured interferogram, generating incorrect differential phase. Errors in yaw angle

of the aircraft also play a similar role. This is the cause of the along-track height ripples in (c).
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C H A P T E R 7

SUMMARY AND FUTURE WORK

7.1 Contributions

The following is a bulleted list of contributions arising from this thesis work which becan

in September 2011.

• Redesigned the radar’s supporting electronics, achieving portability and effortless deploy-

ment. This included work on the power supply, reduction of system size, and the upgrad-

ing of system data storage to a solid-state hard drive.

• Rebuilt the entire transceiver, diagnosing and fixing problems.

– Characterized transient tones from voltage regulators onboard the DUC and DDC

and attempted to filter them out of the baseband signal in several ways.

– Reconfigured waveguide components in the transceiver to accomodate the Ka-band

power amplifier from within the enclosure.

– Rewired power supply blocks and connectors to accomodate additional 9 V and 15 V

supplies.

• Designed and implemented baseband high-pass filters to reduce effects of antenna cou-

pling and increase the system’s dynamic range. However, these filters were found to have

a severe impact on interferometric data quality, and are no longer used.

• Transitioned the mechanical antenna support structure to the aircraft door.

• Planned and executed deployments on the aircraft platform (Cessna 206). Developed a set

of tables, formulas, and mapping tools to aid in designing flight lines.

62



• Developed a comprehensive codebase for the analysis of radar data and generation of

higher-level products.

– Used these tools to develop an intimate understanding of interferometric radar con-

cepts, which in turn informed iterative improvements in the code itself.

– Focused on achieving adequate performance on modest hardware by reducing pro-

cessor load and memory usage.

– Implemented a workflow that has a quick turnaround time, permitting same-day im-

age generation following an acqusition.

– Documented code thoroughly via inline comments and Appendix ??.

• Modified acquisition software to support continuous acquisition, integrated a GPS data

stream, and added user interface elements for real-time feedback on the system’s behavior.

• Completed four field deployments of the system.

• Completed a number of static, ground-based test deployments to characterize system per-

formance and feasibility.

• This work was presented at the IEEE International Geoscience and Remote Sensing Sym-

posium (IGARSS) 2012 conference in Munich, Germany. A four page paper was submitted

and published in the conference proceedings.

7.2 Future Work

7.2.1 Combining AHRS and TIMMi Datasets

There have been a number of problems encountered in the merging of the AHRS plat-

form orientation data with the TIMMi RF data. Despite the GPS time synchronization, there

appears to be a delay on the order of 1 second between the two systems. This may also be due

to the aforementioned inertial delay inherent in the IMU. Finding a way to accurately correct for

this time offset will be necessary in the merging of these datasets.

Another difficulty comes from the measurement of yaw angle. AHRS provides aircraft

yaw angle via differential GPS measurements, but the antennas do not point directly broadside
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due to the tapered shape of the fuselage. Determining the angle between the aircraft nose and

the antenna pointing angle using ground targets as a reference has proved to give inconsistent

results.

This information is critical to the augmentation of interferometric heights over the ex-

isting DEM. If a measured height is mapped to the wrong location on the DEM, the differential

height between the DEM “ground truth” and the measurement will be skewed. Any persistent

roll, yaw, or time bias will impact every measurement throughout a flight line.

7.2.2 Unfocused and Focused SAR

For real aperture radar (RAR) processing, the cross-track resolution of the radar is lim-

ited by the azimuthal beamwidth of the antenna pattern, in this case φB = 1º. The resolution is

range-dependent because the beam widens as range increases. For example, when r = 1.5 km,

the beam is 26 m wide. This is much worse than the range resolution of 1.5 m.

Synthetic aperture radar (SAR) processing techniques may be employed to significantly

improve the cross-track resolution. The theoretical resolution achievable through focused SAR

processing is half the along-track antenna length[3][5], which is ∆x = La/2 = 0.24 m for the

Ka-band slotted waveguide antennas. As an additional benefit, the resolution is not range-

dependent.

A limiting factor in SAR data acquisition is that the radar must transmit at least one

pulse each time the platform travels forward at one-half the antenna length. At a typical cruising

speed of Vst = 120 kts and a PRF of 1 kHz, we are able to achieve 3.89 pulses per half-antenna-

length, which is more than sufficient for focused SAR. The Cessna 206 used for this work is also

outfitted with a short take-off and landing (STOL) kit that provides extra lift and enables it to fly

at speeds as low as 55 kts if necessary.

