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ABSTRACT

INTERFERENCE CANCELLATION IN WIDEBAND RECEIVERS
USING COMPRESSED SENSING

FEBRUARY 2013

TEJASWI CHAITANYA PEYYETI

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Dennis L. Goeckel

Previous approach for narrowband interference cancellation based on compressed sens-

ing (CS) in wideband receivers uses orthogonal projections to project away from the inter-

ference. This is not effective in the presence of nonlinear LNA (low noise amplifier) and

finite bit ADCs (analog-to-digital converters) due to the fact that the nonidealities present

will result in irresolvable intermodulation components and corrupt the signal reconstruc-

tion. Cancelling out the interferer before reaching the LNA thus becomes very important. A

CS measurement matrix with randomly placed zeros in the frequency domain helps in this

regard by removing the effect of interference when the signal measurements are performed

before the LNA. Using this idea, under much idealized hardware assumptions impressive

performance is obtained.

The use of binary sequences which makes the hardware implementation simplistic is

investigated in this thesis. Searching sequences with many spectral nulls turns out to be

nontrivial. A theoretical approach for estimating probability of nulls is provided to reduce

significant computational effort in the search and is shown to be close to actual search iter-

ations. The use of real binary sequences (generated using ideal switches) obtained through
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the search does not do better compared to the orthogonal projection method in the presence

of nonlinear LNA.
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CHAPTER 1

INTRODUCTION

Narrowband interference in wideband wireless systems can result in the saturation of

the RF front-end and a high bit error rate with a severe drop in the receiver sensitivity. These

RF(radio frequency) impairments are largely caused by nonlinear blocks such as the LNA

(low noise amplifier) in the front end [20]. Approaches to the mitigation of this problem

have focused on the use of filters for removing the out-of-band signals or to cancel out the

in-band interferer [9] under the assumption of knowledge of the interferer. These come

with the price of additional nonlinearity and implementation complexity. In this context,

this thesis is focused on the extraction of weak signals in strong interference in wideband

systems through the use of approaches based on compressed sensing. The previous work

in this area uses orthogonal projections at baseband to cancel out interference and filter the

signal of interest [15]. But in reality, the nonlinearities in the front-end due to the LNA and

the inaccurate quantization of finite resolution ADCs (analog-to-digital converters) affects

the reconstruction severely and thus in practice these projection approaches often show

no tangible interference cancellation. In this thesis, we propose a different interference

cancellation method using the insertion of frequency domain nulls in the measurement

matrix in a compressed sensing system.

1.1 Wideband interference problem

The system bandwidth of wireless communication devices in the future will be huge

due to the need to accommodate advanced communication systems such as cognitive and

software radios, surveillance applications, multi-function radios, environmental sensing
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etc. In particular, radio receivers that are reconfigurable and highly-flexible are needed

in order to meet these demands. For applications such as cognitive radio, a very wide

bandwidth (of the order of GHz) needs to be monitored by the receivers. The presence

of interfering signals cannot be neglected in such a wide band, as their presence heavily

impacts the performance of receivers in resolving the weak signals of interest. Traditional

receivers consist of downconversion blocks followed by digitization by ADCs (analog-to-

digital converter) and the backend DSP (digital signal processor) where the signal process-

ing matched to the application is done. The presence of high power interferers which are

often due to an interfering transmitter being very near to the receivers raise the dynamic

range requirements of the ADC in the front end. However, it is known that ADCs at very

high bandwidths are complex and consume high power [19]. In this regard, newly emerged

compressed sensing-based hardware architectures [11, 13, 14] have been built and imple-

mented successfully where the sampling can be done at the information rate rather than

the Nyquist rate by employing certain nonlinear reconstruction techniques. By assuming a

linear model for the RF front-end processing, current techniques of interference mitigation

based on compressed sensing [15, 16] have primarily concentrated on utilizing the DSP to

project away from the interference. But this linearity assumption is not realistic as circuit

designers cannot avoid having some nonlinearity in components such as LNAs.

Methods such as tunable filters or MEMs filters [9] that mitigate interference before

reaching the LNA add noise and bring their own nonlinearity, so are not an attractive solu-

tion. To make the front-end linear, a high value of IIP3 (third order input referred intercept

point) is required. LNA designs have been built to achieve good values of IIP3, but these

involve complicated digitial signal processing [10]. Hence these solutions have not been

commercially deployed yet, leaving the wideband interference problem open. Thus, the

goal of this thesis is to develop algorithmic methods to combat the challenging problem of

interference mitigation in the presence of nonlinearities in the receiver front-end of wide-

band wireless communication systems.
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1.2 Compressed Sensing

As the data rates in a wide range of applications rise, there is a growing need to effi-

ciently acquire, store and process such a high deluge of data. This requirement places a

massive burden on ADCs whose sampling rates cannot scale to meet this demand. More-

over with each bit of increased resolution comes increased power consumption, cost and

complexity [19]. Compressed Sensing (CS) has emerged as a framework that can decrease

signal acquisition cost at the sensing stage by operating on a small set of non-adaptive, lin-

ear and mostly randomized measurements resulting in acquisition and compression at the

same time. CS relies on the fact that most signals in nature are sparse in a certain domain.

This means that they can be represented by a reduced set of coefficients (say K) in that

domain. Then the sparsity of the signal is said to be K.

The standard CS framework entails recovering a signal x of size N from measurements

y of size M << N which are obtained by using y = φx where φ is the CS matrix of size

M x N . The solution involves design of the measurement matrix φ such that the linear

dimensionality reduction from x ∈ RN to y ∈ RM does not affect the recovery of important

information of the signal x and also allows the reconstruction algorithm to get back x from

as low as possible number of measurements.

CS has been the major motivating force in many real-world applications involving data

compression and acquisition, channel coding and inverse problems [7]. The most popu-

lar ones in the circuits and systems community are the single-pixel camera [12] and the

Analog-to-Information converter [11].

1.3 Interference cancellation in the frequency domain

As stated in Section 1.1 above, the main problem is the presence of nonlinearities in

the front-end which significantly influence the interference mitigation. In the new system

that is developed in this thesis, as shown in Figure 1.1, the sensing stage is moved in

front of the LNA to protect the system from the inherent nonlinearity. This might increase

3



Figure 1.1. Block diagram of a single branch of the receiver envisioned: x(t) is the weak
message signal buried under strong interferer xI(t) and n(t) is the noise. The goal is to
make ṽ[n] interference-free and achieve efficient CS reconstruction. Under the proposed
method φi(t) is obtained from the offline search block

the noise figure of the system on the whole, but it can be compensated by gain in the

reconstruction, which is demonstrated in Chapter 3. Our goal is to make use of zeros or

nulls in the frequency domain to create the opportunity for interference mitigation right

at the sensing stage of the receiver. The measurement matrix φ is implemented by using

projection waveforms φi(t). Since the design of these waveforms is not arbitrary in view

of the hardware implementation, we consider binary sequences as they have the potential

to form very good CS matrices and their implementation in hardware is simple and viable.

