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ABSTRACT 

TESTING AND VALIDATION OF A PROTOTYPE GPGPU 

DESIGN FOR FPGAs 

 

FEBRUARY 2013 

 

MURTAZA S. MERCHANT 

 

B.E, UNIVERSITY OF MUMBAI, INDIA 

 

M.S. E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Russell G. Tessier 

 

Due to their suitability for highly parallel and pipelined computation, field 

programmable gate arrays (FPGAs) and general-purpose graphics processing units 

(GPGPUs) have emerged as top contenders for hardware acceleration of high-

performance computing applications. FPGAs are highly specialized devices that can be 

customized to an application, whereas GPGPUs are made of a fixed array of 

multiprocessors with a rigid architectural model. To alleviate this rigidity as well as to 

combine some other benefits of the two platforms, it is desirable to explore the 

implementation of a flexible GPGPU (soft GPGPU) using the reconfigurable fabric found 

in an FPGA. This thesis describes an aggressive effort to test and validate a prototype 

GPGPU design targeted to a Virtex-6 FPGA. Individual stages of the design have been 

separately tested with the aid of manually-generated register transfer level (RTL) 

testbenches and logic simulation tools. The tested modules are then integrated together to 

build the GPGPU processing pipeline. The GPGPU design is completely validated by 

benchmarking the platform against five standard CUDA benchmarks with varying 

control-flow characteristics.  The architecture is fully CUDA-compatible and supports 

direct CUDA compilation of the benchmarks to a binary that is executable on the soft 
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GPGPU. The validation is performed by comparing the FPGA simulation results against 

the golden references generated using corresponding C/C++ executions. The efficiency 

and scalability of the soft GPGPU platform is validated by varying the number of 

processing cores and examining its effect on the performance and area. Preliminary 

results show that the validated GPGPU platform with 32 cores can offer up to 25x 

speedup for most benchmarks over a fully optimized MicroBlaze soft microprocessor.  

The results also accentuate the benefits of the thread-based execution model of GPUs as 

well as their ability to perform complex control flow operations in hardware. The testing 

and validation of the designed soft GPGPU system, serves as a prerequisite for rapid 

design exploration of the platform in the future.  
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CHAPTER 1 

INTRODUCTION 

 

In recent years, general purpose computing using graphics processing units 

(GPUs) has drawn considerable interest in the field of high-performance computation. 

With many-core processor architecture and a highly parallel programming model, GPUs 

have multifold computational capabilities for parallel data applications as compared to a 

modern day CPU (Figure 1).  

 

The advent of high-level programming models like Nvidia‘s Compute Unified 

Device Architecture (CUDA) and ATI Stream technology have helped isolate developers 

from low-level hardware details. However, a limitation of GPGPUs is their rigid 

architectural model, which is constrained to fixed microarchitectural templates.  As a 

Figure 1: Computations per second - GPU vs. CPU  
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result, there are many computing systems which do not contain a GPGPU. Conversely, 

field programmable gate arrays (FPGAs) are highly specialized devices that offer 

application-specific customizations to the designer [1][2]—unfortunately, these 

optimizations require cumbersome hardware design language (HDL) coding, hardware 

skills and techniques, beyond the expertise of many developers.  Between the hand-

modeled FPGA solutions and the high-level programming based GPGPUs, there is 

sizable design space that warranties systematic exploration. This is depicted by the brown 

area in Figure 2. 

 

To exploit the respective strengths of these two platforms while simultaneously 

alleviating their drawbacks, this thesis explores the testing and validation of a prototype 

GPGPU design targeted to FPGAs, also known as a soft GPGPU. The soft GPGPU is 

based on the G80 architecture [3]—the first dedicated general-purpose GPU from Nvidia 

with compute capability 1.0 [4].  Most of its key features like multithreading, vector 

processing and hardware conditional execution is retained in our FPGA implementation.  

GPGPU

FPGA

Low

Low
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Design 
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Figure 2: Ease-of-implementation vs. Design Flexibility for GPGPUs and FPGAs 



3 

 

An FPGA provides GPGPU flexibility for systems which do not contain an 

available GPGPU. This flexibility can be expressed in terms of architectural parameters 

such as the number of processing cores, the arithmetic bit-width, and the ratio of 

arithmetic elements to memory elements, etc. Our approach enables the reusability of 

existing system FPGAs for computing applications like image processing and computer 

vision algorithms that benefit from a many-core architectural template. 

The first prototype design of the soft GPGPU has been developed in conjunction 

with UMass ECE Ph.D student Kevin Andryc.  The functional verification of the 

individual soft GPGPU blocks and the integrated design is necessary before detailed 

experimentation and evaluation can be carried out. As with any prototype design, 

verification and validation plays a critical role in the development process. It enables the 

detection of errors and allows for bug correction early in the design cycle, especially 

during the implementation of the RTL design from a behavioral specification. As the 

design process matures, iterative verification is crucial in moving the design forward to 

the next stage. In this context, a testing and validation plan for the soft GPGPU along 

with preliminary experimentation results are detailed in this thesis.  

There are primarily two contemporary verification techniques that are used in the 

industry, formal verification [5] [6] and simulation-based verification. Formal 

verification methods, like equivalence checking, model checking, and theorem-proving, 

use abstract mathematical models to prove or disprove the correctness of a design. 

However, using formal verification methods demands experienced designers, who are 

knowledgeable about various design practices. Today, the industry is more reliant on 

simulation-based verification techniques, which involve predicting the functional 
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response of a circuit based on specified input values. Logic simulation has been the 

workhorse verification technique for testing RTL designs. The input values which form 

the ‗testbench‘ are manually created using hardware description languages like VHDL or 

Verilog and serve as the stimulus to the design. The testbench and the design are fed to 

logic simulation tools to verify the correctness of the design by comparing the captured 

simulation waveforms with the expected results based on the specifications of the design. 

The testing and validation of the implemented soft GPGPU is performed using 

simulation-based verification techniques. We begin with testing the individual stages of 

the pipeline using manually generated VHDL testbenches and making necessary design 

modifications (if any) commensurate with the required functionality of the module. With 

sufficient confidence in the correct functionality of the individual stages, we proceed to 

integrate the stages together to build the GPGPU processing pipeline. Pipeline 

verification is carried out by simulating a wide variety of CUDA assembly instructions 

through the pipeline. As a final step, validation of the entire system is accomplished by 

compiling five CUDA benchmarks to binary and simulating them on the soft GPGPU 

design. Further, benchmarking experiments are conducted to analyze the effects of 

reconfiguring certain preliminary architectural parameters of the soft GPGPU on area and 

performance.  

The thesis focuses on leveraging the first-ever soft GPGPU prototype to 

successfully simulate CUDA benchmarks. It overlays the foundation for conducting a 

wide variety of experiments in the future and opens up opportunities to compare our 

implementation with similar parallel processing platforms like FPGA based soft vector 

processors and OpenCL to multicore implementations.  
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The rest of the thesis is organized as follows: Chapter 2 provides general 

background on the Nvidia G80 architecture and the CUDA programming model. This 

chapter also provides an overview of the related work which includes several FPGA-

targeted projects for implementing data parallel applications. Chapter 3 describes the 

architecture of the implemented soft GPGPU with detailed functionality of critical blocks 

in the design. Chapter 4 illustrates the testing and validation methodologies used in this 

work. Chapter 5 discusses the various experiments and explains the obtained results. 

Chapter 6 concludes the thesis by providing directions for future work. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 

2.1 Field-programmable gate array (FPGA) 

A field-programmable gate array (FPGA) is an integrated circuit that can be 

completely reconfigured even after it is fabricated [7]. As illustrated by  

Figure 3, it consists of a prebuilt array of combinational logic blocks (CLBs), 

memory elements (Block RAMs), input-output blocks (IOBs) and DSP units, surrounded 

by programmable routing resources that can be configured using a hardware description 

language (HDL) such as VHDL or Verilog. 

Using an HDL, custom hardware functionality can be implemented on an FPGA. The 

large array of logic blocks spread across the fabric provides fine-grained parallelism to 

FPGAs. Such parallelism provides orders of magnitudes of application speedup as 

compared to conventional CPUs, and in some cases even GPUs [9].  

