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ABSTRACT 

 

IMPACT OF MANUFACTURING FLOW ON YIELD LOSSES IN NANOSCALE 

FABRICS 

 
FEBRUARY 2012 

 
PRIYAMVADA VIJAYAKUMAR 

 
B.E, VISHVESHWARIAH TECHNOLOGICAL UNIVERSITY 

 
M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Israel Koren 

 
 

 Reliable and scalable manufacturing of nanofabrics entails significant challenges. Scalable 

nano-manufacturing approaches that employ the use of lithographic masks in conjunction with 

nanofabrication based on self-assembly have been proposed. A bottom-up fabrication of 

nanoelectronic circuits is expected to be subject to various defects and identifying the types of 

defects that may occur during each step of a manufacturing pathway is essential in any attempt to 

achieve reliable manufacturing. This thesis aims at analyzing the sources of defects in a nano-

manufacturing flow and estimating the resulting yield loss. It integrates physical fabric 

considerations, manufacturing sequences and the resulting defect scenarios. This is in contrast to 

most current approaches that use conventional defect models and assume constant defect rates 

without analyzing the manufacturing pathway to determine the sources of defects and their 

probabilities. The manufacturing pathway will be analyzed for identifying the defects introduced 

during each manufacturing step in the sequence, followed by yield loss estimation.  
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CHAPTER 1 

INTRODUCTION 

 
 Semiconductor nanowires[1][2], spin waves[3] , carbon nanotubes[4][5], and 

graphene[6]are some of the emerging nano-materials and devices proposed for novel 

computational fabrics. Reliable manufacturing of nanoscale computational architectures is quite 

challenging. With the very high defect rates associated with nanoscale manufacturing, different 

approaches such as built-in defect tolerance[7][8] and reconfiguration[9][10]have been explored 

for emerging nano-computational fabrics to achieve fault tolerance[11][12].  Most of the prior 

publications have, focused on the impact of the assumed defects at device/circuit/architectural 

levels and have not analyzed the potential sources of the defects. For example, a modular approach 

is used by Patwardhan[13] to reprogram faulty ‘nodes’ (a functional block) but the source of the 

defect so assumed has not been discussed. Built-in defect tolerance for stuck-on or stuck-off 

devices (with up to 10% defect rates) has been considered for the NASIC fabric[7][8][14][15][16]. 

However, a procedure for analyzing the sources of defects in a nano-manufacturing flow and hence 

estimating the resulting yield loss has never been employed. The mask overlay related yield loss, 

particulate limited yield loss, nanowire transfer limited yield loss needs to evaluated to understand 

the implication of manufacturing steps.  

Our goal in this thesis is to analyze the sources of defects from a manufacturing 

perspective. Identifying the potential defects that may occur during each step of the bottom-up 

fabrication of nanoelectronic circuits is important since it would provide a better estimate of the 

defect rates allowing a more accurate yield analysis. 
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Scalable nanofabric manufacturing techniques have been proposed which utilize 

lithography masks for functionalization and interfacing in conjunction with nanofabrication based 

on self-assembly approaches [16][18]. Each step in the manufacturing process can be viewed as a 

combination of “alignment of a mask for pattern transfer” followed by a “processing step.” Defects 

can be introduced during (a) the alignment of the mask, or (b) the processing step after the mask 

alignment, and can also be the result of (c) impurities during the manufacturing steps. 

Defects introduced during the mask alignment are commonly classified as systematic 

defects. Systematic yield, YS is design and process specific and no definite formula exists. 

Systematic problems are topology specific and may result in defects with particular characteristics. 

Defects introduced during the processing step can be either random or systematic. Process 

limited Yield loss accounts for the defects introduced during the processing steps in the nano-

manufacturing flow. Processing steps like ‘nanowire transfer’ can be classified as systematic. A 

careful and thorough analysis of such manufacturing steps is required to understand how a 

particular fault resulting from defects during these steps would manifest itself in terms of logical 

and system behavior. This will further pave way for efficient fault mitigation techniques. 

Impurity related defects are random in nature. Particulate defect limited yield has been 

thoroughly researched and well understood in CMOS technology [19][20]. However, as the 

technology scaled, the influence of random defects from particulates has been in the decline 

compared to systematic defects [21].Still, random impurity limited yield may influence the final 

production yield and hence needs to be accounted.  

 The overall die yield can hence be defined as the product of systematic mechanism limited 

yield (YS) and random-defect limited yield (YR) [21].Yield Estimation is a crucial step in the chip 
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design flow. Early yield estimation helps the designers to adopt a Design-for-Yield (DFY) 

perspective and thereby achieve better yield margins. Analyzing the defect source and modeling of 

the fault and yield has always remained a key challenge. 

 This thesis work focuses on a) identification of defects introduced during each step of a 

manufacturing pathway, b) estimation of particulate limited yield loss, and c) estimation of 

systematic yield loss through careful analysis of the manufacturing sequence 

 
1.1 Organization 

 The thesis is organized as follows. Sections 1.3 and 1.4 discuss the Nanoscale Application 

Specific Integrated Circuits (NASICs) fabric and the Wire Streaming Processor WISP-0 design 

mapped to NASIC fabric. Chap.2 discusses the related work in the field of nanofabrics. Chap.3 

presents the yield modeling in conjunction with analysis of the nano-fabric manufacturing 

sequence.  Random defect based yield modeling is discussed in Chap. 4. Chap. 5 discusses 

nanowire alignment, mask overlay and registration evaluation for systematic yield modeling, 

Chap.6 presents the overall yield estimation and Chap.7 concludes and summarizes the thesis. 

 
1.2 Overview of NASIC’s 

Nanoscale Application Specific Integrated Circuit (NASICs) is a nanoscale computational 

fabric [8][14][15][22][23] that implements logic on semiconductor NWs with field effect 

transistors (FETs), and uses microwires that provide VDD, GND and control signals for data 

streaming. 

 In NASICs, design choices at multiple levels are tailored towards the minimization of 

fabric area and manufacturing requirements.  For example, a) by using dynamic circuits and 

pipelining on the wires, NASICs eliminate the need for explicit flip-flops and therefore can 

improve the density considerably, b) the dynamic style logic implementation in conjunction with 
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external sequencing schemes does not require complementary doping for the logic transistors, c) 

based on 2-level AND-OR logic style, NASIC designs can be optimized to achieve high density. 

By slight modification of the NASIC dynamic control scheme and circuit style, we can implement 

arbitrary logic functions with one type of FETs in NASICs. A design using only n-type FETs will 

implement a NAND-NAND cascaded scheme whereas a design using only p-type FETs will 

implement a NOR-NOR scheme. Fig. 1 demonstrates the design of a 1-bit full adder implemented 

in NAND-NAND logic dynamic style [8]. 

 

Figure 1. 1-bit Full adder using NASICs [8] 

 The elemental units in NASICs are known as nanotiles. A tile contains for example, an 

adder or multiplexers. Individual tiles can be connected with nanowires to form a larger multi-tile 

structure performing an application-specific computation. The nanotile is surrounded by 

microwires (MWs) which carry ground (Gnd), power supply voltage (Vdd), and control signals for 

the dynamic evaluation of outputs. Complementary signals are required to implement arbitrary 
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logic functions in 2-level logic style, and hence we generate complementary outputs ~c1 and ~s0 

for cascading (as shown in Fig. 1)[8] in multi-tile designs. 

 
1.3 Overview of WISP-0 

WISP-0 is a stream processor with a five-stage pipelined streaming architecture using five 

nanotiles: Program Counter - PC, Read Only Memory - ROM, Decoder - DEC, Register File - RF 

and Arithmetic Logic Unit - ALU [14][23]. Adjacent nanotiles communicate using nanowires, 

with each nanotile being driven by surrounding microwires as shown in Fig. 2 WISP-0 supports 

five instructions: nop, mov, mvi, add and mult. Each instruction contains a 3-bit opcode and two 2-

bit operands. The ALU was further partitioned into two stages to achieve a more balanced 

pipeline. In this thesis we use WISP-0 processor design mapped to NASIC fabric to perform 

evaluations. 

 

 

Figure 2.WISP-0 Floorplan [14] 
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CHAPTER 2 

RELATED WORK 
 

2.1 Introduction 

 Reliability and manufacturability are two major concerns in nanoscale regime. Although 

the manufacturing process is progressing, the defect levels in nanofabrics are still at least in a few 

percent ranges [24]. Such a high defect rate makes fault tolerance a critical aspect in nanoscale 

architecture. The fault tolerance techniques employed are highly related to fault types and 

distributions.   

 
2.2 Fault tolerance in nanofabrics 

 NASICs [8][14][15][22][25], NanoPLA [26], CMOL [17][27], FPNI[9] are being 

demonstrated as promising alternatives to CMOS.  The logic implementation style is different 

among these nanofabrics. NASICs use field-effect transistors (FETs) at nano-crossbar junctions to 

implement logic while diodes or molecular switches are being used by NanoPLA, CMOL and 

FPNI. 

