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ABSTRACT

REFORMULATION OF THE MUFFIN-TIN PROBLEM IN
ELECTRONIC STRUCTURE CALCULATIONS WITHIN

THE FEAST FRAMEWORK

SEPTEMBER 2012

ALAN R. LEVIN

B.S., UNIVERSITY OF MASSACHUSETTS AMHERST

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Eric Polizzi

This thesis describes an accurate and scalable computational method designed

to perform nanoelectronic structure calculations. Built around the FEAST [1] frame-

work, this method directly addresses the nonlinear eigenvalue problem. The new

approach allows us to bypass traditional approximation techniques typically used for

first-principle calculations. As a result, this method is able to take advantage of stan-

dard [2] muffin-tin type domain decomposition techniques without being hindered by

their perceived limitations. In addition to increased accuracy, this method also has

the potential to take advantage of parallel processing for increased scalability.

The Introduction presents the motivation behind the proposed method and gives

an overview of what will be presented for this thesis. Chapter 1 explains how elec-

tronic structure calculations are currently performed, including an overview of Density

Functional Theory and the advantages and disadvantages of various numerical tech-

niques. Chapter 2 describes, in detail, the method proposed for this thesis, including

v



mathematical justification, a matrix-level example, and a description of implement-

ing the FEAST algorithm. Chapter 3 presents and discusses results from numerical

experiments for Hydrogen and various Hydrogen molecules, Methane, Ethane, and

Benzene. Chapter 4 concludes with a summary of the presented work and its impact

in the field.
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INTRODUCTION

Having fully entered into the nanoregime of electronic design and manufacturing,

numerical modeling techniques that can assist with the understanding and devel-

opment of these devices is more important than ever. In a nanoelectronic device,

structures are typically on the same order of magnitude as electron wavelengths, and

active regions are often smaller than coherence lengths [3],[4]. This signifies an end

to the “duct tape pseudo-quantum models” and a need for full-scale, first-principle

quantum models [5],[6],[7]. The practice of modeling is nothing new to the electronics

industry. For some time, VLSI tools have been standard for designing microelectronic

devices [7]. Traditionally, however, quantum models have been mostly used to help

with general scientific understanding of nanodevices, usually after devices are already

being mass-produced [4]. This is no longer a sustainable model, now that even the

most basic prototyping requires expensive cleanrooms and machinery to accommo-

date the significantly smaller sizes and tighter tolerances of nanodevices [4]. Along

with this increase in basic costs comes the increase in complexity. Quantum effects

greatly increase optimization challenges [7]. Additionally, these quantum effects can

often have unforeseen consequences, greatly affecting the potential feasibility of an

electronic device [7]. Because of the increased cost and complexity of modern nano-

electronic devices, accurate and scalable quantum numerical modeling must become

an innate part of device design.

The problem of performing electronic structure calculations is particularly impor-

tant. Electronic structure calculations reveal vital information about the physical

and electronic properties of a system, such as energy spectrum, density of states, and

1



band structure. Many methods are currently widely used to perform these calcula-

tions. Most are based on Hartree-Fock or Density Functional methods, which produce

a framework to ease the solution of the many-body Schrödinger equations. The result-

ing equation, however, is still too challenging to solve directly for large-scale systems.

Because of this, a large array of numerical methods (such as plane wave expansion,

linearized augmented plane waves, linearized muffin-tin orbitals, and linear combina-

tion of atomic orbitals [15]) have been developed. As will be discussed in Chapter

1, each of these methods relies heavily on approximations as a result of either a)

linearization techniques used to handle the resulting nonlinear eigenvalue problem, or

b) the pseudopotential models used to simplify the computational domain.

The method proposed in this thesis is based on embedded self-energy (Green’s

function) techniques on a real-space muffin-tin decomposition. Although these tech-

niques have been used before [2],[16], this method differs in that it does not attempt

to approximate the resulting eigenvalue problems. Within the FEAST [1] eigenvalue

algorithm framework, this method is able to directly solve the resulting nonlinear

eigenvalue problem. The two main advantages of this are:

1) Accuracy: A higher accuracy can be achieved by eliminating the traditional ap-

proximation steps and by using the full ionic potential, and

2) Scalability: Because of the the muffin-tin decomposition and the FEAST frame-

work, atoms can be solved for individually and in parallel.

This thesis is broken into four chapters. Chapter 1 explains the current methods

used for electronic structure calculations and discusses their advantages and disad-

vantages. Chapter 2 gives a detailed explanation of the mathematical methodology,

FEAST implementation, and meshing techniques. Chapter 3 presents the results of

numerical experiments for H, H+
2 , H++

3 , CH4, C2H6, and C6H6. Chapter 4 concludes

with a summary and a discussion on the impact of this work.
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CHAPTER 1

ELECTRONIC STRUCTURE CALCULATIONS

A perfect, error-free electronic structure model would require a full-scale, many-

body, quantum mechanical description of the system. Although this can be done

with minor effort for a one-particle system, the situation becomes increasingly harder

as particles are added. As can easily be shown [11], the Schrödinger equation for a

two-particle system (within the Born-Oppenheimer Approximation) is:

[
− h̄

2

(
1

m1

∇2
1 +

1

m2

∇2
2 + Vion(r1, r2)

)]
Ψ(r1, r2) = EΨ(r1, r2). (1.1)

Although the Hamiltonian for this equation is still linear, because of the interac-

tion between particles, it is incredibly challenging (and with additional particles,

quickly becomes impossible) to solve because of the rapid increase in system matrix

size [10],[11]. Therefore, first-principle electronic structure calculations are instead

preformed using Hartree-Fock (HF) or Density Functional Theory (DFT) methods.