 

Figure 3: FPGA architecture [8] 
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FPGAs are highly specialized devices that offer application-specific 

customization to designers. These customizations include on-chip memory (block 

RAMs), DSP units (multiplier or a floating point unit), bit-width variations etc. Higher 

power efficiency [10] and lower time-to-market as compared to ASICs are other benefits 

provided by FPGAs.  These benefits come at the cost of increased design effort and 

necessity of digital hardware design knowledge for programming these custom-

computing machines. However, the advent of high-level synthesis tools [11], with new 

technologies that convert C code or even graphical descriptions into digital hardware is 

changing this trend. 

2.2 General-purpose computing on graphics processing unit (GPGPU) 

General-purpose computing on graphics processing unit (GPGPU) uses graphics 

processors (GPUs) which typically handle computations for computer graphics and for 

non-graphics computing applications. GPGPUs have a many-core device architecture and 

possess substantial parallel processing capabilities [12] [13] [14].They consist of an array 

of multiprocessors (each with two or more processing units) enabling them to execute 

thousands of threads in parallel. In a GPU, a majority of the silicon area is dedicated to 

data processing units with only a small portion assigned to data caching and flow control 

circuitry, as illustrated by Figure 4. Such a design architecture makes them suitable for 

solving compute-intensive problems. In comparison, CPUs embrace a sequential data 

flow structure and are more suited for control flow intensive problems.  
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CPUs implement intelligent data caches [4] and flow control mechanisms like 

dynamic branch prediction [15] to boost performance. Such techniques enable CPUs to 

hide the latency involved with long memory operations. In contrast, GPUs run thousands 

of threads in parallel on several processors to execute an application. They rely on 

dedicated thread scheduling techniques and fast switching between tasks to overshadow 

memory latency [16]. The primary goal is to achieve maximum multiprocessor 

occupancy, resulting in high throughput. While one thread is occupied with a long 

memory operation, other threads can be scheduled in parallel to carry out fast arithmetic 

operations.  The availability of a large number of processors facilitates effective thread 

scheduling. As most applications targeting GPUs are highly parallel in nature, the 

abundant processing cores can be exploited to eliminate the need for speculative 

execution and advanced flow control logic.  

 

 

Figure 4: Resource distribution for a CPU and GPU [4] 

(Green: Data processing; Yellow: Control; Orange: Memory) 
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A high-level block diagram of the G80 GPU is illustrated in Figure 5. The 

following sections describe the hardware architecture and the software model of GPUs. 

2.2.1 G80: The hardware architecture 

G80 [3] [18] is Nvidia‘s first supercomputing processor architecture with 

dedicated support for general-purpose computing on graphics processors. The high-level 

architecture of a G80 GPU is shown in Figure 5. The GPU is primarily made up of an 

array of (streaming) multiprocessors, with each multiprocessor consisting of eight scalar 

processor (SP) cores. The term ‗streaming multiprocessor’ implies that each 

multiprocessor consists of processing elements that perform the same operation on 

multiple data simultaneously. This type of execution is termed single instruction, multiple 

data (SIMD) processing.  Each SP operates on a thread, the smallest unit of execution in 

the GPGPU system. SPs consist of dedicated hardware resources to perform arithmetic 

and logical operations on threads. The vector register file contains a pool of registers that 

is strictly partitioned across SPs. The register file striping allows each SP to use its own 

set of registers for storing operands and results, also steering them away from any data 

dependent hazards. The shared memory serves as a communication medium between the 

Figure 5: Nvidia GPU environment [17] 
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different SPs residing in the same SM. Communication across different SMs is 

orchestrated via the global memory, which is accessible to all the threads within the GPU. 

The global memory is physically implemented as an off-chip DRAM, thus requiring a 

long memory access time (400-600 clock cycles) [19] as compared to accessing registers 

or shared memory. In addition, there is a read-only constant memory (not shown in the 

figure) accessible by all the threads. The constant memory space is a cache for each SM, 

thus allowing fast data access as long as all threads read the same memory address. 

Special function units (SFUs) perform exclusive arithmetic operations like sine, cosine, 

logarithmic arithmetic etc. The instruction unit maps program instructions to every thread 

in the SM. 

The number of threads residing in a streaming multiprocessor is governed by the 

number of registers used per thread. If R is the total number of registers per SM and r is 

the number of registers per thread, a maximum of R/r threads can be accommodated. The 

amount of available shared memory also influences the processor occupancy, as it is 

shared among all the threads of the SM and cannot exceed the available physical 

resources.  

2.2.2 CUDA: The software programming model 

In Nvidia architecture, individual CUDA threads are combined together into 

groups called as warps, as shown in Figure 5. Each warp consists of 32 threads which 

execute the same instruction together in a lockstep fashion. A warp is considered to be 

the unit for scheduling threads within the SM.  When a SM gets a new instruction, it 

selects a ‗ready‘ warp and maps the instruction to every thread within the warp.  This 

process is known as warp scheduling. The warp scheduling is critical in masking long 
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latency operations that consume a large number of clock cycles. In case of memory 

operations, while one warp is busy executing the time consuming load/store operations, 

the SM can schedule another ‗ready‘ warp for execution, thus masking the long memory 

latency. In this way, the SM manages and executes concurrent threads in hardware with 

zero scheduling overhead. The zero-overhead thread scheduling enables fine-grained 

thread-level parallelism in GPUs.  

To manage fine-grained thread parallelism, each multiprocessor is architected as a 

single instruction, multiple-thread (SIMT) processor. As in the SIMD model, every 

thread performs the same operation on a different set of data and is free to independently 

execute data-dependent branches. Branching threads diverge from the normal execution 

flow and hence have to be masked during execution of the non-branching path. As the 

threads within the warp have to be executed in a lockstep, the instructions pointed to by 

the branching threads are executed serially, one thread at a time, while the non-branching 

threads are masked. In case of thread diversion, it is evident that the thread-level 

parallelism is not fully exploited thus penalizing throughput performance. In the worst 

case, if there are n threads each of which diverging to a different address in a hierarchical 

fashion, n distinct paths would have to be serially executed causing O (n) performance 

penalty.  

A thread block is formed by combining a fixed number of warps (24 in our case) 

together. The thread blocks are assigned to different SMs by the block scheduler, as 

shown in Figure 5. A thread block contains threads that can cooperate together and hence 

it is also called as a cooperative thread array (CTA). Thread synchronization within the 

same block is achieved by using the __syncthreads barrier synchronization instruction. 
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Threads from different blocks need not synchronize, hence allowing different blocks to 

execute independently. Due to a limit to the number of threads a block can contain, 

several thread blocks are combined together to form a grid that contains a much larger 

number of threads. The grid executes the kernel—the function to be executed on the 

GPU. When a kernel is invoked by the host CPU, a grid of threads is launched as an array 

of parallel thread blocks (CTAs), as shown in Figure 6. Blocks and grids can be one, two 

or three dimensional, and their size must be specified while launching the kernel.  

The hierarchical thread structure defines the compute unified device architecture 

(CUDA) programming model and directly maps to the GPU hardware architecture as 

shown in Figure 5. To summarize the hardware-software interaction using a top-down 

approach:  

i. Each block from the grid of threads is assigned to an SM by the block scheduler. 

ii. Within each scheduled block, the SM selects idle warps for execution. 

iii. Within each warp, each thread is executed on an individual SP.  

 

 

 

 

 

 

 

Figure 6: Host-GPU interaction [4] 
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The CUDA specifications as per compute capability 1.0 are summarized in   

Table 1. The soft GPGPU architecture is designed based upon these specifications: 

Table 1: CUDA specifications for compute capability 1.0 

 

2.3 Related work / Overall motivation for soft GPGPUs  

Over the past few years, FPGA computing using GPGPU microarchitectural 

templates has been a topic of active research [20][21][22][23]. GPU programming models 

like Nvidia‘s CUDA and AMD‘s ATI are gaining traction, and it is less clear if similar 

programming models defined for FPGAs can be beneficial.  

