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ABSTRACT 
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 On-chip True Random Number Generator (TRNG) forms an integral part of a number of 

cryptographic systems in multi-core processors, communication networks and RFID. TRNG 

provides random keys, device id and seed for Pseudo Random Number Generators (PRNG). 

These circuits, harnessing physical random variations like thermal noise or stray electromagnetic 

waves are ideally expected to generate random bits with very high entropy and zero correlation. 

But, progression to advance semiconductor manufacturing processes has brought about various 

challenges in the design of TRNG. Increasing variations in the fabrication process and the 

sensitivity of transistors to operating conditions like temperature and supply voltage have 

significant effect on the efficiency of TRNG designed in sub-micron technologies. 

 Poorly designed random number generators also provide an avenue for attackers to break 

the security of a cryptographic system. Process variation and operating conditions may be used 

as effective tools of attack against TRNG. This work makes a comprehensive study of the effect 

of process variation on metastability-based TRNG designed in deep sub-micron technology. 

Furthermore, the effect of operating temperature and the supply voltage on the performance of 

TRNG is also analyzed. To mitigate these issues we study entropy extraction mechanisms based 

both on algorithmic approach and circuit tuning and compare these techniques based on their 

tolerance to process variation and the energy overhead for correction. We combine the two 
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approaches to efficiently perform self-calibration, using a hybrid of algorithmic correction and 

circuit tuning to compensate the effect of variations. The proposed technique provides a fair 

trade-off between the degree of entropy extraction and the overhead in terms of area and energy, 

introducing minimal correlation in the output of the TRNG. Besides the study of the effect of 

process variation and operating conditions on the TRNG, we also propose to study the possible 

attack models on a TRNG. Finally, we propose a probabilistic approach to design and analysis of 

TRNG using a stochastic model of the circuit operation and incorporating the random source in 

thermal noise.  

 All analysis is done for 45nm technology using the NCSU PDK transistor models. The 

simulation platform is developed using HSPICE and a Perl based automation flow.  
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CHAPTER 1 

INTRODUCTION 

 

 Secure processing, communication and data transfer have been major areas of research 

and development over the last decade. A number of applications ranging from complex 

processing and data communication to light-weight ubiquitous applications like smart cards and 

RFID depend on a secure environment for their operation.  Numerous communication protocols 

and cryptographic algorithms have been developed in this direction. Most of these techniques 

depend on secure transfer of data based on authentication or data encryption. This has created a 

need for generation of random keys or id. Pseudo Random Number Generator (PRNG) is 

frequently used to generate random keys for these purposes. Since a PRNG is algorithm based, it 

is vulnerable to traditional crypto attacks as well as attacks based on Differential Power Analysis 

(DPA) and Electromagnetic emissions (EM). To secure the key generation, either the algorithm 

of the PRNG has to be designed to be more complex, adding to an overhead in the area and 

power of the design or the PRNG seeded using a more random source. Thus, the need for design 

of efficient and light weight True Random Number Generators (TRNG) is ever increasing in the 

field of secure computing. 

 TRNG is fundamentally a circuit that extracts randomness from a physical phenomenon 

having a random distribution. Unlike a PRNG, the state of a TRNG is independent of the 

previous states and generates bits with entropy very close to the ideal value of '1'. A basic TRNG 

circuit would consist of three components, as shown in figure 1, the source of randomness, the 

extraction circuit and the post-processing unit. Cosmic rays, stray electromagnetic waves and 

thermal noise are some of the potential sources of randomness. A TRNG samples and digitizes 

these continuous sources to extract the randomness. The entropy may be extracted in the form of 

random clock jitter samples, power up state of memory cells, meta-stability of devices and chaos 

on deterministic analog signals. Due to imperfections in the source of entropy or the sample and 

digitize circuit, the output of the TRNG may not have the preferred degree of randomness. 
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Figure 1. Basic TRNG system 

 

To improve the randomness and further extract entropy, various post-processing techniques are 

employed. On-chip TRNG circuits are being increasingly used in various applications to enhance 

the security. “Ultra-wide band for Low Power Security”, our exploratory project funded by the 

National Science Foundation, explores the application of TRNG to low power security.   

 Various sample and digitize circuits have been discussed in literature to extract entropy 

from a random source. Optical designs have been developed to monitor the behavior of a single 

photon in free space. This information is sampled using a discrete digital circuit to extract 

random bits [1]. A Geiger –Mueller tube is used to detect individual radioactive disintegration. 

The decay rate of atoms of radioactive material can be sampled to generate random data. Johnson 

noise across a resistor can be used as a source of randomness. The amplified thermal noise is fed 

to a voltage controlled oscillator, the output of which is sampled to obtain random bits [2]. 

Memory based designs can also be used as TRNG. The random access time in DRAM due to 

collision between the memory access and the refresh cycles serve as a source of entropy [3]. 

Ring oscillator based TRNG and metastability-based TRNG are the most commonly used digital 

designs for on-chip random number generation since these circuits directly provide a digitized 

output. These circuits will be discussed in the following sections. 
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1.1 Ring Oscillator based TRNG 

 Jitter in Ring Oscillators (RO) provides a simple and effective way to extract 

randomness. RO based TRNG are popular as they can be implemented efficiently in both 

ASIC/custom as well as FPGA based designs [4][5][6][7]. A ring oscillator is built using an odd 

number of inverters and feeding back the output of final inverter to the input of first inverter.  

Variation in power supply in the form of IR drop or supply noise causes a variation in the 

inverter delays and hence the frequency of oscillation. This uncertainty of the oscillator signal 

(output) in time domain is termed as Jitter. Since the jitter depends on various factors, some of 

which are random, it can be used as a source of randomness in the design of an RO based 

TRNG. The basic TRNG circuits use two or more ring oscillators as shown in figure 2 and XOR 

the outputs. The output signal of the XOR is sampled during the transition zone to get random 

values because of the jitter in the two oscillator rings.  

Q

Q
SET

CLR

D

Ring Oscillator-1

Ring Oscillator-n

Ring Oscillator (Sample clock)

Random

bits

10011101001111000010….

 

Figure 2. Ring oscillator based TRNG 
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A number of variations of this idea have been discussed in literature.                                                                     

The output of a faster RO when sampled by a slower RO, whose jitter is comparable to the 

period of the faster clock, generates random bits [8]. The outputs of a number of ring oscillators 

can be combined using an XOR gate and sampled to obtain a stream of random bits.                                                         

The output of the XOR gate will have a spectrum of transitions, some deterministic and some 

random. The deterministic transitions are caused due to the overlap of jitter between the ring 

oscillators. The TRNG system is designed in such a way as to fill the spectrum with a large 

number of random transitions and sample the same using an appropriate sampling signal [4].                                                                

One approach is to use oscillator rings of variable lengths. When two rings of relatively prime 

length, generating clock signals of period 2T, 3T and so on are used, they produce a random 

transition at time instants equal to common multiples, which in this case is 6T, 12T, 18T, etc. By 

filling up the spectrum with such transitions using more than two oscillator rings and sampling 

the data only at such time instants produces a stream of random bits. Yet another form of RO 

based TRNG consists of a counter clocked by the output of a ring oscillator. The counter value 

sampled after a number of cycles of a reference clock, can be expected to give different values in 

different samples based on the random jitter in the ring oscillator [5]. 

 

1.2 Metastability based TRNG 

Metastability based TRNG circuits are based on metastable circuit elements like cross-

couple inverters or SRAM cells to extract randomness from thermal noise. On-chip SRAM 

memory provides a very convenient technique for generating random numbers. During the 

power up process, the SRAM cells restore to a stable state of either a '0' or a '1' based on the 

random thermal noise present in the design, providing random bits [9].  Similarly, when both the 

outputs of a cross coupled inverter pair is charged to Vdd or logic '1', the inverters are driven to a 

metastable state. Upon releasing the charge, the inverters take some time to restore to a stable 

state. The resolution time is a function of the thermal noise present and can be used to generate 
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random bits [10]. In modern cryptographic applications, metastability based TRNG are being 

increasingly used since they are simpler to design, in some cases making use of the already 

available hardware and consume less energy as compared to other TRNG circuits. Thus in this 

work we focus mainly on efficiency of metastability based TRNG and the effect of process 

variation and operating conditions on these circuits. 

A basic metastability based TRNG, considered for this work, consists of a pair of cross 

coupled inverters, figure 3. The inputs of both the inverters are pre-charged to logic HIGH, 

through two PMOS transistors during the negative half cycle of the clock. Thus, both the 

inverters are driven to a metastable state. During the positive half of the clock cycle, the pre-

charge is removed and then inverters are allowed to come out of the metastable state and settle 

down to a stable state. If both the inverters are identical in all respects, the random differential 

thermal noise at the inputs of the inverters decides the resolution state. Hence, under an unbiased 

 

 

Figure 3. Metastability based TRNG 
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operating condition, thermal noise acts as the source of randomness to generate a bit '0' or a bit'1' 

at each cycle.  

Under matched conditions, the circuit behaves as a fair coin generating bit '0' and bit '1' 

with an equal probability of 0.5, resulting in an ideal bit entropy of 1. But, in deep sub-micron 

technologies, increasing variation in process and changes in the operating conditions may impact 

the behavior of the TRNG. Thus, the effect of variation in the process, temperature and supply 

voltage and the analysis of circuits from a cryptographic perspective is an important topic of 

study in the field of design and security of on-chip random number generators.  
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CHAPTER 2 

EFFECT OF PROCESS VARIATION AND MITIGATION TECHNIQUES 

 

 Process variation is undoubtedly the major challenge in the evolution of CMOS 

technology 45nm and below. Reducing feature sizes have imposed additional constraints on the 

design and fabrication methodology. The actual fabricated feature dimensions, transistor 

threshold voltages and the dopant concentrations are observed to vary more in terms of 

percentage, compared to the models used in the design phase, as we move to lower technology 

nodes. These factors affect the performance of the designs in terms of delay, power and 

reliability.  

