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ABSTRACT 

 

THE RADIATION QUALITY FACTOR OF VERTICALLY POLARIZED 
SPHERICAL ANTENNAS ABOVE A CONDUCTING GROUND PLANE 

SEPTEMBER 2012 

HSIEH-CHI CHANG 

B.Sc., NATIONAL CHIAYI UNIVERISTY 
M.S.E.C.E. UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Do-Hoon Kwon 

 

The radiation quality factor of small vertically polarized antennas above a ground 

plane is investigated. Although the quality factor of small antennas in free space has 

been investigated extensively in the past, the exact effect of a conducting ground 

plane on the antenna bandwidth is not clearly understood. In this thesis, quality 

factors of vertically polarized antennas above a ground plane are computed and 

compared with their free-space counterparts. The theoretical results on quality factors 

are validated with simulations of electrically small spherical helix antennas. 
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CHAPTER 1 

INTRODUCTION 

 

Electrically small antennas have been an important research topic for many years. The 

interest in this field is increasing with the development of broadband antennas in small 

sizes. The radiation quality factor Q is an important measure and research topic in 

electrically small antenna field. For electrically small antennas, only the fundamental 

mode of current can be assumed to flow over a spherical circumscribing surface. It is also 

known when the quality factor is much larger than unity, the impedance bandwidth is 

approximately equal to the reciprocal of the quality factor. Wheeler [1] is the first author 

who established the link between antenna, bandwidth, and efficiency. He used the term 

"radiation power factor" in studying the limitation of small antennas. The work of Chu [2] 

in deriving the fundamental limitation for electrically small omni-directional antennas is 

widely used. He considered a hypothetical sphere enclosing an electrically small antenna, 

where the sphere’s diameter being smaller than a wavelength. In his work, the minimum 

Q was obtained for each TM mode. For the lowest TMn mode, the well-known exact 

result is  
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 3

1 1Q
ka ka

  ,  1  

where k=2π/λ is the free-space wavenumber and a is the radius of the sphere. 

Kim [3], [4] used the current on the antenna surface to model small antennas with quality 

factors that approach the Chu’s limit. However, it was realized that the energy inside 

sphere was not easy to cancel. This energy should be included when the quality factor is 

computed in order to model practical antennas. In addition, the minimum Q should be 

higher than the Chu’s limit, as the stored energy inside the sphere was not included by 

Chu. Thal [5] used a wire antenna deployed over the surface of a hypothetical sphere. He 

also used the Chu ladder network, and gave numerical results but no formulas. Hansen 

and Collin [6] included the stored energy for general TM modes and recomputed the Chu 

formula. Incorporating the internal stored energy, an approximate formula for the 

minimum Q for the lowest TM01 mode was also developed. It is given by [6] 

 
 3

0.71327 1.49589
H CQ

ka ka
   .  2  

This quality factor applies only to a spherical antenna with air core excited by an electric 

surface current. 

Best[7], [8] used 4-arm folded spherical helix antennas to realize that the fundamental 

sinusoidal mode current flow on the surface. The tuned antenna's quality factor can also 
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be determined directly from the antenna's untuned feed point impedance [9], 

        
 

2
2 00

0 0 0
0 02

X
Q R X

R


  
 

 
    

  
,  3  

where ω0 is the tuned radian frequency, R(ω) and X(ω) are the frequency dependent feed 

point resistance and reactance respectively, and R'(ω) and X'(ω) are their frequency 

derivatives. 

The vast majority of small antenna research treats antennas in free space. Chu did not 

consider the stored energy inside the volume and Thal added this energy into his quality 

factor, all limited to free-space antennas. Sten et al. [10] investigated the radiation Q of a 

combination of vertical and horizontal point diploes above a PEC ground plane. However, 

they considered the minimum sphere that encloses both the original antenna and the 

image antenna after applying the image theory. Then, Chu's approach, i.e. excluding the 

stored energy in this sphere, was used to compute the Q of the system. Hence, this 

approach results in very conservative Q values that cannot be closely approached in 

practice, thereby reducing the utility of the derived bound. This thesis will show the detail 

and method for quality factor of a conductor-backed small antenna in Chapter 3. 
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CHAPTER 2 

REVIEW OF ANTENNA QUALITY FACTOR IN FREE SPACE 

 

2.1 Spherical Wave Function 

 
Figure 1: Coordinate system definition for an electric surface current over a sphere of 
radius a centered at O. 

 

We start to solve this problem with a spherical antenna in free space, as shown in Figure 

1. Using the vector spherical harmonic [11], M(c) 
mn(r,θ,ϕ) and N(c) 

mn(r,θ,ϕ), are given by 
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where z(c) 
n (kr) is the radial function of a type specified by c. They are equal to 
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and the field may be cast in a compact form as 
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where η 
0 is the intrinsic impedance of free space, which are valid in both near and far 

zones. Here, Pm 
n (cosθ) denotes the associated Legendre function. Outside the sphere (r>a), 

radiation propagating wave behavior is chosen (c=4). In M(4) 
mn (r,θ,ϕ) and N(4) 

mn (r,θ,ϕ),  

z(4) 
1 (kr)=h(2) 

1 (kr) is the spherical Hankel function of the second kind. Because the current 

which flows on the surface is the fundamental mode, it implies m=0 and n=1. 

Vector spherical harmonics and the associated fields are 

                 4 2 21 1
01 1 1 1
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where ar>a 
01 and br>a 

01 are the unknown coefficients for the r>a region. Inside the sphere 

(r<a), the field at the origin is finite. Therefore, c=1 is chosen. In M(1) 
mn (r,θ,ϕ) and  

N(1) 
mn(r,θ,ϕ), z(1) 

1 (kr)=j 
1(kr) is the spherical Bessel function first kind. Vector spherical 

harmonics and the associated fields are 

                    1 1 1
01 1 1 1
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r j kr j kr P
d
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where ar<a 
01 and br<a 

01 are the unknown coefficients for the r<a region. 

Fields in the r>a and r<a regions should satisfy appropriate boundary conditions at r=a. 

The tangential magnetic field is discontinuous on the boundary due to surface current 

distribution. 