Lebedev et al. [20] to the best of our knowledge were the first to embrace a many-

core abstraction for FPGA-based computation. They proposed a many-core approach to a 

Maximum number of resident threads per multiprocessor 256 

Maximum number of resident warps per multiprocessor 24 

Warp size 32 

Maximum number of resident blocks per multiprocessor 3 

Maximum number of threads per SM 768 

Maximum dimensionality of thread block 3 

Maximum dimensionality of a grid of  thread block 2 

Number of 32-bit registers per multiprocessor 8192 

Maximum amount of shared memory per multiprocessor 16 KB 

Number of shared memory banks 1 

Constant memory size 8 KB 
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reconfigurable computing (MARC) system for high performance applications expressed 

in high-level programming languages like OpenCL. The prototype machine was 

implemented for a Bayesian inference algorithm using a Virtex-5 FPGA. Although the 

MARC system was almost three times slower than a fully optimized FPGA solution, the 

design time and manual optimization effort was significantly reduced. The authors 

believe that the performance degradation caused by constraining the FPGA to an 

execution template could be overcome by application-specific customization of the 

architecture. In another work closely associated with MARC, Fletcher et al. 0 have 

implemented the Bayesian inference algorithm across several FPGAs and GPGPUs to 

enunciate the efficiency gap between the two platforms.  Both implementations use the 

high-level architectural template of a GPGPU. However, application-specific logic is 

added to the FPGA design, requiring the user to repurpose the implemented hardware for 

every application.  Implementation results show a ~3x performance benefit in favor of a 

Virtex-5 155T FPGA, as compared to the latest Nvidia Fermi-based GPGPU. In 

comparison, our architecture requires no application-specific logic to be embedded within 

the FPGA, but the user can customize the architectural parameters based on application 

needs. Kingyens et al. [22] have proposed a GPU-inspired soft processor programming 

model. The soft processor architecture exhibits several GPU design constructs including 

multiple processors, multithreading and vector instructions. Their work provides insight 

on how to best architect a GPU-inspired soft processor for maximizing the benefits of 

FPGA acceleration. Unlike a soft processor, our work targets FPGAs for the 

implementation of an actual GPGPU design based on the Nvidia G80 architecture. 
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The FCUDA design flow developed in [23], efficiently maps parallel CUDA 

kernels to customized multi-core accelerators on an FPGA.  Initial performance results 

show that the FPGA accelerators outperform the GPU by 2x, primarily due to custom 

data paths and bit width optimizations. However for every new application, the CUDA 

program has to be re-compiled and re-synthesized onto the FPGA making it a 

cumbersome process. In our work, the GPU architecture needs to be synthesized on an 

FPGA only once, thus eliminating the need to re-synthesize hardware for different 

applications. Recently, Altera announced a development program on an OpenCL 

framework for FPGAs [24]. OpenCL is a parallel programming language based on C 

constructs. Altera's OpenCL program combines the OpenCL standard with the parallel 

performance capability of FPGAs to enable powerful system acceleration. The OpenCL 

compiler translates the high-level description of the user program into multicore 

accelerators for FPGAs, as illustrated in Figure 7. Initial benchmark results have shown 

that the OpenCL framework targeting FPGA exceeds the throughput of both a CPU and 

GPU. In addition, FPGA design using the OpenCL standard has a significant time-to-

market advantage compared to traditional FPGA development using lower level hardware 

description languages such as Verilog or VHDL. 

 

 

 

 

 

Figure 7: OpenCL framework for Altera FPGAs [24] 
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Although these approaches generate circuits which are optimized for a specific 

application and reap the associated area, performance, and energy benefits, they all 

require the substantial compile time associated with FPGA synthesis, mapping, and place 

and route. The migration of a new application to the FPGA requires substantially more 

time than the few seconds normally found when targeting CUDA programs to GPUs. Our 

goal is to reduce this time gap by effectively supporting the CUDA programming 

environment available to GPU programmers on FPGAs, without the costly hardware 

compilation typically required for reconfigurable logic. We envision such a system as 

being particularly useful for environments such as cloud computing or embedded systems 

deployed on a field, where compute nodes demand fast reconfiguration for serving 

different purposes at different times. In such cases, the extra cost, complexity, or power 

consumption of an off-the-shelf GPU in the nodes may be unwanted or unnecessary. Our 

approach provides a fast solution to target these environments. 

 

2.4 Chapter Summary 

This chapter introduced the Nvidia G80 hardware architecture and the CUDA 

programming paradigm, both of which are prerequisites for understanding the soft 

GPGPU architecture. It also provided an overall motivation of our project by comparing 

our work with the ongoing research in the field of collaborative FPGA-GPU computation 

for data parallel applications. In the next chapter, we shall see the architectural features of 

the implemented soft GPGPU. 
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CHAPTER 3 

SOFT GPGPU ARCHITECTURE 

 

In this chapter, we present the high-level overview of the soft GPGPU 

architecture. The hardware execution flow of a kernel on the soft GPGPU is enunciated, 

followed by detailed descriptions of the different design blocks present in the system. 

Towards the end of the chapter, supported CUDA instructions are described. 

 

 

 

 

 

 

 

 

 

3.1 High-level execution flow 

As discussed in section 2.2.1, the Nvidia G80 architecture is made up of an array 

of streaming multiprocessors or SMs. Alongside the SMs, the architecture consists of a 

block scheduler which feeds thread blocks to the SMs, a system memory to store the 

kernel instructions, and a global memory to store the input and output data. As majority 

of the computation space is occupied by an SM, it is of particular interest to closely study 
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its architecture. Figure 8 shows the high-level architecture of one SM. Due to the scalable 

nature of the soft GPGPU architecture, multiple SMs can be instantiated for more 

processing power by trading off the physical resources of the FPGA. The SM is designed 

as a five stage pipeline similar to the MIPS architecture. However, unlike MIPS, CUDA 

supports a register memory architecture allowing operations to be performed on memory 

as well as registers. This requires the Read stage to precede the Execute stage in order to 

read the operands from either memories or registers before proceeding to data execution.  

GPU-based heterogeneous computing platforms consist of a host, generally a 

CPU, and the GPU device.  During the execution of the program when the host 

encounters a GPU kernel call, it directs the CUDA driver API to configure the GPU for 

kernel execution. During configuration, the CUDA driver loads the initial kernel 

parameters such as the block and grid dimensions, the number of blocks per SM, the 

number of registers used per thread and the shared memory size. Additionally, it also 

populates the shared memory with user parameters—for e.g. the width of the matrices in 

case of matrix multiplication kernel. For independent testing and validation of the soft 

GPGPU system without a host, these configuration parameters are hard-coded into 

configuration registers prior to kernel execution. Upon encountering a kernel call, the 

CUDA driver is also responsible for loading the kernel into the GPU‘s instruction 

memory. We mimic this action by pre-storing the kernel on the system memory prior to 

execution. In the future, we envision that the host-GPU interaction will be enabled with a 

MicroBlaze soft processor [25] as a host, and a custom software driver to automatically 

populate the configuration registers and the instruction memory with the CUDA kernel. 
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After the configuration process is finished, the block scheduler schedules thread 

blocks to the SM with each block identified by its block ID. The block scheduler then 

passes the relevant control and data information of the scheduled blocks to the controller. 

The controller acts as the interface between the block scheduler and the SM. As per 

CUDA requirements, the controller performs two operations: 

1. It populates the first 16 bytes of the shared memory using block scheduler 

information. 

2. It writes all the register R0s in the vector register file corresponding to different 

threads with their respective thread IDs.  

Following this, the warp generation and warp scheduling processes are initiated as 

detailed in the next section. 

3.2 Pipeline description 

This section describes the various pipeline stages in the order that an instruction 

would flow through the pipeline. 

3.2.1 Warp unit 

As mentioned in section 2.2.2, CUDA threads in an SM are launched in groups 

known as warps. The warp unit is responsible for generating these warps and scheduling 

them in a round-robin fashion. Each warp contains data and an associated state. The warp 

data primarily holds the warp ID ranging from value 0 to (maximum warps -1), the 

program counter (PC), and a thread mask. The thread mask is particularly useful during 

conditional execution to mask out threads within a warp that do not lie on the current 

execution path. Each warp maintains its own PC and thus is independent to take its own 

path. The mask size is same as the warp size, i.e. 32 bits. The warp state indicates the 
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status of the warp which can either be Ready, Active, Waiting or Finished. The Ready 

state indicates that the warp is idle and is ready to be scheduled. Active state indicates 

that the warp is currently active in the pipeline. In order to synchronize warps within a 

block, CUDA supports explicit barrier synchronization instructions. Warps that reach the 

barrier instruction first have to wait for other warps to reach to the same checkpoint, and 

hence are marked as Waiting. When all the threads in a warp finish executing the kernel, 

the warp is declared as Finished. Within a warp, threads are arranged in rows depending 

on the number of scalar processor (SP) instantiated within an SM. For e.g. for an 8 SP 

configuration, a warp would be arranged in four rows with each row containing 8 threads. 