   The fault tolerance methodologies adopted by these fabrics differ as well. The techniques 

proposed for providing fault-tolerance in the nano-PLAs can be broadly classified into two types: 

on-line repair [28] and fault masking [29]. It has been observed that the device missing effect 

(crosspoints may be with or without devices) is dominant in nano-PLAs [24][30][31]. [32] 

discusses a von Neumann’s NAND multiplexing implementation in basic circuits and 

reconfigurable architectures mapped to the overall system. In [33] and [34], the authors have 

developed a tautology technique for providing fault tolerance for PLA architecture. The yield 

analysis of PLA devices has been performed by mathematical means [33][35] or using a PLA 

analyzer[36]. The PLA analyser is a tool that is able to operate both on PLAs which have been 
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mapped with redundant terms, or can add redundancy in the form of replicated wires. However, 

the performed yield calculation doesnot look at the manufacturing process to analyze the type of 

defects. Four types of faults are assumed in nanoPLA yield estimation: a) Bad ohmic contacts 

among nanowires and microwires, b) Faults in the decoder patterns, c) Disconnected crosspoints, 

and d) Broken nanowires.  These yield estimation is carried out for a range of defect percentages 

assigned. However, no analysis of the manufacturing process is done in order to estimate the types 

and percentage of the defects. 

 CMOL employs a reconfiguration technique for providing fault tolerance. The switches in 

CMOL fabric play two roles: they provide diode-like behavior for logic circuit operation, and 

allow circuit mapping on CMOL fabric and its reconfiguration around defective nanodevices. [37] 

have demonstrated that the reconfiguration in CMOL fabric allows increasing the circuit yield 

above 99% at the fraction of bad nanodevices above 20%. The yield calculations are obtained by 

employing Monte Carlo simulations (so far only for the “stuck-on-open”-type defects which are 

expected to dominate in CMOL circuits).  

  FPNI models “stuck-open” as the most common defect expected in such crossbar fabric. 

This is modeled as a switch where a high-impedance junction that cannot be configured to a low-

impedance state [9].The FPNI compiler developed maps logic circuits onto FPNI chips. The 

compiler performs placement, routing, timing analysis and power analysis. The compiler takes two 

files as inputs -a circuit file and -an FPNI chip description file and produces a mapping of that 

circuit onto the chip followed by the expected yield of the fabric for the given design. 

  While most of the above fabrics rely on reconfigurable devices, defect map extraction, and 

reconfiguration around defects, NASICs employs built-in fault tolerance techniques. Details of the 

built-in fault tolerance techniques in NASIC fabric are discussed in the next few sections. 

 
2.3 Fault model assumed 
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 In NASICs, built-in fault tolerance techniques have been provided for uniform and 

clustered defect models. Broken NWs, stuck-on and stuck-off are the defects which have been 

studied and analyzed in NASIC fabric. A stuck-off transistor is treated as broken NW. Stuck-off 

FETs are also less likely especially in depletion mode fabrics. Research suggests that we will be 

able to control the reliability of NWs fairly well so broken NWs or stuck-off FETs will be likely 

less frequent than stuck-on FETs [14]. In addition to permanent defects other error sources such as 

due to process variation and transient faults are also discussed [8][38]. In NASIC’s defect rates of 

up to 15% have been considered for evaluation. 

 
2.4 Built-in Fault-Tolerance in NASICs: Circuit-Level and Structural Redundancy 

 Redundant copies of NWs are added and redundant signals are created and logically 

merged in the logic planes with the regular signals. Horizontal NWs are predischarged to “0” and 

then evaluated. Vertical NWs are precharged to “1” and then evaluated.  

 A NASIC design is implemented in AND-OR (or equivalent) logic planes (Fig. 3). If a 

break on a horizontal NW in the AND plane (position A) causes the signal on the NW to be “0”, as 

it is disconnected from Vdd. The faulty “0” signal can, however, be masked in the following logic 

OR 
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Figure 3. Simple 2-way structural redundancy [14] 

plane if the corresponding redundant NW is not defective (position B). Similarly, a NW break at 

position C can be masked in the next stage. Similar masking strategies for interleaving of 

nanowires [8][14] have been successfully implemented for NASICs. 

 
2.5 Voting at Nanoscale 

 Modular redundancy implementation uses majority voters. Conventional majority voters 

are not used in NASIC fault tolerance techniques; instead biased voters are used. Faulty 0’s tend to 

be less common in high fan-in stages; since this requires many devices on a single nanowire to be 

simultaneously stuck-on (a single correctly switched-off device will prevent evaluation to ‘0’). 

Since performance of the design is dominated by the evaluation-to-‘0’ of high fan-in stages, 

implementation of voters biased to zero have performance benefits[14][15][38]. The FastTrack 

scheme is based on the following observation: i) some block inputs arrive sooner than others, ii) it 

is a property of the NASIC circuit that logic ‘0’ faults are considerably less likely than logic ‘1’ 

related faults[15][38]. Thus, the voters used in this scheme are biased toward zero. Here, a voter 

denoted by V0
2/5 indicates that it is biased to ‘0’ and requires only 2 of the 5 inputs to be ‘0’ to 
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produce a result of ‘0’while 3 ‘1` inputs are still necessary to produce a result of’1`. This is in 

contrast to a majority voter where at least 3 out of the 5 inputs are required to be zero in order for 

the voter output to be zero. Other nano-computing fabrics may require different biasing schemes 

based on the underlying fault models. Leveraging these asymmetric delay paths (resulting from 

some inputs being faster than the other) combined with biased voting schemes results in a 

redundancy scheme with better performance but at the cost of a lower effective yield.  
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CHAPTER 3 

YIELD MODELING 

 

3.1 Introduction 

 

 Our goal in this thesis is to analyze the sources of defects from a manufacturing perspective 

and estimate the yield loss associated. Identifying the potential defects that may occur during each 

step of the bottom-up fabrication of nanoelectronic circuits is important since it would provide a 

better estimate of the defect rates allowing a more accurate yield analysis.  A major objective of 

the yield estimation is to relate the occurrence of defects generated at each manufacturing step to 

the loss in yield that they cause, so that specific action can be taken to lower the number of defects 

and increase yield. 

  Design technology has traditionally aimed at the three parameters – area, timing and power 

as its main objectives. Even with these objectives being of paramount importance, increasing focus 

is being laid on manufacturability and yield. For sub-90nm technologies, yield is increasingly 

becoming an issue in all steps of design phase; from processing to sign-off. Yield must therefore 

become the fourth design parameter, to be optimized along with power, area and performance at 

different stages of the design flow. Reducing the yield loss mechanisms requires improvement of 

the manufacturing process. Hence yield analysis with a manufacturing perspective is the required 

approach. 

 

3.2 Manufacturing Pathway 

 

 Integration of devices into a large scale functional system has been demonstrated in the 

nanoscale research. Chen et al. have successfully designed a ring oscillator using carbon nanotubes 

[39]. Lu et al. have realized a decoder circuit from NWs [2]. A complementary symmetry NW 

logic circuitry implementation has been demonstrated in [40] by manufacturing  
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Figure 4. NASIC Fabric [16] 

 

of XOR gates.While the above work concentrates on device characterization and prototyping; 

studies’ focusing on scalable manufacturing of nanofabric are also being done. For example, 

Cerofolini et al. have described terascale integration and arrangement of Si-nanowires [18]. 

Narayanan et al. have proposed a manufacturing pathway using a combination of unconventional 

and photolithographic manufacturing steps and have described the associated challenges for 

nanoscale systems [16]. This implies that yield implications for emerging nanofabrics need to be 

carefully examined from a manufacturing perspective. The questions that need to be answered 

include: What kinds of defects are introduced in the given nanomanufacturing sequence? What is 

the yield loss associated with successive mask overlays? How do yield losses change for different 

overlay requirements? How sensitive is the overall yield to the choice of physical fabric design 

parameters (e.g., pitch/width of nanowires)? What is the impact of particulate defects on overall 

yield? 

 The manufacturing pathway proposed by Narayanan et.al focuses on realizing the NASIC 

fabric (see Fig. 4) incorporating all the contacts, interconnects and devices. Fig. 5 shows the 

manufacturing sequence. Horizontal NWs are grown and aligned on a substrate (Fig. 5.A);  
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Figure 5. NASIC’s manufacturing sequence using “two nanowire transfer”[16] 

 

 Lithographic contacts of VDD and GND for horizontal nanowires as well as control signals 

for vertical nanowires are then created (Fig. 5.B). A photolithography step is used to protect 

regions where transistors will be formed while creating high conductivity regions (using ion 

implantation) elsewhere (Fig. 5.C). Gate dielectric layer is then deposited (or oxide is grown) (Fig. 

5.D) followed by alignment of vertical NWs (Fig. 5.E).The next mask is used to cut the nanowires 

using an etch-back process to implement the two-tile structure (Fig. 5.F)[7]. Lithographic contacts 

of VDD and GND for vertical nanowires as well as control signals for horizontal nanowires are 

created (Fig. 5.G). During ion implantation on vertical NWs (Fig. 5.H), channels along horizontal 

NWs are self-aligned against the vertical gates.  
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  It should be noted that the total number of masks required to realize the fabric is much less 

than that for conventional CMOS design. The reasons for this are: a) NASIC circuits require very 

limited customization: only one type of FET [22] is used in the logic portions of the design and 

there is no requirement for arbitrary placement or sizing of devices; b) Devices and interconnects 

are achieved on the nanowire grid itself in a single functionalization step; interconnection of 

devices does not require a metal stack. 

