
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses 1911 - February 2014

2013

Testing and Validation of a Prototype Gpgpu
Design for FPGAs
Murtaza Merchant
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

Part of the VLSI and Circuits, Embedded and Hardware Systems Commons

This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 -
February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Merchant, Murtaza, "Testing and Validation of a Prototype Gpgpu Design for FPGAs" (2013). Masters Theses 1911 - February 2014.
1012.
Retrieved from https://scholarworks.umass.edu/theses/1012

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Ftheses%2F1012&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F1012&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F1012&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Ftheses%2F1012&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses/1012?utm_source=scholarworks.umass.edu%2Ftheses%2F1012&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

TESTING AND VALIDATION OF A PROTOTYPE GPGPU

 DESIGN FOR FPGAs

A Thesis Presented

by

MURTAZA S. MERCHANT

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

February 2013

Department of Electrical and Computer Engineering

© Copyright by Murtaza S. Merchant 2013

All Rights Reserved

TESTING AND VALIDATION OF A PROTOTYPE GPGPU

 DESIGN FOR FPGAs

A Thesis Presented

by

MURTAZA S. MERCHANT

Approved as to style and content by:

Russell G. Tessier, Chair

 Wayne P. Burleson, Member

 Mario Parente, Member

C. V. Hollot, Department Head

Electrical and Computer Engineering

iv

ACKNOWLEDGEMENTS

To begin with, I would like to sincerely thank my advisor, Prof. Russell Tessier

for all his support, faith in my abilities and encouragement throughout my tenure as a

graduate student. Without his guidance, this thesis wouldn‘t have been possible. I am also

very thankful to Kevin Andryc, who has been my constant tutor throughout this project. I

couldn‘t have asked for a better teammate to work with. His focus and dedication to this

project despite a full-time job is something I will always appreciate. I extend my

gratitude towards Prof. Wayne Burleson and Prof. Mario Parente, and would like to thank

them for being on my thesis committee.

Next, I would like to thank all my wonderful current and former lab mates— Hari,

Deepak, Kekai, Cory, Justin, Jia and Gayatri, for making the RCG lab a fun place to

work. I will relish the times we spent together for a very long time. I would also like to

thank all my other friends that I have made over the past 2 years in Amherst, for making

my stay so enjoyable. The town and its people have made my stay a truly worthwhile

experience.

And of course, no acknowledgement is complete without expressing your

gratitude and thankfulness towards one‘s parents. They have always been, and will

always be there through my best and worst of times. I deeply thank them for their support

and faith in me. I feel truly blessed to have them in my life.

v

ABSTRACT

TESTING AND VALIDATION OF A PROTOTYPE GPGPU

DESIGN FOR FPGAs

FEBRUARY 2013

MURTAZA S. MERCHANT

B.E, UNIVERSITY OF MUMBAI, INDIA

M.S. E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Russell G. Tessier

Due to their suitability for highly parallel and pipelined computation, field

programmable gate arrays (FPGAs) and general-purpose graphics processing units

(GPGPUs) have emerged as top contenders for hardware acceleration of high-

performance computing applications. FPGAs are highly specialized devices that can be

customized to an application, whereas GPGPUs are made of a fixed array of

multiprocessors with a rigid architectural model. To alleviate this rigidity as well as to

combine some other benefits of the two platforms, it is desirable to explore the

implementation of a flexible GPGPU (soft GPGPU) using the reconfigurable fabric found

in an FPGA. This thesis describes an aggressive effort to test and validate a prototype

GPGPU design targeted to a Virtex-6 FPGA. Individual stages of the design have been

separately tested with the aid of manually-generated register transfer level (RTL)

testbenches and logic simulation tools. The tested modules are then integrated together to

build the GPGPU processing pipeline. The GPGPU design is completely validated by

benchmarking the platform against five standard CUDA benchmarks with varying

control-flow characteristics. The architecture is fully CUDA-compatible and supports

direct CUDA compilation of the benchmarks to a binary that is executable on the soft

vi

GPGPU. The validation is performed by comparing the FPGA simulation results against

the golden references generated using corresponding C/C++ executions. The efficiency

and scalability of the soft GPGPU platform is validated by varying the number of

processing cores and examining its effect on the performance and area. Preliminary

results show that the validated GPGPU platform with 32 cores can offer up to 25x

speedup for most benchmarks over a fully optimized MicroBlaze soft microprocessor.

The results also accentuate the benefits of the thread-based execution model of GPUs as

well as their ability to perform complex control flow operations in hardware. The testing

and validation of the designed soft GPGPU system, serves as a prerequisite for rapid

design exploration of the platform in the future.

vii

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS .. iv

ABSTRACT ... v

LIST OF TABLES ... ix

LIST OF FIGURES .. x

CHAPTER

1. INTRODUCTION... 1

2. BACKGROUND AND RELATED WORK ... 6

2.1 Field-programmable gate array (FPGA).. 6

2.2 General-purpose computing on graphics processing unit (GPGPU) 7

2.2.1 G80: The hardware architecture .. 9

2.2.2 CUDA: The software programming model ... 10

2.3 Related work / Overall motivation for soft GPGPUs 13

2.4 Chapter Summary .. 16

3. SOFT GPGPU ARCHITECTURE ... 17

3.1 High-level execution flow ... 17

3.2 Pipeline description ... 19

3.2.1 Warp unit ... 19

3.2.2 Fetch and decode stage .. 21

3.2.3 Read stage ... 22

3.2.4 Control / Execute stage ... 24

3.2.5 Write stage... 28

3.3 Supported CUDA instructions ... 29

3.4 Chapter Summary .. 31

viii

4. TESTING AND VALIDATION .. 32

4.1 Software flow .. 32

4.2 Testing experiments ... 34

4.2.1 Decode stage ... 35

4.2.2 Read / Write stage ... 39

4.3 System validation .. 42

4.3.1 Benchmark suite .. 42

4.3.2 Validation results... 46

4.4 Chapter Summary .. 47

5. EXPERIMENTAL RESULTS ... 48

5.1 Performance evaluation ... 48

5.1.1 Evaluating architecture scalability .. 48

5.1.2 Evaluating application scalability ... 52

5.2 Area evaluation .. 53

5.3 Chapter Summary .. 56

6. CONCLUSION AND FUTURE WORK .. 57

APPENDIX: MISCELLANEOUS DEBUGGING ISSUES .. 59

BIBLIOGRAPHY ... 62

ix

LIST OF TABLES

Table Page

1: CUDA specifications for compute capability 1.0 ... 13

2: Instruction set .. 30

3: Benchmark suite ... 44

4: Cycle counts comparison .. 49

5: Post-PAR utilization and timing results.. 53

6: Area utilization breakdown ... 54

7: Area for variable cores / SMs ... 55

x

LIST OF FIGURES

Figure Page

1: Computations per second - GPU vs. CPU [3] .. 1

2: Ease-of-implementation vs. Design Flexibility for GPGPUs and FPGAs 2

3: FPGA architecture [8] ... 6

4: Resource distribution for a CPU and GPU [4] ... 8

5: Nvidia GPU environment [17] .. 9

6: Host-GPU interaction [4] .. 12

7: OpenCL framework for Altera FPGAs [24] ... 15

8: Streaming multiprocessor ... 17

9: Barrier synchronization using fence registers ... 22

10: Vector register file read operation .. 23

11 : Handling branch divergence .. 26

12: (Left) Software flow as apparent to the user, (Right) Actual software flow 33

13: Simulation process for logic verification .. 35

14: Decode stage ... 36

15: Decode stage results.. 37

16: Sample CUDA kernel and corresponding cubin, SASS code 38

17: Read-Write verification structure ... 39

18: Read-Write verification FSM ... 40

19: Global memory write .. 41

20: Global memory read ... 42

21: Validation flow ... 43

file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579406
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579407
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579408
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579409
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579410
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579411
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579412
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579413
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579414
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579415
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579416
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579417
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579419
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579420
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579421
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579422
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579423
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579424
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579425
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579426
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579427

xi

22: Bitonic sorting network [42] ... 45

23: Parallel reduction network [43] .. 46

24: Bitonic sort result .. 47

25: Reduction result .. 47

26: Performance scaling over 8, 16 32 cores .. 50

27: Speedup vs. MicroBlaze for variable cores .. 51

28: Speedup vs. MicroBlaze for variable SMs; (Left) MatrixMul, (Right) Transpose 52

29: Speedup vs. Microblaze for varying problem size ... 52

30: Variation trend for LUTs and Registers ... 55

file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579429
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579430
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579431
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579434
file:///C:\Users\Murtaza\Dropbox\MastersThesis\Thesis-Defense\Doc\reviewed\thesisdefense_%20Murtaza_v2.docx%23_Toc337579436

1

CHAPTER 1

INTRODUCTION

In recent years, general purpose computing using graphics processing units

(GPUs) has drawn considerable interest in the field of high-performance computation.

With many-core processor architecture and a highly parallel programming model, GPUs

have multifold computational capabilities for parallel data applications as compared to a

modern day CPU (Figure 1).

The advent of high-level programming models like Nvidia‘s Compute Unified

Device Architecture (CUDA) and ATI Stream technology have helped isolate developers

from low-level hardware details. However, a limitation of GPGPUs is their rigid

architectural model, which is constrained to fixed microarchitectural templates. As a

Figure 1: Computations per second - GPU vs. CPU

2

result, there are many computing systems which do not contain a GPGPU. Conversely,

field programmable gate arrays (FPGAs) are highly specialized devices that offer

application-specific customizations to the designer [1][2]—unfortunately, these

optimizations require cumbersome hardware design language (HDL) coding, hardware

skills and techniques, beyond the expertise of many developers. Between the hand-

modeled FPGA solutions and the high-level programming based GPGPUs, there is

sizable design space that warranties systematic exploration. This is depicted by the brown

area in Figure 2.

To exploit the respective strengths of these two platforms while simultaneously

alleviating their drawbacks, this thesis explores the testing and validation of a prototype

GPGPU design targeted to FPGAs, also known as a soft GPGPU. The soft GPGPU is

based on the G80 architecture [3]—the first dedicated general-purpose GPU from Nvidia

with compute capability 1.0 [4]. Most of its key features like multithreading, vector

processing and hardware conditional execution is retained in our FPGA implementation.

