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           ABSTRACT 

 

GPU BASED LITHOGRAPHY SIMULATION AND OPC 
 

SEPTEMBER 2011 

 

LOKESH SUBRAMANY 

 

B.E, E.C.E, VISHVESHWARIAH TECHNOLOGICAL UNIVERSITY 

 

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Sandip Kundu 

 

 

Optical Proximity Correction (OPC) is a part of a family of techniques called 

Resolution Enhancement Techniques (RET). These techniques are employed to increase 

the resolution of a lithography system and improve the quality of the printed pattern. The 

fidelity of the pattern is degraded due to the disparity between the wavelength of light 

used in optical lithography, and the required size of printed features. In order to improve 

the aerial image, the mask is modified. This process is called OPC, OPC is an iterative 

process where a mask shape is modified to decrease the disparity between the required 

and printed shapes. After each modification the chip is simulated again to quantify the 

effect of the change in the mask. Thus, lithography simulation is an integral part of OPC 

and a fast lithography simulator will definitely decrease the time required to perform 

OPC on an entire chip. 

A lithography simulator which uses wavelets to compute the aerial image has 

previously been developed. In this thesis I extensively modify this simulator in order to 

execute it on a Graphics Processing Unit (GPU). This leads to a lithography simulator 

that is considerably faster than other lithography simulators and when used in OPC will 
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lead to drastically decreased runtimes. The other work presented in the proposal is a fast 

OPC tool which allows us to perform OPC on circuits faster than other tools. We further 

focus our attention on metrics like runtime, edge placement error and shot size and 

present schemes to improve these metrics.
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CHAPTER 1 

INTRODUCTION 

 

 Optical lithography is a step in the manufacture of Integrated Circuits (ICs) taking 

up to 30% of the time involved the manufacture of a chip [2]. In this process the features 

on a mask are transferred to the photoresist layer on a silicon wafer using ultraviolet light. 

Light from the source is passed through the condenser lens and is projected onto the 

mask. The diffraction pattern produced by the mask is captured by the projection lens and 

is focused onto the resist coated silicon wafer. The photoresist is activated by the incident 

light and undergoes chemical change. The photoresist is then etched away by a chemical 

etchant leaving behind the mask features on the silicon wafer. The lithography system is 

shown in Figure 1. 



2 

 

 

Figure 1. Lithography System [1] 

 The light source used in the lithography process today has a wavelength of 193 

nm. With this light source, devices having critical dimension of 45nm, 32nm and 25nm 

are being manufactured. This disparity between the feature size and the source 

wavelength is shown in Figure 2. The improvements in optical lithography have slowed 

down due to the absence of suitable sources of low wavelength. There are inherent 

difficulties in printing feature sizes below the wavelength of light, called sub-wavelength 

lithography. These difficulties lead to degradation of the printed pattern compared to the 

source mask. Hence, sub wavelength lithography relies on a set of resolution 

enhancement techniques (RET) such as off-axis illumination, phase-shift masking, layout 

constraints and optical proximity correction (OPC) to improve the quality of the printed 

pattern. 
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Figure 2. Decrease in feature size and source wavelength [1] 

A lithography simulator is used to obtain the aerial image intensity on the surface 

of the photoresist. A resist model is used to model the etching process and to identify the 

final pattern after etching. The simulator can be used to troubleshoot problems in the fab 

reducing the number of test wafers [2], as an aid in design routing [3], and it also allows 

us to improve the quality of the printed pattern by its use in OPC [4][5]. 

In OPC the goal is to improve the quality of the printed pattern by making 

changes to the original mask. The mask is modified to compensate for effects that occur 

during the lithography process, leading to an improved wafer pattern. OPC is an iterative 

process in which small changes are made to the mask and the effect of these changes is 

observed by lithography simulation. Thus, lithography simulation becomes a part of a 

feedback system and the need for a fast lithography simulator cannot be overstated. OPC 

allows us to attain a higher yield for a given minimum feature size, improves the 

performance of a given minimum feature size and allows us to use smaller design rules 

[5]. An example of OPC is given in Figure 3. 
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Figure 3. An example of OPC [5] 

 For certain computations GPUs can exhibit higher computational power compared 

to CPUs of contemporary generation; this can be seen in Figure 4. The reason for this 

disparity in performance can be attributed to the difference in the design philosophies and 

the applications for which the respective devices were designed. GPUs were primarily 

designed to render graphics for animation movies, and CAD modeling. But the game 

industry has been a primary factor in driving performance in GPUs. Games require 

massive amounts of floating point computations in every frame, and a constant frame rate 

must be maintained [6].  

 

Figure 4.  Performance disparities between CPU and GPU [7] 

The games industry is always trying to improve the graphical fidelity of games 

which requires increased computation and this in turn creates demand for more powerful 
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GPUs. This has caused the GPU manufacturers to optimize GPUs for high throughput 

and a large memory bandwidth. Thus, the CPU is optimized to run a single thread 

efficiently with memory latency being minimized with the help of a large cache, while a 

GPU is optimized to run a large number of threads. The memory latency is amortized 

over these threads with the help of a large memory bandwidth. These differences are 

highlighted in Figure 5.  

 

Figure 5. Architectural Differences between CPU and GPU [7] 

There are a few applications which are able to use the available processing power 

and bandwidth of GPUs to accelerate their execution. In [8] the authors look at using 

GPUs for physical design automation, while in [9] the authors discuss about how GPUs 

can be used as a general computation resource. More information about GPUs and their 

use in solving non-graphical problems can be found in [10]. By implementing the 

lithography simulator on a GPU we gain a fast simulator which can be used to perform 

OPC faster than other implementations.  

 

1.1 Thesis outline 

 

The outline of this thesis is as follows,  Chapter 2 describes the background and 

related work which includes lithography using wavelets, and a section on OPC. Chapter 3 
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discusses the GPU architecture and its programming. Chapter 4 deals with the 

implementation of the lithography simulator on a GPU and in Chapter 5 the 

implementation of OPC using wavelets and various improvements to the basic OPC 

method are detailed. Chapter 6 presents the experimental results of the methods described 

in Chapter 5 followed by the conclusion of the thesis in Chapter 7. 



 

2.1 Optical Lithography Simulation 

 

Figure 

 A lithography system consists of a source, a condenser lens system, a mask, 

objective/projection lens system and a resist coated wafer, as sho

source must be powerful enough to project the mask pattern onto the wafer; the mask 

consists of transparent glass etched with the 

mask and gets diffracted. This diffraction pattern is captured by the objective lens and is 

projected onto the photosensitive resist. 

 

2.1.1 Aerial Image Formation

The diffraction of light can be explained by Huygens’ principle, where the optical 

wave front can be thought to be made up of point sources of light. When light passes 

through a slit the wave fronts begin to diverge from the slit leading to spreading of th

light beam. If the distance between the objective lens and the mask is large, then it is 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

2.1 Optical Lithography Simulation [2] 

Figure 6. Generic lithography system [2] 

A lithography system consists of a source, a condenser lens system, a mask, 

objective/projection lens system and a resist coated wafer, as shown in 

source must be powerful enough to project the mask pattern onto the wafer; the mask 

consists of transparent glass etched with the circuit pattern. The light passes through the 

mask and gets diffracted. This diffraction pattern is captured by the objective lens and is 

projected onto the photosensitive resist.  

2.1.1 Aerial Image Formation 

The diffraction of light can be explained by Huygens’ principle, where the optical 

wave front can be thought to be made up of point sources of light. When light passes 

through a slit the wave fronts begin to diverge from the slit leading to spreading of th

light beam. If the distance between the objective lens and the mask is large, then it is 

 

 

A lithography system consists of a source, a condenser lens system, a mask, 

wn in Figure 6. The 

source must be powerful enough to project the mask pattern onto the wafer; the mask 

circuit pattern. The light passes through the 

mask and gets diffracted. This diffraction pattern is captured by the objective lens and is 

The diffraction of light can be explained by Huygens’ principle, where the optical 

wave front can be thought to be made up of point sources of light. When light passes 

through a slit the wave fronts begin to diverge from the slit leading to spreading of the 

light beam. If the distance between the objective lens and the mask is large, then it is 



 

termed Fresnel diffraction. Commercial lithography systems satisfy the Fresnel 

diffraction condition. 

 

The mask is described in terms of a mask transmittance functio

the transmittance is 1 for a clear region and 0 for the chrome/opaque region. The plane 

x’- y’ describes the entrance to the objective lens which is the diffraction plane and z is 

the distance between the wafer and the objective lens. The 

a wavelength of λ, and the refractive index of the medium is n. f

coordinates given by fx = nx’/(z

diffraction pattern is given by the Fraunhofer 

Here Ei is the electric field incident on the mask. 