Kohn-Sham DFT (KS-DFT) is particularly well regarded as it is less computation-

ally demanding and allows, in practice, for exact calculation of ground state density

and system energy [14]. Within the KS-DFT framework, a number of approximation

schemes, such as plane wave expansion, localized orbitals, and atomic decomposition

methods, can be used to ease the resulting equation. In this chapter, the physical

and numerical models most commonly used for electronic structure calculations are

described.

3



1.1 Physical Modeling

1.1.1 Density Functional Theory

DFT is based on the principle that any system property within the many-body

problem can be described by a functional of the ground state density n0(r). KS-DFT

provides a method for creating approximations of n0(r) for large-scale systems [25].

The set of linear equations to be solved within the KS-DFT framework is [20]:

ρ(r) = 2

NE∑
i=1

|ψi(r)|2 , (1.2)

Veff [ρ(r)] = Vion(r) + Vh[ρ(r)] + Vxc[ρ(r)], (1.3)

−∇2Vh(r) =
ρ(r)

ε
, (1.4)

Vxc[n](r) =
δ

δn(r)
Exc[n], (1.5)

where relevant variables are defined in Table 1.1. The solution of this system leads

to the eigenvalue Schrödinger-type equation:

(
− h̄2

2m
∇2 − qVeff [ρ(r)]

)
ψi(r) = Eiψi(r), (1.6)

or its equivalent discrete (matrix representation) form:

(H + Ueff)ψi = EiSiψi, (1.7)

whose solution yields the Si (mass matrix) orthonormal eigenstates ψi, which repro-

duces the density of the original many-body system.

Although the resulting set of equations is indeed linear, it is often the most time-

consuming computational step because a) the discretization techniques needed for

acceptable accuracy lead to large system matrices, and b) the number of eigenpairs

4



Veff Kohn-Sham potential
ρ(r) Electron density
NE Number of electronic states
Vion Core potential
Vh Hartree potential
Vxc Exchange correlation potential
Exc Exchange correlation energy

Table 1.1. Previously undefined variables for (1.2)-(1.5).

needed to compute the electron density is proportional to the number of atoms in

the system [10]. Because of this, numerical techniques are needed to further assist

with the solution of the Schrödginer equation. Table 1.1 presents a flowchart of the

various discretization methods (which will be discussed in Section 1.2) that are used

within the DFT framework.

DFT

Hψi=EiSiψi

PWE

EPM/APM

PW

LO

Gaussian/Numerical

APW

LAPW LMTO FEM Hybrid

KKR MTO Proposed MethodLCAO

ADM (muffin-tin)

H(E)ψi=EiSiψi

Figure 1.1. Flowchart of various discretization methods available within the DFT
framework (which will be discussed in Section1.2) [24]. Pictured above: plane wave
expansion (PWE), empirical pseudopotential (EPM), atomic pseudopotential (APM),
plane wave (PW), localized orbitals (LO), linear combination of atomic orbitals
(LCAO), atomic decomposition (ADM), augmented plane waves (APW), linear APW
(LAPW), muffin-tin orbital (MTO), and linear muffin-tin orbital (LMTO).
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1.1.2 Ionic Potential

In order to solve (1.1), a model for the ionic potential Vion is needed. The potential

of an atom can be broken into two regions: the core electrons (those that reside very

close to the nucleus and have little effect on atomic interaction) and valence electrons

(those that are responsible for molecular bonding and transport phenomena) [21].

As can be seen in Figure 1.2, by eliminating the potential of the core electrons,

calculations can be simplified without dramatically changing the wave function. This

line of reasoning gives rise to the two most common methods: empirical (EPM) and

ab-initio (APM) pseudopotential [20]. With the EPM, the pseudopotential is fitted

to experimental data. While this can produce highly accurate results, it requires

empirical data for every structure that is to be simulated. The APM is based on an

all-electron calculation in which the wave function of the core atoms is absorbed into

the wave function of the valence electrons, and the resulting eigenpairs are matched

at the designated cut-off region rc [22]. Although this method can be used to create

accurate results, the linear combination of the core and valence electrons requires

special treatment to mitigate error, which becomes increasingly time consuming as

the system size increases [20],[22]. In order to bypass the inaccuracies and challenges

incurred by pseudopotential methods, a true all-electron model can be used. Although

this method is occasionally used already [20], the rapid potential variation of the core

electrons can cause significant numerical issues. As will be shown in Chapter 2, the

advantages of an all-electron potential can be benefited from without succumbing to

the typical disadvantages.

1.2 Numerical Modeling

1.2.1 Plane Wave Expansion Methods

Plane wave expansion (PWE) methods are used for solving the ground states

and electron density within the DFT framework [26]. They are particularly useful

6



Ψpseudo

Ψ

V

rrc

Vpseudo

Figure 1.2. Representation of exact (dotted blue) and pseudo- (solid red) potentials
and resulting wave function [24].

for periodic crystals, in which the calculations are greatly simplified because of Fast

Fourier Transform (FFT) techniques. Because plane waves are eigenfunctions of the

Schrödinger equation with constant potential, they can be used as a basis function for

the nearly-free-electron approximation. Near the core, a constant potential is not an

accurate representation; instead, it is described by a linear combination (expansion)

of constant potentials. Pseudopotentials (EPM/APM) are often used to limit the

expansion that needs to be performed.