GPGPU

FPGA

Low

Low

High

High

E
a

s
e

-o
f-

im
p

le
m

e
n

ta
ti

o
n

Design flexibility

Design

Space

Unexplored

Design space

Figure 2: Ease-of-implementation vs. Design Flexibility for GPGPUs and FPGAs

3

An FPGA provides GPGPU flexibility for systems which do not contain an

available GPGPU. This flexibility can be expressed in terms of architectural parameters

such as the number of processing cores, the arithmetic bit-width, and the ratio of

arithmetic elements to memory elements, etc. Our approach enables the reusability of

existing system FPGAs for computing applications like image processing and computer

vision algorithms that benefit from a many-core architectural template.

The first prototype design of the soft GPGPU has been developed in conjunction

with UMass ECE Ph.D student Kevin Andryc. The functional verification of the

individual soft GPGPU blocks and the integrated design is necessary before detailed

experimentation and evaluation can be carried out. As with any prototype design,

verification and validation plays a critical role in the development process. It enables the

detection of errors and allows for bug correction early in the design cycle, especially

during the implementation of the RTL design from a behavioral specification. As the

design process matures, iterative verification is crucial in moving the design forward to

the next stage. In this context, a testing and validation plan for the soft GPGPU along

with preliminary experimentation results are detailed in this thesis.

There are primarily two contemporary verification techniques that are used in the

industry, formal verification [5] [6] and simulation-based verification. Formal

verification methods, like equivalence checking, model checking, and theorem-proving,

use abstract mathematical models to prove or disprove the correctness of a design.

However, using formal verification methods demands experienced designers, who are

knowledgeable about various design practices. Today, the industry is more reliant on

simulation-based verification techniques, which involve predicting the functional

4

response of a circuit based on specified input values. Logic simulation has been the

workhorse verification technique for testing RTL designs. The input values which form

the ‗testbench‘ are manually created using hardware description languages like VHDL or

Verilog and serve as the stimulus to the design. The testbench and the design are fed to

logic simulation tools to verify the correctness of the design by comparing the captured

simulation waveforms with the expected results based on the specifications of the design.

The testing and validation of the implemented soft GPGPU is performed using

simulation-based verification techniques. We begin with testing the individual stages of

the pipeline using manually generated VHDL testbenches and making necessary design

modifications (if any) commensurate with the required functionality of the module. With

sufficient confidence in the correct functionality of the individual stages, we proceed to

integrate the stages together to build the GPGPU processing pipeline. Pipeline

verification is carried out by simulating a wide variety of CUDA assembly instructions

through the pipeline. As a final step, validation of the entire system is accomplished by

compiling five CUDA benchmarks to binary and simulating them on the soft GPGPU

design. Further, benchmarking experiments are conducted to analyze the effects of

reconfiguring certain preliminary architectural parameters of the soft GPGPU on area and

performance.

The thesis focuses on leveraging the first-ever soft GPGPU prototype to

successfully simulate CUDA benchmarks. It overlays the foundation for conducting a

wide variety of experiments in the future and opens up opportunities to compare our

implementation with similar parallel processing platforms like FPGA based soft vector

processors and OpenCL to multicore implementations.

5

The rest of the thesis is organized as follows: Chapter 2 provides general

background on the Nvidia G80 architecture and the CUDA programming model. This

chapter also provides an overview of the related work which includes several FPGA-

targeted projects for implementing data parallel applications. Chapter 3 describes the

architecture of the implemented soft GPGPU with detailed functionality of critical blocks

in the design. Chapter 4 illustrates the testing and validation methodologies used in this

work. Chapter 5 discusses the various experiments and explains the obtained results.

Chapter 6 concludes the thesis by providing directions for future work.

6

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Field-programmable gate array (FPGA)

A field-programmable gate array (FPGA) is an integrated circuit that can be

completely reconfigured even after it is fabricated [7]. As illustrated by

Figure 3, it consists of a prebuilt array of combinational logic blocks (CLBs),

memory elements (Block RAMs), input-output blocks (IOBs) and DSP units, surrounded

by programmable routing resources that can be configured using a hardware description

language (HDL) such as VHDL or Verilog.

Using an HDL, custom hardware functionality can be implemented on an FPGA. The

large array of logic blocks spread across the fabric provides fine-grained parallelism to

FPGAs. Such parallelism provides orders of magnitudes of application speedup as

compared to conventional CPUs, and in some cases even GPUs [9].

Figure 3: FPGA architecture [8]

7

FPGAs are highly specialized devices that offer application-specific

customization to designers. These customizations include on-chip memory (block

RAMs), DSP units (multiplier or a floating point unit), bit-width variations etc. Higher

power efficiency [10] and lower time-to-market as compared to ASICs are other benefits

provided by FPGAs. These benefits come at the cost of increased design effort and

necessity of digital hardware design knowledge for programming these custom-

computing machines. However, the advent of high-level synthesis tools [11], with new

technologies that convert C code or even graphical descriptions into digital hardware is

changing this trend.

2.2 General-purpose computing on graphics processing unit (GPGPU)

General-purpose computing on graphics processing unit (GPGPU) uses graphics

processors (GPUs) which typically handle computations for computer graphics and for

non-graphics computing applications. GPGPUs have a many-core device architecture and

possess substantial parallel processing capabilities [12] [13] [14].They consist of an array

of multiprocessors (each with two or more processing units) enabling them to execute

thousands of threads in parallel. In a GPU, a majority of the silicon area is dedicated to

data processing units with only a small portion assigned to data caching and flow control

circuitry, as illustrated by Figure 4. Such a design architecture makes them suitable for

solving compute-intensive problems. In comparison, CPUs embrace a sequential data

flow structure and are more suited for control flow intensive problems.

8

CPUs implement intelligent data caches [4] and flow control mechanisms like

dynamic branch prediction [15] to boost performance. Such techniques enable CPUs to

hide the latency involved with long memory operations. In contrast, GPUs run thousands

of threads in parallel on several processors to execute an application. They rely on

dedicated thread scheduling techniques and fast switching between tasks to overshadow

memory latency [16]. The primary goal is to achieve maximum multiprocessor

occupancy, resulting in high throughput. While one thread is occupied with a long

memory operation, other threads can be scheduled in parallel to carry out fast arithmetic

operations. The availability of a large number of processors facilitates effective thread

scheduling. As most applications targeting GPUs are highly parallel in nature, the

abundant processing cores can be exploited to eliminate the need for speculative

execution and advanced flow control logic.

Figure 4: Resource distribution for a CPU and GPU [4]

(Green: Data processing; Yellow: Control; Orange: Memory)

9

A high-level block diagram of the G80 GPU is illustrated in Figure 5. The

following sections describe the hardware architecture and the software model of GPUs.

2.2.1 G80: The hardware architecture

G80 [3] [18] is Nvidia‘s first supercomputing processor architecture with

dedicated support for general-purpose computing on graphics processors. The high-level

architecture of a G80 GPU is shown in Figure 5. The GPU is primarily made up of an

array of (streaming) multiprocessors, with each multiprocessor consisting of eight scalar

processor (SP) cores. The term ‗streaming multiprocessor’ implies that each

multiprocessor consists of processing elements that perform the same operation on

multiple data simultaneously. This type of execution is termed single instruction, multiple

data (SIMD) processing. Each SP operates on a thread, the smallest unit of execution in

the GPGPU system. SPs consist of dedicated hardware resources to perform arithmetic

and logical operations on threads. The vector register file contains a pool of registers that

is strictly partitioned across SPs. The register file striping allows each SP to use its own

set of registers for storing operands and results, also steering them away from any data

dependent hazards. The shared memory serves as a communication medium between the

Figure 5: Nvidia GPU environment [17]

10

different SPs residing in the same SM. Communication across different SMs is

orchestrated via the global memory, which is accessible to all the threads within the GPU.

The global memory is physically implemented as an off-chip DRAM, thus requiring a

long memory access time (400-600 clock cycles) [19] as compared to accessing registers

or shared memory. In addition, there is a read-only constant memory (not shown in the

figure) accessible by all the threads. The constant memory space is a cache for each SM,

thus allowing fast data access as long as all threads read the same memory address.

Special function units (SFUs) perform exclusive arithmetic operations like sine, cosine,

logarithmic arithmetic etc. The instruction unit maps program instructions to every thread

in the SM.

The number of threads residing in a streaming multiprocessor is governed by the

number of registers used per thread. If R is the total number of registers per SM and r is

the number of registers per thread, a maximum of R/r threads can be accommodated. The

amount of available shared memory also influences the processor occupancy, as it is

shared among all the threads of the SM and cannot exceed the available physical

resources.

2.2.2 CUDA: The software programming model

In Nvidia architecture, individual CUDA threads are combined together into

groups called as warps, as shown in Figure 5. Each warp consists of 32 threads which

execute the same instruction together in a lockstep fashion. A warp is considered to be

the unit for scheduling threads within the SM. When a SM gets a new instruction, it

selects a ‗ready‘ warp and maps the instruction to every thread within the warp. This

process is known as warp scheduling. The warp scheduling is critical in masking long

11

latency operations that consume a large number of clock cycles. In case of memory

operations, while one warp is busy executing the time consuming load/store operations,

the SM can schedule another ‗ready‘ warp for execution, thus masking the long memory

latency. In this way, the SM manages and executes concurrent threads in hardware with

zero scheduling overhead. The zero-overhead thread scheduling enables fine-grained

thread-level parallelism in GPUs.

To manage fine-grained thread parallelism, each multiprocessor is architected as a

single instruction, multiple-thread (SIMT) processor. As in the SIMD model, every

thread performs the same operation on a different set of data and is free to independently

execute data-dependent branches. Branching threads diverge from the normal execution

flow and hence have to be masked during execution of the non-branching path. As the

threads within the warp have to be executed in a lockstep, the instructions pointed to by

the branching threads are executed serially, one thread at a time, while the non-branching

threads are masked. In case of thread diversion, it is evident that the thread-level

parallelism is not fully exploited thus penalizing throughput performance. In the worst

case, if there are n threads each of which diverging to a different address in a hierarchical

fashion, n distinct paths would have to be serially executed causing O (n) performance

penalty.

A thread block is formed by combining a fixed number of warps (24 in our case)

together. The thread blocks are assigned to different SMs by the block scheduler, as

shown in Figure 5. A thread block contains threads that can cooperate together and hence

it is also called as a cooperative thread array (CTA). Thread synchronization within the

same block is achieved by using the __syncthreads barrier synchronization instruction.