This equation is a Fourier transform which implies that the diffraction pattern is 

the Fourier transform of the mask pattern transmittance. The diffraction extends on the x’ 

– y’ plane, however due to the limited size of the objective lens all the diffraction orders 

are not captured. Only the orders that fall within the aperture of the lens form the image. 

The size of the lens is described by a term called the numerical aperture wh

as the sine of the maximum half angle of light that can enter the lens times the refraction 

index of the surrounding medium.

 

If the numerical aperture is large, then more orders of diffraction can be captured 

leading to a better image. To 

first orders of diffraction need to be captured. The theoretical resolution of this system is 

given by the equation  

8 

termed Fresnel diffraction. Commercial lithography systems satisfy the Fresnel 

The mask is described in terms of a mask transmittance functio

the transmittance is 1 for a clear region and 0 for the chrome/opaque region. The plane 

y’ describes the entrance to the objective lens which is the diffraction plane and z is 

the distance between the wafer and the objective lens. The light is monochromatic having 

, and the refractive index of the medium is n. fx and f

= nx’/(zλ), fy = ny’/(zλ). For a given mask the electric field of the 

diffraction pattern is given by the Fraunhofer diffraction integral  

is the electric field incident on the mask.  

This equation is a Fourier transform which implies that the diffraction pattern is 

the Fourier transform of the mask pattern transmittance. The diffraction extends on the x’ 

plane, however due to the limited size of the objective lens all the diffraction orders 

are not captured. Only the orders that fall within the aperture of the lens form the image. 

The size of the lens is described by a term called the numerical aperture wh

as the sine of the maximum half angle of light that can enter the lens times the refraction 

index of the surrounding medium. 

 

If the numerical aperture is large, then more orders of diffraction can be captured 

leading to a better image. To create a reasonable image, at least the zero order and the 

first orders of diffraction need to be captured. The theoretical resolution of this system is 

termed Fresnel diffraction. Commercial lithography systems satisfy the Fresnel 

The mask is described in terms of a mask transmittance function tm(x, y) where 

the transmittance is 1 for a clear region and 0 for the chrome/opaque region. The plane 

y’ describes the entrance to the objective lens which is the diffraction plane and z is 

light is monochromatic having 

and fy are scaled 

). For a given mask the electric field of the 

 

This equation is a Fourier transform which implies that the diffraction pattern is 

the Fourier transform of the mask pattern transmittance. The diffraction extends on the x’ 

plane, however due to the limited size of the objective lens all the diffraction orders 

are not captured. Only the orders that fall within the aperture of the lens form the image. 

The size of the lens is described by a term called the numerical aperture which is defined 

as the sine of the maximum half angle of light that can enter the lens times the refraction 

If the numerical aperture is large, then more orders of diffraction can be captured 

create a reasonable image, at least the zero order and the 

first orders of diffraction need to be captured. The theoretical resolution of this system is 



 

 

where k1 is a parameter that depends on the lens system. 

Theoretical resolution describes the smallest pitch that can be imaged using the 

lens system for normally incident plane waves.

As the diffraction pattern is the Fourier transform of the mask, the mask pattern 

can be recreated if the objective lens performs an inverse

the diffraction pattern. So we define a parameter called the Pupil function P, this function 

is the transmittance of the lens from the entrance pupil of the lens to the exit pupil. It 

describes the portion of light that make

The pupil function is 1 inside the aperture and 0 outside. The product of the pupil 

function and the diffraction pattern gives us the light that exits the objective lens. Thus, 

the electric field at the wafer pl

Where F
-1

 represents the inverse Fourier transform. The aerial image is defined as 

the intensity distribution in air at the wafer plane and is the square of the magnitude of 

the electric field. 

2.1.2 Resist Model 

 The aerial image is form

the light and undergoes a chemical change. The resist must now be etched by chemical 

means to obtain the required pattern. In wet etching a chemical etching agent is used to 

remove the film from under the non
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is a parameter that depends on the lens system.  

resolution describes the smallest pitch that can be imaged using the 

lens system for normally incident plane waves. 

As the diffraction pattern is the Fourier transform of the mask, the mask pattern 

can be recreated if the objective lens performs an inverse Fourier transform operation on 

the diffraction pattern. So we define a parameter called the Pupil function P, this function 

is the transmittance of the lens from the entrance pupil of the lens to the exit pupil. It 

describes the portion of light that makes its way through the lens and is given by

 

The pupil function is 1 inside the aperture and 0 outside. The product of the pupil 

function and the diffraction pattern gives us the light that exits the objective lens. Thus, 

the electric field at the wafer plane is given by 

 

represents the inverse Fourier transform. The aerial image is defined as 

the intensity distribution in air at the wafer plane and is the square of the magnitude of 

The aerial image is formed on the surface of the resist. The resist is activated by 

the light and undergoes a chemical change. The resist must now be etched by chemical 

means to obtain the required pattern. In wet etching a chemical etching agent is used to 

nder the non-activated photoresist. Then the activated photoresist 

resolution describes the smallest pitch that can be imaged using the 

As the diffraction pattern is the Fourier transform of the mask, the mask pattern 

Fourier transform operation on 

the diffraction pattern. So we define a parameter called the Pupil function P, this function 

is the transmittance of the lens from the entrance pupil of the lens to the exit pupil. It 

s its way through the lens and is given by 

The pupil function is 1 inside the aperture and 0 outside. The product of the pupil 

function and the diffraction pattern gives us the light that exits the objective lens. Thus, 

represents the inverse Fourier transform. The aerial image is defined as 

the intensity distribution in air at the wafer plane and is the square of the magnitude of 

ed on the surface of the resist. The resist is activated by 

the light and undergoes a chemical change. The resist must now be etched by chemical 

means to obtain the required pattern. In wet etching a chemical etching agent is used to 

activated photoresist. Then the activated photoresist 
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is removed by another chemical agent. At the end of this process the mask pattern is 

transferred to the wafer.  

In order to obtain the shape of the pattern after etching in lithography simulation, 

the effect of incident light on the photoresist also needs to be modeled. The pattern 

produced on the photoresist depends on the exposure time and the dosage of light. As 

exposure time can be controlled accurately it is always considered to be nominal and 

hence is not a factor in the resist model, while dosage can vary temporally and 

contributes to process variation. In [14] the author goes into more detail about the effect 

of light on the photoresist. There are two resist models, variable threshold resist model 

and constant threshold resist model.  

In constant threshold model a single intensity value is calculated based on a 

fraction of the difference of minimum and maximum intensity of the aerial image. All the 

points which have this intensity value will lie on the edge of the final pattern. Although 

simplistic this method provides good results and is also computationally less intensive. 

We use this model in our work. A constant threshold model is presented in [13]; in this 

model a constant value obtained from normalized aerial image intensity is used as the 

threshold value for the photoresist. This is also known as the 0.3 contour method. 

Understandably, compared to the variable threshold model, the constant threshold model 

is not as accurate, but has the advantage of being less intensive computationally, and is 

considered to be good enough 

In variable threshold resist model, a function is used to determine the threshold for 

activation of the resist. This value is then applied to a small area. Randall et al. describes 

this process in more detail [15]. In the Variable threshold resist model presented in [5], a 

data dependent threshold is used to determine at which normalized light intensity the 

printed edge will appear [5]. This model is obtained from empirical measurements.  



 

 

2.1.3 Previous Work 

Various models for lithography have been presented over the years. A method that 

simulates the mask diffraction by using the finite difference time domain (FDTD) method 

on the electromagnetic equations is presented in 

intensive and needs copious computational resources. In 

resolution time domain method (MRTD) in order to speed up this process.  In 

speed up aerial image simulation

coherent equations. As this method also needs large amount of computational resources, 

in [13], the authors use rectangle look

Recently in [16], the authors have used wavelet transform to generate the aerial 

image. Using the theory of single slit diffraction pattern where the image resembles a 

sinc
2
 function, the aerial image is obtained by applying the wavelet to the entire mask. 