The design of these sequences such that they cancel narrowband interference forms the

core problem in this thesis. This problem reduces to a random search for good sequences,

the analyses of which is the main topic considered here.

1.4 Contribution

It will be proved with simulation results that interference cancellation methods can-

not be designed by ignoring nonlinear front-end blocks. Also a new mitigation method

will be proposed as an alternative to this which uses spectral nulls to cancel out the inter-

ferer before entering the LNA of the receiver. But when binary sequences are used for the

proposed method, it is non-trivial to obtain sequences that will help in nulling out the in-

terferer and thus a substantial amount of search is required. The major contribution of this
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thesis is an analytical approach to estimate the probability of occurrence of nulls in binary

sequences. This can then be used by the system designer to choose appropriate system pa-

rameters without initiating a large number of futile (and costly) searches. The use of binary

sequences in the presence of nonlinear LNA will be investigated and compared with OPM.

This thesis is organized as follows: an outline of compressed sensing results is given in

the Chapter 2, followed by Chapter 3 where the description of the wideband interference

problem, the demerits of previous CS-based approach and the description of the proposed

method using ideal switches will be detailed accompanied by appropriate simulation re-

sults. We will look at the search methods associated with switch sequence design and

results indicating their performance in Chapter 4.
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CHAPTER 2

COMPRESSIVE SENSING BACKGROUND

Sparsity provides a way to compress acquired information and helps to improve the

efficiency of data acquisition protocols. It leads to dimensionality reduction and efficient

modeling. As typical signals have some structure, they can be compressed efficiently with-

out much perceptual loss. For example, JPEG2000 exploits the fact that many signals have

a sparse representation in a fixed basis, meaning that one can store or transmit only a small

number of adaptively chosen transform coefficients rather than all the signal samples. Ac-

quiring the full signal, computing the complete set of transform coefficients followed by

encoding the largest coefficients and discarding all others is a wasteful process of mas-

sive data acquisition followed by compression. If it would be possible to acquire the data

in already compressed form, the efficiency of data acquisition would potentially be vastly

improved. Compressed sensing has evolved from these thoughts.

Taking the example of wideband radio frequency signal analysis, we may only be able

to acquire a signal at a rate which is much lower than the Nyquist rate. Because of the

current limitations in ADC technology, this motivates CS as a wideband signal acquisition

protocol in communications, as CS can sample less with a non-adaptive nature and yet still

reconstruct signals accurately. Using CS-based architectures in place of costly and cumber-

some ADCs is very rewarding in the sense that we can sample much lower than the Nyquist

rate [11] and potentially reconstruct the signal as good as the reconstruction performed by

Nyquist rate ADCs. It needs to be pointed out that CS measurements are sometimes af-

fected by pre-measurement noise, whence resulting in a phenomenon called noise-folding

which impacts the SNR (signal to noise ratio) of the signal/vector to be recovered signif-
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icantly if the pre-measurement noise is large enough. But it has been proved that even in

the presence of pre-measurement noise, CS results hold up well [8].

Fundamental premises:

A signal x is said to be k-sparse if its support {i : xi 6= 0 } is of cardinality less than or

equal to k. For example a signal which is dense in the time domain (or continuous) might be

represented completely by a highly reduced set of samples in the Fourier domain. Similarly

we can discard most of the coefficients of an image when it is represented in the DCT

(Discrete Cosine Transform) domain due to the fact that most of its visually perceptible

features are present in a small set of non-zero coefficients.

Speaking in general terms, the reconstruction problem can be stated as: build a vector

x ∈ RN by acquiring linear measurements y about x of the form

y = φx (2.1)

where y is the vector of compressive measurements acquired of the original signal x and

y ∈ RM and φ is an MxN matrix. If the matrix φ has orthogonal columns, then x can be

recovered by using φ−1y. But we are concentrating on low-rate sampling methods with

the size of φ being M by N where M � N . Then the recovery using (2.1) becomes an

insufficiently posed inverse problem. If x is k-sparse, then it is possible[1, 2] to reconstruct

the whole signal by solving a convex optimization problem:

x̃ = arg min
x∈RN
‖x‖1 subject to y = φx (2.2)

where x̃ is the reconstructed signal and x̃ ∈ RN.

2.1 Sensing matrices

Let x(t) =
∑n

i=1 αiψi(t), where ψ is the matrix with columns ψi which are mutually

orthogonal and ψ is a basis in which x can be sparsely represented with no more than k
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non-zero coefficients. If x is represented in its sparsity basis ψ, we can express it as x = ψα

or α = ψ∗x. Let us introduce a matrix A here of size M by N such that φ = Aψ and so

write y = Ax. For recovery from small number of measurements to be possible in CS, the

matrixA needs to be incoherent or uncorrelated with ψ. Coherence can be referred to as the

largest correlation between any two elements of A and ψ. Now, the coherence µ between

A and ψ can be defined as follows,

µ(A,ψ) ≡
√
n · max

1<k,j<n
|〈Ak, ψj〉| (2.3)

and is bounded as 1 ≤ µ(A,ψ) ≤
√
n. For compressed sensing, the structured matrix

A needs to be chosen such that it is maximally incoherent with ψ which means that the

value µ should be as close to 1 as possible. When A = ψ , µ =
√
n and the coherence is

maximized, which means no compressed sensing is possible.

2.2 Null space conditions

To have the ability to recover all sparse vector x from the observation A, the null space

N (A) of matrix φ must not contain any vectors in the set
∑

2k of all 2k-sparse vectors.

The null space property quantifies the fact that any vector in the null space of matrix φ

should not be too concentrated on a small subset of indices.This also holds for any recovery

algorithm using a sensing matrix φ. For a matrix of null space property of order k, it should

hold

‖hΛ‖2 ≤ C
‖hΛc‖1√

k
(2.4)

where hΛ denotes any vector h ∈ N (φ) with indices corresponding to all Λ1 such that

|Λ| ≤ k [6] for some constant C.

So, if h is exactly k-sparse there exists Λ such that ‖hΛc‖1 = 0 which means the only

k-sparse vector in the null space of φ will be h = 0 from the above relation.