  0
ˆ ˆ ˆsin t t t

s r a r a r a r aJ r r           J H H H ,  17  

or 
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The tangential electrical field is continuous on the boundary. 

 t t
r a r a r a r a   E E ,  19  

or 
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The four unknown coefficients can be found from (18) and (20) as 
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where 
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The total fields inside and outside the sphere are summarized as 
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and 
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The form of the external fields in (24) indicates that the given surface current distributed 

over the spherical surface generates the same field created by a z-directed Hertzian dipole 

at the coordinate origin having an appropriate dipole moment. This observation is 
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important in identifying the propagating- or standing-wave behavior of fields at different 

locations when a conducting ground plane is introduced in Chapter 3. 

 

2.2 Radiation Quality Factor of a TM01-Mode Spherical Current 

For an antenna, the radiation quality factor is defined by [2] 

 

2

2

e
e m

m
m e

W W W
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W W W
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where We is the time-average, non-propagating, stored electric energy, Wm is the 

time-average, non-propagating, stored magnetic energy, ω denotes the radian frequency, 

and P denotes the radiated power.  

In Chu’s theory, the stored energy inside the sphere was not included. The stored energy 

outside the sphere can be computed as 

    
 

2

0 1 33
2 1 1

4 3
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e e
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where Wr>a 
e  and Wr>a 

m  are the stored energies in the r>a region,  2 2

2e radw 
 E E  

and  2 2

2m radw 
 H H , here we and wm represent energy densities. E 

rad and H 
rad are 

fields associated with radiation. The radiated power can be computed as 
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Choose 2 eWQ
P


  due to We>Wm. Finally, Chu’s quality factor is 
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In [6], the stored energy inside the sphere was included. This approach is closer to reality 

for practical antennas with air core. The electrical energy inside the sphere is added to 

Chu’s theory. The electric energy is stored inside the sphere 

        

            

*

23
2

0 13

2 2
0 1 1 2 1 3

4

2
9 2

2 .

r a
e

V

W

dV

ka
J ka kah ka

k

j ka j ka j ka j ka j ka j ka












    

         

 E E

  31  

Using the same approach above, quality factor inside sphere is given by 
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The new quality factor is the sum of the quality factor from Chu’s work and the quality 

factor inside the sphere. It is 
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Figure 2: Comparison of three quality factors for a spherical antenna in free space. 

 

Figure 2 compares QChu 
fs and QThal 

fs together with the approximate expression QH-C 
fs from (3). It 

is observed that the QThal 
fs curve lies on top of QH-C 

fs , which validates (33). 
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CHAPTER 3 

RADIATION QUALITY FACTOR OF A CONDUCTOR-BACKED SMALL 

ANTENNA 

 

3.1 A Conductor-Backed Small Antenna 

           (a)                                     (b) 

Figure 3: The problem geometry of a vertically polarized spherical antenna over a 
ground plane. (a) Spherical antenna above PEC ground plane. (b) After applying image 
theorem to replace the PEC ground plane. 

 

In practice, an antenna is often placed above a conducting ground plane, as illustrated in 

Figure 3(a). In the presence of a ground plane of finite or infinite extent, part or all of the 

ground plane is sometimes considered to be part of the overall antenna. In the following 
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development, the term antenna refers to the spherical radiating structure only, without any 

part of the ground plane included. Furthermore, the energy stored inside the antenna 

refers to the non-propagating stored energy inside the spherical volume. It will be the 

differentiating quantity between Chu’s and Thal’s quality factors for the antenna in Figure 

3(a) as in the free-space case of Chapter 2. The presence of a ground plane has a 

significant impact on the antenna quality factor. Sten et al. [10] used a vertical and a 

horizontal point dipole to compute the quality factor. However, after applying the image 

theory, they considered a spherical surface that circumscribes both the antenna and its 

image in their computation of Q. This lowers the Q value below what is physically 

achievable, making the minimum Q too conservative. To describe the underlying physics 

more accurately, the energy inside the sphere should be taken into account. From Chapter 

2, the current flowing on the surface is the fundamental mode when the antenna is 

electrically small. Moreover, when the quality factor is significantly larger than one, the 

bandwidth of the antenna is approximate reciprocal of the quality factor. Currently, 

researchers concentrate on the fundamental mode and how to design physical antennas 

that closely approach the Chu bound. 

To obtain the quality factor of a spherical antenna above a PEC ground plane accurately, 

all energy stored in fields and the radiated power should be computed. To compute the 
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energy, field expressions should be found first and the spherical vector wave functions 

are the best suited for this purpose. The M and N vectors [11], [12] work only when the 

antenna is placed in an unbounded, homogeneous medium. To remove the PEC ground 

plane, image theory is applied. According to image theory, an image antenna should be 

placed below the PEC ground plane when the ground plane is removed. The system, e.g. 

an electrically small antenna above the ground plane with ground separation h, becomes 

two spherical antennas separated by a center-to-center distance 2h, as shown in Figure 

3(b). Then, the vector addition theorem in spherical coordinates is applied to obtain fields 

centered at the coordinate origin O in the next step. After the field expressions are 

obtained, the stored energy can be computed by performing a volume integral of 

non-propagating energy densities. However, as Figure 3(b) shows, the coordinate origin 

is not at the center of the sphere. It is not easy to perform the volume integration if the 

origin is not at the center of the sphere and the shape of the volume does not coincide 

with constant coordinate surfaces. To overcome this difficulty, the volume integration is 

broken into four parts. In a regular volume region, a volume integration can be obtained 

in a closed form. In an irregular volume region, a volume integration can be computed 

numerically. The total radiated power from the two spherical antennas can be easily 

computed by using the known form from [13]. Once the stored energy and the radiated 
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power are both obtained, the radiation quality factor can be computed. 

An antenna having a large effective volume has a small quality factor, associated with a 

broad bandwidth. According to the image theory, placing a spherical antenna above a 

PEC ground plane makes the effective volume larger. Hence, it is possible that the quality 

factor may be reduced from its free-space value after a PEC ground plane is placed. In 

this study, the change of the quality factor, stored energy, and radiated power will be 

quantified with the introduction of a ground plane. The radiation quality factor, stored 

energy, and radiated power in free space will be compared with the corresponding values 

of the antenna of the same size above a PEC ground plane. The behavior of the quality 

factor with respect to the antenna size ka in the range ka<0.5 and the ground separation 

kh will be investigated. 

