
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses 1911 - February 2014

2011

Design of an FPGA-based Array Formatter for Casa
Phase-Tilt Radar System
Akilesh Krishnamurthy
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

Part of the VLSI and Circuits, Embedded and Hardware Systems Commons

This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 -
February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Krishnamurthy, Akilesh, "Design of an FPGA-based Array Formatter for Casa Phase-Tilt Radar System" (2011). Masters Theses 1911 -
February 2014. 691.
Retrieved from https://scholarworks.umass.edu/theses/691

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Ftheses%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Ftheses%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses/691?utm_source=scholarworks.umass.edu%2Ftheses%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

DESIGN OF AN FPGA-BASED ARRAY FORMATTER
FOR CASA PHASE-TILT RADAR SYSTEM

A Thesis Presented

by

AKILESH KRISHNAMURTHY

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

September 2011

Electrical and Computer Engineering

c© Copyright by AKILESH KRISHNAMURTHY 2011

All Rights Reserved

DESIGN OF AN FPGA-BASED ARRAY FORMATTER
FOR CASA PHASE-TILT RADAR SYSTEM

A Thesis Presented

by

AKILESH KRISHNAMURTHY

Approved as to style and content by:

Russell G. Tessier, Chair

Stephen Frasier, Member

Joseph Bardin, Member

C. V. Hollot, Department Chair
Electrical and Computer Engineering

ACKNOWLEDGMENTS

I would first like to extend my deepest sense of gratitude to my parents and brother

for their encouragement and support to pursue graduate studies at UMass Amherst.

I would like to thank my advisor, Professor Russell Tessier and Eric Knapp for

giving me the wonderful opportunity to work in their research group. My thesis work

would not have been possible without their constant motivation and guidance. I will

forever be grateful for all the encouragement and continued support I received from

them. I also wish to thank Professor Stephen Frasier and Professor Joseph Bardin

for their helpful comments and feedback.

I would like to acknowledge the help and support of my lab mates Deepak Un-

nikrishnan and Vishwas Vijayendra, with whom I have shared numerous technical

discussions and brainstorming sessions. Thanks to Arunachalam Annamalai for his

help during the final phase of the project. Finally, I would like to thank all my friends

in Amherst, the members of the Reconfigurable Computing Group, and CASA, who

have made my stay here truly memorable.

iv

ABSTRACT

DESIGN OF AN FPGA-BASED ARRAY FORMATTER
FOR CASA PHASE-TILT RADAR SYSTEM

SEPTEMBER 2011

AKILESH KRISHNAMURTHY

B.E., ANNA UNIVERSITY, INDIA

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Russell G. Tessier

Weather monitoring and forecasting systems have witnessed rapid advancement

in recent years. However, one of the main challenges faced by these systems is poor

coverage in lower atmospheric regions due to earth’s curvature. The Engineering

Research Center for the Collaborative Adaptive Sensing of the Atmosphere (CASA)

has developed a dense network of small low-power radars to improve the coverage of

weather sensing systems. Traditional, mechanically-scanned antennas used in these

radars are now being replaced with high-performance electronically-scanned phased-

arrays. Phased-Array radars, however, require large number of active microwave

components to scan electronically in both the azimuth and elevation planes, thus sig-

nificantly increasing the cost of the entire radar system. To address this issue, CASA

has designed a “Phase-Tilt” radar, that scans electronically in azimuth and mechan-

ically in elevation. One of the core components of this system is the Phased-Array

controller or the Array Formatter. The Array Formatter is a Field Programmable

v

Gate Array (FPGA)-based master controller that translates user commands from a

computer to control and timing signals for the radar system. The objective of this

thesis is to design and test an FPGA-based Array Formatter for CASA’s Phase-Tilt

radar system.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1. INTRODUCTION . 1

2. BACKGROUND . 7

2.1 Dual-Polarized Radars . 8
2.2 Phase-Tilt System Overview . 9

2.2.1 Host Computer Sub-System . 10
2.2.2 Phase-Tilt Antenna Scanning Sub-system. 11
2.2.3 Array Formatter Board (AFB) . 13
2.2.4 Transceiver Sub-system . 14

2.3 Phase-Tilt Modes of Operation . 15

3. ARRAY FORMATTER BOARD . 17

3.1 Specifications . 17
3.2 Array Formatter Board Features . 17

3.2.1 Spartan-3E XC3S500E FPGA. 18
3.2.2 Clocking Architecture . 19
3.2.3 Expansion Connectors . 20
3.2.4 External Memories . 21
3.2.5 RS-232 Serial Ports . 22
3.2.6 Ethernet Physical Layer Interface . 23

vii

4. MICROBLAZE AND EMBEDDED DEVELOPMENT KIT 24

4.1 MicroBlaze Soft Processor . 24
4.2 Embedded Development Kit . 25

4.2.1 Xilinx Platform Studio . 25
4.2.2 Software Development Kit . 25

5. DESIGN METHODOLOGY AND HARDWARE SYSTEM
ARCHITECTURE . 26

5.1 Design Methodology . 26
5.2 AFB FPGA Hardware System Architecture . 26

5.2.1 Xilinx IP Cores . 27

5.2.1.1 Memory Controllers . 27
5.2.1.2 UART Core . 28
5.2.1.3 Digital Clock Manager . 28
5.2.1.4 First In First Out Memories . 28

5.2.2 Custom Peripheral (PF) . 28
5.2.3 Custom Verilog Modules . 29

5.2.3.1 T/R Module Interface . 29
5.2.3.2 Timing State Machine (TSM) . 31
5.2.3.3 Transceiver Interface . 32

5.3 T/R Module FPGA Architecture . 33

6. ARRAY FORMATTER SOFTWARE . 36

6.1 Booting the System . 36

6.1.1 Bootloader . 36

6.2 MicroBlaze Software Application . 37

6.2.1 Software Functions . 38

6.2.1.1 Unicast Scheme . 39
6.2.1.2 Broadcast Scheme . 43

6.3 Formatter Data Rates . 45

7. ETHERNET INTERFACE . 49

viii

7.1 Lightweight IP (lwIP) . 49
7.2 Test Ethernet Connection . 50
7.3 Communication Protocol . 51

7.3.1 Store Calibration Data . 52
7.3.2 Store Timing and Sequence Data . 53

8. CONCLUSIONS AND FUTURE WORK . 55

8.1 Conclusions . 55
8.2 Future Work . 55

APPENDICES

A. MICROBLAZE SOFTWARE APPLICATION USER GUIDE 56
B. ARRAY FORMATTER CUSTOM VERILOG MODULES 67
C. ARRAY FORMATTER BOARD USER MANUAL 71

BIBLIOGRAPHY . 73

ix

LIST OF TABLES

Table Page

2.1 Polarimetric pulsing sequences of dual-polarized radars 9

3.1 Summary of Spartan-3E XC3S5000E FPGA Attributes 19

5.1 Array Formatter Board ports . 33

5.2 Hardware utilization of the AFB FPGA . 33

6.1 Host Computer commands for MicroBlaze software functions 45

A.1 PF software registers mapped to verilog module ports 58

x

LIST OF FIGURES

Figure Page

1.1 Modern radar system . 1

1.2 Scanning ability of electronically-scanned phased-array radars [5] 3

1.3 Phase-Tilt radar system block diagram . 4

1.4 Phased-Array Controller/Formatter . 5

2.1 Horizontal and vertical polarizations of radar signals [10] 8

2.2 Phase-Tilt radar system architecture . 10

2.3 Host Computer sub-system . 11

2.4 T/R Module block diagram [11] . 12

2.5 Phase-Tilt antenna array . 13

2.6 Block diagram of the Array Formatter Board . 14

2.7 Transceiver sub-system . 15

3.1 Spartan-3E Starter Kit Board [25] . 18

3.2 Clock Regions, DCM sites, and I/O banks in the FPGA 20

3.3 RS-232 serial ports . 22

3.4 Ethernet PHY with RJ-45 connector [25] . 23

5.1 Array Formatter system architecture . 27

5.2 Serial data format . 30

5.3 Timing state machine trigger outputs . 32

xi

5.4 T/R Module FPGA . 34

5.5 T/R Module memory bits . 34

5.6 T/R Module sequence table bits . 35

6.1 Bootloader illustration . 37

6.2 Data format for updating T/R Module memory . 41

6.3 Data format for writing port registers . 41

6.4 Data format for reading port registers . 42

6.5 Data format for writing address register . 43

6.6 Timing state machine output trigger plot . 47

6.7 Diagram showing the relative time periods during the radar operation
phase . 48

7.1 Ethernet packets for Store Calibration Mode . 53

7.2 Ethernet packet for Store Timing and Sequence Data 54

A.1 Host Computer data format for storing calibration data in
Formatter . 63

A.2 Host Computer data format for storing sequence table and timing
information . 64

A.3 Laboratory setup to test AFB communication . 66

B.1 T/R Module transmitter waveform . 68

B.2 T/R Module receiver waveform . 68

B.3 Timing state machine waveform . 69

B.4 Transceiver interface transmitter waveform . 70

B.5 Clock divider waveform . 70

xii

CHAPTER 1

INTRODUCTION

State-of-the-art weather prediction systems rely on the use of advanced radar

systems for efficient and accurate information. Radar systems study the quantity of

interest by transmitting an electromagnetic signal in space and detecting the echoed

signal received from the target [17]. The comparison of transmit and receive signals

reveals crucial target information, such as location, size, etc. The process is repeated

several times to increase the accuracy of the target information collected. Current

radar systems are digitally controlled using modern computers and sophisticated data

acquisition systems. A modern radar system typically consists of a computer, an

antenna panel for transmitting and receiving signals, and a data acquisition system

for processing digital and analog signals as shown in Figure 1.1. The Data Acquisition

Systems consists of Analog to Digital Converters, analog and digital circuitry, and

hardware support to perform complex signal processing algorithms. They also require

several high-speed interfaces to communicate with different radar components.

DATA ACQUISTION

SYSTEM

DIGITAL

SIGNALS

ANALOG

SIGNALS

Figure 1.1. Modern radar system

Radars used for atmospheric sensing gather critical weather-related information,

that can be used for weather monitoring and forecasting. The information collected by

1

weather radars can detect hazardous weather events such as tornadoes. Traditionally,

these radars have been mechanically controlled, in which the antenna panel is tilted by

a motor controller [5]. A typical scanning cycle of mechanically-tilted weather radars

is as follows: The radar is first tilted in the elevation plane, and samples a small

region of the atmosphere by transmitting a beam of energy, and then listening to the

received energy for a certain period of time. The radar is then moved in the azimuth

plane, and this process is continued across multiple azimuth beam positions, until the

radar completes a 360 degree scan in the azimuth plane. The radar then changes the

elevation angle to perform another azimuth scan. In this way, many azimuth scans

are performed to scan the entire region of interest in the atmosphere. Such radars

typically consume several minutes to perform a full cycle scan in the atmosphere [5]

[7]. Alternative scanning techniques have been explored in the past to address the

limitations of mechanically-scanned systems. Phased-Arrays are an emerging breed of

radars, that have received significant attention from the radar community by virtue

of their fast scanning abilities [8]. They have an array of antennas fed by signals,

whose relative phases are varied to produce radiation patterns in desired directions

and cancel patterns in other directions.

Phased-Array radars can send multiple beams at the same time without tilting or

moving the radar mechanically as shown in Figure 1.2 [5]. Current state-of-the-art

two-dimensional phased-array antenna systems are capable of electronic beam steering

in both the azimuth and elevation planes. Radio Frequency (RF) circuitry such

as phase-shifters and attenuators facilitate electronic beam steering in these radars.

Typical scanning rates of phased-arrays are in the order of seconds, thus delivering

better scanning performance when compared to their mechanical counterparts [5].

The ability to “dwell” or repeatedly sense the same quantity of interest increases

the accuracy of the data sampled by these radars. Also, the failure rate of phased-

2

arrays is much lower than that of mechanically-tilted radars, because of the absence

of mechanical components like motor controllers [5] [7].

Figure 1.2. Scanning ability of electronically-scanned phased-array radars [5]

The electronically-scanned phased-array radars, however, suffer from two main

limitations - (1) the high-cost of the active electronic circuitry behind the antenna

array, and (2) the design of highly complex digital sub-systems to facilitate elec-

tronic beam steering. CASA has proposed to address these issues by designing a

low-cost phased-array radar system called “Phase-Tilt” [8]. The Phase-Tilt radar

scans electronically only in one dimension (azimuth), thereby, reducing the amount

of active electronic circuitry behind the antenna array. Scanning in the elevation

plane is performed mechanically using a tilt controller. The block diagram of the

Phase-Tilt radar system is shown in Figure 1.3. The Phase-Tilt radar consists of the

following sub-systems: Host Computer, Transceiver, Array Controller or Formatter,

Tilt Controller, and the Phase-Tilt Antenna array [8]. The linear antenna array is

a planar structure of 64 × 32 passive antenna elements [14] [15]. The array consists

of 64 columns; each column has 32 antennas. The antenna columns are controlled

by active electronic circuits called Transmit/Receive Modules (T/R Modules). There

are 64 T/R Modules for 64 antenna columns; a T/R Module controls the 32 antenna

elements in the column. The tilt controller is used for tilting the antenna array in

the elevation plane. The Transceiver sub-system receives the RF signals from the

3

Array

Formatter/

Controller

Transceiver

T/R Modules

Tilt Controller

Antenna Array

RF Signals

Figure 1.3. Phase-Tilt radar system block diagram

antenna array and performs all the relevant signal processing tasks needed for post

processing of weather data.

