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ABSTRACT

A DYNAMIC RECONFIGURATION FRAMEWORK TO
MAXIMIZE PERFORMANCE/POWER IN

ASYMMETRIC MULTICORE PROCESSORS

SEPTEMBER 2013

ARUNACHALAM ANNAMALAI

B.E, MADRAS INSTITUTE OF TECHNOLOGY, ANNA UNIVERSITY, INDIA

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Israel Koren and Professor Sandip Kundu

Recent trends in technology scaling have shifted the processing paradigm to

multicores. Depending on the characteristics of the cores, the multicores can be

either symmetric or asymmetric. Prior research has shown that Asymmetric Multicore

Processors (AMPs) outperform their symmetric (SMP) counterparts within a given

resource and power budget. But, due to the heterogeneity in core-types and time-

varying workload behavior, thread-to-core assignment is always a challenge in AMPs.

As the computational requirements vary significantly across different applications

and with time, there is a need to dynamically allocate appropriate computational

resources on demand to suit the applications’ current needs, in order to maximize

the performance and minimize the energy consumption. Performance/power of the

applications could be further increased by dynamically adapting the voltage and

frequency of the cores to better fit the changing characteristics of the workloads.

Not only can a core be forced to a low power mode when its activity level is low,

vi



but the power saved by doing so could be opportunistically re-budgeted to the other

cores to boost the overall system throughput.

To this end, we propose a novel solution that seamlessly combines heterogene-

ity with a Dynamic Reconfiguration Framework (DRF). The proposed dynamic re-

configuration framework is equipped with Dynamic Resource Allocation (DRA) and

Voltage/Frequency Adaptation (DVFA) capabilities to adapt the core resources and

operating conditions at runtime to the changing demands of the applications. As a

proof of concept, we illustrate our proposed approach using a dual-core AMP and

demonstrate significant performance/power benefits over various baselines.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Advancements in technology allowed more transistors to be packed in a smaller

area while the improved performance of transistors helped in achieving higher clock

frequencies resulting in sharp increase in the power density. To combat this unsus-

tainable increase in power density, the processor industry responded by lowering the

frequency and integrating multiple cores on the same die [20, 25]. As a multicore die

is still limited by an overall power dissipation envelope that stems from packaging and

cooling technologies, most current multicores are composed of cores with relatively

moderate capabilities.

In this chapter, we study the main problems that limit the current multicore

systems in achieving high energy efficiency and present a proposal to address them.

1.1 Symmetric vs. Asymmetric Multicore Processors

Multicore processors, in general, may be symmetric (SMP) or asymmetric (AMP).

An SMP consists of many cores of the same type while in an AMP, the cores may be

different from one another with respect to their functionality and/or performance [31].

As a first step, there is a need to choose between the two types so as to achieve

maximum performance/power for most applications.

Multicores execute diverse applications with a large variance in their instruction

distribution. Figure 1.1 shows the instruction distribution of 38 benchmarks we con-

sider, when run for 100 million instructions. As can be observed, some benchmarks

are memory bound (e.g., fbench, gcc); some are floating-point intensive (e.g., equake,
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Figure 1.1. Distribution of the instruction types for 38 benchmarks.

fpStress, ammp) while others are integer intensive (e.g., bitcount, sha). It is evi-

dent from the figure that the resource requirements of applications vary significantly.

Moreover, even within a given application, computational requirements may vary with

time due to changes in program phases [32, 47]. Thus, different workloads benefit

from different computational resources at different instants of time. Hence, homoge-

neous (symmetric) multicores with fixed computational resources are likely to miss

potential opportunities to improve performance and reduce energy consumption. This

leads us to our decision to focus on using a heterogeneous computing fabric with cores

of diverse strengths that could efficiently cater to the needs of different applications

and their phases. Our decision is in line with recent studies [18, 22, 33, 53] that show

that AMPs can outperform their symmetric counterparts within a given power and

area budgets when the computing demands of the applications are matched with the

processor capabilities.
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1.2 Motivation for Dynamic Reconfiguration Framework

The benefits of AMPs are, however, highly dependent on the way threads are

assigned to the individual asymmetric cores and a non-optimal assignment may

even have an adverse impact. Consider, for example, Figure 1.2 where the perfor-

mance/Watt of a few workloads executed on two cores is plotted. For now, let the two

cores be called core A and core B. This figure shows that for some workloads, core A
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Figure 1.2. Performance/Watt achieved for different workloads on two different core
types A and B.

is a better option (e.g., equake, fpStress) while for some others, core B is better (e.g.,

CRC32, intStress). There are also some workloads (e.g., gcc, mcf ) for which there is

no significant difference in performance/Watt achieved by either core. Clearly, a cor-

rect thread to core assignment is required to maximize the performance/power of the

applications [5]. Furthermore, even a best static thread-to-core assignment may not

suffice as the applications change phases during their execution. Hence, a dynamic

thread swapping mechanism can further improve the performance/power.

But, thread swapping alone may not be sufficient for all applications/program

phases. This is because multicore processors sacrifice instruction throughput for cer-

tain applications as they primarily focus on supporting Thread Level Parallelism

(TLP) [17, 40]. To achieve reasonable performance/power, applications should have

3



a lower execution time and consume less power. High performance for sequential

applications could be achieved either by designing more powerful cores or morphing

the resources of the existing cores on-demand to suit the applications’ current needs.

Incorporating complex cores in a multicore system may lead to under utilization of

resources and even breaching of power dissipation limits. Therefore, there is a strong

need for a scheme to morph the existing core resources on-demand. To this end, we

present our first proposition to improve the performance/power efficiency of AMPs

by adaptively matching the processor capabilities to the computing needs of the exe-

cuting threads. Dynamic thread swapping along with on-demand resource morphing

constitute the Dynamic Resource Allocation (DRA) capability of our scheme.

As with computational resources, different voltage/frequency levels of the pro-

cessor may suit different phases of an application. By appropriately choosing the

operating conditions, we would be able to improve performance and reduce power

consumption further. In this regard, Dynamic Voltage and Frequency Scaling (DVFS)

technique [24] has been widely employed to reduce power consumption. The voltage

and frequency of a core can be lowered when it is idle or is in a low activity mode.

For example, a memory bound application typically does not have sufficient instruc-

tion level parallelism (ILP) to keep the core busy while waiting for the long-latency

memory accesses to complete [54]. Reducing the voltage and/or clock frequency of

the core in such a case does not impact the overall performance greatly [24]. Intel’s

Turbo Boost technology enhances the performance of a high performing core through

dynamic voltage and frequency boosting when the other cores are inactive [4, 43].

With an objective of increasing the overall system throughput and maximizing per-

formance/power, we present our second proposition of incorporating a Dynamic

Voltage and Frequency Adaptation (DVFA) capability as part of our reconfiguration

framework. Dynamic Resource Allocation (DRA) and Dynamic Voltage and Fre-
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quency Adaptation (DVFA) capabilities together constitute our proposed Dynamic

Reconfiguration Framework (DRF).

In this thesis, we first explore a rule-based approach for the proposed dynamic

reconfiguration framework. We refer to this as RDRF where the DRA and DVFA

decisions are made online based on rules developed by profiling offline a subset of work-

loads. We then present a prediction-based approach (PDRF) to address the observed

limitations of RDRF. In PDRF, the decisions about the core reconfiguration and op-

erating conditions are made online by predicting the expected performance/power of

a thread at different voltage/frequency levels on all the available core-types in the

AMP.

1.3 Overview of our proposed scheme

At a base level, we assume an AMP architecture that could dynamically allocate

execution resources (DRA) and adapt the frequency and voltage of the cores (DVFA)

at runtime to suit the time dependent behavior of the workload (see Figure 1.3). The

objective of our scheme is to maximize performance while keeping power dissipation

under check. Hence, we employ performance/Watt as the metric to evaluate our

DRA mechanism and use throughput/Watt when the voltage/frequency of the cores

are changed dynamically.

The baseline cores are resourced moderately in all areas, while featuring extra-

strength in a specific area (e.g., integer or floating-point operations). The strength

of the cores is non-overlapping and hence, each core is suited for specific application

characteristics. When a thread demands strength in more than one area, the cores are

morphed dynamically by realigning their execution resources such that one core gains

strength in one or more additional area(s) by trading its moderate resources for the

stronger resources of other core(s). Such morphing is not always the best solution,

if a mismatch between the thread needs and the capabilities of the core executing
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Figure 1.3. (a) High-level view of the complete DRF. (b) Thread swap and core mor-
phing as part of DRA. (c) DVFA capability of the scheme. Voltage(V)/frequency(f)
of the cores changed dynamically.

it, is discovered, a thread swap may provide a better alternative. Thus, our AMP

architecture supports moving from the baseline mode of operation to the morphed

mode, returning to the baseline, and also supports thread swap. Hardware monitors

(performance counters) are used to determine the thread-to-core affinity and trigger

core reorganization at runtime to maximize performance/Watt. The main merits of

the proposed DRA scheme shown in Figure 1.3(b) are:

1. It allows applications to exploit the most suitable core for better performance.

2. The individual cores remain modest in their sizing allowing the AMP to meet

the overall cost and power targets.
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3. The realigned resources in the morphed mode provide higher levels of perfor-

mance for the applications that can benefit from them.

The above benefits are further increased with the added DVFA feature (see Fig-

ure 1.3(c)), where the frequency and voltage of the individual cores are changed

(decreased or increased) dynamically in accordance with the workload behavior to

maximize throughput/Watt while staying within the defined Thermal Design Power

(TDP) limits.

1.4 Contributions of this thesis

1. A holistic energy-efficient scheme that dynamically allocates appropriate execu-

tion resources and/or changes the voltage and frequency of the cores at runtime

to maximize performance/power.

2. A unified mechanism based on hardware counters that seamlessly triggers both

core reconfiguration and voltage/frequency adaptation.

3. A mechanism to accurately predict the expected performance/power of the cur-

rent program phase if it would run on other core-types in the AMP and at

different voltage/frequency levels.

The rest of the thesis is organized as follows. We review prior work related to our

approach in Chapter 2. We present our proposed scheme in Chapter 3. Chapter 4

describes our core sizing experiments. The different core configurations are evaluated

in Chapter 5. We present and evaluate DRA as a stand-alone scheme in Chapter 6

and the complete rule-based dynamic reconfiguration framework is presented in Chap-

ter 7. The prediction-based DRF (PDRF) which addresses the limitations of RDRF

is discussed in Chapter 8 and an application of it for a commonly used dual-core AMP

is studied in Chapter 9. Chapter 10 concludes the thesis and the possible extensions

of this work are discussed in Chapter 11.
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CHAPTER 2

RELATED WORK

As the proposed approach combines heterogeneity, dynamic resource allocation

and voltage/frequency adaptation, we briefly review prior research on each of these

fronts in this chapter.

2.1 Heterogeneous and Reconfigurable Architectures

Ipek et al. [23] have presented the concept of core fusion where the resources of

several homogeneous cores are fused to form a single stronger core at runtime. Kim

et al. [29] presented another approach to fusion of homogeneous cores where, for

example, 32 dual-issue cores can be fused into a 64-issue processor. Both schemes

exhibit a high inter-core global communication overhead and the potential benefits

of fusion are negatively affected by the reconfiguration overhead of critical units like

re-order buffer (ROB), issue (ISQ) and load/store queues (LSQ). Salverda et al. [45]

discuss the difficulties in achieving good performance by fusing simple in-order cores

into out-of-order (OOO) cores. Aggregating cores in a SMP [23, 29, 51] offers more

of the same resources and hence its performance benefits saturate as the Instruction

Level Parallelism (ILP) saturates.