 

3.2 Vector Addition Theorem 

When electromagnetic waves interact with spherical bodies, it is desirable in many 

problems to express the fields in terms of spherical vector wave functions. If a problem 

involves multiple electromagnetic waves due to multiple sources, it is not easy to analyze 

the problem in mixed coordinates. To solve a multiple sources problem, it is easier to 

expand those waves with respect to a common origin. As shown in Chapter 2, magnetic 
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and electrical fields due to a spherical antenna are well established. To move the origin 

away from the center of the sphere , a vector addition theorem is needed. Such an 

addition theorem has been reported by Cruzan [14].  

 

Figure 4: Translation of the coordinate origin from O to O'. 

 

A translation of the coordinate origin from O to O' is illustrated in Figure 4. The 

translation vector is h. The spherical (r,θ,ϕ) coordinates are with respect to O and the 

spherical coordinates (r',θ',ϕ') are with respect to O'. The TM01-mode vector spherical 

harmonics, M01(r,θ,ϕ) and N01(r,θ,ϕ), which are defined in (13) and (14), can be translated 

to the O' coordinate system as 
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where 
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           001
01 0,1 , , 1 1, , cosu juu

uv p p
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B a u v p p b v p z kh P e      .  37  

Note that the index v starts from one rather than zero [15]. This is due to the (u,v)=(0,0) 

mode not corresponding to a valid solution. Here,  
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where 
1
0

v p
u u

 
  

and 
1
0 0 0

v p 
 
   

are the Wigner 3-j symbol [14]. 
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Figure 5: Translation of the coordinate system along the z axis. 

 

Assume the translation is along the z axis. Figure 5 shows a case for θ 
0=0. Then,  

P-u 
p (cosθ 

0)= P-u 
p (1)≠0 only when u=0 and P-u 

p (1)=P 
p(1)=1 if u=0. Therefore, M 

01(r,θ,ϕ) and 
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01(r,θ,ϕ) can be reduced to 
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The coefficient, B01 
0v,lower, is equal to zero for the TM01 mode. 

In the addition theorem, the field expression outside a sphere is divided into two regions 

[14], r'>h and r'<h. 

 

Figure 6: Fields expanded by O' inside the boundary. 

 

In r'<h, as shown Figure 6, the M 
0v(r',θ',ϕ') and N 

0v(r',θ',ϕ') functions are 
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In r'<h, h(2) 
p (kh) is chosen for zp(kh). In addition, M(4) 

01 (r,θ,ϕ) and N(4) 
01 (r,θ,ϕ) in this region 

can be expanded in terms of M(1) 
0v (r',θ',ϕ') and N(1) 

0v (r',θ',ϕ') as 
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Using (47), the electric and magnetic fields due to the spherical current centered at O are 

represented by 
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where 

  0 0 1
out
E j J ka kaj ka         51  
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  0 1
out
H J ka kaj ka     .  52  

 

Figure 7: Fields expanded by O' outside the boundary. 

 

In r'>h, as shown Figure 7, the M 
0v(r',θ',ϕ') and N 

0v(r',θ',ϕ') functions are  
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In r'>h, jp(kh) is chosen for zp(kh). In addition, M(4) 
01 (r,θ,ϕ) and N(4) 

01 (r,θ,ϕ) in this region can 

be expanded by M(4) 
0v (r',θ',ϕ') and N(4) 

0v (r',θ',ϕ') as 
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The fields in this region are represented by 
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Following the same method above, it is easy to obtain the field expressions for θ 
0=π. 

There, only coefficient is different. Specifically, the coefficient A01 
0v,upper is changed to 
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3.3 Non-Propagating Stored Energy 

3.3.1 Division of Space and Q-Computation Approach 
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The original problem is to investigate the quality factor for a spherical antenna above a 

PEC ground plane, shown in Figure 3(a). The analysis method for free-space antennas 

cannot be directly applied due to a planar boundary of the ground plane. To remove the 

PEC ground plane, the image theory is applied. According to the image theory, a 

spherical image antenna should be place below the PEC ground plane. The distance 

between the ground plane and the image antenna is equal to the distance between the 

ground plane and the original antenna. After this process, the configuration in Figure 3(b) 

results. This is a two-spherical-antenna system in free space. Using the addition theorem, 

the fields due to original and image spherical antennas can be expanded in the (x,y,z) 

coordinate system having the original ground plane in x-y plane. By applying this method, 

the fields from both antennas are represented in the same coordinate system using a 

common set of vector expansion functions.  
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Figure 8: Boundaries for the addition theorem and volume integrations. 

 

The fields from this two-antenna system are known everywhere. Therefore, the stored 

energy can be computed by performing a volume integration over a proper volume, 

which is all space extending to infinity. Since only the non-propagating energy should be 

taken into account when computing the radiation Q, different regions of space need to be 

identified depending on the presence or absence of energy associated with radiation. The 

result of this identification is the five distinct regions illustrated in Figure 8. In Chapter 2, 

it has been identified that the prescribed surface current excites only the fundamental 

TM01 mode outside the sphere. In other words, for field points outside the spherical 

antenna surface, the surface current distribution can be replaced by an equivalent 
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Hertzian dipole. Hence, at any observation point outside the two antenna spheres in 

Figure 8, the total field can be obtained by a vector sum of fields generated by two 

equivalent Hertzian dipoles located at the two sphere centers (x,y,z)=(0,0,h) and (0,0,–h). 

This makes the spherical surface (black dashed contour) of radius h centered at the 

coordinate origin the boundary between two volumes having standing-wave (inside) and 

propagating-wave (outside) characteristics. Inside this boundary (regions I and II), Bessel 

function of the first kind is the radial function and Hankel function of the second kind is 

in the expansion coefficients. Outside this boundary (regions III and IV), Hankel function 

of the second kind is the radial function and Bessel function of the first kind is in the 

coefficients. 