This approach aims to speed

extended to a mask containing multiple polygons where a 2D sinc

with the mask to generate an aerial image. It has been shown that the aerial image 

obtained by using the 2D Sinc

closely approximates the aerial image obtained by commercial lithography tools 

 

2.2 Wavelet Transform 

Wavelet transform is similar to Fourier transform and is used to analyze signals 

that are aperiodic, noisy and intermittent. This method allows us to analyze a signal 

simultaneously in both time and frequency. The equation for a wavelet transform is given 

below [17].  
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Various models for lithography have been presented over the years. A method that 

simulates the mask diffraction by using the finite difference time domain (FDTD) method 

on the electromagnetic equations is presented in [12]. But this method is very time 

intensive and needs copious computational resources. In [10] , the authors use multi

resolution time domain method (MRTD) in order to speed up this process.  In 

speed up aerial image simulation, Cobb used decomposition of Hopkins partially 

coherent equations. As this method also needs large amount of computational resources, 

authors use rectangle look-up to speed up this simulation.  

, the authors have used wavelet transform to generate the aerial 

Using the theory of single slit diffraction pattern where the image resembles a 

function, the aerial image is obtained by applying the wavelet to the entire mask. 

This approach aims to speed-up simulation using wavelet transform. This has been 

ed to a mask containing multiple polygons where a 2D sinc
2
 pulse is convolved 

with the mask to generate an aerial image. It has been shown that the aerial image 

obtained by using the 2D Sinc
2
 pulse, coupled with a constant threshold resist model, 

pproximates the aerial image obtained by commercial lithography tools 

2.2 Wavelet Transform [17] 

Wavelet transform is similar to Fourier transform and is used to analyze signals 

that are aperiodic, noisy and intermittent. This method allows us to analyze a signal 

ime and frequency. The equation for a wavelet transform is given 

                  

Various models for lithography have been presented over the years. A method that 

simulates the mask diffraction by using the finite difference time domain (FDTD) method 

. But this method is very time 

, the authors use multi-

resolution time domain method (MRTD) in order to speed up this process.  In [5] to 

, Cobb used decomposition of Hopkins partially 

coherent equations. As this method also needs large amount of computational resources, 

, the authors have used wavelet transform to generate the aerial 

Using the theory of single slit diffraction pattern where the image resembles a 

function, the aerial image is obtained by applying the wavelet to the entire mask. 

up simulation using wavelet transform. This has been 

pulse is convolved 

with the mask to generate an aerial image. It has been shown that the aerial image 

pulse, coupled with a constant threshold resist model, 

pproximates the aerial image obtained by commercial lithography tools [16]. 

Wavelet transform is similar to Fourier transform and is used to analyze signals 

that are aperiodic, noisy and intermittent. This method allows us to analyze a signal 

ime and frequency. The equation for a wavelet transform is given 

   (1) 
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In the equation, x (t) represents the mask, while ψ represents the wavelet which in 

our case is a sinc
2
 pulse. ‘a’ is a parameter which specifies the scale of a wavelet while 

‘b’ is the translation parameter which specifies the temporal location of the wavelet. w (a) 

is a weighting function set to 1/sqrt (a) for reasons of energy conservation. T (a, b) is the 

transform value at scale ‘a’ and location ‘b’. 

 

Figure 7. 1D wavelet transform [17] 

Figure 7 shows the 1D wavelet transform operation. The scale of the wavelet is 

fixed and then the wavelet is translated in time to obtain the transform value. This process 

is then repeated with a different scale of the wavelet. On doing so for various scales we 

derive the wavelet transform plot. The wavelet having a scale of a = 1 and translation 

parameter b = 0 is called the mother wavelet. By changing the values of ‘a’ and ‘b’ we 
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obtain daughter wavelets. For lithography simulation we use the Sinc
2
 pulse as the 

wavelet. The scale of the wavelet is fixed as changing the scale changes the defocus value 

of the system. The Sinc
2 

pulse is the image pattern obtained when light is shone on a slit. 

As the lithography mask can be imagined to be an integration of succeeding slits, we can 

obtain the aerial image by using the Sinc
2 

wavelet pulse. For a 2D mask we use a 2D 

Sinc
2 

pulse as shown in Figure 8. 

 

Figure 8. A 2D Sinc
2
 pulse [5] 

2.3 Lithography simulation using wavelets 

In this section we provide a brief overview of the CPU implementation of wavelet 

based lithography simulation presented in [16]. To calculate the aerial image using 

wavelets we need the mask description and the wavelet. We consider the use of binary 

masks, in which the presence of a shape indicates a zero transmittance and has a value of 

0; a clear area indicates 100% transmittance and hence has a value of 1. So points within 

a contour (a solid shape on the mask) will have a lower intensity value compared to 

points outside a contour.  

A circuit mask can be fractured into rectangles which are linked together to form 

various contours. On a metal mask layer, the contours can be visualized as a chain of 

rectangles that create electrical connections between various devices on the silicon wafer. 
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The edges of the rectangles are lines and these lines are the basis of simulation points. So 

in order to calculate intensity we only need to add up all the light that makes its way to 

the point under consideration. To find the entire aerial image for a chip we need to repeat 

this calculation for all points on the mask.  

We only need to find where the outer edge of a feature/contour lies and are not 

concerned about the intensity values within the contour. So we select certain simulation 

points only along the edge of the contours. The number of simulation points can be 

reduced further by recognizing the fact that these points need not be uniformly 

distributed. In [16] the simulation points are generated based on the size of the contour, 

the proximity of the contour to other contours and the number of corners in the contour. 

By judiciously selecting simulation points we can minimize the loss in accuracy and gain 

in simulation performance. 

Once all the simulation points have been determined, the calculation of image 

intensity ensues. On a mask the aerial image intensity at a point depends on the features 

that lie in its optical diameter (~1µm) [5]. This optical diameter is also referred to as a 

tile. To obtain the aerial image intensity on the die, we transform the mask description 

with the wavelet function, where the wavelet function is defined only in the optical 

region of influence. This is shown in Figure 9. In order to implement this process, we 

create a mask tile, which contains a mapping of mask contours in the optical region in a 

2D matrix. The matrix contains 1s and 0s corresponding to the contours in the mask. The 

wavelet tile is also a matrix containing values of the wavelet. To find the wavelet 

transform we multiply the corresponding elements of the two matrices and sum all the 

products to arrive at a single value, which is the aerial image intensity. 

 



 

Figure 

We use a constant 

the edge. This edge intensity is calculated by the following formula

edge intensity value = 0.3 * (max 

where max and min correspond to the maximum and minimum

the mask. 

The intensity value of every simulation point is computed and if this value is 

greater than the value obtained from equation (2), the location of the simulation point is 

moved and the intensity recalculated. This process is r

whose intensity is less that the aerial image intensity. This point now is a part of an edge. 

On repeating this process for all simulation points for a given edge of the mask, the aerial 

image edge can be found. This can b

represent the aerial image which is also the final location of the simulation points, and the 

points in green represent the original mask contour.
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Figure 9. Optical diameter and simulation points 

We use a constant threshold model to calculate the image intensity which defines 

the edge. This edge intensity is calculated by the following formula 

edge intensity value = 0.3 * (max - min) + min                  

where max and min correspond to the maximum and minimum intensity values in 

The intensity value of every simulation point is computed and if this value is 

greater than the value obtained from equation (2), the location of the simulation point is 

moved and the intensity recalculated. This process is repeated until a location is found 

whose intensity is less that the aerial image intensity. This point now is a part of an edge. 

On repeating this process for all simulation points for a given edge of the mask, the aerial 

image edge can be found. This can be seen in Figure 10 where the points in blue 

represent the aerial image which is also the final location of the simulation points, and the 

een represent the original mask contour. 

threshold model to calculate the image intensity which defines 

  (2) 

intensity values in 

The intensity value of every simulation point is computed and if this value is 

greater than the value obtained from equation (2), the location of the simulation point is 

epeated until a location is found 

whose intensity is less that the aerial image intensity. This point now is a part of an edge. 

On repeating this process for all simulation points for a given edge of the mask, the aerial 

where the points in blue 

represent the aerial image which is also the final location of the simulation points, and the 
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Figure 10. The original mask and the aerial image using the method described in 

[16] 

 

2.4 Optical Proximity Correction 

The line width of the pattern printed on the silicon wafer varies as a function of 

the proximity of nearby features. An isolated line will be printed wider than a dense line. 

This is a result of a fundamental limitation in the optics used in lithography. This 

difference between the desired and actual printed pattern on the wafer is a systematic 

error and it should be possible to correct for this error. The correction is carried out by 

changing the feature on the mask to compensate for the proximity effects which is called 

optical proximity correction. So the goal of OPC is to obtain the optimal mask to get the 

desired pattern on the resist. This is often called the ‘inverse problem’ in imaging. OPC 

can be categorized into Rule based and Model based, the following sections explain each 

of these approaches in further detail. 
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2.4.1Rule based OPC 

 

 

Figure 11. Rule based OPC [2] 

In rule based OPC a set of rules are created and a correction pattern is created for 

each of those rules. The entire mask is searched for patterns which match the rules and if 

found the correction is applied to the pattern. Rule based OPC is simple to implement for 

one dimensional correction but can get very complicated for two dimensional effects like 

corner rounding and line end shortening [2]. An intermediate approach is to use a 

separate set of rules for these effects and use another set of rules for 1D edges which is 

called 1.5D correction. An example of rule based OPC is shown in Figure 11, the pattern 

on the left is the original mask pattern while the one on the right is the pattern after OPC. 