Recent studies have shown that symmetric cores are unlikely to provide better

performance than a heterogeneous multicore [22, 33]. Morad et al. [37] propose het-

erogeneous architectures that could be employed to achieve higher performance per

area per Watt. The power benefits obtained by using a single ISA heterogeneous

chip multiprocessor (CMP) is evaluated in [32]. Other references [10, 22, 38, 40] show
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that reconfigurable architectures may improve the benefit of AMPs even further. Das

et al. [12] have proposed an asymmetric dual-core processor that could fuse a strong

integer and a strong floating-point cores. Their scheme is static so the cores are either

fused or not for the entire program run. Static morphing of the cores cannot suit all

the different phases in an application and hence, there is a need for a scheme that

could adapt dynamically to the time-varying program behavior.

2.2 Dynamic Thread Scheduling schemes

Earlier proposed thread scheduling schemes could be broadly classified into those

that employ offline profiling, online learning via sampling and online estimation.

Offline profiling schemes: Khan et al. [26] propose regression analysis along

with phase classification to identify thread to core affinity. Shelepov et al. [46] profile

applications to determine architectural signatures based on cache misses. These sig-

natures are obtained offline via profiling and are fixed for the lifetime of the program

and hence their scheme do not take advantage of program phases. In [9], Chen et al.

use cores in an AMP that differ with respect to issue width, branch predictor size

and L1 caches. They use multi-dimensional curve fitting to determine the optimal

thread to core assignment offline. All the above approaches are not practical as they

require complete knowledge of the workloads that will be run on the multicore. In

contrast, we deduce rules for reconfiguration by profiling only a few representative

workloads in our rule-based dynamic reconfiguration framework (RDRF). The rules

thus obtained are used globally for all applications, not limiting to the profiled set.

Online learning schemes: These schemes offer a more practical solution to the

AMP scheduling problem. Kumar et al. in [32] proposed an AMP consisting of cores

of various sizes. Whenever a new program is run or a new phase is detected, a sampling

is initiated and the core which provides the best power efficiency is chosen. Although,

this work considered four cores, only a single thread was considered running which
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simplifies the AMP scheduling problem. The authors later extended their research

to cover performance maximization of multithreaded applications [34]. A similar

approach was proposed by Becchi et al. [6] for performance maximization of an AMP

consisting of two types of cores. Optimal thread scheduling was determined by forcing

a thread swap between cores upon detection of phase change. The number of samples

required by the above schemes may be large for a many-core system.

Online estimation-based schemes: These schemes are an improvement over

the online learning schemes since they avoid sampling and the resulting overhead.

Here, based on the current characteristics of a workload being executed, its perfor-

mance on other core types of the system is estimated. Saez et al. [44] propose a

comprehensive scheduler for AMPs consisting of small and big cores using last level

miss rates of an application to estimate its performance on each core type. In [31],

Koufaty et al. determine thread to core mapping in an AMP consisting of big and

small cores, using program to core bias which is estimated online using the number of

external (proportional to cache requests going to L2 and main memory) and internal

stalls (front end not delivering instructions to the back end). In [50], Srinivasan et al.

estimate the performance of the thread currently running on one core type, on another

core, using a closed form expression. These expressions were developed for specific

cores and a general approach was not provided. Extending the above technique to

include power estimation is not straightforward. Of the currently available schedul-

ing schemes, the estimation-based ones offer the most practical and scalable solution.

Still, most of the earlier schemes focus mainly on performance and, do not take into

account the multiple voltage/frequency levels that may be available within the cores.

Our proposed prediction-based dynamic reconfiguration framework (PDRF) addresses

the above shortcomings and strives to maximize the overall throughput/Watt.
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2.3 Dynamic Voltage and Frequency Adaptation schemes

Dynamically scaling the voltage and frequency of cores in CMPs has been estab-

lished as an efficient technique for power reduction [24] and as a corrective measure

for thermal emergencies [36, 7]. Ghasemazer et al. [16] address the problem of mini-

mizing energy consumption in CMPs by selectively turning ON or OFF the cores and

choosing the optimum voltage and frequency for each core using a three-level hier-

archical framework. Intel’s Turbo Boost technology allows a core to run at a higher

frequency automatically if the multicore is operating below a given rated power and

temperature limits [43]. The maximum frequency that could be reached is depen-

dent on the number of active cores [4]. Similarly, AMD’s Accelerated Processing

Units (APUs) use the Turbo Core Technology to boost the frequency and perfor-

mance of the cores staying within the defined power envelope [15]. Keramidas et

al. [24] predict the performance and power consumption of super-scalar processors

under different voltage and frequency combinations and implement a DVFS scheme

based on stall cycles due to L2 misses. The benefits of per-chip adaptive frequency

scaling in multicores by grouping applications with similar frequency-to-performance

effects is explored in [54]. Energy-saving opportunities and nanosecond-scale voltage

switching using on-chip voltage regulators are discussed in [30].
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CHAPTER 3

PROPOSED SCHEME

In this chapter, we describe in detail our proposed scheme that adapts volt-

age/frequency and execution resources dynamically to different workloads and to

program phases within those workloads at runtime. To facilitate such adaptation,

the scheme implements Dynamic Resource Allocation (DRA) and Dynamic Voltage

and Frequency adaptation (DVFA) which are discussed in detail next.

3.1 Dynamic Resource Allocation

To illustrate our approach, we consider two heterogeneous cores (see Figure 3.1)

per tile. A multicore system may consists of as many such tiles as deemed appropriate

making the scheme scalable. The first core is a 2-way super-scalar strong integer

(INT) core, with high performance integer execution units but with low performance

for floating-point operations, while the second, a strong floating-point (FP) core,

features strong floating-point execution units but low performance integer execution

units. The reason for this example architecture is the diversity in the instruction

type distribution of the common benchmarks shown in Figure 1.1. By focusing on

the distinct strength of the integer and floating-point execution units, we would be

able to efficiently service a wide variety of non-overlapping applications in the baseline

mode of operation. The front-end resources (e.g., number of virtual rename registers,

sizes of ISQ and LSQ) vary between the two cores and are discussed in Section 4.2.

This scheme is similar to the one proposed by Das et al. in [12]. However, significant

enhancements were made to the scheme. Firstly, we have explored the processor
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Figure 3.1. Baseline configuration for two heterogeneous cores.

design space in depth to determine the parameters of the baseline cores. Secondly, Das

et al. [12] explore performance benefits while we focus on performance/Watt. Lastly,

the architecture proposed in [12] is static while ours can dynamically reconfigure to

meet changing application requirements.

In the baseline configuration (Figure 3.1), good performance is achieved by the

cores while executing parallel workloads with appropriate resource requirements.

However, when there is a need for a strong sequential performance by an applica-

tion, dynamic resource morphing of the cores takes place. In the morphed mode,

the INT core takes control of the strong floating-point unit of the FP core to form a

“morphed strong” (strong) core while relinquishing control of its own weak floating-

point unit to the FP core. The FP core is thus morphed into a “weak core.” The

strong core retains the front-end resources of the INT core. In contrast, the front-end

resources of the FP core are appropriately sized down to suit the reduced needs of

the application running on the weak core in order to save power. Hence, morphing

results in two cores:
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Figure 3.2. Morphed configuration for two heterogeneous cores. The red dotted
lines/boxes indicate the connectivity for the strong core configuration while the black
solid lines/boxes show the connectivity for the weak core.

1. A strong core capable of handling both integer and floating-point intensive

operations efficiently.

2. A weak core with weak functional units consuming less power.

The proposed dynamic morphing of the cores is shown in Figure 3.2. When the

morphed mode is no longer beneficial, the system reconfigures itself back to the

baseline mode.

The behavior and characteristics of workloads tend to vary with time. Some appli-

cations may be floating-point intensive to start with and may have higher percentage

of integer instructions after a certain point. Hence, swapping of the threads between

the two baseline cores (strong integer (INT) and strong floating-point (FP)) under

such scenarios would help in reducing the execution time significantly. Therefore,

in addition to the baseline and morphed modes of operation, we also allow the two

tightly coupled heterogeneous cores to swap their execution contexts.
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3.2 Dynamic Voltage and Frequency Adaptation

We further leverage the DVFA feature to move each heterogeneous core individ-

ually to either the Low Power (LP) mode or the High Performance (HP) mode by

monitoring the performance of the executing threads and the frequency of memory

reference operations. When the Instructions per Cycle (IPC) of the thread is consis-

tently low (likely due to memory intensive operations), the proposed scheme moves

the corresponding core to the LP mode. On the other hand, if the performance of a

thread is high, then the corresponding core is moved to the HP mode if the other core

is either already in the LP mode or is ready to enter the LP mode. Hence, entering

HP mode is conditioned on the other core being in the LP mode. This is done to en-

sure that the TDP limit of the multicore is not violated. Adding the DVFA feature to

the dynamic allocation of resources (through morphing and thread swapping) further

maximizes the performance/power benefits. Our results indicate that the proposed

scheme performs much better in terms of increased throughput/Watt when compared

to the static baseline heterogeneous cores and to the baseline heterogeneous cores with

only one of these features.
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CHAPTER 4

DETERMINING THE CORE PARAMETERS

We next describe in detail the experimental setup used in our experiments and

the core sizing experiments that were carried out.

4.1 Simulator and Benchmarks

We used SESC as our architectural performance simulator [41], and measured

power using Wattch [8] and CACTI [48] with modifications to account for static power

dissipation. For our experiments, we have selected 38 benchmarks (see Table 4.1): 16

benchmarks from the SPEC suite [1], 14 from the MiBench suite [19], one benchmark

from the mediabench suite [35], and 7 additional synthetic benchmarks. These 38

benchmarks encompass most typical workloads, for example, scientific applications,

media encoding/decoding and security applications.

4.2 Core sizing

The design space for each core is extremely large including the exact sizes of

individual structures (e.g., ROB and ISQ). Our goal is to focus on a set of parameters

Table 4.1. Benchmarks considered

Benchmark

SPEC apsi, ammp, equake, wupwise, twolf, swim, mcf, gcc,
gzip, bzip2, vpr, art, applu, vortex, mgrid, sixtrack

MiBench cjpeg, djpeg, basicmath, bitcount, dijkstra, patricia,
stringsearch, blowfish, sha, adpcm, crc32, fft, ffti

Mediabench and others epic, towers, intStress, fpStress, fbench, cpu, pi, whet-
stone
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Table 4.2. Parameter variation steps for the sizing experiments

Parameter Initial configuration Variation steps

DL1 32K 4-8-16-32
IL1 32K 4-8-16-32
L2 256K 32-64-128-256

LSQ 64 (each LD/SD) 16-32-48-64
ROB 256 32-48-64-128-256

INTREG 128 32-48-64-128
FPREG 80 32-48-64-80
INTISQ 128 16-32-64-128
FPISQ 64 8-16-32-64

that have the largest impact on the strong integer and the floating-point cores, and

determine the size of these parameters for each core such that acceptable performance

is achieved for a wide range of applications in the baseline configuration. If the cores

are undersized, the results of core morphing would be biased and misleading.

To determine the architectural parameters for the cores, we have started with

an initial configuration shown in Table 4.2 and then upsized the parameter under

consideration and calculated the IPC metric for each core type. Based on the IPC,

the most appropriate value for each parameter was selected. For the sake of brevity

only ROB sizing results are shown in Figure 4.1. In the figure, each curve represents
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Figure 4.1. Ratio of the IPC for the core configurations when going from lower to
higher sizes of ROB.
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the ratio of the performance for the core when going from a smaller to larger ROB size.