 

3.3 Analysis 

 
A bottom-up fabrication of nanoelectronic circuits is expected to be subjected to various 

defects. Identifying the types of defects that may occur during each step of a manufacturing 

pathway is essential in any attempt to achieve reliable manufacturing.  

It should be noted that defects can be introduced during a) alignment of masks, b) 

processing steps like nanowire transfer, and c) as impurities during manufacturing step. The above 

nano-manufacturing issues are hence going to be considered in the proposed yield analysis 

procedure. Each of the issues can be associated with certain specific step/steps of the NASIC 

manufacturing pathway described in Section 3.2. 

1) Particles introduced during the manufacturing process 

Although lithographic distortion is emerging as the dominant mode of failure, particulate 

defects still remain an important source of defects. Defect-related yield losses may be the result of 

the cleanroom environment and the lithography process. Dust particles in the cleanroom, mask 

defects left over from the mask fabrication process, imperfections in mask substrate are few known 

sources of random defects [21].  The random-defect limited yield loss will be analyzed and 

investigated for the NASIC fabric 
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2) Successive mask overlays 

Lithographic masks are required at the following manufacturing steps: (a) Creation of VDD 

and GND contacts for horizontal nanowires along with control signals for vertical nanowires (Fig. 

5.B), (b) Functionalization of horizontal nanowires (Fig. 5.C), (c) Mask used to specify the cut in 

the nanowires during etch-back process (Fig. 5.F), (d) Creation of VDD and GND contacts for 

vertical nanowires along with control signals for horizontal nanowires (Fig. 5.G), and (e) 

Functionalization of vertical nanowires (Fig. 5.H). All masks except the one used to cut nanowires 

using an etch-back process will be considered in our systematic yield analysis. The mask used for 

etch-back has high tolerance for overlay imprecision (i.e., it does not introduce any defects when 

misaligned in the range specified by ITRS [41]; lithographically defined regions to cut the 

nanowires are of dimensions larger than the minimum feature size and hence greater tolerance is 

achieved). 

3) Nanowire transfer 

 The manufacturing steps of transferring horizontal nanowires and transferring vertical 

nanowires should be analyzed for yield loss due to nanowire alignment. The ideal technique to 

form aligned nanowire arrays is expected to guarantee a concurrent control over three key 

parameters: (i) the number of nanowires, (ii) the inter-nanowire pitch, and (iii) the nanowire 

diameter within the array, and (iv) the spacing between two arrays/sets of nanowires [16]. The 

state-of-the-art semiconductor nanowire array formation with alignment techniques needs to be 

analyzed to estimate the systematic yield loss resulting due to nanowire transfer. 

 The subsequent chapters in the thesis deal with each of the above mentioned yield loss 

mechanisms in detail.   
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CHAPTER 4 

RANDOM DEFECT BASED YIELD 

 

4.1 Introduction 

 
 Random defect limited yield modeling of chip requires the calculation of Probability of 

Failure (POF) or analysis of Critical Area (CA). Critical Area Ai(x), for defects of type i and 

diameter x is defined as the area in which the center of a defect of type i and diameter x must fall in 

order to cause a circuit failure [21]. Historically, yield loss due to random defects has been a 

significant concern [19]. Consequently, random defect modeling and particle induced yield loss 

techniques were developed for CMOS technology [19][20][42]. Several studies have been done in 

analyzing the particulate defect limited yield in CMOS technology. In [43], Walker has proposed a 

VLASIC Monte Carlo yield simulator for efficient and detailed critical area computation. Carl 

Zhou et al. have successfully illustrated the methodology of using Critical Area Analysis (CAA) in 

conjunction with in-line defect data to predict the random defect yield [44]. It should be noted that 

the failure probability depends on a) the defect size distribution, b) the layout/design feature 

density, and c) failure mode such as short or open.  

Methodologies have been developed to evaluate the critical area [21]:  

1. Monte Carlo Simulation: Large numbers of defects with their radii distributed according to 

the defect size distribution are sampled; it is then checked whether such a defect causes 

short or open. Conducting particles are expected to cause a short and non-conducting 

particles are expected to cause an open (Fig. 6). 

2. Geometric Methods: The methodology involves computing the area of critical region for 

several different values of defect sizes independently. A weighted approach is later applied 

to approximate the total critical area. 
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Figure 6. Particulate defects 

 

 With the NASIC being a uniform grid-based 2D nanofabric, it is intuitive to envision a high 

POF for shorts and opens. With the shrinking sizes of the nanowires used in the NASIC fabric 

design, smaller defects are expected to become killer defects. But because die size also shrinks for 

the same design, the yield is expected to almost remain constant (with decreasing nanowire 

dimension). A particulate defect based yield analysis is however required to estimate the overall 

die yield. 

4.2 Methodology Followed 

 
 In the procedure employed, we perform critical area analysis by calculating the Probability 

of Failure (POF). The various tiles in the WISP-0 processor were analyzed for potential defects 

using the Monte Carlo approach. Simulations were performed for random defect sizes starting with 
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a minimum size of 10nm [41] up to 210nm. The minimum particle size was chosen as 10nm as 

projected by ITRS [41]. 

 The tiles were analyzed for a possible failure either in the form of bridging faults or open 

faults at a number (5000 points per tile) of uniformly distributed random location. The POF is 

estimated using the equation given below [45]: 

 

 

��� =  � ���(�)∞���
 × �(�)        (1) 

 
where 

x is the defect size starting from a minimum value of xmin 

POF(x) is the Probability of failure for  a defect size x.  The pseudo code to generate POF(x)  

appears below 

The probability of defect size p(x) for a given defect size x is given by [45]: 

�(�) =  � � �02�   ���  0 ≤ � ≤  �0�02 �3�  ���  �0  ≤ � ≤  ∞�       (2) 

 

where  

x0  , the point of discontinuity is a function of the mean of the defect size.  

The Critical Area of each tile is obtained by the product of POF and the tile area. 

�� = ��� × �����      (3) 

 

From the critical area, the die yield can be estimated using the either the Poisson model [46]or the 

cluster model [21][47]. 

 

Pseudo code for estimation of POF for short for the nano-tiles 

1. initialize fabric parameters pitch, width for the NASIC fabric 
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2. input the nano-tile design 

3. generate particle size Pj/ Pj є Range projected by ITRS 

4.   initialize Number_Of_locations = N 

5.   initialize Fj = 0, POFj = 0 

6.   foreach particle size Pj 

7.   do until ( location_count = N ) 

8.   generate location Lk ( xk, yk ) 

9.    Create Simulation Window SWk around Lk 

10.   forall  nanowires in SWk 

11.    Check for short in presence of particle 

12.   if short 

13.    Add one to Fj 

14.  enddo 

15.  calculate POFj = Fj / N 

 

A similar analysis was carried out to evaluate the POF for open faults in NASICs 

 

4.3 Simulation Results 

 

 The Monte Carlo simulations were run for 5000 points per tile to obtain the POF for shorts. 

The analysis was also performed for various NASIC fabric pitch and width.  

 

Sensitivity to Width: Fig. 7 represents the POF (for shorts) for nanowire of width 5nm at two 

different pitches. It can be observed that at a given width with increase in pitch there is a slight 

decrease of POF. This is intuitive due to the increasing space between two nanowires with 

increasing pitch. However, it should be noted that the POF value is extremely high due to high  

 



20 

 

 

Figure 7. POF for shorts at 5nm width 

 

 

Figure 8. CA for short at 5nm width 

density of the NASIC fabric (approximately 30X denser than conventional CMOS at 16nm 

technology node [25]). The critical areas for various designs were obtained by using the equation 

(3) and area of the various WISP-0 tiles for varying pitch. The critical area plot at constant width 
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of 5nm is shown in Fig. 8. It can be seen that the increasing tile area due to increase in pitch 

completely removes the advantage of decrease in POF.  

Sensitivity to Pitch: Fig. 9 shows the POF (shorts) at a constant pitch of 10nm with varying width. 

It can be seen that the POF increases with increase in width, for a given pitch. This is due to the 

decreased spacing between the two nanowires at constant pitch.  Fig. 10 depicts the CA (shorts) for 

the same scenario. It can be observed that the increase in POF is negligible so that the CA almost 

remains the same at constant nanowire pitch (the difference in critical area at constant pitch and 

changing width is of 10-3nm.sq). 

