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ABSTRACT

ANALYSIS OF SENSOR DATA IN CYBER-PHYSICAL SYSTEM

SEPTEMBER 2013

XIANGLONG KONG

B.E, DALIAN MARITIME UNIVERSITY

M.S.E.C.E, UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Tilman Wolf

Cyber-Physical System (CPS) becomes more and more importance from industrial ap-

plication (e.g., aircraft control, automation management) to societal challenges (e.g. health

caring, environment monitoring). It has traditionally been designed to one specific appli-

cation domain and to be managed by a single entity, implemented communication between

physical world and computational world. However, it still just work within its domain, and

not be interoperability. How to make it into scalable? How to make it reusing? These

questions become more and more necessary. In this paper, we are trying to developing a

common CPS infrastructure, let it be an innovative CPS crossing multiple domains to broad

use sensors and actuators. Here, we implement a technique for automatically build a model

according to the sensor data in different domains. And based on our approach under contin-

uous situation, it could identify the sensor values right now or estimate next few time step,

which we call spatial model or temporal model.
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CHAPTER 1

INTRODUCTION

1.1 The Evolution of Cyber-Physical System

In general, CPS contains three parts, sensor, computation application, and actuator.

It performs three basic functions: sensing characteristics of the physical world, computing

appropriately based on sensor input and other data sources, and generating response actions

through actuation. The basic principles of operation are illustrated in Figure 1.1.

With the rapid development, Cyber-Physical Systems (CPS) is distributing to many

industries and business companies. CPS represent the technical foundation to solve some

important social and environmental problems. These domain range from focused control

problems (e.g. industrial automation, aircraft control, etc.) to larger-scale problems (e.g.

environmental monitoring, health care, etc.).

Traditionally, the CPS has been designed to one specific application domain and to be

managed by a single entity. In addition, its components are deployed and managed by

Figure 1.1: Principles of operation of cyber-physical systems
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the same administrative entity. It is dominated by vertically integrated ”stovepipe” design.

Obviously, as indicated in the name cyber-physical, there are two key components of cyber-

physical system are ”information”(cyber) and ”computational part”(modeling the physics of

the system).[11]

But the problem is to set up a scalable deployment of cyber-physical system since the

cost of sensors and actuators becomes prohibitively expensive. So developing a common CPS

infrastructure becomes crucial for the innovative CPS to solve scalability problem. Imag-

ing that, if we could use sensor information and actuators from multiple domains across

domains, the cost of the devices interfacing with the physical world will be amortized by

many applications, then the scalability problem could be solved. We could achieve horizon-

tal integration such that sensing information could be shared across different applications,

multiple computation services could coexist, and the response could be controlled by different

entities. In computation world, computational components are captured from ”Internet of

Things” (IoT), which draws on an analogy many different computers interact with common

data communication network.

Due to Internet of Things managed by different administrative entities, it raises many

new interesting and technical problems:

Interoperability: CPS components need to exchange data and operate together to form a

CPS solution.

Security and Trust across domains: It is important to establish trust between different

entities because they are controlled by separate entities. Here we introduce a concept called

Verification layer, which is used to implement techniques to check if sensors report correct

data and actuators implement correct responses. In addition, establishing security is also a

non-ignorable problem here, it could share allow for verification between components under

different administrative control.

2



Economics: It couples with the identification of any associated synergies, utilize to model

horizontal integration, and incentivize the entities for sharing sensor information and access

to actuators.

In my approach, I address one specific problem that build verification between entities:

how to detect outliers in the CPS sensor information. We need build an outlier detection

system that could evaluate sensor readings to decide if this data can be trusted or to determine

which ones are outliers in the context of other sensor readings. In our outlier detection system,

the outliers could show up as an extreme values (correct sensing information), or a malicious

intent (incorrect sensing information) according to the computational components. As we

known, the sensors obtain information from physical world that are usually continuous and

look smoothing or similar values over a short time, such as air temperature, barometric

pressure, traffic congestion, and so on. Our detection makes full use of multiple sources

of sensor information to determine reported observations match the temporal and spatial

context. Those incorrect sensing information will be deleted as untrusted sensors. But those

correct sensing information process to report on property in physical world because it shows

the values change drastically over a short time slot, appearing some irregular phenomenon.