For the FP core, it can be seen that there are several benchmarks that benefit when

going from ROB of size 64 to 128 (equake, swim, applu, twolf, wupwise, fft, ffti and

whetstone) but such benefit is no longer seen when increasing the ROB size further to

256. Hence, ROB size of 128 is chosen for the FP core. Based on similar observations,

the ROB for the INT core was also sized to 128. Similar sizing experiments were

conducted for the rest of the parameters. To show the benefits of morphing, we

also compare our DRA scheme against a dual-core homogeneous (HMG) design in

Section 6.6. For a fair comparison between the two designs, the area of two HMG

cores should match the sum of the areas of the FP and INT cores. Hence, the sizes of

the structures for HMG core were obtained by averaging those obtained for the INT

and FP cores.

Since the “weak core” is not expected to provide a performance as high as the

original FP core, we further downsized it for higher energy efficiency. The config-

uration for all the core types is shown in Table 4.3. We did not include the final

configuration of the “strong core” as it is nothing but a combination of the INT core

with the FP units of the FP core. The specifications of the execution units of the INT

and FP cores are shown in Table 4.4. The mentioned execution latencies are based

on the experiments carried out by Vasan taking into account their impact on power,

Table 4.3. Core configurations after the sizing experiments

Parameter FP INT HMG Weak

DL1 4K 4K 4K 1K
IL1 4K 4K 4K 1K
L2 128K 128K 128K 64K
LSQ (each LD/SD) 32 32 32 32
ROB 128 128 128 64
INTREG 48 64 56 32
FPREG 64 32 48 32
INTISQ 32 32 32 16
FPISQ 32 16 24 8
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Table 4.4. Execution unit specifications for the cores (P - Pipelined, NP - Not
pipelined) [52].

Core FP DIV FP MUL FP ALU
FP 1 unit, 18 cyc, P 1 unit, 10 cyc, P 2 units, 4 cyc, P
INT 1 unit, 60 cyc, NP 1 unit, 24 cyc, NP 1 unit, 10 cyc, NP

INT DIV INT MUL INT ALU
FP 1 unit, 120 cyc, NP 1 unit, 30 cyc, NP 1 unit, 2 cyc, NP
INT 1 unit, 14 cyc, P 1 unit, 3 cyc, P 2 units, 1 cyc, P

performance and area [52]. A logical synthesis of the netlist using the mentioned

latencies was also performed using Synopsys Design Compiler to illustrate that such

a design could actually be implemented in practice.

4.3 Operating modes of the cores

Similar to the latest third generation Intel Core Processors [3], we envision the

cores to operate in three modes: (i) nominal, (ii) low power (LP) and, (iii) high

performance (HP) mode. The frequency levels of the cores are changed in steps of

133 MHz in accordance with [4]. Table 4.5 tabulates the different operating modes

of the cores along with their voltage and frequency levels. It could be observed that

the voltage/frequency of the core is decreased by two steps in LP mode resulting in

significant power savings. The power thus saved could be redistributed to the other

core in the AMP to boost the overall system performance.

Table 4.5. Core Operating Modes.

Mode Voltage (V) Frequency (GHz)

LP 0.9 1.734
Nominal 1.1 2

HP 1.2 2.133
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CHAPTER 5

EVALUATING THE DIFFERENT CORE
CONFIGURATIONS

In this chapter, we evaluate the effectiveness of our core sizing experiments by

running each of the considered workloads on the various core types, i.e., FP, INT,

strong and weak cores. Based on the objective set forth for the sizing experiments,

we expect most of the applications to run reasonably well on one of the baseline cores

(FP or INT) so that morphing is used sparingly. We present results of performance

and performance/Watt evaluation and draw critical inferences from this analysis. We

conclude the chapter with an in-depth study on the impact of program phases.

Figure 5.1. IPC of the considered benchmarks when run on each core configuration
for 10 million instructions. Morphed core in the legend refers to the strong core.
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5.1 Performance evaluation

We ran all the 38 considered benchmarks for 10 million instructions on each core

configuration and the performance results are plotted in Figure 5.1. It can be seen

from the figure that 7 benchmarks (applu, wupwise, apsi, basicmath, epic, FFT,

whetstone) show benefits when run statically on the strong core. The obtained gains

are significant and is even over 200% for apsi. However, as shown in the next section,

this performance gain may not always result in a higher energy efficiency.

5.2 Performance/Watt evaluation

Figure 5.2 shows the performance/Watt evaluation of the cores. It could be ob-

served that the number of benchmarks that benefit from the strong core has now

reduced from 7 to 3 (apsi, FFT, epic). Even the achieved performance/Watt benefits

are significantly lower. Of the 3 cases, apsi shows 35% improvement over its closest

competitor, the FP core. This benefit is more modest for the benchmarks epic and

FFT (10%). The reason why apsi shows substantial benefits is related to the tem-

Figure 5.2. IPC/Watt of the considered benchmarks when run on each core config-
uration for 10 million instructions. Morphed core in the legend refers to the strong
core.

poral distribution of the instruction mix in apsi. Having considered an architecture
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similar to ours, Das et al. [12] noted that whenever there is a phase in the program

with a considerable mix of FP and INT instructions, the morphed strong core per-

forms better than the others. Since the strong core can handle a mix of both FP and

INT instructions, the performance is improved and at the same time resources are

better utilized, and as a result a higher performance/Watt is achieved.

5.2.1 Inferences from performance and performance/Watt evaluations

We observed that over entire runs of 10 million instructions, some benchmarks ben-

efit, some don’t while some others even lose out. However, the above analysis reflects

only the static behavior. But, many programs exhibit phases and each core configu-

ration might be beneficial for different phases [32, 47]. Hence, running the benchmark

statically on the same core may miss opportunities to maximize performance/Watt.

This is the reason why only 3 out of the 38 benchmarks show performance/Watt

benefits when run statically on the strong core throughout their execution. In rest

of the cases, the power expended by running them on the strong core outweighs the

obtained performance benefits resulting in poor performance/Watt metric. This is

evident from Figure 5.1 where the strong core performs either equally well or better

than the other core configurations when only IPC is considered.

In summary, the main inferences from the core evaluation experiments are:

• There is a need to use the morphed mode sparingly and it should be opted

for only if the expected performance benefits outweigh the additional power

overheads.

• Program phases may have a significant impact on choosing the right core con-

figurations. This motivates us to study the impact of program phases in the

next section.
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5.3 Impact of program phases

In order to demonstrate the effect of program phases on performance/Watt, we

consider the benchmark epic that shows benefit from morphing. We want to in-

vestigate the effect the instruction distribution of an application may have on per-

formance/Watt. The benchmark epic was run for two billion instructions and the

results are shown in Figure 5.3. The performance/Watt for each core type (FP, INT

and strong) is represented by the blue, orange and red curves, marked with an ∗, a

dot and a triangle (4), respectively. The distribution of instruction types at each

Figure 5.3. Zoomed view of variations in the performance/Watt of epic when run
on each core configuration. Morphed core in the legend refers to the strong core.

time instant is represented by the area in the increasingly darker shades (light grey

- INT, dark grey - FP, black - memory). It can be seen that for the first 19 data

points, the strong core does not outperform either the FP or the INT core. Hence,

staying in the baseline mode is advisable. However, for the data points 20 to 37, the

strong core does much better than the other cores (35% on average when compared

to the nearest competitor, the FP core). Hence, there is a possibility of considerable

performance/Watt gains to be made here by morphing. After that, going back to

the baseline mode once again proves beneficial. This shows that by monitoring the
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program behavior at a more fine-grain level, there are more opportunities for gains

to be made by either morphing or coming out of it. At the same time, even though

gains are made for epic, careful consideration must be given to the performance/Watt

of the second thread running on the AMP which upon morphing gets assigned to the

weak core, potentially resulting in a drop in its performance/Watt.

Thus, it can be seen that depending on the time-dependent behavior of an appli-

cation, morphing or swapping may be the right choice. The decision whether to swap

or morph should be based on the current instruction mix of the executing workloads.
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CHAPTER 6

DYNAMIC RESOURCE ALLOCATION MECHANISM

Changing the voltage and frequency levels of the cores individually calls for voltage

regulator modules (VRMs) on a per core basis which may be expensive for some

architectures. Hence, we first evaluate dynamic resource allocation (DRA) mechanism

as a stand-alone scheme to explore its benefits.

6.1 Hardware counters to trigger reconfigurations

Prior knowledge about the computational needs of the applications is generally

unavailable. Hence, an online mechanism is needed to detect changes in the appli-

cation’s behavior that may impact performance/Watt and then decide whether to

reconfigure the cores. Since power cannot be extracted at runtime, we use other

program attributes as proxy for power when estimating performance/Watt.

From the study of epic in Section 5.3, we observed that there is a strong correla-

tion between the performance/Watt achieved on different core-types and the current

instruction distribution of the executing workload. Hence, we employ hardware coun-

ters to monitor the instruction composition (percentage of floating-point (%FP) and

integer instructions (%INT)) of the workloads. Further, when switching to the mor-

phed mode, the other thread gets executed on the weak core. We need to ensure

that the performance of this thread is not greatly compromised. Therefore, in ad-

dition to the instruction composition counters, our DRA mechanism keeps track of

the IPC of the threads. The employed counters are similar to those used by Khan et
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al. in [27]. We next describe the process that we have followed to deduce rules for

morphing/swapping based on the instruction composition and IPC.

6.2 Offline Profiling

Offline profiling experiments were run to arrive at the suitable switching conditions

for core reconfigurations. For our profiling experiments, twelve benchmarks from the

suite of 38 (see Section 4.2) were chosen such that they included those that (i) benefit

from morphing/swapping (apsi, epic, fft), and (ii) those that did not (e.g., equake, art,

applu).

1. Threads T1 and T2 assigned randomly to baseline cores

2. Do swap if:

    a. (%INTFP ≥ 44) && (%INTINT ≤ 30) OR

    b. (%FPINT ≥ 26) && (%FPFP ≤ 13)

3. Switch to morphed mode if:

    a. For T1 (T2)

        i.  %(FP + INT) ≥ 50 AND

        ii. (17 ≤ %FP ≤ 30) && (26 ≤ %INT ≤ 44)

    b. AND for T2 (T1)

        i.  IPC ≤ 0.4 && %(FP + INT) < 50

4. Revert from morphed to baseline mode if:

    a. Thread currently on strong core has:

        i.  %(FP + INT) < 50

        ii. Use swap rules to determine the core

%INTFP  → %INT of thread on FP core

%INTINT → %INT of thread on INT core

%FPINT   → %FP of thread on INT core

%FPFP    → %FP of thread on FP core

Figure 6.1. Rules for Dynamic Resource Allocation.

The threads were executed

on each core type, and IPC,

IPC/Watt and the instruc-

tion distributions were noted

for fixed number of commit-

ted instructions, referred to

as window. Once this data

was available for each bench-

mark on all core types, two

threads were chosen from the

pool and after every window,

the core configuration that

yields the best IPC/Watt was

identified. The correspond-

ing instruction distribution of

both the threads in those windows were also noted. For example, at the end of a win-

dow, while running a combination of apsi and fft, if it is noticed that the performance

of running apsi on the strong core and fft on the weak core is higher than the base-
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line mode, this point (corresponding %INT and %FP of the threads) is marked as a

potential switch point from baseline to morphed mode. Similarly, preferred switch-

ing points to come out of the morphed mode and to swap threads were identified.

Averaging the values of %FP, %INT and IPC that we have observed for the 100 com-

binations of two (out of the 12) threads, we set the rules for reconfiguration shown

in Figure 6.1.