1Λ is such that Λ ⊂ {1, 2, 3...N} and let Λc be the complement of Λ which is {1, 2, 3...N} - Λ
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2.3 Restricted Isometry Property

The construction of the sensing matrix needs to be done according to the Restricted

Isometry Property (RIP) which is defined as follows: for δ ∈ (0,1) and for all x ∈
∑

k

(1− δ)‖x‖2
2 ≤ ‖φx‖2

2 ≤ (1 + δ)‖x‖2
2 (2.5)

where δ is called RIP constant. This property can be explained as follows: if φ is an

orthogonal matrix, then φ is an isometry, and δ = 0 for any k, which is the best possible

constant. Increasing the number of rows to a matrix φ will improve (i.e., decrease) its RIP

constant. When the above property holds, φ approximately preserves the Euclidean length

of k-sparse signals, which in turn implies that k-sparse vectors cannot be in the null space

of φ. A parallel explanation of the RIP is to say that all subsets of k columns taken from

φ are nearly orthogonal. The columns of φ cannot be exactly orthogonal since there are

more columns than rows. Let δ2k denote the RIP constant concerning the reconstruction of

a 2k-sparse signal. Suppose that δ2k is sufficiently less than one. This implies all pair-wise

distances between k-sparse signals must be well preserved in the measurement space. If x1

and x2 are 2 distinct k-sparse signals, the RIP becomes,

(1− δ2k)‖x1 − x2‖2
2 ≤ ‖φ(x1 − x2)‖2

2 ≤ (1 + δ2k)‖x1 − x2‖2
2

For a different perspective assume δ2k = 1; this implies

φ(x1 − x2) = 0

and the measurement vector y is the same for two distinct signals x1 and x2. Therefore, for

any recovery algorithm, the choice of measurement matrix should be such that δ2k < 1.

9



Theorem 1. (Theorem 1.8 of [6]) Suppose that φ satisfies the RIP of order 2k with δ2k <
√

2− 1 and we obtain measurements of the form y = φx. The solution x̃ to (2.2) obeys

‖x̃− x‖2 ≤ C0.
σk(x)1√

k

This theorem states that one can recover a k-sparse signal x exactly provided φ satisfies

RIP.

Recovery of compressible signals:

Signals or vectors may not be always sparse, but they can be compressible meaning they

can be well-approximated by a sparse signal. These are referred to as compressible or near-

sparse signals. For a compressible signal x we can estimate the level of compressibility by

finding the error in comparison with any sparse signal x̃ ∈
∑

k by the Lp norm,

σk(x)p = min
x̃∈

∑
k

‖x− x̃‖p (2.6)

If x ∈
∑

k then it means σk(x)p = 0 for any p. A common assumption is that the co-

efficients of the signal x̃ though not exactly sparse in a transform domain, might have

coefficients that decay according to a power law. In particular consider x = ψα and sort

the coefficients αi such that |α1| ≥ |α2| . . . . ≥ |αn|. Then, it can be said that the

coefficients obey a power law decay if there exist constants C1, q such that,

|αi| ≤ C1i
−q

As q increases, the coefficients α decay faster and so the compressible signal x can be

represented accurately using only k � N coefficients [6].

2.4 Signal recovery in the presence of noise

As stated in (2.2) the k- sparse signal x can be recovered using L1-norm minimization

under the measurement matrix conditions explained in previous sections. But the same

10



method of recovery cannot be applied when the signal or vector contains noise, that is

y = φx + n with n being the noise in the measurements. However, an extension to the

algorithm (2.2) can be used which can be stated formally as,

x̃ = arg min
x∈RN
‖x‖1 subject to ‖y − φx‖2 ≤ ε (2.7)

where ε ≥ ‖n‖2 and this method is known as Basis Pursuit with Denoising(BPDN).

Theorem 2. (Theorem 1.9 of [6]) Suppose that A satisfies the RIP of order 2k with δ2k <
√

2− 1 and let y = φx+ e where ‖e‖2 ≤ ε. The solution x̃ to (2.7) obeys

‖x̃− x‖2 ≤ C0
σk(x)1√

x
+ C2ε

where

C0 = 2
1− (1−

√
2)δ2k

1− (1 +
√

2)δ2k

, C2 = 4

√
1 + δ2k

1− (1 +
√

2)δ2k

.

This theorem gives a guarantee for deterministic measurement matrices, but it is a prob-

lem of combinatorial complexity to verify the RIP for a given deterministic matrix. Ran-

dom matrices with a fixed number of rows M have very good RIP constant δ2k with high

probability.

2.5 Sensing matrices that satisfy RIP

We need to design a sensing matrix that can recover all N entries of x using M mea-

surements. To maintain orthogonality of a matrix φ with more columns than rows means

that for a given structured matrix φ, we would need to verify the orthogonality each of

the
(
N
k

)
different combinations of sub-matrices (for recovery of k-sparse signals). Ran-

domizing the matrix entries has been the key step towards building effective measurement

matrices in Compressed Sensing. A matrix A whose entries are drawn in an independent

and identically distributed manner from a random distribution has been proven to obey the
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RIP with high probability [3]. Gaussian, Bernoulli and generally any sub-Gaussian distri-

bution can be used for this purpose. Mathematically, it has been shown that A obeys the

RIP of order 2k with constant δ2k with probability atleast 1− 2 · exp (−c1δ
2
2kM) where c1

is a constant, if the entries of φ are chosen according to such distributions and the number

of rows M of φ is

M ≥ k log(n/k)/δ2
2k [6] (2.8)

2.6 Orthogonal Projection Method

CS has motivated application in interesting scenarios. One such has been interference

rejection where the measurements are made away from the interference subspace when

it is known that interferer and desired signal are both sparse in the same domain. The

basic premise is to build an orthogonal operator P such that when the measurements y

are multiplied by P such that the product Pφ obeys the RIP [15], that is Py = Pφx =

Pφ(xS + xI) = PφxS where xS is the desired signal and xI is the inteferer. The design of

the method is such that the spectral components of the interference will be in the nullspace

of the projection matrix or operator, P . The construction of the operator depends on the

knowledge of the interference. Let φJ denote the matrix formed by indexing the columns

of φ by a set J . Assuming an identity basis for the sparsity domain of xI , if J is the set of

indices corresponding to the position of one in each of the basis vectors, then product φxI

will lie in the range of φJ , R(φJ). Then, the operator P is built such that its nullspace is

equivalent to rangeR(φJ) [15].

An implementation of P is given in [15] as,

P = I − φJφ†J , where φ†J is the pseudo-inverse of φJ

and pseudo-inverse is evaluated as, φ†J = (φ∗JφJ)−1φ∗J .
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This method of interference cancellation will be referred to as Orthogonal Projection

Method in this thesis. In the Chapter 3, the performance of the receiver where this scheme

is employed will be analyzed under linear and nonlinear front-end scenarios.
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CHAPTER 3

SWITCH SEQUENCE DESIGN

In this chapter, we will look at the design of rows of the measurement matrix φ with a

goal towards easily implementing them in hardware. As stated in Chapter 2, a matrix made

of elements drawn from i.i.d. Bernoulli distribution can form a very good CS measurement

matrix and also can built in hardware with the use of switches.