To implement our outlier detection in large-scale Internet of Things and make it broadly

applicable to many different areas, we need to analyze different entities correlationship, select

the principal entities from all sensor information that we could use. After determining which

types of sensor information to use for outlier detection, we are trying to find what kind of

model to use to present the physical phenomenon.

To prove our approach effectiveness, we test it in one of domains called weather sensing.

We collect different types of sensor information, such as air temperature, dew temperature,

barometric pressure, and visibility. Thus, we select different principal components according

to different regions we plan to observe, and develop internal model of weather appropriately,

then determine which readings are considered as outlier in our outlier detection system.

3



1.2 Objectives

In this proposal, we analyze the cross-correlation of all types sensor sources and select

some of them as the principal components to build our model. The first challenge is to dis-

cover these relationships. Since the significance of different sensor readings, their polynomial

degrees, and their interaction, toward determining a specific dependent sensor reading are

not known. We use a statistical method called ”step-wise regression” to search for the ap-

propriate regression model. We evaluate and provide a preferable internal model that could

represent the physical phenomenon.

In the next step of this thesis, we try to use outlier detection system to evaluate sensor

readings within a temporal and spatial context. Then, we evaluate and demonstrate the

effectiveness of the proposed technique in a weather sensing scenario.

1.3 Contributions

Our main contributions are as below:

1. Analyze different types of sensor sources and determine to selection of each variable.

2. Evaluate and compare the performance of different internal models with multiple re-

gression method and holt-winters smoothing method to determine one could represent

the physical phenomenon.

3. Design of an outlier detection system that evaluates sensor readings within a temporal

and spatial context.

1.4 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 presents some background and

related work on cyber-physical system. Chapter 3 introduces the method of data analy-

sis, preprocessing, and data cleaning. Then, we figure out one most efficient spatial model

4



through consider all possible situations. The evaluation of outlier detection system based on

different methods will be presented at Chapter 4. Chapter 5 implements an approach that

could predict next few hour time step sensor value. Evaluation of our model technique is

done in Chapter 6.
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CHAPTER 2

BACKGROUND

In this chapter, we will provide a detailed description and review for some of the previous

research works on cyber-physical system.

2.1 Traditional Cyber-Physical System

In this section, we will describe recent CPS researches in conference publications. Many

existing CPS solutions are based on stovepipe architectures. These studies include many

applications in road traffic management[4], energy system[8] [6], power infrastructure[1], and

health care(monitoring devices[2]).

It basically focus on cyberizing the physical and physicalizing the cyber. The challenge of

integrating computing and physical processes has been recognized for some time in cyberizing

part. Time synchronization is different implemented in software execution since there is no

statement like ”current time is t” and no semantic notion of time passing. In physicalizing

part, what CPS needs is not faster computing, but physical actions taken at the right time[7].

It prefer to building a reliable system with strong robustness and adaptation, not only faster

computing.

Many researches focus on the development of underlying technologies such as embed-

ded system design, new software or hardware verification and system design. For exam-

ple, transportation systems could benefit considerably from better embedded intelligence in

automobiles, components and runtime substrates also have been discussed in control com-

puting, and real-time environments. And the security(e.g. robustness, data reliability, and

6



fault-tolerance) in CPS, have been explored in various contexts(e.g. control system, system

resilience). But most of them are limited in their own specific domains.

Detecting anomalies method has also been derived in other domains. For example, it

used to detect network anomalies by comparing the current network traffic against a baseline

distribution in network traffic[12]. We propose this technique to combine anomaly detection

information from multiple sources to get more accurate results. In our approach, we identify

anomalies

2.2 Distributed Sensing in the Internet of Things

In many cases, the physical environment need to sense by a group of distributed sensors,

and each of them senses the data independently. All of them change continuously with time,

and could spread to all geographic pictures. For example, weather stations deploy over a

certain geographical area and sense individually one or more weather variables (e.g. air

temperature, pressure, visibility, and dew temperature etc.) in weather sensing.