It can be seen that for the morphed mode, we keep track of not only the floating-

point and integer instructions, but also their sum. At the same time, minimum and

maximum bounds are also set for the %FP and %INT individually, such that when

these bounds are violated, the threads should continue to run on the baseline config-

uration. A morphed to baseline mode switch takes place when the total percentage

of FP and INT instructions go below 50. At this point, all the benefits of morphing

have diminished and it is better to operate in the baseline mode.

6.3 Weighted and geometric speedup definition

We have used weighted and geometric speedups extensively in this thesis as a

measure of the achieved benefits. For example, weighted IPC/Watt improvement is

used in the next section. Hence, we first define the metrics before using them.

S0 = (IPC/Wattthread0)proposed/(IPC/Wattthread0)baseline

S1 = (IPC/Wattthread1)proposed/(IPC/Wattthread1)baseline

Speedupweighted = (S0 + S1)/2

Speedupgeometric = 2
√
S0 × S1

6.4 Accounting for program phase changes

As shown in Figure 6.2, a tentative decision based on the rules mentioned in

Figure 6.1 is made at the end of every committed instructions window. However, to

avoid too frequent reconfigurations we prefer to wait until the new execution phase
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Figure 6.2. Tentative DRA decision for the current window using hardware counters.

of the thread has stabilized and only then switch from one mode to another. To

this end, we base our reconfiguration decision on the most frequent tentative decision

made during the n most recent instruction windows. For example, if in the last n

windows, morphing was the most frequent decision, it may be predicted that the

threads have entered a phase where morphing will yield the best results. We call the

number of windows n after which a final reconfiguration decision is made as history

depth.

Both the history depth and the size of the individual window have to be de-

termined experimentally. We have conducted a sensitivity study to quantify their

impact on the quality of the reconfiguration decisions. Various window sizes of 250,

500 and 1000 instructions were considered and the history depth n was varied from 3

to 20. For each combination of window size and history depth, about 100 multipro-

grammed workloads were run with a random combination of benchmarks from our

set of 38. All experiments were run until at least one of the threads completed 40

million instructions. A reconfiguration overhead of 1000 cycles has been considered

in these experiments (discussed in detail in the next section). The weighted perfor-
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Figure 6.3. Sensitivity analysis for determining window size and history depth for
DRA mechanism.

mance/Watt improvement of DRA over the static baseline configuration (shown in

Figure 3.1) obtained from each individual experiment was then averaged to give a

single value that represents the entire set that is shown in Figure 6.3. It can be seen

that the best speedup is obtained for a window size of 500 instructions and a history

depth of 5. Hence, we chose a window size of 500 instructions and a history depth of 5

for our experiments. We describe the overheads associated with the DRA mechanism

in the next section.

6.5 Overheads associated with DRA mechanism

There are three main overheads that need to be considered for the proposed DRA

mechanism: (i) hardware overhead, (ii) reconfiguration overhead, and (iii) communi-

cation overhead in the morphed mode.

6.5.1 Hardware Overhead

The first overhead is related to the additional hardware required to support core

morphing. As shown in Figure 6.4, the FP operands are held in the reservation station

until they are issued for execution. Depending on the mode of operation (baseline
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Figure 6.4. Hardware required to support core morphing.

or morphed), the operands for execution could come either from the same core or

the other core. Hence, there is a need to first multiplex the operands from both the

cores. The select signal for the multiplexers is the morph enable (ME) signal which

indicates the current mode of operation. When the execution completes, the result

of the FP operation is passed on to the common data bus (CDB) of the same core or

the other core depending on the value of morph enable. One possible implementation

using tri-state buffers is shown in Figure 6.4. Considering 32-bit FP operations, 64 2:1

multiplexers and 64 tri-state buffers per core, and 192 core-to-core communications

are required for this purpose. The distance between the two cores is typically less

than 100 µm and hence two inverters would be sufficient to send a signal from one

core to the other.

In a conventional processor, when the reservation station is full, an “RS Full”

signal is asserted that stalls further issuing of instructions. As the allocation can

happen into the reservation station of either core in the proposed DRA mechanism,

there is a need to multiplex the “RS Full” signals of both the cores. Table 6.1 lists the
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Table 6.1. Complete hardware overhead to support core morphing

Gate type Count

2:1 multiplexers 130
Tri-state buffers 128

Core-to-core communications 194
Inverters 388

complete hardware overhead to support core morphing. By this analysis, we observe

that the hardware overhead is much less than 1% considering the total core area and

gate count.

6.5.2 Reconfiguration Overhead

Core reconfiguration requires both the cores to stall execution. For swapping

threads between the cores we need to flush the pipelines, exchange architecture states

and warm the caches. Hence, the performance impact due to reconfiguration should

be accounted for when considering the benefits of DRA.
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Figure 6.5. Impact of reconfiguration overhead on achieved performance/Watt ben-
efits of using DRA over static baseline configuration.

To quantify the impact of reconfiguration overhead, experiments were run varying

the penalty from 0 cycle (ideal case) to 100K cycles. The performance/Watt benefits

achieved over the static baseline was used as the qualifying metric in these experi-

ments. There were only 65 reconfigurations per run on an average while executing
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40 million instructions. As shown in Figure 6.5, we observed only about 1.3% degra-

dation in the achieved benefits when the reconfiguration penalty was increased from

0-cycle to 10K cycles. Even when the overhead was as high as 30K cycles, the pro-

posed DRA mechnaism still achieved about 9% (6%) weighted (geometric) IPC/Watt

improvement over the static baseline. Considering the current memory access laten-

cies and processor-memory bus width [2], it would take less than 30K cycles to even

sequentially refill the L1 caches (both instruction and data) of both the cores. This

analysis shows that the proposed DRA mechanism has the potential to achieve sig-

nificant performance/Watt benefits even when reconfiguration incurs a high penalty.

We extended the above experiment to investigate the point at which the overheads of

reconfiguration outweigh the achieved benefits. We found that only with a penalty of

100K cycles (50 µs for a 2 GHz processor) per reconfiguration, the achieved gains of

the proposed scheme are almost nullified. With dedicated support for state swapping

(e.g., Intel’s Sandy Bridge [43]), far lower overheads can be expected and we used a

reconfiguration overhead of 1000 cycles in our DRA experiments.

6.5.3 Communication Overhead

As mentioned in Section 6.5.1, the floating-point operands and results are trans-

ferred between the cores in the morphed mode. We analyzed the impact of this

additional communication latency that arises due to the use of execution units that

belong to one core by the other core. We ran experiments varying this communica-

tion latency overhead as 0, 1, 3, 5 and 10 cycles. As shown in Figure 6.6, the DRA

mechanism achieves about 12.6% (9.6%) weighted (geometric) improvement in per-

formance/Watt over the static baseline in the ideal case (0-cycle overhead) when the

above communication happens without any cost. With a more realistic overhead of

1-cycle, the gains drop only by about 0.3%. Even in the extreme case when it takes 10

cycles to send the operands across, the DRA mechanism still achieves about 9.3% (a
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Figure 6.6. Impact of communication overhead on achieved performance/Watt ben-
efits of using DRA over static baseline configuration.

drop of about 3.3% with respect to the ideal case) weighted IPC/Watt improvement

over the static baseline. This analysis shows that even the communication latency

overhead has very minimal impact on the achieved benefits of DRA. We have assumed

a communication latency overhead of 1 cycle in all our experiments.

6.6 Evaluation

Having discussed the required preliminaries, we now present the evaluation of our

DRA scheme. The performance/Watt achieved using our DRA scheme is compared

against that of the homogeneous multicore and the baseline heterogeneous multicore

in this section. For the heterogeneous baseline, we assume that the best thread to core

assignment is known in advance while for our DRA scheme, a random initial thread

to core assignment is made. Without loss of generality, all the baselines considered

in this thesis were given this advantage (best initial thread-to-core assignment) while

the proposed scheme starts with a random assignment. The hope is that the proposed

scheme will detect the best assignment shortly after the programs begin to run. We

first present an in-depth study for a single benchmark combination and then present

the results for a large number of other benchmark combinations.
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6.6.1 Detailed time-slice analysis of workload performance

An in-depth analysis for the benchmark combination {applu, art} is shown, at

time slice intervals of 10,000 cycles, in Figure 6.7 with respect to weighted IPC/Watt

improvement. For the combination {applu, art}, it can be seen that there are five
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Figure 6.7. Weighted IPC/Watt speedup of DRA scheme vs. the homogeneous and
heterogeneous baselines for {applu, art} combination.

reconfigurations: one swap, two morph and two back to baseline mode. Initially,

up to data point 682, the DRA scheme performs as well as the static heterogeneous

scheme as they both have the same initial thread-to-core assignment. However, the

DRA scheme outperforms the homogeneous scheme in this region. This is due to the

fact that both threads show different behavior (applu is more FP intensive and art is

INT intensive in this phase) and since AMP is better suited to handle such workloads,

there is a considerable benefit over the homogeneous baseline. Later, after data point

682, a swap of the threads take place and as a result, there is a jump in IPC/Watt

when compared to the heterogeneous baseline, but not much of a difference when

compared to the homogeneous multicore. This is because the homogeneous multicore

is capable of handling all types of workloads and this particular change in the phase

does not make much of a difference. The benefit over the heterogeneous multicore
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Figure 6.8. Performance/Watt improvement of DRA scheme over heterogeneous
baseline for different multiprogrammed workloads.

can be attributed to the fact that the DRA scheme takes full advantage of the phase

change. Then, morphing takes place at data point 2404 at which a sudden jump in

speedup is observed for both the curves. But this jump is more pronounced in DRA

vs. homogeneous curve. This is due to the fixed resources present in the homogeneous

dual-core. As can be seen from the curves, even the heterogeneous baseline is better

suited to the applications running on the multicore (due to their contrasting behavior)

than the homogeneous one.

6.6.2 Overall Performance

Results are now presented for 35 combinations of benchmarks showing the weighted

and geometric speedup with respect to the heterogeneous baseline and homogeneous

multicore in Figures 6.8 and 6.9, respectively.

The 35 combinations were chosen out of a pool of 100 randomly generated bench-

marks combinations where all 38 benchmarks participated and not just the 12 that

were used to construct the DRA rules in Figure 6.1. The selected 35 combinations

include the 10 worst results, the 10 best results and 15 that showed average benefits
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Figure 6.9. Performance/Watt improvement of DRA scheme over homogeneous
baseline for different multiprogrammed workloads.

with respect to the weighted speedup. When comparing against the heterogeneous

baseline (Figure 6.8), it can be seen that there are a few combinations (e.g., {gcc, ba-

sicmath}, {fbench, basicmath}) where the proposed scheme does slightly worse than

the heterogeneous baseline (about 4.5% and 2.5% for the two cases). There are two

possible reasons for this: (i) the thread to core assignment is random for our scheme

and no reconfiguration takes place during the run, (ii) the scheme mispredicts. Case

(i) happens when the two threads do not satisfy the swap/morph conditions at the

same time and hence no change in the operating mode takes place. Case (ii) can hap-

pen occasionally for any prediction scheme. However, the proposed scheme achieved

an average weighted (geometric) IPC/Watt improvement of about 12.3% (9.3%) over

the static baseline configuration considering all the 100 combinations.