 The variations in transistor behavior may be attributed to a number of factors. Random 

Dopant Fluctuation (RDF) is caused due to random variation in the dopant concentration in the 

transistors. With reducing channel lengths, the number of dopant atoms is decreasing 

exponentially. Hence, even a small variability in few random dopant atoms results in different 

electrical characteristics of two transistors fabricated one beside the other. With the advent of 

technology, the feature dimensions are decreasing at a faster rate compared to the wavelength of 

the light source used for optical lithography. In 45nm fabrication process, feature sizes as small 

as 45nm are fabricated using a light of wavelength 193nm. Thus each feature fabricated on the 

silicon is affected by the size, shape and density of the features surrounding it. The effect seen in 

the form of Line Edge Roughness (LER) and Line Width Roughness (LWR) has increased the 

intra-die variations. Also, variation in the oxide thickness leads to variation in the threshold 

voltage of different transistors on the same die. All these factors constitute the static variation 

that is observed during the fabrication process.  

  Apart from the fabrication process, a number of factors that vary dynamically during the 

functioning of the chip also affect the behavior of the transistors. Short channel effects like 

channel length modulation, electron-migration in interconnects, NBTI and other wear out effects 
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hamper the performance of deep sub-micron designs. The effect of both the static and dynamic 

variations may be modeled in the form of one of the following parameters: 

1. Variation in transistor length (Effective length of the channel) 

2. Variation in transistor width 

3. Variation in threshold voltage 

One or more of these variations may impact the other parameters as well. Of these, the variation 

in transistor length has the most significant effect on the behavior of the transistor.  

 

2.1 Effect of process variation on TRNG 

 Variation in process affects the delay and power of a transistor. But, from a cryptographic 

point of view, it is more important to analyze how these effects translate into variation in the 

randomness of the TRNG. Under ideal conditions, the TRNG acts as a fair coin. The generation 

of bits is solely dependent on the random differential thermal noise at the inputs of the two 

inverters. But, a relative variation in the feature size or threshold voltage of the transistors in the 

cross coupled inverters would lead to a bias in the circuit. Based on the mismatch, one of the 

inverters will tend to be faster than the other, resulting in more zeros/ones generated at its output 

as compared to the other. Unless the differential noise is strong enough to overcome this 

mismatch, the TRNG would generate an output biased to either '1' or '0'. So, the probability of 

the bits generated will deviate from the ideal value of 0.5, reducing the bit entropy below 1. 

 The degree of randomness of the bits generated by a RNG is evaluated through various 

statistical tests developed by organizations like the National Institutes of Standards and 

Technology (NIST) [11]. The NIST suite consists of a series of tests that focus on a variety of 

different types of non-randomness that could exist in a sequence. Although the NIST tests are 

necessary for validating a TRNG, the bit entropy of a sequence of bits generated, provides a 

reasonable idea of the lack of randomness. The bit entropy H(X) is given by the following 

equation: 
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Hence, in the following work, bit entropy is used to analyze the effect of process variation on the 

TRNG.   

 The Metastability-based TRNG circuit discussed in the previous chapter was modeled in 

HSPICE. Since the variation in the transistor length has the most significant effect on the 

electrical behavior, Monte-Carlo simulations were performed for a relative 3-σ variation of 20% 

between the transistor lengths of the two inverters in the design.  

 

 

Figure 4. Variation of bit entropy with device mismatch [15] 

 

 The results, as shown in figure 4, indicates that the bit entropy of the TRNG output 

decreases with increasing device mismatch. Thus, the TRNG cannot be effective for 
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cryptographic applications when used stand alone. Correction mechanisms have to be employed 

to extract additional entropy. The correction mechanism may be a traditional algorithmic post-

processing or tuning the circuit to compensate for the mismatch. Each of these approaches 

presents trade-off between the energy overhead for correction and the degree of correction 

achieved.   

 

2.2 Entropy extraction using algorithmic post-processing 

 The entropy of the bits generated by a TRNG may be improved using a number of 

algorithmic approaches, figure 5. XOR function is a very simple and commonly used correction 

technique [4]. von Neumann correction is another very efficient entropy extractor that is widely 

used in random number generation [2][4][8]. Apart from these, universal hash function [9] or 

Secure Hash Algorithm (SHA-1) are also used for improving the randomness of TRNG. 

 

 

Figure 5. TRNG with algorithmic post-processing 

 

XOR function: 

 The XOR function is a commonly used entropy extractor. When the outputs of two or 

more TRNG circuits are XORed to improve the entropy of the output as shown in figure 6, the 

bias in one of the circuits is masked by the other TRNG circuits. Although the XOR function 

provides a simple implementation for improving the entropy of the design, it leads to overhead in 

the form of multiple TRNG circuits to generate bits. From the law of averaging the 

implementation would produce better results as more number of TRNG circuits are used. But, 

this would lead to additional overhead in terms of area and power. Further, care should be taken 

10100110…. 

unbiased output 

11101110…. 

biased output 

Figure 5. TRNG with algorithmic post-processing 

TRNG        

(biased) 

Post-processing 

unit 
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to place the circuits in close vicinity to avoid non common mode variation in the operating 

conditions.  

 

 

Figure 6. TRNG using XOR function for post-processing 

 

von Neumann corrector: 

 The von Neumann corrector is the most widely used correction mechanism to enhance 

the entropy of a TRNG. The von Neumann function, as shown in table 1, generates a uniform 

distribution on bit „0‟ and bit „1‟. It considers simultaneous pairs of bits from the TRNG. A bit 

„0‟ is generated if the TRNG bit sequence is [1,0] and a bit „1‟ is generated if the TRNG bit 

sequence is [0,1]. Bit sequences [0,0] and [1,1] are discarded. 

 

Table 1. von Neumann function for entropy extraction 
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 The von Neumann corrector provides significant improvement in the entropy by 

generating bits with entropy very close to the ideal value of 1. But, since some of the bit 

sequences from the TRNG are discarded, the output bit rate of the von Neumann is dependent on 

the TRNG output and hence not constant. 

 

 

Figure 7. Variable bit rate due to von Neumann correction 

 

Hence, a shift register has to be used to store the corrected bits and use it for further processing, 

figure 8. This adds to the area and power overhead. 

 

 

Figure 8. Entropy extraction using von Neumann corrector 

 

2.3 Entropy extraction using circuit calibration 

  Circuit tuning mechanisms have been used in deep sub-micron technology for post 

fabrication clock skew and delay tuning. Digital de-skewing circuits have been used for clock 

distribution in microprocessor designs to mitigate variations and gradients to match the clock 

signal between two clusters [12]. Process monitoring circuits are used to detect variations and 

calibrate on-chip thermal sensors [13]. Charge injection is another way to compensate for 

mismatches in the circuit [10]. Similar circuit calibration techniques may also be extended to 
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TRNG design to compensate for device mismatch due to process variation. In a publication by 

Intel Corp. a two stage circuit calibration mechanism has been proposed a two stage circuit 

calibration mechanism to mitigate the effect of process variation, figure 9 [14].  

 

 

Figure 9. Metastability-based TRNG 

 

The coarse grain calibration circuit, figure 10, consists of parallel PMOS and NMOS structures 

in both the inverters. These act as additional source and sink paths respectively to compensate 

for an increase in speed of the other inverter and hence match the two devices. 

 

 

Figure 10. Coarse grain calibration [14] 
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The fine grain calibration, figure 11, provides a variable delay tuning mechanism for the pre-

charge clock. By increasing the delay on the pre-charge clock path, either one of the inputs of the 

two inverters are held at logic „1‟ for longer than the other, thereby compensating for the bias 

introduced due to device mismatch.  

 

Figure 11. Fine grain calibration [14] 

 

Once the TRNG is fabricated, bits can be generated during the chip testing process. Depending 

on the bit entropy, the bias in the TRNG due to process variation is estimated. Accordingly, 

appropriate configuration bits are set to perform a combination of coarse and fine grained tuning 

to compensate for the bias and achieve an entropy close to „1‟. 

 

2.4 Comparison of entropy extraction techniques 

 The different entropy extraction mechanisms were analyzed for the degree of 

improvement in randomness achieved for varying device mismatch [15].  

 The XOR function, as shown in table 2, provides considerable improvement in the 

entropy if one of the two TRNG used can generate bits with high entropy. But, as the device 

mismatch in both the inverters increase, there is minimal improvement in the entropy obtained 

through the XOR function. The bit entropy falls much below the value desired for cryptographic 

applications for any device mismatch more than 3%. 
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Table 2.Bit entropy of TRNG using XOR function for correction [15] 

 

 

 von Neumann corrector provides a very significant improvement in the bit entropy. Since, 

consecutive zeros and ones are discarded by the algorithm, non-random bits are filtered and only 

the bit stream with high entropy is extracted. 

 

       

 

Figure 12. Variation of bit entropy using von Neumann corrector [15] 
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 But, with increase in device mismatch, the TRNG will be biased to either „0‟ or „1‟. 

Hence, it generates the sequences [0,0] or [1,1] more frequently. As a result more number of 

TRNG bits has to be generated per bit extracted from the corrector and the output bit rate of the 

von Neumann corrector decreases. This results in increased energy consumption per bit.   