The red dashed circles are the boundaries for volume integrations. Inside the small red 

dashed circle (region I) and outside the large red dashed circle (region IV), volume 

integrations can be obtained in closed form as an infinite series. The non-propagating 

stored electric and magnetic energies are 

  2 2,
2e e e rad

V

W w dV w 
   E E   59  

  2 2,
2m m m rad

V

W w dV w 
   H H   60  

where we and wm represent the corresponding energy densities. Erad and Hrad are fields 

associated with radiation. 
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Inside the small red dashed circle region (region I), integration limits are from 0 to 2π for 

ϕ, from 0 to π for θ, and from 0 to h-a for r. Outside large the red circle region (region 

IV), they are from 0 to 2π for ϕ, from 0 to π for θ, and from h+a to ∞ for r. However, the 

volume integration for the shaded region (regions II and III) cannot be obtained in a 

closed form because the shape of this region is irregular. The two spherical volumes are 

excluded in this computation, and the integration is performed numerically. 

The integration described above computes the stored energy outside the two spheres. For 

the stored energy inside the two spheres, we can move the coordinate origin to the center 

of one sphere and use the vector addition theorem to find the total field due to both 

antennas. Then, a volume integration over the sphere can be performed to find the energy 

stored inside the spherical antenna. The stored energy inside the other sphere is the same 

due to symmetry. 

The radiated power of the two-sphere system is 

 *1Re
2 r d a

S

P d 

 
   

 
 E H S .  61  

Working the vector addition theorem above, the fields are expanded at the center of the 

(x,y,z) coordinate system. The radiated power P is obtained setting the closed surface S to 

the spherical surface represented by the large red circle Figure 8.  
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All needed energy is computed. According to the definition of quality vector, substitute 

all numbers into the definition, 

 
2 e or mW

Q
P


   62  

and we can obtain the quality factor for this system. 

 

3.3.2 Region I 

According to Section 3.2, the total fields can be represented by 
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        H M M   64  

where 

 01 01 01
0 0 , 0 ,v v lower v upperA A A    65  

In region I, fields are given by (63) and (64). The radial function is the Bessel function. 

The electric and magnetic fields in this region are standing waves. There is no field 

associated with radiation to far-field region. Therefore, E 
rad and H 

rad in (59) and (60) are 

equal to zero. The non-propagating, stored electrical energy in region I is 
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  E E N N   66

Due to the orthogonal relationship, (66) can be reduced to 
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Using the same approach, the magnetic energy is found to be 
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3.3.3 Region II 

The electric and magnetic fields in region II are standing waves. There is no field 

associated with radiation. Hence, E 
rad and H 

rad in (59) and (60) are equal to zero. 

However, the volume in region II is not appropriate to obtain the integral in a close form. 

Hence, numerical integration is applied in this region and the addition theorem is not 

applied at this point. The fields, E(x1,y1,z1) and H(x1,y1,z1), can be represented in the 

(x1,y1,z1) system having the origin is at (x,y,z)=(0,0,-h). The fields, E(x2,y2,z2) and 

H(x2,y2,z2), can be represented in the (x2,y2,z2) coordinate system having the origin at 

(x,y,z)=(0,0,h). 

 

Figure 9: Two different coordinate systems (x,y,z) and (x1,y1,z1) . 
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From Figure 9, the relationships between the spherical coordinates of the two systems are 

 2 2
1 2 cosr r hr h     71  

 1
1

1

coscos r h
r
   

  
 

  72  

The fields due to the antenna for which the center is at (0,0,-h) are 

      4
1 1 1 0 0 1 01 1 1 1( , , ) , ,r j J ka kaj ka r        E N   73  

      4
1 1 1 0 1 01 1 1 1( , , ) , ,r J ka kaj ka r      H M   74  

Substituting (71) and (72) into (73) and (74), the field expression are written in the (x,y,z) 

coordinate system.  

There are two antennas in the system. The fields due the antenna centered at (0,0,h) can 

be represented in the (x,y,z) coordinate system by repeating the same procedure. 

 

Figure 10: Two different coordinate systems (x,y,z) and (x2,y2,z2) . 
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The relationships between spherical coordinates in the two systems are 

 2 2
2 2 cosr r hr h     75  

 1
2

2

coscos r h
r
   

  
 

  46  

The fields due to the antenna having the center is at (0,0,h) are 

      4
2 2 2 0 0 1 01 2 2 2( , , ) , ,r j J ka kaj ka r        E N   77  

      4
2 2 2 0 1 01 2 2 2( , , ) , ,r J ka kaj ka r      H M .  78  

Substituting (75) and (76) into (77) and (78), the field expression can be represented in 

the (x,y,z) coordinate system. Finally, the total fields can be represented by 

      1 1 1 2 2 2, , , , , ,r r r      E E E   79  

      1 1 1 2 2 2, , , , , ,r r r      H H H .  80  

The total fields due to two different antennas can be represented in the (x,y,z) coordinate 

system. After finding the fields everywhere in the region, the numerical volume 

integration is performed. 

 

3.3.4 Region III 
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The electric and magnetic fields in region III are propagating waves. There is some 

energy associated with radiation. To compute the non-propagating stored energy, the 

energy associated with the radiated fields should be subtracted from total energy.  

Collin and Rothschild [16] presented a simple approach to compute the stored energy. 

They found the difference of magnetic stored energy and electrical stored energy by 

integrating the complex Poynting vector over a closed surface,  

  *1 2
2 m eS

d P j W W    E H S   81  

where P is total radiated power. 

They realized that the energy density associated with the radiation field was the real part 

of the radial component of the complex Poynting vector divided by the speed of energy 

flow. It is 

  1 2 *
0 0

1Re
2

r r
e mw w       

 
E H   82  

where wr 
e  is the electric energy density associated with radiation and wr 

m is the magnetic 

energy density associated with radiation. 

The total energy density associated with radiation can be obtained from (82). To compute 

the total stored energy, this quantity should be subtracted from the total energy, i.e. 

  * *

4 4
III III r r

m e e m
V
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From (81) and (83), the non-propagating, stored magnetic and electric energies can be 

obtained. The volume in this region is irregular. The integration cannot be obtained in 

closed form. In addition, numerical integration is applied in this region as the method in 

region II. The field expression should be represented as (79) and (80). The volume 

integration should be performed numerically.  

