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ABSTRACT 

PARAMETER VARIATION SENSING AND ESTIMATION IN NANOSCALE 

FABRICS 

SEPTEMBER 2013 

JIANFENG ZHANG 

B.TECH, HARBIN INSTITUTE OF TECHNOLOGY  

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Csaba Andras Moritz 

Parameter variations introduced by manufacturing imprecision are becoming more 

influential on circuit performance. This is especially the case in emerging nanoscale 

fabrics due to unconventional manufacturing steps (e.g., nano-imprint) and aggressive 

scaling. These parameter variations can lead to performance deterioration and 

consequently yield loss.  

Parameter variations are typically addressed pre-fabrication with circuit design 

targeting worst-case timing scenarios. However, this approach is pessimistic and much of 

performance benefits can be lost. By contrast, if parameter variations can be estimated 

post-manufacturing, adaptive techniques or reconfiguration could be used to provide more 

optimal level of tolerance. To estimate parameter variations during run-time, on-chip 

variation sensors are gaining in importance because of their easy implementation. 

In this thesis, we propose novel on-chip variation sensors to estimate variations in 

physical parameters for emerging nanoscale fabrics. Based on the characteristics of 

systematic and random variations, two separate sensors are designed to estimate the extent 

of systematic variations and the statistical distribution of random variations from 
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measured fall and rise times in the sensors respectively. The proposed sensor designs are 

evaluated through HSPICE Monte Carlo simulations with known variation cases injected. 

Simulation results show that the estimation error of the systematic-variation sensor is less 

than 1.2% for all simulated cases; and for the random-variation sensor, the worst-case 

estimation error is 12.7% and the average estimation error is 8% for all simulations. 

In addition, to address the placement of on-chip sensors, we calculate sensor area and 

the effective range of systematic-variation sensor. Then using a processor designed in 

nanoscale fabrics as a target, an example for sensor placement is introduced. Based on the 

sensor placement, external noises that may affect the measured fall and rise times of 

outputs are identified. Through careful analysis, we find that these noises do not 

deteriorate the accuracy of the systematic-variation sensor, but affect the accuracy of the 

random-variation sensor. 

We believe that the proposed on-chip variation sensors in conjunction with 

post-fabrication compensation techniques would be able to improve system-level 

performance in nanoscale fabrics, which may be an efficient alternative to making 

worst-case assumptions on parameter variations in nanoscale designs. 
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CHAPTER 1 

INTRODUCTION AND MOTIVATION 

Emerging nanoscale computing systems have been proposed as an alternative to scaled 

CMOS with potential performance and density benefits. These nanoscale computing 

systems are based on novel nanostructures, such as nanowires [1], [2], carbon nanotubes 

[3], graphene [4], [5], magneto electric devices [6], [7], [8], etc. Their manufacturing 

approaches incorporate unconventional (e.g., self-assembly, nano-imprint) and 

conventional (e.g., deposition, etching, and lithography) process steps. As their feature 

sizes shrink into deep nanoscale, the manufacturing process may cause a significant level 

of variations in physical parameters. For example, during ion implantation, there exists 

some randomness in the distribution of dopants, which can result in the fluctuation of total 

number of dopants in the specified region (e.g., drain, source). 

Parameter variations are usually classified into systematic variations and random 

variations based on the characteristics of their manufacturing process. Systematic 

variations are typically spatial correlated, which can lead to similar characteristics of 

parameter variations in devices that are close to each other. In contrast to systematic 

variations, random variations have no spatial correlation, which means even neighboring 

devices may have completely different variation characteristics. Details on the types and 

sources of both systematic and random variations in these emerging nanoscale fabrics will 

be introduced later with emphasis on Nanoscale Application Specific Integrated Circuits 

(NASICs) fabric [9], [10], [11], [12], [13]. 

Their influence on circuit performance for these emerging nanoscale computing fabrics, 

including both systematic and random variations, has been extensively characterized 
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through 3-D physics based simulations using Synopsys Sentaurus tools [14]. For example, 

simulation results in [14] show the non-linear influence of variations in different physical 

parameters (e.g., channel length, gate oxide thickness, source-drain doping and underlap) 

on the on-current of devices. The system level performance was shown to degrade 

considerably as a result of parameter variations, with 67% of simulated chips operating at 

less than their nominal frequency [14]. As a result, these parameter variations could lead 

to performance deterioration such as timing errors and consequently yield loss in the 

integrated circuits. 

Parameter variations are traditionally addressed pre-fabrication by circuit design, often 

targeting various worst-case variation scenarios. However, this pre-fabrication approach 

is pessimistic and much of the performance benefits can be lost especially for emerging 

nanoscale computing fabrics where the extent of variability can be high. Alternatively, if 

parameter variations could be estimated post-fabrication, some compensation techniques, 

such as redundant intermediate bitslices [15] and body biasing [16], could be used to 

adjust circuit timing and reduce leakage power during run-time, leading to area and 

performance benefits. 

To estimate parameter variations post-fabrication, two popular methods exist: I-V 

curve measurement and sensor-based estimation. I-V curve measurement is a 

conventional approach to obtain characteristics for each transistor [17], [18]. However, in 

order to measure I-V curve, an analog voltage and current measurement equipment is 

required. It is a very precise approach, but not adaptive for estimating parameter 

variations for each chip targeting chip-by-chip performance compensation. By contrast, 

on-chip variation sensors can be easily implemented on a chip and can obtain variability 
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information at run-time since sensor outputs can be easily measured. Traditionally, ring 

oscillator (RO) is chosen as on-chip variation sensor for variability sensing by measuring 

RO frequency. However, some problems exist in RO-based on-chip variation sensor 

design. First of all, a large area overhead will be introduced by RO-based on-chip 

variation sensors. It is mainly because RO stages in these on-chip sensors are usually more 

than 100 to make RO frequency measurable. Secondly, RO is unsuitable for random 

variation sensing. Because of the averaging effect [19], RO frequency will average 

parameters of all stages. So it does not permit the characterization of random variations on 

individual devices. As a result, in order to enable accurate variation estimation in these 

emerging nanoscale fabrics, novel on-chip variation sensor design and the corresponding 

variability sensing methodology become necessary. 

In this thesis, we propose novel on-chip variation sensor designs for quantifying 

variations in physical parameters (e.g., channel length, underlap and gate oxide thickness) 

in NASIC fabric. Based on the different characteristics of systematic and random 

variations, two separate sensor circuits are designed for estimating systematic and random 

variations respectively. It is necessary because: 1) spatial correlation is the foundation of 

systematic-variation sensing, but random variation has no spatial correlation; and 2) in 

order to estimate random variations accurately, the averaging effect must be avoided in 

the random-variation sensor design, but it does not affect the systematic-variation sensor 

design. 

With respect to systematic variations, a new resilience sensor design is presented, 

which can estimate the extent of systematic variations in neighboring regions from its own 

variations. This correspondence is possible because: 1) spatially correlated or „systematic‟ 
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behavior is well-known for several parameters (e.g., gate oxide [20], transistor channel 

and gate linewidth [21]); and 2) the uniform array-based organization of these fabrics with 

identical devices and no arbitrary sizing or doping implies that sensor circuits designed 

using the same devices and circuit/logic styles can be representative of the fabric as a 

whole. In this sensor design, signal fall times are used to extract the extent of physical 

parameter variations for different spatially correlated parameters. HSPICE Monte Carlo 

circuit simulations are used to evaluate this sensor design. Simulation results show that in 

100% of simulated cases, the relative error between the injected and estimated extent of 

systematic variations in physical parameters is less than 1.2%. In addition, to address the 

aspect of sensor distribution across a wafer, sensor effective range is defined based on 

spatial correlation. In conjunction with well-characterized experimental data shown in 

[22], the sensor effective range is calculated with respect to different values of permissible 

error. Our results show that the sensor design can estimate the extent of systematic 

variation in the gate diameter to within 20% of its actual values inside a 3.3mm radius 

based on the given experimental data.  