Assuming that there are n sensors distributed in a geographical space, which record

n different sensor information in the same variable of interest. And there are k different

variables in this geographical space need observation, denoted by x1, x2, ... , xk. x(ji)(t),

denotes that sensor i senses and reports a time series of the variable xj. For each time slot,

the value of every variable xi could represent by the set xi(t):

xi(t) = xi1(t), xi2(t), ..., xin(t) (2.1)

So all variables could draw its own geographical pictures at one time slot and provide

coherent pictures during a continuous time period. One of important things that we need to

prerequisite is to verify each value in the set.
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Our main objective is to automatically check whether a specific sensor m report us an

outlier according to the other sensors’ report. The key to detect the outlier is according to

other different variables and find their regularity. It means that, the sensor recording the

variable xi at time slot t, may be related to another sensor recording the variable xj at time

slot t, or multiple different variables, as well as to the spatial parameters. But it is difficult to

find their relationships, since they might do not have any relationship at all or complicating

relationship among them. In our discussion, we assume there is no prior domain-specific

knowledge so that we could apply our method into more wide fields. If their regularity could

be discovered from sensor values, then erroneous sensor reports could possibly be detected.

To validate our results, we apply our method on a weather sensing application. It is a

distributed sensor network and contains multiple sensed variables (e.g. air temperature, dew

temperature, pressure and visibility).

2.3 Temporal extrapolation

In the weather sensing forecasting, there are several complex forecasting method. A

feature based forecast model using Neural Network is proposed with high degree of accu-

racy and could be suitably adapted for making forecasts over larger geographical areas. It

builds a fixed model with five features to predict the maximum temperature and minimum

temperature.[10] Another model ”Numerical Weather Prediction and hybrid ARMA/ANN”

uses a technique forecast from the ALADIN NWP model combined to an Auto-Regressive

and Moving Average (ARMA) model.[3] A model named ”Weather Forecasting System us-

ing concept of Soft Computing” constructs an image, which represents the actual data.[9]

Although these models could provide excellent capability based on raw data, all of them are

just focus on their specific domain, not related to other domain. In our work , we use Holt-

8



Winter forecasting for temporal extrapolation, which also has been used in network volumes

forecasting.
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CHAPTER 3

DATA ANALYSIS AND EVALUATION

3.1 Data collection

In this study we utilized a data set from government website www.weather.gov. They

provide reliable sensor information from every weather station (e.g. air temperature, dew

temperature, visibility, pressure, longitude, latitude and elevation), which spread over a

geographical space. We apply our methodology on these multiple variables of interest to

verify the effectiveness of our approach. We collect 98 weather stations deployed at different

locations in New England area (contains the states of Maine, New Hampshire, Vermont,

Massachusetts, Rhode Island, and Connecticut) and New York State. It contains weather

variable values reported at one hour between May 30, 2011 and June 15, 2011.

3.2 Pre-Processing

Before build the spatial model, it is crucial to preprocess the raw sensor readings in proper

method. We replace missing data by their interpolation value since the sensor readings are

continuous and have some regularity to it. Then, we adjust each sensor reading into a

specified standard form. It is quite useful to make unites of variables comparable from zero

scaling to one while measured on different scales and to equalize the relative importance of

variables. And before we do the standardization, we need to adjust our sensor readings (e.g.

10



influential observations due to high leverage) approaching to standard normal distribution

with power/log transformation.

Y = Ya + (Yb − Ya)
x− xa
xb − xa

(3.1)

To find the regularity of different variables, we derive a concept called multiple linear

regression (MLR), which is expressed in the form as follow:

Y = β0 + β1x1 + β2x2 + · · · + βdxd + ε (3.2)

This is a modeling technique for analyzing the relationship between a continuous (real-

valued) response variable y and one or more explanatory variables x1, x2, ... xn and identify-

ing a function could estimate the conditional expectation of the response variable given the

explanatory variables. The closer the R2 statistic to the value 1, the better the estimated

regression function fits the data, since a goodness of fit measurement is represented by the

R2 statistic.