The master controller in this system is the Array Controller or the Formatter which

controls and synchronizes the different radar sub-systems with high-speed control,

trigger, and switch signals as shown in Figure 1.4. The Formatter interfaces the

computer to all the radar sub-systems. User commands from the computer are broken

down, interpreted, and translated by the Formatter to data and trigger signals. The

aim of this thesis is to design an Array Formatter for CASA’s Phase-Tilt radar system.

The functions of the Array Formatter are: storing and transferring data files,

updating beam positions, sending timing and switch signals to trigger events, and

sending control signals to control the different radar sub-systems. The Formatter is

the gateway for the Host Computer to communicate with all the other radar sub-

systems. The details of the roles of the Formatter are described in Chapter 2 and

4

Array

Formatter

Host

Computer

T/R Modules

Tilt Controller

Transceiver

Data, Trigger

Data

Data,Trigger

Scan

 Commands

Radar Control

Signals

Figure 1.4. Phased-Array Controller/Formatter

Chapter 6. A typical Array Formatter requires hardware resources such as microcon-

trollers or microprocessors for data acquisition and control, peripheral interfaces for

communicating with radar sub-systems, and sufficient memory for storing data and

timing information [16].

Field Programmable Gate Arrays (FPGA)-based radar controllers are used these

days by virtue of their fine grained and course grained parallelism, and support for

high-speed interfaces [9]. FPGAs also offer a high degree of flexibility at an afford-

able cost. In this project, we use a soft microprocessor-based system on the FPGA

to implement an Array Formatter for CASA’s Phase-Tilt radar system. A soft mi-

croprocessor is a microprocessor that is implemented in the FPGA fabric. The soft

microprocessor is the central control agent in the Formatter design. This FPGA-based

system will be the first prototype used as the Array Formatter for phased-array an-

tenna systems.

The rest of the thesis document is organized as follows: Chapter 2 describes the

CASA Phase-Tilt Radar System. The Array Formatter Board specifications and

features are described in Chapter 3. Chapter 4 introduces the MicroBlaze soft pro-

cessor by Xilinx and also the environment used to create the embedded system on the

5

FPGA. Chapter 5 outlines the design methodology adopted in this thesis work, and

also the FPGA system architecture of the Array Formatter. The Array Formatter

software has been discussed in Chapter 6. Chapter 7 describes the ethernet interface

between the Array Formatter and the Host Computer in detail. Chapter 8 concludes

the thesis with an overview of the future work.

6

CHAPTER 2

BACKGROUND

For several decades, weather sensing systems have relied on the use of long-range,

high-power radars to sense the atmosphere. Conventional radars transmit high-power

radar beams that traverse several hundreds of miles in space in a straight path. While

the beam continues to travel along straight lines, the earth’s surface beneath the

beam begins to curve away [16]. Radars are affected by the earth’s curvature that

limits their range of scanning, and also their ability to cover the lower regions of

the atmosphere. The Center for Collaborative Sensing of the Atmosphere (CASA),

an Engineering Research Center established by the National Science Foundation, is

developing a dense network of small low-power radars to overcome coverage gaps due

to earth’s curvature and complex terrains [16]. CASA radars are separated by a few

tens of kilometers apart over a large area, which enables them to get high spatial

and temporal resolution views even in the lower atmospheric regions. The Center

has currently deployed a network of four mechanically-scanned radars in Oklahoma.

The next step in the evolution of distributed radar systems is the use of solid-state

electronics and low-cost, electronically-scanned phased-array radars.

The active electronic circuits used in current phased-arrays are the solid-state

Transmit/Receive Modules [11]. The T/R Modules control the antenna array by

varying the antenna parameters such as phase, amplitude, and electric field polariza-

tions. While the phase and amplitude adjust the antenna beam positions, the electric

field polarization of the received signal gives structural characteristics of the scatter-

ing target. The electric field polarization of an electromagnetic (EM) wave refers to

7

 ZX

Figure 2.1. Horizontal and vertical polarizations of radar signals [10]

the locus of points of the electric field vector that lies in a plane perpendicular to

the direction of propagation of the wave. Weather radars usually transmit radiations

whose electric field vector lies either in the horizontal or vertical plane as shown in

Figure 2.1 [10].

2.1 Dual-Polarized Radars

Dual-polarized radars have the ability to transmit or receive signals in either

polarization. The variable transmit and receive electric field polarizations in the

signals allows dual-polarized radars to measure hydrometeor characteristics, such as

shape, size, and differentiate thermodynamic phase [6]. This helps in determining

rainfall rates, and sometimes discriminate between between liquid or ice phases of the

hydrometeor [6]. A weather radar usually transmits in one polarization and receives

in the other or same polarization depending on the scattering characteristics of the

target. The radar follows a sequence of Transmit (T) and Receive (R) modes in either

Horizontal (H) or Vertical (V) polarization to determine the information about the

hydrometeor. There are four possible polarimetric combinations for a dual-polarized

radar which are:

1. TH - Transmit in Horizontal Polarization

2. RH - Receive in Horizontal Polarization

8

3. TV - Transmit in Vertical Polarization

4. RV - Receive in Vertical Polarization

The science of radar polarimetry is the analysis of these transmit and receive electric

field polarization combinations, also called the radar polarimetric pulsing sequence.

The sequence can implement different radar functionalities such as “Single,” “Cross,”

or “Alternate.” In Single Polarization the radar transmits and receives signals in the

same polarization for multiple cycles; a cycle is a pair of Transmit-Receive states of

the radar. Alternate Polarization refers to alternating the polarization of the radar

between consecutive cycles. Cross Polarization refers to transmitting and receiving

signals in different polarizations within the same cycle. Table 2.1 shows sample po-

larimetric pulsing sequences implementing different functionalities in a dual-polarized

radar [10].

Table 2.1. Polarimetric pulsing sequences of dual-polarized radars

Cycle Single Alternate Cross

1 T=H R=H T=H R=H T=H R=V

2 T=H R=H T=V R=V T=V R=H

3 T=H R=H T=H R=H T=V R=H

4 T=H R=H T=V R=V T=H R=V

2.2 Phase-Tilt System Overview

CASA has developed the X-band Phase-Tilt radar that operates at a frequency

of 9.36 GHz in an effort to create a low-cost, electronically-scanned, dual-polarized,

phased-array antenna scanning system. The Phase-Tilt radar system architecture is

as shown in Figure 2.2.

The Phase-Tilt radar is used for distributed, collaborative, and adaptive sensing

of the atmosphere. The radar is controlled by a central Meteorological Command and

9

ARRAY

FORMATTER

TILT

CONTROLLER

UP/DOWN

CONVERTER

TRANSCEIVER

HOST COMPUTER

`

ANTENNA ARRAY

BACKPLANE

LRU

T

R

M

O

D

U

L

E

T

R

M

O

D

U

L

E

T

R

M

O

D

U

L

E

T

R

M

O

D

U

L

E

T

R

M

O

D

U

L

E

T

R

M

O

D

U

L

E

T

R

M

O

D

U

L

E

T

R

M

O

D

U

L

E

T

R

M

O

D

U

L

E

T

R

M

O

D

U

L

E

T

R

M

O

D

U

L

E

T

R

M

O

D

U

L

E

T

R

M

O

D

U

L

E

T

R

M

O

D

U

L

E

T

R

M

O

D

U

L

E

T

R

M

O

D

U

L

E

`

PHASE-TILT ANTENNA SCANNING SUB-SYSTEM

Elevation Angle

RS-232 PORT

GPIO PINS R

S

2

3

2

G

P

I

O

R

S

2

3

2

ETHERNET
Sweep Data File

Trigger

Beam IDs

Calibration Data

Sequence Table

Trigger

Waveform File

I/Q Data

``

Figure 2.2. Phase-Tilt radar system architecture

Control Agent (MCC). The user scan preferences are encoded in the MCC. Depending

on the preferences of different users and the state of the atmosphere, the MCC creates

a “scan task.” A scan task is typically a sub-volume of the atmosphere which is of

particular interest to the user. The MCC creates the necessary scan command from

the task, and issues the command to each one of the radar Host Computers in the

network.

The Host Computer controls its radar by translating the scan commands to control

files and control structures. The computer uploads these files to the AFB, and then

the AFB becomes the master controller which synchronizes the different sub-systems

of the radar. The next few sections describe each sub-system in detail.

2.2.1 Host Computer Sub-System

A block diagram of the Host Computer sub-system is shown in Figure 2.3. The

Host Computer interfaces the human user to the rest of the system. In this project,

the computer is interfaced with the Array Formatter and the Transceiver using the

10

Beam

Steering

Module

Signal

Processor
Host Main

Host Computer Sub-system

Sweep Tables

Sweep Waveform I/Q Data

Scan Angles

Beam IDs
Processing Mode

Moment data

Waveform data

I/Q Data to

Transceiver

Sweep Data File

 to AFB

Scan command

from MCC

Network

Interface

Ethernet

Interface

Scan Command

Serial

Interface

Figure 2.3. Host Computer sub-system

RS-232 and Ethernet ports respectively. The waveform data file is uploaded by the

computer to the Transceiver. The signal processing component of the host computer

sub-system performs real-time signal processing of the digital I and Q data from

the Transceiver. The Beam Steering Module in the system records the current and

future beam locations, and also calculates the “sweep” data structure (a sweep is

a sequence of azimuth beam positions) from the scan command created by the end

user. The sweep data file is uploaded to the Formatter via the computer’s RS-232

serial interface.

2.2.2 Phase-Tilt Antenna Scanning Sub-system

The Phase-Tilt antenna scanning sub-system consists of 64 T/R Modules, antenna

elements, and a Mechanical Actuator or Tilt Controller as shown in Figure 2.2. A

picture of the passive antenna array is shown in Figure 2.5. The antenna scanning

sub-system consists of four Line Replaceable Units (LRUs). An LRU is a black box

of components that can be easily replaced or replicated depending on the needs of

11

the application. Each LRU consists of 0.25m×0.50m passive antenna array arranged

as 16 columns and 32 rows, 16 T/R Modules that feed the 16 antenna columns, RF

and DC power distribution backplane, and AC to DC power converters [14] [15]. The

64 T/R Modules are grouped into four LRUs. A T/R Module consists of three com-

ponents: RF circuits, such as phase-shifters and attenuators, to set the amplitude

and phase of the antenna columns, T/R and V/H switches to switch the the antenna

columns between Transmit and Receive modes, and Vertical and Horizontal polar-

izations respectively, and an integrated Field Programmable Gate Array (FPGA) to

control these circuits and interface with other radar components. The components of

a T/R Module is shown in Figure 2.4 [11].

F

P

G

A

(Xilinx

Spartan-3E)

PS

AT

V

V/H

RF OUT

RF IN

H

T/R

T

R

(From

Transmitter)

(To Receiver)

Figure 2.4. T/R Module block diagram [11]

The FPGA in the T/R Module has an internal memory, which is configured as a

look-up table to store the amplitude and phase coefficients of the antenna column.

The FPGA also maintains a sequence table which holds the address of the T/R

Module memory. The sequence table is a data structure which contains the T/R

Module states for the polarimetric pulsing sequence to be performed by the radar.

12

Figure 2.5. Phase-Tilt antenna array

2.2.3 Array Formatter Board (AFB)

A block diagram of the AFB is shown in Figure 2.6. The Array Formatter assumes

master control of the entire radar system. The FPGA-based Formatter provides the

required control and timing signals for the radar, and interfaces the Host Computer

with the antenna scanning sub-system. The sweep data file from the computer is

broken down by the Formatter to create sequence tables. The sequence table is

broadcast to all the 64 T/R Modules. All the T/R Modules switch between their

states by triggers sent by the AFB’s Timing State Machine (TSM). The TSM also

triggers the Transceiver sub-system. The Formatter stores the calibration data in its

memory, which contains the phase and amplitude coefficients for each of the 64 T/R

Modules. The calibration data is conveyed to each T/R Module individually by the

Formatter. The Tilt Controller is also controlled by the AFB to update the current

and future elevation angles

13

The Formatter is interfaced to the T/R Modules and the Transceiver via its Gen-

eral Purpose I/O (GPIO) pins on-board, which is capable of sending Low-Voltage

Differential Signals (LVDS) for fast communication. The Formatter also interfaces

with the Tilt Controller via its second RS-232 port. The elevation angle of the Tilt

Controller is adjusted before pulsing the radar.