Although implementing the rule based system is conceptually simple, the rules 

and the corrections for the patterns must be experimentally determined. The rules are 

limited to a specific lithography process and must be regenerated if any of the optical 

parameters change. A small increase in accuracy leads to a large increase in the number 

of rules, and at process nodes lower than 130nm the required accuracy increases. Rule 

based OPC was used extensively until 250nm; however by the 130nm node the accuracy 

and robustness of rules based OPC decreased [2]. 
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2.4.2 Model based OPC [2] 

 

 

Figure 12. Model based OPC [2] 

Model based OPC replaced rule based OPC as the process node decreased to 

90nm. In model based OPC a lithographic model is used to derive the aerial image of the 

chip. The proximity effects are taken into account during the simulation of the mask 

pattern which leads to the aerial image. Once the aerial image is obtained the edges of the 

features on the mask are iteratively moved until the aerial image shape closely matches 

the desired shape. In this method considerable effort is spent on refining the lithographic 

model. As a good model should be able to simulate full chip masks containing millions to 

billions of features, it should be highly parallelizable and accurate. Figure 12 shows an 

example of model based OPC; the first pattern is the original mask pattern while the 

pattern on the right is the aerial image after lithography simulation. The second pattern is 

corrected pattern and the corresponding aerial image. 

In model based OPC, the mask is divided into edges. Each edge can be 

independently moved. The mask is simulated and the aerial image is obtained on the 
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photoresist. The aerial image is compared to the original mask and an Edge Placement 

Error (EPE) is calculated. This parameter can be used as a metric for the quality of OPC. 

If the EPE is low then the aerial image is close to the desired shape. The edges are now 

moved iteratively and resulting pattern is simulated again to get a new aerial image and a 

new EPE. This process is carried out until the EPE attains an acceptable value. In order to 

reduce the mask complexity, the edge positions are snapped to a grid. The aggressiveness 

of OPC can be controlled by controlling the minimum size of the edge. A more 

aggressive OPC results in more fragments which increases the mask cost. 

 

2.4.3 Previous Work 

The field of OPC is quite mature and there have been several implementations. 

The early work in model based OPC was performed by Rieger et al [19] [20] [21]. Cobb 

et al [5] have implemented an OPC algorithm based on EPE. This approach was 

improved upon by the use of a Mask Error Enhancement Matrix (MEEM) in [18]. Other 

works have focused on decreasing the runtime of various OPC implementations; in [22] 

the authors present a new convergence scheme which decreases the number of iterations 

while in [23] the authors use a neural network to speed up OPC. A GPU based 

implementation using Hopkins sum of coherent sources approach to derive the aerial 

image has been presented in [25] while a hardware accelerated implementation is 

presented in [26].  
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CHAPTER 3 

GPU ARCHITECTURE AND PROGRAMMING 

 

 Increasing the clock speed of a single core is becoming infeasible because of the 

large increase in dissipated power, and also higher clocks push the boundary of the 

switching speed of the transistors. This has led to the end of the clock speed wars of the 

Pentium era and to the core wars of the current generation, where the CPU manufacturers 

like Intel and AMD are adding more and more cores in succeeding generation of CPUs.  

Thus, the future of computing lies in parallelism and only multithreaded code can take 

advantage of the available computing resources and exhibit performance gains when 

moving from one generation to another.  

 Graphics Processing Units can be found in most of the computers today where 

they are used to render images onto screens. About six years ago they were fixed in their 

function and were suitable only for running 3D applications. Since then they have 

become increasingly programmable. The changes have been as a result of modifications 

is hardware as well as application programming interfaces [19]. More information about 

the GPU architecture and the recent changes in the architecture which make it amenable 

to general purpose computing can be found in [19]. This notion of using GPUs for non-

graphics applications is called General purpose computation on GPU (GPGPU). The 

GPU was designed for a set of applications that have the following characteristics, the 

computational requirements are large, there is substantial parallelism and throughput is 

more important that latency [19]. 

 Although GPUs have always had an edge over the CPUs in terms of theoretical 

computational power, general applications cannot make use of this available power due 
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to limitation inherent in the GPU. The reason for this disparity in performance can be 

attributed to the differences in the fundamental design philosophies between the CPU and 

the GPU. The design of a CPU is optimized for sequential code performance; a lot of 

logic is devoted to allow instructions from a single thread of execution to execute in 

parallel or out of order while maintaining the appearance of sequential execution. Large 

caches are provided to hide the instruction and the data access latencies. 

 Memory bandwidth is also another important issue. Graphics chips have about 

10x the bandwidth of the available CPUs. Usually the bandwidth between the CPU and 

the main memory is around 15Gb/s, while the latest GPUs have about 100Gb/s of 

available bandwidth. But the bandwidth between the main memory and the GPU is about 

8Gb/s, so you pay a penalty while transferring the data to and from the GPU. [29] 

Compares the latency and the bandwidth between the CPU and main memory and a GPU 

and its global memory.  

 The architecture of the GPUs is governed by the needs of the fast growing video 

game industry. There is a tremendous pressure for to perform a massive number of 

floating-point calculations in each frame in advanced games. This demand pushes the 

GPU vendors to look for ways to maximize the chip area that is dedicated to floating-

point calculations. The general philosophy for GPU design is to optimize for the 

execution of massive number of threads. The hardware spawns a large number of 

execution threads to find work to do when some of them are waiting for long-latency 

memory accesses, minimizing the control logic required for each execution thread. Small 

cache memories are provided to help control the bandwidth requirements of these 

applications so that multiple threads that access the same memory data do not need to all 

go to the DRAM. As a result, much more chip area is dedicated to the floating-point 

calculations. CUDA (Compute Unified Device Architecture) provides a C like 
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programming paradigm which allows us to harness the computational resources of the 

GPU. 

 It should be clear now that GPU is designed as a numeric computing engine and it 

will not perform well on some tasks that CPUs are designed to perform well. For 

example, due to the limited cache present in the GPU, branch heavy code will face a huge 

penalty in execution on the GPU. Therefore, one should expect that most applications 

will use both CPUs and GPUs, executing the sequential parts on the CPU and numeric 

intensive parts on the GPUs. This is why the CUDA programming model is designed to 

support joint CPU-GPU execution of an application. We look at the CUDA programming 

model after a brief introduction to the architecture of a GPU. 

 

3.1 GPU Architecture 

 

 

Figure 13. GPU architecture 



23 

 

Figure 13 shows the architecture of a modern GPU. It is divided into 16 

Streaming Multiprocessors (SM). Two SM form a block. Each SM in turn consists of 8 

Streaming Processors (SP) giving us a total of 128 SP. In the GPU used for my thesis 

(Tesla C870) the SP runs at 0.92 GHz. Each SP has a Multiply and Add (MAD) unit and 

an additional multiply unit. In addition to those units we also have units that perform 

SQRT, Sin, Cos operations. A SP is shown in Figure 14. 

 The GPU has about 1.5GB of memory. This memory is divided into global 

memory, constant memory, registers, shared memory and texture memory. The host can 

write to and read from the global and constant memory. Constant memory allows read 

only access by the device and provides faster and more parallel data access paths for the 

kernel execution compared to global memory. Currently, the total size of constant 

memory is limited to 65KB. Each SM also has a limited amount of cache. 

 

 

Figure 14. A pair of Streaming Processors 

Registers are allocated to individual threads and are used to store frequently 

accessed private variables. Threads cannot share the data in the registers among 

themselves. Shared memories are allocated to thread blocks. All the threads in a block 

can read from and write to this memory. In the device used for my thesis, each thread 
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block has access to about 16KB of shared memory. Data in these memories have very 

low access times and have more parallel paths compared to the global and constant 

memories.  

 

3.2 Programming a GPU using CUDA 

  

 There are one or more phases in a CUDA program, the phase that has a large 

amount of parallelism is executed on the GPU while the code that has little parallelism is 

executed on the CPU. To the CUDA programmer the CPU is the host and the GPU is the 

device that accelerates functions having a large amount of parallelism. In a typical CUDA 

program, the CPU starts the execution, before the GPU is used for computation, the data 

must be copied from the main memory to the GPU memory. When required the CPU 

invokes the kernel function. 