By contrast, a novel on-chip sensor design for quantifying the statistical distribution 

and impact of random variations in physical parameters (e.g., channel doping density, 

drain/source doping density) in the NASIC fabric is proposed. In this sensor, signal fall 

and rise times are used to extract the statistical distribution of random variations. Further, 

a methodology for evaluating and validating this sensor design using HSPICE Monte 

Carlo circuit simulations is presented. The simulation results show that the relative error 

between the injected and estimated standard deviation of physical parameters is 12.7% in 

the worst case and 8% on average scenarios with as low as 150 sensor instances used. 
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Finally, to introduce the application of the proposed on-chip variation sensors in real 

chip scenario, WISP-0 processor, which is designed on NASIC fabric with all NASIC 

design principles and optimizations applied, is used as a target to show examples of sensor 

placement. The principles of sensor placement are discussed and the sensor area that may 

be treated as the area overhead is calculated with the projected technology parameters. 

External noises that may affect the estimation accuracy of the proposed sensors are 

identified. Through careful analysis, we find that these external noises only affect the 

estimation accuracy of the random-variation sensor, but their effect can be reduced by 

sensor placement. 

The proposed sensor designs for both systematic and random variations are also 

directly applicable to the Nanoscale 3-D Application Specific Integrated Circuits 

(N
3
ASIC) [23], [24], and the variability sensing methodology can be extended to other 

regular nanoscale computing fabrics in general. 

The rest of this thesis is organized as follows: Chapter 2 briefly presents the NASIC 

fabric with emphasis on physical parameter variations; Chapter 3 illustrates the new 

systematic-variation sensor design and describes the Monte Carlo simulation 

methodology for evaluating the sensor design; Chapter 4 discusses the random-variation 

sensor design and its evaluation; Chapter 5 introduces the principles of sensor placement 

and analyzes the impact of external noises on the estimation accuracy; and Chapter 6 

concludes the thesis. 
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CHAPTER 2 

NASIC FABRIC OVERVIEW 

Nanoscale Application Specific Integrated Circuits (NASICs) is a nanoscale 

computational fabric that relies on 2-D grids of semiconductor nanowires with crossed 

nanowire field-effect transistors (xnwFETs) at certain crosspoints (Figure. 1). In this 

fabric, in order to ease manufacturing requirements, a regular grid layout is used where all 

transistors on the crosspoints are identical with no arbitrary doping or sizing requirements. 

This semiconductor nanowire grid includes some peripheral micro wires to carry VDD, 

GND and control signals. Dynamic circuit styles without the requirement of 

complementary devices or arbitrary placement/sizing are used for logic implementation. 

Several extensions exist to NASICs and there are other circuit styles also proposed but the 

approach for variability estimation applies across all of them. 

The xnwFET structure and dynamic circuit style are shown in Figure. 2 and Figure. 3. 

Figure. 3 shows an N-input dynamic NAND gate with xnwFETs as active devices. The 

pre and eva signals in this NAND gate are used to precharge and discharge the output (out) 

 
Figure. 1 Nanoscale Application Specific Integrated Circuits (NASIC) with regular 

semiconductor nanowire grids, xnwFET devices and peripheral microscale control a) 

3-D fabric view b) circuit schematic 
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respectively depending on inputs (in1, in2, …, inN).  Multiple stages of logic can be 

achieved by cascading multiple such dynamic NAND gates. The proposed sensors follow 

the same dynamic circuit style. 

The assumed xnwFET device operating principle is similar to that of inversion mode 

devices; the current through the channel nanowire is modulated by the potential applied 

on the orthogonal gate. In this xnwFET structure, key physical parameters are identified, 

which include channel diameter (Cdiam), gate diameter (Gdiam), gate oxide thickness (Gox), 

bottom oxide thickness (Box), channel doping density (CD), source-drain doping density 

(SDD) and underlap length (U). Based on the characteristics of their manufacturing 

process, they are classified into systematic variations and random variations. 

In NASIC fabric, physical parameters varying systematically include channel diameter 

(Cdiam), gate diameter (Gdiam), gate oxide thickness (Gox) and bottom oxide thickness (Box). 

 
 

Figure. 2 n-type xnwFET device structure with orthogonal gate and channel nanowires 

 
Figure. 3 N-input NASIC dynamic NAND gate  

eva pre

out

inN in1in2

VDDGND
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Diameters of nanowires in NASIC fabric are strongly correlated to the size of the seed 

catalysts used in Vapor-Liquid-Solid (VLS) growth [25], [26]. Nanoimprint lithography is 

usually used to pattern substrates with these seed catalysts. During this process, a variety 

of sources, such as mold errors and lens aberrations, may cause variations in the size of 

these seed catalysts. This implies that at the circuit level, the channel and gate diameters of 

all transistors along a same nanowire will be systematically affected. On the other hand, 

Atomic-Layer Deposition (ALD) is a process step commonly used for creating HfO2 gate 

and bottom dielectric that also exhibits strong spatial correlation [20].  

By contrast, channel doping density, drain-source doping density and underlap length 

are the main types of random variations in NASIC fabric. As the feature sizes continue to 

shrink, the total number of dopant atoms inside the channel, source and drain regions 

decreases drastically. Hence, there exists some randomness in the distribution of dopant 

atoms in these regions during ion implantation. On the other hand, source and drain 

junction underlap regions are formed by spacer technology [27], which is similar to what 

is used to form highly doped drain and source (HDD) in CMOS devices. The formation of 

the drain and source underlap is shown in Figure. 4. An initial device structure is shown in 

Figure. 4a, and then the spacer material is conformally deposited as shown in Figure. 4b. 

During the anisotropic etching step, the spacer is etched incompletely owing to higher 

 
Figure. 4 Front view of the xnwFET during the formation of the source and 

drain underlap 
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thickness above the underlap region in Figure. 4c. During the subsequent ion implantation, 

some dopant atoms may be implanted into the underlap region due to the thinner spacer 

above the boundary of underlap, leading to random variation in underlap length. 

Based on the discussion above, the variations in these physical parameters come from 

different manufacturing process. So we assume that they are independent to each other in 

this thesis. 
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CHAPTER 3 

ON-CHIP VARIATION SENSOR DESIGN FOR SYSTEMATIC VARIATION 

ESTIMATION 

3.1  Introduction 

A key motivation for on-chip variation sensing is the capability to adjust circuit 

behavior post-manufacturing without pessimistic over-compensation at design time. 

While designing for the worst case could guarantee that there are no timing faults in the 

design, this approach would likely eliminate benefits of nanoscale computing fabrics. For 

example, previous circuit simulations of parameter variations in NASIC processor 

designs [14] have shown that while worst-case delays can be 2X – 2.5X of the nominal, 

this occurs in less than 1% of simulated cases. Also, the distribution of delays is such that 

85% of samples fall within 30% deviation from the nominal frequency, which implies that 

most fabricated chips would not need worst-case resilience. 

If the extent of variations in fabricated chips can be estimated, body-biasing (to lower 

the threshold voltage), or reconfiguration schemes can be used to meet circuit timing 

requirements and retain performance benefits. Variation sensors can also be used for 

process feedback (i.e., to determine, based on device parameters, which process steps 

need to be more carefully controlled). 