 

3.3.5 Region IV 

In region IV, field expressions are given by (62) and (63). The radial function is Hankel 

function of the second kind. The waves in this region are propagating waves. Some 

energy associated with propagating wave should be subtracted. According to [17], total 

non-propagating, stored energy is 
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The difference between non-propagating, stored electrical and magnetic energy is 
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The non-propagating, stored electric and magnetic energies can be obtained from (84) 

and (85).  

 

3.3.6 Region V 

 

Figure 11: The translation coordinate from O1 to O2. 

 

To obtain the electric and magnetic energy inside the spherical antenna, it is easy to 

integrate if the origin is set at the center of the one of spheres. Figure 11 shows the origin 

of antenna 1, O1, is moved to the origin of antenna 2, O2. The electric and magnetic fields 

due to antenna 1 can be expanded at O2. The fields due to antenna 1 ,expanded around O2, 

are 

2o

1o

Antenna 1

Antenna 2
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where 
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The fields due to antenna 2, expanded around O2, are 

    1,2
01( , , ) , ,in

Er r    E N   90  

    1,2
01( , , ) , ,in

Hr r    H M   91  

where 

    2,2
0 0 1

in
E j J ka kah ka         92  

    2,2
0 1

in
H J ka kah ka     .  93  

Finally, the total fields are 
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where δ 
1v=1 when v=1 and δ 

1v=1 otherwise. 

In region V, there is no field associated with radiation. Hence, E 
rad and H 

rad in (59) and 

(60) are equal to zero. The electric and magnetic energies are equal to 
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3.3.7 Radiated Power 

The field expressions in region IV are 
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According to [13], radiated power is represented 

 
2

201
0 022

out
ETM

v v vP A
k





   100  

where 

  0
41

2 1v v v
v
  


.  101  

In addition, the total radiated power is 
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CHAPTER 4 

THEORETICAL RESULTS 

 

Following the procedure described in Section 3.3, all the energy and power quantities 

needed for the quality factor can be computed. Now, several quantities are defined for 

different quality factors. QChu 
fs is defined by Chu's quality factor in free space. This quality 

factor excludes the stored energy inside the radius a and the antenna is placed in free 

space. QThal 
fs is defined by Thal's quality factor. This quality factor includes the stored 

energy inside the spherical surface of radius a and the antenna is placed in free space.  

QChu 
gnd is defined by Chu's definition of quality factor but the antenna is placed above a PEC 

ground plane. This quality factor excludes the energy inside the spherical antenna. QThal 
gnd is 

defined by Thal's definition of quality factor but the antenna is placed above a PEC 

ground plane. This quality factor includes the energy inside the spherical antenna. 
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(a) 

 
(b) 

Figure 12: Comparison of quality factors of antennas. (a) Quality factors of antennas in 
free space and those above a ground with a separation kh=0.6. (b) The comparison of 
quality factors of free-space antennas and grounded antennas with a fixed ratio kh=2ka. 
In both cases, the quality factor from [10] is also shown for comparison. 
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Figures 12(a) and 12(b) show the results of those four quality factors and compare them 

in the range of ka from 0.1 to 0.5. Figure 12(a) is the comparison between the quality 

factors of free-space antennas and the quality factors of grounded antennas with a fixed 

ground separation (kh=0.6). Figure 12(b) compares the quality factors for free-space 

antennas and the quality factors of antennas above a PEC ground plane with a fixed ratio 

(kh=2ka) between the ground separation (kh) and the antenna size (ka). Due to the 

exclusion of the energy inside the sphere, QChu 
fs is smaller than QThal 

fs . In free space, Chu's 

quality factor is the lower bound for the antenna. However, according to Figures 12(a) 

and 12(b), it is observed that QChu 
gnd and QThal 

gnd are both lower than QChu 
fs . In other words, 

placing a spherical antenna above a PEC ground plane can reduce the quality factor. This 

means the bandwidth of a spherical antenna can be wider than that of a same-sized 

electrically small antenna in free space. In either configuration, Chu's quality factor 

represents a fundamental lower bound that no quality factors of physical antennas can go 

below. However, electrically small antenna designs have been reported that have the 

radiation Q closely approaching QThal 
fs  [7]. Therefore, it is interesting to note that QThal 

gnd  is 

expected to be smaller than QChu 
fs . In both Figures 12(a) and 12(b), the purple curves are 

from [10]. They are significantly low and cannot be reached in practice. 
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                 (a)                        (b) 

Figure 13: Comparison of effective volumes. (a) A spherical antenna is placed in free 
space. (b) Two spherical antennas are placed in free space. 

 

The quality factor for the TM01 mode is well-known. When the radius of enclosed surface 

increases, the minimum quality factor decreases. Figure 13(a) is a spherical antenna 

placed in free space. Figure 13(b) is the system after the image theory is applied. Those 

three antennas are identical. It is easy to see the radius a of the spherical antenna in 

Figure 13(a),is smaller than the radius h+a of the sphere enclosing both the original and 

image antennas in Figure 13(b). Hence, the fundamental lower bound of Q for the 

two-antenna system in Figure 13(b) is lower than that for the single antenna in Figure 

13(a). As reported in [10], such a bound is too conservative and it cannot be closely 

approached using physical antennas. In contrast, the results in Figure 12 show Q values 

that may be realized using physical antenna designs. 

o
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(a) 

 

(b) 
Figure 14: Quality factors for grounded antennas. (a) Quality factor QChu 

gnd  with respect to 
ka with fixed kh. (b) Quality factor QChu 

gnd  with respect to ka with fixed ratios between ka 
and kh. 
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Figure 14(a) shows QChu 
gnd as a function of ka for fixed values of kh. Figure 14(b) plots QChu 

gnd   

with respect to ka for fixed values of the ratio kh/ka. From Figures 14(a) and 14(b), the 

quality factor with a fixed separation (kh) decreases when the antenna size (ka) increases, 

as expected; a larger antenna has a smaller quality factor. Moreover, when the separation 

increases for a fixed antenna size (ka) the quality factor increases.  

The quality factor can be lower than Chu's limit if a PEC ground plane is present. The 

ground plane can influence the quality factor significantly. The impact decreases when 

the separation increases. When the antenna is far away from the PEC ground plane, the 

quality factor is expected to be close to the quality factor in free space. 