The results obtained when comparing the DRA scheme to the homogeneous mul-

ticore are shown in Figure 6.9. It can be seen that only for the symmetric workload

combination of {art, art}, the proposed DRA mechanism performed worse than the

homogeneous baseline. In general, the homogeneous baseline may perform better for
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workloads that do not exhibit distinct program phases and have the same flavor, i.e.,

either both are FP or INT intensive. However, when there are many program phase

changes when executing symmetric workloads, the proposed DRA scheme does much

better (consider {ammp, ammp} which shows about 63% benefit). On an average,

for the 100 combinations, the proposed DRA scheme achieved a performance/Watt

improvement of about 41% over the homogeneous baseline.
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CHAPTER 7

RULE-BASED DYNAMIC RECONFIGURATION
FRAMEWORK

We incorporate the Dynamic Voltage and Frequency Adaptation (DVFA) capabil-

ity and present the complete rule-based dynamic reconfiguration framework (RDRF)

in this chapter.

7.1 Extensions to include DVFA capability

The hardware counters and the reconfiguration rules discussed in Chapter 6 should

now be extended to determine the appropriate operating conditions of the cores.

7.1.1 Hardware counters required

Our DVFA mechanism exploits the ‘memory boundness’ of the program. When

the core is busy with memory intensive operations and the IPC is low, it is moved to

the low power (LP) mode where both the voltage and frequency are lowered to values

mentioned in Table 4.5. On the other hand, if the IPC of the thread is high and

the core is busy servicing compute intensive operations, the voltage and frequency

are boosted if the other core is in LP mode. The DVFA scheme reverts back to the

default operating conditions when these modes are no longer beneficial, by monitoring

the IPC of the threads.

The ‘memory boundness’ of the program is tracked through the monitoring of

the frequency of the load/store instructions (%LS) and is further strengthened by

monitoring the Load/Store Queue (LSQ) occupancies of the cores. The complete set

of counters employed by the rule-based DRF is shown in Table 7.1.
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Table 7.1. Hardware counters used by RDRF

Counters Parameters monitored in a window
Instruction Composition %INT, %FP, %LS instructions

IPC Current IPC of the threads
LSQ Occupancy Fraction of occupied LSQ entries

7.1.2 Modifications to profiling experiments

The offline profiling experiments discussed in Section 6.2 were extended to deter-

mine rules for the DVFA mechanism. As the voltage/frequency levels of the cores are

changed at runtime which impacts the cycle time, we used throughput (instructions

per second (IPS))/Watt as the metric to determine the optimal switching points. The

new rules thus developed for both the mechanisms are shown in Figure 7.1.

Dynamic Resource Allocation:

1. Threads T1 and T2 assigned randomly to cores

2. Do Swap if:

i. (%INTFP ≥ 48) && (%INTINT ≤ 32) OR

ii. (%FPINT ≥ 24) && (%FPFP ≤13)

3. Go from baseline to morphed mode if:

i. For T1 (T2 )

a. %(FP + INT) ≥ 57 AND

b. (14 ≤ %FP ≤ 23) && (34 ≤ %INT ≤ 45)

ii. AND T2 (T1 )

a. IPC ≤ 0.35 && %(FP + INT) < 55

4. Come out of morphed to baseline mode if:

i. Thread currently on morphed core shows

a. %(FP + INT) < 50

b. Use swap rules for thread to core assignment

Dynamic Voltage & Frequency Adaptation:

1. If (IPC < 0.3) && ((%LS ≥ 37) | (LSQocc ≥ 0.6))

i. Corresponding core enters LP mode

2. If (IPC ≥ 0.75) && ((%LS < 29) | (LSQocc < 0.4))

i. Enters HP mode only if the other core is in LP mode

3. Return to default operating conditions:

1. If in HP mode, when IPC < 0.55

2. If in LP mode, when IPC ≥ 0.45

• %INTFP – Integer instruction percentage of thread on FP core

• %INTINT  - Integer instruction percentage of thread on INT core

• %FPFP – FP instruction percentage of thread on FP core

• %FPINT – FP instruction percentage of thread on INT core

• %LS    - Percentage of load and store instructions

• LSQocc - Fraction of load/store queue entries that are occupied

• IPC    - Current IPC of the thread

Figure 7.1. Rules for DRA and DVFA.
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7.2 Complete framework and role of Microvisor
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No

Yes

No
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Figure 7.2. Flowchart of the rule-based
dynamic reconfiguration framework.

We have described the individual com-

ponents of the proposed RDRF, namely:

(i) the appropriate counters to monitor

the program characteristics, and (ii) rules

to trigger core reconfigurations and volt-

age/frequency adaptation. However, we

still need a way to seamlessly govern the

above autonomous mechanisms so that the

intervention of the operating system (OS)

can be limited. We envision a software

layer called microvisor to perform this

task. It is similar to IBM’s millicode [21]

and functions the way as proposed by

Khan et al. in [28]. This software layer

is invisible to the OS and is resident be-

tween the OS and hardware. The role of

the microvisor could be better understood

by studying the flowchart of RDRF shown

in Figure 7.2.

To start with, a random initial assign-

ment of the threads is made to the baseline INT and FP cores, which operate at

default voltage and frequency. The counters mentioned in Table 7.1 non-invasively

monitor the characteristics (instruction composition and IPC) of the threads and

LSQ occupancy of the cores. At the end of every committed window, the microvisor

is invoked to sample the counter values of both the cores at that time instant. The

microvisor is aware of the established rules for DRA and DVFA shown in Figure 7.1.
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After sampling the counter values, it applies the rules and makes a tentative deci-

sion about the best core configuration and operating condition for that window. A

final decision is made by the microvisor after observing the last n windows. Upon

a thread swap, the critical OS data structures (e.g., timer registers, interrupt vector

addresses) pertaining to the two processes are also exchanged by the microvisor, thus

completely isolating the OS. Further, whenever the voltage/frequency of the cores

need to be changed, the microvisor takes the responsibility of writing the correspond-

ing voltage ID (VID) values to the platform registers. Thus, the microvisor strives

to relieve the OS from the low-level processor details while our proposed DRF works

underneath to maximize performance/power.

The next section details the overheads associated with the proposed rule-based

dynamic reconfiguration framework (RDRF).

7.3 RDRF Overheads

RDRF incurs the following overheads: (i) reconfiguration overhead for core mor-

phing/thread swapping, (ii) communication latency overhead, (iii) DVFA overhead,

and (iv) microvisor invocation overhead. The reconfiguration and communication

latency overheads were discussed in Section 6.5. To be conservative, we assumed an

overhead to refill one-fourth of the L1 caches in the new core-type upon a thread

swap. Without loss of generality, this is the reconfiguration overhead used henceforth

in this thesis. For the considered cache sizes of the cores (see Table 4.3), this is

estimated to be about 1.75 µs (∼3500 cycles).

The scheme incurs a higher overhead for DVFA. Firstly, changing the voltage levels

of the cores (Vcpu) individually requires VRMs on a per-core basis. However, industry

has moved in this direction and many of the current processors already support this ca-

pability. Secondly, the processor should be halted while the phase-locked loop (PLL)

relocks to the new frequency. The PLL relock time in the latest Intel processors is 5 µs.
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Figure 7.3. Overheads associated with
DVFA. Figure taken from [39].

In addition to the PLL relock time,

while scaling up the voltage/frequency,

the processor operates at the lower fre-

quency until the voltage has risen to

the new value (see Figure 7.3) [39].

This performance loss during the volt-

age transition time should also be con-

sidered. Based on the DVFA overhead expressions deduced by Park et al. [39], the

average performance loss for the considered voltage levels is about 3.5 µs.

Table 7.2. RDRF overheads

Type Overhead

Thread swap 1.75 µs

Voltage/frequency downscaling 5 µs

Voltage/frequency upscaling 8.5 µs

Microvisor invocation ∼0.29 µs

The microvisor invocation overhead

is the most frequent of all as it happens

for every committed instruction win-

dow. But, the associated overhead is

relatively small as it only involves col-

lecting the counter values of the two cores and evaluating the inequalities mentioned

in Figure 7.1. This can be assumed to be at most a few hundred clock cycles and

we observed this to have negligible impact on our results. In our experiments, we

have conservatively assumed an overhead of 500 cycles for each microvisor invoca-

tion. Depending on the frequency of operation of the cores, the invocation overhead

ranges between 0.23 µs and 0.29 µs. Table 7.3 presents the summary of the overheads

considered in our RDRF experiments.

7.3.1 Accounting for program phases

A high-level picture of our rule based decision process is shown in Figure 7.4.

Based on the conditions mentioned in Figure 7.1, tentative decisions regarding the

core configuration and the appropriate voltage and frequency levels are made by the
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Figure 7.4. Determining the best core configuration and operating condition for the
current window using hardware counters.

microvisor at the end of every committed instruction window. The chosen window

size should be sufficiently large so that the microvisor invocation overhead (500 cycles)

would be negligible. A sensitivity study was performed varying the window size from

25K to 75K, the results of which are shown in Figure 7.5. Here too, the metric used

0%

5%

10%

15%

20%

25%

3 5 10 3 5 10 3 5 10

W
ei

g
h

te
d

 %
 i
m

p
ro

v
em

en
t 
 i

n
 

IP
S

/W
a

tt

History depth

Window: 25K Window: 50K Window: 75K

Figure 7.5. Sensitivity analysis for determining window size and history depth for
RDRF.
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Figure 7.6. IPS/Watt and IPS improvement using RDRF over the static baseline
for different multiprogrammed workloads.

was IPS/Watt instead of IPC/Watt. Significant weighted IPS/Watt benefits (21.2%)

were achieved over the static baseline for a window size of 25K instructions and a

history depth of 3, which is used in all our RDRF experiments.

7.4 Evaluation

To illustrate the efficiency of the proposed RDRF, we compare the through-

put/Watt and throughput metric of our scheme against three baseline heterogeneous

configurations – static, with DVFA capability only and with the DRA feature only.

As before, we show only the 10 worse results (out of the 100), the 10 best results and

15 that showed average benefits in Figures 7.6, 7.7 and 7.8.

As shown in Figure 7.6, significant improvement in IPS and IPS/Watt was ob-

tained using the proposed scheme when compared to the static baseline heterogeneous

configuration which lacks the capability to adapt to the time-varying behavior of the

workload. The only scenario where the static configuration was able to perform bet-

ter or match RDRF was when no reconfiguration happened for the two-benchmarks
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Figure 7.7. IPS/Watt and IPS improvement using RDRF over the DVFA-only
baseline for different multiprogrammed workloads.

pairs (for example, {unepic,equake}, {bzip2,vortex}). Using the proposed scheme

there was on average (for all the 100 combinations) a 21.2% (13.5%) weighted (ge-

ometric) improvement in throughput/Watt and about 21.7% weighted improvement

in throughput over the static baseline.

As expected, relatively lower benefits were observed when comparing RDRF against

the baseline configuration with either the DVFA only or the DRA only capability.

These reference baseline configurations have some capability (either to change the

voltage/frequency levels or morph the execution resources) to adapt to the time-

varying behavior of the workload. It could be noted that for few combinations like

{bitcount,mcf }, {cjpeg,mcf } in Figure 7.7 and {equake,epic}, {djpeg,vpr} in Figure

7.8, the proposed scheme performs worse than the two baseline configurations. There

are three possible reasons for this: (i) The best thread-to-core initial assignment is

assumed for the baseline configurations while it is random for the proposed scheme.

This gives an added advantage to the baseline configurations when either no or very

late reconfigurations happen using RDRF. (ii) Due to the dual feature of DVFA and

DRA in the proposed RDRF, in a few rare cases the earlier transitions (either fre-
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Figure 7.8. IPS/Watt and IPS improvement using RDRF over the DRA-only base-
line for different multiprogrammed workloads.

quency/voltage adaptation or resource morphing) made by our scheme prevents some

useful reconfigurations to happen in the future. For example, a decision to morph the

cores could have been turned down by RDRF as the second core had been in the HP

mode (and is about to come out of it) because of which its performance is slightly

better than the defined conditions for a thread to be assigned to the weak core (see

Figure 7.1). (iii) The scheme mispredicts. This could happen occasionally for any

prediction scheme whose rules are determined by analyzing a subset of applications.