 

 

Figure 13. Variation of bit rate and energy consumption of von Neumann corrector [15]  

 The circuit calibration technique is seen to provide an improvement in the entropy 

comparable to the von Neumann corrector. A comparison of the bit entropy with varying device 

mismatch is as shown in figure 14. 
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Figure 14. Comparison of the bias removal techniques [15] 

 

Table 3. Energy/bit for different entropy extraction techniques [15] 

 

 

 An important trade-off in choosing the correction mechanism, especially for lightweight 

applications like RFID is the energy overhead per random bit. Table 3 summarizes the energy 

consumption per bit of the TRNG with each entropy extraction technique. 
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 Although the XOR function adds to very little overhead in terms of energy, it proves to 

be inefficient for increased process variation. Even with a device mismatch of 3%, the bit 

entropy drops below the values expected for cryptographic applications. The von Neumann 

corrector generates bits with entropy very close to „1‟. But, with increase in process variation, 

more bits have to be generated by the basic TRNG per bit extracted. As a result the energy per 

bit increases. The average energy per bit observed is 0.282pJ, with the maximum value crossing 

1pJ/bit for variations greater than 15%.  

 The circuit calibration mechanism provides a good trade-off between the enhancement in 

randomness and the energy overhead. It is efficient for more than 12% larger variation as 

compared to the XOR function. It provides an entropy extraction comparable to that of the von 

Neumann corrector but at 56% lower energy overhead. The calibration technique also provides 

the flexibility of varying the number of configuration bits based on the variation expected in a 

process.  

 

 

Figure 15. Variation of bit entropy and energy/bit for varying number of configuration bits [15] 
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With decreasing number of configuration bits, the calibration technique provides effective 

correction for lesser process variation. But, accordingly the energy overhead also reduces. Hence 

based on the expected process variation, fewer configuration bits may be used along with 

combination of algorithmic post-processing to achieve minimal energy overhead. 
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CHAPTER 3 

EFFECT OF TEMPERATURE ON TRNG 

 

 Post fabrication, the operating conditions of the chip also affects the behavior of CMOS 

circuits. Variation in temperature and supply voltage impacts the delay of the transistors. Apart 

from this, wear out effects due to prolonged usage like Hot Carrier Injection (HCI) and Negative 

Bias Temperature Instability (NBTI) also degrade the performance of the devices. Unlike a 

PRNG, which relies on the algorithm to generate randomness, a TRNG depends on the 

performance and reliability of its circuit to generate un-bias and un-correlated output. Hence, it is 

essential to study the effect of operating conditions on the entropy of the TRNG output.  

 

3.1 Effect of temperature on MOS transistor 

 The drain current of an NMOS transistor is given by the following equation [16].  

 

                                       

 
 
 

 
 

                   

         
   

                      

 

 
        

 
                 

                            

 

                             where    
           

 
 

Hence, the drain current is a function of the electron mobility and the threshold voltage. Both 

these parameters are functions of the operating temperature. The mobility of electrons is given 

by: 
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With an increase in temperature the mobility of electrons decreases. This would lead to a 

decrease in the drain current. But, the drain current is also dependent on the threshold voltage 

that is give by the equation 

                                                                                 

                               

                     

                                                

 

Hence with increase in temperature, the threshold voltage of the transistor decreases aiding the 

performance. But, it is observed that the net effect of increase in temperature is that the transistor 

drain current decreases and hence the delay of the transistor increases. 

 

 

Figure 16. Variation of NMOS drain current with temperature 
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3.2 Effect of temperature on MOS transistor in the presence of process variation 

 For the study of Metastability based TRNG, the relative mismatch in the transistor 

parameters of the two cross coupled inverters is more significant than the absolute process 

variation. On similar lines, the relative effect of operating conditions on the transistors is of 

greater concern than the absolute effect. Thus, it is important to analyze the effect of variation of 

temperature for transistors with different channel lengths. The BSIM4 model indicates that as 

channel length decreases, the threshold voltage shows a greater dependence on the channel 

length due to Short Channel Effect (SCE) and Drain Induced Barrier Lowering (DIBL). The 

change in Vth due to SCE and DIBL is modeled as [17] 

 

                                                                                             

                                                   

                                                 

  The short-channel effect coefficient has a strong dependence on the channel length given by 

 

                                                      
   

     
    
  
   

                                           

                               

 

The temperature dependence of threshold voltage is given by the equation  
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Hence, with decreasing channel length, the short-channel effect coefficient increases. Thus, the 

change in Vth is larger. So, the net effect of decreasing mobility and decreasing threshold voltage 

will vary for transistors of different channel lengths. Transistors with shorter channel length may 

be expected to have a smaller reduction in drain current with increasing temperature because of a 

larger decrease in the threshold voltage.  

  Simulations were performed for varying transistor lengths and operating temperature by 

modeling in HSPICE. The drain current measured in each scenario is normalized against the 

drain current at 0
o
C, which as expected is the largest.  

 

 

Figure 17. Variation of drain current of NMOS of different channel length with increase in 

temperature 

 

The results, as shown in figure 17, indicate that transistors with longer channel length have a 

steeper slope of drain current reduction. This result reinforces the analytical reasoning provided 

earlier based on BSIM model equations. Hence, with decreasing channel length, the rate of 

decrease of drain current, with increase in temperature, is slower. Thus, for two transistors with 
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mismatch in device lengths, the relative difference between the transistor delays can be expected 

to increase with increase in temperature.   

 

3.3 Effect of temperature on TRNG 

 
 The plots of drain current of two NMOS transistors with different mismatches at varying 

temperature are shown in figure 18. It is evident that, with greater mismatch, the difference in drain 

currents of the two transistors increases at a greater rate with increase in temperature. 

 

Figure 18: Rate of decrease in drain current for different values of device mismatch 

 

 To study the effect of temperature on the TRNG in the presence of process variation, the TRNG 

modeled in SPICE was simulated for varying temperature values and random variation in transistor 

lengths. Hamming distance between bits generated at different temperature corners is an effective metric 

used to analyze the effect of temperature. The results below represent the hamming distance of sequences 

of 16bits generated at different temperatures as compared to the bits generated at 0
o
C. 
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Figure 19: Hamming distance compared with TRNG at 0
o
C 

 

 

Figure 20: Hamming distance compared with TRNG at 0
o
C 

 The variation in hamming distance indicates that the statistics of the TRNG change with change 

in temperature. This directly translates into a change in the bit entropy. With increasing temperature, the 

bit entropy of the TRNG decreases. But, designs with greater mismatch are observed to have a steeper 

reduction in bit entropy. Hence, temperature has a greater impact on TRNG with larger device mismatch.   
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Figure 21: Variation of entropy with increase in temperature 

 

3.4 Effect of power supply noise on the behavior of the TRNG 

 Similar to temperature, noise on the power supply can also affect the performance and 

behavior of circuits. In specific, for high performance designs, power supply noise can impact the delay 

of the cells and cause timing failures. Since metastability based TRNG is highly sensitive to difference in 

delay of the transistors, it is important to analyze the behavior of the TRNG in the presence of power 

supply noise.  

 To study the effect of supply noise, the TRNG was simulated for random device mismatches 

and a power supply noise of 5% of VDD at 200MHz. Hamming distance for sequences of 16 bits was 

calculated comparing with a TRNG with stable power supply. The results indicate that power supply 

noise does not have a significant impact on the statistics of the TRNG. While designs with minimal 

device mismatch are robust against supply noise and designs with large device mismatches are already 

too biased to see any effect of power supply noise. A slight variation in the bit distribution is observed in 

designs which have mismatch ranging from 2-6%. 
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Figure 22: Hamming distance of bits compared with TRNG with stable power supply 

The effect of supply noise on the entropy is negligibly small and has no noticeable trend across varied 

device mismatches. 

 As discussed in the previous chapter, circuit calibration techniques can be employed to 

mitigate the effect of process variation. But, a one-time tuning at the testing stage does not 

resolve the problem of effect of temperature on the design. Any calibration performed at the 

testing stage can only account for the process variation at the testing temperature. Any variation 

in temperature during the chip operation will again bias the TRNG. 

 Hence, a dynamic self-calibration mechanism has to be used to mitigate the effect of 

temperature variation. The TRNG circuit also needs to be analyzed for the effect of fluctuations 

in supply voltage and the impact of wear out effects like HCI and NBTI/PBTI. 

 

 

 

0 

100 

200 

300 

400 

500 

600 

700 

0 2 4 6 8 10 12 14 16 

N
u

m
b

e
r 

o
f 

o
cc

u
re

n
ce

s 

Hamming distance / 16bits 

Distribution of hamming distance with supply noise 

0nm 

0.11nm 

0.28nm 

0.54nm 

1.47nm 

2.17nm 

2.2nm 

5.6nm 

6.06nm 



 

28 
 

CHAPTER 4 

 

SUB-VDD PRECHARGE TECHNIQUE 

 

 One of the ways to improve the randomness of the TRNG and the effectiveness of post-

processing techniques is to make the TRNG circuit inherently more stable against device 

mismatch. Traditional correction techniques for a biased TRNG include post-Si tuning or 

algorithmic post-processing. Post-Si tuning uses additional transistors to compensate for the 

mismatch of the devices. The algorithmic post-processing techniques do not modify the TRNG 

circuit; but, they extract randomness out of the biased bits generated by the raw TRNG circuit. 

Here we explore a sub-vdd precharge technique to reduce the effect of intra-die variation on the 

entropy of the TRNG.  