Trigger Generator

(Timing State

Machine)

Microprocessor

T/R Module

Interface

(GPIO Pins)

Triggers

Array Formatter Board

Transceiver

Interface

(GPIO Pins)

Triggers and Clocks

Elevation Angle

Timing Data

LVDS Data,

Trigger, and

Clock Signals

Trigger Signals

Data Signals

Sweep Data File
Scan Command

Sequence Table
Calibration Data

Sequence Table

Calibration Data

Timing Data

Memory

Host Computer

Serial Interface

Tit Controller

Serial Interface

Figure 2.6. Block diagram of the Array Formatter Board

2.2.4 Transceiver Sub-system

The Transceiver sub-system consists of a commercially available Vaisala’s RVP900

system [18], and an up-down converter as shown in Figure 2.7. The RVP900 creates

the transmit-modulated waveform, digitizes the received signal, and demodulates the

digitized signal [8]. The three inputs feeding the RVP900 are an external clock,

differential TTL signals, and gigabit Ethernet as shown in Figure 2.7. The AFB

sends the differential input TTL signal as a trigger to the transceiver. The gigabit

Ethernet is used for interfacing the RVP900 system with the computer that uploads

the waveform table and downloads the I/Q data.

The up-down conversion system is made from commercial off-the-shelf compo-

nents, such as amplifiers, oscillators, mixers, etc. The up-down converter system

14

converts the Intermediate Frequency (IF) analog signals to Radio Frequency (RF)

analog signals when the radar is in transmit mode, and does the reverse conversion

when the radar is in the receive mode. The reference clock in the up-down conversion

system is used as the clock input for the RVP900 as shown in Figure 2.7.

Transmitter

I/O Panel

RVP900

Controller
Receiver

Beam ID

Waveform

Data

Transceiver Sub-system

Filter

Coefficients

Up

Converter

System

Clock Up/Down

Converter

RVP900

Down

Converter

IF Analog

Signals

RF Analog Signals

RF Analog Signals

Differential

 TTL Triggers
Sweep Waveform

I/Q Data

External

Clock

AFB

Interface

T/R Module

Interface

Ethernet Interface

with Host Computer

To T/R

Modules

Data

Figure 2.7. Transceiver sub-system

2.3 Phase-Tilt Modes of Operation

The Phase-Tilt radar fundamentally operates in two modes - Initialization and

Operation.

Initialization: Communication paths between each sub-system and component

in the radar system are set up. Registers are reset, all amplifiers are turned off, and

each sub-system has its own power up sequence to be performed during the initializa-

tion phase. A major part of the initialization process is spent in updating the T/R

Module memory with calibration data (phase and amplitude coefficients). The cali-

bration data from the Host Computer is conveyed to the T/R Modules via the Array

Formatter Board. The AFB stores the calibration data in its memory and routes

it to its T/R Module interface through its LVDS bus in a point to point (unicast)

15

data format. The addressed T/R Module echoes the message back to the Format-

ter Receiver, which verifies the correctness of the data transmitted. The error check

enables correct loading of the T/R Module memory as initialization is an important

step towards successful and reliable radar operation. The T/R Module memory is a

look-up table that is indexed by the sequence table to populate the antenna columns

with phase, amplitude, and polarization diversity during the radar operation mode.

The Formatter updates the T/R Module memory periodically or whenever the system

performance changes due to external parameters.

Operation: The scan command which is a sequence of azimuth beam positions is

translated to appropriate sweep data files and then uploaded to the AFB memory by

the computer system. Each azimuth beam position has an associated 8 polarization

sequences (sequence table), the number of times the sequence is repeated (the loop

count), the transmit pulse length, and the Pulse Repetition Time (PRT), which is

the time elapsed between the beginning of one pulse to the beginning of the next

pulse. The AFB first loads the elevation to the Tilt Controller, before broadcasting

the sequence tables to all the T/R modules in a point to multipoint (broadcast) data

format. The pulse length, loop count, and PRT are given as inputs to the TSM.

Once all the T/R Module sequence tables have been updated, the Formatter starts

the TSM to pulse the radar. One pass through the TSM steps the T/R Modules

through the sequence table once, generating 4 pulses. The TSM repeats the sequence

until the loop count decrements to zero. The loop count number is chosen by the user

depending on the number of pulses needed for a particular beam location. Once the

loop count decrements to zero, the Formatter reads the second beam position from its

memory, and broadcasts the associated sequence to the T/R Modules, and the whole

process repeats. When all the azimuth beam positions for a particular elevation angle

are read out of the memory, the computer uploads the next scan command to the

Formatter.

16

CHAPTER 3

ARRAY FORMATTER BOARD

This chapter describes the Array Formatter Board in detail. The specifications

from a radar standpoint are listed below first, followed by the features of the board

used for implementing and testing the Formatter design.

3.1 Specifications

1. Support for real-time data acquisition and processing.

2. Support for high-speed and low-speed peripherals for communicating with dif-

ferent radar components.

3. Support for debug interfaces for the system development.

3.2 Array Formatter Board Features

The Spartan-3E Starter Kit board by Xilinx [25] is used for designing and testing

the Array Formatter. The Spartan-3E Starter Kit as shown in Figure 3.1, is a de-

velopment board that can be used for various embedded processing applications, and

includes many peripherals, such as memory controllers, general purpose I/Os, and

bus interfaces.

Some of the key components of the board are Spartan-3E FPGA (XC3S500E),

50 MHz on-board oscillator, 16 MB Parallel Flash (FLASH), 64 MB DDR SDRAM

(DDR), 4 MB Xilinx Serial Platform Flash PROM, two RS-232 Serial Ports, Ethernet

10/100 Phy, JTAG USB download, and expansion connectors for I/Os.

17

FPGA

FLASH

D

D

R

Expansion

Connector

(I/O PINS)

RS-232 Serial Ports

Ethernet

Port

LEDs

USB JTAG

PROM

Figure 3.1. Spartan-3E Starter Kit Board [25]

The serial port is used for debugging and communicating with the computer. The

other serial port is used for communicating with the Tilt Controller. The expansion

I/O connector is used for interfacing the T/R Modules with the board. The 64

MB DDR SDRAM is used as the AFB memory that stores calibration data files,

sequence tables, and also the timing information for the TSM. The DDR SDRAM is

also used for executing the software application of the MicroBlaze processor, which is

explained in chapter 6. 16 MB Parallel Flash is used to store the MicroBlaze software

application. The 4 MB Serial Platform Flash PROM is used for storing the FPGA

configuration file.

3.2.1 Spartan-3E XC3S500E FPGA

The XC3S500E FPGA is a part of the Spartan-3E family of FPGAs by Xilinx. The

Spartan-3E FPGA family architecture fundamentally consists of five programmable

logic elements [24]:

Configurable Logic Blocks (CLBs) contain flexible LUTs that implement logic

and memory. CLBs can implement a wide variety of functions and also store data.

18

Input/Output Blocks (IOBs) control the signal flow between the I/O pins and

the internal logic. It supports a variety of signaling standards including Low Voltage

Differential Signaling (LVDS) standards for high speed signaling. The Formatter

communicates with the T/R Modules using the LVDS standard.

Block RAMS that can be used for data storage.

Multiplier Blocks can accept two 18-bit inputs to calculate the product.

Digital Clock Managers (DCMs) provide high quality self-calibrating clock

signals, and digital solutions for delaying, phase-shifting, multiplying, and dividing

the clock signals. DCMs are used for providing three different clock frequencies in the

system as required by the MicroBlaze system, DDR SDRAM memory controller, and

the T/R Module interface bus. The details of the clocking architecture are explained

in section 3.2.2.

The summary of the XC3S500E FPGA attributes is given in Table 3.1.

Table 3.1. Summary of Spartan-3E XC3S5000E FPGA Attributes

Feature Count

Total Gates 500K

Total Cells 10,476

Total CLBs 1,164

Total Slices 4,656

Distributed RAM Bits 73K

Block RAM Bits 360K

Dedicated Multipliers 20

Total DCMs 4

User I/Os 232

3.2.2 Clocking Architecture

The Spartan-3E Starter Kit board supports up to three clock sources:

1. An on-board 50 MHz clock oscillator.

19

2. External clock can be given via the SMA connector.

3. Optionally install an 8-pin DIP-style clock oscillator.

A 100 MHz external clock signal is supplied to the Formatter via the SMA con-

nector on the board.

Appropriate I/O and clock regions are chosen for interfacing the FPGA with the

external memories, external clock oscillator, and the I/O expansion header to avoid

excessive delays in the clock path. There are four DCM sites available in the FPGA.

The four clock regions, global clock pins and I/O banks are shown in Figure 3.2.

REGION (X0,Y0) REGION (X0,Y1)

REGION (X1,Y1)REGION (X1,Y0)

DCM DCM

DCM DCM

GLOBAL CLOCK PINS

GLOBAL CLOCK PINS

I/O BANK 0

I
/
O

B
A
N
K

1

I
/
O

B
A
N
K

3

I/O BANK 2

Figure 3.2. Clock Regions, DCM sites, and I/O banks in the FPGA

3.2.3 Expansion Connectors

The Spartan-3E Starter Kit board has support for several expansion connectors

for conveniently interfacing with other off-board components. There is support for

three I/O expansion headers:

20

1. A Hirose 100-pin expansion connector with support for 43 FPGA user-I/O pins,

including 15 LVDS I/O pins and 2 input only pins.

2. Three 6-pin peripheral module connections.

3. Landing pads for Agilent connector-less probes.

The Hirose 100-pin expansion connector is used for interfacing the T/R modules

and the Transceiver. Data and clock signals in LVDS format are exchanged serially

between the T/R Modules and the board.

3.2.4 External Memories

The Spartan-3E Starter Kit board includes three external memory chips that are

used in this project. The first is a 512Mbit (32M ×16) DDR SDRAM by Micron [12]

with a 16-bit data interface. The DDR SDRAM chip is used for storing calibration

data, sequence tables, timing information, and the loop count value. The micropro-

cessor in the system also executes its software code from the DDR SDRAM. All the

DDR SDRAM pins are connected to the I/O Bank 3 of the FPGA [25].

The second memory chip used in this project is a 16 MB Intel StrataFlash (Parallel

Flash). The non-volatile Parallel Flash provides a number of options to the designers

as listed below.

1. Support for storing a single FPGA configuration file.

2. Support for storing two different configuration files to switch dynamically be-

tween two FPGA configurations using the board’s multi-boot feature.

3. Support for storing the microprocessor software code, and also shadows the code

to the DDR SDRAM, from where it can be executed by the processor.

4. Support for storing any non-volatile data from the FPGA.

21

In this project, we use the Parallel Flash for storing the processor code, and also

to shadow the code to the DDR SDRAM memory. The processor eventually executes

from the DDR SDRAM and more details about this process are given in Chapter

6. The third memory chip used in this project is on-board 4 MB Xilinx XCF04S

Serial Platform Flash PROM. In this project, the PROM is used to store the FPGA

configuration file. The FPGA is configured from the PROM in the Master Serial

configuration mode [25]. Details about this configuration mode can be found in [25].

3.2.5 RS-232 Serial Ports

The Spartan-3E Starter Kit board has two RS-232 serial ports: a male DB9

DTE connector and female DB9 DCE connector as shown in Figure 3.3. The DTE

connector is used for interfacing the AFB with the Host Computer using a null modem

serial cable. The DCE connector is used for interfacing the AFB with the mechanical

actuator. The output voltage levels of the FPGA is in LVCMOS or LVTTL standards,

which are converted to the RS-232 voltage standards by the voltage converter IC as

shown in Figure 3.3. Likewise, when the FPGA receives serial data from either of

the ports, the RS-232 voltage levels are converted back to LVCMOS standard by the

voltage translator IC.

SPARTAN-3E FPGA

RS-232 VOLTAGE
TRANSLATOR IC

DB9 FEMALE
DCE

CONNECTOR

DB9 MALE
DTE

CONNECTOR

Rx RxTx Tx

Figure 3.3. RS-232 serial ports

22

3.2.6 Ethernet Physical Layer Interface

Figure 3.4. Ethernet PHY with RJ-45 connector [25]

The AFB also has support for an Ethernet physical layer to implement the stan-

dard Ethernet interface. The board includes a Standard Microsystems LAN83C185

10/100 Ethernet physical layer (PHY) interface and an RJ-45 connector as shown in

Figure 3.4. All timing is controlled by the on-board 25 MHz crystal oscillator. The

Ethernet interface is implemented in this work to enable high-speed communication

between the Formatter and the Host Computer. This interface can replace the serial

link to achieve a faster and more reliable communication channel. Details about the

implementation of the ethernet interface are given in Chapter 7.

23

CHAPTER 4

MICROBLAZE AND EMBEDDED DEVELOPMENT KIT

This chapter gives a brief overview of the MicroBlaze-soft processor by Xilinx and

also the environment used to create the embedded system on the FPGA.