First, we will look at some of the important aspects concerning wideband receivers,

potential examples of interference and the problems associated with interference mitigation

using compressed sensing proposed prior to this project.

3.1 Design aspects for wideband receivers

Futuristic communication systems based on promising areas such as software radio,

cognitive radios unlike the present RF receivers would need to receive any modulation

across a large frequency spectrum using a wideband RF front-end module with several

GHz bandwidth. The system starts initially with a wide bandwidth suited for a gamut of

applications and then down-selects in a reconfigurable way the required narrow bandwidth

signals which can then be digitized with a low power ADC. As stated earlier the presence of

interference is ubiquitous, especially in wireless systems. Nonlinearities in the analog front

end make the interference significantly harmful, predominantly when the desired signal

is weak. Detection of weak wideband signals in the presence of interference also faces

the problem of inadequate quantization due to limited dynamic range of ADCs. Low-cost

ADCs cannot simultaneously offer both high sampling rate and high quantization resolution

[19]. Attempts to solve these problems until now have focussed on mitigating the interferer
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Figure 3.1. Presence of interference in a wideband spectrum, whereXI1 andXI2 represent
interferers in the same band as message signals m1 −m5

following the analog front end where there is combination of low noise amplifiers(LNAs)

and down conversion mixers.

3.2 Examples of interference

WiFi1 networks (802.11 b/g/n/ac) are the major victim of interference effects from de-

vices like cordless telephones which use the 2.4 GHz frequency band as does the WiFi

network [23]. This can easily cause a reduction in data rates or complete jamming of

WiFi signals whenever a phone conversation takes place. The microwave oven and video

senders like CCTV (closed circuit television) cameras are also sources of interference for

WiFi channels as they operate in the same band as WiFi. Though the microwave oven

signals have poor shielding, their duty cycle is less than 50 percent which has helped in

making WiFi signals to adapt accordingly and prevent interference. Video senders have

10MHz bandwidth and use bands adjacent to WiFi channels, and often are closer to the

receiver and hence become high power interference to WiFi. This results in high packet

1Wireless Fidelity ( IEEE 802.11 standard)

15



Figure 3.2. Block Diagram of a prototypical wideband receiver.

loss, decrease in throughput and lowering of receiver sensitvity [23]. These effects become

prominent considering the gamut of applications of future receivers have to cater to.

The numerous unused free channels available in the range of operation of US TV sta-

tions can be used for cognitive radios. But the adjacent channels might have signals at much

higher power which can become powerful blocker signals and reduce the dynamic range of

receivers using the free space. A second band of interest might stretch from 800 MHz to

6 GHz where GSM2, WCDMA3, WiMAX4, WLAN5 signals co-exist and can be interfer-

ers [18]. The strongest is GSM at 900MHz. The signal level received at one meter from

a GSM handset is of the order of 1mW, whereas a cognitive radio in an adjacent channel

would need to be able to receive signals with power less than 1pW. Although the interferers

are at different frequencies than the white space channels, nonlinearities in the initial stages

2Global system for mobile communications

3Wideband code division multiple access

4Wireless interoperability for microwave access

5Wireless local area connection
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Figure 3.3. Performance of Orthogonal Projection Method (OPM) using different ADCs
to analyze the effect of ADC bit resolution on the reconstruction when OPM is used. For
this simulation, an interference of 80dB with a linear front end was used.

of the wideband receiver cause the larger signals to distort, or block, the smaller signals.

The presence of LTE-TDD6 and LTE-FDD7 bands (downlink as well as uplink) very close

to WiFi channels calls for strict co-existence rules to prevent such kind of interference and

out-of-band noise.

3.3 Sparse measurement matrices

Inference can be drawn from [5] about measurement sparsity which means using ma-

trices with zeros present in each row for compressed sensing. It gives sharper bounds on

the number of measurements required for good recovery for Gaussian or sub- Gaussian

measurement matrices with dense rows when compared to standard compressed sensing

results.

6Long term evolution - time division duplex

7Long term evolution - frequency division duplex
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The choice of using Gaussian measurement ensemble in compressed sensing produces

highly dense matrices, which may lead to very high computational complexity and storage

requirements. Impressively, sparse measurement matrices can also lead to fast decoding

algorithms by using problem structure at the same time reducing demand on storage and

processing hardware. The downside though is measurement sparsity can potentially reduce

statistical efficiency by requiring a higher number of measurements to recover the signal.

By intuition the nonzeros in the signal may rarely align with the nonzeros in a sparse

measurement matrix. We will try to leverage this idea of using sparsity in the measurement

matrix to overcome some of the problems associated with interference cancellation using

compressed sensing.

3.4 Interference cancellation using compressed sensing

3.4.1 Previous approaches to the problem

Compressed sensing has been used to remove interference under the assumption that

the subspace in which interference is sparse is known. This knowledge helps us to project

the compressive measurements orthogonally to this subspace thereby eliminating interfer-

ence completely [15]. This method, though very effective, needs to be implemented in the

DSP as it operates on the digital samples of input signal. This approach, referred to as

Orthogonal Projection Method (OPM) in this thesis has been introduced in the Chapter 2.

We know that in a receiver the front end is composed of the ADC and LNA apart from

the IF stages. The dynamic range of the receiver is dictated by the ADC effectively. If there

is a high power interferer in the frequency band being operated upon, the weak message

signal will get buried due to the power difference. Nonlinearities in the front end combined

with the presence of interference create additional signals at frequencies that are not just

harmonics of the interferer but also at sums and difference frequencies of the interferer

with the message signals. These are referred to as intermodulation(IM) products. In this

situation, proper digitization cannot be possible and subsequently the DSP cannot recover
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Figure 3.4. Spectrum of receiver band of interest with two inteferers at about 80 -
90dB higher than the single frequency message signal. We give this as input to LNA
to understand the effect of nonlinearities. Details for the figure (a) message signal is
5x10−6 sin (2π230t) (b) interferer signals are 0.1 sin (2π60t) and 0.1 sin (2π140t) (c) Non-
linear model used: if y is output of amplifier and x is the input, then y = 10x − 10x3 (d)
For the y-axis, we take 10 log10(|DFT |2) ( DFT is Discrete Fourier Transform )

.

the input message signal reliably. The performance of OPM using values of commonly

used low-power ADCs with a linear front end has been shown in the Figure 3.3 and it can

be seen we need completely linear front end along with a high dynamic range ADC to

extract good performance for this linear scheme.

A prototype of a wideband compressive receiver [17] was built based on [11] and [15].

While this offers a way to cancel interference using compressed sensing, the main drawback

of this architecture is the comfortable omission of nonlinear front end.