 Poisson yield model: The yield plot for bridging faults (shorts) can be obtained from the critical 

area by using the Poisson yield model [21][46] . The defect density is 0.01defects/cm.sq as 

projected by ITRS [41]. It can be observed that a yield approximately equal to unity is obtained for 

the projected defect density for critical area up to 1000um.sq. Plot of yield as a function of 

 

 

 

Figure 9. POF for shorts at 10nm pitch 
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Figure 10. CA for shorts at 10nm pitch 

 

 

Figure 11. Variation of random defect limited yield with defect density 

 

critical area and defect density is shown in Fig. 11. A defect density of 107 defects/cm2 would 

result in considerable yield loss for NASIC designs with area comparable to WISP-0 processor (as 

per the projected defect rate by ITRS, an area greater than 10cm.sq would result in considerable 

yield loss). It can also be projected that a defect density of 10000 defects/cm2for a design mapped 
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to 10000um.sq area of NASIC fabric would result in 64% random-defect limited yield loss. For the 

projected density of 0.01/cm.sq 1010sq.um area would result in a similar yield of 64%. This would 

imply that a design as large as 10,000 million wisp-0 designs would result in 64% yield at current 

defect density projections. 

A similar analysis was carried out for open faults and similar trend was observed. 

 

Clustered yield model: The yield plot for bridging faults (shorts) can be obtained from the critical 

area by using the clustered yield model [21][47].  The random defect limited yield using the 

clustered model is given by the equation below: 

 

Yield = $1 1 + '()*+, -. /
,

(4) 

 

The cluster parameter α is projected to have a value of 2 by ITRS [41]. Fig.11 shows the variation 

of random defect limited yield for the clustered model. Variation of yield can be seen 

(when compared to Poisson model) only for defect densities greater than  108 defects/cm.sq ; for a 

critical area of 0.01 sq.um. Hence a difference in random defect limited yield between the Poisson 

model and clustered model can only be observed for large defect densities/ high critical area. For 

designs with bigger area (1010 times the area of WISP-0), yield improvement of up to 10% is seen 

with clustered model. 

 

4.4 Conclusion 

 

 An analysis of random defect limited yield was carried out for a WISP-0 design mapped to 

NASIC fabric. The Monte Carlo approach was adopted to obtain POF, followed by Critical Area 

calculation. The particulate limited yield loss being considerably small, the fraction of yield loss 
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which is inevitable is noted. The observations and results also stress the emerging need for 

affordable, accurate real time sensors for non-particulate contamination which are leading to yield 

loss. Pre-contact clean, reticle exposures are cited as processes that first need this capability 

[41].With systematic components of yield frequently constraining yield in early stages of 

manufacturing, the next chapter analyzes the systematic yield loss.  
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CHAPTER 5 

SYSTEMATIC YIELD LOSS IN NANOSCALE FABRICS 

 

5.1 Introduction 

 

This section deals with the systematic yield loss associated with the nanoscale 

manufacturing flow of NASIC fabric. Yield evaluation has been carried out using a scalable 

manufacturing pathway that focuses on realizing the NASIC fabric with incorporated contacts, 

interconnects and devices [16], and using the overlay misalignment tolerance projected by ITRS 

[41]. Yield predictions obtained using the prescribed procedure would be more realistic and help 

us gain a perspective on the adopted manufacturing flow through: (a) yield loss associated with 

successive mask overlays, (b) yield implications for different overlay requirements, (c) yield 

implications for different feature sizes, and (d) yield implications due to nanowire transfer steps. 

5.1.1 Mask Offset and Overlay 

 

Mask registration/mask offset may be defined as the difference (∆x, ∆y) between the actual 

position of a feature on a substrate and its intended position. Mask overlay error is defined as the 

displacement error of an exposed photo image (feature) relative to a previously exposed image 

(feature). It can hence be expressed as (∆x1-∆x2, ∆y1-∆y2) for any two successive masks in the 

manufacturing sequence. In order to achieve the required functionality, the lithographic masks in 

the fabrication must overlay each other to within acceptable tolerance. Mask overlay has been a 

key design issue even in CMOS. Critical layer mask pairs such as active-to-gate, gate-to-contact, 

and contact-to-metal have been traditionally analyzed for overlay related errors [48]. Active-to-

gate mis-registration can result in gate leakage or reduced static noise margin. Gate-to-contact mis-

registration can result in shorts and functional failures. Contact-to-metal mis-registration quite 
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often results in resistive or open interconnect [48]. As the number of metal layers increases in 

CMOS, the probability of a metal-to-via overlay failure also increases.  

To build a nanofabric in a scalable fashion, lithography needs to be used for 

functionalization. This implies that mask overlay and registration requirements as well as the 

systematic yield implications for emerging nanofabrics need to be carefully examined. The 

questions that should be answered include: What kinds of defects are introduced due to mask 

overlays in the considered nanomanufacturing sequence? What is the yield loss associated with 

successive mask overlays? How do yield losses change for different overlay requirements? How 

sensitive is the overall yield to the choice of physical fabric design parameters (e.g., pitch/width of 

nanowires)? We have carried out a detailed analysis of systematic sources of defects for the 

manufacturing pathway proposed in [16]. Lithographic masks used in the NASIC manufacturing 

pathway are considered for overlay analysis (See section. 3.3 for more details).  

5.1.1.1 Implications of varying feature size on systematic yield 

 

 Another key design/process parameter that could be optimized for improving yield is the 

feature size. In a NASIC manufacturing pathway, the manufacturing resolution required is 

determined by the functionalization step, where certain regions on the grid (where FET channels 

need to be defined) are masked out and surrounding regions are ion implanted to form high 

conductivity source/drain regions and local interconnect. Smaller feature size might imply shorted 

channels, whereas larger features might cause undesirable stuck-opens at neighboring crosspoints. 

Therefore, in addition to the pitch/width parameters, the minimum feature size of the mask defined 

on the grid needs to be analyzed in depth. 
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5.1.2 Nanowire Alignment 

 
Several techniques have been proposed for nanowire alignment. In-situ, ex-situ and 

unconventional patterning approaches are being studied for formation of aligned nanowire arrays. 

Superlattice Nanowire Pattern Transfer (SNAP) has been demonstrated for silicon nanowire arrays 

at 13nm pitch and 8nm width [40],[49]. Ex-situ processes employ techniques such as the 

Langmuir-Blodgett technique [50]-[51], fluidic-guided method [52], electric field guided assembly 

[53], or organic self-assembly [54]-[55], to align the semiconductor nanowires that are synthesized 

elsewhere (through techniques such as Vapor-Liquid-Solid (VLS) growth) [50]-[55] to produce 

almost parallel nanowires array.  

The state-of-the-art semiconductor nanowire array formation with alignment techniques 

need to be analyzed to estimate the yield loss resulting due to nanowire transfer. With respect to 

nanowire alignment issues, horizontal and vertical nanowire transfer steps needs to be analyzed. 

Nanowire array will be patterned for horizontal arrays. Vertical nanowire transfer is assumed to be 

ex-situ as prescribed in the manufacturing flow [16]. In the vertical nanowire case, the precision of 

nanowire about its nominal position needs to be studied and analyzed (patterned nanowires with 

6nm half pitch have been demonstrated in [49] which implies tight pitch horizontal nanowire 

patterns). Literature survey was carried out to obtain the distribution (and hence variation) of the 

nanowire about its nominal position for the alignment scheme employed. Following the literature 

survey the vertical nanowire transfer has been modeled.  
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5.2 Analysis 

 

It should be noted that nanowire assembly is carried out prior to any lithographic step 

without any overlay requirement. In the case of techniques like NIL [56], alignment markers for 

registering against photolithographic steps are created in conjunction with the logic nanowire array 

using a single mold as shown in Fig. 12. For techniques like SNAP, patterned nanowires (of a 

different dimension than that of the logic nanowires) can be used as alignment markers (Fig. 13), 

since arbitrary alignment patterns may be difficult. The alignment nanowires would form Moiré 

patterns/fringes [57]-[58] for alignment. The creation of markers for registration is accomplished 

in the same step using the same mold/superlattice as the logic nanowires and is therefore self-

aligned.  

The underlying arrangement of the uniform and regular nanowires allows the first 

lithographic mask to be “offset” horizontally with tolerance on the grid and still achieve correct 

functionality. The effect of mask offset (registration or alignment of the first lithographic mask) 

can be envisioned as shown in Fig. 14. A uniform parallel array of nanowires is first patterned (or 

assembled). The accompanying alignment marks (i.e., AM#1 in Fig. 14.a) are also simultaneously 

created for registration purposes. During the alignment of the first mask (e.g., to create metal 

contacts, Fig. 5.B), AM#1 will be used as the alignment target (Fig. 14.b). An excessive offset in 

the y-direction can potentially result in defective chips (Fig. 14.c), with some nanowires not being 

contacted to power rails. New alignment markers should also be created for subsequent steps. As 

shown in Fig. 14.b,c new alignment patterns (AM#2), are defined on the photoresist in addition to 

contact patterns for the current step. After the development of the photoresist, the intended process 

is carried out. For example, metal deposition to create contacts  
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Figure 12. NIL technique showing both the nanowires and the alignment markers in the same mold 

and control may be carried out. Metal markers (AM#2) would then be created on the substrate 

itself and used as alignment targets for the subsequent step. After creating the contacts, 

functionalization is done to define the positions of devices and interconnects on the horizontal 

nanowire array (Fig. 5.C). Lithographically defined regions with a minimum size of (pitch × pitch) 

squares are blocked out, and ion-implantation/metallization is done elsewhere.  