 
Figure 15: The ratios of quality factors for grounded antennas to those of free-space 
antennas with respect to the separation (kh) for different antenna sizes (ka). 
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The ratio of quality factors Thal Thal
gnd fsQ Q  serves as a useful figure of merit. This quantity 

will be very close to unity if the separation is large. According to Figure 15, the values of 

green (ka=0.1) and red (ka=0.2626) curves are close to unity when kh is larger than three. 

Beyond three, the ratios stay around unity. At lower values of kh, it is observed that QThal 
gnd

approaches QThal 
fs  when the separation increases. It is another indicator that the influence 

of the PEC ground plane on antenna bandwidth decreases when the ground separation 

increases.  

To understand more about the stored energy and radiated power behavior when the 

separation changes, we define the ratio of stored energy, Thal Thal
gnd fsW W , and ratio of 

radiated power, Thal Thal
gnd fsP P . Here, WThal 

gnd is the stored energy including the energy inside 

the spherical antenna with a PEC ground plane; WThal 
fs is the stored energy including the 

energy inside the spherical antenna in free space; PThal 
gnd is the radiated power with a PEC 

ground; and PThal 
fs is the radiated power in free space. 
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(a) 

 
(b) 

Figure 16: Comparison of stored energy and radiated power. (a) The ratios of stored 
energy with respect to the separation (kh). (b) The ratios of the radiated power with 
respect to the separation (kh). 
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Figures 16(a) and (b) compare the powers and stored energies between the free-space and 

grounded antenna cases. From Figure 16(a), when the separation is small, the stored 

energy with a PEC ground plane, WThal 
gnd , is smaller than the stored energy in free space,  

WThal 
fs . In this case, a PEC ground plane reduces the stored energy. The influence decreases, 

i.e. WThal 
gnd  approaches WThal 

fs , by increasing the separation. However, a different trend is 

observed for the radiated power. Since the image theory is used, there are two spherical 

antennas in free space with a separation, 2h. When kh is small, the two antennas appear to 

be at the same location viewed from far field region. The vector fields from the two 

antennas coherently add in every direction, when observed in the far zone. Hence, the 

radiated power with a PEC ground plane should be four times larger than the radiated 

power in free space. However, since the image theory is only valid in the upper 

hemisphere, the total radiated power should be divided by two. Figure 16(b) shows that 

when kh is small, Thal Thal
gnd fsP P  is around two. Again, the influence of the PEC ground 

plane on the radiated power decreases when the separation increases. The ratio is close to 

unity when kh is large in Figure 16(b). 

For small ground separations, the stored energy for a grounded antenna is smaller than 

that of a free-space antenna (WThal 
gnd <WThal 

fs ), and the radiated power is two times larger than 
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the radiated power in free space ( 2Thal Thal
gnd fsP P  ). Hence, the quality factor decreases 

when a PEC ground plane is placed for small ground separations.  
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(a) 

 

(b) 

Figure 17: Non-propagating energy densities. (a) Energy density of the antenna in free 
space. (b) Energy density of the antenna above a PEC ground plane. The distributions are 
rotationally symmetric around the z-axis. 
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To understand more about the PEC ground plane influence of stored energy, we take a 

close look at the energy density distribution. Figure 17(a) shows the non-propagating 

energy density distribution of the antenna in free space. The maximum of the energy 

density is at kx=0. The energy density distribution is symmetric to kx=0. From Figure 

17(a), it is observed that the energy concentrates inside the antenna and in the region 

close to the antenna. The energy density decays very fast in outside region. In Figure 

17(b), the PEC ground plane is placed at the kz=0 plane. The separation between the PEC 

ground plane and the antenna is 0.5252. The center of the antenna is at 

(kx,kz)=(0,0.5252). 

According to Figure 8, there is a boundary between region II and region III. In regions I 

and II, the fields are written in standing waves, where there is no energy associated with 

radiation. In regions III and IV, the fields are written in propagating waves. The electric 

stored energy is equal to the total electric energy less the electric energy associated with 

radiation. In addition, the energy density is discontinuous across this boundary between 

regions II and III. As Figure 8 shows, the radius of this boundary is equal to the 

separation between the antenna and the PEC ground plane. The discontinuity in energy 

density is visible in Figure 17(b) across this boundary at radius 0.5252 measured from the 

coordinate origin. 



49 
 

Comparing Figure 17(a) and Figure 17(b), it can be observed that the energy density is 

not changed significantly by the PEC ground plane. Resultantly, the total electric stored 

energy is not changed significantly by PEC ground plane. However, the radiated power 

changes significantly, as shown in Figure 16(a). The ratio Thal Thal
gnd fsP P  approaches 0.9 

when kh is equal to 0.5252. 
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CHAPTER 5 

VALIDATION WITH ANTENNA SIMULATION 

 

Several antennas that closely approach QThal 
fs  have been reported in the literature. Best [7], 

[8] designed a 4-arm folded spherical helix antenna with an air core inside. Both 

simulation and measurement results have been presented. The tuned antenna's quality 

factor can also be determined directly from the antenna's untuned feed point impedance, 

(3). 

 Table 1: The resonant antenna's properties in free space. 

Number of 
Arms 

Resonant Frequency 
(MHz) 

Resonant 
Resistance 

(Ohms) 

imp
fsQ  

Thal
fsQ  

4 300.07 46.38 90.17 85.32 

 

Table 1 shows the properties of the helix spherical antenna with the resonant frequency at 

300 MHz [7]. At the design frequency, the antenna has an electrical size of ka=0.2626. 

From the frequency-dependent input impedance (3), the quality factor is 90.17. 

According to [6], the theoretical quality factor is 85.32. 