The block diagram of the prototypical compressive receiver is shown in Figure 3.2

where the front-end consists of the LNA, sensing branches and ADC, followed by the

backend DSP. Often the signal received is extremely weak necessitating the LNA in the
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Figure 3.5. Spectrum at the output of LNA with the assumed nonlinear model. As shown
the band of interest is corrupted by intermodulation products and harmonics.

front end. The input signal consists of the message signal x(t) with added noise n(t) due

to channel variations and distortions and the interference xI(t). The mathematical model

for the nonlinear LNA assumed in this thesis is:

y(t) = k1m(t) + k3m
3(t) (3.1)

where y(t) is output of LNA and m(t) is input and the parameters used are k1 = 10 and

k3 = −10.

As it can be seen there is a 3rd order term in the LNA which results in intermodulation

products in y(t). Let us consider the signalm(t) = 5∗10−6sin(4t)+0.1sin(5t)+0.1cos(3t)

with the last two terms being the interferers. Substituting this in (3.1) and expanding the

terms would result in harmonics(integer multiples), sum and difference products in which

the most problematic one would be a 3rd order interferer right on top of the message signal

frequency. We note here that the amplitude of message signal in this model is orders of
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magnitude lesser when compared to that of the interference. The power level of interference

xI(t) to message x(t) ratio is about 90dB. The effect of the harmonics and IM products is

illustrated in the Figures 3.4 and 3.5. When m(t) becomes input in the block diagram of

receiver shown in Figure 3.2, inserting the model of ideal LNA of (3.1), it becomes evident

that the two interferers and the message signal form many IM products as shown in Figure

3.5 which give rise to unnecessary additional signals in the receiver bandwidth making the

task of interference cancellation quite challenging. It can be seen that the IM products are

at a significantly higher power compared to the message signal. The method of [15] will

not be useful in such a situation. This is due to the fact that when using OPM, we are

projecting away from the interferer subspace which only cancels out the interferer signal

but not the IM products and harmonics.

3.4.2 Interference mitigation inspired by Frequency domain perspective using non-

linear switches

The knowledge of environment or of common interferers can be leveraged to develop

algorithms for interference cancellation using structured sparsity models accounting for

nonlinearity of analog-to-information converter.

One of the branches of block diagram of the new receiving system proposed is given in

Figure 1.1. Let x(t) + xI(t) + n(t) be denoted by m(t) which is the input to the receiver

branch and v̂[n] is the interference-free digital output of the DSP. This design does not have

the LNA as the first block in the receiver and so we can create the possibility of cancelling

the interferer before it reaches the LNA. This might increase the noise figure of the circuit

as a whole, but this can be compensated by the impressive gain in terms of interference

mitigation as shown in Figure 3.6. The sensing consists of M branches with a mixer and

integrator. The design for the simulations done for Figures 3.6, 3.7 is such that we hope to

achieve many interference-free branches by placing random zeros in the frequency domain

of the measurement vectors.
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Figure 3.6. Mean-squared error (MSE) in the reconstructed signal as a function of the
interferer-to-signal power. The graphic shows how OPM fails when an non-ideal LNA
is used and under the same conditions, the proposed method works well. Details: (1)
an OPM interference suppression approach with a more accurately modeled (nonlinear)
LNA in the RF front-end, (2) OPM interference suppression approach [15] with a linear
RF front-end and (3) proposed method under same model of nonlinear LNA following the
switches (assumed ideal here) used for interference rejection. The signal-to-noise ratio
(SNR) is 30 dB, the signal length is N = 1000, the message signal has sparsity k = 5
in the frequency domain, the number of measurements is M = 125 and the interferer is
narrowband (one-dimensional or single-tone). The average message signal amplitude is
0.5mV and interferer ranges from about 1mV to 1V. The nonlinear model of (3.1) has been
used for the LNA for this plot. The measurement matrices are drawn in an independent
and identically distributed (i.i.d.) manner from a Gaussian distribution for all schemes with
the proposed method randomly zeroes 40% entries in the frequency domain. Basis Pursuit
with Denoising (BPDN) is used for signal recovery in each case.

Measurement projection corresponds to random filtering of observed signal that zeroes

a certain set of bands. These branches can be determined and used for the measurement

matrix design in the subsequent compressive signal processing. The projections are created

by multiplying a time windowed version of input message signal with vectors generated

from nonlinear switches. Being drawn i.i.d. from a random distribution facilitates the

RIP maintenance of the columns of the final measurement matrix. We know according to

Parseval’s theorem that:
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Figure 3.7. Mean-squared error (MSE) in the reconstructed signal as a function of the
number of CS measurements/projections. The details are same as in the Figure 3.6 except
(1) the interference to message power is kept constant at 85dB (2) N = 500 (3) message
signal amplitude is 5uV (micro volts) and interferer is at about 0.1V. The plot referred to as
’CS recovery without interference’ is the scenario where there is no interferer in the system
and so results in the best MSE. It is helpful for comparing both OPM and proposed method.

∫
r(t) · h(t)dt =

∫
R(f) ·H∗(f)df

where R(f) and H(f) are the Fourier Transform of r(t) and h(t) respectively and H∗(f)

is conjugated version ofH(f). So from this result and from the fact that each measurement

is an inner product of measurement vector φi(t) with the message signal m(t), it is same as

multiplying in the frequency domain with the conjugated version of Fourier transform of

corresponding vector.

Now it can be seen that the insertion of zeros in frequency domain directly helps in can-

celling interference in message signal when the location of nulls coincides with frequency

location of the interferers. Although the presence of interference affected branches is quite

possible, due to the fact that the interference can be detected in the branches with unusually

high values, we can selectively use only those branches that are interference-free and re-

cover the message signal using the CS-based algorithms in the subsequent DSP. Intuitively,
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we would need more branches in this method than OPM, which can be compensated by

the gain in interference cancellation shown in Figure 3.7. The generation of the binary

sequences with the required properties is considered separately in the next chapter.

It can be seen that OPM works well until when are no prominent IM signals. When the

interferer is strong enough to cause severe IM products and harmonics, the technique ceases

to be effective and there is almost exponential subsequent increase in the mean square error.

On the other hand, the same technique works well for an ideal front-end (linear LNA) which

can be seen the Figure 3.6. The proposed method shows very good performance even in

the presence of nonlinear LNA as seen in the same figure.

The Figure 3.7 shows the comparison of the OPM and the proposed method under

the conditions of a nonlinear front end and a linear front end, operated on the interference

power ratio of 80dB and LNA mathematical model previously assumed. An infinite amount

of dynamic range was assumed for both the schemes. Each branch in the receiver refers

to one CS measurement. It can be seen that, increasing the number of branches has no

effect on OPM for a nonlinear front end with a high MSE depicting complete failure of

reconstruction. But the same scheme under a linear front end does perform almost close

to the CS recovery without any interference. On the contrary the proposed scheme shows

remarkable improvement with the increase in the number of branches in the sensing system

and almost converges to OPM under linear front end and CS without interference at around

30 times the sparsity.