Fig. 15 shows transistor defects that arise from misalignment of this mask. Fig. 15.a shows 

the correct alignment scenario. Pitch and width parameters are labeled as ‘p’ and ‘w’. A vertical 

misalignment of up to (p – w)/2 may be tolerated without any defects in this step (Fig. 15.b). A 

misalignment greater than this value would result in shorted channels across the horizontal 

nanowire array, leading to yield loss (Fig. 15.c). 
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Figure 13. SNAP technique, showing patterned nanowires (different dimension than logic 
nanowires) which can be used as alignment markers for moiré patterning 

 

While at this point the chip is already defective, for completeness, a case where both 

incorrectly shorted and incorrectly functionalized devices are created, is shown (see Fig. 15.d) 

when the misalignment exceeds (p+w)/2. This cannot be envisioned as shifting the design ‘up’ by 

a nanowire pitch, since the contacts are already defined in a previous step. It must be noted that 

additional markers will also be created in this step similar to Fig. 14; however, these have not been 

shown for clarity. 

Horizontal nanowire functionalization step is followed by the vertical nanowire transfer 

step. Controllable number of nanowires should however be assembled in predefined locations, and 

orientations to achieve scalable systems with expected behavior. In this thesis, we evaluate the 
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systematic yield loss due to the vertical nanowire transfer step using the Stamped transfer process. 

K.S. Shin et.al [60] have demonstrated the Stamped transfer process for both VLS and SOI etched 

nanowires. The implementation of all stamping transfer steps of pre-patterned nanowire arrays is 

done with a mask aligner. Poly DiMethylSiloxane (PDMS) polymer is used for pickup and 

stamping process. 

 

 

Figure 14. Depiction of mask registration during "horizontal contact creation" step 
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Figure 15. Depiction of the mask overlay effect during the "Horizontal Functionalization" step 

5.3 Modeling Approach 

 

The following section discusses the modeling strategy adopted. 

 

5.3.1 Lithographic Mask – Overlay Modeling 

 

The lithographic mask set utilized in the nanomanufacturing flow was modeled for mask 

overlay related yield losses. The procedure adopted for the same is discussed further. 

 

5.3.1.1 Modeling of Mask Overlay 

 
The effect of mask overlay misalignment for successive masks in the NASIC manufacturing 

sequence was studied through simulation. The overlay misalignment between successive masks 
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was modeled as a Gaussian random variable. As discussed in the previous section, all possible 

defect scenarios for a given manufacturing step and a sampled value of overlay misalignment were 

modeled using a custom simulator. 

 

Figure 16. Procedure for yield estimation to predict the systematic yield loss due to mask overlay 

 

The procedure used for yield estimation is shown in Fig. 16. Inputs to the simulation 

include fabric parameters such as width/pitch, the given design and the overlay standard deviation. 

For every manufacturing step, an overlay misalignment value with respect to the previous marker 

is sampled. This is an input to the simulator with all possible defect scenarios; the simulator 

determines whether the chip is either defective or defect-free (for a chip without redundancy, these 

are the two outcomes of systematic effects). After all mask steps are completed, the chip is 

recorded to either pass or fail. After a specified number of Monte Carlo simulations are complete 
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(in this case 5000- as a sample set larger than 5000 does not add any significant improvement to 

the accuracy of the result), the overall yield is calculated. Mask overlay misalignment for each 

lithographic step with respect to its previous step was hence modeled as a Gaussian random 

variable. If, for a given step, the sampled value of the misalignment exceeds tolerance limits, the 

chip would be systematically defective. Monte Carlo simulations will be carried out, with N 

different Gaussian random variables (M1, M2, …, MN) sampled independently in each run, where N 

is the total number of lithographic masks in the manufacturing process, and each Mi (1≤i≤N) is the 

overlay misalignment for the given mask with respect to the previous one. From the Monte Carlo 

simulations, the percentage of yielding chips can be estimated. 

This procedure allows analysis of systematic yield implications for nanofabrics. It integrates 

physical fabric considerations (including geometric parameters such as pitch and width), 

manufacturing sequences and associated defect scenarios to estimate the yield. This is in contrast 

to prior approaches that used generic defect models that typically assume constant defect rates (or 

a range of constant defect rates) without considering the manufacturing pathway and the potential 

sources of defects. While the focus of this thesis is the estimation of the mask overlay-limited yield 

for different fabric assumptions, this procedure can be easily extended to include ‘processing-

related’ defects, like lateral diffusion during ion implantation leading to a shorted device, despite a 

correctly aligned mask.   

This enables addressing key overlay and registration requirements. For example, it is possible to 

estimate the overlay limited yield for a range of overlay projections. It is also possible to address 

sensitivity of the overlay-limited yield to key fabric parameters such as the width and pitch of 

nanowires.  
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5.3.1.2 Modeling of mask feature size 

 

Different values of the mask feature sizes will be examined. As shown in Fig. 17.a and b, the 

mask to print the smallest feature size could be between dimensions of a=( pitch X pitch ) and 

b=[(2p-w)X (2p-w)], where w is the width and p is the pitch of nanowire. From Fig. 17, we can 

intuitively say that any size less than a has less tolerance to misalignment in the y-direction 

(leading to short). Similarly, any size above b has zero tolerance to misalignment in the x-direction 

(leading to opens) unclear. Since multiple lithographic masks would be used for creation of 

contacts and for functionalization of nanowires in horizontal and vertical directions, detailed 

simulations are necessary to estimate an optimal mask size for a fixed value of pitch and width. 

The simulation procedure previously proposed was modified to incorporate the mask feature size 

parameter and its implications for the various defect scenarios in each process step. Overlay 

misalignment was modeled as a Gaussian random variable as described previously and yield 

estimation across a large number of Monte Carlo simulations was carried out. 

 

Figure 17. Mask feature size of dimension (a) (pitch) X (pitch) (b) (2p - w) X (2p - w) 
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5.3.2 Modeling of Nanowire Transfer 

 

 The PDMS stamping process has been shown to have a positional misalignment of 3σ = 

100nm. This misalignment is measured as a distance between the two sets of nanowires upon 

transfer. Since, a single transfer step would consist of multiple sets of nanowires; the effect of 

nanowire misalignment is alleviated. 

 

5.4 Experiments and Results 

 

 

Figure 18. Overlay values as projected by ITRS 

5.4.1 Mask Overlay and Registration 

 
Simulations were performed to check the impact of mask overlay and offset on the nano-

manufacturing flow prescribed for NASIC fabric.  The WISP-0 nanoscale processor design 
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(mapped to the NASIC fabric), NASIC fabric assumptions, and overlay values were input to the 

simulator. The yield implications were studied for the various overlay values as shown in Fig. 18. 

Manufacturing solutions are known and are being optimized for the green (top) region; 

manufacturing solutions are known for the yellow (middle) region; and manufacturing solutions 

are as yet unknown for the red (bottom) region [41]. As mentioned in Section III, defect scenarios 

and consequently systematic yield loss are strongly dependent on the pitch and width parameters 

of the NASIC fabric.  

5.4.1.1 Sensitivity to pitch 

 
The impact of the nanowire pitch on the systematic yield loss due to mask overlay imprecision 

was evaluated. An xnwFET with a larger NW pitch is significantly easier to manufacture due to 

the increased minimum feature size on resist and also the increased spacing between adjacent 

nanowires. It is also expected to have better overlay imprecision tolerance. However, as expected, 

a larger NW pitch will result in a lower overall density, so it is important to understand its impact 

at the system level. WISP-0 consumes 0.839sq.um, 0.977sq.um, 1.125sq.um, 2.2394sq.um when 

mapped to 8nm, 9nm, 10nm and 16nm pitch NW, respectively. Fig. 19 shows the value of the 

systematic yield at various overlay values for a nanowire width of 5nm and varying pitch. At an 

overlay of 5.7nm, 80.6% yield was observed at 9nm pitch and 63.6% yield was observed for 8nm 

pitch. At a cost of 16.5% area increase, the yield can be increased by 42%. This implies different 

design choices; for example, for a design with a larger pitch it may be feasible to give up some 

yield for better devices.   

We use the metric “Effective Yield” which takes into account the tradeoff between yield and 

area overhead and represents the number of functional chips obtained from a given area. Effective 
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yield is defined as (Overall Yield)*(Area of design with smaller pitch/Area of design with 

increased pitch). Fig. 20 shows the effective yield for 5nm width nanowires and varying pitch. It 

can be seen that up to overlay imprecision of 4.5nm, a design with an 8nm pitch gives a higher 

effective yield. For overlay imprecision greater than 4.5nm, a 9nm pitch design has a better yield. 

This result suggests starting manufacturing at a relatively lower density and gradually scaling 

down the pitch with improvements in manufacturing alignment. While at high overlay imprecision, 

a low density fabric offers a better effective yield, with improvement in alignment precision a 

denser fabric can be obtained. 