When the kernel function is invoked the execution is switched to the GPU. The 

kernel function generates a large number of threads to take advantage of the multiple 

processing units in the GPU. This collection of threads is called a grid. When the kernel 

completes its execution, the grid terminates and control is returned to the CPU. 

  



25 

 

3.2.1 CUDA threads 

 

 

Figure 15. A grid and a block of threads [7] 

 All threads in a grid are identical and are organized into two levels as shown in 

Figure 15; each level has ids assigned to the threads by the CUDA runtime. The lower 

level id is the thread id which is represented by the built-in variable threadIdx. This 

variable is a three component vector and can be used to identify a thread in each 

dimension using threadIdx.x, threadIdx.y and threadIdx.z variables. The threads are 

grouped into thread blocks and the blocks in turn are laid out in two dimensions. Similar 

to threadIdx, blockIdx is also a three component vector that can be used to select a block. 

So in order to identify a single thread, we need to generate its index based on the number 

of blocks in the thread, the block index, and the index of the thread in the block. 

thread_idx = blockIdx.x * blockDim.x + threadIdx.x ; 

 The number of threads in each dimension of a block as well as the number of 

blocks in a grid can be specified at runtime. The number of threads in a block is limited 

to 512; these threads can be distributed in 3 dimensions in any fashion. The number of 

threads and blocks are specified as parameters of the kernel at runtime. These variables 
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are defined as dim3 type which is a struct with three fields. An example of a 

configuration is shown below. The first statement sets up the block configuration while 

the second statement sets up the grid configuration. The third statement is the kernel 

launch. 

   dim3  blockDimension(4, 4, 4); 

   dim3  gridDimension(5,2,1); 

   kernel<<< blockDimension, gridDimension>>>(….); 

 The threads in the same block can synchronize their execution and also 

communicate via shared memory. Barrier synchronization can be used to synchronize the 

threads in a block, in barrier synchronization; all threads will be stopped at the point 

where the function was called. Only after all the threads have reached that point will 

execution continue. The threads of a block are assigned to the same unit for execution to 

minimize the waiting times. The threads from different blocks cannot synchronize with 

each other.  

 The CUDA run time system does not guarantee the order of execution of thread 

blocks. This means that there cannot be any dependencies between thread blocks. This 

condition is necessary to aid scalability. The number of execution units in a GPU can 

vary dramatically depending on the market segment the particular GPU is targeted for. 

Some GPU have 128 units other 64, 512 and so on. By allowing the device to schedule 

the execution of a block at any time the run time environment can take advantage of all 

available units. When the code is executed on a device having a large number of SPs, 

more thread blocks can be executed simultaneously and less blocks on a device having 

fewer execution units. As the blocks are not dependent on each other this will not pose 
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any problems and the same code, without any modification will execute faster on more 

capable hardware. The scalability issue is demonstrated in Figure 16. 

 

 

Figure 16. GPU scalability [7] 

 

 Once a block of threads is assigned to a Streaming Multiprocessor for execution, 

the threads are further dived into Warps. On the Tesla C870 a warp has 32 threads with 

threads having consecutive thread id values. The number of threads in a warp differs for 

different devices. At any point of time only one of the warps is being executed. The Tesla 

C870 device can have 24 warps residing in the SM at any point of time. When the 

instructions from one warp are waiting on the results, these instructions are replaced by 

instructions from another warp. The latency of an instruction is successfully hidden by 

scheduling and executing instructions from another warp. The warp scheduling incurs 

zero penalties as there is hardware support available for scheduling. Hardware support for 

thread switching allows greater flexibility in the implementation of our algorithm. As the 

overhead of creating and switching of threads is very low, a large number of threads can 
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be created which work independently on various parts of the circuit. This also allows us 

to hide memory latency as a thread which is waiting on a memory access can be quickly 

switched for a thread which has its data already available for computation. These factors 

further reduce runtime on the GPU. 

  

3.2.2 CUDA Memory model 

 

The memory on the device is divided into Global memory, Constant memory, 

Texture memory, Shared memory, Registers and Cache. The data from the CPU and the 

main memory can be transferred to the global memory, constant memory or the texture 

memory. The GPU has only read access to the constant memory and texture memory 

while it can read and write data onto the global memory. The constant memory allows 

faster and more parallel accesses to the kernel. Shared memories are local to a thread 

block and only threads within a block can access this memory. So inter thread 

communication within a block can be carried out by using shared memory. Registers are 

allocated to threads and are used to store frequently accessed variables that are local to 

each thread. 
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Figure 17. GPU memory [7] 

 

If a variable declaration is preceded by the “__shared__” keyword, it declares a 

shared variable; the scope of this variable is limited to the thread block and must reside 

within a kernel or a device function. A private copy of this variable is created for all 

thread blocks and this variable is destroyed only when the kernel terminates its execution. 

In the TeslaC870, the shared memory is limited to 16KB per SM. Constant variable are 

declared with the “__constant__” keyword. These variables must be declared outside the 

function body. The scope of this variable is the entire grid that is all the threads in the 

grid will have access to this variable. This variable is destroyed only when the entire 

application is terminated. These variables are stored in global memory but are cached. 

The total size of the constant memory is limited to 65KB. The variables placed in global 

memory are visible to all the threads in the kernel. Accesses to global memory are slow 

and these variables are destroyed only when the kernel finishes its execution.  
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CHAPTER 4 

GPU BASED LITHOGRAPHY 

  

 In Chapter 2 lithography simulation using wavelets was introduced. It was found 

that by using a wavelet and by limiting the number of points where the aerial image 

intensity needs to be calculated the runtime was reduced resulting in a fast simulator. In 

this chapter the implementation of the wavelet based lithography simulator on a GPU is 

described. 

 

4.1 Implementation  

 

 The first step in performing lithography simulation on a mask is to read in the 

description of the mask. The description contains all the metal layers, of which we 

simulate the second layer as it is the most dense for a given process technology. The 

other layers may be simulated similarly. The features on the mask are read into a data 

structure which divides the mask into grids, and then decomposes the features in the grids 

into contours, rectangles and lines.  

In the simulator implemented in [16] the simulation points are generated based on 

an algorithm, and the aerial image simulation is carried out for all the simulation points. 

Further, the simulation point was moved around until the intensity value was greater than 

the value of the contour edge. This implementation results in a loop containing a lot of 

branches and for the GPU implementation we want to minimize the number of branches. 

In order to do so, the entire mask is divided into pixels of 5nm size. The pixels which lie 

on the edge of the contours are termed primary simulation points. If we follow the 
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approach presented in [16], we would calculate the intensity value of these points and 

then based on this value and the edge intensity value we would select the pixel either to 

the left or right of the simulated pixel as the next simulation point. As mentioned earlier, 

this approach leads to branches. On the GPU we select a few pixels to the right and the 

left of the primary simulation point as the secondary simulation points. These points 

represent the possible location of the contour edge. By simulating both the primary and 

the secondary simulation points, we can easily determine the final edge of the contour. 

The original contour and the simulation points are shown in Figure 18 in which the points 

in black are the primary simulation points while the ones in green are secondary 

simulation points. 

 

 

Figure 18. Simulation points 

 Once the data structure is populated we can begin to create pixels in the grid; 

each pixel has a dimension of 5nm. Initially the pixels are blank; later, we map the 

contours in the grid to the pixels. If a pixel is a part of a contour, then it has a value of 0, 

else it has a value of 1. In the process of multiplication and addition, a 0 will decrease 

intensity while a 1 will increase intensity. The simulation can proceed after all the values 



32 

 

are assigned. For every simulation point, a tile is created which represents the optical 

diameter. This tile is a 2D matrix of pixels. The optical diameter is 1µm in size and so the 

matrix has 200 points in each row and column (1µ divided by 5nm).The wavelet is also a 

matrix of the same size as the optical diameter. To find intensity, the corresponding 

elements of the two matrices are multiplied and all the values are summed up. This gives 

us the final intensity value.  

Calculating the intensity of the simulation point is the most computationally 

intensive part of the simulation and it also needs a large memory bandwidth as we need to 

access 40000 elements thrice. The first access is to read the contour values, next to read 

the wavelet values and finally to write the intensity values, so this part of the simulation 

is executed on the GPU.  