R2 = 1 − SSE

SST
= 1 −

∑k
t=1(yi(t) − ŷi(t))

2∑k
t=1(yi(t) − yi(t))

2
(3.3)

Where SSE is the sum of squares of the residuals, SST is the sum of squares of the total

(variance of the observed values), yi(t) is the average value of yi(t).

3.3 Variable Selection

The above-mentioned observations must be carefully screened before building the rela-

tionship model. For multiple sensor readings affecting a certain variable of interest, effective

variable selection is necessary among those multiple sensor readings in order to reducing the

redundant sensor readings and saving time for sensor readings without any domain specific

11



knowledge. Assuming that there is no prior relationship among the variables of interest, the

first challenge is to filter the useless variables. Here we introduce F-statistic and ANOVA

to test each one variable has a statistical significant effect on specific dependent variable.

Meanwhile, we check their correlation between different sensor data.

Here we provide an example of variable selection of air temperature between different

variables (e.g. pressure, dew temperature, visibility, latitude, longitude and elevation). Fig-

ure 3.1 is the correlation between different sensor data readings at 16 hour, June 1, and it

shows whether and how strongly pairs of variables are related, in this way, we could get their

potential modeling approach. We could see that, the correlation between air temperature

and pressure is relatively obvious. Figure 3.2 and figure 3.3 show the P-value and F-value,

which illustrate the effectiveness and the significance of each variable in the basic linear

model. It becomes evident that, although the significant effect on air temperature between

other variables have changed in different time, all these variables are non-ignorable during

the observation period.
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Figure 3.3: F Value of each viriable in Linear Model
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CHAPTER 4

SPATIAL MODEL OF SENSOR DATA

After fitting lots of different statistical variable selection models to a given data set, we

are now focus on building the model. This section details the prerequisites that how to find

best fitted method after data analysis. We usually increase the degree of the polynomial till

the added term is not statistically significant. At the same time, increase the interaction

part also could enhance the model and decrease the error of estimated value. But here we

should notify that the model with interaction term does not remove the x1x2 interaction

term without simultaneously considering the removal of x21 and x22 terms, and the model with

polynomial term does not eliminate lower order terms from the model even if they are not

statistically significant.

We use statistical method called Akaike Information Criterion (AIC) to search for more

appropriate regression model, which is a kind of ”Step-wise Regression”. The benefit of AIC is

that it not only rewards goodness of fit (R2 value), but includes a penalty that is an increasing

function of the number of estimated parameters at the same time. This penalty discourages

over fitting, regardless of the number of free parameters in data generating process.[5] It

starts with all explanatory variables in the model, then remove the predictor with highest

p-value greater than αcrit.

mse(ŷi) = var(yi) + [E(ŷi) − E(yi)]
2 (4.1)

where [E(ŷi) − E(yi)] is called the bias in the predicting the observation yi using ŷi.
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AIC = −2ln(L) + 2k = nln(RSS/n) + 2k (4.2)

where k is the number of parameters, and L is the likelihood function.

As an example, Figure 4.1 and figure 4.2 plot the results of models token all explanatory

variables into account with different polynomial degrees, which is the estimated expression

of air temperature among those sensor readings across the spatial domain of interest. We

could see that, the higher degree of them do not always show as the same important as lower

degree. The low degree of polynomial has the significant improvement while adding its higher

degree of polynomial, but the high degree of polynomial has less significant improvement

while adding its higher degree of polynomial. That means, although the estimation of air

temperature do improve while the increasing the polynomial degree of the predictor variables,

the improvement becomes weaken gradually while adding degree of polynomials.

Then, we use the percentage increment of AIC with different polynomial degree to evaluate

the improvement capability of our model(If it less than 5%, we ignore the adding degree.).

Trying to improve the model fit by doing the AIC method with different polynomials, observed

which explanatory variable drop off. The figure 4.3 and figure 4.4 are evident that the

percentage increment of AIC locate in 5% while polynomial degree increasing.