In order for fully focused SAR to be successful, compensation for platform motion must

be well known throughout a target’s entire illumination period. Unfocused SAR may be seen

as a compromise that offers improved resolution over real aperture radar at the cost of a lower

SNR and range dependence. For a target at closest cross-track approach range R0, the achievable

resolution is ∆x =
√

λR0/2 assuming accumulation of phase error no greater than π/4. For a

worst-case comparison at R0 = 1.5 km, this resolution is about 2.5 m – about ten times worse

than focused SAR.
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7.2.2.1 Work So Far

SAR may be conceptualized from several different perspectives. We have attempted to

construct SAR images using three distinct approaches with limited success. The first pass was

done in map coordinates. With a priori knowledge of the DEM and, thus, range to every ground

pixel at every platform position, the expected signal phase can be calculated. The focusing occurs

by taking out “extra” phase due to pixels being away from broadside, forming the synthetic

aperture.

The second iteration approached the problem from the Doppler perspective. Ground

targets experience a Doppler frequency shift due to the relative motion of the aircraft, and can

be calculated easily. An FFT is taken of a sequence of samples from a particular range bin,

yielding the Doppler response of those targets. Each frequency bin from the FFT is mapped

onto a Doppler frequency bin on the ground. For large yaw angles, the Doppler frequency of

the approaching or receding targets may exceed the rate of PRF/2, resulting in aliasing in the

frequency domain. However, knowledge of the platform velocity and approximate yaw angle

can be integrated to resolve this ambiguity. For example, the centroid of one FFT spectrum with

fs = 1 kHz was found to be at 400 Hz, but the yaw angle indicated that Doppler shift should be

negative. A back-of-the-envelope calculation revealed the true shift to be −600 Hz.

The third attempt was undertaken in RF coordinates in a similar fashion to the first. For

each range bin, a matched filter is constructed based on the antenna beamwidth, range, and

distance between consecutive pulses. Each matched filter is then convolved with a series of all

the samples in its range bin. This method is very fast to compute, but it will only focus a narrow

set of ranges. I suspect this is due to incorrect assumptions in the geometry of the scene when

generating of the matched filter.

An odd issued appeared with the phase measurements for individual channels that was

not a problem until SAR was attempted. It seems that the phase is incremented by a factor of

exactly π on every consecutive pulse. Multiplying the samples of every other pulse by ejπ = −1

yields phase measurements that vary smoothly with time. This is consistent for both channels

because interferometric phase has been reliable up to this point. This problem likely originates

from the conversion of time samples into the frequency domain in timmi_airborne_raw_read.
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7.2.3 Correcting Target Range Blurring

A persistent problem seen across all ground and airborne deployments is the replication

of targets across many range bins. This is especially noticeable for bright targets, whose sharp

response can be seen to have many ripples in range. The cause of this blurring in the cross-track

direction is not understood right now.

Meta et al. [7][8] identify the major cause of range blurring in FMCW radars as non-

linearities in the transmitted waveform. We have characterized the waveform of the Tektronix

AFG3252 in the lab, and have found that it indeed has a very nonlinear response. However, the

undesired images due to these nonlinearities fall out of the pass-band of the receiver, so they

should not impact the image. More work must be done in order to understand the full impact

of these nonlinearities, and if any distortion is introduced during upconversion. We also plan to

do a ground deployment with an Agilent N8242A arbitrary function generator, which we have

already seen has a very different behavior across the 100 MHz chirp, but we are unsure how this

will impact detection of target range.

Another potential cause of this blurring is due to multipath reflections. The incident RF

energy impinging on the ground is re-radiated in all directions. These re-radiated signals can

reflect off of different parts of the aircraft and coherently (or incoherently) add with the desired

signals, hence creating an along-track banding in the reflectivity and interferometric images.

The blurring degrades the quality of the backscatter images. More importantly, this

alters the interferometric phase from its true value because the phase responses of independent

targets are accumulated coherently when they are not correlated in reality.

7.2.4 Additional Deployments

There are a number of hardware changes that might improve the quality of data in fu-

ture deployments. Most notably, the Tektronix AFG would be replaced by an Agilent N8242A

function generator in an attempt to reduce blurring in the range direction due to nonlinearities

in the baseband chirp. The Agilent device also supports a 200 MHz bandwidth to which TIMMi

is transitioning.

We would also like to increase the physical isolation between the transmit and receive

antennas by placing a barrier between them. A piece of RF-absorbing foam would be a likely

candidate for the separating material. This analysis can be performed prior to flight, and is most
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easily tested by pointing the entire antenna assembly at the sky in an area free of obstructions.