In this chapter, we first present a new on-chip sensor design for the NASIC fabric, 

which can be used to estimate the extent of systematic variations in physical parameters 

based on the measurement of fall time (1-to-0 transitions) in dynamic NAND gate, and 

then describe a methodology for evaluating the accuracy of the sensor design based on 

HSPICE Monte Carlo circuit simulations injecting known variation cases into the sensor 
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circuits. The simulation results for the sensor accuracy are shown subsequently. Finally, 

based on the spatial correlation of systematic variations, an experimental model for 

systematic variations in gate diameter is used to derive sensor effective range for different 

permissible errors. 

3.2 Notations 

All the notations that will be used in this chapter are summarized in Table. 1. 

Table. 1 Summary of Notations 

Notation Description 

N Number of inputs for the NAND gate 

VDS Drain-source voltage 

tf,out Fall time of the output 

K Number of time constants to discharge output 

CLoad Output loading capacitance 

Ri xnwFET equivalent resistance 

h(xi) Polynomial function of individual parameter xi 

M Number of systematic parameters 

P 
Vector representing the extent of variations in 

individual parameters 

S Sensitivity matrix of systematic parameters 

T 
Vector containing the difference in fall times of one 

functional unit 

Cdiam Channel diameter 

Gdiam Gate diameter 

Gox Gate oxide thickness 

Box Bottom oxide thickness 

x
j
i Injected value of parameter xi 

x
e
i Estimated value of parameter xi 

EE Estimation error of one parameter 

MEE Maximum estimation error across all parameters 
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for each Monte Carlo case 

D Sensor effective range 

emax Maximum allowed imprecision 

3.3 On-Chip Systematic-Variation Sensor Design 

Figure. 5 shows the new sensor circuit, which uses the same circuit styles as logic 

portions of the design. It consists of a pair of dynamic NAND gates with fan-in N and N+1. 

In principle, if the switching characteristics of a single device can be isolated, then 

information on the extent of variation in the device can be extracted using physics-based 

device models. 

The sensor operates as follows: outputs are initially precharged by asserting the pre 

signal. During this time the input in1 is switched off ensuring that intermediate 

capacitances are not charged. All other inputs are asserted. Subsequently, in1 and eva 

signals are asserted, leading to 1-to-0 transitions on both output nodes. The difference in 

the fall times of the two output signals in this circuit pair can be directly attributed to the 

behavior of the single „additional‟ xnwFET if transient effects are near identical. This is 

made possible through careful sensor design. Firstly, the output load capacitance is made 

much larger than the device parasitics related capacitances, eliminating their effect. 

Secondly, N must be large enough such that the net VDS drop across the N+1 FETs in the 

second dynamic NAND gate is very small. This N will be determined by HSPICE 

 
Figure. 5 Sensor dynamic circuit pair using N, N+1 fan-in NAND gates 
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simulations of sensor circuits employing accurate physics-based device models. 

Ignoring transient effects, fall times are given by Eq. (1) and (2), 

                              LoadevaNNoutf CRRRRRKt *)(* ''

1

''

2

'

1, 1
                                  (1) 

                                LoadevaNoutf CRRRRKt *)(* 21, 2
                                       (2) 

where K is the number of time constants to discharge the output and CLoad is the output 

loading capacitance. R1… RN+1 are xnwFET equivalent resistances. Subtracting Eq. (1) – 

(2), we get Eq. (3). 

                                            LoadNoutfoutf CRKtt ** '

1,, 21                                                               (3) 

Next, R
‟
N+1 can be expressed as a function of the individual variation parameters. 

Assuming independent variations in M different parameters (since each parameter is 

dependent on a separate process step as discussed in chapter 2), the resistance function can 

be decomposed into polynomial functions hi(xi) of the individual parameter xi, as shown 

in Eq. (4). 
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The above equation establishes a single relationship between measurable fall times and 

the extent of physical variations to be estimated. Considering different values of N and 

N+1, a linear system of equations can be established and solved for the individual 

parameters. For example, if there are 4 systematic parameters being varied (M=4), then 

four different sensor pairs are used to establish 4 fall-time difference equations. Figure. 6 

shows such a sensor, with 8 dynamic NAND gates, and (N, N+1) pairs will be determined 

by circuit simulations. 

For simplicity, the next set of equations consider first-order (linear) relationships for 
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hi(xi) polynomials. Results for 1st, 2nd, 3rd and 4th order polynomials will be discussed in 

the following sections. Eq. (5) shows the matrix representation for the linear system of 

equations that needs to be solved. 

                                                                   TSP
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P is the vector representing the extent of variation in individual parameters that needs to 

be determined, S lists the sensitivity coefficients of each parameter, and T contains 

measured differences in fall times. For M systematic variation parameters, M pairs of 

 

Figure. 6 4-pair sensor circuit to determine variation in four systematic variation 

parameters 
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sensor circuits are needed to establish M different linear equations. By solving this system 

of equations, the extent of variation in individual parameters is estimated. This process is 

abstracted in Figure. 7. 

3.4 Methodology for Evaluating the Sensor Design 

In this section, we describe a methodology for evaluating the accuracy of the sensor 

design based on HSPICE Monte Carlo circuit simulations injecting known variation cases 

into the sensor circuit.  

xnwFET structures are characterized through variation-aware 3-D physics based 

simulations using Synopsys Sentaurus [14]. Individual parameters considered include 

channel and gate diameters (Cdiam, Gdiam), and gate-oxide and bottom-oxide thicknesses 

(Gox, Box). Device I-V and C-V characteristics were obtained for up to 3σ=±30% variation 

in all parameters. The device characterization data was then used to build 

SPICE-compatible behavioral models using regression analysis. These behavioral models 

represent the xnwFET resistance as a function of gate-source voltage, drain-source 

 
Figure. 7 Flowchart of systematic-variation estimation 
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voltage and extent of variation in physical parameters.  

Using these device behavior models, an initial circuit simulation step is used to 

populate the sensitivity matrix S. Circuit simulations are carried out for the sensor shown 

in Figure. 6 with parameters varied one at a time. Sensitivity coefficients for all 

parameters are calculated from the measured fall times by curve fitting. 

To test if the sensor design provides accurate estimates of physical parameter variations, 

a Monte Carlo based simulation framework (Figure. 8) is used. Fan-in N will be varied to 

evaluate its effect on the estimation accuracy. Then for each N, HSPICE circuit 

simulations are carried out with known variation cases injected into the sensor. Based on 

the measured fall times, the extent of variation in physical parameters is estimated using 

the theoretical framework described in the previous section. The relative error in 

estimated vs. injected variation in physical parameters can then be determined. This 

process will be iterated 100 times to achieve sufficient estimates. 

 
Figure. 8 Methodology for evaluating sensor designs based on HSPICE Monte 

Carlo circuit simulations 
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3.5 Results 

3.5.1 Sensor Accuracy 

Circuit simulations were carried out to determine the accuracy of the sensor design in 

estimating the extent of variation in physical parameters. The metric used is the 

Estimation Error (EE) for parameter xi, defined as: 

                                                  

j

i

j

i

e

i xxxEE /)(*100                                                           (6) 

here x
j
i is the injected value of parameter xi, x

e
i is the value of the parameter xi estimated 

by the sensor. The Maximum Estimation Error (MEE) across all M parameters for each 

Monte Carlo case is then defined as: 

                                          ),,,( 21 MEEEEEEMAXMEE                                                   (7) 

An example for the calculation of MEE is shown in Table. 2. In Case 1, the Cdiam 

parameter has the maximum estimation error of 0.212%. In Case 2, the maximum 

estimation error is for the Box parameter (0.695%). 