We also noticed many combinations that stressed the need for a scheme to have

both DRA and DVFA. Consider for example, the pair {art,swim} for which voltage

and frequency were scaled twice during the program execution for both the proposed

scheme and the baseline configuration with DVFA. Hence, no significant IPS/Watt

improvement was seen for this benchmark pair when compared against the baseline

with only DVFA. However, the threads executed without any reconfiguration in the

static baseline and the baseline with DRA-only capability. Hence, there was about

42% weighted increase in IPS/Watt for the mentioned workload pair compared to

the static baseline configuration and the one with DRA alone. There were few other
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workload pairs like {equake,ammp}, {equake,fpStress} where the baseline configu-

ration with DRA was able to follow the proposed scheme closely while significant

benefits were achieved over the baseline with DVFA-only capability. These examples

illustrate the capability of RDRF to satisfy the diverse needs of different applications

and result in a significant performance/power improvement.

Considerable benefits are achieved by RDRF against both the non-static baseline

configurations when workload pairs (like {epic,ammp}, {fbench,swim}) that require

both DVFA and DRA to maximize performance/power are encountered. Moreover,

the number of combinations that benefit from RDRF and result in a significant in-

crease in IPS/Watt is much higher than the number of those that do not (only 11%

of the 100 combinations showed >3% degradation compared to the baseline config-

uration with DVFA while the number of combinations that were slightly degraded

was 5% compared to the baseline configuration with DVFA). On average, for the

considered 100 combinations, there was about 12% and 16% weighted improvement

in throughput/Watt using RDRF over the baseline heterogeneous configurations with

DVFA-only and DRA-only capability, respectively.

7.5 Limitations of RDRF

Although the proposed RDRF achieves good performance/power benefits, the

scheme suffers from the following limitations that need to be addressed:

• Continuous monitoring: The scheme requires continuous monitoring of the pro-

gram characteristics though the number of reconfigurations on an average was

small.

• Scalability issue: More importantly, developing DRF rules for a many-core sys-

tem that has more than two cores per tile is complicated.
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CHAPTER 8

PREDICTION-BASED DYNAMIC RECONFIGURATION
FRAMEWORK

We introduce in this chapter a new reconfiguration framework that is based on pre-

diction. The presented prediction-based dynamic reconfiguration framework (PDRF)

tries to address the shortcomings of RDRF.

8.1 Overview of Prediction-based Dynamic Reconfiguration

Framework

We have already noticed that the computational resource requirements of the

threads usually change only when the programs change phases. Therefore, it may be

sufficient to look for opportunities to reconfigure and/or change the voltage/frequency

levels of the cores only when a phase change is detected for any of the threads. Thus,

the continuous monitoring requirement of RDRF can be avoided. By opportunisti-

cally making such reconfiguration decisions only when a new phase is encountered, the

associated overheads can be lowered further. In addition, an informed thread-to-core

assignment can be made if we could predict the expected performance/power of the

current program phase at different voltage/frequency levels on all the available core-

types in the AMP. With such a prediction mechanism, the proposed scheme could be

extended to a many-core system.

The above two features form the central idea of our PDRF: (i) opportunistic deci-

sion making and, (ii) predicting the expected throughput/Watt of the current phase

on other core-types at different voltage/frequency levels. By covering the entire search
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space, an informed decision about the core configuration and the operating conditions

is made. The prediction is made possible by employing hardware performance coun-

ters (HPCs) of the host core. A relationship is established between the values of these

counters in the core executing the application and the expected throughput/Watt of

this application if it would run on the other cores in the AMP and at different volt-

age/frequency levels. A high-level view of the proposed PDRF is shown in Figure 8.1.

Core 1 Predictor Scheduler Predictor Core 2

Decision about the best thread-to-core 
assignments and core operating conditions

Stable phase change 

trigger

HPCs HPCs

Application 1 Application 2

Figure 8.1. High-level view of PDRF.

8.2 Considered core configurations and operating conditions

As a proof of concept, we illustrate the benefits of PDRF using the considered

baseline cores (INT and FP). In this prototype study, we do not consider morph-

ing and focus only on thread swapping to explore its benefits. The latest Intel and

AMD processors employ DVFS to a great extent for their “Enhanced Intel Speedstep

Technology” and “AMD PowerNow! Technology,” respectively. Further, the frequen-

cies of the cores are changed in a wider range in such processors. In alignment with

that, we consider two power states for the baseline cores covering the extremes of the

frequency spectrum. The considered voltage/frequency levels of the cores are tabu-

lated in Table 8.1. Thus, the presented PDRF can be viewed as a dynamic thread

scheduling scheme that makes informed thread-to-core assignments taking into ac-

49



Table 8.1. Voltage/Frequency levels considered for the baseline cores.
DVFS level Operating voltage Frequency

Level 1 (Normal mode) 1.1 V 2 GHz

Level 2 (Boost mode) 1.3 V 3 GHz

count the multiple voltage/frequency levels that may be available within the cores

in the AMP. We next describe our phase detection and throughput/Watt prediction

mechanisms that form the basis for PDRF.

8.3 Phase detection mechanism

To keep the overheads at bay, a good thread scheduling scheme should consider

reassigning threads and/or changing the voltage/frequency levels only when a thread

has moved to a new and stable phase. Therefore, there is a need to detect stable phase

changes in a program even before determining the best thread-to-core affinity or the

appropriate power state (voltage/frequency levels). The program phase detection

mechanism should ignore short-lived unstable phases that do not warrant thread

reassignment or change in core operating conditions.

A number of phase classification mechanisms have been proposed in the litera-

ture [13, 28]. After certain modifications, we adopt the phase classification scheme

based on Instruction Type Vectors (ITVs) proposed by Khan et al. [26] owing to its

simplicity. In their scheme, ITVs are formulated using hardware counters that count

the number of committed instructions of certain types (9 in [26]) during a specified

interval. A fixed number n of committed instructions constitute the above interval,

with the value of n to be determined. The appropriate instruction counter is in-

cremented whenever an instruction is retired. After the commit of n instructions,

the resulting 9-element vector is captured and compared to the ITV of the previ-

ously identified phase. If the sum of differences between the instruction types of the

previously encountered and currently executing phase is greater than a threshold,

∆ (another parameter that needs to be determined), then this is potentially a new
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Figure 8.2. Our phase detection mechanism.

phase. The scheme qualifies a newly detected phase as stable only when at least

m (the third and the last phase classification parameter that should be determined)

consecutive intervals have their ITV differences smaller than ∆. Additional details

about their scheme could be found in [26]. Due to the nature of the considered base-

line cores (INT and FP), further classifying integer and floating-point instructions as

ALU, multiply or divide does not offer any significant benefit. Therefore, we reduce

the ITV from 9 to 5 elements corresponding to floating-point, integer, load, store

and branch instructions. Our modified phase detection mechanism is shown in Fig-

ure 8.2. Khan et al. determined the phase classification parameters (n, m, and ∆)

by experimentation. Since the baseline core configurations and the benchmarks that

we consider are very different from those in [26], we have redone the experiments and

found the parameters to be: (i) interval length n = 150K instructions, (ii) threshold

∆ = 7.5% and, (iii) m = 4 [42]. For every 150K instructions committed by either

thread, the microvisor is invoked. The microvisor captures the current ITV and com-

pares it to that of the previously identified phase to detect any phase changes. We

have assumed an overhead of 500 cycles for every microvisor invocation as it involves

executing a few instructions.
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8.4 Determining program affinity online by predicting the

expected throughput/Watt

Next, we need to determine online the affinity of the current program phase to the

core-types and voltage/frequency levels in the AMP. The objective that our scheme

tries to maximize is throughput/Watt which is the product of IPC/Watt and fre-

quency. Since the frequency of each power state is known beforehand, the proposed

scheme tries to non-invasively predict the expected IPC/Watt of the current phase at

different operating conditions on both the core-types. Hardware performance counters

(HPCs) have been observed to reveal significant information about the characteristics

of the thread currently being executed [11, 49]. We therefore, decided to develop a

scheme to predict IPC/Watt of an executing application on the host core, as well as

on other cores in the AMP at all the available voltage/frequency levels using HPCs.

To do so, we need to first identify a set of counters that could be used for estimation

and then choose a small subset that would have the largest impact on IPC/Watt.

8.4.1 Hardware Performance Counters (HPCs) explored

We examined 14 different HPCs which can be grouped as follows. It is to be noted

that none of the counter values would change by changing the voltage/frequency levels

of the corresponding core.

• Instructions per Cycle (IPC): Power consumption of the processor is de-

pendent on its activity and the IPC counter provides a good measure of it.

• Fetch counters: The IPC metric considers only the retired instructions, but

in a processor, many instructions are executed speculatively and then flushed from

the pipeline. To account for these, we considered # Fetched instructions (F) and,

Branch mispredictions (BMP).

• Miss/Hit counters: Cache hits and misses play a significant role in perfor-

mance or power consumption of a core. In this regard, the following event counters:
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L1 hit (L1h), L1 miss (L1m), L2 hit (L2h), L2 miss (L2m) and, TLB miss (TLBm)

are considered.

• Retired instructions counters: Performance or power consumption can vary

significantly depending on the type of the retired instructions (integer (INT), floating-

point (FP), Load (Ld), Store (St), Branch (Br)). Hence, we considered retired in-

structions counters.

• Stalls: The activity of the processor will be low when it experiences depen-

dencies (data or resource conflicts) frequently. We consider stalls due to reservation

stations, re-order buffer (ROB), load/store queues (LSQ), register renaming and RAT

(Register Alias Table). We refer to this counter as Stalls (S). A single unified counter

is assumed for this purpose which is incremented whenever the corresponding struc-

ture is full and an attempt is made to allocate a new entry.

8.4.2 Performance/Power Modeling

As power cannot be extracted at runtime, there is a need to estimate IPC/Watt

even on the same core at the current operating condition. This results in total of 4

predictions (2 for each core and 2 for each operating mode) within the same core. Fur-

ther, to make thread swapping decisions, we need to predict the expected IPC/Watt of

a thread running on INT (FP) core, on FP (INT) core at both operating modes. This

accounts for another 4 predictions thereby increasing the total number of predictions

required to 8.

Our intent is to use the least number of counters (from the available 14) to

predict IPC/Watt at a reasonably high precision. The objective of this is not to

save hardware, but, to minimize the number of counters that need to be monitored

simultaneously. Once the right set of counters is chosen, we could employ multi-

dimensional curve fitting and regression analysis to obtain expressions for IPC/Watt

using the selected counters. To perform this analysis, we identified 12 represen-
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1. Initialize:

a. selected_counters = NULL

b. untried_counters = {All 14 counters}

2. for i = 1 to total #counters

a. Select a counter Ci from the untried_counters set that best fits  

IPC/Watt along with the list of counters in selected_counters set

b. Exclude Ci from untried_counters set and add it to 

selected_counters set

c. Store R2 coefficient and selected_counters set corresponding to this 

iteration

end

3. Plot R2 coefficient obtained for each iteration

4. Explore selected_counters around the saturating region of the plot. Choose 

the one that offers a good trade-off between accuracy and the #counters

Figure 8.3. Pseudocode of our counter selection algorithm.

tative benchmarks from the set of 38, such that they include: integer intensive

(intStress,bzip2,gzip), floating-point intensive (fpStress,equake,ammp), load/store in-

tensive (gcc,whetstone,swim) and, branch intensive (mcf,twolf,art) benchmarks. These

12 benchmarks were run on both the cores at the two operating modes for 1 billion

instructions, after skipping the initial 5 billion. The value of the 14 performance

counters along with the observed IPC/Watt were sampled periodically after the com-

mit of every 150K instructions (equal to the interval length n used in phase detection

mechanism). All the obtained counter values were normalized with respect to the

interval length n so that the same IPC/Watt expressions could be used for a different

interval length while making runtime thread scheduling decisions.