Similarly, for a 16 SP configuration, a warp would be arranged in two rows with 16 

threads each. The maximum parallelism is achieved with 32 SPs and one row.   

In our architecture, the warp data and state are stored on the FPGA taking 

advantage of dual-ported Block RAMs. The warp data is stored in a warp pool memory 

and the warp state is stored in the warp state memory. Both memories are indexed using 

the warp ID. Initially, all the warp data are generated using the respective warp IDs, PC 

pointing to first kernel instruction address, i.e. 0x00000000, and an instruction mask with 

all threads active, i.e. 0Xffffffff. The warp state is initialized to Ready for all the warps. 

Once the warp generation is complete, the data for the first warp is read from the warp 

pool, its state is verified as Ready and all its rows are scheduled one after another. 

Likewise, other warps are scheduled one after another every cycle. This scheduling 

process is handled by the warp scheduler. A scheduled warp is primarily recognized by 

its warp ID, PC and thread mask. The PC, thread mask and the warp state are updated in 



21 

 

the corresponding memories every time a warp reaches back to the warp unit stage after 

looping through the entire pipeline. 

This normal flow of warp scheduling is somewhat interrupted in case of the 

barrier synchronization instruction. A warp executing this instruction through the pipeline 

is marked Waiting towards the end of the pipeline. A fence register is maintained to 

register incoming warps that are in the Waiting state. The synchronization flow is as 

shown in Figure 9.  The width of the fence register is equal to the total number of warps 

per block. For every incoming warp in the Waiting state, the warp unit sets the fence 

register bit corresponding to the warp. It then reads the fence register to check if all the 

bits are set which would indicate the arrival of all warps that are in the Waiting state. If 

the condition is true, all warps are synchronized and the barrier is released. The warp unit 

changes all the warp states to Ready and normal warp scheduling resumes.  

3.2.2 Fetch and decode stage 

The fetch stage fetches the binary instructions based on the warp PC forwarded by 

the warp unit. The fetched instruction can be visualized as being mapped onto all the 

threads in the row, SIMD style. The CUDA instruction can be either 4 bytes or 8 bytes 

depending on whether it is a short or a long instruction respectively. After fetching the 

instruction, the PC value is incremented (by 4/8 bytes) to point to the next instruction. 

The decode stage decodes the binary instruction to generate several output tokens such as 

the instruction type, instruction length, source and destination operands, data types, 

conditional execution, etc.  
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3.2.3 Read stage 

In the read stage, source operands are read from register files and memories 

depending on the decoded inputs. The vector register files are implemented as register 

file banks such that each thread has its own set of registers. The vector register file is 

used to store general-purpose registers. Threads in a warp are mapped to the vector 

register file as shown in Figure 10. Each thread within a row is mapped to a different 
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register file for reading and writing data in parallel. To differentiate between threads 

lying in the same column but in different rows, each register file is split into 4 memory 

banks. Each bank is implemented as a dual port memory and the decoded row ID is used 

to choose a particular memory bank. The size of a memory bank is determined by the 

total number of warps and the total number of registers used by each thread. For the 

benchmarks under consideration, it was found out that the maximum number of registers 

used by any application was 12. For accommodating registers for all 24 warps, a memory 

bank must be able to hold 24 x 12 = 288 registers. If each register is 4 bytes long, we 

need a memory bank size of 288 x 4 = 1152 Bytes. The register file was physically 

implemented on the FPGA using the on-chip BRAMs of size 1152 Bytes.  

 

 

 

 

 

 

 

 

 

The address registers and predicate registers are also mapped in the same fashion 

as the vector registers. The address register file stores the memory offsets for gather-

scatter memory operations. Gather-scatter operations are same as load-store operations, 

Figure 10: Vector register file read operation 
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but in burst mode i.e. data is read in bursts rather than sequentially. Each thread is 

allotted four address registers. The predicate register file holds predicate flags used for 

branches and conditionally executing instructions (predication). Predicate flags store 

different branching conditions like zero, non-zero, sign, overflow, carry, etc. Instructions 

prefixed with a predicate flag are termed predicated instructions [26].  

 The shared, constant and global memories are implemented using dual port 

BRAMs [27] with one port for the Read stage and the other for the Write stage. This 

ensures that the Read and Write stages can access the memories simultaneously in the 

pipeline. The total shared memory space is divided between different blocks per SM and 

has a total size of 16 KB. The constant memory is 8 KB read-only memory used to store 

constant data. The global memory stores the input/output data and has a total size of 256 

KB. Unlike the standard MIPS architecture where the memory address is calculated in the 

Execute stage, memory controllers with dedicated address calculation units are embedded 

within the Read and Write stages to access data.  The warp stack is used to store warp 

information while executing control-flow instructions. Its uses are detailed in the next 

section.  

3.2.4 Control / Execute stage 

This stage forms the crux of the soft GPGPU pipeline. It performs all the data 

processing (arithmetic and logical) with the help of functional units or scalar processors 

(SP). Each thread in the warp row is mapped to one SP enabling parallel execution. In our 

architecture, the number of SPs can be varied for more or less processing power. The 

available configurations of the SPs are 8, 16 and 32. Currently, the SPs support only 

integer type operations like addition, subtraction, multiplication, multiply and add, data 
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type convert, bit shifting and logical operations such as AND, OR, NOR, XOR, etc. All 

these operations are implemented using Matlab Simulink models [28] which are 

converted to HDL code using the Xilinx System Generator [29].  

The control unit is responsible for executing all control flow instructions which 

include conditional and unconditional branches, barrier synchronization, kernel return, 

and set synchronization point. In the case of branch instructions, the control unit pushes 

the current warp data onto the stack and executes one of the branch paths. Upon finishing 

execution of the path, the warp data is popped off the stack for executing the other branch 

path. In case of a barrier instruction, the control unit marks the warp state as waiting. The 

synchronization is then taken care of by the warp unit as explained earlier in the chapter. 

The return instruction signifies the end of kernel. If all the threads in a warp execute this 

instruction (no threads are masked), the warp is killed, i.e. marked as Finished.  Finished 

warps are no longer scheduled by the warp unit. The set synchronization instruction is 

used before potentially divergent branches. A warp is said to diverge if the branch 

outcome is not same for all threads in the warp. The set synchronization instruction is 

used to set the reconvergence point of a branch – an instruction that will be reached 

irrespective of whether or not the branch is taken. The synchronization point is set by 

pushing the reconvergence PC onto the stack. In case of divergence, execution proceeds 

along one path (say, taken) until the reconvergence point is reached. When the point is 

reached, the execution switches back to the other path (not-taken). When the 

reconvergence point is reached for a second time, the reconvergence PC is popped off the 

stack and normal thread execution continues from the reconvergence instruction and 
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beyond. Figure 11 explains the sequence of operations that are performed to handle 

branch divergence.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the sake of simplicity, consider the case in which we have (say) only eight threads in 

a warp.  Figure 11 shows the scenario when execution is just about to hit a diverging 

branch. As discussed before, the synchronization instruction precedes the diverging 

branch to set the synchronization point. The join instruction at the end is the 

Figure 11 : Handling branch divergence 
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reconvergence point. The thread mask is equal to the warp size, i.e. 8 bits wide. The warp 

convergence stack is a hardware structure that keeps track of diverged branches. There is 

one stack per warp. Each entry in the stack has three fields—the thread mask, control 

flow opcode and the next PC. Assume all the threads are active before diverging, i.e. the 

initial thread mask = ―11111111‖. 

i. Execution reaches the synchronization point. The stack is populated with 

the current thread mask and the control opcode SYNC. 