 

Figure 19. Variation in yield for width of 5nm 
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Figure 20. Variation in effective yield for width of 5nm 

 

 

 

Figure 21. Variation in yield for nanowire pitch of 10nm 
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varying mask overlay for a WISP design mapped to 10nm pitch and different nanowire widths as 

shown in Fig. 21. At a constant pitch, an increase in the width of the nanowires would imply an 

increased channel cross-section for devices and hence a greater Ion current for devices, leading to 

performance improvements. On the other hand, yield loss due to overlay imprecision increases due 

to decreasing spacing between the adjacent wires. For example, in Fig. 15, the margin for 

functionalization mask misalignment was shown to be (p-w)/2, which implies that the 

misalignment margin is reduced with increasing widths, leading to yield loss. Similar trends were 

observed for other process steps.  

The trends for a pitch of 10nm are shown in Fig. 21. As expected, for the same 3-sigma overlay 

imprecision, the yield is lower since less misalignment tolerance is available.  

The following observations were made during the evaluation: a) the impact of the nanowire 

width on the yield increases with increasing overlay imprecision, b) the rate of decrease in yield 

with increasing width, is faster at lower pitches as expected, c) the ‘sensitivity of yield to width’ 

analysis aids in achieving an efficient yield-performance tradeoff during the manufacturing 

An analysis of the contribution of each manufacturing step towards the yield loss was also 

carried out. This can be used to bring about improvements in manufacturing flow.  The results in 

Fig. 22 show that the vertical functionalization step (Fig. 5.H) is the most sensitive to mask overlay 

effects.  Additional alignment markers may be used to alleviate overlay imprecision for this step. It 

can also be observed that the horizontal contact creation step (Fig. 5.B) is the  least contributor 

towards yield loss, implying that nanofabrication techniques (based on contact patterning or self-

assembly based approaches) tend to favor the formation of regular periodic structures such as grids 

as the bottom most layer. Registration requirements in such regular structures are alleviated since 
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an initial lithography mask may be ‘offset’ with no loss of functionality. In CMOL [17] and HP’s 

FPNI [9], nanofabric unconventional techniques such as Nanoimprint are necessary after the 

fabrication of CMOS layers. This results in overlay alignment for imprint lithography with 

3σ=±105nm [59], which implies significant challenges in alignment against previously formed 

features. Such a large overlay misalignment can contribute to significant yield losses (or 

conversely trade-off much of the density benefit for acceptable yield) and is not ideal. 

Furthermore, if an unconventional manufacturing step is performed before any lithographic 

masking, it is not affected by any overlay requirement. Thus, the result motivates us to utilize the 

uniform nanowire grid as the bottom most layer in the manufacturing pathway. 

 

Figure 22. Percentage contributions of individual steps towards yield loss 

5.4.1.3. Sensitivity to mask feature size 

 

 The impact of the varying mask feature size on the systematic yield loss due to mask 

overlay imprecision was evaluated. The mask feature size was varied from dimensions of (pitch X 

pitch) up until [(2p-w) X (2p-w)], where w is the width and p is the pitch of nanowire. Fig. 23 

shows transistor defects that arise from misalignment of the mask (with mask feature size being 

0

5

10

15

20

pitch 10nm ; width 5nm ; overay 5.7nm pitch 16nm ; width 10nm ; overay 5.7nm

Percentage contribution of induvidual steps 

towards yield loss

Step 1: Horizontal contact Step Step 2:Horizontal Functionalization step

Step 3:Vertical Contact Step Step 4:Vertical Functionalization step



42 

 

(2p-w) X (2p-w)). Fig. 23.a shows the correct alignment scenario. A vertical misalignment less 

than [p-w/2] but greater than w, has resulted in shorted channels across the horizontal nanowire 

array, leading to yield loss (Fig. 23.c). While at this point the chip is already defective, for 

completeness, a case where both incorrectly shorted and incorrectly functionalized devices are 

created is shown ( Fig. 23.b ) when the misalignment exceeds (p-w/2). Fig. 23.d shows the 

formation of FET at the intended position as well at an undesired location due to mask overlay. To 

summarize, 

[ m/2 + O ] >= (p + w/2 ), resulted in the formation of transistors at undesired locations; 

[ O > m/2 – w/2 ], resulted in shorting of devices; 

where, 

m = minimum feature size 

O = mask overlay 

w = nanowire width 

p = nanowire pitch 

Fig. 24 depicts the results for pitch of 16nm, width of 8nm. The mask feature size was varied from 

16nm (pitch X pitch) up until 24nm [(2p-w) X (2p-w)]. Percentage increase in yield of up to 9% 

was seen when mask overlay of 5.7nm was considered. However, the increase in yield due to the 

increased mask feature size was ~1% at high mask overlay of 10.3nm. The results also indicate 

that the occurrence of open interconnect is less probable (as ion implant creates high conductive 

region and aids in alleviating overlay imprecision) and hence results in yield  
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Figure 23. Implication of mask overlay with mask feature size of dimension (2p - w) X (2p - w) 

improvement. The results also emphasize that manufacturing requirements can be significantly 

alleviated for a larger feature size. The yield drops to a very low value upon increasing the 

minimum feature size to 25nm (which is greater than [(2p-w) X (2p-w)]). This is due to the fact 

that a very minimum overlay would also result in the formation of a transistor at the wrong 

position. Fig. 25 depicts the yield for pitch 10nm, width 5nm nanowires for mask feature size 

varying from 10nm to 15nm. 
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Figure 24. Yield for varying mask feature size, pitch 16nm, width 8nm 

 

 

Figure 25. Yield for varying mask feature size, pitch 10nm, width 5nm  

 

5.4.2 ‘Nanowire transfer’ implications on Systematic Yield 

 

 The implication of nanowire transfer step on the systematic yield was evaluated. The 

physical parameters (pitch, width) of the fabric play an important role in yield estimation. The 

simulations were performed for varying pitch and width. The yield loss due to nanowire transfer 

varied from ~40% (at 3σ mask overlay of 1.8nm) to ~37% (at 3σ mask overlay of 10.3nm) for 

16nm pitch nanowires. This result shows that the yield due to Nanowire transfer is more critical 
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than the mask overlay limited yield. The results also indicate slight improvement in yield due to 

decreasing width of nanowire for a constant pitch. Fig. 26 shows the Nanowire transfer limited 

yield loss for pitch 18nm, 20nm and 22nm respectively (for various widths, and selected mask 

overlay). A yield loss of ~40-50% was observed in the above scenario. 

 

 

 

 

Figure 26. Yield with Nanowire (NW) transfer modeled; for varying NW width and pitch 

 In order to account for the area penalty of the large pitch, effective yield was also 

evaluated. It can be seen from Fig. 27 that when ideal NW transfer is assumed, pitch 16nm; width 

8nm designs had the highest effective yield. However, upon modeling the NW transfer, (Fig. 28) it 

was seen that pitch 18nm, width 8nm designs had the highest effective yield. [With the base design 

being WISP-0 mapped to 10nm pitch fabric; effective yield is given by, (Effective Yield)= (Yield 

at NW pitch considered)*(Area of WISP-0 at 10nm pitch)/(Area of WISP-0 at NW pitch 

considered)]. Hence, the choice of the physical parameters of the fabric can be made depending on 

the precision of the manufacturing step available. 
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Figure 27. Effective yield plots for varying pitch and width 

 

 

Figure 28. Effective yield plots for varying pitch and width (NW transfer modeled) 

 

5.5. Conclusion  

 The current chapter discussed the systematic yield calculation of the WISP-0 design 
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result in interdependency among the two yield estimates? The above questions are answered in the 

next chapter where the overall yield estimation procedure is discussed. 
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CHAPTER 6 

OVERALL YIELD ESTIMATION 

 

 Chap. 4 discussed the particulate limited yield loss and Chap.5 discussed the systematic 

yield loss. However, the interdependency between the above two yield losses needs to be 

evaluated. Variation in the critical area is estimated based on evaluation of functional wisp layout 

witnessing nanowire misalignment due to transfer step. The functional wisp layout (upon nanowire 

transfer) was subjected to POF evaluation using the approach mentioned in section 4.2. 

 Fig. 29 shows the variation in POF (shorts) for 16nm pitch at widths 8, 9, 10 and 11nm. An 

increase of up to ~6% was seen in POF for shorts. Similar analysis was carried out for opens which 

saw a decrease of up to ~4%. Critical Area was subsequently evaluated which was used for 

particulate limited yield loss estimation. Fig. 30 shows the particulate limited yield loss at the 

projected defective density 0.01 defects/cm.sq. Fig. 31 depicts the particulate limited yield loss 

using the clustered parameter. (See Chap. 4 for more details).In both the scenarios, no variation 

was seen in the particulate limited yield loss, with and without systematic variation. It must be 

noted that the increase or decrease observed in Critical Area would have an influence on the 

random defect limited yield only when the area of the design is large. For smaller designs, the 

number of defects observed is very small and hence even a considerable change in critical area 

may not manifest as random yield loss. Therefore, variations in POF did not show any variation in 

yield due to the small area of the WISP design used for evaluation. However, a variation of 0.05% 

in yield would be seen at designs of area 1010 as that of WISP area. This leads us to the conclusion 

that the interdependence of systematic yield loss and the particulate limited yield loss is negligible 

and hence the two can be considered independent. 