 

4.1 Effect of pre-charge on TRNG bias 

 

A closer study of the TRNG circuit shows that when the pre-charge is released, both the pull 

down NMOS transistors of the inverters enter the saturation mode. The basic saturation current 

equation (neglecting the short channel effects) is given by [21], 

 

                          
       

  
          

 
                        

 

Equating the constants to a value “β” and adding a random variable for thermal noise at the gate,  

 

                
  

 
                  

 
                   

 

For the metastability based TRNG circuit, the drain current of the two pull down NMOS devices, 

once the pre-charge is released, is given by, 
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Figure 23: Cross-coupled inverters 

 

 

                               
   

  
                    

 
                                   

 

                                     
   

  
                    

 
                                            

 

Under ideal conditions, when the NMOS devices are perfectly matched, Idsat1 = Idsat2 for 

Vnoise1 = Vnoise2. In other words, the state of the TRNG is resolved based only on the 

differential thermal noise Δnoise = Vnoise1 - Vnoise2 . If the NMOS devices are mismatched 

due to random local variation, the bias in the TRNG can be represented by the difference in the 

saturation currents at zero differential thermal noise. Thus, for a biased TRNG, 

 

                                                     
 

Larger the mismatch, larger will be the difference in the currents and hence the bias in the 

TRNG.  

Case 1: Mismatch in NMOS width/length: 

In context of a mismatch in the device feature size (width or length) with constant Vt, the 

difference in the NMOS currents is given by, 
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Equation (6) indicates that the mismatch in the NMOS devices is magnified by the factor 

                 
 
. Since, Vnoise is a random variable and cannot be controlled, for a given 

device type ( Typical/High/Low Vt), the effect of device mismatch can be reduced by lowering 

the Vgs. Hence, a lower pre-charge voltage can alleviate the effect of process variation. 

Considering the short channel effect of variation in length on the threshold voltage [21], 

 

                                                     

   

where, ΔVth is the change in threshold due to Short Channel Effect (SCE) or Drain Induced  

Barrier Lowering (DIBL); θth(Leff) is the short channel effect coefficient; Vbi is the built-in 

junction voltage; and Vds is the drain-source voltage. In the cross-coupled inverter, the gate 

voltage of one inverter is the drain-source voltage of the pull down device of the other inverter. 

Hence, a lower pre-charge voltage reduces the impact of SCE/DIBL effects on the transistors. 

This further minimizes the degree of mismatch between the NMOS devices.    

Case 2: Mismatch in NMOS threshold voltages: 

For a mismatch in the threshold voltages of the pull down transistors of the TRNG, the bias, 

represented as the difference in the saturation currents is, 

 

               
  

 
                     

 
                    

 
     

           

                            
  

 
                                                               

 

Equation (9) also shows that a reduced Vgs due to sub-Vdd pre-charge can decrease the impact 

of mismatch on the bias of the TRNG. 

A similar analysis performed with variation in both width/length and threshold voltages also 

indicates that a lower pre-charge alleviates the impact of intra-die variation on the statistics of 

the TRNG. Thus, sub-Vdd pre-charge makes the TRNG more robust to variability in fabrication 
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process. Since only the pre-charge voltage is reduced and not the supply voltage, the technique 

does not impact the performance of the TRNG. However it should be noted that the proposed 

technique only reduces the pre-charge voltage to less than Vdd, but does not operate the TRNG 

circuit in sub-threshold mode.  

 

4.2 Effect of process variation on TRNG offset voltage 

 

To further validate the hypothesis that lower pre-charge voltage minimizes the effect of intra-die 

variation, the cross coupled inverter circuit was simulated with varying amount of device 

mismatch. In fig. 3, if the pull down NMOS N1 is faster than N2, then I1 > I2 for V(a) = V(b). 

But, for a large enough ΔV=V(b)-V(a), I1 = I2. This is the differential voltage required to negate 

the mismatch and equalize the pull down currents. From the transistor current equation (6), it is 

evident that a larger mismatch will require a greater differential voltage to overcome the 

difference in the currents. A plot of the differential voltage required to equalize the pull down 

currents of cross coupled inverters for varying degree of device mismatch is as shown in fig. 4.  

 

 

 

 

Figure 24: Effect of increasing differential voltage on biased TRNG 
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The plot shows that for a pre-charge voltage of 1.1V (Vdd) and a device mismatch of 5%, the 

differential voltage required to nullify the variation is 53mV. For the same mismatch and a pre-

charge voltage of 0.75V, the differential voltage required is 34mV. This is because the lower pre-

charge voltage results in a lower Vgs for the pull down transistors and from equation (6), this 

minimizes the difference in drain currents. Hence, a smaller differential voltage is sufficient to 

overcome the mismatch. 

 

 

Figure 25: Analysis of differential voltage to compensate mismatch 

 

 For metastability based TRNG, the differential thermal noise at the two pre-charged 

nodes decide the output state. For instance, a TRNG biased (at node b, fig. 1) to 0 with P(0)=0.7 

and P(1) = 0.3 implies that the pull down transistor N1 is faster than N2 or the current Id1 > Id2. 

The output is resolved to a '1' only when the differential thermal noise ΔV=V(b)-V(a) is large 

enough to overcome the mismatch and induce a scenario where Id2 > Id1. Hence, fig. 4 also 

indicates the differential thermal noise required by the TRNG to overcome the mismatch and 
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generate a random bit, for varying device mismatch and pre-charge voltage. Assuming that the 

thermal noise at the nodes 'a' and 'b' are independent and each have a Gaussian distribution with 

mean µnoise and a variance σnoise, the differential noise also has Gaussian distribution with mean 

'0' and variance 2σnoise.Hence, a smaller differential noise occurs with a greater probability as 

compared to a large differential noise, figure 26. It is clear that the probability of differential 

noise required to nullify the intra-die variation is higher when the pre-charge voltage is lower. 

For a 2% device mismatch, the probability of the differential thermal voltage to compensate the 

variation at 0.7V pre-charge is ~2X the probability in case of 1.1V (Vdd) pre-charge. Thus, for a 

TRNG biased to '1', the probability of the output node resolving to a '0' increases with decreasing 

pre-charge voltage. In other words, the randomness of the TRNG increases for lower pre-charge 

voltages. 
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Figure 26: Distribution of thermal noise 
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4.3 Implementation and results with sub-vdd pre-charge 

 

 

 The pre-charge circuit is designed using pull down load on the pre-charge paths as shown 

in figure 27. Either NMOS or PMOS devices can be used to reduce the pre-charge from the 

nominal Vdd value of '1.1V'. Based on the device used, different amounts of reduction in pre-

charge are obtained. Figure 28 shows the voltage drop obtained due to NMOS and PMOS pull 

down devices of different sizes. 

 

For a constant device width, NMOS load provides larger drop and hence a lower pre-charge 

voltage as compared to PMOS. A 0.25u wide NMOS device can pull down the pre-charge 

voltage of 1.1 by ~400mV. This creates an effective pre-charge voltage of 0.7V instead of Vdd 

(1.1V). Hence, NMOS load is used to provide a coarse control of the pre-charge voltage, while 

the PMOS devices can be used for finer control. The loads on the pre-charged nodes are 

controlled by the clock signals. As a result the load is active only during the duration of pre-

charge and is turned OFF when the TRNG evaluates the state. This reduces short circuit leakage 

and also does not have any impact on the resolution of stable state of the TRNG. 

The above results indicate that operating the TRNG at a lower pre-charge voltage should 

improve the randomness and hence the entropy of the bits generated. Figure 29 shows the plot of 

bit entropy of the TRNG with varying device mismatch for different pre-charge voltages. With 

increasing device mismatch, operating the TRNG with a lower pre-charge voltage results in 

better entropy. This makes the TRNG more tolerant to process variation. Since only the pre-

charge voltage is reduced and not the supply voltage, there is no impact on the performance of 

the TRNG. 
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Figure 27: Circuit to generate sub-vdd pre-charge voltage 

 

 

Figure 28: Effect of NMOS and PMOS load on pre-charge nodes 

ba

Clk

Id1

Id2

INV1

INV2

N1

N2

Clk

Clk

ba

Clk

Id1

Id2

INV1

INV2

N1

N2

Clk

~Clk ~Clk

0

50

100

150

200

250

300

350

400

450

500

0.05 0.1 0.15 0.2 0.25 0.3

D
ro

p
 in

 p
re

-c
h

ar
ge

 v
o

lt
ag

e
 (

m
V

)

Width of pull-down device (um)

PMOS

NMOS



 

36 
 

 

 

Figure 29: Bit entropy with increasing device mismatch and varying pre-charge voltage 

 

 Thus, using a sub-vdd pre-charge voltage makes the TRNG more robust to process 

variation. However, the sub-vdd pre-charge technique by itself cannot enhance the entropy of the 

TRNG by enough to be used for cryptographic applications. But, a TRNG with inherently better 

bit entropy feeding a post-processing unit can be expected to be more robust that a TRNG with 

traditional Vdd pre-charge. Further, this technique only reduces the pre-charge time, but has no 

impact on the evaluation time of the TRNG, which limits the TRNG circuit performance. 
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CHAPTER 5 

 

HYBRID SELF-CALIBRATION TECHNIQUE FOR ENTROPY EXTRACTION 

 

 A number of circuit calibration techniques have been proposed in literature to compensate 

for variability. X. Li et al. have proposed an adaptive post-silicon tuning method for analog 

circuits in [23]. A digital calibration technique for analog circuits, using programmable capacitor 

stack is described in [3]. One of the most prominent tuning techniques for digital circuits has 

been Adaptive Body Biasing (ABB). ABB is employed to vary body bias to control the threshold 

voltage of transistors and hence compensate for variation due to fabrication process [24][25]. S. 