ii.  Execution reaches the divergent branch. Either of the branch paths can be 

taken first. If (say) branch taken is being executed first, the thread mask of 

the not taken path (compliment of the taken mask), the control flow 

opcode i.e. Branch, and the not taken PC is populated at the top of the 

stack. 

iii. The target address and the thread mask of the taken branch path are loaded 

by the warp scheduler in the next cycle and following instructions are 

executed. 

iv. Execution reaches the reconvergence point for the first time. The join 

instruction is detected and the top-of-stack (TOS) entry is popped. The 

TOS pointer is decremented by one. 

v. The popped thread mask and PC corresponding to the non taken branch 

are loaded by the warp scheduler in the next cycle, and following 

instructions are executed.   
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vi. Execution reaches the reconvergence point for the second time. The join 

instruction is detected and the top-of-stack (TOS) entry is popped. The 

TOS pointer is decremented by one and the stack empty signal goes high. 

vii. The popped opcode is detected as SYNC. Consequently, the popped 

thread mask is loaded by the warp scheduler in the next cycle. However, 

instead of the loading the PC from the popped PC, the PC of the 

instruction next to the join instruction, called the reconvergence PC is 

loaded.  

viii. Both the branch paths are now executed for different sets of threads, and 

beyond this point all threads resume parallel execution. The same control 

flow would also support nested branches with sync instruction before 

every diverging branch and join instruction at every reconvergence point. 

3.2.5 Write stage 

The Write stage writes the vector register file with temporary data, address 

register file with memory offsets, predicate register file with predicate flags, shared 

memory with either temporary data or results, and the global memory with final results. 

The sequence of operations for writing into memory and registers is exactly opposite to 

the Read stage.  The warp data and state is looped back to the warp unit for updating the 

warp pool and state memories.  

All pipeline stages output a stall signal that is fed to the preceding stage. The stall 

signal indicates that the stage is busy and not ready to accept new data. Every stage has to 

make sure that the input stall signal is low before passing its own data to the next stage. 
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This ensures smooth data flow from one stage to another through the pipeline and avoids 

data corruption across stages. 

3.3 Supported CUDA instructions 

The soft GPGPU supports a subset of the Nvidia G80 instruction set with 

compute capability 1.0 [30] . Instructions were tested based on the requirements of the 

selected benchmarks. A total of 27 instructions out of the 40 distinct integer instructions 

(that we are aware of) were tested as a part of this thesis. The list of all instructions 

(supported and unsupported) is shown in Table 2. 

 

Opcode Description Tested 

I2I Copy integer value to integer with conversion   

IMUL/IMUL32/ 

IMUL32I 

Integer multiply  

SHL Shift left  

IADD Integer addition between two registers  

GLD Load from global memory  

R2A Move register to address register  

R2G Store to shared memory  

BAR CTA-wide barrier synchronization  

SHR Shift right  

BRA Conditional branch  

ISET Integer conditional set   

MOV /MOV32  Move register to register  

RET Conditional return form kernel  

MOV R, S[] Load from shared memory  

IADD, S[],R Integer addition between shared memory and 

register 
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Table 2: Instruction set 

 

GST Store to global memory  

AND C[], R Logical AND  

IMAD/IMAD32 Integer multiply-add; all register operands  

SSY Set synchronization point; used before 

potentially divergent instructions 

 

IADDI Integer addition with an immediate operand  

NOP No operation  

@P Predicated execution  

MVI Move immediate to destination  

XOR Logical XOR  

IMADI/ 

MAD32I 

Integer multiply-add with an immediate 

operand 

 

LLD Load from local memory  

LST Store to local memory  

A2R Move address register to data register - 

ADA Add immediate to address register - 

BRK Conditional break from loop - 

BRX Fetch and address from constant memory and 

branch to it 

- 

C2R Conditional doe to data register - 

CAL Unconditional subroutine call - 

COS Cosine - 

ISAD/ISAD32 Sum of absolute difference - 

R2C Move data register to conditional code - 

MVC Move form constant memory to destination - 

RRO Range reduction operator - 

VOTE  Warp-vote primitive - 

TEX/TEX32 Texture fetch - 
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3.4 Chapter Summary 

In this chapter, we discussed the hardware architecture and the overall pipeline 

execution flow of the soft GPGPU. The functionality of the different pipeline stages and 

other supporting modules were described in context of the CUDA programming model. 

The supported instruction set was also presented. In the next chapter, we shall examine 

testing aspects of some of these blocks and validation of the soft GPGPU system.   
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CHAPTER 4 

TESTING AND VALIDATION  

 

This chapter presents the testing and validation aspects of the prototype soft 

GPGPU design. The first section focuses on the testing methodology for the architecture. 

We describe our testing approach and discuss results that are of particular interest. To 

conclude, we present the validation flow, the involved methodology and validation 

results.  

4.1 Software flow 

The software flow for executing a CUDA kernel on the soft GPGPU is as shown 

in Figure 12. The left portion of the figure illustrates the software flow as apparent to the 

user. The process is split up into two phases as compile-time and run-time. During 

compile-time, the kernel is fed to the Nvidia CUDA compiler (nvcc) which converts it to 

parallel thread execution (PTX) code. PTX is a low-level assembly–like programming 

language that exposes the GPU as a data-parallel computing device [26]. It defines a 

stable programming model and a virtual instruction set architecture (ISA) for Nvidia 

GPUs. The PTX does not directly represent the machine instruction set, but is only an 

intermediate language that is compiled to target-specific assembly instructions. During 

run-time, the PTX assembly is passed to the CUDA driver API (Application 

Programming Interface). The driver API then converts the PTX to a CUDA binary 

(.cubin) which is targeted to the soft GPGPU. As we are not targeting actual Nvidia 

hardware, we use the runtime libraries provided by Nvidia to mimic the driver 

functionality. 
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In order to test and validate the soft GPGPU, it is necessary use the hardware 

assembly instructions that correspond to the generated binary. As noted earlier, the PTX 

assembly is only an intermediate language and does not map to actual hardware 

instructions executed on the GPU. Thus, the PTX cannot be used as the golden reference. 

Further investigation into the CUDA compilation flow revealed that during runtime, the 

driver API converts the PTX instructions to another format called Source and Assembly 

(SASS) [31], as shown on the right in Figure 12. SASS is specific to the target GPU 

architecture and represents native assembly instructions that are executed on the Nvidia 

hardware. However, it is interesting to note that the PTX-to-SASS conversion is not 

Figure 12: (Left) Software flow as apparent to the user, 

           (Right) Actual software flow which generates SASS 
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directly visible to the user and stays as a backend process. In order to generate the SASS 

instructions, the CUDA binary is disassembled using the cuobjdump [32] utility provided 

by Nvidia which can then be used for testing and validation purposes. 

Microsoft Visual Studio 2008 and Nvidia Toolkit v2.3 [33] are integrated together 

for this compilation process. The Nvidia toolkit is comprised of the Nvidia CUDA 

compiler (nvcc), and the CUDA driver and runtime API libraries. It supports integration 

with Visual Studio 2008 by providing Nvidia compilation rules for building CUDA 

applications. 

4.2 Testing experiments 

A simulation-based approach is adopted for testing the different design blocks. 

Testbenches are generated using either hand-modeled test cases or by using the binary 

instructions (for the decode stage). The design is then subjected to logic simulation using 

these testbenches. A typical verification flow using logic simulation is as shown in Figure 

13. The requirements drive the development of the RTL model and it influences the 

verification plan for developing the testbench. The verification plan consists of the test 

cases to be taken into consideration while generating the testbench. The simulation tool 

reads the testbench and the RTL model for running the simulation process. The result of 

the simulation is compared with the expected outputs to infer if a bug is present in the 

design. In the event the result is positive, the RTL design is debugged and appropriate 

design modifications are made. If no bug has been found, the simulation results are 

examined to verify that all paths are exercised, in which case the verification process is 

complete. 
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The following sections describe the conducted testing experiments for some of the 

critical blocks in the system. The simulations were carried out using the ModelSim SE 

10.0 simulator [34].  