To evaluate the impact of fan-in N on the estimation accuracy, N is varied in the 

HSPICE simulations, and for each N, in order to eliminate the impact of other factors on 

the estimation accuracy, 4th-order polynomial functions (i.e., sufficient to model 

relationships between fall times and systematic parameters and proved later) are used to 

model Eq. (4). Based on the evaluation methodology, 100 variation cases are injected into 

Table. 2 Examples of Variation Cases and MEE Calculation 

(Cdiam, Gox, 

Box, Gdiam) 

Estimated 

Variation 

Injected Variation 

(normalized) MEE 

Case 1 

(-0.10, 0.06, 0.09, 

0.08) 

(-0.11, 0.06, 0.09, 

0.09) 0.212%(Cdiam) 

Case 2 

(0.11, -0.16, 

-0.07, 0.03) 

(0.10, -0.17, 

-0.06, 0.03) 0.695%(Box) 
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the sensor circuit and then estimated. The average estimation error among these 100 

variation cases for each N is calculated.  The relationship between fan-in N and the 

estimation accuracy is shown in Figure. 9. From this figure, we can see that both the 

maximum estimation error and the average estimation error decrease gradually as the 

number of fan-in (N) increases. When N increases to 49, the average estimation error 

decreases to 1.07% and the maximum estimation error becomes 1.2% across these 100 

different variation cases. 

When fan-in N is 49, Figure. 10 shows the cumulative distribution function (CDF) for 

the MEE across 100 Monte Carlo simulations. The graphs consider first, second, third and 

fourth-order polynomial relationships between individual parameters and the measured 

fall times. From these results, third-order polynomials are accurate enough to model the 

relationships between individual parameters and the measured fall times, with less than 1% 

MEE for 90% of simulations, and less than 1.2% MEE for all cases considered. Even with 

linear approximations, the MEE is within 1.4% for 100% of samples. This implies that 

sensor design and methodology provides an accurate estimation of extent of variation in 

individual parameters. An important caveat is the requirement for populating the 

sensitivity matrix from accurate models based on extensive experimental 

 

Figure. 9 Relationship between fan-in (N) and the estimation error 
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characterizations. 

3.5.2 Sensor Effective Range 

The problem of sensor effective range seeks to address the placement of sensors on a 

wafer, chip or small region given a model for trends in systematic variation across this 

region. For example, initial wafer lots could have a high density of sensors and as 

processes become more tightly controlled and extent/trends in variation better quantified, 

it may be possible to achieve a more optimal placement of sensors.  

 

Figure. 10 CDF function of Maximum Estimated Error across 100 Monte Carlo 

Simulations 

 
Figure. 11 Example of sensor effective range calculation within the effective field 

(25mm*25mm) of systematic-variation model
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Consider two locations A and B in a region separated by a distance D (Figure. 11). A 

sensor placed at A is able to determine the extent of systematic variation at position A to 

within MEE (i.e., the sensor accuracy). Now, considering a suitable model for the 

distribution of systematic variation in this region, we wish to estimate the error in the 

sensor estimation with respect to the actual extent of systematic variation at location B. 

Conversely, the sensor range D for which the sensor accuracy is below a pre-defined 

permissible estimation error can be estimated. This is demonstrated below. 

Considering error in estimation at point A, 

                                                      
A

a

A

a

A

e

A exxx  /)(                                                               (8) 

where for simplicity the metric MEE has been replaced by estimation error at point A, „eA‟. 

x
e
A represents the sensor estimation value; x

a
A represents the actual variation at point A. 

Two cases are possible depending on whether the sensor overestimates or underestimates 

the value of x
a
A, 

                                                        
)1/( A

e

A

a

A exx                                                               (9) 

or                                                                )1/( A

e

A

a

A exx                                                               (10) 

Consider an experimental model for systematic variations in gate diameter [22] that 

describes the distribution of systematic variations across a region, 

      
043.4**008.0*079.0*093.0*027.0),( 2  yxyxyyxfGdiam     (11) 

In this model, the systematic variation in gate diameter (△ Gdiam) is modeled as a 

function of its coordinates (x, y) in a region (25mm*25mm). By employing this model, the 

systematic variation in gate diameter at every point in this region can be calculated. 

Now, based on the two cases outlined above, and given a maximum allowed 
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imprecision emax at point B, 

                                                      
)1/( maxexx e

A

a

B                                                            (12) 

or                                                              )1/( maxexx e

A

a

B 
                                                           (13) 

Solving the inequalities (9) – (13) for the two cases, we get many possible positions for 

point B that match our equations. Then the distances between point A and these possible 

points for point B can be calculated. Since the information on whether the sensor 

overestimated or underestimated the actual value of the parameter is unknown, the 

smallest of these D values needs to be selected. With respect to different values of 

permissible errors (emax), the calculated sensor effective range (D) is shown in Table. 3. 

These results show that for an estimation error between 2% - 20%, the sensor range 

varies from 0.18mm to 3.3mm. As expected, sensor effective range increases if more 

imprecision can be tolerated. Similarly, the model for the distribution of systematic 

variations in each parameter can be established and the sensor effective range would then 

be determined by employing these models. 

A key challenge in determining sensor distribution is that the distance D depends on the 

estimated parameter value and the variation distribution model, which may only be 

Table. 3 Sensor Range vs. Permissible Estimation Error (emax) 

emax Sensor Range (D), in mm 

2% 0.18 

4% 0.6 

6% 1 

10% 1.7 

15% 2.5 

20% 3.3 
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available post-manufacturing. In nanoscale computing fabrics supporting reconfiguration, 

it may be possible to progressively design sensors based on estimated values, since the 

sensor logic and circuit style are identical to other functional blocks in the design. 

Otherwise, estimations based on previous experimental characterizations need to be used 

to determine sensor spacing pre-manufacturing. 

3.6 Summary 

In this chapter, a new on-chip variation sensor for the NASIC fabric was shown. A 

methodology for extracting the extent of systematic variation in physical parameters from 

the measured sensor fall times was presented. Using physics-based device models and 

HSPICE Monte Carlo simulations, sensor accuracy was quantified. Results show less than 

1.2% error in estimation of physical parameters for 100% of the samples considered. 

Sensor effective range was calculated by employing an experimental model for systematic 

variations in gate diameter. With respect to different values of permissible estimation 

error, the sensor range was shown to be up to 3.3mm considering a permissible estimation 

error of 20% in gate diameter.  
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CHAPTER 4 

ON-CHIP VARIATION SENSOR DESIGN FOR RANDOM VARIATION 

ESTIMATION 

4.1 Introduction 

Conventional variation estimation methods [28], [29] assume that large circuits are not 

affected by random variations because of an averaging effect; i.e., the influence of random 

variations is assumed to be nullified if the number of transistors in the critical path is large 

[30]. However, at nanoscale the impact of random variations cannot be neglected, since 

the influence is non-linear on circuit performance. For example, in [14] it was shown that 

there exists non-linear relationship between the on-current of devices and random 

variations in certain parameters (e.g., channel doping, source-drain doping and underlap). 

The system level performance was shown to degrade considerably as a result of random 

variations, with 67% of simulated chips operating at less than their nominal frequency 

[14]. Therefore, we believe that in order to estimate parameter variations accurately, 

random variations should be explicitly taken into consideration. 

In this chapter, we discuss a new on-chip sensor design in the context of the NASIC 

fabric. The sensor can be used to estimate the statistical distribution of random variation in 

physical parameters based on the measured fall time (1-to-0 transitions) and rise time 

(0-to-1 transitions) from the sensor circuit. Further, a methodology for evaluating this 

sensor design using HSPICE Monte Carlo simulation is presented. The simulation results 

obtained from 150 sensor instances show that the relative error between the injected and 

estimated standard deviation of physical parameters is 12.7% in the worst-case and 8% on 

average scenarios. 
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4.2 Notations 

All the notations that will be used in the following sections are summarized in Table. 4. 