The best approach to saturate the GPU would be to use the device memory and 

transfer as large a part of the mask as possible, while retaining space for storing intensity 

values and the wavelet. This led to the use of grids. Each grid has 10000 nm
2
 area as this 

is the maximum size that can fit on the device memory at a time. Once the mask has been 

divided into grids, one grid at a time is transferred to the device. The wavelet matrix is 

also copied and space is allocated for the final intensity values. After the computation is 

complete, we only need to copy the intensity values from the device to the host memory 

and update them in the mask data structure. The wavelet matrix cannot be retained for 

following kernel calls as the device does not guarantee the validity of the data structure 

over multiple calls, so we need to transfer this matrix for every grid. The other motive to 

keep the grids size as large as possible is to amortize the memory transfer overhead over 

as many pixels as possible.  

This also has the advantage of being scalable for very large mask sizes. For large 

masks if we attempt to store the entire mask in the device memory, we would run out of 



 

memory. But by dividing the mask into grids only sections of the mask are simulated 

time and stitched together later.
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memory. But by dividing the mask into grids only sections of the mask are simulated 

time and stitched together later. 

 

Figure 19. Flowchart 

 

 

 

 

 

 

 

 

 

 

 

memory. But by dividing the mask into grids only sections of the mask are simulated at a 
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Figure 20. CPU and GPU pseudo code of the methods used to perform 

simulation 

After the calculation is complete for the entire grid, and the intensity value of all 

pixels has been obtained, we identify all the points that have an intensity value below the 

required aerial image intensity value. These points represent the edge of the aerial image. 

This process is repeated for every grid in the mask. As this part of the code is branch 

heavy it is executed on the CPU. The flow chart of the code can be found in Figure 19 

and the pseudo code of these methods can be found in Figure 20. The aerial image for an 

example circuit is shown in Figure 21. The original contours are shown in black while the 

aerial image is shown in green. 

Procedure: performLithoSimulationOnCPU(){ 

    for(every pixel in the grid){ 

      if(pixel is a simulation pixel){         

        multiply the contour and tile matrices; 

        Sum all the terms in the product matrix; 

        update intensity values in intensity matrix;  

      }  

    }  

  } 

 

Procedure: performLithoSimulationOnGPU(){ 

  Index = blockIdx.x * blockDim.x + threadIdx.x; 

    if(index < totalpixels && shouldsimulatepixel){ 

      intensity= 0; 

      for every element in the wavelet matrix{ 

        multiply the wavelet vale and the contour pixel; 

        intensity += product;  

     } 

     intensityMatrix[index] = intensity;   

    } 

  } 

} 
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Figure 21. The figure shows the original mask and the aerial image obtained 

by our method 

 

4.2 Results 

The simulation was performed on a 2.6 GHz Core2Duo dual core machine with 4GB 

RAM, running Ubuntu 8.10. The GPU used was the Tesla C870, it belongs to the G80 

architecture and has 128 cores with each core clocked at 1.35Ghz.The benchmark circuits 

used are from the ISCAS’85 benchmark suite. The results are plotted in Figure 22 and 

tabulated in  

 

Table 1 . The circuits in the ISCAS 85 had a range of sizes with the smallest being 

c432 having 12 grids, each grid being 10µm
2
 to the largest, c6288 having 81 grids. As 

commercial circuits can be as large as 1mm
2
, the implementation has been designed to be 

scalable. When the circuit size doubles the number of grids increase by the square of the 

scale of the change. For example if the initial circuit size was 10µ
2
 and the grid size was 



 

also 10µ
2
, there would be one grid. If the circuit size becomes 20µ

4 grids. The circuits was twice as large and the number of grids increased by the scale of 

the change, this would lead to a quadratic increase in runtime.

 

Figure 22. Chart showing the runtimes of CPU and GPU and the speedup

 The plot shows us the runtimes of the GPU, CPU and the obtained speedup. We 

can see that an average sp

the speedup is quite consistent across all the circuits. We can also see that the speedup is 

scalable with mask size which indicates that this method is suitable for use on very large 

production masks. The pixel simulator was implemented on the CPU in order to get the 

CPU runtimes, and so the GPU implementation is compared to the CPU implementation 

on the same platform. Our implementation is also faster than the original implementation 

presented in [16]. There is no other work involving use of GPU for lithography alone, 

although in [32] the authors use GPU for OPC. In 

accelerated lithography simulator, in which a sample mask of 200
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, there would be one grid. If the circuit size becomes 20µ
2
, then there would be 

4 grids. The circuits was twice as large and the number of grids increased by the scale of 

lead to a quadratic increase in runtime. 

Chart showing the runtimes of CPU and GPU and the speedup

The plot shows us the runtimes of the GPU, CPU and the obtained speedup. We 

can see that an average speed up of 20x has been obtained for the benchmark circuits and 

the speedup is quite consistent across all the circuits. We can also see that the speedup is 

scalable with mask size which indicates that this method is suitable for use on very large 

n masks. The pixel simulator was implemented on the CPU in order to get the 

CPU runtimes, and so the GPU implementation is compared to the CPU implementation 

on the same platform. Our implementation is also faster than the original implementation 

. There is no other work involving use of GPU for lithography alone, 

the authors use GPU for OPC. In [33] the authors present a FPGA 

raphy simulator, in which a sample mask of 200µm by 200

, then there would be 

4 grids. The circuits was twice as large and the number of grids increased by the scale of 

 

Chart showing the runtimes of CPU and GPU and the speedup 

The plot shows us the runtimes of the GPU, CPU and the obtained speedup. We 

eed up of 20x has been obtained for the benchmark circuits and 

the speedup is quite consistent across all the circuits. We can also see that the speedup is 

scalable with mask size which indicates that this method is suitable for use on very large 

n masks. The pixel simulator was implemented on the CPU in order to get the 

CPU runtimes, and so the GPU implementation is compared to the CPU implementation 

on the same platform. Our implementation is also faster than the original implementation 

. There is no other work involving use of GPU for lithography alone, 

the authors present a FPGA 

raphy simulator, in which a sample mask of 200µm by 200µm is 
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simulated the authors report only the resulting speedup and not the absolute runtimes. 

C6288 is similar in size and takes about 7 hours with our GPU.  

 

 

Table 1. CPU and GPU runtimes and speedup 

CIRCUIT NAME GPU TIME (S) CPU TIME (S) SPEEDUP 

c432 144 1607 11.15 

c499 176 3749 21.30 

c880 164 3651 22.26 

c1355 187 3824 20.45 

c1908 176 4003 22.74 

c2670 267 5482 20.53 

c3540 504 11833 23.47 

c5315 616 14081 22.85 

c6288 1358 27339 20.13 

c7552 721 14647 20.31 

 



 

 

There are two types of algorithms in model based OPC, polygon based and pixel 

based. In polygon based OPC the mask patterns are divided into regular polygons and 

OPC is carried out by shifting line segments until the final pattern is close to the required 

pattern. In pixel based OPC the mask is divided into pixels and the values of the pixels 

are modified to correct the mask. Our methods use model based OPC and the pixel 

paradigm. 

5.1 Basic pixel based OPC

 

Figure 

 The first step in performing pixel based OPC is to divide the entire mask into 

pixels, where the pixels have different values based on wh

contours on the mask. Once the values have been assigned the intensity value of all 
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CHAPTER 5 

OPC USING WAVELETS 

There are two types of algorithms in model based OPC, polygon based and pixel 

based. In polygon based OPC the mask patterns are divided into regular polygons and 

carried out by shifting line segments until the final pattern is close to the required 

pattern. In pixel based OPC the mask is divided into pixels and the values of the pixels 

are modified to correct the mask. Our methods use model based OPC and the pixel 

5.1 Basic pixel based OPC 

 

Figure 23. Difference in intensity for an error point 

The first step in performing pixel based OPC is to divide the entire mask into 

pixels, where the pixels have different values based on whether the pixels belong to 

contours on the mask. Once the values have been assigned the intensity value of all 

There are two types of algorithms in model based OPC, polygon based and pixel 

based. In polygon based OPC the mask patterns are divided into regular polygons and 

carried out by shifting line segments until the final pattern is close to the required 

pattern. In pixel based OPC the mask is divided into pixels and the values of the pixels 

are modified to correct the mask. Our methods use model based OPC and the pixel 

 

 

The first step in performing pixel based OPC is to divide the entire mask into 

ether the pixels belong to 

contours on the mask. Once the values have been assigned the intensity value of all 
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contour points and points around the contours is calculated. The edges of the aerial image 

are then determined by comparing image intensity of the points with the threshold 

intensity determined by the constant threshold model as explained in the lithography 

simulation chapter. Due to proximity effects the intensity of the points at the edge of the 

original contours differs from the threshold intensity. The threshold intensity determines 

the location of the contour, so the edge of the printed pattern moves away from the 

desired pattern due to this difference in intensity. This difference manifests itself as EPE 

as shown in Figure 23. 