1.2.2 Localized Orbital Methods

Localized orbital (LO) methods expand the wave function into a linear combi-

nation of energy-independent orbitals, each representing an atom within the crystal

[27]. Basis functions are either a) gaussian or b) numerical. The most widely used

LO method is the linear combination of atomic orbitals (LCAO) method. The LCAO

method assumes that the number of molecular orbitals is equal to the number of

atomic orbitals. So, for a system with n atomic orbitals, there would exist n molec-

ular orbitals of the form:

7



φi =
n∑

r=1

cirχr, ∀i ∈ [1, n], (1.8)

where φi is the ith molecular orbital, χr is the rth atomic orbital, and cir is a weight-

ing function. LCAO methods are widely used in quantum chemistry, although the

methodology for choosing appropriate orbitals for accuracy and efficiency can be

problematic.

1.2.3 Atomic Decomposition (Muffin-tin) Methods

Atomic decomposition (muffin-tin) methods, such as augmented plane wave (APW)

and muffin-tin orbitals (MTO), separate the relatively constant interstitial regions

from the rapidly varying atomic regions [28]. Since the 1930’s, muffin-tin domain de-

composition techniques [2] have been used, which, today, allow for parallel processing

of the system. Embedded energy techniques [16] have also long been used to reduce

the size of the system matrices. Unfortunately, these numerical techniques give rise

to a reduced, but nonlinear, eigenvalue equation:

Ĥ(E)ψ = EŜψ. (1.9)

In order to solve the resulting nonlinear eigenvalue problem, a second layer of ap-

proximation techniques, such as linear APW (LAPW) and linear MTO (LMTO) are

generally used. In this thesis, an alternate approach is proposed using the FEAST [1]

framework to bypass these traditionally unavoidable approximation techniques and

solve directly for (1.9).
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CHAPTER 2

METHODOLOGY

This proposed method solves the electronic structure problem of (1.9) without

the previously necessary numerical approximations of other methods described in

Section 1.2. This method uses a real-space muffin-tin domain decomposition to sep-

arate atoms from the interstitial region, as seen in Figure 2.1. Embedded self-energy

(Green’s function) techniques are then used to ease the solution of the Schrödinger

equation. The FEAST [1] eigenvalue solver is used to compute the equations that nat-

urally arise. Not only does this method solve the electronic structure exactly within

KS-DFT, it also offers a number of performance advantages due to its inherent ease of

parallelization. In this chapter, specific meshing techniques, the FEAST algorithm,

mathematical and matrix-level justifications are discussed.

Figure 2.1. A 2D real-space muffin-tin domain, with a fine atomic mesh (left) and
a coarse interstitial mesh (right). Created using Triangle [29].
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2.1 Mesh and Real-Space Techniques

As will be shown, this method is not mesh dependent; however, a real-space mesh

is helpful both for demonstration and for verification. Real-space techniques have a

number of advantages over PW or LCAO approaches, including locality (which re-

sults in sparse system matrices) and the ability to incorporate adaptive local mesh

refinements [20]. FEM is particularly advantageous because it preserves the hermitian

properties of the Hamiltonian matrix for closed systems and produces natural Neu-

mann boundary conditions that simplify the derivation of the self-energy functions

[18].

TetGen [17], a tetrahedral mesh generator and 3D Delauny triangulator, was used

to create the FEM mesh, as seen in Figure 2.2. Fine atomic meshes were created by

alternating layers of icositetrahedrons and rombicuboctahedrons. The coarse inter-

stitial region was then created to fill in the space between the atomic meshes. With

this muffin-tin domain decomposition technique, it is possible to position the most

points inside the atomic meshes, where the largest variations occur. By choosing

higher-order basis functions, further refinement is possible. By choosing different ba-

sis functions for the atomic and interstitial meshes (to be discussed in Section 2.7),

it is possible to increase accuracy around the atoms without greatly increasing the

calculation domain.

2.2 FEAST Eigenvalue Solver

One of the major challenges for modeling any physical system is dealing with

the nonlinear eigenvalue equations that arise. Modern linear solvers are robust and

feature advanced error estimators, but this is not the case with nonlinear solvers

[19]. Additionally, as simulated system-size and required accuracy both increase,

scalability becomes increasingly important. The traditional method of choice is to

10



Figure 2.2. A 3D real-space muffin-tin domain decomposition, with the surface
(top-left) and cut-out (bottom-left) of the fine atomic mesh and a coarse interstitial
mesh with embedded atomic meshes (right).

linearize nonlinear eigenvalue problems; however, this further increases the system

size and can lack the necessary accuracy for modern applications [19].

The FEAST [1] eigenvalue solver takes a difference approach, inspired from the

density matrix representation and contour integration in quantum mechanics. Unlike

traditional eigenvalue solvers, FEAST is based on performing a contour integration

over the complex energy space, which, in the case of the embedding approach, replaces

the nonlinear eigenvalue problem with a set of well-defined linear systems. With

FEAST, the difficulty of solving an eigenvalue problem has been replaced with solving

a linear system with multiple right-hand sides [18]. Before applying the FEAST

algorithm for solving (1.9) (described in Section 2.3), a brief summary [15] of the

computing steps for solving (1.7) is outlined below.