Hence this would require that the rows in the measurement matrix need to have a num-

ber of nulls in their frequency response to aid in the cancellation of interferer at sensing

stage itself. If the choice was not important we could use a Gaussian measurement matrix.

The steps are:

1. Design the Gaussian matrix in frequency domain

2. Insert zeroes randomly in each of its rows
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3. Take IFFT8 of each row

4. Assuming the branches where interferer is cancelled can be distinguished, use rows

corresponding to these branches in sensing and recovery.

Using mixers for this purpose involves 2 problems. Mixers are nonlinear at large band-

widths and are difficult to build if φi(t) has amplitude modulation. We know that random

binary sequences form very good measurement matrix choice in terms of maintaining RIP

of the measurement matrix φ and minimum number of measurements required to recon-

struct the signal from its projections onto the binary vectors. These are also easy to be

generated in hardware using switches, bringing our interference cancellation scheme closer

to hardware.

To state formally, our core design problem is to design a collection of long binary

sequences whose discrete Fourier transform contains a lot of spectral nulls to facilitate

interference cancellation before entering nonlinear blocks of receiver.

8Inverse Fast Fourier Transform
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CHAPTER 4

SWITCH SEQUENCE SEARCH

The problem of interference cancellation in this thesis comes down to finding ran-

dom binary sequences that exhibit the unique property of having many nulls in their fre-

quency domain. From the system setup described in the Chapter 3 in the Figure 3.2, the

ith branch calculates the projection on the vector φi(t) by yi =
∫ T

0
u(t)φi(t)dt where

u(t) = x(t)+xI(t) (This is linear due to the fact that we placed the LNA after the switches

in our architecture). From Parseval’s theorem, we know that having nulls in the frequency

response of φi(t) facilitates the filtering of interferer components of u(t). Due to a simpler

hardware implementation, the projection vectors are generated by periodic on-off switching

instead of a mixer, as stated previously in Chapter 3. Then φ(t) can be written as,

φi(t) =
N−1∑
j=0

b
(i)
j p(t− jTs), (4.1)

where b(i)
j ∈ {0, 1}, and p(t) is a square pulse of width Ts and N is the dimensionality

of the signal to be reconstructed. Define a binary sequence b(i) = [b(i)
0 , ....., b

(i)
N−1]. The

problem of finding the optimum set of random binary sequences can be characterized as:

bopt = argmaxb∈{0,1}Nf(b) (4.2)

where f : {0, 1}N → R is the objective function that measures how good the sequence

b is in terms of interference cancellation. The problem given in (4.2) is called as pseudo-

Boolean optimization problem. It can be viewed as the problem of finding an optimum

object from a finite set of objects. It can be seen that brute force search is not feasible
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Figure 4.1. Steps in the search algorithm. The bestM rows refer to those that have spectral
nulls at the interferer frequency. Details for the parameters: (1) τ : The threshold which
defines whether a |DFT | bin is a null (2) ρ : The number of spectral nulls of a binary
sequence (3) M : Number of measurements or number of rows of measurement matrix, φ
(4) N : size of the sequence

for even nominal values of N , as it would be very difficult due to the size of the search

space S = {0, 1}N . In this thesis, we try to search for a collection of good sequences with

emphasis on finding specifically sequences exhibiting the property of many spectral nulls.

4.1 Sequence generation procedure

The approach is to generate the optimum random binary sequences off-line and use

them for the collection of measurements. The pool size S is the span of the search space

that we use to generate the required sequences for the matrix φ. It is needed that we obtain
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sequences that exhibit the property of having many spectral nulls. In order to define a null,

a threshold needs to be chosen. Let the threshold be denoted by τ . Let the number of

entries sought in the DFT of the binary sequence with magnitudes less than τ , be denoted

by ρ. This can be represented by,

φi = {x : fi(x) ≥ ρ} , xi ∈ S and S ∈ {0, 1}N (4.3)

where fi(x) is the number of entries in the DFT of x with magnitudes less than τ and φi is

the ith row of φ.

In other words, this means sequences with at least ρ nulls in the frequency domain

are needed for the system. It is understood that the selection of the parameters becomes

important. The algorithm can be divided into 2 stages for the sake of analysis. First,

the building up of the necessary sequences with fixed probability and size such that the

presence of spectral nulls is maximized. Second, the usage of such sequences for the

CS wideband system shown in Figure 3.2. In the next section the first stage is analyzed

theoretically so as to form an idea about selecting the parameters for the algorithm. As S

is increased, τ and ρ can be traded off to obtain much better results.

4.2 Analysis

It has been already stated that, finding binary sequences with a good number of spectral

nulls forms the most important part of the interference mitigation in the receiver. With

many spectral nulls, the probability of hitting the interferer increases and thus helps in

interference cancellation. But finding real sequences of such nature is non-trivial and will

need knowledge of how to choose parameters such as τ , ρ defined above before embarking

on the search for sequences. The approach here is to model the probability of finding such

sequences theoretically. This is to obtain enough information in picking τ and ρ so as to

estimate the amount of search that needs to be done. We start by looking at the distribution
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of the discrete Fourier transform of binary sequences. The binary sequences are modeled

as shown in (4.1). Taking the DFT of φi,

Ωi(k) =
N∑
n=1

φi[n] exp(−j2π k
N
n) (4.4)

It is known that Bernoulli matrices with elements being {−1,+1} obey the RIP with

high probability [3]. But when the elements are {0, 1} instead, RIP based results cannot

be applied [22] as these matrices follow RIP for substantially higher number of rows. The

number of rows is proportional to k2 for {0, 1} matrices as opposed to O(k log(n)) when

using {−1,+1} matrices [22] [21].

If bk is kth value in the binary sequence φi , then let p = 0.5 and so P(bk = 1) = 0.5 and

P(bk = 0) = 0.5. For this probability, the mean and variance of the real and imaginary parts

of the DFT are calculated as follows:

Let ΩR denote the random variable for the real part of the Fourier coefficients and ΩI

denote the random variable for the imaginary part.