4.1 MicroBlaze Soft Processor

The central processing component of the AFB is a soft microprocessor by Xilinx

called MicroBlaze. The XC3S500E Field Programmable Gate Array has support for

MicroBlaze, which is completely reconfigurable and built by combining various logic

cores inside the FPGA. The MicroBlaze processor is an embedded soft 32-bit RISC

processor [20]. The processor has high-speed instruction and data buses to guarantee

access to instructions and data simultaneously both on and off the chip.

MicroBlaze supports both general purpose and special purpose registers. The

processor has a three stage pipeline and a 32-bit high speed bus [20]. Two of the bus

interfaces supported by MicroBlaze that are used in this project are:

Processor Local Bus (PLB): A fully synchronous bus that gives access to

processor peripherals.

Local Memory Bus (LMB): A high-speed bus that connects MicroBlaze to

peripherals like Block RAMs for high-speed access.

24

4.2 Embedded Development Kit

The Xilinx Embedded Development Kit (EDK) is a design suite that helps in

designing a complete embedded system [22]. The two main tools used in EDK are

Xilinx Platform Studio and Software Development Kit.

4.2.1 Xilinx Platform Studio

The Xilinx Platform Studio (XPS) facilitates the design of the hardware compo-

nents of the embedded processor system on an FPGA. The tool provides a graphical

user interface for interconnection of the various components of the system, such as

processors, peripherals, and buses. Apart from the standard IP cores that are avail-

able in the IP catalog [19], the XPS allows the creation of custom peripherals that can

be included in the system. The XPS uses IP Interface (IPIF) libraries to implement

basic functionalities between processors and peripherals. These are optimized and

parameterized to give a simplified Bus Protocol called IP Interconnect (IPIC) [22].

4.2.2 Software Development Kit

The Xilinx Software Development Kit (SDK) provides an environment for develop-

ing embedded software applications. In essence, the SDK helps in developing software

for the hardware system developed in XPS. A Software Platform is the lowest level

of the software stack that includes all the drivers and libraries of the components of

the embedded system. Many applications can share the same software platform. A

standalone software platform is created to execute single threaded applications on a

single processor system.

25

CHAPTER 5

DESIGN METHODOLOGY AND HARDWARE SYSTEM
ARCHITECTURE

5.1 Design Methodology

The hardware components of the embedded system are designed using XPS and

the software application is developed using SDK as explained in section 4.2. The

software application is developed using C. The custom hardware logic in the FPGA

is designed in Verilog, and the embedded system designed in EDK is instantiated as

a module in the main Xilinx ISE project.

5.2 AFB FPGA Hardware System Architecture

The Array Formatter design is implemented on the Xilinx Spartan-3E FPGA and

the system architecture is illustrated in Figure 5.1. The FPGA system architecture

has the following key components:

1. MicroBlaze Processor.

2. Xilinx IP Cores such as UART, Digital Clock Managers, Memory Controllers,

and FIFOs [19].

3. Custom Peripheral (PF)

4. Custom Verilog Modules (T/R Module Interface, Timing State Machine, and

Transceiver Interface)

Details of the MicroBlaze soft processor have been described in section 4.1. The

next few sub-sections describe the other components in the system.

26

UART

DCM

Transmit

FIFO

Receiver

Transmitter

Receive

FIFO

Timing State

Machine

(TSM)

Clock

Synchronizer

MicroBlaze

BRAM

DDR SDRAM

Memory

Controller

FLASH

Memory

Controller

Processor Local Bus

(PLB)

To Host

Computer

To T/R Modules

(GPIO Pins)

32

32
32

16

16 From T/R

Modules

(GPIO Pins)

Trigger to T/R Modules

and Transceiver

(GPIO Pins)

32

OBUFDS

IBUFDS

To FLASHTo DDR SDRAM

T/R Module

Interface

100 MHz (DDR SDRAM)

50 MHz (MicroBlaze)

25 MHz (T/R Module Interface)

100 MHz external clock input

Transmitter

Clock

Divider

16

100 MHz input

To Transceiver

(GPIO pins)

Transceiver

Interface

1 MHz output

Write State

Machine

(WSM)

Read State

Machine

(RSM)

Custom Peripheral

(PF)

Channel

Enable
To T/R Modules

(GPIO Pins)

16

16

8

Figure 5.1. Array Formatter system architecture

5.2.1 Xilinx IP Cores

The Xilinx IP cores facilitate ease of design and integration into the system. This

section describes the various IP blocks that have been used to design the system on

the Formatter FPGA.

5.2.1.1 Memory Controllers

Xilinx IP cores such as Multi-Port Memory Controller for the DDR SDRAM and

the External Memory Controller for Flash are used for controlling the two external

memory chips [19]. These two cores are attached to the Processor Local Bus (PLB)

of the system.

27

5.2.1.2 UART Core

The Xilinx UART core is used for communicating with the Host Computer. It

has an adjustable baud rate and experiments are conducted at a rate of 115 Kbps.

5.2.1.3 Digital Clock Manager

The Digital Clock Managers are used to provide three different clock frequencies:

25 MHz, 50 MHz, and 100 MHz. The FPGA is triggered by an external 100 MHz

clock oscillator, and the DCM generates three output frequencies: 25 MHz, 50 MHz,

and 100 MHz. The MicroBlaze system runs at 50 MHz, while the T/R Module

interface runs at 25 MHz to satisfy the serial bus load requirements connected to the

T/R Modules, and the DDR SDRAM memory controller runs at 100 MHz as the

operating frequency range of the memory chip is between 75 MHz and 133 MHz [12].

5.2.1.4 First In First Out Memories

Xilinx FIFO cores are used in a system whenever data or control signals are

exchanged between two different clock domains. Two FIFO cores (Transmit and

Receive FIFOs) are used in this system to facilitate communication between the

MicroBlaze processor and the T/R Module interface. The Transmit FIFO buffers the

data to be transmitted to the T/R Modules. Likewise, the Receive FIFO holds the

data received from the T/R Modules before being read out by the processor.

5.2.2 Custom Peripheral (PF)

The Custom Peripheral, called PF in this system, is added to facilitate commu-

nication between the processor and the rest of the custom hardware Verilog modules

(T/R Module Interface, Transceiver Interface and Timing State Machine). These

Verilog modules are described in the next section. In order to add a custom periph-

eral to the PLB of the MicroBlaze system, the “Create Custom Peripheral” wizard is

used in Xilinx XPS [22]. This wizard also generates the necessary device drivers that

28

are used in developing the software application for the MicroBlaze processor. The

processor communicates with PF by making use of PF’s software accessible registers.

In this work, the PF is configured to have 30 software accessible registers. These

registers are mapped to the different ports of the custom Verilog modules, and are

listed in table A.1 in Appendix A. In order to access this peripheral in software, the

applications makes use of the APIs defined in PF’s device driver. The software APIs

used for accessing this peripheral are described in Appendix A. After creating this

peripheral, the Xilinx PLB interface modules are automatically included in the HDL

files of PF. These PLB interface modules take care of all bus transactions between

the processor and the peripheral.

5.2.3 Custom Verilog Modules

The custom Verilog modules in this system are used for communicating with the

T/R Modules and the Transceiver. The three interfaces are described in the following

sections.

5.2.3.1 T/R Module Interface

The Array Formatter Board communicates with the T/R Modules to convey the

sequence table information, update each T/R Module memory with calibration coef-

ficients, and trigger the switching of T/R Modules during the operation mode of the

Phase-Tilt radar.

The Transmitter and Receiver blocks are used for transferring data between the

Formatter and T/R Modules. A similar pair of Transmitter and Receiver blocks is

configured in the FPGA of the T/R Modules. The Transmitter block on either side

is the master, which sends data and clock using the LVDS standards via the I/O pins

on each board.

Two Finite State Machines [13] are implemented to control the Transmit and

Receive FIFOs in this interface. The PF loads the Write State Machine (WSM)

29

with a 32-bit data for the T/R Modules. The WSM then writes this data as two

16-bit words to the Transmit FIFO. The Transmitter module is a serial shift-out

register that reads the 16-bit data from the Transmit FIFO, and sends the data

serially as LVDS signals through the Xilinx OBUFDS (Output Buffer for Differential

Signalling) primitive. Likewise, in the receive chain, the LVDS data signals from

the T/R Modules are converted into a single ended signal by the Xilinx IBUFDS

(Input Buffer for Differential Signalling) primitive. The Receiver module performs

the conversion to a 16-bit data, and then writes it to the Receive FIFO. The Read

State Machine (RSM), which is controlled by PF, reads the value out of the Receive

FIFO. The Receiver operates at 25 MHz and the Receiver FIFO operates at 50 MHz

with a clock synchronizer between the two modules.

Serial Data Format: The serial data transferred between the Formatter and

the T/R Modules follows a simple protocol, where the message is represented as 18

bits as shown in Figure 5.2. The message includes 1 start bit, 16 data bits, and 1 stop

bit. The start bit, which is a zero, indicates the start of data transmission. This is

followed by the 16-bit data to be transmitted. The transmission ends with the stop

bit, which is a one. Data is sampled at the negative edge of the clock cycle, and the

last clock is used to manage the data flow in the Receiver.

Data sampled in middle of the eye

Figure 5.2. Serial data format

Channel Enable:

The array of sixty-four T/R Modules is arranged as two groups of 32 Modules each.

Each group has its own channel through which data is transmitted to the Formatter.

T/R Modules 1 to 32 are grouped to the left channel, while Modules 33 to 64 are

30

grouped to the right channel. The T/R Modules are configured in a way such that,

the loaded calibration data words are echoed back to the Formatter during the radar

initialization phase for error check. In order to enable one of the two channels during

this phase, a channel enable module is implemented in the T/R Module interface

of the Formatter’s FPGA. This logic enables the left or right T/R Module channel,

depending on its address. The channel enable module is also controlled by PF, and

it gets the T/R Module address from one of the software accessible registers of PF.

5.2.3.2 Timing State Machine (TSM)

The TSM is implemented in the Formatter for triggering the T/R Modules and

the Transceiver as explained in section 2.2. The pulse length, pulse repetition time,

and Loop Count are read out from the DDR SDRAM memory by the MicroBlaze

processor, and fed as inputs to the TSM for an azimuth beam position. The TSM

goes through 32 states, and one iteration of the 32 states passes the T/R Modules

through the sequence table once, thus generating 4 pulses. The 32 states are repeated

for a particular beam location until the loop count decrements to zero. The Loop

Count value determines the number of pulses needed by the Phase-Tilt radar in an

azimuth beam position.

In order to pulse the radar, the TSM first sends a trigger to the Transceiver.

This trigger switches the Transceiver to the Transmit state, which creates the output

waveform. After a certain delay, the TSM triggers the T/R Modules to switch to the

Transmit state. Once the Transmit time of the pulse elapses, the TSM triggers the

T/R Modules to switch to the Receive state. The T/R Modules stay in this state

until the Receive time elapses, and the TSM then triggers the Transceiver to start the

next Transmit state. This sequence of triggers continues until the TSM Loop Count

value decrements to zero. This corresponds to the Phase-Tilt radar transmitting a

31

fixed number of pulses in an azimuth beam position. The outputs of the TSM is

shown in Figure 5.3.

T R T R

Tx Tx

Triggers to T/R Modules

Triggers to Transceiver

Transmit time Receive Time

State 1 2 3 4

Figure 5.3. Timing state machine trigger outputs

5.2.3.3 Transceiver Interface

The Formatter communicates with the RVP900 Transceiver to convey the scan

information before pulsing the radar. The Transceiver synchronizes the received radar

data from the antenna panel with this scan information. This scan data contains

information about the beam position and the polarization pulsing sequence performed

by the radar.

The Transceiver interface consists of three lines: clock, enable signal, and a 32-bit

serial data interface. The serial data interface is also another Transmitter, that shifts

out a 32-bit data serially out through the GPIO pins on the board. The interface

runs at 1 MHz, and hence, a clock divider is used to derive this clock rate from the

external 100 MHz clock.

The implementation and verification of the custom Verilog modules are discussed

in Appendix B. The AFB ports in these modules are used for communicating with the

Phase-Tilt radar components. Except for clocks, all the data lines are sent serially.

These ports are listed in Table 5.1.

The hardware utilization of the Spartan-3E FPGA for implementing the Array

Formatter design is shown in Table 5.2.

32

Table 5.1. Array Formatter Board ports

Port Data Width Data Rate or Frequency

UART Transmit 1 115 Kbps

UART Receive 1 115 Kbps

T/R Module Interface Transmit 1 25 MHz

T/R Module Interface Receive 1 25 MHz

T/R Module Interface Clock 1 25 MHz

Transceiver Interface Data 1 1 Mbps

Transceiver Interface Clock 1 1 MHz

TSM Trigger 2 Variable

Table 5.2. Hardware utilization of the AFB FPGA

Logic Utilization Used Available Percentage Utilization

Slices 3287 4656 70%

Flip Flops 3741 9312 40%

LUTs 3816 9312 40%

BRAMs 11 20 55%

DCMs 2 4 50%

5.3 T/R Module FPGA Architecture

The T/R Module includes a Spartan-3E FPGA, which controls the RF compo-

nents and the switches in the T/R Module. The architecture of the T/R Module

FPGA is shown in Figure 5.4.