Starting with a set ofM0 linearly independent random vectors YN×M0 = {y1, y2, ..., yM0},

where M0 is chosen to be greater than the number of eigenvalues M in the search

interval (i.e. M0 represents the over-estimation of M which is not known a priori), a

new set of vectors QN×M0
= {q1, q2, ..., qM0} is obtained as follows:
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QN×M0
= − 1

2πi

∫
C

dZG(Z)YN×M0 , (2.1)

where C represents a complex contour from Emin to Emax. In practice, the vectors

Q in (2.1) can be computed using a high-order numerical integration where only very

few linear systems G(Z)Y need to be solved along a complex contour C [1] i.e.

(ZS−H)Q(Z) = Y, (2.2)

where Q(Z) denotes the set of responses at a given pivot energy Z for a given set

of excitations Y in the entire computational domain Ω.

Subsequently, by computing

HQM0×M0
= Q†HQ (2.3)

and

SQM0×M0
= Q†SQ, (2.4)

a projected reduced dense eigenvalue problem of size M0 can be formed:

HQΦ = εSQΦ. (2.5)

This reduced problem can be solved using standard eigenvalue routines for dense

systems to obtain all the eigenpairs (εm,Φm). By setting Em = εm and computing

ΨN×M0 = QN×M0
ΦM0×M0 , it follows that if Em lies inside the contour, it is an eigen-

value solution and its eigenvector is Ψm (the mth column of Ψ). The eigenvectors

Ψ are also naturally S-orthonormal if the eigenvectors of the reduced problem are

SQ-orthonormal. Accuracy can be systematically improved using a new set of ini-

tial guess vectors Y = SΨ iteratively up until convergence (usually obtained in 2-3

iterations).
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2.3 Mathematical Methodology

Mathematical justification for this technique is based heavily on work by [16],

which presents a method for embedding with Neumann boundary conditions (the

boundary conditions used for this method). If we consider the interstitial region Ω0

and atomic regions Ωj(j > 0), it can be shown that (1.9) can be solved based solely

on calculations performed in Ω0, given the proper boundary conditions Γj for each

Ωj interface. We are then left to solve:

H0Ψ(x) = ESΨ(x), x ∈ Ω0 (2.6)

where H0 is the Hamiltonian of Ω0. From Green’s theorem, we are able to relate

Ψ(x) to the appropriate boundary conditions Γj:

1

2

∂Ψ(x)

∂ηj
=

∫
Γj

dx′Σj(E, x, x
′)Ψ(x′), x ∈ Γj(∀j) (2.7)

where h̄ = m = 1, ηj is the external normal at Γj, and Σj is the self-energy

function, which can be found by the Green’s function Gj:

(E − Hj)Gj(E, x, x
′) = δ(x− x′), x, x′ ∈ Ωj(∀j) (2.8)

where Hj is the Hamiltonian of Ωj and Gj can be constructed with arbitrary boundary

conditions at Γj. For this method, homogeneous Neumann boundary conditions (Gj

with zero derivative on Γj) were used, resulting in the simplified expression for the

self-energy Σj:

Σj(E, x, x
′) = G−1

j (E, x, x′), x, x′ ∈ Γj(∀j) (2.9)

After discretization of 2.6 using the condition set in (2.7), the general nonlinear

eigenvalue problem to be solved in Ω0 takes the form:
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(H0 −
⋃
j

Σj(E))Ψ0 = ES0Ψ0, (2.10)

where S0 is the mass matrix in Ω0 and
⋃

denotes a summation of matrices that have

been reordered or reduced.

Up to this point, this method is completely independent of the basis. For a real-

space FEM discretization, further simplifications can be made. Because Σj(E) is

non-zero for only a small number of matrix elements coupling all the unknown nj on

Γj, (2.8) and (2.9) can be used to produce:

Σj(E) = [Gj]Γj
= ([Inj

0...0](ESj −Hj)
−1[Inj

0...0]T)−1, (2.11)

where Sj is the mass matrix in Ωj and the matrix Σj of size nj contains the self-energy

elements.

The resulting energy-dependent nonlinear eigenvalue problem (2.10) cannot be

handled by traditional linear eigenvalue solvers. Although this problem is not im-

possible [30],[31], it remains practically very challenging. Within FEAST, however,

(2.10) can be solved in the following manner:

Starting with a set of excitations Y (x) in the continuum domain, the set of re-

sponses Q(Z) can be obtained by solving (2.6) only in Ω0:

(Z −H0)Q(Z)(x) = Y (x), x ∈ Ω0 (2.12)

where the boundary condition for Q(Z) on Γj should formally satisfy (2.7) augmented

by a source term −F (Z)
j (x)(added to the right-hand side), which accounts for the

effects of the excitations Y (x) within the atomic regions Ωj. For instance, using

Neumann boundary conditions for Gj, the self-energies Σj are defined in (2.9) and it

can be shown that:
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F
(Z)
j (x) =

∫
Γj

dx′G−1
j (Z, x, x′)

∫
Ωj

dx′′Gj(Z, x
′, x′′)Y (x′′), x ∈ Γj(∀j). (2.13)

Once Q(Z) is known in Ω0 (and, therefore, all the Γj interfaces), the solutions in the

Ωj domains can be independently retrieved by solving the linear systems:

(Z −Hj)Q
(Z)(x) = Y (x), x ∈ Ωj(∀j), (2.14)

with Dirichlet boundary conditions.