12

Threads from different blocks need not synchronize, hence allowing different blocks to

execute independently. Due to a limit to the number of threads a block can contain,

several thread blocks are combined together to form a grid that contains a much larger

number of threads. The grid executes the kernel—the function to be executed on the

GPU. When a kernel is invoked by the host CPU, a grid of threads is launched as an array

of parallel thread blocks (CTAs), as shown in Figure 6. Blocks and grids can be one, two

or three dimensional, and their size must be specified while launching the kernel.

The hierarchical thread structure defines the compute unified device architecture

(CUDA) programming model and directly maps to the GPU hardware architecture as

shown in Figure 5. To summarize the hardware-software interaction using a top-down

approach:

i. Each block from the grid of threads is assigned to an SM by the block scheduler.

ii. Within each scheduled block, the SM selects idle warps for execution.

iii. Within each warp, each thread is executed on an individual SP.

Figure 6: Host-GPU interaction [4]

13

The CUDA specifications as per compute capability 1.0 are summarized in

Table 1. The soft GPGPU architecture is designed based upon these specifications:

Table 1: CUDA specifications for compute capability 1.0

2.3 Related work / Overall motivation for soft GPGPUs

Over the past few years, FPGA computing using GPGPU microarchitectural

templates has been a topic of active research [20][21][22][23]. GPU programming models

like Nvidia‘s CUDA and AMD‘s ATI are gaining traction, and it is less clear if similar

programming models defined for FPGAs can be beneficial.

Lebedev et al. [20] to the best of our knowledge were the first to embrace a many-

core abstraction for FPGA-based computation. They proposed a many-core approach to a

Maximum number of resident threads per multiprocessor 256

Maximum number of resident warps per multiprocessor 24

Warp size 32

Maximum number of resident blocks per multiprocessor 3

Maximum number of threads per SM 768

Maximum dimensionality of thread block 3

Maximum dimensionality of a grid of thread block 2

Number of 32-bit registers per multiprocessor 8192

Maximum amount of shared memory per multiprocessor 16 KB

Number of shared memory banks 1

Constant memory size 8 KB

14

reconfigurable computing (MARC) system for high performance applications expressed

in high-level programming languages like OpenCL. The prototype machine was

implemented for a Bayesian inference algorithm using a Virtex-5 FPGA. Although the

MARC system was almost three times slower than a fully optimized FPGA solution, the

design time and manual optimization effort was significantly reduced. The authors

believe that the performance degradation caused by constraining the FPGA to an

execution template could be overcome by application-specific customization of the

architecture. In another work closely associated with MARC, Fletcher et al. 0 have

implemented the Bayesian inference algorithm across several FPGAs and GPGPUs to

enunciate the efficiency gap between the two platforms. Both implementations use the

high-level architectural template of a GPGPU. However, application-specific logic is

added to the FPGA design, requiring the user to repurpose the implemented hardware for

every application. Implementation results show a ~3x performance benefit in favor of a

Virtex-5 155T FPGA, as compared to the latest Nvidia Fermi-based GPGPU. In

comparison, our architecture requires no application-specific logic to be embedded within

the FPGA, but the user can customize the architectural parameters based on application

needs. Kingyens et al. [22] have proposed a GPU-inspired soft processor programming

model. The soft processor architecture exhibits several GPU design constructs including

multiple processors, multithreading and vector instructions. Their work provides insight

on how to best architect a GPU-inspired soft processor for maximizing the benefits of

FPGA acceleration. Unlike a soft processor, our work targets FPGAs for the

implementation of an actual GPGPU design based on the Nvidia G80 architecture.

15

The FCUDA design flow developed in [23], efficiently maps parallel CUDA

kernels to customized multi-core accelerators on an FPGA. Initial performance results

show that the FPGA accelerators outperform the GPU by 2x, primarily due to custom

data paths and bit width optimizations. However for every new application, the CUDA

program has to be re-compiled and re-synthesized onto the FPGA making it a

cumbersome process. In our work, the GPU architecture needs to be synthesized on an

FPGA only once, thus eliminating the need to re-synthesize hardware for different

applications. Recently, Altera announced a development program on an OpenCL

framework for FPGAs [24]. OpenCL is a parallel programming language based on C

constructs. Altera's OpenCL program combines the OpenCL standard with the parallel

performance capability of FPGAs to enable powerful system acceleration. The OpenCL

compiler translates the high-level description of the user program into multicore

accelerators for FPGAs, as illustrated in Figure 7. Initial benchmark results have shown

that the OpenCL framework targeting FPGA exceeds the throughput of both a CPU and

GPU. In addition, FPGA design using the OpenCL standard has a significant time-to-

market advantage compared to traditional FPGA development using lower level hardware

description languages such as Verilog or VHDL.

Figure 7: OpenCL framework for Altera FPGAs [24]

16

Although these approaches generate circuits which are optimized for a specific

application and reap the associated area, performance, and energy benefits, they all

require the substantial compile time associated with FPGA synthesis, mapping, and place

and route. The migration of a new application to the FPGA requires substantially more

time than the few seconds normally found when targeting CUDA programs to GPUs. Our

goal is to reduce this time gap by effectively supporting the CUDA programming

environment available to GPU programmers on FPGAs, without the costly hardware

compilation typically required for reconfigurable logic. We envision such a system as

being particularly useful for environments such as cloud computing or embedded systems

deployed on a field, where compute nodes demand fast reconfiguration for serving

different purposes at different times. In such cases, the extra cost, complexity, or power

consumption of an off-the-shelf GPU in the nodes may be unwanted or unnecessary. Our

approach provides a fast solution to target these environments.

2.4 Chapter Summary

This chapter introduced the Nvidia G80 hardware architecture and the CUDA

programming paradigm, both of which are prerequisites for understanding the soft

GPGPU architecture. It also provided an overall motivation of our project by comparing

our work with the ongoing research in the field of collaborative FPGA-GPU computation

for data parallel applications. In the next chapter, we shall see the architectural features of

the implemented soft GPGPU.

17

CHAPTER 3

SOFT GPGPU ARCHITECTURE

In this chapter, we present the high-level overview of the soft GPGPU

architecture. The hardware execution flow of a kernel on the soft GPGPU is enunciated,

followed by detailed descriptions of the different design blocks present in the system.

Towards the end of the chapter, supported CUDA instructions are described.

3.1 High-level execution flow

As discussed in section 2.2.1, the Nvidia G80 architecture is made up of an array

of streaming multiprocessors or SMs. Alongside the SMs, the architecture consists of a

block scheduler which feeds thread blocks to the SMs, a system memory to store the

kernel instructions, and a global memory to store the input and output data. As majority

of the computation space is occupied by an SM, it is of particular interest to closely study

Controller Decode Read Write

SP

SP

SP

SP

SP

SP

SP

SP

Vector Register File

R
e

g
is

te
rs

R
e

g
is

te
rs

R
e

g
is

te
rs

R
e

g
is

te
rs

Configuration

Registers

R
e

g
is

te
rs

Shared

Memory

Address Register file

Predicate Register file

Warp Stack

Fetch

R
e

g
is

te
rs

Control/Execute

Block
Scheduler

Control /Data

System
Memory

Global
Memory

Global
Memory

Warp
Pool

Warp
State

PC / WARP ID
 MASK

Constant

Memory

Warp unit

Stall Stall Stall Stall Stall Stall

PORT 1 PORT 2

PORT 1

Figure 8: Streaming multiprocessor

18

its architecture. Figure 8 shows the high-level architecture of one SM. Due to the scalable

nature of the soft GPGPU architecture, multiple SMs can be instantiated for more

processing power by trading off the physical resources of the FPGA. The SM is designed

as a five stage pipeline similar to the MIPS architecture. However, unlike MIPS, CUDA

supports a register memory architecture allowing operations to be performed on memory

as well as registers. This requires the Read stage to precede the Execute stage in order to

read the operands from either memories or registers before proceeding to data execution.

GPU-based heterogeneous computing platforms consist of a host, generally a

CPU, and the GPU device. During the execution of the program when the host

encounters a GPU kernel call, it directs the CUDA driver API to configure the GPU for

kernel execution. During configuration, the CUDA driver loads the initial kernel

parameters such as the block and grid dimensions, the number of blocks per SM, the

number of registers used per thread and the shared memory size. Additionally, it also

populates the shared memory with user parameters—for e.g. the width of the matrices in

case of matrix multiplication kernel. For independent testing and validation of the soft

GPGPU system without a host, these configuration parameters are hard-coded into

configuration registers prior to kernel execution. Upon encountering a kernel call, the

CUDA driver is also responsible for loading the kernel into the GPU‘s instruction

memory. We mimic this action by pre-storing the kernel on the system memory prior to

execution. In the future, we envision that the host-GPU interaction will be enabled with a

MicroBlaze soft processor [25] as a host, and a custom software driver to automatically

populate the configuration registers and the instruction memory with the CUDA kernel.

19

After the configuration process is finished, the block scheduler schedules thread

blocks to the SM with each block identified by its block ID. The block scheduler then

passes the relevant control and data information of the scheduled blocks to the controller.

The controller acts as the interface between the block scheduler and the SM. As per

CUDA requirements, the controller performs two operations:

1. It populates the first 16 bytes of the shared memory using block scheduler

information.

2. It writes all the register R0s in the vector register file corresponding to different

threads with their respective thread IDs.

Following this, the warp generation and warp scheduling processes are initiated as

detailed in the next section.

3.2 Pipeline description

This section describes the various pipeline stages in the order that an instruction

would flow through the pipeline.

3.2.1 Warp unit

As mentioned in section 2.2.2, CUDA threads in an SM are launched in groups

known as warps. The warp unit is responsible for generating these warps and scheduling

them in a round-robin fashion. Each warp contains data and an associated state. The warp

data primarily holds the warp ID ranging from value 0 to (maximum warps -1), the

program counter (PC), and a thread mask. The thread mask is particularly useful during

conditional execution to mask out threads within a warp that do not lie on the current

execution path. Each warp maintains its own PC and thus is independent to take its own

path. The mask size is same as the warp size, i.e. 32 bits. The warp state indicates the

20

status of the warp which can either be Ready, Active, Waiting or Finished. The Ready

state indicates that the warp is idle and is ready to be scheduled. Active state indicates

that the warp is currently active in the pipeline. In order to synchronize warps within a

block, CUDA supports explicit barrier synchronization instructions. Warps that reach the

barrier instruction first have to wait for other warps to reach to the same checkpoint, and

hence are marked as Waiting. When all the threads in a warp finish executing the kernel,

the warp is declared as Finished. Within a warp, threads are arranged in rows depending

on the number of scalar processor (SP) instantiated within an SM. For e.g. for an 8 SP

configuration, a warp would be arranged in four rows with each row containing 8 threads.