The FPGA has an on-chip memory module, which contains phase and amplitude

coefficients (calibration data) for an antenna column. During the radar initialization

phase, the memory of each T/R Module is preloaded with calibration data. The look-

up table memory is 16 bits wide as shown in Figure 5.5, with 6 bits each for setting

the attenuator and phase-shifter, and 4 bits for holding the information about T, R,

H, and V states. The memory has 1K entries, and is divided into four segments for

33

AFB Interface

(Control Logic)
Memory

Serial Data

System Clock

Trigger Signals

T/R Module FPGA

Sequences

Attenuators

Phase Shifters

T/R Switch

V/H Switch

Trigger

Address

Data

Sequence

Table

Port Registers

Figure 5.4. T/R Module FPGA

the four T/R Module states (TH, TV, RH, RV). The set of calibration data for each

T/R Module state corresponds to 256 different beam positions in an azimuth plane.

6 bits 6 bits

RT H V Attenuator Phase-Shifter

T = 1, R = 0, H = 1, V = 0 => Transmit Horizontal

T = 1, R = 0, H = 0, V = 1 => Transmit Vertical

T = 0, R = 1, H = 1, V = 0 => Receive Horizontal

T = 0, R = 1, H = 0, V = 1 => Receive Vertical

Figure 5.5. T/R Module memory bits

The FPGA also contains a sequence table that addresses the look-up table mem-

ory. The polarimetric pulsing sequence performed by the radar is determined by the

eight entries in the sequence table. The sequence table, as shown in Figure 5.6, is 16

bits wide. The first two bits represent the mode. This instructs all the T/R Modules

in the array to listen to the Array Formatter and update their sequence tables. The

four temperature bits are latched by the temperature register in the T/R Module.

These bits update the temperature of the on-board thermal sensor. The T/R and

V/H bits select one of the four segments in the look-up table memory, which repre-

34

sents the T/R Module state. The eight beam position bits is used for selecting one

of the 256 azimuth beam positions in the selected memory segment.

8 bits

T/R H/V Beam PositionTemperature

4 bits

Command

2 bits
T/R = 0 => Transmit

T/R = 1 => Receive

H/V = 0 => Vertical

 H/V = 1 => Horizontal

Figure 5.6. T/R Module sequence table bits

At the rising edge of the trigger pulse sent by the Array Formatter’s TSM, the

data in the memory that is addressed by the sequence table is latched by the port

registers. The port registers are interfaced to the attenuators, phase-shifters, T/R

and V/H switches to adjust the antenna column parameters. In this way, the T/R

Module FPGA communicates with the Array Formatter and controls the operation

of the Phase-Tilt radar.

35

CHAPTER 6

ARRAY FORMATTER SOFTWARE

This chapter describes the software application details of the Array Formatter

that has been implemented and tested on the Spartan-3E FPGA.

6.1 Booting the System

The Xilinx Spartan-3E FPGA features the ability to configure from the Xilinx

PROM available on-board in the Master Serial configuration mode [25]. On power

up, the initial configuration loads the FPGA with the hardware components along

with the MicroBlaze software application which gets loaded into the Block RAM.

The MicroBlaze processor executes the application from the Block RAM as soon as

the FPGA is configured. The capacity of the Block RAM is 8 Kilo Byte because of

the limited available hardware resources. Hence the software bootloader technique is

used in this thesis work to execute the Formatter software application that is larger

than 8 KB.

6.1.1 Bootloader

A bootloader is a software piece of code that gets loaded along with the configu-

ration bitstream while programming the PROM. The Intel Parallel Flash is used in

this project to store the main software application code. The sequence of steps that

take place during the bootloading operation is described below:

1. On power up, the FPGA gets configured by the PROM, and the processor

executes the bootloader from the processor reset location.

36

2. Bootloader copies the image of the software code from the Parallel Flash to the

DDR SDRAM as shown in Figure 6.1.

3. Processor executes the software code from the DDR SDRAM.

Software

Application

Software Application

Space

Calibration Data

Timing and Sequence

Table

BRAM

Bootloader

DDR SDRAM
FLASH

Figure 6.1. Bootloader illustration

The software application that is built from the project has the Executable and

Linkable Format (ELF). ELF image files are generally not used for storing and boot-

loading as it increases the complexity of the bootloader code [21]. The ELF image

is instead converted to SREC (Motorola S-record) format, which is one of the com-

mon bootloadable image formats, and hence, helps the process of bootloading. The

concept of bootloading is shown in Figure 6.1.

6.2 MicroBlaze Software Application

The Array Formatter software application is developed in C. The Formatter prints

the success of the bootloader process to the Host Computer, and then starts to execute

the application code from the DDR SDRAM.

All peripheral device drivers are included in the code as header files. These files

give access to the peripheral APIs. The drivers help users to treat the peripheral as a

black box, and not deal with any complex bus transactions between the processor and

the peripheral. For example, the user can instruct the MicroBlaze processor to write a

32-bit data to a specific address location in the DDR SDRAM, by calling the function

37

XIo Out32(Address, Data). The processor recognizes the address space of the DDR

SDRAM between its base and high addresses. The DDR SDRAM chip is accessed as

a memory-mapped I/O, and any memory read or write operation is specified within

this address range. Similarly, all other peripherals are accessed as memory-mapped

I/Os by the processor, and the device driver APIs are used to communicate with

them in the software application. These APIs are described in Appendix A.

The Formatter has three communication interfaces on the chip that are imple-

mented in Verilog. These are the T/R Module interface, Transceiver interface, and

the TSM. The interfaces are port-mapped to the software accessible registers of the

Custom Peripheral (PF). The registers are accessed in software by the APIs defined

in the PF device driver. The PF is configured to have 30 software accessible registers,

and these are mapped to all the three communication interfaces. For example, a soft-

ware write to the T/R Module interface corresponds to writing a 32-bit data to the

FIFO WSM. In order to write the data to the FIFO WSM, the processor writes into

the PF register that corresponds to the input data port of the WSM. The processor

then enables the FIFO WSM in software by setting the corresponding PF register to

one. Likewise, the processor performs a software read operation from the T/R Mod-

ule interface by first starting the FIFO RSM in software, and then reading the data

from the output port of the RSM. The processor uses the corresponding PF registers

that are mapped to the RSM enable and data output ports. These functions along

with other software communication interfaces have been described in Appendix A.

6.2.1 Software Functions

The MicroBlaze software functions can be grouped into two schemes: Unicast

and Broadcast schemes. The Unicast scheme corresponds to the Phase-Tilt radar

initialization mode, where the calibration data is loaded in the AFB’s memory, and

then routed to the corresponding T/R Modules. The Broadcast scheme, on the other

38

hand, is associated with the radar operation mode. In this scheme, the sequence table

and timing information for multiple beam positions in an azimuth plane are loaded

in the memory. The processor then reads them out from the memory, and writes to

the T/R Module interface and the TSM respectively.

The MicroBlaze application program begins in a while loop that makes a call to

access the UART receive buffers for the Host Computer command. The program

enters a case statement that calls the different software functions depending on the

8-bit command decoded by the processor. If the command is ‘z’ or “exit,” the appli-

cation sets the command flag to 1. The application while loop terminates when the

command flag is set to 1. The MicroBlaze software functions are explained below:

6.2.1.1 Unicast Scheme

In the unicast scheme, the Formatter addresses each T/R Module individually, and

waits for the T/R Modules to echo the words back for error check. The Formatter

enables the left or right channel of the T/R Modules to transmit data. The left

channel is enabled if the Formatter receives data from T/R Modules 1 to 32, and

the right channel is enabled for T/R Modules 33 to 64. The following are the five

MicroBlaze software functions under the Unicast scheme.

Store Calibration Data:

If the command decoded by the Formatter is ‘s,’ the store calibration data function

is executed by the processor. The T/R Module calibration coefficients are stored in

the Formatter’s DDR SDRAM memory segment. The Formatter’s memory is divided

into segments of 4 KB to store the T/R Module calibration data. The steps taken by

the MicroBlaze processor to implement this function in software is given below:

1. Receive T/R Module address as the next byte of data.

2. Calculate the DDR memory segment address for the T/R Module.

39

3. Calibration data are then formatted as 32-bit words by concatenating four con-

secutive 8-bit words from the UART receiver.

4. Store 32-bit words in memory, until the of command (0xFFFF) is received.

Transmit Calibration Data:

If the command decoded by the Formatter is ‘f,’ the application enters the “Trans-

mit Calibration Data” function. The calibration data that is stored in DDR SDRAM

is transmitted to the T/R Module Interface by loading each data word into the WSM.

This function is used for loading the T/R Module look-up table memory with cali-

bration data. A 16-bit command is created and transmitted by the Formatter. This

command instructs the addressed T/R Module to update its memory with calibra-

tion data. The steps taken by the Formatter to implement the function are explained

below:

1. Receive T/R module address and calculate the DDR memory segment address.

2. Create the command for the addressed T/R module to update its memory and

write to the WSM.

3. Enable one of the T/R Module channels to receive the echoed data.

4. Read all the calibration data from DDR SDRAM for the addressed Module,

and write to the WSM.

5. Wait until all words are read back from the RSM.

The data format for updating the T/R Module look-up table memory is shown in

Figure 6.2. The Formatter creates and transmits the command for updating the T/R

Module memory. The command is followed by another word that indicates the total

number of data words, “N.” This is followed by the “N” data words that are written

into the T/R Module memory.

40

T/R module address + command Number of data words – ‘N’STR STRSTP STP STPDataSTR

16-bit word 16-bit word ‘N’ 16-bit words
Start Bit Stop Bit

Figure 6.2. Data format for updating T/R Module memory

Write T/R Module Port Registers:

If the Host Computer command is ‘p,’ the application enters the “Write T/R

Module Port Registers” function. The steps are explained below for this mode of

operation.

1. Receive T/R module address and the port register data from the Host Com-

puter.

2. Create the command for the addressed T/R Module to update port registers,

and then write the command and data to the T/R Module interface (WSM).

3. Enable one of the T/R Module channels to receive the echoed data.

4. Wait until the the two 16-bit words (command and data) are read out from the

RSM.

On receiving the data and command from the Formatter, the T/R Module FPGA

bypasses the look up table memory to set the antenna column parameters directly into

the port registers. The data format for communicating with a T/R Module during

this mode of operation is shown in Figure 6.3. The first 16-bit word addresses the

T/R Module, and also has the command for loading the port registers. The second

word is the port registers data.

T/R module address + command DataSTR STRSTP STP

16-bit word 16-bit word

Figure 6.3. Data format for writing port registers

41

Read T/R Module Port Registers:

This function is executed when the Host Computer command is ‘r.’ The computer

sends the command to instruct the Formatter to read from a T/R Module port

registers. The steps for this mode are listed below.

1. Get T/R module address.

2. Create command to access the port registers for the addressed T/R Module,

and then write the command to the WSM.

3. Enable one of the T/R Module channels to receive data.

4. Wait until the two 16-bit words (command and data) are read from the RSM.

The data format for communicating with the T/R Modules is shown in Figure 6.4.

Only one 16-bit word is sent to the T/R Module, which contains both the command

and the T/R Module address. Two 16-bit words are received by the Formatter, which

contains both the T/R Module command and the 16-bit data from the port registers.

STPT/R module address + commandSTR

16-bit word

Figure 6.4. Data format for reading port registers

Write T/R Module Address Register:

The MicroBlaze processor executes this function on receiving command ‘a’ from

the Host Computer. The purpose of this software function is to write the T/R Module

port registers with the data contained in the addressed memory location of the T/R

Module look-up table memory. The following are the set of steps:

1. Get T/R module address.

42

2. Create command for the T/R Module, and then write the command and T/R

Module memory address to the WSM.

3. Enable one of the T/R Module channels to receive data.

4. Wait until the two 16-bit words (command and data) are read from the RSM.

The Formatter first addresses a T/R Module, and then addresses the location in

the Module’s look-up table memory. The data contained in the addressed memory

location is loaded in the port registers of the T/R Module. The data format between

the Formatter and the T/R Module for this function is shown in Figure 6.5.

T/R module address + command Memory AddressSTR STRSTP STP

16-bit word 16-bit word

Figure 6.5. Data format for writing address register

6.2.1.2 Broadcast Scheme

In the Broadcast scheme, the Formatter first stores the sequences and timing-

related information in its memory, and then writes these data to the T/R Module

interface and the TSM. The sequence table serves as the address bits for the memory

look-up table in the T/R Module as shown in Figure 5.4. For each T/R Module in

the antenna array, the set of amplitude, phase, T/R, and H/V values contained in

the memory are loaded into the corresponding port registers at the rising edge of the

trigger pulses generated by the Formatter’s TSM. The T/R Module port registers are

interfaced to the attenuators, phase-shifters, and the T/R and V/H switches. There

are two software functions in the Broadcast scheme. The first function stores the data

in the DDR SDRAM. The second function writes the data to the WSM of the T/R

Module interface, and then starts the TSM.