Bijansky et al. have proposed the use of variable supply voltages to improve parametric yield of 

designs in [26]. Variable delay buffers have also been extensively used to tune the delay on 

paths, primarily the clock paths. These provide a flexible solution to configure the buffer 

strengths based on the degree of process variation [27]. The variable delay tuning techniques 

may be implemented both in the form of tuning at the testing phase or online automatic/adaptive 

tuning [28]. Apart from the generic data paths and clock paths, special on-chip circuitry like 

sense amplifiers, sensors and detectors are also susceptible to variation in manufacturing process 

and operating conditions. Along with performance, the reliability of these circuits is also affected 

by variability. Sense amplifier performance and yield degrade with increasing device mismatch, 

thereby affecting the performance of on-chip cache [29]. B. Dutta et al.[30] have proposed 

calibration of thermal sensors using process monitors to increase the robustness of the sensors in 

the presence of variation. With the increasing use of hardware cryptographic primitives in 

various applications, on-chip TRNGs, designed in advance technology nodes are also affected by 

variation in process and operating conditions. 

 Circuit calibration is a very effective technique to mitigate the effect of process variation. 

But, calibration performed during chip testing has some disadvantages. Chip testing is one of the 

most expensive steps in the VLSI design and fabrication process. The time duration of testing 
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governs the chip testing cost. Hence, calibrating the TRNG at the testing phase is not a cost 

effective solution for low cost designs like RFID. Calibration at the testing phase does not 

provide a dynamic extraction mechanism. As a result, any variation in the operating conditions 

cannot be compensated on the fly.  Further, wear out effects like Hot Carrier Injection (HCI) and 

Negative/Positive Bias Temperature Instability (NBTI/PBTI) cannot be corrected. Hence, an 

efficient self-calibration mechanism has to be developed to ensure a cost effective and dynamic 

approach to entropy extraction.  

 In [18], Srinivasan et. al have proposed a self-calibration technique. The calibration 

circuit is similar to the one in [14] and consists of coarse and fine grain calibration steps. A state 

machine is implemented to continuously monitor the output of the TRNG. On power up, the 

coarse calibration is activated to account for the large mismatch in the cross-coupled inverter. 

Once two bit flips are observed at the output of the TRNG, the control enters into the fine-grain 

calibration. Here the delay on the pre-charge clock is continuously varied based on the output bit 

of the TRNG.  The self-calibration technique incurs additional overhead in the implementation 

of the control logic. Further, the configuration process is performed every cycle of the TRNG 

operation. Hence, the configuration bits are switched every cycle. This leads an overhead in 

energy that may be expensive for applications like RFIDs and sensor nodes. Continuous 

calibration increases the correlation between bits generated since the bias is continuously 

modified based on the previous output. Although a bit-entropy ~1 is achieved, increased 

correlation will weaken the statistics of the TRNG. 

 To overcome these short comings, we propose a hybrid self-calibration technique that 

incorporates a combination of coarse level tuning using adaptive circuit calibration and a static 

entropy extraction using algorithmic techniques to compensate for finer mismatch.  

 

5.1 Proposed hybrid self-calibration technique 

  The results from the initial study of comparison of various entropy extraction 

techniques are as shown in figure 30. The results indicate that algorithmic technique like XOR 
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function and von Neumann correction are efficient for device mismatches of upto 2%. These 

techniques incur lesser overhead in terms of energy and implementation. Further, they do not 

increase the correlation of the bits generated by the TRNG. Hence, we explore a hybrid self-

calibration technique where the circuit is initially calibrated using additional transistors to 

overcome the coarse mismatch between the devices and operate the TRNG in a region equivalent 

to 2% device mismatch. Then, the adaptive coarse calibration is stopped and an algorithmic 

technique like XOR function or von Neumann corrector is used to provide continuous static 

entropy extraction.  

 

Figure 30: Effectiveness of algorithmic technique for smaller mismatch 

 The hybrid self-calibration technique is implemented as shown in figure 31. Since both 

the nodes “a” and “b” of the TRNG are pre-charged to Vdd each cycle, the mismatch in the pull 

down devices is seen to have a more significant impact than the mismatch in the pull up devices. 

Hence, we provide parallel NMOS devices which can be configured match the pull down current 

in the cross coupled inverters. The output of the TRNG is monitored by a control logic that 

configures the additional pull down transistors till output of the TRNG flips twice. At this stage  
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Figure 31: Coarse circuit self-calibration 

 

 

Figure 32: State machine for control of circuit calibration 
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the TRNG is compensated for large variations and the bit distribution enters the highlighted 

region, close to the ideal value of 50%. The control logic stops the coarse calibration.    

 The calibrated TRNG can be fed to an entropy extractor using XOR function or von 

Neumann corrector. The XOR function and von Neumann correctors provide near ideal entropy 

if the TRNG circuit feeding them is calibrated to operate in a region close to the ideal scenario.  
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Figure 33: Algorithmic post-processing for finer entropy extraction 

 

5.2 Implementation and results 

 The proposed self-calibration technique was implemented using 45nm NCSU PDK. The 

TRNG circuit along with the configurable transistors was simulated in HSPICE on a Perl based 

platform. The control logic was described in verilog and synthesized using Synopsys Design 

Compiler. The results indicate that the coarse grain self-calibration compensates for the 

variability to a large extent by enhancing the bit entropy to values greater than 0.95. The stand 

alone circuit calibration is observed to be more effective for large device mismatches due to the 

coarse level of tuning.  

 The hybrid method of algorithmic post-processing applied in conjunction with self-

calibration, makes the TRNG circuit more robust against process variation. The design with two 
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TRNG circuits, with initial self-calibration followed by an XOR of their outputs almost nullifies 

device mismatch. The values of bit entropy remain consistently around the ideal value of „1‟ for  

  

 

Figure 34: Entropy extraction with hybrid self-calibration 

a wide range of intra-die variation. A similar approach with a self calibrated TRNG feeding a 

von Neumann corrector also completely mitigates the effect of variability on the performance of 

the TRNG. A plot of the bit rate of the TRNG with the stand alone von Neumann correction and 

the hybrid self-calibration shows a steady bit rate even for device mismatches as large as 10%. 

This facilitates the design of high speed cryptographic systems using hardware primitives 

designed in the latest technology node. 

 Apart from process variation, the hybrid calibration technique also improves the 

reliability of the TRNG circuit in varying operating conditions. An analysis of the proposed 

technique across varying temperature for different degree of device mismatches shows are as 
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shown in fig 8. The results clearly show that the behavior of the TRNG is maintained even in the 

presence of device mismatch and varying thermal profiles. 

 

 

Figure 35: Robustness of hybrid self-calibration against variation in temperature 

 The self-calibration technique does add an overhead both in terms of area and energy.  

The area of the control logic is 128um
2
, which is negligibly small compared to the modern 

processors and cryptographic cores. Since the self calibration logic operates only during the 

initial cycles, till the output bit flips for the first time, it only contributes to the overhead power 

in the form of static power in the long run. The static power of the control logic was estimated to 

be 819.08nW. This translates into 0.82 fJ/bit for a TRNG operating at 1Gbps with a worst case 

overall energy per bit of 0.5pJ/bit. 
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Figure 36: Energy overhead with hybrid self-calibration (pre-charge = 1.1V) 

 

5.3 Hybrid self-calibration with sub-vdd pre-charge 

 

 Although lower pre-charge voltage, described in the previous chapter, improves the 

tolerance of the TRNG to process variation, the entropy values obtained still do not qualify the 

TRNG to be used for cryptographic applications. Hence the TRNG is corrected using the hybrid 

self-calibration technique. The results indicate that using a lower pre-charge further enhances the 

effectiveness of hybrid self-calibration technique. This is due to the fact that the underlying 

TRNG circuit operation is more robust and hence the self-calibration technique provides a much 

better improvement in entropy as compared to the traditional pre-charge technique. 

 The results as shown in figure 37 for self-calibration using XOR function and figure 38 

for self-calibration using von Neumann function further establish that pre-charging the TRNG to 

a lower voltage improves the entropy. 
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Figure 37: Comparison of hybrid self-calibration with different pre-charge voltages (XOR function) 

 

 

Figure 38: Comparison of hybrid self-calibration with different pre-charge voltages (von Neumann 
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 In this chapter we propose a hybrid self-calibration technique that utilizes circuit 

calibration to correct coarse mismatches in the cross-coupled inverters to operate the TRNG in a 

near ideal scenario. Then, algorithmic technique is used to further correct the mismatch and 

extract entropy without introducing any correlation in the bits. The control logic used for coarse 

calibration is active only during the power up of the TRNG and hence contributes only to 

leakage power in the long run. The hybrid self-calibration is further incorporated with sub-vdd 

pre-charge technique to further enhance the randomness of the TRNG output. 
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CHAPTER 6 

ATTACK MODELS FOR TRNG 

 

 Study of attack models forms a very crucial area in the field of security. For a 

cryptographic system extracting keys or id from a TRNG, the TRNG could potential be a single 

point of attack to weaken the entire system. Hence, it is important to analyze the possible 

vulnerabilities of TRNG and  design techniques to mitigate the same. 

 Traditional PRNG have been broken and various algorithms for the same have been 

published [19][32]. A PRNG can be subjected to non-invasive attacks, where the attacker 

monitors the output of the PRNG and tries to determine the sequences that may be generated by 

cryptanalysis of the observed data. This is possible since a PRNG is algorithm based and 

consecutive states or bits of a PRNG are not completely independent. A weak LFSR may be 

broken by a sheer brute force attack using the immense computational resources available today. 