To compensate for improving our model, we quantify through measures of the adjusted

R2. We use adjusted R2 to evaluate the fitness of our model. Figure 4.5 and figure 4.6

show the fitness of our model with different degrees and the difference between their adjacent

degree.

4.1 Validation of Spatial Models

Then we check whether our predicted model could provide effective prediction of sensor

readings from different domains. We split our observed data into the training set and test-
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Figure 4.1: P Value with different polynomial(1)
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Figure 4.2: P Value with different polynomial(2)
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Figure 4.3: Percentage Increment of AIC with different degree polynomials(1)
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Figure 4.4: Percentage Increment of AIC with different degree polynomials(2)
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Figure 4.5: Adjusted R with Different Polynomial Degree(1)
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Figure 4.6: Adjusted R with Different Polynomial Degree(2)
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ing set for the purpose of checking the standard error of our appropriate regression model.

Although providing higher performance of adjusted R2, the higher polynomial also leads to

the larger standard error. The model is calculated using the training set, and is tested by

the testing set.

Here, figure 4.7 shows the results about standard error of training set and testing set

with different polynomials to estimate temperature values. Although the standard error for

training set with higher polynomials becomes smaller, the standard error for testing set gets

larger in some degree. That is what we do not expect. So the best model should consider

the trade-off between the polynomials and standard error. To solve this problem, we need to

set a threshold for the purpose of making our results more accurate and limiting increasing

the degree of polynomials. Limitation of residual range is the best way.
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Figure 4.7: Standard Error for Different Polynomials
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CHAPTER 5

TEMPORAL MODEL OF SENSOR DATA

5.1 Temporal Model with Holt-Winters smoothing

Since each correlation between those variables should be stable in some degree, we are

trying to figure out their regularity from the correlations between each of them that we

calculated by our outlier detection system. If we could discover the regularity of correlation

between two variables in a fixed time period, then we could easily determine the expected

values over time at each spatial coordinate. We use extrapolate temporally to predict sensor

values for next several time steps. Here, we derive a mathematical method called Holt-

Winters, which is also used for anomaly detection information to estimate network traffic

volumes, since it could show the regularity of these correlationship among different sensor

readings. The following equations is used when the data exhibits additive seasonality, which

means the tendency of data to exhibit behavior that repeats itself every m period, and also

exhibits trend, which is a smoothed estimate of average growth at the end of each period.

ŷt+h|t = lt + bth+ st+h−m (5.1)

lt = α(yt − st−m) + (1 − α)(lt−1 + bt−1) (5.2)

bt = β(lt − lt−1) + (1 − β)bt−1 (5.3)

st = γ(yt − lt−1 − bt−1) + (1 − γ)st−m (5.4)

Where, It is the base signal also called the permanent component, bt is a linear trend

component, st+h−m is an additive seasonal factor.
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And the following plots will show more details about how Holt-Winters Exponential

Smoothing works in prediction. These three plots represent alpha, beta and gamma values

with different coefficients in the first degree of polynomial model. α is the smoothing factor,

also is called simple weighted average of the previous observation xt−1 and the previous

smoothed statistic st−1. When the α closes to 1, it means the output has greater weight to

recent changes in the data. It shows that the variable visibility has a greater smoothing effect

and is less responsive to recent changes. β is the trend smoothing factor, used to estimate the

difference between two successive estimates of the deseasonalized level. Here, all the variables

coefficients is without trend. γ is the seasonal change smoothing factor, used to estimate the

difference between two estimates in successive periods. In our plot, just visibility variable

shows less effect on seasonal trend.