Store Timing and Sequence Data:

43

If the command from the Host Computer is ‘q,’ the processor executes the “Store

Timing and Sequence Data” function. A scan command is a set of azimuth beam

position for a fixed elevation angle. Each azimuth beam position consists of Sequence

Tables, Timing Information (PRT, Pulse length), and the Loop Count as explained

in section 2.3. The Formatter stores the scan command in its memory. The sequence

of steps is explained below.

1. Receive two 8-bit words from the computer, and create the 16-bit Loop Count

variable of the TSM. Store Loop Count variable in memory as a 32-bit word.

2. Receive sixteen 8-bit words, and create four 32-bit words for the TSM timing

registers. Store the four timing register values in memory.

3. Repeat step 2 for storing sequence table information as four 32-bit words in

memory.

4. Repeat steps 1,2, and 3 for multiple beam positions until the Loop Count vari-

able is received as 0xFFFF (end of command).

Begin:

The “Begin” function is executed by the processor when it receives the character

‘b’ from the computer as the command. This function corresponds to the radar

operation mode. Sequence and timing related information from the memory are read

out by the Formatter and appropriate actions are taken as explained below.

1. Read sequence table data out from the memory and write to the WSM of the

T/R Module interface.

2. Create the 32-bit scan information for the Transceiver, and send the data to

the Transceiver interface.

44

3. Read timing information and Loop Count variable from the memory, and load

these information to the TSM.

4. Steps 1 to 3 are repeated for the other beam positions until all the sequence

and timing information in memory have been read out to complete one scan in

the azimuth plane.

Table 6.1. Host Computer commands for MicroBlaze software functions

MicroBlaze Software Function Scheme Command

Store Calibration Data Unicast ‘s’

Transmit Calibration Data Unicast ‘f’

Write T/R Module Port Registers Unicast ‘p’

Read T/R Module Port Registers Unicast ‘r’

Write T/R Module Address Register Unicast ‘w’

Store Timing and Sequence Data Broadcast ‘q’

Begin Broadcast ‘b’

The Formatter software functions and the associated Host Computer serial com-

mands are summarized in Table 6.1.

6.3 Formatter Data Rates

This section describes the Formatter data rates. The date rate for communicating

with the T/R Modules is 25 Mbps. Each data or command sent by the Formatter is

an 18-bit word which includes 16 data bits, 1 start bit, and 1 stop bit as explained in

section 5.2.3. A timer test is conducted to estimate the data rates of the Formatter

for communicating with the T/R Modules and the Host Computer.

Timer Test Results:

The Formatter’s “Begin” function directly impacts the scanning performance of

the radar, as discussed in section 6.2.1.2. The Formatter goes through the following

steps before starting the TSM (pulsing the radar):

45

1. Read sequence table and timing information out of memory

2. Convey Sequence table information to T/R Modules

3. Update TSM registers

The above steps correspond to the minimum latency of the Formatter for switching

the radar beam position, also known as the radar “Beam Loading Time.” A test is

conducted to measure the radar beam loading time. A timer is included in the circuit

to count the number of cycles taken by MicroBlaze to execute the software code from

the DDR SDRAM. It is observed that the beam loading time is approximately 15 µs.

The processor then starts the TSM, and the TSM triggers switch the T/R Module

and Transceiver states. This corresponds to the radar scan time, which depends on

the pulse length, PRT, and the loop count value of the TSM. In order to notify the

Host Computer at the end of the first azimuth scan, the Formatter was programmed

to send a 1 byte beam acknowledgment (‘d’ or done) signal to the computer. As

the baud rate of the UART is set to 115 Kbps, the acknowledgment signal takes

approximately 70 µs to reach the computer. Hence, to start the next scan from the

AFB memory, the Formatter first sends the acknowledgment signal and then loads the

next azimuth beam position from the memory. So the beam switching time is equal

to the sum of the acknowledgment time of the completed scan and the beam loading

time of the next scan. This does not include the latencies of the Host Computer

software.

In order to obtain a more accurate estimate of the beam switching time, the

Formatter is integrated with the Host Computer software, and the outputs of the

TSM are observed on the GPIO pins of the board. The waveforms are recorded

on the digital oscilloscope. One pass through the TSM generates 64 pulses. After

observing 64 pulses, we observed a latency of 90 µs. This delay of 90 µs (marked as

switching time in Figure 6.6) directly corresponds to the time taken to switch azimuth

46

beam positions. Figure 6.6 shows three waveforms, the middle green waveform is the

trigger generated by the Formatter’s TSM to the Transceiver. After a certain delay,

the Transceiver responds by generating the IF 60 MHz signal, which is later converted

to the 9.36 GHz RF signal. The purple waveform is the 100 MHz system clock.

Rx Rx
Switching

Time

Tx

Transmit waveform

Clock

Figure 6.6. Timing state machine output trigger plot

The baud rate of the AFB UART controllers is set to 115 Kbps, and we can

observe that the Host Computer is capable of sending 14720 commands (8-bit words)

per second to the Formatter. The timer is also used to calculate the total time taken

by the MicroBlaze processor to store the timing and sequence table information in

its memory. It is observed that the MicroBlaze processor takes 30 ms to store the

sequence table and timing information in its memory. This includes the transmission

time through the serial cable.

A timing diagram showing the relative time periods for data transfer during the

radar operation mode is shown in Figure 6.7. The polygons represent the relative time

taken by the Formatter to perform the corresponding operations. The soft processor

first executes the “Store Timing and Sequence Data” function to store multiple sets

of azimuth beam positions in the memory and takes approximately 18 ms to store one

beam position. The processor then executes the “Begin” function to switch azimuth

47

beam positions and also to pulse the radar by starting the TSM. The timing diagram

as shown in Figure 6.7, clearly shows the different events taking place in the Formatter

during the operation phase of the Phase-Tilt radar.

PC->MB

MB->DDR

DDR->WSM

WSM->TRM

DDR->TSM

TSM Running

„q‟ , data

Store data

„b‟

Seq table

Seq table

Timing

TSM

triggers

Store Sequence,

Timing information

(approx 18 ms)

Beam Loading Time

(approx 15 microseconds)

„q‟ - PC command to load

sequence and timing data

„b‟ - PC command to Begin

radar operation

Write sequence table to WSM

Transmit sequence table

to T/R Modules

Load TSM registers

Start TSM and send triggers

Store sequence and timing in

memory

Scan time

„d‟ Send “done” ack to PCMB->PC

Ack
(approx 70 microseconds)

Figure 6.7. Diagram showing the relative time periods during the radar operation
phase

48

CHAPTER 7

ETHERNET INTERFACE

CASA’s long-term plan is to establish a network interface between the Host Com-

puter and the Array Formatter in the Phase-Tilt radar system. An ethernet connec-

tion is preferable to employing long serial cables, since it allows communication to be

faster, more reliable, and better suited where distances between the sub-systems are

large. This chapter describes the ethernet interface between the two sub-systems in

detail. A high-speed, full-duplex ethernet interface is implemented on the Format-

ter’s FPGA. Xilinx Ethernet Lite Media Access Controller (MAC) [23] incorporates

the appropriate features of the IEEE 802.3 standard [1]. The Ethernet lite core is

interfaced to the Processor Local Bus of the MicroBlaze system.

The Ethernet core has a memory-mapped direct I/O interface to the 2K byte

transmit and receive dual port memory (also called the Tx and Rx buffers). The

Tx buffer holds the transmit data for one complete frame and the transmit interface

control registers. Similarly, the Rx buffer holds the receive data for one complete

frame and the receive interface control registers.

7.1 Lightweight IP (lwIP)

The lightweight IP (lwIP) [2] software is added in the software platform to imple-

ment the TCP/IP protocol stack. The focus of the lwIP stack is to reduce memory

usage and code size, thus making it ideally suited for networking applications in em-

bedded systems. Xilinx SDK provides the lwIP software that is customized to run

on all MicroBlaze-based embedded systems. The lwIP applications can be developed

49

either using the raw API mode or the socket mode. The raw API mode provides

a “callback” style interface to the application program. It is single threaded and

registers callback to events like TCP read or write. Socket mode on the other hand,

helps in the ease of programmability giving simple APIs to the application program

developer, but requires support of the Xilinx kernal to handle all the functions. This

makes the socket mode inherently slower than the raw API mode, and hence the raw

API mode is used in this work to get better performance.

7.2 Test Ethernet Connection

In order to establish an ethernet connection between the host PC and the AFB,

the FPGA in the AFB is configured as an echo server, which listens to the ethernet

port for any data transfers. The standard lwIP software functions are used in this

work to communicate with the PC over a TCP connection. The following steps are

performed to establish and test the connection:

1. Designate IP address of the board and the PC. The PC IP address must be

within the same subnetwork as the board IP address. In this work, the IP

address of the board is set to 192.168.1.10 and the PC to 192.168.1.11.

2. The main function starts the user application which first creates the TCP Pro-

cess Control Block (PCB) structure using the lwIP function pcb = tcp new().

3. This structure binds to a local IP address and port number by calling the

function tcp bind(pcb, IP ADDR ANY, port). The argument IP ADDR ANY

binds the connection to any local IP address.

4. The function pcb = tcp listen(pcb) now sets up the port to listen to incoming

connection.

50

5. The function tcp accept(pcb, accept callback) registers the accept callback func-

tion to accept the incoming connection.

The above procedure creates a TCP connection between the board and the Host

PC. This connection is then tested by pinging the board’s IP from the Host PC.

The accept callback function is called whenever a TCP connection is established.

Since the FPGA is configured as an echo server, it responds on receiving data from

the client (PC). A new communication protocol between the two is developed, which

is described in detail in the next section.

7.3 Communication Protocol

Every command and the associated data to the Formatter is sent in an ethernet

packet. The Formatter responds to the command and implements the different modes

that are discussed in Chapter 6. The size of the Rx and Tx buffers of the ethernet

core is limited to 2K bytes each. Hence, the maximum size of data that can be sent in

one packet is 1500 bytes, and the rest is allocated for handling protocol information.

The two Formatter modes that require heavy inflow of data from the Host PC are the

Store Calibration Data and the Store Timing and Sequence Data modes. The imple-

mentation of these two modes with the ethernet interface are discussed in detailed in

this section. The other modes are almost entirely the same as discussed in Chapter

6.

Whenever an ethernet packet is received by the Formatter, the first byte of the

data field is ignored and the second byte is checked for the Formatter mode. This is

because the Rx buffers are 32-bits wide, and the Formatter command is the fourth

byte of the first data word. Succeeding data are then accessed as 32-bit words from

the Rx buffers.

51

7.3.1 Store Calibration Data

As the maximum size of data in an ethernet packet is 1500 bytes, the store cali-

bration command (which requires at least 512 4-byte words) is split into two-packet

transmissions. The following are the steps to implement store calibration data mode:

1. If the second byte of the data field of the packet corresponds to ‘s,’ the Formatter

determines it as the first packet of this mode.

2. The next byte corresponds to the address of the T/R Module. The three bytes

following the T/R Module address is ignored for the 32-bit data resolution in

accessing the Rx buffers.

3. The calibration data is then accessed as 32-bit data in the Rx buffers and

stored in the corresponding T/R Module DDR SDRAM address segment until

it receives two different “End of commands.”

4. The end of packet command, 0x7EE7, tells the Formatter that the remaining

calibration data for the addressed T/R Module is contained in the second data

packet. 0xFFFF, on the other hand, tells the Formatter that the store calibra-

tion data mode is done for the addressed T/R Module and there is no more

data to store in the memory.

5. If the previous data packet contained 0x7EE7 as its end of command, the For-

matter expects a character ‘m’ (more calibration data) as the command in the

second packet to continue storing the calibration data for the addressed T/R

Module.

6. The Formatter continues to access calibration data in the second packet as

32-bit words, and stores in its memory, until the end of command 0xFFFF is

received.

The data fields in the two packets for this mode is shown in Figure 7.1

52

X ‘s’ TR X X X 1 2 3 4 - - 7E E7 X X-

X ‘m’ 1 2 3 4 5 6 7 8 - - FF FF X X-

DATA

DATA

First Packet

Second Packet

T/R Module

Address

X - Ignore

Figure 7.1. Ethernet packets for Store Calibration Mode

7.3.2 Store Timing and Sequence Data

This mode loads all the sequence and timing related information in Formatter’s

memory. A single packet transmission is used for loading multiple sets of sequence

and timing data that constitute an azimuth scan. The protocol is described below:

1. If the second byte of data in the packet is ‘q,’ the Formatter implements this

mode of operation.

2. The next two bytes correspond to the loop number of the TSM which is loaded

in the Formatter’s memory. The two bytes following the loop number is ignored.