Similarly, for a 16 SP configuration, a warp would be arranged in two rows with 16

threads each. The maximum parallelism is achieved with 32 SPs and one row.

In our architecture, the warp data and state are stored on the FPGA taking

advantage of dual-ported Block RAMs. The warp data is stored in a warp pool memory

and the warp state is stored in the warp state memory. Both memories are indexed using

the warp ID. Initially, all the warp data are generated using the respective warp IDs, PC

pointing to first kernel instruction address, i.e. 0x00000000, and an instruction mask with

all threads active, i.e. 0Xffffffff. The warp state is initialized to Ready for all the warps.

Once the warp generation is complete, the data for the first warp is read from the warp

pool, its state is verified as Ready and all its rows are scheduled one after another.

Likewise, other warps are scheduled one after another every cycle. This scheduling

process is handled by the warp scheduler. A scheduled warp is primarily recognized by

its warp ID, PC and thread mask. The PC, thread mask and the warp state are updated in

21

the corresponding memories every time a warp reaches back to the warp unit stage after

looping through the entire pipeline.

This normal flow of warp scheduling is somewhat interrupted in case of the

barrier synchronization instruction. A warp executing this instruction through the pipeline

is marked Waiting towards the end of the pipeline. A fence register is maintained to

register incoming warps that are in the Waiting state. The synchronization flow is as

shown in Figure 9. The width of the fence register is equal to the total number of warps

per block. For every incoming warp in the Waiting state, the warp unit sets the fence

register bit corresponding to the warp. It then reads the fence register to check if all the

bits are set which would indicate the arrival of all warps that are in the Waiting state. If

the condition is true, all warps are synchronized and the barrier is released. The warp unit

changes all the warp states to Ready and normal warp scheduling resumes.

3.2.2 Fetch and decode stage

The fetch stage fetches the binary instructions based on the warp PC forwarded by

the warp unit. The fetched instruction can be visualized as being mapped onto all the

threads in the row, SIMD style. The CUDA instruction can be either 4 bytes or 8 bytes

depending on whether it is a short or a long instruction respectively. After fetching the

instruction, the PC value is incremented (by 4/8 bytes) to point to the next instruction.

The decode stage decodes the binary instruction to generate several output tokens such as

the instruction type, instruction length, source and destination operands, data types,

conditional execution, etc.

22

3.2.3 Read stage

In the read stage, source operands are read from register files and memories

depending on the decoded inputs. The vector register files are implemented as register

file banks such that each thread has its own set of registers. The vector register file is

used to store general-purpose registers. Threads in a warp are mapped to the vector

register file as shown in Figure 10. Each thread within a row is mapped to a different

Check

Incoming

Warp

warp state:

WAITING?

Set bit

fence_register

(warp_id)

Read

fence register

fence_register:

all bits set?

Release

Barrier !

DONE

Yes

No

Yes

No

Figure 9: Barrier synchronization using fence registers

23

register file for reading and writing data in parallel. To differentiate between threads

lying in the same column but in different rows, each register file is split into 4 memory

banks. Each bank is implemented as a dual port memory and the decoded row ID is used

to choose a particular memory bank. The size of a memory bank is determined by the

total number of warps and the total number of registers used by each thread. For the

benchmarks under consideration, it was found out that the maximum number of registers

used by any application was 12. For accommodating registers for all 24 warps, a memory

bank must be able to hold 24 x 12 = 288 registers. If each register is 4 bytes long, we

need a memory bank size of 288 x 4 = 1152 Bytes. The register file was physically

implemented on the FPGA using the on-chip BRAMs of size 1152 Bytes.

The address registers and predicate registers are also mapped in the same fashion

as the vector registers. The address register file stores the memory offsets for gather-

scatter memory operations. Gather-scatter operations are same as load-store operations,

Figure 10: Vector register file read operation

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

WARP

WARP ROW 0

WARP ROW 1

WARP ROW 2

WARP ROW 3

THREADS

RF- Register file

RF 0 RF 1 RF 2 RF 3 RF 4 RF 5 RF 6 RF 7

ROW 0

ROW 1

ROW 2

ROW 3

ROW 0

ROW 1

ROW 2

ROW 3

ROW 0

ROW 1

ROW 2

ROW 3

ROW 0

ROW 1

ROW 2

ROW 3

ROW 0

ROW 1

ROW 2

ROW 3

ROW 0

ROW 1

ROW 2

ROW 3

ROW 0

ROW 1

ROW 2

ROW 3

ROW 0

ROW 1

ROW 2

ROW 3

24

but in burst mode i.e. data is read in bursts rather than sequentially. Each thread is

allotted four address registers. The predicate register file holds predicate flags used for

branches and conditionally executing instructions (predication). Predicate flags store

different branching conditions like zero, non-zero, sign, overflow, carry, etc. Instructions

prefixed with a predicate flag are termed predicated instructions [26].

 The shared, constant and global memories are implemented using dual port

BRAMs [27] with one port for the Read stage and the other for the Write stage. This

ensures that the Read and Write stages can access the memories simultaneously in the

pipeline. The total shared memory space is divided between different blocks per SM and

has a total size of 16 KB. The constant memory is 8 KB read-only memory used to store

constant data. The global memory stores the input/output data and has a total size of 256

KB. Unlike the standard MIPS architecture where the memory address is calculated in the

Execute stage, memory controllers with dedicated address calculation units are embedded

within the Read and Write stages to access data. The warp stack is used to store warp

information while executing control-flow instructions. Its uses are detailed in the next

section.

3.2.4 Control / Execute stage

This stage forms the crux of the soft GPGPU pipeline. It performs all the data

processing (arithmetic and logical) with the help of functional units or scalar processors

(SP). Each thread in the warp row is mapped to one SP enabling parallel execution. In our

architecture, the number of SPs can be varied for more or less processing power. The

available configurations of the SPs are 8, 16 and 32. Currently, the SPs support only

integer type operations like addition, subtraction, multiplication, multiply and add, data

25

type convert, bit shifting and logical operations such as AND, OR, NOR, XOR, etc. All

these operations are implemented using Matlab Simulink models [28] which are

converted to HDL code using the Xilinx System Generator [29].

The control unit is responsible for executing all control flow instructions which

include conditional and unconditional branches, barrier synchronization, kernel return,

and set synchronization point. In the case of branch instructions, the control unit pushes

the current warp data onto the stack and executes one of the branch paths. Upon finishing

execution of the path, the warp data is popped off the stack for executing the other branch

path. In case of a barrier instruction, the control unit marks the warp state as waiting. The

synchronization is then taken care of by the warp unit as explained earlier in the chapter.

The return instruction signifies the end of kernel. If all the threads in a warp execute this

instruction (no threads are masked), the warp is killed, i.e. marked as Finished. Finished

warps are no longer scheduled by the warp unit. The set synchronization instruction is

used before potentially divergent branches. A warp is said to diverge if the branch

outcome is not same for all threads in the warp. The set synchronization instruction is

used to set the reconvergence point of a branch – an instruction that will be reached

irrespective of whether or not the branch is taken. The synchronization point is set by

pushing the reconvergence PC onto the stack. In case of divergence, execution proceeds

along one path (say, taken) until the reconvergence point is reached. When the point is

reached, the execution switches back to the other path (not-taken). When the

reconvergence point is reached for a second time, the reconvergence PC is popped off the

stack and normal thread execution continues from the reconvergence instruction and

26

beyond. Figure 11 explains the sequence of operations that are performed to handle

branch divergence.

For the sake of simplicity, consider the case in which we have (say) only eight threads in

a warp. Figure 11 shows the scenario when execution is just about to hit a diverging

branch. As discussed before, the synchronization instruction precedes the diverging

branch to set the synchronization point. The join instruction at the end is the

Figure 11 : Handling branch divergence

 0000011112

1111111112

TOS

Taken
Not

Taken

Warp Reconvergence
Stack

Target addr.

Reconvergence
point

1111100012 Not taken PC

Branch
Taken path

Branch
Not taken

path

TOS

 11111000
Not

taken PC
BRANCH

 11111111 ---SYNC

 11111111 ---SYNC

TOS 11111111 ---SYNC

TOS

Divergence
point

1111111112

Warp ID Mask

Warp ID Mask

Synchronization
point

Reconv. PC

sync
Branch

Current PC

branch

join

sync

join Reconv. PC

27

reconvergence point. The thread mask is equal to the warp size, i.e. 8 bits wide. The warp

convergence stack is a hardware structure that keeps track of diverged branches. There is

one stack per warp. Each entry in the stack has three fields—the thread mask, control

flow opcode and the next PC. Assume all the threads are active before diverging, i.e. the

initial thread mask = ―11111111‖.

i. Execution reaches the synchronization point. The stack is populated with

the current thread mask and the control opcode SYNC.

ii. Execution reaches the divergent branch. Either of the branch paths can be

taken first. If (say) branch taken is being executed first, the thread mask of

the not taken path (compliment of the taken mask), the control flow

opcode i.e. Branch, and the not taken PC is populated at the top of the

stack.

iii. The target address and the thread mask of the taken branch path are loaded

by the warp scheduler in the next cycle and following instructions are

executed.

iv. Execution reaches the reconvergence point for the first time. The join

instruction is detected and the top-of-stack (TOS) entry is popped. The

TOS pointer is decremented by one.

v. The popped thread mask and PC corresponding to the non taken branch

are loaded by the warp scheduler in the next cycle, and following

instructions are executed.

28

vi. Execution reaches the reconvergence point for the second time. The join

instruction is detected and the top-of-stack (TOS) entry is popped. The

TOS pointer is decremented by one and the stack empty signal goes high.

vii. The popped opcode is detected as SYNC. Consequently, the popped

thread mask is loaded by the warp scheduler in the next cycle. However,

instead of the loading the PC from the popped PC, the PC of the

instruction next to the join instruction, called the reconvergence PC is

loaded.

viii. Both the branch paths are now executed for different sets of threads, and

beyond this point all threads resume parallel execution. The same control

flow would also support nested branches with sync instruction before

every diverging branch and join instruction at every reconvergence point.