4.2.1 Decode stage 

The decode stage was one of the more challenging blocks to design and test in the 

system. Nvidia does not reveal the G80 microarchitecture for proprietary reasons, as a 

result of which there is limited amount of available information on the binary mapping of 

assembly instructions. In order to closely understand the assembly instructions of the G80 

architecture, decuda [35], a CUDA binary disassembler was used as a reference. 

Additional cues were taken from academic GPGPU simulators like Barra [36] and 
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Figure 13: Simulation process for logic verification 
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GPGPU-Sim [31] [37] to design the decode stage. The primary design of the decode 

stage is as shown in Figure 14.  

 

 

 

 

i. Inst. type represents the instruction length (full – 64 bits, half – 32 bits).  

ii. Inst. opcode signifies the instruction type.  

iii. alu opcode, mov opcode and flow opcode represent the subtypes for each opcode 

type. 

iv. mov mem. type represents the type of data transfer. It can either be between two 

registers or between a register and a memory. 

v. src1, src2, src3, dest data type represent the source and destination data types. 

vi. src1, src2, src3, dest mem. type represent the source and destination memory 

types. 

vii. src1, src2, src3, dest are the source and destination numbers 

For experimentation, a preliminary CUDA kernel was written, and the 

corresponding binary and SASS instructions were generated as shown in Figure 16. The 

__global__ keyword specifies that the function is executed on the GPU. The kernel reads 

Figure 14: Decode stage 
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a one-dimensional integer array ‗a’ containing N elements and multiplies each element by 

a factor of 2. blockIdx.x represents the block ID, blockDim.x represents  block dimension 

in terms of number of threads and the thread ID is represented by threadIdx.x. These 

parameters are used to calculate the distinct indices of the array that each thread would 

access individually.  

The decode results are illustrated in Figure 15. By manually comparing the 

decode outputs against the SASS assembly reference shown in Figure 16, correct decode 

operation was verified.  Several instructions from other academic resources [38] were 

used to exercise the decode stage and necessary design modifications were made.  Some 

of the bugs were also discovered and rectified while simulating actual CUDA 

benchmarks described in the later part of this thesis 

 

Figure 15: Decode stage results 
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Figure 16: Sample CUDA kernel and corresponding cubin, SASS code 
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4.2.2 Read / Write stage 

The Read and Write stages were verified together by interfacing them in a tandem 

fashion with the register files and the memories as shown in Figure 17. The written and 

read data are compared against each other to verify correct read-write operation. The 

design of both the stages includes finite state machines (FSM), where each state 

represents a register or a memory operation. The verification testbench is designed such 

that all states of the FSM are traversed at least once in both the stages. It was noted that 

the sequence of operations for writing and reading the global/shared memory exercises 

the register files as well, as shown in Figure 18. The sequence is initiated by writing the 

address registers that hold the memory offsets for each thread. This is followed by 

writing the vector registers to store the base address of the memory. In the next step, the 

base address and the offset are read and combined together to calculate the effective 

memory address – the address used for writing the memory. Following the  

Figure 17: Read-Write verification structure 
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Figure 18: Read-Write verification FSM 
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memory write operation, predicate flags (though not necessary for a memory operation) 

are written into the predicate register file. The read stage FSM is initiated by reading the 

predicate register file. This state is traversed at the beginning of every read cycle during 

the execution of predicated instructions. Following the predicate register read, the same 

sequence of operations are repeated to calculate the effective memory address read back 

the data from memory. The written and read value of the registers and memory are 

compared at different stages of the FSM to verify accurate read-write operations.   

Figure 19 shows the simulation result for the global memory write stage. The 

global_memory_cntrl_state_machine signal represents the state of the global memory 

controller. As illustrated by this signal, the effective address is calculated in the 

beginning using the vector and address registers, followed by scatter write operation to 

the global memory. The gmem_addr_i and gmem_wr_data_i (last two signals) represent 

the effective address and the data written to the memory, respectively.  

 

 

 

 

The read stage simulation result for the global memory is shown in Figure 20 and follows 

similar sequence of operations as the write stage. The gmem_addr_i and 

gmem_rd_rd_data_o (last two signals) represent the address and the data read back from 

the memory, respectively. 

Figure 19: Global memory write 
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Comparing the two results, the read-write operations for global memory, vector 

register and the address register file are verified. Other results are omitted for the sake of 

brevity as the shared memory operations are exactly the same as global memory, whereas 

the inherent effective address calculation testifies correct register file read-write 

operations. 

4.3 System validation  

The soft GPGPU design was validated by benchmarking the platform with five 

standard CUDA applications that are described in the next section. The basic validation 

flow is as shown in Figure 21. The CUDA kernels were compiled using the NVCC 

compiler and the original binaries were executed on the soft GPGPU without any code 

modifications. Counterpart C/C++ applications were compiled using standard GCC 

compiler and executed on an x86 platform. The results generated from the C/C++ 

execution were considered as the golden reference for comparison. The ModelSim 

simulation results generated for all the benchmarks were found to be accurate, thus 

validating correct soft GPGPU functionality. 

4.3.1 Benchmark suite 

Exhaustive validation experiments were conducted across a suite of five CUDA 

benchmarks as shown in Table 3. The benchmarks were procured from several academic 

resources. The MatrixMul and Transpose benchmarks were taken from the CUDA 

Figure 20: Global memory read 
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Programming Guide [4]. Bitonic sort was procured from Duke University [39]. Autocor 

benchmarks were procured from the University of Wisconsin-Madison [40]. The 

Reduction benchmark was obtained from the University of Notre Dame [41].  

 

 

 

 

 

 

 

 

 

 

 

 

All benchmarks are restricted to integer data type. The selection criterion was 

based upon their popularity in the GPGPU research community. The assortment of highly 

data-parallel and control-flow intensive benchmarks, help us fairly evaluate our platform 

for applications with different characteristics. Bitonic is the most control-flow intensive, 

while Autocor has some control flow. Reduction, MatrixMul and Transpose are fairly 

data parallel. 

 

Figure 21: Validation flow 
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Table 3: Benchmark suite 

 

- Autocorrelation: Autocorrelation is the correlation of a signal with itself. The 

basic equation for autocorrelation of a discrete-time signal is shown below: 

                 𝑟𝑥𝑥  𝑙 =   𝑥 𝑛 𝑥 𝑛 − 𝑙                              𝑙 = 0, ±1, ±2, . . .
𝑛=∞

𝑛=−∞
 

It basically consists of a series of Multiply and Add operations. The Autocor 

operation can be parallelized by having each thread compute an element of the 

autocorrelation array 

- Bitonic sort: Bitonic sort is one of the fastest sorting networks. A sorting network 

consists of sequence of comparisons that is data-independent. This makes sorting 

networks suitable for hardware implementation on parallel processing platforms.  

 

Benchmark 

 

Description Sizes of tested 

datasets 

Percent of 

supported 

ISA used 

Autocor Autocorrelation of 1D array 16,32,64,128,256 69.2% 

Bitonic High performance sorting 

network 

16,32,64,128,256 57.7% 

MatrixMul Multiplication of square 

matrices 

16x16,32x32,64x64, 

128x128,256x256 

69.2% 

Reduction Parallel reduction of 1D 

array 

16,32,64,128, 

256,512 

61.5% 

Transpose Matrix transpose 16x16,32x32,64x64, 

128x128,256x256 

53.8% 
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Figure 22: Bitonic sorting network [42] 

The ascending bitonic sort network is shown in Figure 22. For an array of size n, 

the bitonic network consists of Θ(n·log(n)
2
) comparison operations through 

Θ(log(n)) stages, with each stage performing n/2 comparisons. The head of the 

arrow points to the larger of the two values. Passing through the network, all the 

values at the input are sorted in an ascending order at the output, as they pass 

through the network. Considering the structure of the network, the comparison 

operations in each stage can be parallelized, ideally leading to an n/2 speedup. 

- Matrix multiplication: This benchmark multiplies two square matrices with 

integer data type. The application can be parallelized by computing each element 

of the product matrix in parallel. 

- Reduction:  A reduction algorithm basically extracts a value from an array by 

performing an array operation. The operation can be sum, min, max, average etc. 

In our case, we have chosen the summation operator which sums all the elements 

of the array. A basic reduction network is shown in Figure 23. Though the 
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reduction network looks simple, there are a lot of opportunities to parallelize the 

CUDA kernel in a way that exploits maximum benefits.  