3. The next 8 bytes correspond to timing and sequence table information and are

read out from the buffer and stored in the memory.

4. Steps 2 and 3 are repeated until the loop number is read out as 0xFFFF, which

is the “End of Command” for this mode.

The data fields in the packet for this mode is shown in Figure 7.2

The rest of the Formatter functions are implemented in a similar manner with

each command requiring a separate packet transmission. All the functions have been

53

X ‘q’ LN LN X X 1 2 3 4 - - FF FF X X-

Sequence, Timing

Loop Number

Figure 7.2. Ethernet packet for Store Timing and Sequence Data

implemented and verified on the Array Formatter Board. The communication pro-

tocol developed in this work can be used to completely replace the current serial

link.

54

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

A prototype Array Formatter for phased-array antenna systems has been designed

and implemented for CASA. The requirements of the Formatter have been considered

and a microprocessor-based system on an FPGA is designed and tested for function-

ality. The high-speed interfaces present in the Array Formatter Board are utilized

for reliable and efficient radar control. A communication protocol between the Host

Computer and the Formatter has been developed and tested. The Formatter along

with the Host Computer software is capable of changing the azimuth beam positions

of the Phase-Tilt radar in less than 90 µs. Successful integration of the Array Format-

ter with the array of T/R Modules has also been demonstrated in this work. Finally,

the ethernet interface between the Host Computer and the Array Formatter has also

been implemented. This serves as an ideal platform for CASA’s goal to replace the

current serial link with a faster and more reliable ethernet interface.

8.2 Future Work

1. Implementation of the Tilt Controller is necessary to change the elevation angle

of the radar.

2. The Host Computer software must be capable of communicating with the For-

matter over the ethernet. Once this is done, further testing between the two

systems is necessary.

55

APPENDIX A

MICROBLAZE SOFTWARE APPLICATION USER
GUIDE

This chapter serves as a reference manual for the MicroBlaze software application.

In this application, the software APIs are used to facilitate communication between

the MicroBlaze processor and the peripherals such as DDR SDRAM, Custom Periph-

eral (PF), and UART. The next few sections describes these APIs in detail.

A.1 UART

The UART core is used for implementing serial communication with the Host

Computer. All the APIs are defined in the header file “xuartlite.h” which is added in

this application. The functions, Xuartlite SendByte(Base Address, Data) and Xuar-

tlite RecvByte(Base Address), are used for for sending and receiving a byte of data

using the UART core. The processor recognizes the argument Base Adress as the

memory-mapped base address of the UART. Alternatively, the xil printf function can

also be used for sending a stream of data bytes to the computer. The UART core is

the default “STDIO” for the processor system, and hence, this function can be used

for sending data to the Host Computer.

A.2 DDR SDRAM Controller

The DDR SDRAM memory controller is used by the MicroBlaze processor for

storing the calibration data, sequence, and timing information. The user can instruct

the MicroBlaze processor to write a 32-bit data to a specific address location in the

56

DDR SDRAM by calling the function XIo Out32(Address, Data). Similarly, for a

read operation, the XIo In32(Address) function is used to read out a 32-bit data from

the Address argument. The two APIs are defined in the header file “xio.h,” which

is added to the software application. The processor recognizes the address space of

the DDR SDRAM between its base and high addresses. The processor accesses the

DDR SDRAM controller as a memory-mapped I/O, and any memory read or write

operation is specified within this address range.

A.3 Custom Peripheral (PF)

The PF acts as a gateway for the processor to communicate with the rest of the

custom hardware Verilog modules of the system. The PF APIs are contained in

the header file “pf.h.” This file is included in the software application. The PF has

access to thirty 32-bit software registers, which are mapped to the various ports of

the hardware modules. The modules that communicate with the soft processor via

the PF are the T/R Module interface (Read and Write State Machines), the TSM,

and the Transceiver Interface.

Table A.1 lists the software registers mapped to the different ports of the hardware

modules.

A.3.1 T/R Module Interface Control

The PF communicates with the T/R Module interface primarily to write data

into the WSM and read data from the RSM. It is also used to enable the channel

receive pin of the the T/R Module for receiving the echoed data from the addressed

Module during the radar initialization phase. As explained in section 5.2.3.1, the

WSM writes the data into the Transmit FIFO. Data from the Transmit FIFO is then

shifted out serially by the Transmitter, and finally transmitted as LVDS signals to

the T/R Modules over the GPIO pins on the board. Likewise, the Receiver, which

57

Table A.1. PF software registers mapped to verilog module ports

Register Number Hardware Port Hardware Logic

0 Reset Transmit, Receive FIFOs

1 Software Read Enable RSM

2 Software Write Enable WSM

3 Data In WSM

4 Data Out RSM

5 Write Ack WSM

6 Read Ack RSM

7 FIFO Empty Receive FIFO

8 Loop Number TSM

9 SW Channel Enable Channel Enable

10 Timing Enable TSM

11 Timing Reg 1 TSM

12 Timing Reg 2 TSM

13 Timing Reg 3 TSM

14 Timing Reg 4 TSM

15 Clock 2 TSM

16 Timing Ack TSM

17 FIFO Empty Transmit FIFO

18 T/R Module Address Channel Enable

19 Software Enable Transceiver Interface

20 Data In Transceiver Interface

21 Transceiver Ack Transceiver Interface

58

gets the serial data from the T/R Modules, converts it into a 16-bit data, and later

writes the data into the Receive FIFO. The RSM reads the data from the Receive

FIFO, and the PF gets the data from the RSM.

The PF software registers are mapped to the following ports of the T/R Module

interface:

1. WSM enable

2. RSM enable

3. Input Data port of the WSM

4. Output Data port of the RSM

5. Address input pin of the Channel Enable Module

6. Software channel enable

The C functions below write a 32-bit data into the WSM:

Program 1 Write data to T/R Module interface

writef1(Xuint32 data32)
{
PF_mWriteSlaveReg3(XPAR_PF_0_BASEADDR, 0, data32);
//write data
PF_mWriteSlaveReg2(XPAR_PF_0_BASEADDR, 0, 1);
//sw write enable
PF_mWriteSlaveReg2(XPAR_PF_0_BASEADDR, 0, 0);
//sw write disable
}

The MicroBlaze processor first writes a 32-bit unsigned integer into the “Data In”

port of the WSM, and later enables the WSM to latch the data into the Transmit

FIFO as two 16-bit words. The processor disables the WSM by writing a zero to

software register 2. The argument XPAR PF 0 BASEADDR represents the base

59

address of PF, which is recognized by the processor as a memory-mapped I/O. All

these peripheral paraments are listed in the header file “xparameters.h.” This file is

included in the application. The second argument “0” represents the register offset

from the referenced register number. All the registers are directly referenced by their

numbers and the offset argument is always zero.

The C functions below read a 16-bit value from the RSM:

Program 2 Read data from T/R Module interface

Xuint32 readf2()
{
PF_mWriteSlaveReg1(XPAR_PF_0_BASEADDR, 0, 1);
//sw read enable
Xuint32 data32 = PF_mReadSlaveReg4(XPAR_PF_0_BASEADDR, 0);
//read data from sw reg 4
PF_mWriteSlaveReg1(XPAR_PF_0_BASEADDR, 0, 0);
//sw read disable
}

The processor first enables the RSM, and then reads the data out from the “Data

Out” port of the RSM, which is later disabled.

In order to receive data from the T/R Modules, the channel enable module is

controlled in software by PF. The address is passed as a parameter to the channel

enable module. This hardware logic receives the address from its “Address In” port

and enables the left or right T/R Module channel to receive the echoed data during

the Unicast scheme of operation. PF register 9 is used by the processor enable this

module, and register 18 is used for passing the T/R Module address.

A.3.2 Timing State Machine Control

The MicroBlaze processor starts the TSM by controlling the appropriate PF soft-

ware registers. This section describes the APIs used to load the timing registers and

also enable or disable the TSM.

60

When the processor receives the ‘b’ command from the computer, it executes

the “Begin” software function. In this function, the timing information (four 32-bit

words) and the loop number (one 32-bit word) are read out of the memory using the

XIo In function. Each timing register is a 32-bit word, the first 16-bit word represents

the transmit time of the pulse, and the second 16-bit word represents the receive time.

As TSM contains four such timing registers, one pass through the TSM, generates four

trigger pulses for the operation of the Phase-Tilt radar. The loop number variable

repeats the TSM “Loop Number” times, and thus, each Phase-Tilt azimuth beam

position generates 4×“Loop Number” of pulses.

Program 3 Update timing registers and enable TSM
PF_mWriteSlaveReg8(XPAR_PF_0_BASEADDR, 0, Loop_Number);
// load Loop Number variable
PF_mWriteSlaveReg11(XPAR_PF_0_BASEADDR, 0, timing_data1);
PF_mWriteSlaveReg12(XPAR_PF_0_BASEADDR, 0, timing_data2);
PF_mWriteSlaveReg13(XPAR_PF_0_BASEADDR, 0, timing_data3);
PF_mWriteSlaveReg14(XPAR_PF_0_BASEADDR, 0, timing_data4);
// load 4 timing regs
PF_mWriteSlaveReg10(XPAR_PF_0_BASEADDR, 0, 1);
// sw timing state machine enable

It is important to note that, before enabling the TSM, the processor also reads

the sequence table information out of the memory, and writes them one-by-one to

the WSM of the T/R Module interface. Section A.3.1 explains how data is written

to the T/R Module interface. The sequence table information contains control bits

that instruct all the T/R Modules to listen to their data bus. All the T/R Modules

update their sequence table with the broadcasted information.

The processor then waits until Reg 16, which corresponds to the “Timing Ack”

port of the TSM, is set to one. When this register is set to one, the processor is notified

that the TSM has repeated “Loop Number” times for the current beam position, and

it is time to load the next set of timing registers from the memory for the second

azimuth beam position. The processor then sends a character ‘d’ (or done) to the

61

Host Computer by writing the character to the UART receiver. On receiving this

command, the computer either sends another ‘b,’ to start the next beam position, or

sends an ‘e’ to notify the processor to end the azimuth scan.

Program 4 Disable timing state machine
j = PF_mReadSlaveReg16(XPAR_PF_0_BASEADDR, 0);
// read timing ack
while (j!=1)
{

j = PF_mReadSlaveReg16(XPAR_PF_0_BASEADDR, 0);
// read timing ack

}
PF_mWriteSlaveReg10(XPAR_PF_0_BASEADDR, 0, 0);
// sw timing state machine disable

The processor sends the “ done” message to the computer at the completion of one

beam position, because the computer keeps track of the polarization pulsing sequences

being performed by the radar. This helps in synchronization of the sequences with

the processed data from the Transceiver. This acknowledgment by the processor is

necessary if the Phase-Tilt radar employs a Pentek Transceiver [4]. The processor

also conveys the scan information (beam position and polarization sequence) to the

Transceiver interface. This is useful if the RVP900 Transceiver [18] is used, which is

capable of synchronizing the scan information with the raw I/Q data samples that

it receives from the antenna panel. Details of the implementation of this function is

discussed in the next section. To add more flexibility to the design, while executing

the “Begin” function, the processor sends the scan acknowledgment to the computer

and also conveys the scan information to the Transceiver interface.

A.3.3 Transceiver Interface Control

The Transceiver interface is implemented in hardware to convey the scan infor-

mation to the RVP900 Transceiver. This interface is also mapped to the software

62

registers of PF. During the “Begin” function, the processor first creates the scan in-

formation, (by extracting the beam position and polarization bits from the sequence

table information). The processor then enables the Transceiver interface by setting

Reg 19 to one. The scan information is then written out as a 32-bit word to PF Reg

20. This register is mapped to the “Data In” port of the Transmitter module in the

Transceiver interface. The scan data is shifted out serially by the Transmitter via

the GPIO pins on the board at a rate of 1 Mbps. The Interface is finally disabled in

software by writing the value zero to PF Reg 19.

A.4 Integration Test

A sample experiment was conducted to check the functionality of the Array For-

matter software application. The board was integrated with the Host Computer

software as well as the T/R Modules to verify the different modes of operation. In

order to test the “Store Calibration Data” function, a file that contains the T/R Mod-

ule calibration data is uploaded by the computer. The file’s data format is shown in

Figure A.1.

Address‘s’ Calibration Data FF FF

End of Command

T/R Module Address

Figure A.1. Host Computer data format for storing calibration data in Formatter

The Formatter first receives the ‘s’ character from the computer and enters the

Store Calibration Data function. The next byte from the UART receiver is accessed by

the processor, which corresponds to the T/R Module address, and the corresponding

DDR memory segment address is calculated. The processor then receives sets of 4

63

bytes from the UART receiver. The processor stores the data as 32-bit words in the

memory, until the end of command “0xFFFF” is received.