The Harvard Forest is an area of ongoing research for many members of MIRSL and

the scientific community. It is an important testbed for understanding the use of remote sens-

ing techniques in estimating how much biomass is contained in wooded areas. At MIRSL, we

are currently analyzing lidar footprints and radar images over the Harvard Forest taken from

NASA’s LVIS[2] and UAVSAR[6] instruments. The UAVSAR backscatter images were taken at

L-band. A TIMMi flight over the same area would create a unique interferometric dataset that

could be corroborated with the existing datasets, ground truth, and new instruments being flown

this year.

7.2.5 Convert RF Datasets to a Standardized Format

As it stands, the handling of the raw RF data files is somewhat cumbersome. The files

are not self-descriptive and rely on prior knowledge of the specific format in order to be read.

This comes with a high startup cost if one wishes to load the data into another application, and

makes it difficult for future users to read archived data if documentation cannot be found.

I propose an additional step immediately following acquisition to convert the raw RF file

into a standardized file format designed for storing multidimensional data for scientific applica-

tions. The file could include additional metadata related to radar acqusition software configura-

tion (e.g. PRF, sampling rate) , hardware configuration (e.g. baseline separation), and additional

notes from the operator. Its primary payload would be an array of waveforms for each pulse

and an array of GPS measurements. The concept of a “look” would no longer be tied to the data

format, and would instead just be an input parameter to the acqusition software to tell it how

often to offload samples from the ADC.

NetCDF1 is one such format that meets all these specifications. It is commonly used

in the geosciences, and is an open standard that has cross-platform support and is widely sup-

ported. HDF52 has similar features and may also be satisfactory.

1http://www.unidata.ucar.edu/software/netcdf/
2http://www.hdfgroup.org/HDF5/
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7.2.6 Add Flexibility to Antenna Mounting Bracket

In order to achieve a strong return from the surface of water at Ka-band, TIMMi must

be able to take measurements within a few degrees of nadir. The physical configuration of the

antenna mounting bracket does not currently allow for this. The antenna mounting bracket must

be modified in such a way that the baseline is not perpendicular to the ground. It may be possible

to manufacture an extension that allows the mount to tilt away from the aircraft. Another option

is to utilize the instrument port in the bottom of the aircraft, placing the antennas parallel to the

ground and looking in the cross-track direction.

The easiest way to test what incidence angles are required is to complete a circle flight

over a body of water at varying banking angles. The roll angle allows you to tilt the baseline

without physically tilting it in relation to the aircraft. The Quabbin Reservoir would be an ideal

candidate for such an experiment.
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A P P E N D I X A

NOTATION REFERENCE

A.1 Symbolic Notation

α Baseline tilt angle (rad)

B Bandwidth (Hz)

Ba Antenna baseline separation (m)

c Speed of light in free space (3 ·
108 m/s)

f FMCW target frequency (Hz)

f IF Intermediate frequency (Hz)

fLO Local oscillator frequency (Hz)

fp Pulse repetition frequency (Hz)

fRF Radio frequency (Hz)

fs Sampling rate (Hz)

∆hu Unambiguous height change (m)

kz Phase sensitivity to height
(rad/m)

κ Platform yaw angle; clockwise is
positive (rad)

La Along-track antenna length (m)

λ Wavelength (m)

Np Number of pulses

Ns Number of samples

Ω Platform roll angle; clockwise is
positive (rad)

φ Platform pitch angle; up is posi-
tive (rad)

φB Azimuthal antenna beamwidth
(rad)

r Range (m)

∆r Range resolution (m)

R0 Closest cross-track target range
(m)

Pout Output power (W)

tr Trigger re-arm time (s)

τ Chirp/pulse length (s)

θ Cross-track boresight angle from
nadir (rad)

θB Elevation antenna beamwidth
(rad)

θL Antenna boresight angle (rad)

Vpp Peak-to-peak voltage (V)

Vst Along-track platform velocity
(m/s)

∆x Cross-track resolution (m)
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A.2 Abbreviations