Thus, our model is basically implemented to interpolate spatially or to extrapolate tem-

porally. The interpolation spatially is to verify the correctness of the other sources, and the

extrapolation temporally is to predict sensor values for next several time steps.
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Figure 5.1: Different Coefficients Alpha with First Order Polynomial
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Figure 5.2: Different Coefficients Beta with First Order Polynomial
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Figure 5.3: Different Coefficients Gamma with First Order Polynomial
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CHAPTER 6

MODEL PERFORMANCE ANALYSIS AND EVALUATION

6.1 Result of Spatial Model Outlier Detection

We apply our model on weather variables: visibility, air temperature, dew point, and

pressure from a dataset collected from sensors deployed at various locations in northeastern

United State. Building model through our method is used for detecting the outliers. Those

outliers could show up according to two main reasons. One is due to a drastic change in

weather conditions, and the other is due to the erroneous reports by some sensors. Accord-

ing to our limitation of polynomials and residuals, we get our model and the normal state

observations are lying within certain bounds of our model, which bounds could be set by

ourselves depending on the customers requirement. In this way, we could easily find the

outliers in the data.

Figure 6.1 shows the outlier detection performance of our scheme. The colored dots in

the figure represent the sensor readings locations in the model applied to observed pressure

values. The range of pressure is from low to high marked as red, orange and yellow. The

dataset is still used those 90 weather sensor readings deployed in Northeast United State.

As we known, there is a tornado passed from Westfield area (42.10N, 72.75W) to southwest

Charlton (42.10N, 71.99W) in western Massachusetts on June 1, 2011. And we could observe

that detection record this phenomenon with the sensor reading locating at (42.21N, 72.53W).

This is the significant record, which could show the effectiveness of our model to detect

outliers. Figure 6.2 is the effect spatial model of the pressure.
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Figure 6.1: Pressure Outliers Detection for June 1, 2011 Tornado

6.2 Result of Temporal Extrapolation Model

We continue to apply our model on temperature temporal extrapolation to predict the

next time slot value of sensor readings. Since each correlation between those variables should

be stable in some degree, we are trying to figure out their regularity from the correlations

between each of them that we calculated by our outlier detection system. If we could discover

the regularity of correlation between two variables, then we could easily determine the ex-

pected values over time at each spatial coordinate. We use extrapolate temporally to predict

sensor values for next several time steps. Here, we derive a mathematical method called

Holt-Winters, which is also used for anomaly detection information to estimate network traf-

fic volumes, since it could show the regularity of these correlationship among different sensor

readings.
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Figure 6.2: Temporal Extrapolation Graph For Pressure
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Figure 6.3: Coefficients Prediction with First Order Polynomial(1)
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Figure 6.4: Coefficients Prediction with First Order Polynomial(2)

35



R
e
a
li
ty

 a
n

d
 P

re
d

ic
ti

o
n

 o
f 

In
te

rc
e
p

t 
C

o
e
ff

ic
ie

n
t

T
im

e
(D

a
y
)

Coefficient(actual predict)

0
5

1
0

1
5

−10−50510

R
e
s
id

u
a
l 
o

f 
In

te
rc

e
p

t 
C

o
e
ff

ic
ie

n
t

T
im

e
(D

a
y
)

Residual

2
4

6
8

1
0

1
2

1
4

1
6

−2−1012

R
e
a
li
ty

 a
n

d
 P

re
d

ic
ti

o
n

 o
f 

V
is

ib
il
it

y
 C

o
e
ff

ic
ie

n
t

T
im

e
(D

a
y
)

Coefficient(actual predict)

0
5

1
0

1
5

−10−50510

R
e
s
id

u
a
l 
o

f 
V

is
ib

il
it

y
 C

o
e
ff

ic
ie

n
t

T
im

e
(D

a
y
)

Residual

2
4

6
8

1
0

1
2

1
4

1
6

−10−50510

R
e
a
li
ty

 a
n

d
 P

re
d

ic
ti

o
n

 o
f 

V
is

ib
il
it

y
^

2
 C

o
e
ff

ic
ie

n
t

T
im

e
(D

a
y
)

Coefficient(actual predict)

0
5

1
0

1
5

−10−50510

R
e
s
id

u
a
l 
o

f 
V

is
ib

il
it

y
^

2
 C

o
e
ff

ic
ie

n
t

T
im

e
(D

a
y
)