4.3 On-Chip Random-Variation Sensor Design 

Figure. 12a shows the new sensor circuit with only two xnwFETs. Two control signals 

pre and eva are used. When pre signal is „1‟ and eva signal is „0‟, the output is charged to 

„1‟ at first, and then discharged to „0‟ by inversing pre and eva signals. A load capacitance 

is connected to the output, designed to be much larger than device parasitics related 

capacitances. There are two reasons for using a large load capacitance: 1) this load 

capacitance can amplify fall and rise times of the output, making them easier to measure; 2) 

it can also eliminate the effect of device parasitic capacitances and thus simplify the 

complexity of theoretical analysis, as shown in subsequent sections. As a result, 

deviations of fall and rise times in the output can be attributed to variations in eva and pre 

xnwFETs respectively. To determine the distribution of random variations in physical 

Table. 4 Summary of Notations 

 Notation 

Distribution 

Mean (μ) 
Standard 

Deviation (σ) 

Rise Time tr μtr σtr 

Fall Time tf μtf σtf 

Channel Doping CD _ σCD 

Source/drain Doping SDD _ σSDD 

Underlap U _ σU 

Complete Sensor Set n μC σC 

Current Sensor Set m _ _ 

Log-likelihood Function L _ _ 

Estimation Error EE _ _ 

Average Estimation Error AEE _ _ 
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parameters, by statistical methods, a large number of such sensors are used, defined as the 

sensor set (as shown in Figure. 12b). 

Using this variation sensor and the sensor set, a variability sensing methodology is 

developed, which can estimate the distribution of random variations in physical 

parameters based on the measured fall and rise times of outputs from the sensor set. 

4.3.1 MLE-based Variability Sensing Methodology 

 A general framework of Maximum Likelihood Estimation (MLE) based variability 

sensing methodology is shown in Figure. 13. A sensor set containing n distributed sensors 

can be used for variation sensing. We use MLE to calculate the mean and standard 

deviation of measured parameters. Variations in physical parameters will result in 

fluctuations of rise (tr) and fall (tf) times in each sensor. A set of tr and tf can be measured 

from the sensor set – marked as {tr,1, tr,2, …, tr,n} and {tf,1, tf,2, …, tf,n}. Assuming that tr and 

tf follow normal distributions (N(μtr, σtr), N(μtf, σtf)) with unknown mean (μ) and unknown 

standard deviation (σ), MLE can be employed to calculate mean and standard deviation. 

Eq. (14) and (15) shows both mean (μ) and standard deviation (σ) calculations, given the 

sample set {tr,1, tr,2, …, tr,n} and {tf,1, tf,2, …, tf,n}. 

 
Figure. 12 a) Random-variation sensor; b) Sensor set 
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The fluctuations in rise and fall times in each sensor are directly correlated to the 

variations in pre and eva xnwFET transistors. We can assume mean and standard 

deviation of tr and tf as functions of standard deviations of random parameters, as 

expressed by set of equations in (16). 
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Figure. 13 Maximum Likelihood Estimation (MLE) based variability 

sensing methodology 
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In (16), f(σ), g(σ), h(σ) and p(σ), respectively, are shown as polynomial functions of 

standard deviations of physical parameters {X1, X2, …, XN}. 

Specifically, for random parameter variation estimation in the NASIC fabric we mainly 

focus on three physical parameters: channel doping (CD), source-drain doping (SDD) and 

underlap (U). To estimate the distributions of these random parameters, we use the 

equation set (17), based on (16) 
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(17) 

Since each of the parameters is mainly dependent on a separate process step, variations 

in these parameters are independent from each other. As a result, (17) can thus be 

decomposed into functions of the individual parameters, as shown in (18). 
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(18) 

To derive the coefficients of polynomial functions in equation set (18), a device 

behavioral model encompassing parameter variations is built first. The xnwFET device 

structure is extensively characterized through variation-aware 3-D physics based 

simulations using Synopsys Sentaurus tools [14]. Device I-V and C-V characteristics 

were obtained for up to 3σ=±30% variations in all parameters; standard deviation, 

σ=±10%, was conservatively treated as worst-case scenario such as in [14]. The device 

characterization data was then used to build SPICE-compatible behavior models using 
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regression analysis. These behavioral models represent the xnwFET resistance and 

capacitance as a function of gate-source voltage, drain-source voltage and extent of 

variation in physical parameters. 

Using this device model, the equation set shown in (18) is populated in an initial circuit 

simulation step. Circuit simulations are carried out for the sensor shown in Figure. 12a – 

in this, standard deviations of random parameters are varied one at a time. Then, the 

relationship between {μtf, σtf, μtr, σtr} and {σCD, σSDD, σU} is built from the measured fall 

and rise times by curve fitting. Based on the circuit simulation results, μtr is almost 

constant with only 0.14% deviation as {σCD, σSDD, σU} increasing from 0 to 15%, which 

means μtr is redundant. Finally, the equation set is reduced as shown in (19) with known 

polynomial functions {f1, f2, f3, g1, g2, g3, p1, p2, p3}. 
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(19) 

Combining with the calculated {μtf, σtf, σtr} from MLE, standard deviations of random 

parameters are estimated by solving these equations as shown in Figure. 13.  

There are two factors that can affect estimation accuracy: the precision of deriving 

equation set (19) and the accuracy of calculated {μtf, σtf, σtr}. Since (19) is derived by 

curve fitting in an initial circuit simulation step, it can be made increasingly more accurate 

by choosing more data points (i.e., {σCD, σSDD, σU} and their corresponding {μtf, σtf, σtr}) 

in the simulations. But the accuracy of calculated {μtf, σtf, σtr} depends on the size of 

sample set, corresponding to the size of the sensor set. In order to reduce the area overhead 

introduced by on-chip sensors, the sensor set is usually made as small as possible. As a 
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result, the accuracy of the calculated {μtf, σtf, σtr} is constrained in practice, which may 

contribute to a large part of the estimation error. In the next section, we show how the 

mean and standard deviation calculations can be improved with reduced sample set using 

Expectation Maximization (EM) technique [31], [32]. 

4.3.2 EM-based Variability Sensing Methodology 

The Expectation Maximization (EM) algorithm [31], [32] is an efficient alternative to 

MLE in the calculation of {μtf, σtf, σtr}. It is an iterative method for estimating the values 

of some unknown parameters in a statistical model. It can enable more accurate parameter 

estimation in a statistical model even with incomplete samples. The EM algorithm 

includes two main steps: the Expectation step and the Maximization step. A general 

process of EM algorithm for an incomplete sample set is shown as follows. 

 Initialize the distribution parameters for the sample set 

 Repeat until convergence: 

1) Expectation step: calculate the expected value of the sample set and fill the 

missing samples with this expected value, given the current distribution 

parameters. 

2) Maximization step: re-estimate the distribution parameters to maximize the 

likelihood of the known samples, given the current expected estimates of the 

missing samples. 

The core of the Expectation step is to rebuild the complete sample set, based on the 

given distribution parameters. Since the known samples really exist, we try to maximize 

their likelihood with the rebuilt complete sample set during the subsequent Maximization 

step. Because the results calculated by the Expectation step and Maximization step depend 
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on each other, the EM algorithm is iterated sufficient times until the likelihood of the 

known samples is converged, treated as its maximization. At this time, the estimated 

distribution parameters are closest to the actual distribution parameters of this incomplete 

sample set. To estimate the mean and standard deviation in the normal distribution, a 

framework of EM algorithm is shown in Figure. 14. 

Based on Figure. 14, the EM algorithm is iterated enough times until the convergence 

of the likelihood of the known samples is reached, treated as the maximum of this 

likelihood. In this algorithm, the initial values of (µ, σ) affect the estimation accuracy and 

overall run-time, and should be therefore chosen carefully. 