AFG Arbitrary Function Generator

AGL Above Ground Level

AHRS Altitude and Heading Reference
System

AIMS Airborne Imaging Multispectral
Sensor

BB Baseband

DDC Dual Down-Coverter

DEM Digital Elevation Model

DOP Dilution Of Precision

DUC Dual Up-Converter

FFT Fast Fourier Transform

FMCW Frequency-Modulated, Continuous-
Wave

HDF5 Hierarchical Data Format, version
5

IMU Inertial Measurement Unit

JPL Jet Propulsion Laboratory

LVIS Laser Vegetation Imaging Sensor

NetCDF Network Common Data Form

NI National Instruments

NMEA National Marine Electronics Asso-
ciation

PCI Peripheral Component Intercon-
nect

PXI PCI eXtensions for Instrumenta-
tion

RAID Redundant Array of Independent
Disks

RAM Ripple Attenuator Module

RAR Real Aperture Radar

SAR Synthetic Aperture Radar

SNR Signal to Noise Ratio

TIMMi Topographic Ice Mapping Mission

STOL Short Take-Off and Landing

SWOT Surface Water Ocean Topography
(Mission)

UAVSAR Uninhabited Aerial Vehicle Syn-
thetic Aperture Radar
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A P P E N D I X B

MATLAB PROCESSING CODE REFERENCE

B.1 The process structure

process is an all-encompassing structure that contains all input and output informa-

tion for every processing step. It is convenient to be able to persist a single instance of the

process struct out to disk using save and load, and to separate different processing work-

flows into different variables. It is made up of the following members.

B.1.1 region

The region structure is the smallest unit of data processing, and typically corresponds

to an individual flight line. The DEM base maps are typically much larger than the flight line

of interest, so the region defines a subset of that large DEM, which will be more efficient to

process in later steps. Its fields are as follows:

name A canonical name for this region, used to generate unique output file names

dataset The RF dataset name, e.g. ‘2012-06-11_120540Z_1’

looks An array of look indices to process in the dataset, e.g. 570:985

UL.lat The latitude of the upper-left corner of this region

UL.lon The longitude of the upper-left corner of this region

LR.lat The latitude of the lower-right corner of this region

LR.lon The longitude of the lower-right corner of this region

dlat The pixel size in latitude to interpolate the DEM to, in degrees, e.g. 2.5E-5

dlon The pixel size in longitude to interpolate the DEM to, in degrees, e.g. 2.5E-5
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B.1.2 source

Once a region structure is populated with information about the DEM and map coor-

dinates, the source structure is generated to give the processing scripts specific instructions on

how to handle the reading of the raw data files. The source is the sole parameter passed to

timmi_airborne_raw_read for the initial reading and FMCW processing of raw data files.

Typically, each region has a corresponding source, although there may be unforseen

cases where multiple source structures are created for an individual region.

directory The full path to the dataset

averaging_rate The number of averaged looks to generate from each raw “look”; when

equal to 1, produces one output look per input look; when equal to Npulse, produces one

output look per pulse; must be a factor of number of Npulse

start_look The first look index to process; use 1 for the first look

end_look The last look index to process; use -1 for the last look

gps_only Optional; set to true to only read GPS data and skip all RF data

waveforms_only Optional; set to true to only read raw time-series waveforms without per-

forming any additional processing such as windowing and FFT

cached Optional; set to true to save processed RF data to a MAT file on disk for quick loading

in the future

name Optional; if cached is true, specify a unique name for the cached file

B.1.3 dem

The dem structure handles the raw MassGIS DEMs generated using the ENVI mapping

software. The ENVI header is a plain text file that can be read to manually populate these fields.

file The full path to the DEM data file

nsamp The number of elevation samples per line

nline The number of elevation lines
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dlat The size of the elevation pixels in latitude degrees

dlon The size of the elevation pixels in longitude degrees

UL.lat, UL.lon The latitude and longitude of the upper-left corner of the DEM

LR.lat, LR.lon The latitude and longitude of the lower-right corner of the DEM

lat_vec, lon_vec Arrays of latitude and longitude coordinates for the grid

alt The 2-D matrix of elevation values

coords A 4-by-2 matrix, each row contains the lon/lat of one corner of the DEM bounds

B.1.4 map

The map structure is intended to store all data products that have been projected into

map coordinates. It is first created from a region and a DEM using generate_map. This func-

tion sets up the geographic coordinate space specified by the regionand interpolates the DEM

onto this grid.

dlat, dlon The size of the grid pixels in latitude/longitude degrees

lat_vec, lon_vec Arrays of latitude and longitude coordinates for the map grid

lat, lon 2-D matrices of the coordinates for each pixel, created by meshgrid

alt The DEM interpolated into map coordinates

flat A synthetic flat Earth initialized at the minimum DEM elevation

B.1.5 rf

The rf structure is populated with information read that timmi_airborne_raw_read

loads from disk. It reads the raw time samples and performs a fast Fourier transform (FFT) to

transform the samples into the frequency domain – the primary way of determining range for