After discretization of (2.12), (2.7), and (2.13), solving (2.2) across the entire

domain Ω can be replaced exactly by solving the linear system:

(ZS0 −H0 +
⋃
j

Σj(Z))Q
(Z)
0 = Y0 +

⋃
j

F
(Z)
j , (2.15)

where

F
(Z)
j = Σj(Z)[Gj(Z)Yj]Γj

(2.16)

for the unknown components of the solutions Q
(Z)
0 in Ωj and with a series of inde-

pendent sub-problems (2.14) to obtain unknown components of the solutions Q
(Z)
j

in the atom-centered regions Ωj. Subsequently, the subspace Q of (2.1) is obtained

by integration of the set of solutions Q
(Z)
0 and all Q

(Z)
j over the complex contour C.

In practice, it is possible to construct HQ and SQ of (2.3) and (2.4), respectively,

directly from the projection of H0 and S0 for Ω0 and Hj and Sj for all Ωj. Because

(2.15) is solved only for a specific set of complex pivot energies Z, the nonlinearity of

(2.10) in Ω0 is then naturally removed.

2.4 Discrete Matrix-level Description

For clarity, the method outlined in Section 2.3 shall also be described in a discrete

matrix-level form. Presented in this way, the benefits of FEM, as well as specific

optimizations (such as non-refactorization methods) are more easily understood.
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2.4.1 General Approach

Here, the goal is to solve for the discrete form of (2.14):

Aj

 x1

x

 =

 y1

y

 . (2.17)

The atomic system matrix Aj is defined as:

Aj = [ZSj −Hj] =


A1 Asa 0

Aas

A2

0

 , (2.18)

where Aas is the transpose of Asa. Here, the subscripts a and s represent atomic

and surface interactions, respectively. The submatrix A1 is of size ns × N and the

submatrix Aas is of size ns × n̂s.

The discrete Green’s function Gj of (2.8) can then be defined as:

Gj = A−1
j =


Gss Gsa

Gas Gaa

 . (2.19)

Having defined the discrete matrix-level parameters, the system can, in general,

be solved in the following manner:

1) Factorize: Using a SPIKE [38] factorization, the matrix Aj can be written

as:

Aj =


I 0

0 A2




A1 Asa 0

W I

 , (2.20)

where an LU factorization has been performed on the submatrix A2 and W is obtained

by solving:
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A2W =

 Aas

0

 . (2.21)

2) Solve: With the above factorization, it can be seen that solving [ZSj−Hj]x =

y is the same as solving:


A1 Asa 0

W I




x1

x

 =


y1

A−1
2 y

 . (2.22)

We can now solve the following reduced system:

 A1 Asa

WT Inj


 x1

xT

 =

 y1

(A−1
2 y)T

 , (2.23)

where WT = [Inj
, 0...0]W , xT = [Inj

, 0...0]x, and (A−1
2 y)T = [Inj

, 0...0](A−1
2 y).

3) Retrieve: Finally, x can be retrieved by solving:

x = A−1
2 y −Wx1. (2.24)

2.4.2 Application

The reordered self-energy Σj, which was defined in (2.11), can be repeated here,

using the new notation, as:

Σj = G−1
ss = ([Inj

0...0]A−1[Inj
0...0]T)−1. (2.25)

In this particular case, y1 = I and y = 0 in (2.17). Because of these conditions,

x1 = G−1
ss = Σj. By solving (2.23) for x1 with this new right-hand-side, it can be

shown that:

Σj = (A1 − AsaWT )−1. (2.26)
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The interstitial system A0 = [ZS0 − H0] is then updated (as seen in (2.15)) to

include the self-energy Σj:

Â0 = A0 +
⋃
j

Σj. (2.27)

To obtain Fj in (2.16), (2.17) is solved using y1 = 0 (since the source term at the

interface is already included in (2.15)) and y = Ŷj. One can then show that:

Fj = −W†Ŷj, (2.28)

where W † is the transpose of the entire SPIKE matrix W .

Having defined all of the above terms, Q0 can now be obtained by solving the

linear system (2.15). Finally, Qj can be found by solving the linear system:


I 0

0 A2




Q0

Qj

 =


Q0

yj −
⋃
AsaQ̂0

 , (2.29)

which implies that:

A2Qj = [yj −
⋃

AsaQ̂0]. (2.30)

2.5 Implementation of FEAST-RCI

The FEAST reverse communication (FEAST-RCI) [37] is used to solve (1.9). Al-

gorithm 1 shows the pseudocode for implementing FEAST-RCI. The ijob parameter

is initialized to -1. Once FEAST is called, ijob is used to identify the FEAST opera-

tion to be performed. When ijob equals 0, the code will exit FEAST. Within FEAST,

there are several layers used to solve the given system for a given Ze. Case(10) first

solves for the self-energies Σj by solving (2.11) for all j. The interstitial Hamiltonian

H0 is then updated to include Σj, as seen in (2.15). The interstitial system is then
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factorized. Case(11) first builds Fj using (2.16) and then solves the interstitial sys-

tem (2.15). The solution for the atomic systems (the discrete form of (2.14)) are then

solved using Dirichlet boundary conditions. The matrix-vector multiplication needed

in (2.3) and (2.4) is performed in case(30) and case(40).