PRNG may also be subjected to the modern forms of attacks based on Differential Power 

Analysis (DPA) or Electro-Magnetic emissions (EM). Apart from the simple LFSR based PRNG 

design, a number of secure PRNG algorithms are used in real-world crypto systems. Some of 

these are ANSI X9.17 PRNG, the DSA PRNG, the RSAREF PRNG and CryptoLib. These 

algorithms have also been demonstrated to be vulnerable to cryptanalytic attacks. In [32], a study 

of cryptanalytic attacks on these real-world PRNG has been demonstrated. The PRNG circuits 

may be subjected more complex attacks like a) Direct Cryptanalytic Attack, b) Input-Based 

Attacks and c) State Compromise Extension Attacks. These attacks are limited by the 

computational resources available to an attacker. 

 An ideal TRNG on the other hand cannot be attacked using a non-invasive method since 

it is unbiased and there exists no correlation between the bits generated. Any form of brute force 

technique becomes near impossible for large key lengths of the order of 128 bits. But, the 

efficiency of a TRNG circuit depends on factors like fabrication process and operating 

conditions. Variation in these factors, either naturally or as introduced by an attacker can degrade 



 

48 
 

the performance of the TRNG from a cryptographic sense. So, these factors provide avenue for 

an attacker to either utilize the existing imperfection in the design or introduce the same to 

reduce the randomness of the bits generated. Attacks have been demonstrated using simple non-

invasive technique like frequency injection can make the RO based TRNG on real EMV card 

deterministic [20].  The different factors that may have implications on the attack of a TRNG are 

discussed below. 

 

6.1 Process variation 

 Variation in the fabrication process is one of the major factors affecting the performance 

of the TRNG. Mismatch in the parameters of the transistors in the form of channel length or 

width and differences in threshold voltage (Vth) bias the TRNG to generate bits of one polarity 

with a greater probability than the other. If this variation is uncompensated, the key or id space 

of the TRNG bits generated is reduced. This would help an attacker to model the output of the 

TRNG based on the probability of the bits generated.  

 

 

Figure 39. Distribution of 8-bit key for ideal TRNG 
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Figure 40. Distribution of 8-bit key for TRNG with 2% device mismatch 

The plots show that in the presence of process variation, the probability of occurrence of some 8-

bit key sequence is significantly more that of others. Although an attacker might have no control 

over this factor in most cases, there are possibilities of tampering the circuit at the fabrication 

stage. Even a minute mismatch in the structure of the transistors in the inverters could reduce the 

entropy of the bits generated by a large number.  

  

6.2 Operating temperature 

  Temperature affects the delay of transistors by changing in charge mobility and threshold 

voltage. The effect of temperature is observed to be different for transistors of different channel 

lengths. This effect can be utilized by an attacker to increase bias in a TRNG. Any post-

processing technique can only increase the entropy of a TRNG. It may not be possible to 

converge on the ideal value of „1‟. Thus, by increasing the temperature, an attacker can increase 

the difference in the delays of the inverters and hence increase the bias. The temperature may be 

increased through external sources or by activating on-chip circuits like a ring oscillator.  
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Figure 41. Distribution of 8-bit key for TRNG with 2% device mismatch operating at 25
o
C 

 

 

Figure 42. Distribution of 8-bit key for TRNG with 2% device mismatch operating at 100
o
C 

 

The key distribution plots for 25
o
C and 100

o
C for a TRNG with 2% device mismatch show that 

with increase in temperature, the uniformity in distribution of random bit sequences decrease. As 

a result, it becomes easier for an attacker to model the TRNG and predict its outputs. A more 

evident metric is the byte entropy of 128-bit keys generated from the output of the TRNG at the 

two temperatures. The table clearly indicates a loss in byte entropy as temperature is increased. 
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Table 4. variation of byte entropy with increase in temperature 

 
TRNG with 2% 

mismatch at 

25
o
C 

TRNG with 2% 

mismatch at 

100
o
C 

Byte entropy for 

8-bits 

6.0326 5.6640 

Byte entropy for 

128-bits 

96.5223 90.6254 

 

6.3 Varying Supply voltage 

 The TRNG circuit involves some delay for both nodes to be pre-charged once a bit is 

generated. Similarly, there is a delay involved in resolving to stable state once the cross-coupled 

inverter enters a meta-stable state. This evaluation time is dependent on the differential thermal 

noise at the two nodes of the TRNG. Larger the differential, smaller will be the evaluation time. 

A plot of variation of evaluation time with varying differential noise is as shown in figure 43. 

 

Figure 43: Variation of evaluation time with differential noise 
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 The evaluation time is also a function of the supply voltage since a lower supply voltage 

increases the delay of the cross-coupled inverters to stabilize. In other words, the gain of the 

cross-coupled inverter decreases with decreasing operating voltage. Figure 44 shows the 

variation of pre-charge and evaluation time with variation in supply voltage. As the supply 

voltage is decreased, there is a small increase observed in the pre-charge time. But, the increase 

in evaluation time with decrease in supply voltage is significant.  

 

 

Figure 44: Variation of pre-charge and evaluation time with supply voltage 

 The above observation indicates that the performance of the TRNG can be controlled by 

an attacker by controlling the power supply voltage. The device sizing in the TRNG circuit is 

performed in accordance with the target operating frequency or the bit rate. The pre-charge and 

evaluation part of the clock cycle are just enough to meet the delay of the circuit. By decreasing 

the voltage an attacker can increase the evaluation time, keeping the clock rate constant. Figure 

45 shows the variation of evaluation time with decreasing supply voltage.   
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Figure 45: Variation of evaluation time with decreasing operating voltage 

 

 In a circuit optimized to operate at a specific frequency, by decreasing the power supply 

voltage, an attacker can cause incorrect bit read at the output of the TRNG. Figure 46 shows one 

of the output nodes of a TRNG designed to operate at 1GHz. With decreasing supply voltage, the 

evaluation time of the TRNG increases beyond a point where the pre-charge phase starts in 

between the evaluation. This causes the output of that node to be wrongly read as a one instead 

of a zero. Since the evaluation time of the TRNG is also a function of the differential noise, not 

all bits may be erroneous.  

 

 

Figure 46: Erroneous bit due to reduced supply voltage 
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Figure 47 shows the variation in bit entropy for a TRNG under reduced supply voltage attack. It 

is seen that the bit entropy decreases rapidly as the supply voltage is reduced beyond 0.85V. 

 

 

Figure 47: Variation of entropy with decreased power supply voltage 

 

6.3.1 Detection of attack 

 An attack of the sort discussed above where the entropy of the TRNG is compromised by 

an active attack can be detected by feeding the output both of the nodes of the TRNG to an 

XOR/XNOR gate. It should be observed that according to the previous discussion, only a bit 

zero can be erroneously read as a bit one. But, in a TRNG the two nodes generate 

complementary bits. Hence, if one of the bits is driven to zero under a non-attack mode, the other 

node has to be driven to a stable state of one. Under an attack scenario, both nodes are seen to 

generate a bit “1” (or a bit “0” if the inverted outputs are read). Hence, by feeding both the nodes 

to an XOR/XNOR gate, an attack scenario can be detected. 
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 6.3.2 Prevention of attack: asymmetric duty cycle 

 The results in figure 44 indicated that the pre-charge time of the TRNG is significantly 

lower than the evaluation time. Further, the pre-charge time is dependent only on the supply 

voltage. At 1.1V, the pre-charge time is 40ps. This value increases to 166ps for a supply voltage 

of 0.75V. Hence, a TRNG operating at 1GHz with a 50-50 ON-OFF duty cycle provides the 

entire negative half cycle of 500ps for the pre-charge phase. This provides enough margin for the 

pre-charge, some of which can be utilized for the evaluation phase to protect the TRNG from 

power supply reduction attack.  

 

 

Figure 48: Voltage scaling attack prevention using asymmetric duty cycle clock 

 Figure 48 shows the effect of varying the duty cycle. The evaluation sequence is provided 

with more margin even if the supply voltage is reduced to 0.75V by keeping the clock signal 

high for 700ps in a 1ns clock. The variation in duty cycle is limited by the pre-charge delay. The 

effect of varying the duty cycle to protect the TRNG is shown in figure 49. For a 80-20 ON-OFF 

duty cycle, the TRNG is resistant to voltage scaling attack for upto 0.8V. 
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Figure 49: Bit entropy of TRNG with asymmetric duty cycle 

 

6.4 Varying duty cycle of clock 

 Varying the duty cycle to favor the evaluation time was shown as one of the possible 

techniques to protect the TRNG against attacks. On similar lines, an attacker can control the 

clock signal to the TRNG to vary the duty cycle of the clock to decrease the evaluation period. In 

such a scenario, the TRNG may generate erroneous bits when the evaluation delay is close to the 

period of the positive cycle of clock. Figure 50 shows the impact of variation in duty cycle on the 

randomness of the output of the TRNG. Beyond a 35-65 ON-OFF duty cycle, the bit entropy 

decreases significantly. The TRNG can be protected against a varying duty cycle attack by 

providing enough margin using larger inverters or additional PMOS devices to increase the gain 

of the cross-coupled inverter. 
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Figure 50: Attack on TRNG by varying clock duty cycle 

  

6.5 Crosstalk 

 Designs are getting denser as more transistors are packed in smaller area. This has 

increased the number of interconnects in the design. Reduced spacing between interconnects and 

increasing height of the metal layers has increased the effect of cross talk. For a meta-stability 

based TRNG, that is highly sensitive to any mismatch, cross talk could act as a potential mode of 

attack. The Predictive Technology Models estimate a coupling capacitance 0.054fF for two nets 

running parallel with minimum DRC spacing with a length of 1μm. The simulation results 

indicate that crosstalk can be used to introduce bias in the TRNG and disrupt the bit distribution, 

figure 51. 
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Figure 51. Distribution of 8-bit key for an ideal TRNG with crosstalk attack 

  

6.6 Impact of attack on TRNG 

 Although TRNG can be a single point of failure for the entire crypto system, variation in 

fabrication process and hence the bias in TRNG is inevitable. Depending on the application, 

there could be a trade-off between the degree of randomness achieved (bit-entropy) and the over 

in the form of area and energy to achieve the same. Complex hashing and ciphers lead to 

significant overhead when compared to the negligibly small design of metastability-based 

TRNG. Simpler algorithmic post-processing techniques like XOR function and von Neumann 

corrector may not provide a near-1 entropy under all situations. Hence, t is imperative to analyze 

the impact of reduction in bit-entropy on the security of the system.  