FMCW radars. TIMMi GPS data present at the header of each look is also read, and parameters

from the configuration text file are parsed and stored in the config struct.

mag1, mag2 Linear power magnitude for each channel in RF coordinates, averaged
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slc1, slc2 Single Look Complex data for each channel in RF coordinates, averaged

corr The complex correlation between the two channels; corr = slc1 .* conj(slc2)

dn The datenum representation for each look, read from the 23-character Timestamp field (Table

3.4)

config Metadata and other radar configuration parameters; see §B.1.5.1

coordinates A two-column matrix of latitude/longitude coordinates for each look

gps A structure encapsulating all GPS information recorded in the look header, e.g. latitude,

longitude, altitude, timestamp, etc.

looks An array of all look indices

B.1.5.1 rf.config

The config structure contains metadata about the acquisition that is necessary for pro-

cessing. Most of the values are parsed from the configuration text file created during acquisition,

but some values are hard-coded or must be filled in manually.

nlooks Total number of looks

nsamp Number of FFT samples per look (half the number of time samples)

npulse Number of pulses per look

dr Range resolution (1.5 m)

BW Radar system bandwidth (100 MHz)

fsamp ADC sampling rate

B Antenna baseline separation

source_dir, fname RF data file directory and name

time0, time1 Start and end acquisition times (first and last dn values)

time_str A human-readable date string representing this data set (the first dn value)

version The RF data file version (1 or 2)

averaging_rate The number of output looks per input look (see source.averaging_rate)
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B.1.6 t

The function rf_time_basis takes an rf structure and generates the array t to act

as a standarized time domain for all processing steps. It begins by taking every datenum value

from the rf.gps struct and smoothing it to have a linear, monatonically-increasing trend. This

is done under the assumption that the ADC trigger is extremely well-timed, whereas there is a

varying delay in transferring this data from the ADC’s memory into program memory and then

to disk. normalize_gps_time finds a straight line that closely matches all the timestamps.

Then rf_time_basis takes this new GPS time series and interpolates it to every output look,

so that we have good idea of the time that every output look occurred.

B.1.7 ames

Unfortunately, this structure is a misspelling of AIMS, but it has not yet been refactored.

The ames structure is populated by interpolate_ames, which takes as an input the time se-

ries t as well as the IMU and GPS structures read directly in from the data files using read_imu

and read_nmea. Sometimes, there is an offset between the AIMS timestamps and what is ex-

pected on the order of one second. If there is a discrepancy in daylight savings time, this offset

will be plus or minus one hour (± 1
24 datenum). Errors in geocoding and interferometric prod-

ucts are very sensitive to an incorrect offset, because this factor determines how well the IMU

and GPS data from AIMS line up with the GPS and RF data recorded separately by TIMMi.

Again, all these measurements are taken from the raw data files and interpolated to the

universal RF time basis t, so they can be matched directly to RF coordinates on a pulse-by-pulse

basis.

imu.roll Roll angle in degrees, positive is clockwise

imu.pitch Pitch angle in degrees, positive is down

imu.azimuth Absolute compass direction in degrees, only reliable for the “new” IMU

gps.lat, gps.lon Latitude and longitude

gps.alt Altitude above geoid plus geoid height above ellipsoid

gps.track “Track made good”, the true direction of the platform’s motion along the ground

gps.speed_kts, gps.speed_kph Speed along the ground in knots and kilometers per hour
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B.1.8 platform

The platform structure is simply a layer of abstraction between the AIMS instrument

data, the RF GPS data, and the processing algorithms. This structure is populated on a per-flight

basis, and allows the mixing and matching of various data sources to arrive at the final picture

of the platform’s position and orientation at every instant in t.

For example, perhaps it was discovered that the AIMS GPS data stream was interrupted,

then it could be supplemented or replaced by the TIMMi GPS data by simply substituting the

appropriate members of the platform structure. In a real-world case, a correction factor had to

be applied to the azimuth measurements of the June 11 flight because the AIMS differential GPS

antennas were connected to the wrong ports on the GPS receiver.