To confirm the theoretical result from Chapter 3, several folded spherical helix antennas 

based on [7] were simulated. Their quality factors were obtained from the input 
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impedance and then compared with the theoretical results in Chapter 4. The spherical 

helix antenna is placed above a PEC ground plane in the x-y plane with a separation, kh, 

i.e. the center of the antenna was placed at (x,y,z)=(0,0,h). The radius of the spherical 

antenna is 4.18 cm and the antenna resonates at 300 MHz. The number of turns of the 

spherical helix antenna was tuned to make it resonate at 300 MHz. The 4-arm spherical 

helix antenna operates as a folded dipole antenna with a predominantly 

vertically-polarized radiation pattern [7]. Since the antenna characteristics change when it 

is placed above a ground plane, a different number of arms from four and a continuously 

variable number of turns were used to obtain a good impedance match to 50Ω at 

resonance. The input port was placed at the center of one arm to excite the antenna. 
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(c) 

 
(d) 

Figure 18: Impedance and radiation characteristics of spherical helix antennas in free 
space and above a ground plane. (a) The input resistance. (b) The input reactance. (c) The 
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input reflection coefficient. (d) Radiation pattern of the antenna above a ground plane. 
The electrical size of both antennas and the ground separation for the grounded antennas 
are given by ka=0.2626 and kh=0.5252. 

 

Figures 18(a) and 18(b) compare the input impedance of the free-space antenna and the 

grounded antenna with respect to frequency for the same electrical antenna size 

ka=0.2626. For the grounded antenna, the ground separation is given by kh=0.5252. The 

trend and characteristic of the impedance curves are similar to those of the helix spherical 

antenna in free space [8]. Figure 18(c) shows a comparison of the input reflection 

coefficient |S 
11| for the two antennas. The 3-dB bandwidth of the spherical antenna in free 

space is 4.1 MHz (298.2–302.3 MHz) or 1.37%. The bandwidth of the spherical antenna 

above a PEC ground plane is 7.7 MHz (296.4–304.1MHz) or 2.57%. The impedance 

bandwidth almost doubled with the PEC ground plane. Figure 18(d) shows the E-plane 

directivity patterns of the grounded spherical antenna. It is observed that the horizontal 

polarization is about 25 dB below the vertical polarization, confirming that the spherical 

helix antenna above the ground plane is predominantly vertically polarized, consistent 

with the folded dipole model. Design specifications and the associated impedance and 

radiation characteristics of all spherical helix antennas above the ground plane presented 

in this study are listed in Appendix. 
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Table 2: The resonant antenna's properties above a PEC ground plane with different 
separation. 

Number of Arms Separation 
(kh) 

Resonant Resistance 
(Ohms) 

imp
gndQ  Thal

gndQ  

3 0.5252 45.25 47.76 39.45 
4 2  59.44 68.07 58.93 
4   43.07 95.99 84.26 
4 4.5 47.5 86.66 76.30 
4 2  45.48 88.77 82.54 

Table 2 lists quality factors for different separations for the same antenna size ka=0.2626.  

The quality factor increases when the separation increases. The quality factor from 

simulation agrees with the theoretical result with small errors with the same trend — a 

PEC ground plane impacts the quality factor significantly and the influence decreases 

with increasing separation. 

 
Figure 19: The comparison of simulation and theoretical results of the quality factor for 
the antenna size ka=0.2626 for different ground separations. 
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In Figure 19, the ratios Thal Thal
gnd fsQ Q  and imp imp

gnd fsQ Q from the theory (blue line) and 

simulations (green dots) are compared. Overall, the simulated results follow the trend of 

the theoretical results. In the mathematical model, an impressed current was placed over 

the spherical surface. Here, no mutual coupling between the currents over the original 

antenna and image antenna surfaces is taken into account. However, the mutual coupling 

effect is taken into account in antenna simulations. The difference between the Q values 

is attributed in part to this mutual coupling effect between the original and image 

antennas. Note that the two Q values are close to each other for the largest separation 

kh=2. 
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CHAPTER 6 

CONCLUSION 

 

In qualitative terms, it is well-known that in the presence of a PEC ground plane the 

quality factor, or the impedance bandwidth, of an antenna is affected, and especially so 

when the ground separation is small. Using image theory, the radiation quality factors of 

small vertically polarized antennas above a PEC ground plane were investigated using a 

two-antenna configuration in free space. For small ground separations, it was found that 

the presence of a ground plane not only reduces the energy stored in the antenna, but also 

doubles radiated power, compared with a single antenna of the same size in free space. 

This reduces the quality factor of a small antenna above a PEC ground plane to a value 

lower than that of the same antenna in free space.  

A larger effective volume of an antenna results in a lower quality factor or a broader 

impedance bandwidth. The effective volume of a antenna in free space is the volume of 

the antenna itself. Placing an antenna above a PEC ground plane makes the effective 

volume larger due to the image antenna below the ground plane. Therefore, an 

electrically small antenna above a ground plane has the potential of having a broader 

bandwidth compared with the antenna of the same size in free space. This study provides 
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a theoretical basis that this bandwidth increase is indeed possible with a ground plane for 

vertically polarized antennas. Furthermore, the amount of decrease in Q has been 

quantified as a function of antenna size and ground separation. 

Using full-wave simulations of folded spherical helix antennas above a ground plane, it 

has been shown that the antenna's quality factor can be lower than the Chu lower bound 

on Q in free space when placed above a PEC ground plane for electrically small antenna 

sizes (ka<0.5) and ground separations (kh<0.5). The impact of the PEC ground plane on 

the antenna Q decreases with increasing ground separation. At large ground separations, 

the impedance bandwidth will approach that of the antenna in free space as expected. 
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APPENDIX 

ANTENNA SIMULATIONS 

 

1. Antenna size ka=0.1166 and resonant frequency f=133 MHz 

1.1 kh=0.2332 

 

Table 3: The resonant 5-arm helix antenna's properties above a PEC ground plane. 

Number 
of Arms 

Number of 
Turns 

Total Wire 
Length (cm) 

Number of 
Sections of a Arm 

Qimp 
gnd  

5 3.8 147.803 48 424.5 
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(d) 
Figure 20: Geometry and electrical characteristics of an antenna with ka=0.1166 for 
ground separation kh=0.2332. (a) The 5-arm spherical helix antenna geometry. (b) Input 
resistance with respect to frequency. (c) Input reactance with respect to frequency. (d) 
Radiation pattern at f=133 MHz. 

 

2. Antenna size ka=0.2626 and resonant frequency f=300 MHz 

2.1 kh=0.5252 

 

Table 4: The resonant 3-arm helix antenna's properties above a PEC ground plane. 