The computer sends multiple files for all the T/R Modules until all the 64 memory

segments of the Formatter’s DDR SDRAM is loaded with calibration data. The next

step is to load the T/R Module look-up table memory with this data. The Host

Computer sends the ‘f’ command followed by a byte of T/R Module address. The

Formatter reads the data out from the DDR SDRAM memory segment, and transmits

the data to the addressed T/R Module. The T/R Module updates its look-up table

memory with the calibration data, which are then echoed back to the Formatter for

error check. This process is repeated until all the T/R Modules are loaded with

calibration data.

The computer then uploads a file to the Formatter, that contains multiple sets of

timing and sequence table information for a complete azimuth scan. The data format

for this file is shown in Figure A.2. The Formatter first receives the ‘q’ character

and enters the “Store Timing and Sequence Data” function. The next two bytes are

received as the Loop Count variable for the first beam position’s TSM. The next 32

bytes are received as four 32-bit timing registers for the TSM, and four 32-bit words

for the sequence table. The processor stores these information in the memory until

the end of command “0xFFFF” is received. In this way, multiple beam positions are

stored in the memory for an azimuth scan.

Loop

Count
‘q’ Timing FF FF

End of

Command

Sequence

16 bytes 16 bytes

Beam position

N Beam positions

2 bytes

Figure A.2. Host Computer data format for storing sequence table and timing
information

64

The next step is to execute the Formatter’s “Begin” function. The Host Computer

sends the character ‘b’ to the Formatter, which instructs the MicroBlaze processor to

execute the “Begin” function. The timing information of the first beam position is

read out from the DDR SDRAM memory and the TSM registers are updated by the

Formatter. The beam position along with the polarization sequence information from

the sequence table constitute the scan information. This information is written to the

Transceiver Interface. The sequence table is then transmitted to the T/R Modules.

The Formatter then starts the TSM to send the trigger pulses. Once the TSM Loop

Count variable decrements to zero, the MicroBlaze processor sends the ‘d’ character

to the computer to acknowledge the completion of the first beam position. If the

computer sends another ‘b,’ the next beam position is fetched from the memory, and

the same process repeats. In this way, multiple beam positions are read out from the

memory, and pulsed by the Formatter TSM, until the ‘e’ character is received from

the computer. The computer sends the ‘e’ character to mark the end of azimuth scan.

This test was conducted in the laboratory and the waveforms as shown in Figure

6.6 in Chapter 6 were recorded on the digital oscilloscope by probing the GPIO pins

of the AFB. This test proves the successful integration of the Array Formatter Board

with the Host Computer software and the array of T/R Modules. A picture of the

laboratory setup used for testing the flow of commands from the Host Computer to

the AFB to the T/R Modules is shown in Figure A.3.

65

Array Formatter Board

Figure A.3. Laboratory setup to test AFB communication

66

APPENDIX B

ARRAY FORMATTER CUSTOM VERILOG MODULES

This chapter shows the simulation results and describes the functionality of the

custom Verilog modules implemented in the Formatter FPGA. All simulations are

carried out using Modelsim [3].

B.1 T/R Module Interface Modules

The custom Verilog modules in this interface are used for communicating with

the T/R Modules. This section discusses the implementation and verification of the

serial Transmitter and Receiver in the T/R Module interface.

B.1.1 Serial Transmitter

The serial Transmitter module conveys the serial data to the T/R Modules. The

WSM writes the 16-bit data to the Transmit FIFO (a Xilinx IP core), and the Trans-

mitter sends the data out serially to the T/R Modules. This module monitors the

Empty signal of the Transmit FIFO. When this signal goes low to indicate that the

FIFO is not empty, the Transmitter module reads the FIFO data by asserting the

FIFO “Read enable signal” and copies the data into its internal shift register, and

then enters the “Start” state. At this state, the Transmitter sends out a low signal to

transmit the start bit. The module then enters the “Data” state, where each data bit

is accessed from the shift register, and sent out serially through the “Tx” port. At

the end of 16 clock cycles, the module enters the “Stop” state, where it transmits a

high signal, to indicate the stop bit. The module then asserts the “Tx done” signal.

67

As shown in Figure B.1, the data transmitted is 0xA55A, with the start bit being

zero and the stop bit being one. This serial data is then sent out as LVDS signals by

the Xilinx OBUFDS primitive.

Clock

Reset

Data In

Empty

Tx

Tx_done

Rd_en

Figure B.1. T/R Module transmitter waveform

B.1.2 Serial Receiver

The serial receiver is a serial to parallel data converter. The module polls its input

“Rx” port, and when it goes low, the module enters the “Data” state. In this state,

the module receives the incoming data signals from the “Rx” port every cycle, and

copies and shifts the data into its internal shift register. This value is copied into its

“Data out” port and appears as a 16-bit data. At the end of 16 cycles, the module

asserts the “Rx done” signal and enters the stop state, where it receives the stop bit.

In Figure B.2, the data received is 0x8CC7, which is presented at the Data out port

in the end. The clock synchronizer which monitors the Receover’s “Rx done” signal,

copies this data into the Receive FIFO by enabling the write port of the FIFO. The

synchronizer is used because the Receiver operates at 25 MHz, whereas the FIFO

operates at 50 MHz.

Clock

Reset

Rx

Rx_done

Data_out

Figure B.2. T/R Module receiver waveform

68

B.2 Timing State Machine Module

The TSM is a 32-state FSM, which sends trigger pulses through two of its output

ports for the Transceiver and the T/R Modules. The loop count variable, four tim-

ing registers, and software enable are given as inputs by the MircroBlaze processor’s

custom peripheral (PF). The TSM is tested and verified for functionality by probing

the T/R Module and Transceiver triggers from the GPIO pins on-board. The wave-

forms are obtained in the oscilloscope and shown in Figure B.3. As seen in Figure

B.3, the TSM output to the Transceiver is level sensitive. This is targeted for the

Pentek Transceiver, which requires level sensitive triggers. The TSM outputs can be

modified to derive edge sensitive Transceiver triggers.

PRF3PRF1 PRF4PRF2

T/R Module Tx/Rx

Trigger

Transceiver (Pentek)

Trigger

Beam Sequence

Figure B.3. Timing state machine waveform

B.3 Transceiver Interface Modules

The RVP900 Transceiver requires clock, enable signal, and a 32-bit scan data to

synchronize the raw I/Q data samples with the scan information. The Transceiver

requires the enable signal from the Formatter to latch the incoming data into its

internal registers. The Formatter’s Transceiver interface transmits the scan data

serially over the GPIO pins on-board. The Transmitter module in this interface

69

enters the “Data” state when the software enable signal from PF register 19 is set

to one. In this state, the out enable signal “v en” is set to one, and the scan data

from “Data In” port is shifted out serially by the Transmitter module. At the end of

32 cycles, the module enters the “stop” state, where it de-asserts the “v en” signal.

Figure B.4 shows the Modelsim simulations for this module.

Clock

Reset

SW_En

Data_In

Tx

Out_En

Figure B.4. Transceiver interface transmitter waveform

In order to operate this interface at 1 MHz, a clock divider function is imple-

mented. This module takes in the external 100 MHz clock and generates the 1 MHz

clock rate. Figure B.5 shows the output waveforms from this module.

Clock

Reset

Clock_out

New Clock Period

Figure B.5. Clock divider waveform

70

APPENDIX C

ARRAY FORMATTER BOARD USER MANUAL

This chapter serves as a manual for users operating the Array Formatter Board.

C.1 Loading the FPGA PROM

To load the PROM with a new FPGA configuration file, the first step is to create

the PROM file from the generated “bit” file using Xilinx Impact Tool. This tool is

invoked from the design pane in the Xilinx ISE project. The Xilinx PROM device

is selected with a capacity of 4 MB in Impact. The PROM file is generated and the

scan chain is initialized. The Xilinx PROM device is selected in the scan chain, and

the generated PROM file is loaded into the PROM. For further details refer [25].

C.2 Loading the FLASH

The software application for MicroBlaze is loaded in the Parallel FLASH. This

task is accomplished by Xilinx EDK (XPS or SDK). In the Xilinx XPS tool, the

“Program FLASH” command in the GUI is used for loading the FLASH with an

“ELF” file. The bootloader application is also created in this process by checking

the “Create Bootloader” option. The entire process takes a few minutes to load the

FLASH with the ELF file and also to create a bootloader for this application. In XPS,

the bootloader application is “Marked to Initialize BRAMs.” This loads the BRAM

with the bootloader application when the FPGA gets configured from the PROM on

power up. For further details refer [22].

71

C.3 AFB Operation sequence

In order to operate the AFB, the user has to go through a sequence of steps which

is described below:

1. Turn on the supply to the AFB.

2. Turn on the supply to the external 100 MHz clock.

3. The Formatter goes through the bootlaoding process, and after this process,

the computer can send serial commands to implement the different Formatter

modes.

4. Once the Formatter software application exits, the supply to the clock is first

turned OFF, before powering OFF the board.

72

BIBLIOGRAPHY

[1] IEEE 802.3 ethernet working group. http://www.ieee802.org/3/.

[2] lwip - a lightweight tcp/ip stack - summary. http://www.lwip.org/.

[3] Modelsim - advanced simulation and debugging. http://www.model.com/.

[4] Pentek, inc. http://www.pentek.com/.

[5] Phased-array radars. http://www.noaa.gov/.

[6] Doviak, Richard J., and Zrnic, Dusan S. Doppler Radar and Weather Observa-

tions. Dover Publications, Inc., 1993.

[7] Fenn, A.J., Temme, D.H., Delaney, W.P., and Courtney, W.E. Development of

phased-array radar technology. Linoln Laboratory, Massachusetts Institute of

Technology Journal, 2000.

[8] Hopf, A.P., Salazar, J.L., Medina, R., Venkatesh, V., Knapp, E.J., Frasier, S.J.,

and McLaughlin, D.J. Casa phased array radar system description, simulation

and products. In IGARSS 2009: Proceedings of the IEEE International Geo-

science and Remote Sensing Symposium (Cape Town, South Africa, July 2009),

vol. 2, pp. II–968 – II–971.

[9] Kuon, I., Tessier, R., and Rose, J. Fpga architecture: Survey and challenges.

In Foundations and Trends in Electronic Design Automation (135-253), vol. 2,

pp. 135–253.

73

[10] Marsili, Nathan. Dual-polarization radar. Dupage County Advanced Spotter

Program, 2010.

[11] Medina, R.H., Knapp, E. J., Salazar, J. L., A.P., Hopf, and McLaughlin, D.J.

T/R module for casa phase-tilt radar antenna array. In Proceedings of the IEEE

International Symposium on Phased Array Systems and Technology (Waltham,

MA, USA, October 2010).

[12] Micron Technology. DDR SDRAM Datasheet, 2000. http://www.micron.com.

[13] Palnitkar, Samir. Verilog HDL: A Guide to Digital Design and Synthesis. Pren-

tice Hall, 1996.

[14] Salazar, J.L., Knapp, E.J., and McLaughlin, D.J. Dual-polarization performance

of the phase-tilt antenna array in a casa dense network radar. In IGARSS 2010:

Proceedings of the IEEE International Geoscience and Remote Sensing Sympo-

sium (Honolulu, HI, USA, July 2010), pp. 3470–3473.

[15] Salazar, J.L., Medina, R., Knapp, E.J., and McLaughlin, D.J. Phase-tilt array

antenna design for dense distributed radar networks for weather sensing. In

IGARSS 2008: Proceedings of the IEEE International Geoscience and Remote

Sensing Symposium (Boston, MA, USA, July 2008), vol. 5, pp. V–318 – V–321.

[16] Seguin, Emmanuel. Low cost fpga based digital beamforming architecture for

CASA weather radar applications. Master’s thesis, Department of Electrical and

Computer Engineering, University of Massachusetts, Amherst, May 2010.

[17] Skolnik, Merill. Introduction to Radar Systems. Tata McGraw-Hill, 2001.

[18] Vaisala. Vaisala Sigmet Digital Receiver and Signal Processor RVP900 Datasheet,

2009. http://www.vaisala.org.

74

[19] Xilinx Corporation. CORE Generator User Guide, April 2000.

http://www.xilinx.com.

[20] Xilinx Corporation. MicroBlaze Processor Reference Guide, August 2004.

http://www.xilinx.com.

[21] Xilinx Corporation. MicroBlaze Platform Flash/PROM Boot Loader and User

Data Storage, June 2005. http://www.xilinx.com.

[22] Xilinx Corporation. EDK Reference Guide, December 2009.

http://www.xilinx.com.

[23] Xilinx Corporation. LogiCORE IP XPS Ethernet Lite Media Access Controller,

September 2010. http://www.xilinx.com.

[24] Xilinx Corporation. Spartan-3E FPGAs Data Sheet, January 2011.

http://www.xilinx.com.

[25] Xilinx Corporation. Spartan-3E Starter Kit User Guide, January 2011.

http://www.xilinx.com.

75

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2011

	Design of an FPGA-based Array Formatter for Casa Phase-Tilt Radar System
	Akilesh Krishnamurthy

	Design of an FPGA-based Array Formatter for CASA Phase-Tilt Radar System