Ω(k) = ΩR(k) + jΩI(k), and

|Ω(k)| =
√

Ω2
R(k) + Ω2

I(k) (4.5)

Evaluating the mean of the real part,

E(ΩR(k)) = E(
N∑
n=1

x(n) cos(2πn
k

N
))

=
N∑
n=1

E(x(n)) cos(2πn
k

N
), moving the expectation inside the summation

= 0.5 ∗ 0, as cosine sums to zero in one period ( considering k = 1, 2, 3...N − 1)

= 0
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The imaginary part can also be shown to have an expectation of zero in the similar

manner. Consider the variance of the random variable:

σ2 = E{
N∑
m=1

N∑
n=1

x(m)x(n) cos(2πm
k

N
) cos(2πn

k

N
)}

= E{
N∑
m=1

when m 6=n

N∑
n=1

x(m)x(n) cos(2πm
k

N
) cos(2πn

k

N
)}+ E{

N∑
m=1

when m=n

x2(m) cos2(2πm
k

N
)}

Using the trigonometric identity 2 cos2(A) = 1 + cos(2A)

=
N∑
m=1

N∑
n=1

when m6=n

E{x(m)x(n)}{1

2
[ cos(2πk

(m + n)

N
) + cos(2πk

(m − n)

N
) ]}

+
N∑
m=1

when m=n

E{x2(m)}{
1 + cos(4πkm

N
)

2
}

= 0.5
N∑
m=1

when m 6=n

(0) + 0.5
N∑
m=1

when m=n

(0.5) + 0.5
N∑
m=1

when m=n

0.5 cos(4πk
m

N
)

Using the same argument that cosine sums to zero in one period, when k = 1, 2, 3...N − 1

=
N
4

The imaginary part can also be shown to have a variance of N
4

in the similar manner.

We know from the CLT (Central Limit Theorem) that the sum of large number of i.i.d.

random variables each with finite mean and variance will approximately follow the normal

distribution. Applying the CLT,

ΩR ∼ N (0,
N
4

)

ΩI ∼ N (0,
N
4

)

which means Ω as defined in (4.5) would follow a Rayleigh distribution with scale parame-

ter σ. Assuming w to be a Rayleigh random variable, recalling the pdf (probability density

function) of Rayleigh distribution:
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Figure 4.2. Cumulative distribution of magnitude spectrum of a random binary sequence
with success probability of 0.5. The DC component has not been shown in the figure.

P(w) =
w

σ2
exp(− w2

2σ2
) , for w ≥ 0

= 0 , otherwise

where σ is the standard deviation of the Gaussian distribution.

Next, two different methods are employed to find the probability of obtaining good

sequences for given values of τ and ρ.

As the Fourier coefficients are evaluated in the DFT from the same sequence, it needs

to be checked if they are correlated. Let |Ωi| = X . Evaluating the covariance between

different Fourier coefficients,
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Figure 4.3. Steps in the analysis. Details for the parameters are same as in Figure 4.1.

σX(k),X(l) = E[ X(k)X(l) ]− E[ X(k) ]E[ X(l) ]

= E[ (
N∑
m=1

x[m] exp(−j2πkm
N

) )(
N∑
n=1

x[n] exp(−j2πl n
N

) ) ]− 0,

mean is zero as shown above

= E[(
N∑
m=1

x[m] cos(2πk
m

N
)− jx[m] sin(2πk

m

N
))(

N∑
n=1

x[n] cos(2πl
n

N
)− jx[n] sin(2πl

n

N
))]

Using trigonometric identities this can be simplified into,
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= E[
N∑
m=1

N∑
n=1

x[m]x[n] cos(2π
(mk + nl)

N
)− j

N∑
m=1

N∑
n=1

x[m]x[n] sin(2π
(mk + nl)

N
) ]

= E[
N∑
m=1

when m=n

x2[m] cos(2π
(m(k + l))

N
) +

N∑
m=1

when m6=n

N∑
n=1

x[m]x[n] cos(2π
(mk + nl)

N
)

− j
N∑
m=1

when m=n

x2[m] sin(2π
(m(k + l))

N
)− j

N∑
m=1

when m6=n

N∑
n=1

x[m]x[n] sin(2π
(mk + nl)

N
)]

After moving the expectation inside,

= [
N∑
m=1

when m=n

E(x2[m]) cos(2π
(m(k + l))

N
) +

N∑
m=1

when m 6=n

N∑
n=1

E(x[m]x[n]) cos(2π
(mk + nl)

N
)

− j
N∑
m=1

when m=n

E(x2[m]) sin(2π
(m(k + l))

N
)− j

N∑
m=1

when m6=n

N∑
n=1

E(x[m]x[n]) sin(2π
(mk + nl)

N
)]

= [
N∑
m=1

when m=n

0.5 cos(2π
(m(k + l))

N
) +

N∑
m=1

when m6=n

N∑
n=1

0.25 cos(2π
(mk + nl)

N
)

− j
N∑
m=1

when m=n

0.5 sin(2π
(m(k + l))

N
)− j

N∑
m=1

when m 6=n

N∑
n=1

0.25 sin(2π
(mk + nl)

N
)]

When ( m(k+ l) ) < N and (mk+nl) < N cosine and sine sum to zero over a period,

hence

σX(k),X(l) = 0 (4.6)

The correlation between the Fourier coefficients is found to be negligible even though

they are obtained from the same binary sequence. Though we have not explicitly proven

that their joint distribution is Gaussian, we assume them to be independent.
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4.2.1 Using order statistics

Order statistics can be used to obtain the probability that a given binary sequence has

at least ρ values in its DFT that are less than or equal to τ . As the presence of enough nulls

in the frequency domain of random binary sequence is the most important characteristic

needed for interference cancellation, this analysis helps us to get idea on the amount of

search to be done. We know |Ωi| = X . Let N = 1000 and τ = 5. Then from the assumption

of Rayleigh distribution,

Pτ ≡ P (X ≤ τ) = 1− P (X > τ)

= 1− exp(
−τ 2

2σ2
)

= 1− 0.9048

= 0.0952 (4.7)

which can be taken as the success probability in order statistics. The order statistics can be

applied if we arrange the values taken by the random variable X in ascending order. So we

will have,

X(1) < X(2) < X(3)..... < X(N)

Applying order statistics, and substituting Pτ = 0.0952 and ρ = 60,

Pτ,ρ = P ({ρth smallest of X(1), X(2), X(3).....X(N/2)} ≤ τ)

=

N/2∑
l=ρ

(
N/2

l

)
P l
τ (1− Pτ )N/2−l

=
500∑
l=60

(
500

l

)
(0.0952)l(0.9048)500−l

= 0.038
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Though this probability gives estimate of searching for 60 nulls, as the DFT of real se-

quences is symmetric in reality we obtain 120 nulls in an N-sized sequence. In general,

this probability quantifies the search and tradeoff needed. For higher values of N , the order

statistics approach will be computationally intensive and can also result in approximation

errors. So, another approach is made using a second Gaussian approximation as given

below.