Residual

2
4

6
8

1
0

1
2

1
4

1
6

−10−50510

Figure 6.5: Coefficients Prediction with Second Order Polynomial(1)
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Figure 6.6: Coefficients Prediction with Second Order Polynomial(2)
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Figure 6.7: Coefficients Prediction with Second Order Polynomial(3)
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Figure 6.8: Coefficients Prediction with Second Order Polynomial(4)
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Figure 6.9: Coefficients Prediction with Third Order Polynomial(1)
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Figure 6.10: Coefficients Prediction with Third Order Polynomial(2)
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Figure 6.11: Coefficients Prediction with Third Order Polynomial(3)
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Figure 6.12: Coefficients Prediction with Third Order Polynomial(4)
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Figure 6.13: Coefficients Prediction with Third Order Polynomial(5)
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Figure 6.14: Coefficients Prediction with Third Order Polynomial(6)
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We consider each one coefficient as a time series data. Figure 6.3 and figure 6.4 show first

order of polynomial coefficients, and the performance of our prediction method. The black

line is the reality coefficients according our selected model, blue line is predicted coefficient

using an additive model with increasing or decreasing trend and seasonality. We can describe

several useful conclusions. The prediction value is close to the reality value. We have the

similar residual for each day, and the trend of residuals becomes downward. It proves that

our method will get improved during a long period. And figure 6.5, figure 6.6, figure 6.7

and figure 6.8 show the coefficients with second order polynomials and the performance of

our prediction. From these plots, we still could see that our prediction method with additive

Holt-Winters method could effectively predict most of the coefficients. But compared with

the first order polynomial, our residual gets larger. It might because the higher degrees of

polynomial we have, the more coefficients we need to predict, it means the more slight errors

we have to consider. Then, we continue applying our method to the model with three degree

of polynomial and check the performance of our method. Those following six plots (figure

6.9, 6.10, 6.11, 6.12, 6.13,and 6.14) are the coefficients of three degree of polynomials in our

model. These plots show that, the coefficients with high degree of polynomials do provide

larger standard error. So, our performance becomes worse than prediction with first order

polynomial and second order polynomials.

Figure 6.15 shows the example of fitting different degrees of polynomials to estimate

the temperature values with the residuals. While increasing degrees of polynomials, it is

evident that the residuals for the model become worse. It is because we need to predict

more coefficients with high polynomials and sum up all the variables. So we use first order

to do the temporal extrapolation with small residual. And our model become better as the

experiment time goes long since the residuals become smaller and smaller.
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Figure 6.15: Residual for Prediction with Different Polynomials
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6.3 Evaluation of Temporal Model

To prove our temporal model selection effective as described above, which could predict

sensor values for next several time steps, we are trying to verify our predictions against real

weather prediction model. One thing should be mentioned is that this prediction is not

equivalent to weather forecasting, but predict sensor values crossing different domains.

At this time, we collect five weather variables, additional variable is humidity to prove our

temporal model mutable and widely used. After two periods of model formed, our temporal

model selection scheme could predict next time step model automatically. In the other word,

It could provide the next time step sensor values according to other domain sensors’ values.

Figure 6.16 shows the following one step prediction proformance in short term, while

our scheme just formed. The x axis is the actual value of temperature. The y aixs is

the predict value of temperature. The black circles in the figure represent the temperature

from real weather prediction model at one time step in different sensor stations. The blue

crosses represent the temperature from our temporal model. This figure clearly shows the

effectiveness of our model to predict sensor value in the data, especially when it becomes as

the same accurate as real weather model.

Figure 6.17 is also a following one step prediction proformance at 16 on Dec. 16, 2012,

after our temporal model formed one month later. Our prediction values still have a great

performance.