 

Table 5: Variation of byte-entropy with bit-entropy 

 

Entropy 8bit 16bit 32bit 64bit 128bit

1 8 16 32 64 128

0.999 7.99 15.99 31.98 63.95 127.91

0.99 7.92 15.84 31.68 63.36 126.73

0.9 7.20 14.40 28.80 57.61 115.21

0.8 6.40 12.80 25.61 51.21 102.42
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 Table 5 shows the byte-entropy for various key-sizes with reducing bit entropy. As the bit 

entropy decreases, the number of effective bits in keys/seeds generated from the TRNG also 

decreases. For instance, for a bit entropy of 0.9, a 128-bit key generated from the biased TRNG 

is equivalent to a 115 bit key. In other words, for an attacker, the effort required to break the 128 

bit key is equivalent to the effort required to break a 115 bit key. This is due to the bias in the 

TRNG. A table for the size of the key space for the same biased TRNG is as shown in table 6.  

 

Table 6: Key space with varying bit entropy 

 

 

 Although the bias in the TRNG reduces the effective bit size of a 128 bit key by 13 bits, 

the effective key space for an attacker is still 4.8e34. This is an enormously significant number in 

terms of the computation power required to break the key by brute force. Since process variation 

or variation operating temperature only increase the bias in the TRNG and not the correlation, 

the problem of breaking a 128 bit key wil still not be simplified for an attacker even of the 

TRNG is slightly biased. From [33], 84 bit is proven to be the threshold for secure key size 

selection. Hence, as long as the bias in the TRNG does not reduce the effective key size of a 128 

bit key to below 80, the bias may be assumed to be tolerable. For large key sizes, correlation 

between bits of the TRNG assist the attacker more, as compared to bias in the bit stream 

generated. On the other hand, a 64-bit key is effectively reduced to 51 bits due to bias. This 

reduces the computation required by an attacker to brute force the protocol using bits from the 

biased TRNG. The above study provides an outlook into entropy-energy trade-offs in designing 

secure TRNG circuits based on the need of the application.   

Entropy 8bit 16bit 32bit 64bit 128bit

1 256 65536 4.29E+09 1.84E+19 3.4E+38

0.999 254.9664 65007.87 4.23E+09 1.79E+19 3.19E+38

0.99 242.2833 58701.19 3.45E+09 1.19E+19 1.41E+38

0.9 147.1066 21640.36 4.68E+08 2.19E+17 4.81E+34

0.8 84.52233 7144.024 51037080 2.6E+15 6.78E+30
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CHAPTER 7 

STOCHASTIC MODEL FOR METASTABILITY BASED TRNG 

 

 A major challenge in design and analysis of circuits in sub-micron technologies is 

modeling the effect of random variations and noise. Although this can be done in HSPICE using 

specific Gaussian functions, a large number of sample s are required to accurately quantify the 

randomness of the TRNG output across various process corners. Although most analysis are 

performed for the worst case process variation, an estimate of the expected entropy assists in 

fault tolerance by choosing an appropriate post-processing technique or calibration. In this 

section we introduce a stochastic model for metastability based TRNG which incorporates the 

transistor current equations along with probabilistic description for thermal noise. The model 

will then be extended to analyze the effect of intra-die variation on the statistics of the TRNG 

followed by the impact of post-processing for various degree of device mismatch.  

 

7.1 Thermal Noise in an isolated NMOS transistor 

 

 

 

The drain current of an NMOS, working in saturation mode, is given by 

                                                                                      
 

 
     –    

 
             (7.1)  
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In saturation mode, the drain current is governed by the gate-source voltage. Hence, any thermal 

noise on the gate terminal impacts the current through the transistor. Let Vnoise be a random 

variable defining the thermal noise at the gate terminal of the transistor.  Vnoise has a Gaussian 

distribution with mean,  μnoise and variance, σ
2

noise . 

                                                                      
                                      (7.2) 

 

The gate-source voltage considering thermal noise is given by 

                                                                        
                                                        (7.3) 

 

For a constant Vgs the gate-source voltage V‟gs also has a Gaussian distribution with  

                        

                                                                             
         

                                  (7.4) 
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Then, X also has a Gaussian distribution with 
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7.2 Probabilistic analysis of Metastability based TRNG 

 

CLK

a b

N1

N2

I1

I2

 

Figure 52: TRNG circuit with pull down currents 

 

In metastability based TRNG, the NMOS devices in the cross-coupled inverters govern the 

output bit of the TRNG. The PMOS transistors help in retaining the state once the bit is sampled. 

Hence, the following mathematical formulation considers only the effect of the NMOS devices. 

From the equation for drain current in (7.5), 

      
  
 
              –    

 
 

                                         
  

 
              –    

 
                     (7.6) 

Substituting for I1 and I2 in terms of the variable X defined in the previous section (2), 

        
  

        
  

When the design is pre-charged, both the nodes A and B are pulled to the same potential. When 

the pre-charge is removed, depending on the thermal noise at the gate of the two NMOS 

transistors, either of the output is pulled down to “0”. 
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For the output of the TRNG (node B pulled down), the condition is          

                       

Expressing the equation in terms of X 

               
    

    

                        

                                                                                           

                                                                                                     (7.7) 

Let   Y =        

Since both X1 and X2 are Gaussian random variables, Y which is a linear function of two 

Gaussian random variables is also a Gaussian random variable with 

                   

           
       

      
  

 

Since all transistors in the ideal circuit are perfectly matched,            

               

   
      

     
  

Substituting these values, 

       

                                                        
      

                                       (7.8) 

Hence,   
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               (7.9) 

Hence, the bits generated by an ideal TRNG (0% mismatch in devices) follows a Gaussian 

distribution with mean,      and variance,     
  

 
       
 . 

In a non-ideal scenario where the two NMOS transistors are not matched either in size or 

threshold voltage. Assuming that transistor N1 has a smaller channel length as compared to N2,   

           

The probability of bit 0 is given by, 

                       

                                         

                                    

Since Y is a linear function of two random variables,  

                    

          
   

 
  

   

 
                                               (7.10) 

Therefore, 

                  

Similarly, 

  
       

      
   

                                                    
          

   
   

 
 
  

 
                               (7.11) 

Substituting these values, 
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Thus a mismatch in the transistor size leads to a shift in the distribution of bits generated by the 

TRNG, away from the ideal distribution. 

7.3 Probabilistic analysis of Metastability based TRNG considering process variation 

 

For a NMOS transistor,  

   
     

 
  

                                                             

                                        

Assuming variation only in length and other parameters to be constant, 

                                               
 

 
                        

The length of the transistor, because of process variation has a Gaussian distribution with a mean μL and 

variance σL
2
.  

            
   

 

Therefore,  
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This also defines the Cumulative Distributive Function (CDF) of β. 

                                                  
 

 
     

 
       

  
                                    (7.12)  

The probability density function, PDF of β is the differential of the CDF. Hence, the PDF of β is 

       
 

  
  
 

 
     

 
   –   

  
     

                                                                   

  
 
 
    

 

   
 
                                 (7.13) 

Now, considering the probability of bits “0” and “1”, as a function of transistor length (in terms of β), 

from equation (5), 

                                     
 

 
      

 

  
   and           

 

 
      

 

  
       (7.14) 

where,  

     
   

 
  

  

 
                   and   

          
   

   

 
 
  

 
   

Here, β1 and β2 are the “β” values of the two NMOS transistors.  
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 Integrating either P (bit = 0) or P (bit = 1) over the entire range of variation in length will result in 

the expected values of each of the probability E [P (bit = 0)] and E [P (bit = 1)] to be equal to 0.5. This 

does not provide any information about the effect of process variation. Hence, the bit entropy “H” as a 

function of the length (or β1 and β2) provides a better relationship between the variation in length and the 

randomness of the bits generated. 

                                                                                                  (7.15) 

Since P (0) and P (1) are functions of “β”, the entropy “H” is also a function of “β” of the two transistors. 

 

 

 

 

 

 

 

 

 

The expected value of the entropy for a given process can be expressed as the following joint PDF, 

                                                
 

 

 

 
                           (7.16) 

where           is the joint PDF of the “β” values of the NMOS devices in the cross coupled inverters. 

L1 

L2 

High entropy 

regions (Lengths 

matched) 

Figure 53: Distribution of entropy with variation in length 
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Substituting for                       from equations (7.14) and (7.15) respectively,  

                  
 

 

 

 
                                       

  
 
 
    

 

   
 
  

  
 
 
    

 

   
 
          

            (7.17) 

where,                                                                            

                                        

 

Using the above expression and numerical methods to solve the same, the entropy of a TRNG 

can be estimated for a given PDF of channel length (μL, σL
2
). 