In our case, the known samples in the incomplete sample set correspond to the sensors 

we use, and the unknown samples represent the sensors removed from our sensor set. So 

an insight can be achieved that the area overhead introduced by our random-variation 

sensors can be reduced by employing EM algorithm. In order to explain the usage of EM 

 
Figure. 14 Flowchart of Expectation Maximization algorithm 

for normal distribution 
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algorithm in our random-variation sensing methodology clearly, we define two sensor sets: 

the complete sensor set (i.e., an imaginary sensor set that can provide sufficient samples to 

achieve converged estimates) and the current sensor set employed. Because EM algorithm 

is a modified MLE algorithm, the size of the complete sensor set can be determined by 

MLE algorithm. Then the number of missing samples equals to the difference in the sizes 

of these two sensor sets. 

Here we assume the size of the complete sensor set is n and the size of current sensor set 

employed is m, the number of missing sensors equals n-m. Let {tr,1, tr,2, …, tr,m} and {tf,1, 

tf,2, …, tf,m} denote the measured rise and fall times from the current sensor set, and {tr,m+1, 

tr,m+2, …, tr,n}, as well as {tf,m+1, tf,m+2, …, tf,n}, denote the unknown measurements from 

the missing sensors. As the part of the process of EM in the calculation of the mean and 

standard deviation of tr and tf is completed in a similar manner, we only use fall times (tf) 

to illustrate how EM algorithm calculates the mean and standard deviation from an 

incomplete sensor set. This is as follows. 

1 Estimate an initial (µ, σ)C for the complete sensor set, {tf,1, tf,2, …,tf,m, tf,m+1, tf,m+2, …, 

tf,n}; 

2 Calculate the log-likelihood function, given known {tf,1, tf,2, …, tf,m} under this initial 

(µ, σ)C by Eq. (20); 
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3 Re-estimate (µ, σ)C by Eq. (21) and (22); 
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4 Re-calculate the log-likelihood function given known {tf,1, tf,2, …, tf,m} under the new 

(µ, σ)C by Eq. (20); 

5 Repeat until the convergence of the log-likelihood function is reached. 

The condition of convergence is expressed as Eq. (23), 

                                             
 o ldfn ewf tLtL )()(

                                                        
(23) 

where ε is very small and depends on the required accuracy. 

Figure. 15 shows our random variation sensing methodology, which uses EM algorithm 

for mean and standard deviation calculation. Compared with the previous MLE-based 

estimation methodology, the main difference is that in the estimation flow we replaced 

MLE (for the calculation of mean and standard deviation of fall and rise times) by the EM 

 
Figure. 15 Expectation Maximization (EM) based variability sensing methodology 
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algorithm. 

4.4 Evaluation of the Proposed Sensor Design 

In this section we detail a framework for evaluating the accuracy of our sensor design 

based on HSPICE Monte Carlo simulations. The framework is shown in Figure. 16. 

As shown in Figure. 16, HSPICE circuit simulations need to be carried out with known 

variation cases injected into the sensor circuits. These simulations assume normal 

distributions of individual device parameters with a known standard deviation. Based on 

the measured fall and rise times from the sensor circuits, the standard deviation of random 

parameters is estimated using the theoretical framework described in the previous sections. 

As statistical methods are used in the proposed methodology, the number of samples 

becomes very important to the estimation accuracy. The number of sensors in the sensor 

set is varied to demonstrate how it affects the estimation accuracy. HSPICE circuit 

simulations on the sensor set are iterated 1,000 times to achieve sufficient estimates for 

 
Figure. 16 Framework for evaluating sensor design based on Monte Carlo circuit 

simulations 
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{σCD, σSDD, σU}. The probability density functions (PDF) of these estimated standard 

deviations are built to check the degree of convergence. Then the relative errors in 

estimated vs. injected standard deviations of random parameters are calculated. This 

iterative flow is abstracted in Figure. 17. 

4.5 Results 

Following the evaluation framework described in the previous section, circuit 

simulations were carried out to determine the accuracy of the sensing method for random 

variation estimation. In the equation set (19), f(σ) was populated as a fifth-order 

polynomial; g(σ) and p(σ) were populated as third-order polynomials. The simulations 

were iterated for 1,000 times to estimate {σCD, σSDD, σU} sets. The metrics used are 

Estimation Error (EE) and Average Estimation Error (AEE) for the parameter Xi across 

1,000 iterations. We defined these as: 
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Figure. 17 HSPICE Monte Carlo circuit simulation flow 
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wherein σ
e
Xi is the estimated standard deviation of parameter Xi, and σ

i
Xi is the injected 

standard deviation of parameter Xi in the simulations; EEj represents the jth estimation 

error for one parameter across 1,000 iterations. 

 

 

 
Figure. 18 Probability density function (PDF) of estimated standard deviation for 

varying number of sensors in the sensor set; a) Channel doping; b) Source-Drain 

doping; and c) Underlap 
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4.5.1 Simulation Results of MLE-based Sensing Methodology 

Figure. 18 shows the probability density function (PDF) of estimated standard 

deviations for varying number of sensors in the sensor set. The estimated standard 

deviations gradually converge and approach the injected value (0.1) as the number of 

sensors in the sensor set (n) increases. For example, when n increases from 50 to 200, σ in 

PDF of estimated σU decreases from 0.022 to 0.007, which means the degree of 

convergence in σU is increased by 3X. However, when n increases from 200 to 250, the 

improvement in the convergence of estimated {σCD, σSDD, σU} becomes less significant; a 

less than 10% decrease in σ of PDFs of the estimated {σCD, σSDD, σU} is in fact achieved. 

This means that 200 sensors in the sensor set are sufficient to estimate {σCD, σSDD, σU} 

such that they are less than or equal to 0.1. 

For the sensor set containing 200 sensors, the estimation error for every parameter was 

calculated. The corresponding cumulative distribution function (CDF) of estimation error 

across 1,000 estimated results is shown in Figure. 19. From this figure, we can note that 

the estimation error is largest for the underlap variation; however, this error is still less 

than 15% for 90% of simulations and smaller than 25% for all simulated cases. Estimation 

 
Figure. 19 Cumulative distribution function (CDF) of estimation error across 

1,000 estimated standard deviations 
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errors of all three parameters for worst-case scenarios are summarized in Table. 5. 

4.5.2 Simulation Results of EM-based Sensing Methodology 

Based on our simulation results achieved from MLE-based sensing methodology, 200 

Table. 5 Estimation Error for MLE-Based Sensing Methodology 

 Underlap Channel doping SD doping 

EE in worst-case 

scenario 

25% (most 

sensitive) 

16% (least 

sensitive) 
20% 

 

 

 

 
Figure. 20 Comparison of average estimation error (AEE) between EM-based and 

MLE-based sensing methods: a) Channel doping; b) Source-Drain doping; c) 

Underlap 
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sensors are sufficient to achieve converged estimates if the standard deviation of random 

parameters is less than or equal to 10%. For the EM-based sensing methodology, the size 

of the complete sensor set (n) was set to 200 and kept constant for simulations. Figure. 20 

shows the comparison of AEE for MLE-based and EM-based sensing methods. AEE is 

much smaller for the EM-based sensing method than the MLE-based sensing method. For 

example, for underlap (U), if the number of sensors in the current sensor set (m) decreases 

from 200 to 150, AEE increases from 0.053 to 0.2 with the MLE-based sensing method, 

but only increases from 0.049 to 0.08 with the EM-based sensing method. As a result, the 

estimated results become more robust with decrease in number of sensors and the 

estimation accuracy is improved by at least 2X with the EM-based sensing method. The 

results are presented in Table. 6, which shows a range of AEEs due to varying number of 

sensors from 200 to 150.  