Table 6.1: Percentage of Mean Squared Error

Mean Squared Error Percentage

0<Mean Squared Error ≤ 1 65.8%
1< Mean Squared Error ≤ 4 23.6%
4< Mean Squared Error ≤ 9 9.5%
Residual > 9 1.1%
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Figure 6.16: Temporal Extrapolation For Temperature In Short Term
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Figure 6.17: Temporal Extrapolation For Temperature one month later
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To further demonstrate this conclusion, we observe the mean squared error between tem-

poral model values and actual values for each time step in Table 6.1. Total number of tem-

poral model is 918, 65.8% temporal model of mean squared error is less than 1 degree, 23.6%

temporal model of mean squared error is between 1 and 2. So, there is 89.4% of models could

provide high accurate and good performance. Meanwhile, the mean squared error between

real weather prediction model and actual values is 1.36 degree and the mean squared error of

our model is -0.544. At the same time, the CDFs of Holt-Winters prediction and real weather

prediction in Figure 6.18, and the time series plot of mean squared error (round to integer)

with time series in Figure 6.19, all of these also prove that our Holt-Winter extrapolation

model could provide as the same great performance as the accurate sensor values.

51



Mean Squared Errors of Real prediction and Holt−Winters

Time(Day)

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

0 10 20 30 40

0
5

1
0

1
5

real predict(Integer)

HW predict(Integer)
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CHAPTER 7

CONCLUSION

In this paper, we have analyzed several sensors data relationship, implemented a method

for spatial model and temporal model to detect sensor values no matter at different spatial

coordinates at an instant time or detect the expected value of sensors at all coordinates in

next several time step. Our spatial model is modeling of different domain sensor data based

on multiple regression, and temporal model utilizes exponential smoothing to evaluate next

time step model. Our temporal model shows promise in detecting next time step sensor data

values, provides great performance in evaluating next one time step model in weather sensing

application, and as the same as real weather prediction model, especially under the situation

that add additional sensor data, then re-do the prediction. It could illustrate that our model

is not domain specific, and could be applied in any application domains with continuous

sensor data of Cyber-Physical System. We do believe our research could help setting up a

scalable deployment of Cyber-Physical System.

53



BIBLIOGRAPHY

[1] C.-W. Ten, C.-C. Liu, and Manimaran, G. Vulnerability assessment of cybersecurity for

scada systems. Power Systems, IEEE Transactions, 4 (2008).

[2] Cheng, A. M. K. Cyber-physical medical and medication systems.

[3] Cyril Voyant, Marc Muselli, Christophe Paoli Marie-Laure Nivet. Numerical weather

prediction (nwp) and hybrid arma/ann model to predict global radiation. Energy (2012).

[4] H. F. Wedde, S. Lehnhoff, C. Rehtanz, and O.Krause. Distributed embedded real-time

systems and beyond: A vision of future road vehicle management. 34th Euromicro

Conference Software Engineering and Advanced Applications, 3–5 (2008).

[5] J.F.Ojo. On the performance and estimation of spectral and bispectral analysis of time

series data. Asian Journal of Mathematics and Statistics (2008).

[6] L. Sha, S. Gopalakrishnan, X. Liu, and Wang, Q. Cyber-physical systems: A new

frontier.

[7] Lee, Edward A. Cps foundations.

[8] M. Ilic, L. Xie, U. Khan, and Moura, J. Modeling future cyber- physical energy systems.

Power and Energy Society General Meeting - Conversion and Delivery of Electrical

Energy in the 21st Century, IEEE, 19 (2008).

[9] Ma, Q., and Steenkiste, P. A weather forecasting system using concept of soft com-

puting: A new approach. In International Conference on Advanced Computing and

Communications (2006), pp. 353–356.

54



[10] Paras, Sanjay Mathur, Avinash Kumar, and Chandra, Mahesh. A feature based neural

network model for weather forecasting. World Academy of Science, Engineering and

Technology (2007).

[11] Work, Daniel B., and Bayen, Alexandre M. Impacts of the mobile internet on trans-

portation cyberphysical systems: Trafc monitoring using smartphones.

[12] Y. Gu, A. McCallum, and Towsley, D. Detecting anomalies in network traffic using

maximum entropy estimation, Oct. 2005.

55


	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2013

	Analysis Of Sensor Data In Cyber-physical System
	Xianglong Kong

	ANALYSIS OF SENSOR DATA IN CYBER-PHYSICAL SYSTEM