8.4.3 Our counter selection approach

To accomplish the task of making the right choice of HPCs, we devised an effi-

cient heurestic that searches the counter space iteratively. During each iteration, our

counter selection algorithm picks a new counter that best fits IPC/Watt along with

the set of counters already chosen in the previous iterations. We tried only linear
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type in the legend name at the mentioned operating frequency. For example, legend
INT-HPCs FP-IPC/W@2GHz corresponds to IPC/Watt prediction on the FP core
in the normal mode using the HPCs of the INT core.

models for curve-fitting and the best fit is qualified by the R2 coefficient. During the

initial few iterations, the value of the R2 coefficient increases steeply as more counters

are added, but it tends to saturate later. The best set of counters is around the region

where the R2 coefficient tends to saturate. The pseudocode of our counter selection

algorithm is shown in Figure 8.3.

Figure 8.4 shows the value of the R2 coefficient obtained during each iteration

of the algorithm while predicting IPC/Watt both on the same core and the other

core. It is evident that a reasonably high value of the R2 coefficient is achieved

for the same core predictions (the top 4 curves in Figure 8.4) and it saturates after

2 counters. Consequently, we used only two counters for IPC/Watt estimation on

the same core. However, the value of the R2 coefficient achieved while predicting the

IPC/Watt on the other core (the bottom 4 curves) by using the HPCs of the host core

is significantly lower than that on the same core (the top 4 curves). Further, the curves

tend to saturate only after the fourth iteration indicating that 4 or more counters
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Table 8.2. Union of HPCs chosen for the other core prediction during the first 4
iterations.

Iteration # Union of HPCs

1 L1m, IPC

2 L1m, IPC, BMP, FP

3 L1m, IPC, BMP, FP

4 L1m, IPC, BMP, FP, St

Table 8.3. IPC/Watt expressions obtained for the normal mode.
HPCs of/Prediction on Expression

INT/FP -0.12 × L1m - 0.34 × BMP +
0.01 × IPC + 0.02 × FP + 0.04

FP/INT 0.03 × IPC - 0.07 × FP +
-0.71 × BMP - 0.04 × St + 0.04

INT/INT 0.02 × IPC - 1.3 × 10-2 × S + 0.03

FP/FP 0.04 × IPC - 4.6 × 10-2 × L1H + 0.02

of the host core may be needed to adequately predict the IPC/Watt on the other

core. The union of HPCs chosen during the first 4 iterations of the algorithm while

predicting the IPC/Watt on the other core (corresponding to the bottom 4 curves in

Figure 8.4) is shown in Table 8.2. As can be seen from the table, considering all the

4 cases, there were only 5 different HPCs chosen at the end of the fourth iteration.

This indicates that there are common HPCs (e.g., BMP, FP, IPC) that are used for

different predictions. We found the prediction accuracy achieved using 4 counters to

be adequate and the same was employed for the other core estimation. For the sake

of brevity, we show only 4 out of the 8 expressions that correspond to IPC/Watt

prediction in the normal mode in Table 8.3.

8.4.4 Evaluating the accuracy of IPC/Watt prediction

We evaluated the accuracy of our prediction using all the 38 workloads, not limit-

ing to the trained 12. The average absolute percentage error in IPC/Watt estimation

for all the 8 cases is shown in Figure 8.5. Due to better quality of fit (higher value of

R2 coefficient), a much higher accuracy (average error of less than 10%) was achieved

for estimating IPC/Watt on the same core when compared to the other core. In con-
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Figure 8.5. Average absolute percentage error in IPC/Watt estimation. Description
of names in x-axis: HPCs of the first core-type is used to estimate the IPC/Watt
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trast, the maximum average error was about 18.4% when predicting the IPC/Watt on

FP core in normal mode using the HPCs of INT core. Overall, our proposed scheme

achieves reasonably high accuracy in predicting the IPC/Watt both on the same core

and on the other core at different core operating conditions.

In addition, we also analyzed the distribution of the error in IPC/Watt prediction.

For the sake of brevity, only the error distribution for the worst case (IPC/Watt

estimation on the other core) is shown in Figure 8.6. It is evident from Figure 8.6

that most of the sample points are contained within +/- 1σ, reflecting the high

accuracy of our prediction scheme. About 92% (95%) of the samples corresponding

to IPC/Watt estimation on INT (FP) core using the HPCs of FP (INT) core fall

within this range. This is inline with our expectation of having low prediction error

and hence, we could expect our prediction scheme to make good thread scheduling

decision most of the time.
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Figure 8.7. Flowchart of PDRF.

Figure 8.7 shows the flowchart of

PDRF. We assume the microvisor dis-

cussed in Section 7.2 to coordinate the

predictions and thread scheduling de-

cisions whenever a new phase is de-

tected for either of the threads. When-

ever a stable phase change is detected

for one of the threads, the microvi-

sor is invoked to predict the expected

throughput/Watt of the current exe-

cution phases of both the threads at

different operating modes on the two

core-types. This prediction is done us-

ing the current values of the chosen

HPCs of the corresponding host cores.
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Based on the above predictions, the microvisor calculates the projected geometric

throughput/Watt gain (weighted metric could also be used) in moving to each of the

possible new states (combinations of different thread-to-core assignment and volt-

age/frequency levels) over the current one. If the maximum geometric speedup is

greater than 5% (called decision threshold to account for the swapping and DVFS

overheads; detailed sensitivity study was conducted to determine this value), the cor-

responding new thread-to-core assignment and core operating conditions are opted

for. Else, the current thread-to-core mapping and core operating conditions are main-

tained.

The PDRF incurs the same overheads as that of RDRF (see Table 7.3). But,

the performance loss is as high as 25 µs for the voltage/frequency levels mentioned

in Table 8.1. Hence, whenever the scheme switches from normal to boost mode, an

upscaling overhead of 30 µs (5 µs for relocking the PLL and 25 µs for performance

loss) is incurred. A discussion on the scalability of PDRF is presented next.

8.6 Discussion on scalability of PDRF

The proposed PDRF is based on the throughput/Watt prediction of the current

program phase at different voltage/frequency levels on the available core-types in

the AMP. We expect the methodology to remain the same if only the number of

cores (with same core-types and operating modes) in the system increases. However,

increasing the core-types and/or the operating modes increases the search space sig-

nificantly. For the considered dual-core AMP with two operating modes, the number

of potential next states for the current configuration is 7. Just by increasing the

operating modes from 2 to 3, the number of potential next states increases from 7

to 17. For such cases, making an integrated decision about the thread-to-core map-

ping and core operating conditions may become too time consuming. Therefore, we

may need to employ a sequential approach of determining the best thread-to-core
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Figure 8.8. Throughput/Watt and throughput improvement using PDRF over the
static baseline for INT/FP dual-core AMP.

mapping first and then choosing the appropriate voltage/frequency levels of the cores

individually. By this, we would be able to drastically reduce the number of potential

next states for the current configuration. Irrespective of either integrated or sequen-

tial decision-making, the proposed PDRF could be deployed for a many-core system.

Having discussed the necessary requisites, we evaluate PDRF in the next section.

8.7 Evaluation

We compare the PDRF against the static, swap-only, and DVFS-only baselines

by running 100 random combinations of 2-threaded workloads. As before, only the

baselines were given the advantage of best initial thread-to-core assignment while

a random assignment was assumed for PDRF. It should be noted that the trigger

for both swap-only and DVFS-only baselines is phase detection. Further, both the

baselines employ the same mechanism, i.e., throughput/Watt prediction to make their

respective reconfiguration decisions. A detailed analysis of the comparison against

each of the baselines is presented next.
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Figure 8.9. Throughput/Watt and throughput improvement using PDRF over the
swap-only baseline for INT/FP dual-core AMP.

vs. Static: This is the baseline heterogeneous AMP with a static thread-to-

core assignment, i.e., it never changes during the program execution. The baseline

lacks the capability to adapt to the time-varying behavior of the workload. Though

a thread may have affinity for a certain core or an operating mode over the entire

run, there may be periods where this thread would be more affine to another core or

a power state in the AMP. By taking advantage of program phases and adapting to

the thread needs, the proposed scheme achieves significant throughput and through-

put/Watt benefits over this baseline (see Figure 8.8). Even for the worst case, PDRF

was better than the static baseline by 5.5% when considering weighted through-

put/Watt improvement. On an average, considering all the 100 combinations, PDRF

achieved a 24.3% (21%) weighted (geometric) improvement in throughput/Watt over

this baseline. Furthermore, by opportunistically opting for the boost mode for high-

compute intensive phases, PDRF resulted in much higher throughput improvement

of about 79%, on an average, over the static baseline. These results demonstrate the

need for a dynamic scheme that can adapt the available core resources and operating

modes to the program phase behavior.
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Figure 8.10. Throughput/Watt and throughput improvement using PDRF over the
DVFA-only baseline for INT/FP dual-core AMP.

vs. Swap-only : This is a dynamic baseline that can swap threads between cores

at runtime. As could be seen from Figure 8.9, a substantial increase in through-

put/Watt is achieved using PDRF even over the swap-only baseline. Again, we did

not encounter any combination where the swap-only scheme performed better than

PDRF. As expected, PDRF performed much better than the swap-only scheme for

cases when DVFA would come in handy and when opportunities to swap threads are

limited. Both these cases occur for workloads that are primarily integer (INT) or

floating-point (FP) intensive and do not exhibit many phases. For such cases, once

the affine core is chosen, the execution can be significantly speeded up by pushing the

corresponding core to the boost mode. In line with our expectation, we observe many

uni-flavored workloads (e.g., intStress, adpcm are INT intensive while fpStress, equake

are FP intensive) among the best performing cases. On an average, for the 100 com-

binations, PDRF achieved a weighted (geometric) throughput/Watt improvement of

about 15.7% (14.9%) and a weighted throughput improvement of about 53.9% over

the swap-only baseline.
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vs. DVFA-only : This baseline has the capability to dynamically boost the volt-

age/frequency levels of the cores. In contrast to the previous two baselines, there were

few benchmark combinations (e.g., {adpcm dec.,mcf }, {bitcount,mcf }) in Figure 8.10

for which PDRF performed worse than DVFA-only scheme. In the worst case, the

IPS/Watt degradation is about 10%. This is because for few rare cases, PDRF ended

up making wrong thread scheduling decision due to error in throughput/Watt pre-

diction at the time of decision making. As a result of this, PDRF performed few

non-beneficial thread swaps and opted for boosting the voltage and frequency of the

cores at a much later stage of the program execution. Since PDRF is an opportunis-

tic scheme that looks for thread scheduling opportunity only upon a phase change,

a wrong thread scheduling decision made, is retained for the entire phase, magnify-

ing its impact. The PDRF achieves significant benefits over the DVFA-only baseline

when workloads with distinct INT/FP phases (e.g., wupwise, ammp) or symmetric

workload combinations (e.g., {equake, equake}, {cpu, cpu}) are encountered. An

average weighted (geometric) throughput/Watt improvement of about 7.5% (5.4%)

and weighted throughput improvement of about 20% was achieved by the proposed

PDRF over this baseline.
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CHAPTER 9

EVALUATING PDRF FOR A
LOW-POWER/HIGH-PERFORMANCE DUAL-CORE

Most of the current asymmetric multicore research has focused on designs with

small and big cores [18, 31, 44]. The reconfiguration frameworks, RDRF and PDRF,

presented in the earlier chapters were evaluated using the custom baseline cores (INT

and FP). To explore the potential of the proposed approach further, we employ PDRF

for a more commonly studied dual-core AMP consisting of low-power (LP) and high-

performance (HP) cores in this chapter.