3.2.5 Write stage

The Write stage writes the vector register file with temporary data, address

register file with memory offsets, predicate register file with predicate flags, shared

memory with either temporary data or results, and the global memory with final results.

The sequence of operations for writing into memory and registers is exactly opposite to

the Read stage. The warp data and state is looped back to the warp unit for updating the

warp pool and state memories.

All pipeline stages output a stall signal that is fed to the preceding stage. The stall

signal indicates that the stage is busy and not ready to accept new data. Every stage has to

make sure that the input stall signal is low before passing its own data to the next stage.

29

This ensures smooth data flow from one stage to another through the pipeline and avoids

data corruption across stages.

3.3 Supported CUDA instructions

The soft GPGPU supports a subset of the Nvidia G80 instruction set with

compute capability 1.0 [30] . Instructions were tested based on the requirements of the

selected benchmarks. A total of 27 instructions out of the 40 distinct integer instructions

(that we are aware of) were tested as a part of this thesis. The list of all instructions

(supported and unsupported) is shown in Table 2.

Opcode Description Tested

I2I Copy integer value to integer with conversion

IMUL/IMUL32/

IMUL32I

Integer multiply

SHL Shift left

IADD Integer addition between two registers

GLD Load from global memory

R2A Move register to address register

R2G Store to shared memory

BAR CTA-wide barrier synchronization

SHR Shift right

BRA Conditional branch

ISET Integer conditional set

MOV /MOV32 Move register to register

RET Conditional return form kernel

MOV R, S[] Load from shared memory

IADD, S[],R Integer addition between shared memory and

register

30

\

Table 2: Instruction set

GST Store to global memory

AND C[], R Logical AND

IMAD/IMAD32 Integer multiply-add; all register operands

SSY Set synchronization point; used before

potentially divergent instructions

IADDI Integer addition with an immediate operand

NOP No operation

@P Predicated execution

MVI Move immediate to destination

XOR Logical XOR

IMADI/

MAD32I

Integer multiply-add with an immediate

operand

LLD Load from local memory

LST Store to local memory

A2R Move address register to data register -

ADA Add immediate to address register -

BRK Conditional break from loop -

BRX Fetch and address from constant memory and

branch to it

-

C2R Conditional doe to data register -

CAL Unconditional subroutine call -

COS Cosine -

ISAD/ISAD32 Sum of absolute difference -

R2C Move data register to conditional code -

MVC Move form constant memory to destination -

RRO Range reduction operator -

VOTE Warp-vote primitive -

TEX/TEX32 Texture fetch -

31

3.4 Chapter Summary

In this chapter, we discussed the hardware architecture and the overall pipeline

execution flow of the soft GPGPU. The functionality of the different pipeline stages and

other supporting modules were described in context of the CUDA programming model.

The supported instruction set was also presented. In the next chapter, we shall examine

testing aspects of some of these blocks and validation of the soft GPGPU system.

32

CHAPTER 4

TESTING AND VALIDATION

This chapter presents the testing and validation aspects of the prototype soft

GPGPU design. The first section focuses on the testing methodology for the architecture.

We describe our testing approach and discuss results that are of particular interest. To

conclude, we present the validation flow, the involved methodology and validation

results.

4.1 Software flow

The software flow for executing a CUDA kernel on the soft GPGPU is as shown

in Figure 12. The left portion of the figure illustrates the software flow as apparent to the

user. The process is split up into two phases as compile-time and run-time. During

compile-time, the kernel is fed to the Nvidia CUDA compiler (nvcc) which converts it to

parallel thread execution (PTX) code. PTX is a low-level assembly–like programming

language that exposes the GPU as a data-parallel computing device [26]. It defines a

stable programming model and a virtual instruction set architecture (ISA) for Nvidia

GPUs. The PTX does not directly represent the machine instruction set, but is only an

intermediate language that is compiled to target-specific assembly instructions. During

run-time, the PTX assembly is passed to the CUDA driver API (Application

Programming Interface). The driver API then converts the PTX to a CUDA binary

(.cubin) which is targeted to the soft GPGPU. As we are not targeting actual Nvidia

hardware, we use the runtime libraries provided by Nvidia to mimic the driver

functionality.

33

In order to test and validate the soft GPGPU, it is necessary use the hardware

assembly instructions that correspond to the generated binary. As noted earlier, the PTX

assembly is only an intermediate language and does not map to actual hardware

instructions executed on the GPU. Thus, the PTX cannot be used as the golden reference.

Further investigation into the CUDA compilation flow revealed that during runtime, the

driver API converts the PTX instructions to another format called Source and Assembly

(SASS) [31], as shown on the right in Figure 12. SASS is specific to the target GPU

architecture and represents native assembly instructions that are executed on the Nvidia

hardware. However, it is interesting to note that the PTX-to-SASS conversion is not

Figure 12: (Left) Software flow as apparent to the user,

 (Right) Actual software flow which generates SASS

CUDA kernel

.cu

Compile-time

Run-time

To

Soft GPGPU

PTX

SASS

cubin

CUDA kernel

.cu

NVCC

compiler

Optimization by

API driver

Backend

process

Driver

API

To

Soft GPGPU

cuobjdump

PTX

NVCC

compiler

CUDA

driver API

cubin

34

directly visible to the user and stays as a backend process. In order to generate the SASS

instructions, the CUDA binary is disassembled using the cuobjdump [32] utility provided

by Nvidia which can then be used for testing and validation purposes.

Microsoft Visual Studio 2008 and Nvidia Toolkit v2.3 [33] are integrated together

for this compilation process. The Nvidia toolkit is comprised of the Nvidia CUDA

compiler (nvcc), and the CUDA driver and runtime API libraries. It supports integration

with Visual Studio 2008 by providing Nvidia compilation rules for building CUDA

applications.

4.2 Testing experiments

A simulation-based approach is adopted for testing the different design blocks.

Testbenches are generated using either hand-modeled test cases or by using the binary

instructions (for the decode stage). The design is then subjected to logic simulation using

these testbenches. A typical verification flow using logic simulation is as shown in Figure

13. The requirements drive the development of the RTL model and it influences the

verification plan for developing the testbench. The verification plan consists of the test

cases to be taken into consideration while generating the testbench. The simulation tool

reads the testbench and the RTL model for running the simulation process. The result of

the simulation is compared with the expected outputs to infer if a bug is present in the

design. In the event the result is positive, the RTL design is debugged and appropriate

design modifications are made. If no bug has been found, the simulation results are

examined to verify that all paths are exercised, in which case the verification process is

complete.

35

The following sections describe the conducted testing experiments for some of the

critical blocks in the system. The simulations were carried out using the ModelSim SE

10.0 simulator [34].

4.2.1 Decode stage

The decode stage was one of the more challenging blocks to design and test in the

system. Nvidia does not reveal the G80 microarchitecture for proprietary reasons, as a

result of which there is limited amount of available information on the binary mapping of

assembly instructions. In order to closely understand the assembly instructions of the G80

architecture, decuda [35], a CUDA binary disassembler was used as a reference.

Additional cues were taken from academic GPGPU simulators like Barra [36] and

Simulation

Expected

results?

All paths

Exercised?
Debug

Done

Yes

No

NoYes

Verification

plan RTL Model

Testbench

(Manually

Created)

Requirements

Figure 13: Simulation process for logic verification

36

GPGPU-Sim [31] [37] to design the decode stage. The primary design of the decode

stage is as shown in Figure 14.

i. Inst. type represents the instruction length (full – 64 bits, half – 32 bits).

ii. Inst. opcode signifies the instruction type.

iii. alu opcode, mov opcode and flow opcode represent the subtypes for each opcode

type.

iv. mov mem. type represents the type of data transfer. It can either be between two

registers or between a register and a memory.

v. src1, src2, src3, dest data type represent the source and destination data types.

vi. src1, src2, src3, dest mem. type represent the source and destination memory

types.

vii. src1, src2, src3, dest are the source and destination numbers

For experimentation, a preliminary CUDA kernel was written, and the

corresponding binary and SASS instructions were generated as shown in Figure 16. The

__global__ keyword specifies that the function is executed on the GPU. The kernel reads

Figure 14: Decode stage

D E C O D E

Clk Reset Instruction

src1,src2,

src3,dest

data type

src1,src2,

src3,dest

mem. type

src1,src2,

src3,dest

Inst.

type

Inst.

opcode
alu

opcode

mov

opcode
flow

opcode

mov

mem.

type

Ready

out

Inst. valid

37

a one-dimensional integer array ‗a’ containing N elements and multiplies each element by

a factor of 2. blockIdx.x represents the block ID, blockDim.x represents block dimension

in terms of number of threads and the thread ID is represented by threadIdx.x. These

parameters are used to calculate the distinct indices of the array that each thread would

access individually.

The decode results are illustrated in Figure 15. By manually comparing the

decode outputs against the SASS assembly reference shown in Figure 16, correct decode

operation was verified. Several instructions from other academic resources [38] were

used to exercise the decode stage and necessary design modifications were made. Some

of the bugs were also discovered and rectified while simulating actual CUDA

benchmarks described in the later part of this thesis

Figure 15: Decode stage results

38

- .

Figure 16: Sample CUDA kernel and corresponding cubin, SASS code

39

4.2.2 Read / Write stage

The Read and Write stages were verified together by interfacing them in a tandem

fashion with the register files and the memories as shown in Figure 17. The written and

read data are compared against each other to verify correct read-write operation. The

design of both the stages includes finite state machines (FSM), where each state

represents a register or a memory operation. The verification testbench is designed such

that all states of the FSM are traversed at least once in both the stages. It was noted that

the sequence of operations for writing and reading the global/shared memory exercises

the register files as well, as shown in Figure 18. The sequence is initiated by writing the

address registers that hold the memory offsets for each thread. This is followed by

writing the vector registers to store the base address of the memory. In the next step, the

base address and the offset are read and combined together to calculate the effective

memory address – the address used for writing the memory. Following the

Figure 17: Read-Write verification structure

WRITE STAGE

Predicate

register

Shared

memory

Global

memory

Address

register

Vector

register

WRAPPER

TESTBENCH

READ STAGE

Memory Port - A

Memory Port - B

Control Signal

40

Figure 18: Read-Write verification FSM

Start

Write

address

registers

Write

vector

registers

Write

Global/

Shared

memory

Read

Global/

Shared

memory

Read-

Write

DONE

Write

address

reg

Start

Start

Write

vector

reg

End

End
Start

Read

vector

reg

Read

address

reg

Effective

address

Write

memory

End

Start

Read

vector

reg

Read

address

reg

Effective

address

Read

memory

End

Testbench

Write stage

Read stage

Write

Predicate

reg

Read

Predicate

reg

41

memory write operation, predicate flags (though not necessary for a memory operation)

are written into the predicate register file. The read stage FSM is initiated by reading the

predicate register file. This state is traversed at the beginning of every read cycle during

the execution of predicated instructions. Following the predicate register read, the same

sequence of operations are repeated to calculate the effective memory address read back

the data from memory. The written and read value of the registers and memory are

compared at different stages of the FSM to verify accurate read-write operations.