Algorithm 1 Pseudocode for implementing FEAST reverse communication interface
(FEAST-RCI).

ijob = −1 . Initialization
while ijob 6= 0 do

DFEAST SRCI
select case (ijob)
case (10) . Factorization

for j Atoms do
Σj(E) = ([Inj

0...0](ESj −Hj)
−1[Inj

0...0]T)−1

end for
Update and factorize interstitial system (ZS0 −H0 +

∑
j Σj(Z))

case (11) . Solve
for j Atoms do

F
(Z)
j = Σj(Z)Gj(Z)Yj

end for
Update right-hand side Y0 +

∑
j F

(Z)
j

Solve (ZS0 −H0 +
∑

j Σj(Z))Q
(Z)
0 = Y0 +

∑
j F

(Z)
j for Q

(Z)
0

for j Atoms do
Solve (ZS−Hj)Q

(Z)(x) = Y(x) for Q
(Z)
j

end for

case (30) . Matrix-vector multiplication
Perform HQ multiplication

case (40) . Matrix-vector multiplication
Perform SQ multiplication

end select

end while
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2.6 Parallelization

As has been mentioned, this method naturally lends itself to parallelizatoin. There

are three main levels of parallelization that this method can take advantage of:

Level 1: The search interval within FEAST can be separated into many small,

independent intervals, allowing them to be searched in parallel.

Level 2: For each search interval, there are Ne independent linear equations to be

solved, which can be solved within FEAST in parallel.

Level 3: Because of the muffin-tin domain decomposition, it is possible to solve for

the self-energies of the atomic regions Σj independently and in parallel.

Levels 1 and 2 of parallelism will be handled in FEAST and are not considered as

part of this thesis, although they are important to consider for ultimate scalability.

Level 3 has been implemented using OpenMP [36], allowing each atom to be solved on

an individual core. Section 3.7 gives an in-depth analysis of the effects of paralleliza-

tion on numerical experiments as well as the limitations of such an implementation.

Due to restrictions of available hardware, fully-parallel level 3 numerical examples are

limited to 8 atoms, allowing each atom to be solved on its own thread.

2.7 Hybrid Basis

As has been mentioned, the proposed method is independent of mesh type or basis.

This provides for a very flexible system in which a specific basis set can be chosen

for a particular problem. One example of this is using a spectral decomposition of

energy levels instead of the fine atomic mesh. In this particular example, the Green’s

function G(Z) is defined as:

G(Z) =
M∑
i=1

|Xi〉 〈Xi|
Z − Ei

=
M∑
i=1

XiX
†
i

Z − Ei

, (2.31)

where M is the size of the basis and X†i is the transpose of Xi.
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As can be seen from Table 2.1, an increase in basis size increases accuracy. It

should also be noted that the valence electrons (until they enter the interstitial re-

gion) are significantly more accurate than the core electrons, which is to be expected

based on how this basis was built. Figure 2.3 shows how accuracy changes as a func-

tion of energy level. This particular hybrid basis could be used as a substitute for

pseudopotential methods, or as a preconditioner for the exact method being proposed.
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Figure 2.3. Energy levels for H+
2 using P2 FEM (blue), M=9 Hybrid (red), and

M=598 Hybrid (Green).
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FEM (P2) Hybrid (M=9) Percent Hybrid (M=598) Percent
(eV) (eV) Error (eV) Error

-29.7292 - 100.00% -29.7230 0.02%
-17.6324 -13.8671 21.35% -17.6241 0.05%
-11.2823 -10.0701 10.74% -11.2820 0.00%
-11.2620 -10.0449 10.81% -11.2617 0.00%
-9.6141 -9.5083 1.10% -9.6126 0.02%
-6.6746 -6.1267 8.21% -6.6725 0.03%
-5.8870 -5.5483 5.75% -5.8868 0.00%
-5.6989 -5.5061 3.38% -5.6989 0.00%
-5.6606 -5.4507 3.71% -5.6605 0.00%
-5.3876 -5.3672 0.38% -5.3876 0.00%
-5.3395 -5.3173 0.42% -5.3395 0.00%
-5.1699 -4.7342 8.43% -5.1698 0.00%
-5.1551 -4.6971 8.88% -5.1550 0.00%
-4.5956 -4.4154 3.92% -4.5951 0.01%
-3.4126 -3.1336 8.18% -3.4117 0.03%
-3.0993 -3.0888 0.34% -3.0993 0.00%
-3.0876 -3.0805 0.23% -3.0876 0.00%
-3.0705 -2.9963 2.41% -3.0704 0.00%
-3.0308 -2.9780 1.74% -3.0308 0.00%
-3.0023 -2.9690 1.11% -3.0022 0.00%
-2.9913 -2.9306 2.03% -2.9913 0.00%
-2.9764 -2.9113 2.19% -2.9764 0.00%
-2.9226 -2.8665 1.92% -2.9226 0.00%
-2.8771 -2.8407 1.27% -2.8771 0.00%
-2.8574 -2.8279 1.03% -2.8574 0.00%
-2.8411 -2.5597 9.90% -2.8411 0.00%
-2.5817 -2.5505 1.21% -2.5817 0.00%
-2.3776 -2.0545 13.59% -2.3775 0.00%
-2.3624 -2.0014 15.28% -2.3623 0.00%
-2.0167 - 100.00% -2.0164 0.02%

Table 2.1. Calculated energy levels for H+
2 using quadratic (P2) FEM and spectral

decomposition hybrid basis sets of 9 and 598.
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CHAPTER 3

NUMERICAL EXAMPLES

In this chapter, the numerical results for H, H+
2 , H++

3 , CH4, C2H6, and C6H6 are

presented. Results for full and muffin-tin meshes are compared to analytic (when

available) or numerical solutions for verification purposes. The chapter concludes

with a discussion on accuracy and scalability based on the presented results. For

all examples, a 16Å×16Å×16Åbox was used for the interstitial region. The atomic

region had a radius of 0.35Å.