 

- Transpose: This benchmark computes the transpose of an integer square matrix. 

It is parallelized such that each matrix element is computed in parallel. 

 

4.3.2 Validation results 

 Benchmarks were simulated for dataset sizes shown in Table 3. As an example, 

the soft GPGPU simulation result for the Bitonic benchmark is shown in Figure 24. The 

results show a sorted array {9, 8, 7, 6, 5, 4, 3, 2} of eight integers as indicated by the red 

ellipse. As another example, the simulation result of the Reduction benchmark is shown 

in Figure 25. The size of the array was fixed to 512 elements with the array values {0, 1, 

2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, ….and so on}. For such an array, the expected sum is 1792, as 

shown by the red circle in the figure. 

Figure 23: Parallel reduction network [43] 
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4.4 Chapter Summary 

In this chapter, the software flow for executing a kernel on the soft GPGPU was 

described. The methodology for testing the Decode and Read-Write stages was 

elaborated and their results were presented. We presented the validation flow and 

described the benchmark suite. The chapter was concluded by presenting simulation 

results for two benchmarks.  

  

Figure 24: Bitonic sort result 

Figure 25: Reduction result 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

 

 

In this chapter, we describe the preliminary experiments conducted post-

validation of the soft GPGPU. The experiments were mainly focused on evaluating the 

scalability of the platform in terms of the number of scalar processors (cores) as well as 

the number of streaming multiprocessors (SMs). The effects of scaling on area utilization 

are also investigated. 

5.1 Performance evaluation 

The platform was benchmarked against a MicroBlaze soft processor running on a 

Xilinx Virtex-6 ML605 evaluation board. ModelSim simulations were used to evaluate 

benchmarks on the soft GPGPU platform. The design was place and routed on the Virtex-

6 device, and the post-PAR clock frequency along with simulation cycle counts were 

used to calculate the execution times. A software timer was used to time the MicroBlaze 

executions. Both platforms were operating at the same frequency of 100 MHz. For 

evaluating performance, two types of experiments were conducted—architecture scaling 

and application scaling as evaluated in the following sections. 

5.1.1 Evaluating architecture scalability 

A set of experiments were conducted to vary the number of cores within a single 

SM as 8, 16 and 32. Varying the number of cores effectively varies the number of threads 

in a row that can be executed in parallel. Recalling from chapter 3, GPU threads within a 

warp are scheduled as warp rows. This restricts the row width possibilities to 8, 16 or 32, 
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as the product of row width and the number of rows (4, 2 or 1 respectively) must be a 

factor of 32.  

Table 4 shows the cycle counts of the five benchmarks for a problem size as 

indicated. Ideally in a multicore system, as the number of cores is increased from 8 to 32, 

the expected performance improvement is 4x. The soft GPGPU shows an average 

speedup of 1.8x over the five benchmarks. 

 

 

 

 

 

Table 4: Cycle counts comparison   

 

Figure 26 shows the speedup graph normalized with respect to 8 cores. One common 

limitation to cycle speedup for all the benchmarks in our architecture is the scatter-gather 

memory instruction. Scatter-gather operations are most effective when the burst data is 

written and read in parallel. This requires the memory to be split up into multiple banks, 

such that consecutive memory addresses fall into consecutive banks. CUDA kernels are 

written in a way such that for most data-parallel applications, neighboring threads access 

consecutive memory locations. This allows threads to read data in parallel from 

consecutive memory banks. However, this demands the architecture to have sophisticated 

control mechanism to effectively map memory addresses to appropriate memory banks. 

For control flow intensive applications where the burst data is not sequential, this 

mapping must be done without significant overhead. The control logic becomes even 

Cores Autocor 

256 

Bitonic 

256 

MatrixMul 

256x256 

Reduction 

256 

Transpose 

256x256 

Freq 

(MHz) 

8 2641050 952327 1247560898 65577 6207154 100 

16 1832976 607695 876982560 46346 4752104 100 

32 1441858 476820 693799691 37188 4026984 100 
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more challenging to detect if multiple threads are pointing to the same address. For the 

sake of architectural simplicity, this feature was not included in our first soft GPGPU 

prototype and will be addressed in the future. The matrix benchmarks pay a slightly 

larger penalty for memory bandwidth limitations due to more number of scatter-gather 

operations. MatrixMul has a better performance than Transpose, as the former has higher 

arithmetic density and hence amortizes the bandwidth limitation to a certain extent.  

 

Figure 26: Performance scaling over 8, 16 32 cores 

Figure 27 shows the calculated speedups against MicroBlaze for a varying number of 

cores. Application speedups range from 10x-30x with an average speedup close to 13x 

for 8 cores, 19x for 16 cores, and 25x for 32 cores. MatrixMul and Reduction being 

highly data parallel show the largest speedups. Reduction is a simple benchmark with a 

highly symmetric data flow graph consisting of multiple iterations. The number of array 

elements in the benchmark is halved with each iteration, progressively leading to smaller 

number of scheduled warps. Considering the array size to be a multiple of 32 (the warp 

size), all active threads remain tightly packed within a warp in every iteration, thus fully 
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utilizing the warp at all times. In Bitonic, the sorting network consists of a fixed number 

of swapping operations that are performed at every stage. Though the warp divergence 

increases with increased number of parallel threads, the divergence cost seems to be 

amortized by performing more swapping operations in parallel. Transpose shows less 

speedup due to low arithmetic intensity and the memory bandwidth limitation.  

 

Figure 27: Speedup vs. MicroBlaze for variable cores 

 

Another approach to explore the scalability of the architecture is by varying the number 

of SMs.  This experiment was performed for MatrixMul and Transpose as these kernels 

can be split across multiple blocks. The block scheduler logic was modified to equally 

distribute thread blocks to 2 SMs, thus reducing the workload of each SM to half as 

before. Figure 28 shows the speedup for 1-SM and 2-SM configuration for the MatrixMul 

and Transpose.  
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5.1.2 Evaluating application scalability 

Experiments were conducted to observe the performance of the soft GPGPU in 

comparison to MicroBlaze for varying problem sizes of each benchmark. The speedup 

results are shown in Figure 29. 

Due to its regular kernel structure, Reduction reaps the steepest performance benefits of 

up to 30x as the size of the array becomes large. With increasing array size, performance 

increases gradually for both Autocor and Bitonic up to certain point and then begins to 

taper off. This can be attributed to the accumulation of the warp divergence penalty over 

Figure 28: Speedup vs. MicroBlaze for variable SMs 

(Left) MatrixMul; (Right) Transpose 

Figure 29: Speedup vs. Microblaze for varying problem size 
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the execution time of larger arrays, amortizing the parallel processing benefits. 

MatrixMul shows a reasonable speedup of about 25x, with Transpose showing tan 

average speedup of 17x. Both benchmarks have an almost flat speedup curve in 

accordance with the memory bandwidth limitation as addressed in section 5.1.1. 

5.2  Area evaluation 

The soft GPGPU design with 1 SM, 8 cores was synthesized, mapped, and successfully 

placed and routed on a Virtex-6 VLX240T device meeting all timing constraints. The 

post-PAR device utilization and maximum operating frequency are annotated in Table 5 . 

 

Design characteristic 1 SM / 8 cores per SM 

Logic used (LUTs) 63894 / 150720 

Registers used (Flip Flops) 89392 / 301440 

Multipliers used (DSP48E1s)  137 / 768 

Block RAMs (RAMB36E1) 114 / 416 

Maximum clock frequency (MHz) 100.05 

Critical path The scalar processor in the 

Execute stage 

Table 5: Post-PAR utilization and timing results 

The architecture takes advantage of the built-in multiplier blocks and BRAMs for 

performing computations and storing on-chip data. The critical path was found to be the 

module that performs integer addition subtraction within the scalar processor. As a target 

frequency of 100 MHz was achieved, this block was not optimized further.   