Figure 19 shows the simulation result for the global memory write stage. The

global_memory_cntrl_state_machine signal represents the state of the global memory

controller. As illustrated by this signal, the effective address is calculated in the

beginning using the vector and address registers, followed by scatter write operation to

the global memory. The gmem_addr_i and gmem_wr_data_i (last two signals) represent

the effective address and the data written to the memory, respectively.

The read stage simulation result for the global memory is shown in Figure 20 and follows

similar sequence of operations as the write stage. The gmem_addr_i and

gmem_rd_rd_data_o (last two signals) represent the address and the data read back from

the memory, respectively.

Figure 19: Global memory write

42

Comparing the two results, the read-write operations for global memory, vector

register and the address register file are verified. Other results are omitted for the sake of

brevity as the shared memory operations are exactly the same as global memory, whereas

the inherent effective address calculation testifies correct register file read-write

operations.

4.3 System validation

The soft GPGPU design was validated by benchmarking the platform with five

standard CUDA applications that are described in the next section. The basic validation

flow is as shown in Figure 21. The CUDA kernels were compiled using the NVCC

compiler and the original binaries were executed on the soft GPGPU without any code

modifications. Counterpart C/C++ applications were compiled using standard GCC

compiler and executed on an x86 platform. The results generated from the C/C++

execution were considered as the golden reference for comparison. The ModelSim

simulation results generated for all the benchmarks were found to be accurate, thus

validating correct soft GPGPU functionality.

4.3.1 Benchmark suite

Exhaustive validation experiments were conducted across a suite of five CUDA

benchmarks as shown in Table 3. The benchmarks were procured from several academic

resources. The MatrixMul and Transpose benchmarks were taken from the CUDA

Figure 20: Global memory read

43

Programming Guide [4]. Bitonic sort was procured from Duke University [39]. Autocor

benchmarks were procured from the University of Wisconsin-Madison [40]. The

Reduction benchmark was obtained from the University of Notre Dame [41].

All benchmarks are restricted to integer data type. The selection criterion was

based upon their popularity in the GPGPU research community. The assortment of highly

data-parallel and control-flow intensive benchmarks, help us fairly evaluate our platform

for applications with different characteristics. Bitonic is the most control-flow intensive,

while Autocor has some control flow. Reduction, MatrixMul and Transpose are fairly

data parallel.

Figure 21: Validation flow

CUDA

Kernel

NVCC

Soft

GPGPU

x86

platform

Compare

kernel results

Validation

outcome

.cu

.bin

C/C++

code

GCC

.bin

.c/.cpp

44

Table 3: Benchmark suite

- Autocorrelation: Autocorrelation is the correlation of a signal with itself. The

basic equation for autocorrelation of a discrete-time signal is shown below:

 𝑟𝑥𝑥 𝑙 = 𝑥 𝑛 𝑥 𝑛 − 𝑙 𝑙 = 0, ±1, ±2, . . .
𝑛=∞

𝑛=−∞

It basically consists of a series of Multiply and Add operations. The Autocor

operation can be parallelized by having each thread compute an element of the

autocorrelation array

- Bitonic sort: Bitonic sort is one of the fastest sorting networks. A sorting network

consists of sequence of comparisons that is data-independent. This makes sorting

networks suitable for hardware implementation on parallel processing platforms.

Benchmark

Description Sizes of tested

datasets

Percent of

supported

ISA used

Autocor Autocorrelation of 1D array 16,32,64,128,256 69.2%

Bitonic High performance sorting

network

16,32,64,128,256 57.7%

MatrixMul Multiplication of square

matrices

16x16,32x32,64x64,

128x128,256x256

69.2%

Reduction Parallel reduction of 1D

array

16,32,64,128,

256,512

61.5%

Transpose Matrix transpose 16x16,32x32,64x64,

128x128,256x256

53.8%

45

Figure 22: Bitonic sorting network [42]

The ascending bitonic sort network is shown in Figure 22. For an array of size n,

the bitonic network consists of Θ(n·log(n)
2
) comparison operations through

Θ(log(n)) stages, with each stage performing n/2 comparisons. The head of the

arrow points to the larger of the two values. Passing through the network, all the

values at the input are sorted in an ascending order at the output, as they pass

through the network. Considering the structure of the network, the comparison

operations in each stage can be parallelized, ideally leading to an n/2 speedup.

- Matrix multiplication: This benchmark multiplies two square matrices with

integer data type. The application can be parallelized by computing each element

of the product matrix in parallel.

- Reduction: A reduction algorithm basically extracts a value from an array by

performing an array operation. The operation can be sum, min, max, average etc.

In our case, we have chosen the summation operator which sums all the elements

of the array. A basic reduction network is shown in Figure 23. Though the

46

reduction network looks simple, there are a lot of opportunities to parallelize the

CUDA kernel in a way that exploits maximum benefits.

- Transpose: This benchmark computes the transpose of an integer square matrix.

It is parallelized such that each matrix element is computed in parallel.

4.3.2 Validation results

 Benchmarks were simulated for dataset sizes shown in Table 3. As an example,

the soft GPGPU simulation result for the Bitonic benchmark is shown in Figure 24. The

results show a sorted array {9, 8, 7, 6, 5, 4, 3, 2} of eight integers as indicated by the red

ellipse. As another example, the simulation result of the Reduction benchmark is shown

in Figure 25. The size of the array was fixed to 512 elements with the array values {0, 1,

2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, ….and so on}. For such an array, the expected sum is 1792, as

shown by the red circle in the figure.

Figure 23: Parallel reduction network [43]

47

4.4 Chapter Summary

In this chapter, the software flow for executing a kernel on the soft GPGPU was

described. The methodology for testing the Decode and Read-Write stages was

elaborated and their results were presented. We presented the validation flow and

described the benchmark suite. The chapter was concluded by presenting simulation

results for two benchmarks.

Figure 24: Bitonic sort result

Figure 25: Reduction result

48

CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter, we describe the preliminary experiments conducted post-

validation of the soft GPGPU. The experiments were mainly focused on evaluating the

scalability of the platform in terms of the number of scalar processors (cores) as well as

the number of streaming multiprocessors (SMs). The effects of scaling on area utilization

are also investigated.

5.1 Performance evaluation

The platform was benchmarked against a MicroBlaze soft processor running on a

Xilinx Virtex-6 ML605 evaluation board. ModelSim simulations were used to evaluate

benchmarks on the soft GPGPU platform. The design was place and routed on the Virtex-

6 device, and the post-PAR clock frequency along with simulation cycle counts were

used to calculate the execution times. A software timer was used to time the MicroBlaze

executions. Both platforms were operating at the same frequency of 100 MHz. For

evaluating performance, two types of experiments were conducted—architecture scaling

and application scaling as evaluated in the following sections.

5.1.1 Evaluating architecture scalability

A set of experiments were conducted to vary the number of cores within a single

SM as 8, 16 and 32. Varying the number of cores effectively varies the number of threads

in a row that can be executed in parallel. Recalling from chapter 3, GPU threads within a

warp are scheduled as warp rows. This restricts the row width possibilities to 8, 16 or 32,

49

as the product of row width and the number of rows (4, 2 or 1 respectively) must be a

factor of 32.

Table 4 shows the cycle counts of the five benchmarks for a problem size as

indicated. Ideally in a multicore system, as the number of cores is increased from 8 to 32,

the expected performance improvement is 4x. The soft GPGPU shows an average

speedup of 1.8x over the five benchmarks.

Table 4: Cycle counts comparison

Figure 26 shows the speedup graph normalized with respect to 8 cores. One common

limitation to cycle speedup for all the benchmarks in our architecture is the scatter-gather

memory instruction. Scatter-gather operations are most effective when the burst data is

written and read in parallel. This requires the memory to be split up into multiple banks,

such that consecutive memory addresses fall into consecutive banks. CUDA kernels are

written in a way such that for most data-parallel applications, neighboring threads access

consecutive memory locations. This allows threads to read data in parallel from

consecutive memory banks. However, this demands the architecture to have sophisticated

control mechanism to effectively map memory addresses to appropriate memory banks.

For control flow intensive applications where the burst data is not sequential, this

mapping must be done without significant overhead. The control logic becomes even

Cores Autocor

256

Bitonic

256

MatrixMul

256x256

Reduction

256

Transpose

256x256

Freq

(MHz)

8 2641050 952327 1247560898 65577 6207154 100

16 1832976 607695 876982560 46346 4752104 100

32 1441858 476820 693799691 37188 4026984 100

50

more challenging to detect if multiple threads are pointing to the same address. For the

sake of architectural simplicity, this feature was not included in our first soft GPGPU

prototype and will be addressed in the future. The matrix benchmarks pay a slightly

larger penalty for memory bandwidth limitations due to more number of scatter-gather

operations. MatrixMul has a better performance than Transpose, as the former has higher

arithmetic density and hence amortizes the bandwidth limitation to a certain extent.

Figure 26: Performance scaling over 8, 16 32 cores

Figure 27 shows the calculated speedups against MicroBlaze for a varying number of

cores. Application speedups range from 10x-30x with an average speedup close to 13x

for 8 cores, 19x for 16 cores, and 25x for 32 cores. MatrixMul and Reduction being

highly data parallel show the largest speedups. Reduction is a simple benchmark with a

highly symmetric data flow graph consisting of multiple iterations. The number of array

elements in the benchmark is halved with each iteration, progressively leading to smaller

number of scheduled warps. Considering the array size to be a multiple of 32 (the warp

size), all active threads remain tightly packed within a warp in every iteration, thus fully

0

0.5

1

1.5

2

2.5

Autocorr Bitonic MatixMul Reduction Transpose

N
o

rm
al

iz
e

d
 s

p
e

e
d

u
p

Benchmarks

8

16

32

51

utilizing the warp at all times. In Bitonic, the sorting network consists of a fixed number

of swapping operations that are performed at every stage. Though the warp divergence

increases with increased number of parallel threads, the divergence cost seems to be

amortized by performing more swapping operations in parallel. Transpose shows less

speedup due to low arithmetic intensity and the memory bandwidth limitation.