Number 
of Arms 

Number of 
Turns 

Total Wire 
Length (cm) 

Number of 
Sections of a Arm 

Qimp 
gnd   

3 1.5883 64.0788 48 47.76 
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(c) 

 
(d) 

Figure 21: Geometry and electrical characteristics of an antenna with ka=0.2626 for 
ground separation kh=0.5252. (a) The 3-arm spherical helix antenna. (b) Resistance with 
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respect to frequency. (c) Reactance with respect to frequency. (d) Radiation pattern at 
f=300 MHz. 

 

2.2 kh=0.5π 

 

Table 5: The resonant 4-arm helix antenna's properties above a PEC ground plane. 

Number 
of Arms 

Number of 
Turns 

Total Wire 
Length (cm) 

Number of 
Sections of a Arm 

Qimp 
gnd   

4 1.635 65.8462 48 58.93 
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(d) 
Figure 22: Geometry and electrical characteristics of an antenna with ka=0.2626 for 
ground separation kh=0.5π. (a) The 4-arm spherical helix antenna. (b) Resistance with 
respect to frequency. (c) Reactance with respect to frequency. (d) Radiation pattern at 
f=300 MHz. 

 

2.3 kh=π 

 

Table 6: The resonant 4-arm helix antenna's properties above a PEC ground plane. 

Number 
of Arms 

Number of 
Turns 

Total Wire 
Length (cm) 

Number of 
Sections of a Arm 

Qimp 
gnd   

4 1.635 65.8462 48 95.99 
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(c) 

 
(d) 

Figure 23: Geometry and electrical characteristics of an antenna with ka=0.2626 for 
ground separation kh=π. (a) The 4-arm spherical helix antenna. (b) Resistance with 
respect to frequency. (c) Reactance with respect to frequency. (d) Radiation pattern at 
f=300 MHz. 
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2.4 kh=4.5 

 

Table 7: The resonant 4-arm helix antenna's properties above a PEC ground plane. 

Number 
of Arms 

Number of 
Turns 

Total Wire 
Length (cm) 

Number of 
Sections of a Arm 

Qimp 
gnd   

4 1.635 65.8462 48 86.66 
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(d) 
Figure 24: Geometry and electrical characteristics of an antenna with ka=0.2626 for 
ground separation kh=4.5. (a) The 4-arm spherical helix antenna. (b) Resistance with 
respect to frequency. (c) Reactance with respect to frequency. (d) Radiation pattern at 
f=300 MHz. 

 

2.5 kh=2π 

 

Table 8: The resonant 4-arm helix antenna's properties above a PEC ground plane. 

Number 
of Arms 

Number of 
Turns 

Total Wire 
Length (cm) 

Number of 
Sections of a Arm 

Qimp 
gnd   

4 1.635 65.8462 48 88.77 

 

10

-1.25

-12.5

-23.75

-35

0

30

60

90

120

150

180

210

240

270

300

330

Vertical Polarization
Horizontal Polarization



72 
 

 
(a) 

 
(b) 

100 200 300 400 50050
0

20

40

60

80

100

Frequency (MHz)

R
es

is
ta

nc
e 

(k
O

hm
s)

 

 



73 
 

 

(c) 

 

(d) 
Figure 25: Geometry and electrical characteristics of an antenna with ka=0.2626 for 
ground separation kh=2π. (a) The 4-arm spherical helix antenna. (b) Resistance with 
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respect to frequency. (c) Reactance with respect to frequency. (d) Radiation pattern at 
f=300 MHz. 

 

3. Antenna size ka=0.5 and resonant frequency f=571 MHz 

3.1 kh=1 

 

Table 9: The resonant 2-arm helix antenna's properties above a PEC ground plane. 

Number 
of Arms 

Number of 
Turns 

Total Wire 
Length (cm) 

Number of 
Sections of a Arm 

Qimp 
gnd   

2 0.68 30.3156 48 12.71 
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(c) 

 
(d) 

Figure 26: Geometry and electrical characteristics of an antenna with ka=0.5 for ground 
separation kh=1. (a) The 2-arm spherical helix antenna. (b) Resistance with respect to 
frequency. (c) Reactance with respect to frequency. (d) Radiation pattern at f=571 MHz. 

 

3.2 kh=½π 

 

Table 10: The resonant 2-arm antenna's properties above a PEC ground plane. 

Number 
of Arms 

Number of 
Turns 

Total Wire 
Length (cm) 

Number of 
Sections of a Arm 

Qimp 
gnd   

2 0.6954 30.8674 48 16.22 
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(c) 

 

 
(d) 

Figure 27: Geometry and electrical characteristics of an antenna with ka=0.5 for ground 
separation kh=0.5π. (a) The 2-arm spherical helix antenna. (b) Resistance with respect to 
frequency. (c) Reactance with respect to frequency. (d) Radiation pattern at f=571 MHz. 
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3.3 kh=π 

 

Table 11: The resonant 2-arm helix antenna's properties above a PEC ground plane. 

Number 
of Arms 

Number of 
Turns 

Total Wire 
Length (cm) 

Number of 
Sections of a Arm 

Qimp 
gnd   

2 0.68 30.3156 48 18.60 
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(d) 
Figure 28: Geometry and electrical characteristics of an antenna with ka=0.5 for ground 
separation kh=π. (a) The 2-arm spherical helix antenna. (b) Resistance with respect to 
frequency. (c) Reactance with respect to frequency. (d) Radiation pattern at f=571 MHz. 

 

3.4 kh=2π 

 

Table 12: The resonant 2-arm helix antenna's properties above a PEC ground plane. 

Number 
of Arms 

Number of 
Turns 

Total Wire 
Length (cm) 

Number of 
Sections of a Arm 

Qimp 
gnd   

2 0.68 30.3156 48 19.03 

10

0

-10

-20

-30

0

30

60

90

120

150

180

210

240

270

300

330

Vertical Polarization
Horizontal Polarization



82 
 

 

(a) 

 

(b) 

100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

Frequency (MHz)

R
es

is
ta

nc
e 

(O
hm

s)



83 
 

 
(c) 

 

 
(d) 

Figure 29: Geometry and electrical characteristics of an antenna with ka=0.5 for ground 
separation kh=2π. (a) The 2-arm spherical helix antenna. (b) Resistance with respect to 
frequency. (c) Reactance with respect to frequency. (d) Radiation pattern at f=571 MHz. 
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