For the EM-based sensing method, the number of sensors in the sensor set was 

gradually decreased to evaluate estimation accuracy. The relationship between AEE and 

the number of sensors in the sensor set is shown in Figure. 21. The estimated standard 

deviation of underlap has the largest AEE among the three random parameters. If AEE is 

required to be less than 10%, at least 150 sensors are needed in the sensor set. 

For m=150, the cumulative distribution function of the estimation error is shown in 

Figure. 22. From these results, EE is largest for the underlap variation with 12.7% (for all 

Table. 6 Comparison of AEE between EM-based and MLE-based Methods 

 

m decreased from 200 to 150 

AEE of CD AEE of SDD AEE of U 

EM-based method [0.037,0.065] [0.039,0.068] [0.049,0.08] 

MLE-based method [0.04,0.153] [0.04,0.188] [0.053,0.2] 
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simulations), which can be treated as worst-case scenario. EEs in the worst-case scenario 

for all three parameters are listed in Table. 7. Compared with the EEs in Table. 5, the 

estimation accuracy is improved by 2X with the EM-based sensing method. 

 

Figure. 21 Relationship between average estimation error and number of sensors 

 
Figure. 22 Cumulative distribution function of estimation error for m=150 

current sensor set 

 
Table. 7 Estimation Error for EM-Based Sensing Method 

 Underlap 

Channel 

doping SD doping 

EE in worst-case 

scenario 

12.7% (most 

sensitive) 

11.3% (least 

sensitive) 
11.5% 
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In order to evaluate the proposed EM-based sensing method more extensively, the 

injected standard deviation of physical parameters was reduced gradually from 10% to 1% 

in the Monte Carlo simulations; we then re-estimated the error with the EM-based sensing 

method. Following the evaluation flow shown in Figure. 16, the worst-case estimation 

errors were calculated. Figure. 23 shows the relationship between worst-case estimation 

errors and injected standard deviations of physical parameters. For these simulations 

number of sensors in the sensor set was fixed to 150. From these results, the worst-case 

estimation error decreases slightly (as the injected standard deviation of physical 

parameters). The main reason for this slight decrease in the worst-case estimation error is 

the increase of the accuracy in the calculation of {μtf, σtf, σtr}. As the standard deviation of 

a physical parameter decreases, the degree of fluctuation in the fall and rise times also 

decreases, which means the number of samples required to derive the distribution 

decreases.  However, the number of sensors in all simulations remains constant, so the 

accuracy of calculated {μtf, σtf, σtr} improves. From Figure. 23, the worst-case estimation 

error is less than 13% with the EM-based sensing method for all standard deviations that 

are less than or equal to 10%. 

 
Figure. 23 Relationship between the worst-case estimation error and the injected 

standard deviation of physical parameter for m=150 
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4.6 Summary 

In this chapter, a new on-chip variation sensor design for random variation estimation 

in the NASIC fabric was presented. A generic sensing methodology for extracting 

distributions of random variations in physical parameters from the measured fall and rise 

times was described. Using physics-based device models and Monte Carlo simulations, 

the estimation accuracy was quantified. Simulation results show that with the EM-based 

variability sensing methodology, an 8% average estimation error can be achieved with as 

low as 150 sensors in the sensor set. The estimation error in the worst-case scenario was 

12.7% for all simulated cases. Compared with the ring-oscillator (RO) based sensor 

design in CMOS technology shown in [33], the worst-case estimation error is improved 

by 1.6X, and the total number of devices required in on-chip sensors is reduced by 40X. 
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CHAPTER 5 

PLACEMENT OF ON-CHIP VARIATION SENSORS 

5.1 Introduction 

Recent technological developments have facilitated the widespread use of variation 

sensors in variation diagnosis. Due to the aggressive technology scaling and the drastic 

increase in chip density, it is often of great importance that the variation sensor 

configurations in use minimize area overhead while meeting some appropriate 

requirements. We develop two separate approaches for determining the placement of the 

proposed systematic-variation sensor and random-variation sensor respectively. Further, 

we introduce examples of sensor placements with WISP-0 processor as a target. Lastly, 

we identify and analyze external noises that may affect the accuracy of measured fall and 

rise times based on the sensor placement. 

5.2 Placement of Systematic-Variation Sensor 

As discussed in section 3.5.2, the sensor effective range is up to 3.3mm considering a 

permissible estimation error of 20% using an experimental model developed by the 

180nm technology. In order to adjust to the emerging nanoscale fabrics, this sensor 

effective range needs to be scaled down based on the projected technology parameters. 

Sensor effective area can then be determined with respect to the sensor area and shape. 

Finally, the sensor placement can be developed with the help of sensor effective area. 

5.2.1 Calculation of Sensor Area 

NASIC fabric is a regular grid-based fabric with crossed nanowire field-effect 

transistors at certain crosspoints. Given the specified technology parameters, the circuit 
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area can be easily calculated based on the required number of vertical and horizontal 

nanowires. The layout of the systematic-variation sensor is shown in Figure. 24, where the 

light blue rectangles at the crosspoints represent xnwFETs in NASIC fabric. As a result, 

58 horizontal nanowires and 8 vertical nanowires are used to build the sensor. Technology 

parameters used are listed in Table. 8. Then the sensor area is calculated, as shown in Eq. 

(26). 
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Figure. 24 The layout of the systematic-variation sensor 

Table. 8 Parameter values for density calculation 

Parameter Value 

NW-pitch 20nm 

NW-width 10nm 
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5.2.2 Re-calculation of Sensor Effective Range 

Based on the parameters listed in Table. 8, the projected technology node in this thesis 

is 10nm, which means the sensor effective range should be scaled down with respect to the 

technology node of 10nm.  

With the aggressive scaling of technology nodes, parameter variations are increasing 

drastically. The statistical results between parameter variations and technology nodes are 

explored in [34]. Based on these statistical results, when the technology node is scaled 

down from 180nm to 10nm, percentage of parameter variations increases 40X. It means 

the sensor effective range needs to be scaled down 40X. So the new sensor effective range 

(R) with a permissible estimation error of 20% for the 10nm technology is shown in Eq. 

(27). 

                                          
ummmR 5.8240/3.3                                                            (27) 

Assuming all devices in the sensor share the same systematic variations, the sensor 

effective region with consideration of sensor shape is shown in Figure. 25. The area of this 

 

Figure. 25 Schematic diagram of sensor effective range with 

consideration of sensor shape 
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sensor effective region is calculated with the new sensor effective range, shown in Eq. 

(28). 

                     

22 21597)15.015.1(2 umRRAreaEffective                                      (28) 

5.2.3 Example of Sensor Placement 

Based on the sensor effective range, the placement of systematic-variation sensor can 

then be introduced. The principle of sensor placement is to cover all regions implementing 

logic by the sensor effective range using the least number of sensors. Here we use WISP-0 

processor [1], [2], [12], [13], [35] as an example to show the sensor placement and timing 

measurement architecture. WISP-0 is a NASIC processor design where NASIC design 

principles are applied. It implements a 5-stage pipeline architecture, which contains fetch, 

decode, register file, execute and write back. The floorplan of WISP-0, including program 

 

Figure. 26 Floorplan of the WISP-0 processor [35] 
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counter (PC), ROM, decoder (DEC), register files (RF) and ALU, is shown in Figure. 26. 

The area for each unit in WISP-0 is listed in Table. 9. Because the total area of WISP-0 is 

654600nm
2
, it is far more less than the sensor effective area. As a result, only one sensor is 

enough to cover all logic regions in WISP-0. Because RF takes more than 70% area of 

WISP-0, in order to balance the area of logic regions surrounding the systematic-variation 

sensor, an example of the sensor placement in WISP-0 processor with timing 

measurement architecture is shown in Figure. 27. 