Each flight has its own function, e.g. flight4_platform, that returns a platform

struct created from any number of ancillary parameters.

alt Platform altitude in meters

lat, lon Platform latitude and longitude in degrees

pitch Platform pitch in degrees, positive is nose-down

roll Platform roll in degrees, positive is clockwise

look_direction A string indicating the broadside look direction, either ‘right’ or (unsup-

ported) ‘left’

speed Platform along-ground speed in meters per second

baseline_tilt Baseline tilt angle to vertical, positive means the top antenna tilts away from

the aircraft, in degrees

nplat The number of platform positions (essentially the length of t)

heading Platform azimuthal look direction in true degrees

antenna_pointing Antenna azimuthal look direction in true degrees, typically heading +

90 + fudge_factor, where fudge_factor is the antenna mounting bracket’s angle

away from broadside
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A P P E N D I X C

CHECKLISTS

C.1 Hardware Checklist

• Devices

– NI PXI acquisition computer

– Tektronix AFG3252 function generator

– Power supply unit with GPS receiver and USB serial adapter

– Linksys network switch

– Notebook with ethernet port and Remote Desktop client

• RF

– TIMMi Ka-band transceiver, tested

– 3 × slotted waveguide antennas, tuned

– 6 × flexible WR-28 waveguides

– 6 × locking pins for positioning antennas

– 1 × GPS puck antenna

– Assorted WR-28 waveguide components

• Cables

– 2 × CAT-5 ethernet cables

– 4 × long BNC cables

– 1 × short BNC cable

77



– 1 × 19-pin circular military power cable

• Tools

– Hex drivers for machine screws

– Adjustable wrench

– Flat-head screwdriver

– Multimeter

– Oscilloscope and/or spectrum analyzer (optional)

• Miscellaneous

– 4-32 nuts and bolts for connecting waveguides

– SMA and BNC adapters

– Extra BNC cables

– Extra WR-28 waveguide components

– Power strip, power cords, and AC adapters for every device

– USB storage (FAT32 or NTFS) for offloading AIMS data

– Aircraft door

C.2 Pre-Flight Checklists

C.2.1 In the Lab

• It is much easier to assemble the door hardware in the lab than to do it in the hangar

attached to the aircraft. This includes the transceiver, waveguides, bulkhead adapters,

antenna mount, and antennas. The entire unit may be carried like a briefcase using the

handle on top of the transceiver.

• Note which COM port the USB serial adapter has acquired.

• Test the transceiver end-to-end. Connect everything to the aircraft door as it would be in

situ – transceiver, antennas, everything. Insert a baseband signal, radiate a room full of

your peers, and make sure baseband signals return out of both receive channels.
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• Configure the acquisition computer to use a static IP address and write it down. Remote

Desktop will be configured to connect to this IP address. If you do not do this, the computer

will assign itself a random 169.x.x.x address that you cannot determine without connecting

a monitor directly to the computer, and you won’t necessarily have one in the hangar.

Which brings us to...

C.2.2 In the Hangar

• Remove the rear cargo door, then place the supporting electronics in the rear of the aircraft

and make all the power and coax connections. Only then should you install the fully-

assembled radar door and make the final connections. The door can be installed single-

handedly, but having an extra person helps.

• Do not open the rear cargo door once it is installed. This puts undue physical stress on the

flexible waveguides when they push up against the fuselage.

• Test the full end-to-end RF path by simulating an acquisition. Alternatively, enable the

function generator and run the quick_fmcw_testVI to check that everything is working.

• Push the aircraft out of the hangar and run quick_gps_test to make sure the COM port

is correct and the GPS antenna is connected and working.

C.2.3 On the Tarmac

• Once the aircraft is started and idling, immediately boot the acqusition computer as soon

as power is available. Only instruct the pilot to take off once the computer is fully booted

and a LabVIEW acqusition has been started.

– Sometimes the LabVIEW initialization gets stuck at “___”. In this case, starting a

second instance of LabVIEW will be successful as long as the frozen instance remains

in the background.

• Load the saved configuration into the Tektronix AFG3252 and immediately turn channel 1

output on.
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C.3 Post-Flight Checklists

C.3.1 On the Tarmac

• When the aircraft engine stops, power will cut out abruptly. Make sure that the LabVIEW

acqusition has been stopped before the aircraft shuts down to prevent corrupt or incom-

plete data sets. Ideally, stop the final acquisition immediately following touchdown.

C.3.2 In the Hangar

• Download data from AIMS computer to an external USB storage device.

• Disconnect connections to the transcevier and remove the system from the aircraft in the

reverse order it was installed: remove the door, remove the supporting systems, then re-

place the stock door. Don’t lose those cotter pins!
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