The aerial image is the starting point for the OPC algorithm. All the pixels which 

deviate from the expected location are termed as error points, and the intensity of these 

points must be corrected so that their intensity is less than or equal to the threshold 

intensity value. There are two kinds of error points; bridging and open, if the contour of 

the final patter is outside the edge of the original contour these points are termed as 

bridging points, if the final contour edge moves inward these points are called open 

points. 

To correct the intensity of a tile whose size is equal to the optical diameter, the 

values of the pixels in the tile are modified and the intensity recalculated after each 

change. If the change in intensity is in the expected direction (the intensity of an open 

point should be decreased while that of a bridging point should be increased), then the 

change is retained, else it is discarded and the next pixel is chosen. The pattern of 

selection of the pixels also plays a large part in the quality of the final mask. The pixels 

are chosen in a radial direction around the error point in the implementation used in this 

thesis. This confines the changes to the region surrounding the error pixel and minimizing 



 

the impact on the other features. By repeating this process until the intensity of the error 

pixel matches the threshold intensity, the original mask pattern is corrected. The 

flowchart of this process 

 

5.1.1 Scalability of the algorithm

 

 The runtime of the implementation depends on the number of error points in the 

grid, the number of grids and the

circuits with similar densities 

second circuit will have a runtime that is four times of the first. This means that the 

algorithm is of the order N
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the impact on the other features. By repeating this process until the intensity of the error 

pixel matches the threshold intensity, the original mask pattern is corrected. The 

flowchart of this process is presented in Figure 24. 

Figure 24. OPC flowchart 

5.1.1 Scalability of the algorithm 

runtime of the implementation depends on the number of error points in the 

grids and the number of patterns in the design. On compar

circuits with similar densities with the second being double the size of the first

second circuit will have a runtime that is four times of the first. This means that the 

the order N
2 

i.e. O (N
2
), where N is the ratio of the area of the two circuits. 

the impact on the other features. By repeating this process until the intensity of the error 

pixel matches the threshold intensity, the original mask pattern is corrected. The 

 

runtime of the implementation depends on the number of error points in the 

comparing two 

double the size of the first, the 

second circuit will have a runtime that is four times of the first. This means that the 

, where N is the ratio of the area of the two circuits.  
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 The runtime can be decreased by using GPU with a larger number of cores or by 

using multiple GPUs in parallel. Due to the nature of the CUDA API where there 

shouldn’t be a dependency between two thread blocks because the order of execution of 

blocks is not guaranteed; the same code can be executed on different GPUs without any 

modifications. But this decrease is not necessarily linear due to limited bandwidth 

available on the GPU. 

 

5.2 OPC with pattern matching 

 

The mask contains rectangular shapes of different widths and the contours always 

have right angle corners. Although the number of different shapes is large, a commercial 

mask contains millions to billions of shapes and it is inevitable that the shapes repeat. We 

can take advantage of this fact to reduce our computation. During lithography simulation, 

a signature is calculated for all tiles. Each time an error pixel is selected to be corrected, 

its signature is compared to the signatures of previously corrected pixels. These 

signatures along with the coordinates of the error point are stored in a heap to allow fast 

comparison. When the tile for the next pixel is created its signature is matched with that 

of the earlier tiles, and if a match is found then the tile of the pixel whose coordinates are 

stored with the signature is copied to the tile of the current error point. We note that the 

tile of the matching point now contains the final pattern (after OPC). This way we can 

save on computation for a matching point. The flowchart of this process is shown in the 

Figure 25. 



 

Figure 

5.3 Improved intensity calculation

 

As explained earlier, to perform OPC the intensity of an error pixel is corrected by 

changing the value of pixels within the optical diameter of the error pixel. The intensity 

of the error pixel is recalculated each time a pixel is modified. In the basic O

the intensity is recalculated by multiplying all the pixels in the optical diameter with the 

wavelet. The change in the intensity of the error pixel is limited to that contributed by the 

modified pixel. By calculating the intensity contribution o

from the intensity of the error pixel, we remove this pixel from the intensity calculation. 
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Figure 25. Flowchart for pattern matching OPC 

 

 

 

5.3 Improved intensity calculation 

As explained earlier, to perform OPC the intensity of an error pixel is corrected by 

changing the value of pixels within the optical diameter of the error pixel. The intensity 

of the error pixel is recalculated each time a pixel is modified. In the basic O

the intensity is recalculated by multiplying all the pixels in the optical diameter with the 

wavelet. The change in the intensity of the error pixel is limited to that contributed by the 

modified pixel. By calculating the intensity contribution of this pixel, and subtracting it 

from the intensity of the error pixel, we remove this pixel from the intensity calculation. 

 

As explained earlier, to perform OPC the intensity of an error pixel is corrected by 

changing the value of pixels within the optical diameter of the error pixel. The intensity 

of the error pixel is recalculated each time a pixel is modified. In the basic OPC method 

the intensity is recalculated by multiplying all the pixels in the optical diameter with the 

wavelet. The change in the intensity of the error pixel is limited to that contributed by the 

f this pixel, and subtracting it 

from the intensity of the error pixel, we remove this pixel from the intensity calculation. 
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After the pixel value has been changed and its new intensity contribution calculated, the 

intensity of the error pixel is updated. This process decreases the number of calculations 

required to update the intensity of the error pixel.  

5.4 Process Variation 

 

In a regular OPC approach the correction is performed at a single focus and 

dosage. But there are variations in circuit manufacturing leading to variation in focus and 

dosage in addition to other parameters. A robust tool should be able to take process 

variation into account. There has been previous work in performing OPC with process 

variation in [34] and [35]. In [36], the authors present the concept of Process Window 

Optical Proximity Correction (PWOPC) which ensures high yield in addition to fulfilling 

the standard OPC objective of improving the printed pattern. 

In this implementation of process variation the effect of focus variation is 

modeled by changing the scale of the wavelet. Various values of scale have been found to 

simulate focus variation in the lithography process. These values have been calibrated 

with the help of commercial lithography tools. The dosage variation behavior is captured 

by change the required edge intensity value obtained from (2) in section 2.3. A larger 

dose will increase this required value while a lower dose will decrease it. Again these 

values have been calibrated with commercial tools. 

By incorporating these changes in the lithography model, aerial images can be 

obtained at various process corners. By performing OPC at these process corners we can 

correct masks to ensure good printability at any process corner. 
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5.5 Minimizing Shot size 

 

The previous schemes have focused on the quality of the final pattern; this has led 

to patterns that have a minimum jog size of 5nm. A jog is the size of the smallest feature 

that can be added or subtracted from the original mask. Small jog sizes provide lower 

EPE at the cost of increased difficulty in manufacturing the mask while larger jog sizes 

reduce the mask manufacture cost at the expense of EPE [37]. Gupta et al describe the 

weight of different parameter in mask cost in their paper [38]. A good OPC tool should 

balance these two aspects of lithography. 

When we use larger jog sizes, there are fewer opportunities for us to improve the 

intensity value of the error pixel. This is due to the fact that the optical diameter has a 

limited area and if we use larger regions at a time there are fewer locations to modify. 

Due to this reason the region to be modified must be carefully selected. This is done by 

following the pixel weights based method described below 

• Select a pixel in the optical tile and change its value. Compute the 

intensity of the error point. 

• If the change in intensity is beneficial to the intensity value, increase the 

weight of the pixel by 1 and revert back the change to the value of the 

pixel 

• Repeat this process for all pixels in the tile. 

• Repeat for all error pixels in the mask. 
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At the end of this process, all the pixels in the mask have weights; the pixels that 

have a large value of weight have the most beneficial effect on the error pixels. These 

pixels are now committed and the aerial image is now calculated. The entire process is 

now repeated until the EPE reaches an acceptable value. More strategies to reduce the 

mask cost are presented in [39].  
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CHAPTER 6  

EXPERIMENTAL RESULTS 

 

 In this chapter we present the simulation results for OPC. The OPC simulation 

was performed on a 2.6 GHz Core2Duo dual core machine with 4GB RAM, running 

Ubuntu 8.10. The GPU used was the Tesla C870; it belongs to the G80 architecture and 

has 128 cores with each core clocked at 1.35 GHz. Some of the patterns used were taken 

from other papers related to OPC and others were taken from sections of Iscas’85 

benchmark circuits. 