Table. 9 Area of WISP-0 in NAND-NAND style [35] 

 
Nanoarray 

area (nm
2
) 

PC 35200 

ROM 26400 

DEC 57600 

RF 476000 

ALU 59400 

Total 654600 

 

 

Figure. 27 Floorplan of the WISP-0 processor with systematic variation 

sensor and additional CMOS TDC (S.S represents systematic-variation 

sensor) 
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In Figure. 27, the timing measurement architecture [36] is treated as an additional 

CMOS circuit. Its block diagram is shown in Figure. 28. The mode signal is used to 

configure the time measurement circuit. For example, if mode signal is „0‟, this circuit 

operates to measure rise time of the input signal. Finally, this circuit can convert rise or 

fall times into a digital form and generate an N-bit output code. By adding an N-to-1 

multiplexer to the input, we can measure rise or fall times from N input signals by only 

one such time measurement architecture and output the measured results in series. 

5.2.4 Impact of External Noise on the Estimation Accuracy 

With respect to the sensor placement, several external noises may affect the values of 

measured fall times, leading to decrease in the estimation accuracy. These noises include 

wire delay, measurement error and environmental noise. Therefore, the measured fall time 

is represented by Eq. (29). 

                              tenvironmentmeasuremenwirerealfmeasuredf TTTTT  __                               (29) 

Wire delay is conventionally dominated by a wire‟s resistance-capacitance product, or 

RC delay, which is a function of wire material and wire physical dimensions (e.g., length, 

width and thickness). With respect to the sensor placement shown in Figure. 27, the wire 

material and dimensions between outputs in the sensor and the time measurement 

 

Figure. 28 Block diagram of timing measurement architecture [36] 
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architecture are nearly identical, leading to the same wire delay for each output in the 

sensor.  

As the same timing measurement architecture is used to measure fall times in the sensor, 

the measurement error for each output is also same. Finally, the environmental noise, such 

as the thermal noise, is mainly governed by environmental factors. Because fall times in 

the sensor are measured by the timing measurement architecture in a very short time 

interval, all the environmental factors can be assumed constant in this short time interval. 

As a result, this environmental noise can also be treated as constant for all outputs in the 

sensor. 

Based on the analysis above, the difference in fall times in one functional unit can be 

expressed by Eq. (30). 
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       (30) 

From Eq. (30), we can see that these external noises have no or very little impact on the 

estimation accuracy of the proposed systematic-variation sensor. 

5.3 Placement of Random-Variation Sensor 

Similarly to the process for systematic-variation sensor, the area of random-variation 

sensor will be calculated at first. Then based on the characteristics of random variations, 

an example of the sensor placement will be introduced. The impact of external noises on 

the estimation accuracy will be finally discussed. 

5.3.1 Calculation of Sensor Area 
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The layout of the random-variation sensor is shown in Figure. 29. Using the same 

method and technology parameters (i.e., 10nm NW and 20nm NW pitch) as for the 

systematic-variation sensor, the sensor area is calculated by Eq. (31). 

                          
289700)10*14910*150(*)1010*2( nmArea                         (31) 

5.3.2 Example of Sensor Placement 

Because of the randomness of random variations, the random-variation sensors can be 

placed anywhere in the chip to sample characteristics of random variations. Since the fall 

and rise times in the sensors are used to estimate random variations directly, the principle 

of the sensor placement is to reduce the impact of external noises on the measured fall and 

 
Figure. 29 The layout of the random-variation sensor 

 
Figure. 30 Floorplan of the WISP-0 processor with random-variation 

sensor and additional CMOS TDC (R.S represents random-variation 

sensor) 
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rise times. In order to achieve this objective and share the timing measurement 

architecture with the systematic-variation sensor, an example of the sensor placement is 

shown in Figure. 30. Since the measured fall and rise times also follow Eq. (29), this 

sensor placement can reduce the wire delay by placing the random-variation sensor close 

to TDC (measurement error and environmental noise are independent on the sensor 

placement). 

5.4 Summary 

In this chapter, the sensor configuration was discussed. The sensor area was calculated 

at first, which could be treated as the area overhead introduced by on-chip sensors. Then 

using WISP-0 processor as a target, an example of the sensor placement was presented 

based on the sensor effective range. In addition, timing measurement architecture in 

CMOS was shown, which can be used to measure fall and rise times from multiple outputs 

in the sensors. With respect to the placement of on-chip variation sensors, several external 

noises were identified. By analyzing their sources, we found that the estimation accuracy 

of systematic-variation sensor is not deteriorated by these noises. However, the 

random-variation sensors are very sensitive to them. Since theoretically random-variation 

sensors can be placed anywhere in the chip, the placement of random-variation sensors 

tries to reduce the impact of these external noises on the measured fall and rise times. 
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CHAPTER 6 

CONCLUSION 

In this thesis, we proposed novel on-chip variation sensor designs for emerging 

nanoscale computing fabrics, which can estimate variations in physical parameters (e.g., 

channel diameter, gate oxide thickness and source-drain doping density) by employing a 

physical based device model. Based on the different characteristics of parameter 

variations, two separate sensor circuits were designed to estimate systematic variations 

and random variations respectively.  

With respect to systematic variations, a pair of NAND gates with fan-in (i, i+1) formed 

a basic sensing unit that further composed our systematic-variation sensor, based on the 

number of physical parameters varying systematically. With careful sensor design, 

relationships between the difference in fall times in one functional unit and physical 

parameters varying systematically were extracted from our sensor circuits. With the 

measured fall times in the sensor circuit, the extent of systematic variations was estimated 

by solving those relationships. Through accurate HSPICE Monte Carlo simulations, our 

systematic-variation sensor was evaluated and the results show less than 1.2% error in 

estimation of the extent of systematic variations for 100% of the simulations. In addition, 

to address the sensor placement, sensor effective range was derived based on the 

distribution of systematic variations and a maximum allowed imprecision. By employing 

an experimental model for systematic variations in gate diameter, our sensor effective 

range was up to 3.3mm with respect to a 20% imprecision. 

By contrast, a variation sensor design for estimating the statistical distribution of 

random variations was presented. To avoid averaging effect, the random-variation sensor 
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circuit was a very simple dynamic gate with only pre and eva xnwFETs. Therefore, the 

deviations of rise and fall times at output nodes were attributed to variations in pre and eva 

xnwFETs respectively without the impact of averaging effect. To estimate the standard 

deviation of random parameters, a variation sensing methodology was described, which 

could enable this estimation with measured fall and rise times in the sensors. Our 

random-variation sensor design was evaluated through HSPICE Monte Carlo simulations 

and the simulation results show an 8% average estimation error with as low as 150 sensors 

in the sensor set. The worst-case estimation error is 12.7% for all simulated cases. These 

results indicate the feasibility of our outlined approach.  

Finally, an example of the sensor placement was introduced with WISP-0 processor as a 

target. We discussed the principles of sensor placement and presented timing 

measurement architecture. The area overhead introduced by on-chip sensors was also 

calculated with respect to the projected technology parameters (NW: 10nm; NW pitch: 

20nm). Based on the sensor placement, the influence of external noises on the estimation 

accuracy was analyzed and we found that these noises do not affect the 

systematic-variation sensor, but deteriorate the accuracy of the random-variation sensor. 

Furthermore, we believe that the proposed on-chip variation sensors when applied in 

conjunction with post-fabrication compensation techniques would be able to improve 

system-level performance in nanoscale computing fabrics, an alternative to making 

worst-case assumptions on parameter variations in nanoscale designs. 
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