 The overall yield of the design can hence be considered as the product of the particulate 

limited yield and systematic yield as shown in Fig. 32 and Fig. 33. The overall yield of design 

mapped to NASIC fabric of pitch 16nm, width 8nm at defect density of 0.01 defects/sq.cm is given 

by Fig.32 and at 0.1 defects/sq.um is given by Fig. 33 respectively. The systematic yield analysis 
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however assumes zero rotational misalignment of nanowires and also the nanowires to be perfectly 

parallel. The above assumptions are valid and hold true for designs of WISP-0 dimension. 

However, the above assumptions need to be revisited when analyzing larger designs.  

 

 

 Figure 29. POF plot for pitch 16nm; width 8, 9nm (with and without systematic variation)  

 

 

 

Figure 30. Particulate Limited Yield loss using Poisson model 
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Figure 31. Particulate Limited Yield loss using Clustered model 

 

 

 

Figure 32. Overall Yield estimation of wisp design at pitch16nm; width 8nm  
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Figure 33. Overall Yield estimation of wisp design at pitch16nm; width 8nm (at varying overlay) 
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CHAPTER 7 

CONCLUSION 

 

 To understand and deal with the challenges associated with a bottom-up fabrication of 

nanoelectronic circuits, identification of defects introduced during each step of the manufacturing 

pathway is essential. A study of the yield implications of the manufacturing sequence proposed for 

NASIC has been presented. The sensitivity of the projected yield to physical fabric parameters was 

evaluated. It was evident that the nanowire transfer was the most critical step in the manufacturing 

process which resulted in ~40% systematic yield loss. An analysis of the contribution of each 

manufacturing step towards the yield loss was also carried out. This can be used to bring about 

improvements in manufacturing flow.  The results also show that the vertical functionalization step 

is the most sensitive to mask overlay effects.  Additional alignment markers may be used to 

alleviate overlay imprecision for this step. It can also be observed that the horizontal contact 

creation step is the  least contributor towards yield loss, implying that nanofabrication techniques 

(based on contact patterning or self-assembly based approaches) tend to favor the formation of 

regular periodic structures such as grids as the bottom most layer. Registration requirements in 

such regular structures are alleviated since an initial lithography mask may be ‘offset’ with no loss 

of functionality. The pitch and width of the nanowire can be chosen in accordance with the 

lithographic alignment precision available to achieve an intended chip yield. Finally, the overall 

yield of the WISP-0 design was calculated considering both systematic and particulate limited 

yield loss.  

 The thesis estimated the yield loss by analyzing the sources of defects in a nano-

manufacturing flow. It integrates physical fabric considerations, manufacturing sequences and the 

resulting defect scenarios. This is in contrast to most current approaches that use conventional 

defect models and assume constant defect rates without analyzing the manufacturing pathway to 

determine the sources of defects and their probabilities. The manufacturing pathway was analyzed 

for identifying the defects introduced during each manufacturing step in the sequence, followed by 
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yield loss estimation. The yield analysis can hence be used to identify effective design choices in 

fabric manufacturing. The pitch and width of the nanowire can be chosen in accordance with the 

lithographic alignment precision, nanowire transfer precision, available to achieve an intended chip 

yield. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



54 

 

BIBLIOGRAPHY 

 
[1]  M. Law, J. Goldberger, and P. Yang, “Semiconductor Nanowires and Nanotubes,” Annual Review of 

Materials Research, vol. 34, no. 1, pp. 83-122, Aug. 2004. 
[2]  W. Lu and C. M. Lieber, “Semiconductor nanowires,” Journal of Physics D: Applied Physics, vol. 

39, no. 21, p. R387-R406, Nov. 2006. 
[3]  I. Zutic, J. Fabian, and S. D. Sarma, “Spintronics: Fundamentals and applications,” cond-

mat/0405528, May 2004. 
[4]  S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, no. 

6430, pp. 603-605, Jun. 1993. 
[5]  R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, “Single- and multi-wall carbon 

nanotube field-effect transistors,” Applied Physics Letters, vol. 73, no. 17, p. 2447, 1998. 
[6]  B. Huard, J. A. Sulpizio, N. Stander, K. Todd, B. Yang, and D. Goldhaber-Gordon, “Transport 

Measurements Across a Tunable Potential Barrier in Graphene,” Physical Review Letters, vol. 98, no. 
23, p. 236803, Jun. 2007. 

[7]  T. Wang, P. Narayanan, and C. Andras Moritz, “Heterogeneous Two-Level Logic and Its Density and 
Fault Tolerance Implications in Nanoscale Fabrics,” IEEE Transactions on Nanotechnology, vol. 8, 
no. 1, pp. 22-30, Jan. 2009. 

[8]  C. A. Moritz et al., “Fault-Tolerant Nanoscale Processors on Semiconductor Nanowire Grids,” IEEE 

Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 11, pp. 2422-2437, Nov. 2007. 
[9]  G. S. Snider and R. S. Williams, “Nano/CMOS architectures using a field-programmable nanowire 

interconnect,” Nanotechnology, vol. 18, no. 3, p. 035204, Jan. 2007. 
[10]  D. B. Strukov and K. K. Likharev, “Reconfigurable Hybrid CMOS/Nanodevice Circuits for Image 

Processing,” IEEE Transactions on Nanotechnology, vol. 6, no. 6, pp. 696-710, Nov. 2007. 
[11]  Y. Su and W. Rao, “Defect-Tolerant Logic Mapping on Nanoscale Crossbar Architectures and Yield 

Analysis,” in 2009 24th IEEE International Symposium on Defect and Fault Tolerance in VLSI 

Systems, Chicago, Illinois, USA, 2009, pp. 322-330. 
[12]  Y. Dotan, N. Levison, R. Avidan, and D. J. Lilja, “History Index of Correct Computation for Fault-

Tolerant Nano-Computing,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 
17, no. 7, pp. 943-952, Jul. 2009. 

[13]  J. P. Patwardhan, V. Johri, C. Dwyer, and A. R. Lebeck, “A defect tolerant self-organizing nanoscale 
SIMD architecture,” ACM SIGOPS Operating Systems Review, vol. 34, pp. 241–251, Oct. 2006. 

[14]  T. Wang, M. Ben-naser, Y. Guo, and C. A. Moritz, “Wire-streaming processors on 2-D nanowire 
fabrics,” NANOTECH 2005, NANO SCIENCE AND TECHNOLOGY INSTITUTE, 2005. 

[15]  C. A. Moritz, P. Narayanan, and C. O. Chui, “Nanoscale Application-Specific Integrated Circuits,” in 
Nanoelectronic Circuit Design, N. K. Jha and D. Chen, Eds. Springer New York, 2011, pp. 215-275. 

[16]  P. Narayanan, K. W. Park, C. O. Chui, and C. A. Moritz, “Manufacturing pathway and associated 
challenges for nanoscale computational systems,” in Nanotechnology, 2009. IEEE-NANO 2009. 9th 

IEEE Conference on, 2009, pp. 119 -122. 
[17]  K. K. Likharev, “CMOL: Second life for silicon,” Microelectronics Journal, vol. 39, no. 2, pp. 177-

183, Feb. 2008. 
[18]  G. F. Cerofolini et al., “Terascale integration via a redesign of the crossbar based on a vertical 

arrangement of poly-Si nanowires,” Semiconductor Science and Technology, vol. 25, no. 9, p. 
095011, Sep. 2010. 

[19]  I. Koren, Z. Koren, and C. H. Stapper, “A unified negative-binomial distribution for yield analysis of 
defect-tolerant circuits,” IEEE Transactions on Computers, vol. 42, no. 6, pp. 724-734, Jun. 1993. 

[20]  W. Maly, A. J. Strojwas, and S. W. Director, “VLSI Yield Prediction and Estimation: A Unified 
Framework,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 
5, no. 1, pp. 114-130, Jan. 1986. 



55 

 

[21]  I. Koren and C. M. Krishna, Fault-Tolerant Systems. Morgan-kaufman, 2007. 
[22]  P. Narayanan, M. Leuchtenburg, T. Wang, and C. A. Moritz, “CMOS Control Enabled Single-Type 

FET NASIC,” in 2008 IEEE Computer Society Annual Symposium on VLSI, Montpellier, France, 
2008, pp. 191-196. 

[23]  T. Wang, P. Narayanan, and C. A. Moritz, “Combining 2-level logic families in grid-based nanoscale 
fabrics,” in 2007 IEEE International Symposium on Nanoscale Architectures, San Jose, CA, USA, 
2007, pp. 101-108. 

[24]  M. B. Tahoori, “Defect Tolerance in Crossbar Array Nano-Architectures,” in Emerging 

Nanotechnologies, vol. 37, M. Tehranipoor, Ed. Boston, MA: Springer US, 2008, pp. 121-151. 
[25]  T. Wang, P. Narayanan, M. Leuchtenburg, and C. A. Moritz, “NASICs: A nanoscale fabric for 

nanoscale microprocessors,” in 2008 2nd IEEE International Nanoelectronics Conference, Shanghai, 
China, 2008, pp. 989-994. 