  



 

6.1 Basic OPC 

 

Figure 26

Figure 26 shows the distribution of initial and final EPE. The figure on the left 

indicates the number of l

the figure on the right shows the distribution of EPE after OPC has been performed. It 

can be seen that the number of points having a large EPE has been reduced which bears 

testimony to the effectiveness of our method. The runtimes of the tool for various 
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26. Histograms of Initial and final OPC values

shows the distribution of initial and final EPE. The figure on the left 

indicates the number of locations that have the specified EPE for a given circuit, while 

the figure on the right shows the distribution of EPE after OPC has been performed. It 

can be seen that the number of points having a large EPE has been reduced which bears 

fectiveness of our method. The runtimes of the tool for various 

Histograms of Initial and final OPC values 

shows the distribution of initial and final EPE. The figure on the left 

ocations that have the specified EPE for a given circuit, while 

the figure on the right shows the distribution of EPE after OPC has been performed. It 

can be seen that the number of points having a large EPE has been reduced which bears 

fectiveness of our method. The runtimes of the tool for various 
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circuits, the initial and final average EPE values and also the worst case EPE before and 

after OPC are presented in Table 2. 

 

Table 2. OPC results 

Circuit 

name 

Initial 

average 

EPE(nm) 

Final 

average 

EPE(nm) 

Worst 

case 

EPE 

before 

OPC 

Worst 

case 

EPE 

after 

OPC 

Runtime 

(s) 

OPC 

alone 

Runtime (s) 

OPC and 

Lithography  

Five 9.81 5.12 30 15 4 11 

Double 

rake 
9.12 5.81 30 20 4 

11 

Granik 7.52 6.33 25 25 8 19 

Random 8.11 6.95 30 30 4 11 

C432 12.15 5.06 30 15 88 175 

C499 11.31 5.15 30 10 89 176 

C3540 11.09 5.03 30 15 83 171 

C6288 12.12 5.09 30 15 73 158 

 

An example circuit is shown in Figure 27, it shows the aerial image before and 

after OPC. The figure on the left shows several regions of line end shortening, all those 

regions are corrected in the figure on the right. The original and final masks 

corresponding to the aerial images are shown in Figure 28. 



 

Figure 
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Figure 27. Aerial image before and after OPC 

 



 

Figure 

6.2 OPC with pattern matching

This section presents the results for OPC with pattern matching. The values for 

EPE are the same as in the basic method, with the changes being restricted to runtime 

alone. These results are presented in 
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Figure 28. Mask before and after OPC 

 

6.2 OPC with pattern matching 

This section presents the results for OPC with pattern matching. The values for 

EPE are the same as in the basic method, with the changes being restricted to runtime 

alone. These results are presented in  

 

 

 

 

 

 

This section presents the results for OPC with pattern matching. The values for 

EPE are the same as in the basic method, with the changes being restricted to runtime 
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Table 3. Runtimes for OPC with pattern matching 

Circuit 

name 

Runtime 

without 

pattern 

matching 

(s) 

Runtime 

with pattern 

matching(s) 

Speedup 

 

Number of 

error points 

 

Number of 

matching 

points 

Double 

lines 
5 2 

2.5 1500 750 

C432 88 74 1.18 26490 4260 

C499 89 53 1.67 27199 5110 

C3540 83 67 1.23 25833 5110 

C6288 73 55 1.32 22300 5703 

 

The first case consists of two contours, where the second contour is an exact 

match of the first one; this case represents the best speedup that can be achieved as all the 

error points of the second contour are identical to the first contour. As regular circuits 

will not have such a large overlap of contours, the speedup observed for the benchmark 

circuits will be lower. But on the whole an average speed up of 25% is observed. This 

method will be of particular use in masks which are used to manufacture highly regular 

circuits like FPGAs and RAM. 

 

6.3 Improved intensity calculation 
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Table 4. Runtimes for OPC with improved intensity calculation 

Circuit name 
Basic OPC 

Runtime (s) 

OPC 

Runtime with 

improved 

intensity 

calculation (s) 

Speedup 

Five 4 1 4 

Double rake 4 1 4 

Granik 8 2 4 

Random 4 1 4 

C432 88 19 4.6 

C499 89 20 4.45 

C3540 83 18 4.6 

C6288 73 16 4.6 

 

Table 4 presents runtimes for OPC using the improved intensity calculation method. A 

minimum speedup of 4x is observed for all the circuits. The benchmark circuits have a 

speedup greater than 4x. It can also be seen that these runtimes are better than those 

obtained from pattern matching 

In [31] the authors indicate a runtime of 4.14s for an inverter at 65nm which has a 

size of 1um
2
. This can be compared to the double lines mask whose size is 1.6um

2
. It can 

be seen that our approach is faster than the one presented in [31]. In [25] the authors 

present a GPU based OPC technique which takes 0.11 hours for a 1mm
2
 chip. This 

runtime was obtained on a cluster of machines which contained 2 Intel quad core CPUs 

and 8 NVIDIA GTX 295 GPUs; each GPU having 480 cores giving us a total of 3840 

cores. For reference our largest circuit is 5um by 5um and OPC takes 16s on a GPU 

having 128 cores. 
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6.4 OPC and process variation 

 

 

Table 5. Results for OPC with process variation 

Dose\Defocus -5 0 +5 

-10 10.25/5.19nm 10.27/5.22nm 10.25/5.27nm 

0 11.18/5.12nm 11.29/5.16nm 11.32/5.17nm 

+10 15.11/6.22nm 15.15/6.22nm 15.23/6.22nm 

 

 

Table 5 presents the results for OPC with process variation for the section of the 

c499 benchmark circuit. The values of dose and focus are changed and the resulting 

initial and final EPE values have been reported for these combinations. The first column 

on the left represents the dose values while the first row represents values of focus. The 

results are shown in Figure 29 where it can be seen that our OPC tool can correct the 

mask for different process windows. 

 



 

6.5 Reducing shot size 

 

Figure 30. Comparison of final mask with and without shot size reduction
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Figure 29. Process variation 

 

Comparison of final mask with and without shot size reduction

 

Comparison of final mask with and without shot size reduction 
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By controlling the size of the minimum feature that is changed at any given time 

we can decrease the mask manufacture cost. But as the feature size increases, the quality 

of the printed pattern is lowered resulting in larger EPE. The difference between a 

corrected mask which has larger shot sizes and one with a smaller shot size can be seen in 

Figure 30. The EPE values and the runtimes of this method are presented in  

Table 6. The runtimes are larger than the basic OPC implementation due to the 

pixel weight based approach used in correcting the mask, also due to larger shot sizes the 

EPE is higher than that obtained by the basic OPC method. 

 

 

Table 6. Results for OPC with shot size reduction 

Circuit name 
Initial EPE 

(nm) 

Final EPE 

(nm) 

Final EPE no 

shot minimize 

(nm) 

Runtime (s) 

Five 9.87 5.48 5.12 4 

Double rake 9.122 5.98 5.81 3 

Granik 7.50 5.86 6.33 6 

Random 8.18 5.58 6.95 3 

C432 12.15 6.69 5.06 75 

C499 11.29 6.78 5.15 76 

C3540 11.09 6.56 5.03 72 

C6288 12.06 6.49 5.09 62 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

In this thesis a GPU-based implementation of lithography simulation which is 

faster than existing simulators has been presented. Dividing the entire mask into pixels 

and minimizing the number of branches in the code has led to maximum utilization of 

resources on the GPU and decreased runtime.  An average speed up of 20x compared to 

the CPU implementation and that the simulator is able to handle circuits of various sizes, 

has been demonstrated. 

Several implementations of OPC which focus on key metrics of mask design and 

pattern quality have been shown. The OPC tool provides us with a mask pattern which 

generates patterns on the wafer very close to the desired pattern with minimum iterations. 

The quality of the output as well as the runtime is better than other tools. An improved 

intensity calculation scheme has been implemented and shown to reduce runtime. The 

adaptability of the OPC tool has been demonstrated by its use in correcting masks under 

different process corners. A key concern of pixel based OPC correction has been 

addressed by the implementation of shot minimization. This improves the printability of 

masks by increasing the size of the smallest mask feature which decreases the cost of 

mask manufacture.  

A paper titled “Detecting shorts and open faults in a mask using lithography 

simulation” has been accepted in North Atlantic Test Workshop 2010. In this paper, the 

GPU based simulator was used to evaluate faults in the printed pattern. Based on the 

work presented in this thesis a paper titled “GPU accelerated lithography using wavelets” 

is under review in ISQED 2011. 
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APPENDIX 

 

TEST PATTERNS 

 

 The test patterns used to evaluate the OPC tool are presented below. 

 

Figure 31. Five 

 

Figure 32. Granik 
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Figure 33. Random 

 

 

 

Figure 34. Double Rake
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