3.1 Hydrogen

Figure 3.1 shows the mesh of the Hydrogen atom used in the first numerical

example. The total matrix size for the full mesh can be calculated by:

NFull = (Nat −Ns)At+Nit, (3.1)

where relevant variables are defined in Table 3.1. It should be noted the total system

size does not change based on the mesh type. Table 3.2 compares the matrix size

(number of nodes) for full and muffin-tin meshes using quadratic (P2) and cubic (P3)

refinement. Table 3.3 compares the calculated results to the analytic solution [33].
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NFull Total number of nodes for full mesh
Nat Number of nodes in atomic mesh
Ns Number of nodes at interface
At Number of atoms
Nit Number of nodes in interstitial mesh

Table 3.1. Previously undefined variables for (3.1).

Figure 3.1. A 3D mesh containing an H atom, surrounded by a coarse interstitial
mesh.

Full Mesh Muffin-tin Mesh
Matrix Size Atomic Interstitial Interface Total

P2 4235 2841 1492 98 4235
P3 13976 9457 4737 218 13975

Table 3.2. Matrix sizes for Hydrogen atom using full and muffin-tin meshes.

Energy(ev) Percent Error
P2 -13.2414758254649 2.68%
P3 -13.56387279724017 0.31%

Exact [33] -13.6056925328194 -

Table 3.3. Calculated and exact 1st energy level for Hydrogen.
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3.2 Dihydrogen Cation

Figure 3.2 shows the mesh of the Dihydrogen Cation used in the second numerical

example. The atoms were separated by a distance of 2au (approximately 1.06Å).

Table 3.4 compares the matrix size (number of nodes) for full and muffin-tin meshes

using quadratic (P2) and cubic (P3) refinement. As with H, the total system size

does not change between based on the mesh type. Table 3.5 compares the calculated

results to the analytic solution [34].

Figure 3.2. A 3D mesh containing an H+
2 molecule, surrounded by a coarse inter-

stitial mesh.

Full Mesh Muffin-tin Mesh
Matrix Size Atomic Interstitial Interface Total

P2 7378 2841 1892 98 7378
P3 24528 9457 6050 218 24528

Table 3.4. Matrix sizes for Dihydrogen Cation molecule using full and muffin-tin
meshes.

Energy(ev) Percent Error
P2 -29.7291582444973 0.92%
P3 -29.9795763567402 0.08%

Exact [34] -30.00420407 -

Table 3.5. Calculated and exact 1st energy level for Dihydrogen Cation.
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3.3 Trihydrogen Dication

Figure 3.3 shows the mesh of the Tirydrogen Dication molecule used in the third

numerical example. The atoms were separated by a distance of 1.68au (approximately

0.89Å). It should be noted that although H++
3 is not stable enough to exist [35], it is

still useful for verification purposes. Table 3.6 compares the matrix size (number of

nodes) for full and muffin-tin meshes using quadratic (P2) and cubic (P3) refinement.

As with H and H+
2 the total system size does not change between based on the mesh

type. Table 3.7 compares the calculated results to the analytic solution [34].

Figure 3.3. A 3D mesh containing an H++
3 molecule, surrounded by a coarse inter-

stitial mesh.

Full Mesh Muffin-tin Mesh
Matrix Size Atomic Interstitial Interface Total

P2 10430 2841 2201 98 10430
P3 34791 9457 7074 218 34791

Table 3.6. Matrix sizes for Trihydrogen Dication molecule using full and muffin-tin
meshes.

Energy(ev) Percent Error
P2 -51.6733672948024 0.56%
P3 -51.9378291242234 0.05%

Estimated Exact [34] -51.966 -

Table 3.7. Calculated and estimated exact 1st energy level for Triydrogen Dication.

26



3.4 Methane

Figure 3.4 shows the mesh of the Methane molecule used in the fourth numerical

example. Table 3.8 compares the matrix size (number of nodes) for full and muffin-

tin meshes using quadratic (P2) and cubic (P3) refinement. As with the Hydrogen

molecules, the total system size does not change between based on the mesh type.

Figure 3.4. A top-down view embedded within a coarse mesh (left) and a side view
(right) of a CH4 molecule.

Full Mesh Muffin-tin Mesh
Matrix Size Atomic Interstitial Interface Total

P2 16950 2841 3235 98 16950
P3 56681 9457 16705 218 56681

Table 3.8. Matrix sizes for Methane molecule using full and muffin-tin meshes.

3.5 Ethane

Figure 3.5 shows the mesh of the Ethane molecule used in the fifth numerical

example. Table 3.9 compares the matrix size (number of nodes) for full and muffin-tin

meshes using quadratic (P2) and cubic (P3) refinement. As with the other examples,

the total system size does not change between based on the mesh type.
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Figure 3.5. A top-down view embedded within a coarse mesh (left) and a side view
(right) of a C2H6 molecule.

Full Mesh Muffin-tin Mesh
Matrix Size Atomic Interstitial Interface Total

P2 27085 2841 5141 98 27085
P3 90617 9457 16705 218 90617

Table 3.9. Matrix sizes for Ethane molecule using full and muffin-tin meshes.