In order to better understand the breakdown of area utilization, Xilinx PlanAhead 

tool [44] was used to gather utilization results of some of the blocks that consume 

relatively larger area (Table 6).  The Read stage contains logic for reading three source 

operands in parallel in addition to the various register file and memory controllers, 
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justifying the high resource utilization. The Write stage only consists of the register and 

memory controllers. The scalar processors in the Execute stage have dedicated compute 

units for supporting different types of arithmetic and logical instructions. Instantiating the 

scalar processor eight times duplicates logic reflecting the 34% LUT utilization. The 

stack memory (66 bits wide, 32 locations deep) used to handle divergence for each warp 

consumes 586 LUTs. Thus, for 24 warps 14064 LUTs are consumed.  

Stage / Block LUT usage Percent 

utilization 

Read 15290 24% 

Execute 21499 34% 

Write 6607 10% 

Warp stack  

(24 warps) 

14064 22% 

Other 6524 10% 

Total 63984 100% 

Table 6: Area utilization breakdown 

 

Additional results were gathered to study the effects of architecture scaling on 

area. Table 7 shows the post-synthesis device utilization statistics for a variable number 

of cores and SMs. The results are plotted in Figure 30 in order to examine the trend. The 

increase in the number of cores proportionally scales up the bit width of all the associated 

signals in the design, thereby reflecting near perfect linear scaling on LUTs and registers. 

The memory usage scaling presents a more interesting trend. The BRAM usage increases 

by approximately 25% from 8 to 16 cores and 24% from 16 to 32 cores. As discussed in 

section 3.2, register files are striped into memory banks with the number of banks 

equivalent to the number of cores in an SM. As the number of cores increases, the 

number of banks also increases, but with subsequent reduction in the size of each bank. 
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This is done to ensure that the total memory size remains constant. The reduction in the 

memory bank size might lead to their inefficient mapping onto the on-chip BRAMs—

thus leading to higher BRAM utilization for more number of cores. 

 

 

 

Table 7: Area for variable cores / SMs 

 

* Block RAMs are fundamentally 36 Kbits in size. Each block can also be used as two   

independent 18 Kb blocks. 

 

 

Figure 30: Variation trend for LUTs and Registers 

 

Architecture 

Configuration 

LUTs Registers Memory usage 

(BRAMs*) 

1 SM / 8 cores 60771 89024 79 

1 SM / 16 cores 95292 126396 99 

1 SM / 32 cores 196861 200055 123 

2 SM / 8 cores 183068 338681 150 
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5.3 Chapter Summary 

In the beginning, the CUDA applications used for benchmarking the soft GPGPU 

platform were described. We analyzed the performance of our platform in comparison 

with a MicroBlaze soft processor for a varying number of cores/SMs and varying 

problem sizes. Speedups of up to 30x for single SM and up to 53x for two SMs were 

observed vs. MicroBlaze. To conclude the chapter, resource utilization for base system 

configuration is analyzed, with additional results to enunciate the effects of architecture 

scaling on area consumption.  Next chapter concludes the thesis and provides future 

directions. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

In this thesis, efforts have been directed to implement a fully-functional, CUDA 

compatible, scalable soft GPGPU architecture targeting FPGAs. This document has 

outlined a systematic approach for testing and validation of the prototype soft GPGPU 

based on the Nvidia G80 architecture. A simulation based approach was adopted for 

testing and validating the system. Individual design blocks were subjected to functional 

RTL verification using VHDL testbenches and simulation tools. The novel design aspect 

of GPUs as opposed to standard microprocessors or even soft vector processors is the 

ability to handle thread divergence and barrier synchronization in hardware. Special care 

was taken to verify the correct synchronization and control flow behavior of the soft 

GPGPU. The system was integrated from scratch and validated using rigorous simulation 

for a set of five benchmarks directly compiled from CUDA to binary. The varied 

characteristics of the benchmarks allowed us to fairly evaluate the architecture. The 

binary was executed on the soft GPGPU without any further modifications. 

Post validation of the base system (1 SM/8 cores), effort was directed towards 

augmenting the design for architectural scalability. The architecture was successfully 

enhanced to enable scaling the number of cores in the design as 8, 16 and 32. In addition, 

the design was also amended to enable scaling the number of streaming 

multiprocessors—a characteristic indigenous to Nvidia GPUs. A wide variety of 

experiments were conducted to evaluate the performance and area benefits of the soft 

GPGPU against a fully optimized MicroBlaze soft processor for a variable number of 

cores and SMs. Experimental results suggested speedups of up to 30x for highly parallel 
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benchmarks like matrix multiplication and up to 24x for control flow intensive 

benchmarks like bitonic sort. Doubling the number of SMs resulted in a direct 2x 

performance improvement for matrix multiplication and transpose benchmarks with 

speedups up to 53x and 35x respectively. Area of the base soft GPGPU design was found 

to be 10x larger as compared to the MicroBlaze as most of the resources of the prototype 

architecture were spent towards ensuring correct CUDA functionality.  

As with any prototype design, optimization would be the primary undertaking in 

the future. We also plan to improve out architecture by supporting off-chip memory 

access for global memory, multiple memory banks for efficient scatter-gather operations 

and implementing dynamic thread scheduling to reap true benefits of multithreading.  We 

hope that the designed infrastructure sets the cornerstone for exploring an altogether new 

design space by facilitating rapid architectural tradeoffs and a wide variety of 

experiments in the future. 
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APPENDIX 

MISCELLANEOUS DEBUGGING ISSUES 

 

Simulink [28], developed by MathWorks, is a commercial tool that can be used to 

model design elements. It consists of the Xilinx blockset library that contains a set of 

customizable blocks for DSP, memory, arithmetic operations etc. In the soft GPGPU 

architecture, Simulink models are pervasively used to design larger and more 

complicated modules. The blocks using Simulink models include the warp unit, register 

files, scalar processors etc. Once a module is designed in Simulink using the inbuilt 

design blocks, it can be readily synthesized using the Xilinx System Generator tool. 

However, there were prevalent issues with simulating these modules within the Xilinx 

environment. This thesis involved debugging these issues and developing a systematic 

step-by-step procedure to import Simulink blocks and simulate them correctly.  

Consider the scenario where two modules are modeled using Simulink and 

synthesized using the Xilinx System Generator (XSG). Let us assume that both modules 

use an adder as a sub-module with different bit-widths. The adder synthesized by the 

system generator within both the modules has generic bit widths, but the same name 

xladdsub. The xladdsub entity itself uses an instantiated adder core (with a unique name) 

to perform the addition. The core name is one of the generic inputs for xladdsub in 

addition to the bit-widths. For the correct operation of the xladdsub entity, this generic 

core name input must exactly match the adder core name instantiated in the entity. 

However, the xladdsub entity generated within each of the modules has a different core 

name. Thus, when an instance of xladdsub is declared in any of the modules, it is 

important for the generic input core name and the instantiated core names to match. This 
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match would occur only if the xladdsub declarations in the two modules are linked to 

their own respective definitions. Considering that all the generated modules including the 

two versions of xladdsub are placed in a common ―work‖ library, there is no way of 

differentiating between the two instances. This leads to mismatched linking between the 

xladdsub entity declarations for the two modules and their definitions, leading to 

undefined outputs during simulation.  

A naïve solution is to manually rename the xladdsub entity declarations and 

definitions in each top level module with different names, for e.g. xladdsub1 and 

xladdsub2. This differentiates the two versions of the xladdsub entity and makes sure 

each module finds its own version. However, this approach is cumbersome for large and 

complicated designs. A more systematic solution would be to make a separate library for 

each module that uses Simulink blocks. This ensures that all the different versions of 

overlapping entities like xladdsub are encapsulated into different libraries and there is no 

collision amongst them. A step-by-step procedure is illustrated below: 

 

1) Open MATLAB 7.10.0. 

2) Navigate to the directory containing the .ngc netlist folder corresponding to the top 

level module generated by XSG. 

3) Run the following command in the command window: 

xlSwitchLibrary ('ngc_netlist', 'work', ‘user_defined_library’) 

This replaces all the references to the work library in the module file to the 

‗user_defined_library, which will be created in the steps to follow. 
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4) Go to the libraries tab in ISE and create a new library with the same name as used in 

step 3 (‗user_defined_library’). 

5) Add the module to this library. 

6) Now that the module is in the user_defined_library and not in the default work 

library, add library path to all other files referencing it.  

e.g. library user_defined_library. 

7) Run simulation without any conflicts. 
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