9.1 LP and HP core parameters

The considered LP and HP cores are at the two ends of the power/performance

spectrum. This is one of the worst cases for a scheme for predicting the through-

put/Watt on the HP core based on the activities observed in the LP core and vice

versa. The parameters used for both the cores is shown in Table 9.1. Most of these

parameters and the execution latencies were taken from [14]. It can be seen from

Table 9.1 that the two cores are significantly different. The HP core is a 4-way issue,

out-of-order (OOO) core with large core resources (e.g., integer (INT)/ floating-point

Table 9.1. Chosen core parameters for LP and HP cores

Param LP HP Param LP HP

Issue 2 4 LS units 1 2

INTREG 64 96 LSQ NA 32

FPREG 64 80 ROB NA 128

INTISQ NA 36 L1(I/D) 32K 32K

FPISQ NA 24 L2 512K 2M

Type In-order OOO
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(FP) registers, issue queues, L2 cache) while the LP core is a 2-way issue, in-order

core with minimal resources to cater to low power applications. Similar to the INT

and FP cores described in Chapter 8, the LP and HP cores can also operate either

in normal or boost mode and, the corresponding voltage and frequency levels in the

two modes are shown in Table 9.2.

Table 9.2. Voltage/Frequency levels of LP and HP cores.

Core-type Normal Boost

LP 0.81 V / 1 GHz 0.9 V / 1.6 GHz

HP 1.1 V / 2 GHz 1.3 V / 3 GHz

9.2 Counter selection for IPC/Watt estimation

Due to the significant difference in the microarchitecture of the baseline cores, the

counters used for IPC/Watt estimation on INT/FP cores may not work for LP/HP

cores. Hence, the expressions for IPC/Watt estimation pertaining to all the 8 cases

(4 for the same core and 4 more for the other core) were re-trained for the LP/HP

dual-core AMP. A subset of the 8 expressions that correspond to IPC/Watt prediction

in the normal mode is shown in Table 9.3.

Table 9.3. IPC/Watt expressions trained for the normal mode.
HPCs of/Prediction on Expression

LP/HP -1.2 × BMP - 0.1 × L1m +
0.04 × Br + 3.6 × 10-4 × S + 0.05

HP/LP -0.28 × L1m - 0.04 × Ld +
-0.5 × BMP + 0.1 × TLBm + 0.08

LP/LP 0.2 × IPC - 8 × 10-4 × S + 0.04

HP/HP 0.02 × IPC - 0.01 × L1m + 0.04

9.3 Evaluating the accuracy of IPC/Watt prediction

As it is evident from Figure 9.1, we achieved a reasonably high prediction accuracy

in estimating the IPC/Watt at both the operating modes and on the two core-types.

The maximum average error was about 16.4% when predicting the IPC/Watt on the

LP core in normal mode using the HPCs of the HP core. Figure 9.2 shows the error

distribution of the worst case, predicting the IPC/Watt on the other core in normal
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Figure 9.1. Average percentage error in IPC/Watt (IPC/W) estimation.

-5

5

15

25

35

45

55

65

75

< -4σ -3σ -2σ -1σ 0 1σ 2σ 3σ > 4σ

F
re

q
u

en
cy

 (
%

)

LP-HPCs_LP-IPC/Watt (normal) HP-HPCs_HP-IPC/Watt (normal)

Figure 9.2. Distribution of error in estimating IPC/Watt on the other core using
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mode using the HPCs of the host core. The high accuracy of the prediction is reflected

even in this figure as majority (about 90%) of the sample points are contained within

+/- 1σ. This analysis clearly illustrates the capability of the described prediction

mechanism to work for different architectures.

9.4 Evaluation

Having discussed the accuracy of IPC/Watt prediction for the LP and HP cores,

we evaluate the potential benefits of PDRF for the considered baseline cores (LP and
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Figure 9.3. Throughput/Watt and throughput improvement using PDRF over the
static baseline for LP/HP dual-core AMP.

HP). The same baselines discussed in Section 8.7 were used and the throughput/Watt

and throughput achieved using PDRF and the baselines were compared for a large

number (about 120) of multiprogrammed workloads. An in-depth analysis of the

comparison results is presented next.

vs. Static: By taking advantage of the program phases, the PDRF achieved

significant throughput and throughput/Watt benefits over the static baseline (see

Figure 9.3). Of the 120 combinations, we did not find any case where this base-

line performed better than PDRF. On an average, considering all the 120 combina-

tions, PDRF achieved a 27.2% (25%) weighted (geometric) improvement in through-

put/Watt over this baseline. Furthermore, by opportunistically opting for the boost

mode and efficiently making use of the HP core for high-compute intensive/high-ILP

program phases, PDRF resulted in much higher throughput improvement of about

190%, on an average, over the static baseline.

vs. Swap-only : PDRF achieved a throughput/Watt improvement of about

5.3% over the swap-only baseline even for the worst case (see Figure 9.4). Using the

proposed scheme, there was, on average, a 13.7% (13%) weighted (geometric) improve-
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Figure 9.4. Throughput/Watt and throughput improvement using PDRF over the
swap-only baseline for LP/HP dual-core AMP.

ment in IPS/Watt and about 91% improvement in IPS over the swap-only baseline.

The drop in the achieved throughput/Watt gain relative to the static baseline re-

flects the adaptable nature of the swap-only baseline, where at least the appropriate

core-type is chosen to suit the current execution phase of the threads.

We analyzed the benchmark combinations at the right end of Figure 9.4 for which

we achieve maximum IPS/Watt improvement over the swap-only baseline. It is in-

teresting to note that most of them are either compute-memory intensive benchmark

combinations (e.g., {fbench,basicmath}) or both are compute intensive benchmark

combinations (e.g., {adpcm,cpu}). In the case of {fbench,basicmath} combination, the

benchmark fbench is memory intensive with about 58% load/store instructions while

the benchmark basicmath is compute intensive. For such compute-memory intensive

benchmark combinations, besides deciding the best thread-to-core assignments, our

scheme makes use of DVFA to good extent. During high-IPC/high-ILP phases of

compute intensive benchmark, our scheme pushes the HP core to boost mode result-

ing in much faster execution and hence, better IPS/Watt. This is supported by much

higher IPS speedup for these combinations over the swap-only baseline (speedup of
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Figure 9.5. Throughput/Watt and throughput improvement using PDRF over the
DVFA-only baseline for LP/HP dual-core AMP.

about 3 for {fbench,basicmath}). For cases when both the threads go through high

compute intensive phases at about the same time (e.g., {adpcm,cpu}), our scheme

pushes the HP core to boost mode, clearing the conflict for better resources (HP core)

quickly. During this time, the performance of the thread executing on non-affine core

is improved by opting for the boost mode within the LP core. Once the conflict clears

up, the latter thread is migrated to HP core. These cases clearly substantiate the

need for dynamically changing the voltage/frequency of the cores besides swapping

threads.

vs. DVFA-only : The voltage and frequency of the cores are chosen so as

to maximize throughput/Watt in DVFA-only baseline. In contrast to the previ-

ous two baselines, there were few benchmark combinations (e.g., {adpcm,adpcm},

{bitcount,adpcm} in Figure 9.5) out of the 120 for which our scheme performed worse

than DVFA-only scheme. We have already observed a probable reason for this in

Section 8.7. Nevertheless, these worst case scenarios were infrequent (only 10 out

of 120 combinations resulted in degradation >3%) and even in the worst case, the

observed IPS/Watt degradation was only about 9.5%. On an average, considering all
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the 120 combinations, the proposed PDRF achieved a throughput/Watt improvement

of about 8% over the DVFA-only baseline.

We also analyzed the cases for which our scheme performs much better than

the DVFA-only scheme. We observed that most of such cases were for symmetric

workload combinations (both the threads having affinity for the same core-type, e.g.,

{gcc,gcc}, {intStress,bitcount} - both are integer intensive). By swapping threads,

our scheme efficiently shares the affine resource (preferred core-type) while one of

the threads is forced to execute on the non-affine core throughout its execution in

DVFA-only scheme. Hence, there is a definite need for a scheme to support thread

swapping besides DVFA.

Furthermore, we analyzed the best 10 cases for which our scheme achieves max-

imum IPS/Watt speedup over swap-only (see Figure 9.4) and DVFA-only (see Fig-

ure 9.5) baselines. We noticed that there were only 2 benchmarks combinations

({crc32,cpu} and {cpu,fbench}) that were in common between the two. This is very

encouraging for our proposed scheme as it clearly shows that the benefits of dynamic

thread swapping and DVFA are mostly non-overlapping. As a result, different kinds

of benchmark combinations could benefit from either of them, indicating the po-

tential benefits of schemes (like the one proposed) that seamlessly combine the two

approaches.
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CHAPTER 10

CONCLUSIONS

We have presented a novel dynamic reconfiguration framework (DRF) for AMPs

which strives to maximize performance/power of the applications. The proposed DRF

is equipped with dynamic resource allocation (DRA), and voltage/frequency adapta-

tion (DVFA) capabilities. Two approaches were explored for the proposed DRF: one

(RDRF) works based on rules established offline and the other (PDRF) by predicting

online the expected performance/power of the thread at different voltage/frequency

levels on all the available core-types in the AMP. We have devised an unified trigger

mechanism using hardware performance counters (HPCs) for both RDRF and PDRF.

To illustrate our approach, we considered a dual-core: one core with support for

strong integer code execution and another core that could handle floating-point oper-

ations efficiently. Aligning with the time-dependent behavior of the applications and

their computational demands, our proposed DRF dynamically swaps the executing

threads or morphs the cores at runtime by realigning resources of the given baseline

cores to form a strong and a weak core. In addition, appropriate voltage/frequency

levels are chosen dynamically to maximize performance/power of the applications.

We have demonstrated the potential of PDRF for varied baseline core architectures.

Our results show that proposed DRF achieves significant throughput/Watt benefits

over different baselines.

71



CHAPTER 11

FUTURE WORK

We discuss in this chapter the possible extensions to this thesis.

• Adaptive fetch throttling: Hardware counters were extensively used in this thesis

to trigger reconfigurations and predict performance/power. One possible future

work is to leverage them for an adaptive fetch throttling mechanism. When

the difference between the Fetched instructions and the Retired instructions

counters is large or when the value of Branch misprediction counter is high,

then it is a clear indication that the processor is executing many speculative

instructions. Execution of these instructions unnecessarily burns more power

without contributing to the actual computation. Hence, under such scenarios

it may be beneficial from a power perspective to dynamically reduce the fetch

width.

• Phase-based performance/power prediction: Performance/power prediction was

done using a single trained expression for all application phases in this thesis.

Different performance/power expressions could be trained for different program

phases which could then be used online. Employing such a phase-based perfor-

mance/power models may improve the accuracy of the prediction even further.

• Opportunistic execution outsourcing: With very minimal modification to the

hardware support for core morphing (see Figure 6.4), the proposed DRA mecha-

nism could be extended to support execution outsourcing. When the processor is

stalled due to the lack of execution resources, the subsequent instructions could
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make use of the (execution) resources of the other core if they are available.

Such opportunistic execution outsourcing could be deployed for performance

improvement or even for fault tolerance.
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