3.6 Benzene

Figure 3.6 shows the mesh of the Benzene molecule used in the final numerical ex-

ample. Table 3.10 compares the matrix size (number of nodes) for full and muffin-tin

meshes using quadratic (P2) and cubic (P3) refinement. As with the other examples,

the total system size does not change between based on the mesh type. An analytic

solution for the electronic structure is not available for comparison; instead, Table

3.11 compares the calculated result to other published numerical solutions [42],[43].

Full Mesh Muffin-tin Mesh
Matrix Size Atomic Interstitial Interface Total

P2 39881 2841 6965 98 39881
P3 133579 9457 22711 218 133579

Table 3.10. Matrix sizes for Benzene molecule using full and muffin-tin meshes.
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Figure 3.6. A 3D mesh containing an C6H6 molecule, surrounded by a coarse inter-
stitial mesh.

Energy(ev) Percent Difference
P3 -6261.14 -

HF (STO-3G)[42] -6201.24 0.96%
DFT-LSDA (STO-3G)[42] -6206.31 0.88%

P3 ELMER [43] -6262.57 0.02%
FHI-aims [43] -6263.83 0.04%

Table 3.11. Calculated and numerical estimate for 1st energy level for Benzene.

3.7 Discussion

A few conclusions can be drawn from the results in Sections 3.1 - 3.5. First,

it is important to note that accuracy increases as refinement increases; in fact, the

accuracy can be arbitrarily increased (within the limitations of DFT) by increasing

refinement. Additionally, results are the same for the full and muffin-tin meshes.

Second, although results are the same for both mesh types, scalability is not.

Figure 3.7 shows a plot of the number of nodes for full, atomic, and interstitial meshes

versus number of atoms per molecules. For the full mesh, as the number of atoms

increases, the entire system scales linearly; however, for the muffin-tin mesh, only the

interstitial region scales linearly and the atomic mesh remains constant. Because the

atomic mesh contains the most points, great scalability is possible.
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Figures 3.8 and 3.9 show the relative speed-up times for the factorization and solve

steps, respectively. For these timing simulations, the number of threads was set equal

to the number of atoms. Because of this, we would expect both the factorization

and solve speed-ups to remain equal to 1. As can be seen, this is not quite the

case. The factorization and solve steps are both affected by hardware limitations.

Because of the shared resources between threads, it’s impossible to achieve complete

parallelization with the current system. Overall factorization time is particularly

affected, as expected, by the interstitial factorization time, which can be seen in Figure

3.10. We note that, for very small systems, factorization time actually decreases. This

is caused by a decrease in the number of nodes per the number of threads for those

particular systems. Although the nodes/threads continues to decrease, factorization

time begins increasing for larger systems. This is due to limitations within PARDISO

[41], which is being used to factorize the system.
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Figure 3.7. Number of nodes for full (blue), atomic (green), and interstitial (red)
meshes versus number of atoms per molecule.
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Figure 3.8. Actual (blue) and ideal (red) relative speed-up times for factorization
vs. number of atoms (threads). Here, 1 corresponds to 2.28 seconds.
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Figure 3.9. Actual (blue) and ideal (red) relative speed-up time for solve vs. number
of atoms (threads). Here, 1 corresponds to 0.61 seconds.
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Figure 3.10. Actual relative speed-up time for interstitial solve step (blue) and
interstitial nodes per number of threads (red) vs. number of atoms (threads). Here,
1 corresponds to 0.15 seconds.

34



CONCLUSION

In this thesis, an accurate and scalable method for performing nanoelectronic
structure calculations has been presented. Built within the FEAST [1] framework,
this method is based on muffin-tin methods originally presented by Slater in 1937 [2]
and on the resulting embedded self-energies (Green’s functions). The most common
traditional numerical techniques, such as plane wave expansion, linearized augmented
plane waves, linearized muffin-tin orbitals, and linear combination of atomic orbitals,
were briefly presented. Although these methods have been widely used with varying
success, they all suffer from the added layer of approximation to linearize the resulting
eigenvalue problem, or they rely on pseudopotential methods to ease the potential
around the cores. These approximation techniques make these methods intrinsically
less accurate than the method proposed in this thesis.

Although this method is mesh-independent, FEM was heavily focused on, as it
provides a number of benefits, such as preserving the hermitian properties of the
Hamiltonian, as described in Chapter 2. A rigorous mathematical explanation along
with a matrix-level example provided justification for the proposed method, in which
it was shown how Green’s functions were used in the form of self-energies to take ad-
vantage of the muffin-tin method within FEAST. Implementation was demonstrated
through pseudocode of the FEAST-RCI and a description of parallelization tech-
niques.

Finally, numerical experiments were performed to demonstrate accuracy and scal-
ability. Meshes can be arbitrarily refined to increase accuracy (within the limits of
DFT). Although scalability was not ideal, most inefficiencies were not method-specific
(such as hardware and PARDISO [41] limitations) and could be improved in ways
not related to this thesis.

This method allows for several new opportunities. It is now possible to perform nu-
merically exact all-electron structure calculations for large-scale systems with modest
hardware configurations. Hybrid basis functions, such as the one described in Section
2.7 can allow for more cost-effective approximate models, or can be used as a pre-
conditioners to speed up the exact approach solved using iterative solvers. Finally,
because this method is built within the NESSIE nanoelectronics environment [39],
the muffin-tin FEAST framework presented here is expected to speed-up the NESSIE
time dependent and time-independent full self-consistent electronic structure calcu-
lations of molecules and solids.
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