 

7.4 Analysis of post-processing techniques 

A similar analysis can be extended to post-processing techniques as well to analyze the 

effectiveness of the technique give the sigma variation in the process.  

 7.4.1 XOR Function 

If XOR function is used as the post-processing technique, more than one TRNG circuits are used 

to feed into the XOR gate. The following analysis assumes only 2 TRNGs feeding an XOR gate. 

The probabilities of bits at the output of each TRNG is given by, 

           
 

 
      

  

   
   and            

 

 
      

  

   
  

           
 

 
      

  

   
   and            

 

 
      

  

   
  

where P1 and P2 represent the probabilities of bits from each TRNG 
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At the output of the XOR gate, 

                                             

                                             

The entropy as a function of lengths is given by, 

                                             

The expected entropy is given by, 

                       
 

 

 

 

 

 

 

 
  

        
 

   
 

  

        
 

   
 

 

        
 

   
 

 

        
 

   
 

                  

            (7.18) 

 

7.4.2 von Neumann corrector 

 The von Neumann corrector reads pairs of consecutive bits from the TRNG and outputs a 

valid bit only if the bit pair  has different polarities. At the output of the TRNG, the probability 

of the bits are given from equation (7.14), 

                                     
 

 
      

 

  
   and           

 

 
      

 

  
        

At the output of the von Neumann corrector,  

                       

                       

Hence, P(0) = P(1) and theoretically the entropy of the output H = 1. The more significant 

analysis of the von Neumann correction is the degradation in the output bit rate for varying 

device mismatch.  
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                             (7.19) 

For an ideal TRNG,      and hence P(valid bit) = 1/4. This follows the ideal scenario. For a 

biased TRNG, the expected bit rate is given by, 

                
 

 
       

 

  
   

 

 
 

 

 

 
  

        
 

   
 

  

        
 

   
 

                (7.20) 

            
   

 
  

  
 
                   

 

7.5 Implementation and Results 

 The stochastic model was implemented in MatLab. Stratified sampling technique was used to 

analyze the TRNG circuit under various degree of on-chip variation. The length of the NMOS 

devices was swept linearly from a value equal to -3σ to a value equal to +3σ. The entropy of the 

TRNG was estimated based on the equation 7.14 and 7.15. The TRNG is affected more by the 

relative variation in the pull down devices of the two inverters rather the absolute variation. 

Hence, maximum entropy is observed when the devices are exactly matched and the entropy 

decreases with increasing mismatch between the devices. The entropy distribution plot shows the 

estimated entropy for variation in Leff of the NMOS devices in the two inverters. It can be 

observed that an entropy of 1 is achieved whenever the Leff values of the two devices match. In 

reality, the variation in Leff has a Gaussian distribution and hence the probability of a particular 

value of Leff reduces as the sample moves away from the mean value of 17nm. As a result, the 

estimated entropy was weighted based on the probability of the variation of length for a given 

Gaussian distribution of N(µL, σ
2

L).  This results in a weighted entropy distribution which is 

dependent on the degree of Leff variation (σ
2

L). 
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Figure 54: Distribution of entropy for variation in Leff 

 

The weighted distribution of entropy for 3σ variation in Leff equal to 5% and 10% are shown in 

figure 47  and figure 48. A larger sigma in variation of length results in a greater probability of 

larger mismatch. In this case, the probability of a 5% mismatch in the two NMOS devices is 

higher if 3σ equals 10% than when 3σ variation equals 5%. For a given process (ie. N(µL, σ
2

L) ), 

the expected entropy is estimated as, 
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Figure 55: Weighted distribution of bit-entropy (3-sig Leff variation = 5%) 

 

Figure 56: Weighted distribution of bit-entropy (3-sig Leff variation = 10%) 
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A similar analysis was extended to TRNG with XOR function and von Neumann correction as 

post-processing The expected entropy plotted against different process corners (varying values of 

σL) for a TRNG without correction and with post-processing techniques is as shown in fig 57. 

The plot indicates that post-processing techniques provide efficient correction (with minimal 

overhead in bit rate in case of von Neumann correction) for 3σ variation values around 2-3%. 

Beyond this, the expected entropy starts to decrease and further correction or redundancy may be 

required.  

 

Figure 57: Expected entropy/bit rate with different sigma variation in process 

 

Thus, the stochastic model provides an estimate of the entropy for a given process. Although the 

estimation lacks the accuracy of SPICE simulation which incorporates the various Short Channel 

Effects (SCE), it provides a fair comparison of the entropy extraction mechanisms with 
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significantly lower simulation effort. A comparison of the expected entropy values obtained from 

the stochastic model and spice simulations is as shown in fig 58. 

 

Figure 58: Comparison of stochastic model with HSPICE simulation 
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CHAPTER 8 

CONCLUSIONS  

 

 On chip True Random Number Generators form a very critical part of cryptographic 

applications. With advent in technology, the TRNG circuit efficiency is affected by a number of 

factors like fabrication process, operating temperature and voltage. Traditional post-processing 

techniques may not be sufficient to mitigate these variations and ensure randomness in the bits 

generated. 

 In this thesis, a study of the effect of process variation on the bit entropy of metastability 

based TRNG has been presented. A comparison of the traditional post-processing techniques 

with circuit calibration mechanism shows that circuit level tuning provides better flexibility in 

terms of correction and the energy overhead. Further, the effect of variation in operating 

conditions has been discussed, which serve as a motivation to enhance the circuit calibration into 

a self-calibration mechanism. A sub-vdd pre-charge technique is introduced to render the TRNG 

circuit more tolerant to process variation. Pre-charging the TRNG to a voltage lesser than vdd 

can provide upto 2X improvement in bit-entropy for worst case device mismatches with no 

impact on the bit rate. A hybrid self-calibration technique is introduced using a combination of 

one time circuit calibration for coarse calibration and continuous algorithmic entropy extraction 

to compensate for finer mismatch. Different attack models were analyzed for a secure design of 

TRNG. It was observed that an attacker can mount an active attack on the TRNG by gaining 

control over global nets like supply and clock. Potential protection techniques were discussed to 

secure the TRNG against attacks. Finally, a stochastic model for the TRNG has been presented 

including a probabilistic analysis of TRNG in the presence of random process variation. 

 We acknowledge the support of NSF grant for “Ultra-wideband Radio for Low-Power 

Security” and SRC funding for “Sub-45nm Circuit Design for True Random Number 

Generation and Chip Identification” towards this work. 
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APPENDIX 

 SIMULATION ENVIRONMENT 

 

 One of the major challenges in simulation based research of TRNG is the development of 

the simulation environment itself. A TRNG basically extracts randomness from a truly random 

source, a source that cannot be modeled. Hence, results based on a simulation environment 

cannot be expected to be as accurate as the actual hardware itself. 

 But, simulation based research provides flexibility to the researcher to study the behavior 

of the circuit across a wide range of process parameters and operating conditions. Test chips 

fabricated to validate designs come in few numbers. The sample is not big enough to observe 

varied process variations, more so in works that rely heavily on the study of process variation. 

Further, it is a complex process to analyze the chip under varied operating conditions like 

temperature and voltage. Although the accuracy of the simulation results are limited by the 

quality of the transistor models and the tool used for simulation, the results generally provide a 

reasonable outlook to the behavior of the design under a varied set of constraints. 

 In the current work, HSPICE is used to simulate the circuit over a wide range of process 

variation and operating temperature. The source of randomness, thermal noise is modeled using 

the Gaussian function “GAUSS” in HSPICE. The methodology used here is based on the fact 

that once the pre-charge on inputs of the cross-coupled inverters are released, both the inputs are 

at the same potential of „vdd‟. But, depending on the differential thermal noise, one of the inputs 

drives its corresponding NMOS to an ON state, thereby sinking the current and driving its output 

to a state „0‟. Hence, it is the differential voltage above the pre-charge voltage that decides the 

state of the TRNG.  

 To mimic this behavior, in the simulation model, each input of the cross-coupled inverter 

is pre-charged to a different voltage at each cycle of the simulation. Since thermal noise is seen 

to have a Gaussian distribution, the pre-charge signal is also modeled to have a Gaussian 

distribution with a mean value equal to the „vdd‟ and a 3-σ variation of 50mV. 
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Figure 59. TRNG circuit extracting randomness from thermal noise 

 

  

         

 

Figure 60. TRNG circuit modelled in spice with varied pre-charge potential to mimic the effect of 

thermal noise 

 

Based on the mean and variance values specified, the HSPICE tool generates a sequence of data 

that fits a Gaussian curve. But, since it is based on an algorithm, the random values generated are 

GAUSS (vdd, 0.05, 3σ) 

vdd vdd 

GAUSS (vdd, 0.05, 3σ) 
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pseudo and not truly random. In other words, the data generated by the “GAUSS” function is 

deterministic. But, from a simulation point of view, it is desirable that the given input matches 

the expected noise distribution, but at the same time is repeatable over multiple runs. Hence, any 

optimization made to the design can be verified using the same set of input data. Although the 

“GAUSS” function in HSPICE basically generates deterministic bits, because of the Gaussian 

distribution of data, the above methodology provides a fairly close model of true thermal noise. 
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Figure 61. HSPICE and PERL based simulation platform for study of  TRNG 

 

 The simulation platform built using PERL and encompassing HSPICE simulation setup is 

as shown in figure 48. 
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