Figure 27: Speedup vs. MicroBlaze for variable cores

Another approach to explore the scalability of the architecture is by varying the number

of SMs. This experiment was performed for MatrixMul and Transpose as these kernels

can be split across multiple blocks. The block scheduler logic was modified to equally

distribute thread blocks to 2 SMs, thus reducing the workload of each SM to half as

before. Figure 28 shows the speedup for 1-SM and 2-SM configuration for the MatrixMul

and Transpose.

0

5

10

15

20

25

30

35

Autocorr Bitonic MatixMul Reduction Transpose

Sp
ee

d
u

p

Benchmarks

MicroBlaze

8

16

32

52

5.1.2 Evaluating application scalability

Experiments were conducted to observe the performance of the soft GPGPU in

comparison to MicroBlaze for varying problem sizes of each benchmark. The speedup

results are shown in Figure 29.

Due to its regular kernel structure, Reduction reaps the steepest performance benefits of

up to 30x as the size of the array becomes large. With increasing array size, performance

increases gradually for both Autocor and Bitonic up to certain point and then begins to

taper off. This can be attributed to the accumulation of the warp divergence penalty over

Figure 28: Speedup vs. MicroBlaze for variable SMs

(Left) MatrixMul; (Right) Transpose

Figure 29: Speedup vs. Microblaze for varying problem size

0

5

10

15

20

25

30

35

32 64 128 256

Sp
e

e
d

u
p

Array size

Autocor

Bitonic

Reduction

0

5

10

15

20

25

30

32x32 64x64 128x128 256x256

Sp
e

e
d

u
p

Matrix size

MatrixMul

Transpose

0

10

20

30

40

50

60

8 16 32

Sp
e

e
d

u
p

Cores

1 SM

2 SM

0

5

10

15

20

25

30

35

40

8 16 32

Sp
e

e
d

u
p

Cores

1 SM

2 SM

53

the execution time of larger arrays, amortizing the parallel processing benefits.

MatrixMul shows a reasonable speedup of about 25x, with Transpose showing tan

average speedup of 17x. Both benchmarks have an almost flat speedup curve in

accordance with the memory bandwidth limitation as addressed in section 5.1.1.

5.2 Area evaluation

The soft GPGPU design with 1 SM, 8 cores was synthesized, mapped, and successfully

placed and routed on a Virtex-6 VLX240T device meeting all timing constraints. The

post-PAR device utilization and maximum operating frequency are annotated in Table 5 .

Design characteristic 1 SM / 8 cores per SM

Logic used (LUTs) 63894 / 150720

Registers used (Flip Flops) 89392 / 301440

Multipliers used (DSP48E1s) 137 / 768

Block RAMs (RAMB36E1) 114 / 416

Maximum clock frequency (MHz) 100.05

Critical path The scalar processor in the

Execute stage

Table 5: Post-PAR utilization and timing results

The architecture takes advantage of the built-in multiplier blocks and BRAMs for

performing computations and storing on-chip data. The critical path was found to be the

module that performs integer addition subtraction within the scalar processor. As a target

frequency of 100 MHz was achieved, this block was not optimized further.

In order to better understand the breakdown of area utilization, Xilinx PlanAhead

tool [44] was used to gather utilization results of some of the blocks that consume

relatively larger area (Table 6). The Read stage contains logic for reading three source

operands in parallel in addition to the various register file and memory controllers,

54

justifying the high resource utilization. The Write stage only consists of the register and

memory controllers. The scalar processors in the Execute stage have dedicated compute

units for supporting different types of arithmetic and logical instructions. Instantiating the

scalar processor eight times duplicates logic reflecting the 34% LUT utilization. The

stack memory (66 bits wide, 32 locations deep) used to handle divergence for each warp

consumes 586 LUTs. Thus, for 24 warps 14064 LUTs are consumed.

Stage / Block LUT usage Percent

utilization

Read 15290 24%

Execute 21499 34%

Write 6607 10%

Warp stack

(24 warps)

14064 22%

Other 6524 10%

Total 63984 100%

Table 6: Area utilization breakdown

Additional results were gathered to study the effects of architecture scaling on

area. Table 7 shows the post-synthesis device utilization statistics for a variable number

of cores and SMs. The results are plotted in Figure 30 in order to examine the trend. The

increase in the number of cores proportionally scales up the bit width of all the associated

signals in the design, thereby reflecting near perfect linear scaling on LUTs and registers.

The memory usage scaling presents a more interesting trend. The BRAM usage increases

by approximately 25% from 8 to 16 cores and 24% from 16 to 32 cores. As discussed in

section 3.2, register files are striped into memory banks with the number of banks

equivalent to the number of cores in an SM. As the number of cores increases, the

number of banks also increases, but with subsequent reduction in the size of each bank.

55

This is done to ensure that the total memory size remains constant. The reduction in the

memory bank size might lead to their inefficient mapping onto the on-chip BRAMs—

thus leading to higher BRAM utilization for more number of cores.

Table 7: Area for variable cores / SMs

* Block RAMs are fundamentally 36 Kbits in size. Each block can also be used as two

independent 18 Kb blocks.

Figure 30: Variation trend for LUTs and Registers

Architecture

Configuration

LUTs Registers Memory usage

(BRAMs*)

1 SM / 8 cores 60771 89024 79

1 SM / 16 cores 95292 126396 99

1 SM / 32 cores 196861 200055 123

2 SM / 8 cores 183068 338681 150

56

5.3 Chapter Summary

In the beginning, the CUDA applications used for benchmarking the soft GPGPU

platform were described. We analyzed the performance of our platform in comparison

with a MicroBlaze soft processor for a varying number of cores/SMs and varying

problem sizes. Speedups of up to 30x for single SM and up to 53x for two SMs were

observed vs. MicroBlaze. To conclude the chapter, resource utilization for base system

configuration is analyzed, with additional results to enunciate the effects of architecture

scaling on area consumption. Next chapter concludes the thesis and provides future

directions.

57

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, efforts have been directed to implement a fully-functional, CUDA

compatible, scalable soft GPGPU architecture targeting FPGAs. This document has

outlined a systematic approach for testing and validation of the prototype soft GPGPU

based on the Nvidia G80 architecture. A simulation based approach was adopted for

testing and validating the system. Individual design blocks were subjected to functional

RTL verification using VHDL testbenches and simulation tools. The novel design aspect

of GPUs as opposed to standard microprocessors or even soft vector processors is the

ability to handle thread divergence and barrier synchronization in hardware. Special care

was taken to verify the correct synchronization and control flow behavior of the soft

GPGPU. The system was integrated from scratch and validated using rigorous simulation

for a set of five benchmarks directly compiled from CUDA to binary. The varied

characteristics of the benchmarks allowed us to fairly evaluate the architecture. The

binary was executed on the soft GPGPU without any further modifications.

Post validation of the base system (1 SM/8 cores), effort was directed towards

augmenting the design for architectural scalability. The architecture was successfully

enhanced to enable scaling the number of cores in the design as 8, 16 and 32. In addition,

the design was also amended to enable scaling the number of streaming

multiprocessors—a characteristic indigenous to Nvidia GPUs. A wide variety of

experiments were conducted to evaluate the performance and area benefits of the soft

GPGPU against a fully optimized MicroBlaze soft processor for a variable number of

cores and SMs. Experimental results suggested speedups of up to 30x for highly parallel

58

benchmarks like matrix multiplication and up to 24x for control flow intensive

benchmarks like bitonic sort. Doubling the number of SMs resulted in a direct 2x

performance improvement for matrix multiplication and transpose benchmarks with

speedups up to 53x and 35x respectively. Area of the base soft GPGPU design was found

to be 10x larger as compared to the MicroBlaze as most of the resources of the prototype

architecture were spent towards ensuring correct CUDA functionality.

As with any prototype design, optimization would be the primary undertaking in

the future. We also plan to improve out architecture by supporting off-chip memory

access for global memory, multiple memory banks for efficient scatter-gather operations

and implementing dynamic thread scheduling to reap true benefits of multithreading. We

hope that the designed infrastructure sets the cornerstone for exploring an altogether new

design space by facilitating rapid architectural tradeoffs and a wide variety of

experiments in the future.

59

APPENDIX

MISCELLANEOUS DEBUGGING ISSUES

Simulink [28], developed by MathWorks, is a commercial tool that can be used to

model design elements. It consists of the Xilinx blockset library that contains a set of

customizable blocks for DSP, memory, arithmetic operations etc. In the soft GPGPU

architecture, Simulink models are pervasively used to design larger and more

complicated modules. The blocks using Simulink models include the warp unit, register

files, scalar processors etc. Once a module is designed in Simulink using the inbuilt

design blocks, it can be readily synthesized using the Xilinx System Generator tool.

However, there were prevalent issues with simulating these modules within the Xilinx

environment. This thesis involved debugging these issues and developing a systematic

step-by-step procedure to import Simulink blocks and simulate them correctly.

Consider the scenario where two modules are modeled using Simulink and

synthesized using the Xilinx System Generator (XSG). Let us assume that both modules

use an adder as a sub-module with different bit-widths. The adder synthesized by the

system generator within both the modules has generic bit widths, but the same name

xladdsub. The xladdsub entity itself uses an instantiated adder core (with a unique name)

to perform the addition. The core name is one of the generic inputs for xladdsub in

addition to the bit-widths. For the correct operation of the xladdsub entity, this generic

core name input must exactly match the adder core name instantiated in the entity.

However, the xladdsub entity generated within each of the modules has a different core

name. Thus, when an instance of xladdsub is declared in any of the modules, it is

important for the generic input core name and the instantiated core names to match. This

60

match would occur only if the xladdsub declarations in the two modules are linked to

their own respective definitions. Considering that all the generated modules including the

two versions of xladdsub are placed in a common ―work‖ library, there is no way of

differentiating between the two instances. This leads to mismatched linking between the

xladdsub entity declarations for the two modules and their definitions, leading to

undefined outputs during simulation.