4.2.2 Using Gaussian approximation

The CLT provides motivation to look for a better approach in the probability analysis

of estimating the amount of search to be done to obtain sequences suited for the envisioned

interference cancellation. As it has been stated, the random variable corresponding to the

|DFT | can be modeled using a Rayleigh distribution. We define a new random variable

modeled as,

Xi = 1, if |Ωi(k)| ≤ τ and

= 0, else

Essentially, this random variable follows a Bernoulli distribution with a success proba-

bility of Pτ which is the probability that a given bin in the DFT, |Ωi(k)| is less than τ . Now

using the random variable X , we find the probability of spectral nulls in the DFT |Ωi(k)|

for a given value of ρ by,

P ( (
N∑
i=1

Xi) ≥ ρ )

For a given value of ρ and τ , by bringing in the CLT here we can find the probability of

obtaining corresponding sequences. Applying the CLT, we have

∑N/2
i=1 Xi − E[Xi]

N
2√

N
2

Var[Xi]
∼ N (0, 1) (4.8)

where E[Xi] = Pτ and V ar[Xi] = Pτ − P 2
τ
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Figure 4.4. Comparison of the approximations with actual simulation (the reciprocal of
number of search iterations in simulation was taken for comparison).

Taking the same example as in order statistics, with τ = 5, ρ = 60, N = 1000 we will

need to find P ( (
∑500

i=1 Xi) ≥ 60 ),

With the assumption of independence, applying the CLT,

∑500
i=1Xi − E[Xi]500√

500Var[Xi]
∼ N (0, 1)

As evaluated above, Pτ = 0.0952. So, the mean is E[Xi] = 0.0952 (From (4.7) and (4.8)).

Let the left hand side of the above be denoted by Y ,

Y ∼ N (0, 1)

Consider P (
∑N/2

i=1 Xi ≥ 60 ) which when simplified further becomes,

36



Figure 4.5. Comparison of the approximations with actual simulation (the reciprocal of
number of search iterations in simulation was taken for comparison) for lower N

Pτ,ρ ≡ P (
500∑
i=1

Xi ≥ 60 ) = P (

∑500
i=1Xi − 0.0952 ∗ 500√

500 ∗ (0.0952− 0.09522)
≥ 60− 500 ∗ 0.0952√

500 ∗ (0.0952− 0.09522)
)

= P (Y ≥ 12.41√
(500 ∗ 0.0861)

)

= P (Y ≥ 1.8927)

= Q(1.8927) , where Q(x) is the Q-function

= 0.0292

It is found that the probability estimated from the above two methods of order statistics

and Gaussian approximation seems to be close to that of simulated sequences as shown in

the Figure 4.4 where actual simulated numbers can also be seen. Though there is noticeable

difference between the simulation and theory, the reason may not be attributed to the CLT

as we can see that for N = 500 in the Figure 4.5, they appear much closer. As analytical

and simulated values of Pτ are found to be very close, this difference may be attributed to

the assumption of independence in the previous section.
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Figure 4.6. Comparison of MSE with OPM under different scenarios of interference power.
The parameters used for binary sequences are (1) success probability for the binary se-
quence is 0.5 (2) τ = 4, N = 1000, s = 5 (sparsity), ρ = 100 (3) The average signal energy
in the sequences is about 500. Details for the figure for OPM and Gaussian matrix method
are same as in the Figure 3.6

4.3 Usage of the sequences in wideband system

After obtaining the optimum random binary sequences we can use them to produce the

switching pattern in the branches of the receiver shown in Figure 1.1. Assuming the selec-

tion of interference-free branches is possible, we discard the interference-affected branches

and using the measurement matrix obtained from the resulting branches, we perform CS-

based reconstruction in the following DSP.

Here we do not assume any specific knowledge of how to pick τ and ρ except from

the information obtained from the calculation of Pτ,ρ for different values of τ and ρ. The

analysis can provide only knowledge of how much computational effort is needed for the

search and hence is not a direct indicator of selecting good pairs of (ρ, τ).

An example is provided to see how this analysis can be applied in practice. As seen the

Figure 4.2, the probability of obtaining a null is in the leftmost part of the tail of the distri-
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bution. The value of τ is picked by taking this into account. Upon estimating probability

for different values of ρ, a value is chosen for ρ that has high probability. Using this pair

(ρ, τ), binary sequences are created with the search algorithm flowchart of which is shown

in the Figure 4.1.

The use of binary sequences in the presence of nonlinear LNA seems to perform worse

compared to OPM in the same scenario as seen in Figure 4.6. As the LNA is driven more

into nonlinear region, interference mitigation cannot be accomplished by using the near-

nulls in the binary sequences as the nonlinearities become prominent. This can be attributed

to the use of real binary sequences without any random insertion of spectral nulls verses

idealized hardware assumption for the performance seen in the Figure 3.6.
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CHAPTER 5

CONCLUSION

In this thesis, we have looked at the nonideal aspects of the RF front-end of wide-

band receivers which might become impeding blocks to interference cancellation schemes

concentrated on compressed sensing techniques. Specifically we looked at how an interfer-

ence mitigation scheme in the compressive domain fares in a realistic environment in the

presence of nonlinear LNA and finite bit ADCs. Through simulations, it was found that

interference mitigation cannot be performed at the DSP, due to the fact that the nonideal-

ities present will result in irresolvable intermodulation components and corrupt the signal

reconstruction. This has lead to the question of whether cancelling out the interferer before

reaching the LNA is possible. It turned out that a matrix with randomly placed zeros in the

frequency domain would serve this purpose well. Using this idea, encouraging results un-

der very idealized hardware assumptions were obtained by performing CS measurements

before the LNA.

Though this is theoretically promising, due to its real-world implementation complex-

ity, hardware-friendly options are needed. Binary sequences offer a viable alternative to

those of Gaussian measurement matrices in terms of practical hardware implementation

and also have ability to form good CS measurement matrices. The switches that these se-

quences are obtained from are assumed to be ideal in nature in this thesis. It is observed

that finding binary sequences which have many nulls in their frequency domain is nontriv-

ial and requires careful selection of search parameters to avoid significant wasted effort.

Theoretically, the probability of finding sequences with a given number of spectral nulls

has been modeled and shown to be close to the actual search iterations in simulation.
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Though binary sequences have advantage in terms of simplistic hardware implementa-

tion, it turns out that exhaustive search is needed to find sequences with a lot of near-nulls

in the frequency domain which becomes more challenging when nonlinear LNA also needs

to be taken into account. From the simulation of Figure 4.6, it can be said that interference

cancellation using spectral nulls with binary sequences does not perform better than OPM

for a nonlinear RF front-end.

5.1 Future work

Analysis of the selection of the proper ordered pairs (τ, ρ) for a given search complexity

is a key future step. Nonlinear switches and nonlinearity in the LNA also influence this

selection.

From CS results, it is known that {−1,+1} matrices follow the RIP, while {0, 1} ma-

trices need a substantially higher number of rows to follow the RIP. The usage of Bernoulli

matrices with elements {−1,+1} instead of {0, 1} can be explored for reduction in the

total number of measurements, at a cost of increased complexity in implementation.
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