[26]  A. Dehon, “Nanowire-based programmable architectures,” ACM Journal on Emerging Technologies 

in Computing Systems (JETC), vol. 1, pp. 109–162, Jul. 2005. 
[27]  K. K. Likharev and D. B. Strukov, “CMOL: Devices, Circuits, and Architectures,” in Introducing 

Molecular Electronics, vol. 680, G. Cuniberti, K. Richter, and G. Fagas, Eds. Springer Berlin 
Heidelberg, 2006, pp. 447-477. 

[28]  K. Nikolic, A. Sadek, and M. Forshaw, “Architectures for reliable computing with unreliable 
nanodevices,” in Proceedings of the 2001 1st IEEE Conference on Nanotechnology. IEEE-NANO 

2001 (Cat. No.01EX516), Maui, HI, USA, pp. 254-259. 
[29]  P. K. Lala and D. L. Tao, “On fault-tolerant PLA design,” in IEEE Proceedings on Southeastcon, 

New Orleans, LA, USA, pp. 945-947. 
[30]  Y. Chen et al., “Nanoscale molecular-switch crossbar circuits,” Nanotechnology, vol. 14, no. 4, pp. 

462-468, Apr. 2003. 
[31]  H. Naeimi and A. DeHon, “A greedy algorithm for tolerating defective crosspoints in nanoPLA 

design,” in Proceedings. 2004 IEEE International Conference on Field- Programmable Technology 

(IEEE Cat. No.04EX921), Brisbane, NSW, Australia, pp. 49-56. 
[32]  J. Han and P. Jonker, “A defect- and fault-tolerant architecture for nanocomputers,” Nanotechnology, 

vol. 14, no. 2, pp. 224-230, Feb. 2003. 
[33]  W. Rao, A. Orailoglu, and R. Karri, “Logic Level Fault Tolerance Approaches Targeting 

Nanoelectronics PLAs,” in 2007 Design, Automation & Test in Europe Conference & Exhibition, 
Nice, France, 2007, pp. 1-5. 

[34]  W. Rao, A. Orailoglu, and R. Karri, “Fault Tolerant Approaches to Nanoelectronic Programmable 
Logic Arrays,” in Proceedings of the 37th Annual IEEE/IFIP International Conference on 

Dependable Systems and Networks, Washington, DC, USA, 2007, pp. 216–224. 
[35]  S. Zhang, M. Choi, and N. Park, “Modeling yield of carbon-nanotube/silicon-nanowire FET-based 

nanoarray architecture with h-hot addressing scheme,” in 19th IEEE International Symposium on 

Defect and Fault Tolerance in VLSI Systems, 2004. DFT 2004. Proceedings., Cannes, France, pp. 
356-364. 

[36]  F. Angiolini, M. H. B. Jamaa, D. Atienza, L. Benini, and G. de Micheli, “Improving the Fault 
Tolerance of Nanometric PLA Designs,” in 2007 Design, Automation & Test in Europe Conference & 

Exhibition, Nice, France, 2007, pp. 1-6. 
[37]  D. B. Strukov and K. K. Likharev, “CMOL FPGA: a reconfigurable architecture for hybrid digital 

circuits with two-terminal nanodevices,” Nanotechnology, vol. 16, no. 6, pp. 888-900, Jun. 2005. 
[38]  P. Narayanan et al., “Parameter Variability in Nanoscale Fabrics: Bottom-Up Integrated 

Exploration,” in 2010 IEEE 25th International Symposium on Defect and Fault Tolerance in VLSI 

Systems, Kyoto, Japan, 2010, pp. 24-31. 
[39]  Z. Chen et al., “An Integrated Logic Circuit Assembled on a Single Carbon Nanotube,” Science, vol. 

311, no. 5768, p. 1735, Mar. 2006. 
[40]  D. Wang, B. A. Sheriff, M. McAlpine, and J. R. Heath, “Development of ultra-high density silicon 

nanowire arrays for electronics applications,” Nano Research, vol. 1, no. 1, pp. 9-21, Jul. 2008. 



56 

 

[41] “ITRS Home.” [Online]. Available: http://www.itrs.net/. 
[42]  I. Koren, Z. Koren, and C. H. Stapper, “A statistical study of defect maps of large area VLSI IC’s,” 

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 2, no. 2, pp. 249-256, Jun. 
1994. 

[43]  H. Walker and S. W. Director, “VLASIC: A Catastrophic Fault Yield Simulator for Integrated 
Circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 5, 
no. 4, pp. 541-556, Oct. 1986. 

[44]  C. Zhou, R. Ross, C. Vickery, B. Metteer, S. Gross, and D. Verret, “Yield prediction using critical 
area analysis with inline defect data,” in 13th Annual IEEE/SEMI Advanced Semiconductor 

Manufacturing Conference. Advancing the Science and Technology of Semiconductor Manufacturing. 

ASMC 2002 (Cat. No.02CH37259), Boston, MA, USA, pp. 82-86. 
[45]  C. H. Stapper, “Modeling of defects in integrated circuit photolithographic patterns,” IBM Journal of 

Research and Development, vol. 28, no. 4, pp. 461-475, Jul. 1984. 
[46]  C. H. Stapper, F. M. Armstrong, and K. Saji, “Integrated circuit yield statistics,” Proceedings of the 

IEEE, vol. 71, no. 4, pp. 453-470, 1983. 
[47]  C. H. Stapper, “Yield model for fault clusters within integrated circuits,” IBM Journal of Research 

and Development, vol. 28, no. 5, pp. 636-640, Sep. 1984. 
[48]  K. Monahan, “Design and process limited yield at the 65-nm node and beyond,” in Proceedings of 

SPIE, San Jose, CA, USA, 2005, pp. 230-239. 
[49]  D. Wang, Y. Bunimovich, A. Boukai, and J. R. Heath, “Two-dimensional single-crystal nanowire 

arrays,” Small (Weinheim an Der Bergstrasse, Germany), vol. 3, no. 12, pp. 2043-2047, Dec. 2007. 
[50]  X. Chen, M. Hirtz, H. Fuchs, and L. Chi, “Fabrication of Gradient Mesostructures by 

Langmuir−Blodgett Rotating Transfer,” Langmuir, vol. 23, no. 5, pp. 2280-2283, Feb. 2007. 
[51]  D. Whang, S. Jin, and C. M. Lieber, “Nanolithography Using Hierarchically Assembled Nanowire 

Masks,” Nano Letters, vol. 3, no. 7, pp. 951-954, Jul. 2003. 
[52]  X. Xiong, L. Jaberansari, M. G. Hahm, A. Busnaina, and Y. J. Jung, “Building highly organized 

single-walled-carbon-nanotube networks using template-guided fluidic assembly,” Small (Weinheim 

an Der Bergstrasse, Germany), vol. 3, no. 12, pp. 2006-2010, Dec. 2007. 
[53]  Y. Liu, J.-H. Chung, W. K. Liu, and R. S. Ruoff, “Dielectrophoretic Assembly of Nanowires,” The 

Journal of Physical Chemistry B, vol. 110, no. 29, pp. 14098-14106, Jul. 2006. 
[54]  K. Heo et al., “Large-Scale Assembly of Silicon Nanowire Network-Based Devices Using 

Conventional Microfabrication Facilities,” Nano Letters, vol. 8, no. 12, pp. 4523-4527, Dec. 2008. 
[55]  B. J. Jordan et al., “Controlled self-assembly of organic nanowires and platelets using dipolar and 

hydrogen-bonding interactions,” Small (Weinheim an Der Bergstrasse, Germany), vol. 4, no. 11, pp. 
2074-2078, Nov. 2008. 

[56]  T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, and L. Samuelson, “Nanowire 
Arrays Defined by Nanoimprint Lithography,” Nano Letters, vol. 4, no. 4, pp. 699-702, Apr. 2004. 

[57]  V. T. Chitnis, “Automatic mask-to-wafer alignment and gap control using moire interferometry,” in 
Proceedings of SPIE, San Diego, CA, USA, 1991, pp. 613-622. 

[58]  S. H. Zaidi, “Moire interferometric alignment and overlay techniques,” in Proceedings of SPIE, San 
Jose, CA, USA, 1994, pp. 371-382. 

[59]  C. Picciotto, J. Gao, Z. Yu, and W. Wu, “Alignment for imprint lithography using nDSE and shallow 
molds,” Nanotechnology, vol. 20, no. 25, p. 255304, Jun. 2009. 

[60] K.-S. Shin and C. O. Chui, “Aligned Assembly of Nanowire Arrays with Intrinsic Control,” to be 
presented in the TMS EMC , 2011 


	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2012

	Impact of Manufacturing Flow on Yield Losses in Nanoscale Fabrics
	Priyamvada Vijayakumar

	IMPACT OF MANUFACTURING FLOW ON YIELD LOSSES IN NANOSCALE FABRICS