A naïve solution is to manually rename the xladdsub entity declarations and

definitions in each top level module with different names, for e.g. xladdsub1 and

xladdsub2. This differentiates the two versions of the xladdsub entity and makes sure

each module finds its own version. However, this approach is cumbersome for large and

complicated designs. A more systematic solution would be to make a separate library for

each module that uses Simulink blocks. This ensures that all the different versions of

overlapping entities like xladdsub are encapsulated into different libraries and there is no

collision amongst them. A step-by-step procedure is illustrated below:

1) Open MATLAB 7.10.0.

2) Navigate to the directory containing the .ngc netlist folder corresponding to the top

level module generated by XSG.

3) Run the following command in the command window:

xlSwitchLibrary ('ngc_netlist', 'work', ‘user_defined_library’)

This replaces all the references to the work library in the module file to the

‗user_defined_library, which will be created in the steps to follow.

61

4) Go to the libraries tab in ISE and create a new library with the same name as used in

step 3 (‗user_defined_library’).

5) Add the module to this library.

6) Now that the module is in the user_defined_library and not in the default work

library, add library path to all other files referencing it.

e.g. library user_defined_library.

7) Run simulation without any conflicts.

62

BIBLIOGRAPHY

[1] D. Sheldon, R. Kumar, R. Lysecky, F. Vahid, D. Tullsen, ―Application-specific

customization of parameterized FPGA soft-core processors,‖ in Proceedings of

the 2006 IEEE/ACM international conference on Computer-aided design (ICCAD

'06), ACM, New York, NY, USA, 261-268.

[2] P. Yiannacouras, J.G. Steffan, J. Rose. ―Application-specific customization of soft

processor microarchitecture‖, in International Symposium on Field-

Programmable Gate Arrays (FPGA), February 2006.

[3] E. Lindholm, J. Nickolls, S. Oberman, J. Montrym, "NVIDIA Tesla: A Unified

Graphics and Computing Architecture," Micro, IEEE, vol.28, no.2, pp.39-55,

March-April 2008.

[4] Nvidia Corporation, Nvidia CUDA Programming guide, Version 2.3.1, August

2009.

[5] A. Gupta, ―Formal hardware verification methods: A survey‖, in Formal Methods

in System Design, 1, 2/3 (Oct. 1992), 151–238.

[6] C. Kern and M. R. Greenstreet, ―Formal verification in hardware design: A

survey,‖ in Transactions on Design Automation of Electronic Systems, 4:123–193,

1999.

[7] http://en.wikipedia.org/wiki/Field-programmable_gate_array

[8] K.S. Pereira, ―Characterization of FPGA-based High Performance Computers,‖

Master‘s Thesis, Virginia Polytechnic Institute and State University, Virginia,

2011.

[9] J. Fowers, G. Brown, P. Cooke, G. Stitt, ―A performance and energy comparison

of FPGAs, GPUs, and multicores for sliding-window applications,‖

in Proceedings of the ACM/SIGDA international symposium on Field

Programmable Gate Arrays (FPGA '12), ACM, New York, NY, USA, 47-56.

[10] X. Tian, K. Benkrid, ―High-performance quasi-Monte Carlo financial simulation:

FPGA vs. GPP vs. GPU,‖ in ACM Transactions on Reconfigurable Technology

and Systems, 3, 4, Article 26, November 2010, 22 pages.

[11] J. Cong, Bin Liu, S. Neuendorffer, J. Noguera, K. Vissers, Z. Zhang, ―High-Level

Synthesis for FPGAs: From Prototyping to Deployment,‖ in IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol.30, no.4,

pp.473-491, April 2011.

http://en.wikipedia.org/wiki/Field-programmable_gate_array

63

[12] R Suda, T. Aoki, S. Hirasawa, A. Nukada, H. Honda, S. Matsuoka, ―Aspects of

GPU for general purpose high performance computing,‖ in Proceedings of the

2009 Asia and South Pacific Design Automation Conference (ASP-DAC '09),

IEEE Press, Piscataway, NJ, USA, 216-223.

[13] T. Dokken, T.R. Hagen, J.M. Hjelmervik, ―The GPU as a high performance

computational resource,‖ in Proceedings of the 21st spring conference on

Computer graphics(SCCG '05), ACM, New York, NY, USA, 21-26.

[14] Chi-Hung Chi, Siu-Chung Lau, ―Reducing data access penalty using intelligent

opcode-driven cache prefetching,‖ in IEEE International Conference

on Computer Design: VLSI in Computers and Processors, ICCD '95, 1995, vol.,

no., pp.512-517, 2-4 Oct 1995.

[15] J.B. Chen, M.D. Smith, C. Young, N. Gloy, ―An Analysis of Dynamic Branch

Prediction Schemes on System Workloads,‖ in 23rd Annual International

Symposium on Computer Architecture, 1996, vol., no., pp. 12, 22-24 May 1996.

[16] E.Z. Zhang, Y. Jiang, Z. Guo, K. Tian, X. Shen, ―On-the-fly elimination of

dynamic irregularities for GPU computing,‖ in Proceedings of the sixteenth

international conference on Architectural support for programming languages

and operating systems (ASPLOS '11), ACM, New York, NY, USA, 369-380.

[17] S. Collange, M. Daumas, D. Defour, and D. Parello, ―Barra: A Parallel Functional

Simulator for GPGPU,‖in IEEE International Symposium on Modeling, Analysis

& Simulation of Computer and Telecommunication Systems (MASCOTS), 2010 ,

vol., no., pp.351-360, 17-19 Aug. 2010.

[18] http://www.nvidia.com/object/tesla_computing_solutions.html.

[19] G. Ruetsch, B. Oster, ―Getting Started with CUDA,” nVision 08: The world of

visual computing, 2008.

[20] I. Lebedev, C. Shaoyi, A. Doupnik, J. Martin, C. Fletcher, D. Burke, L. Mingjie,

J. Wawrzynek, ―MARC: A Many-Core Approach to Reconfigurable Computing,‖

in International Conference on Reconfigurable Computing and FPGAs

(ReConFig), 2010, vol., no., pp.7-12, 13-15 Dec. 2010.

[21] C. Fletcher, I. Lebedev, N. Asadi, D. Burke, J. Wawrzynek, ―Bridging the

GPGPU-FPGA Efficiency Gap,‖ in Proceedings of the 19th ACM/SIGDA

international symposium on Field programmable gate arrays (FPGA '11),

Feb 27 - Mar 1, 2011.

http://www.nvidia.com/object/tesla_computing_solutions.html

64

[22] J. Kingyens and J.G Steffan, ―A GPU-inspired soft processor for high-throughput

acceleration,‖ in IEEE International Symposium on Parallel & Distributed

Processing, Workshops and Phd Forum (IPDPSW), 2010, vol., no., pp.1-8, 19-23

April 2010.

[23] A. Papakonstantinou, K. Gururaj, J. Stratton, D. Chen, J. Cong and W. Hwu,

―FCUDA: Enabling efficient compilation of CUDA kernels onto FPGAs,‖ in

 Application Specific Processors, 2009, SASP '09, IEEE 7th Symposium on , vol.,

no., pp.35-42, 27-28 July 2009.

[24] Altera, ―Implementing FPGA Design with the OpenCL Standard,‖ white paper,

November 2011.

[25] Xilinx Inc., ―MicroBlaze Processor Reference Guide – Embedded Development

Kit EDK 14.2‖, July 2012.

[26] Nvidia Corporation, PTX: Parallel Thread Execution ISA, Version 2.3, March

2011.

[27] Xilinx Inc., LogiCORE IP Block Memory Generator v4.3, September 2010.

[28] http://www.mathworks.com/products/simulink/.

[29] Xilinx Inc., ―System Generator for DSP – User Guide‖, March 2011.

[30] http://en.wikipedia.org/wiki/CUDA

[31] University of California, Berkeley, GPGPU-Sim 3.x Manual,

http://gpgpu-sim.ece.ubc.ca/Main_Page.

[32] Nvidia Corporation, cuobjdump - Application Note, DA-05536-001_v03, January

2011.

[33] http://developer.nvidia.com/cuda-toolkit-23-downloads.

[34] ModelSim SE, http://model.com/node/16.

[35] Wladimir J Van der Laan, https://github.com/laanwj/decuda.

[36] S. Collange, M. Daumas, D. Defour, and D. Parello, ―Barra: A Parallel Functional

Simulator for GPGPU,‖in IEEE International Symposium on Modeling, Analysis

& Simulation of Computer and Telecommunication Systems (MASCOTS), 2010 ,

vol., no., pp.351-360, 17-19 Aug. 2010.

[37] A. Bakhoda, G. Yuan, W. W. L. Fung, H. Wong and T. M. Aamodt, ―Analyzing

cuda workloads using a detailed GPU simulator,‖ in IEEE ISPASS, April 2009.

http://www.mathworks.com/products/simulink/
http://en.wikipedia.org/wiki/CUDA
http://gpgpu-sim.ece.ubc.ca/Main_Page
http://developer.nvidia.com/cuda-toolkit-23-downloads
http://model.com/node/16
https://github.com/laanwj/decuda

65

[38] https://svn.ece.lsu.edu/svn/gp/cuda/matrix-mult/mm-gt200.sass

[39] http://www.cs.duke.edu/courses/fall08/cps196.1/Pthreads/bitonic.c

[40] http://ercbench.ece.wisc.edu/

[41] www.cse.nd.edu/courses/cse60881/www/lectures/logsum.pdf

[42] http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm

[43] http://www2.tech.purdue.edu/cgt/Courses/tech621/lectures/TECH621GPGPU-09-

CUDA%20Parallel%20Reduction.pdf

[44] Xilinx Inc., ―PlanAhead User Guide‖, December 2009

https://svn.ece.lsu.edu/svn/gp/cuda/matrix-mult/mm-gt200.sass
http://www.cs.duke.edu/courses/fall08/cps196.1/Pthreads/bitonic.c
http://ercbench.ece.wisc.edu/
http://www.cse.nd.edu/courses/cse60881/www/lectures/logsum.pdf
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm
http://www2.tech.purdue.edu/cgt/Courses/tech621/lectures/TECH621GPGPU-09-CUDA%20Parallel%20Reduction.pdf
http://www2.tech.purdue.edu/cgt/Courses/tech621/lectures/TECH621GPGPU-09-CUDA%20Parallel%20Reduction.pdf

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2013

	Testing and Validation of a Prototype Gpgpu Design for FPGAs
	Murtaza Merchant

	Testing and Validation of a Prototype GPGPU Design for FPGAs

