
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses 1911 - February 2014

2011

Functional Verification of Arithmetic Circuits using
Linear Algebra Methods
Mohamed Basith Abdul Ameer Abdul Kader
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

Part of the Electrical and Computer Engineering Commons

This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 -
February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Ameer Abdul Kader, Mohamed Basith Abdul, "Functional Verification of Arithmetic Circuits using Linear Algebra Methods" (2011).
Masters Theses 1911 - February 2014. 657.
Retrieved from https://scholarworks.umass.edu/theses/657

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Ftheses%2F657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F657&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.umass.edu%2Ftheses%2F657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses/657?utm_source=scholarworks.umass.edu%2Ftheses%2F657&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

FUNCTIONAL VERIFICATION OF

ARITHMETIC CIRCUITS USING
LINEAR ALGEBRA METHODS

A Thesis Presented

by

MOHAMED ABDUL BASITH AMEER ABDUL KADER

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

September 2011

Electrical and Computer Engineering

c© Copyright by Mohamed Abdul Basith Ameer Abdul Kader 2011

All Rights Reserved

FUNCTIONAL VERIFICATION OF
ARITHMETIC CIRCUITS USING

LINEAR ALGEBRA METHODS

A Thesis Presented

by

MOHAMED ABDUL BASITH AMEER ABDUL KADER

Approved as to style and content by:

Maciej Ciesielski, Chair

Israel Koren, Member

Eric Polizzi, Member

Christopher V. Hollot, Department Head
Electrical and Computer Engineering

To my family who moulded me into who I am today.

ACKNOWLEDGMENTS

I am grateful to the Almighty for his mercy and blessings. I would like to thank

Professor Maciej Ciesielski who has been so inspiring as a guide and advisor and

for providing unwavering and immeasurable support throughout the course of my re-

search work. I would like to thank him for giving me this opportunity and for pushing

me to perform to the best of my abilities. I am indebted to Dr.André Rossi, of Uni-

versité de Bretagne-Sud, Lorient, France, who helped us develop the mathematical

formulation and provided us with the necessary software, developed specifically for

the project. I would also like to thank all my friends, room-mates and colleagues,

especially my peers in the V LSI − CAD Lab, for their unconditional help and sup-

port.

v

ABSTRACT

FUNCTIONAL VERIFICATION OF
ARITHMETIC CIRCUITS USING

LINEAR ALGEBRA METHODS

SEPTEMBER 2011

MOHAMED ABDUL BASITH AMEER ABDUL KADER

B.E., ANNA UNIVERSITY, INDIA

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Maciej Ciesielski

This thesis describes an efficient method for speeding up functional verification of

arithmetic circuits namely linear network such as wallace trees, counters using linear

algebra techniques. The circuit is represented as a network of half adders, full adders

and inverters, and modeled as a system of linear equations. The proof of functional

correctness of the design is obtained by computing its algebraic signature using stan-

dard linear programming (LP) solver and comparing it with the reference signature

provided by the designer. Initial experimental results and comparison with Satisfia-

bility Modulo Theorem (SMT) solvers show that the method is efficient, scalable and

applicable to complex arithmetic designs, including large multipliers. It is intended

to provide a new front end theory/engine to enhance SMT solvers.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1. INTRODUCTION . 1

1.1 Formal Verification . 1

1.1.1 Equivalence Checking . 3
1.1.2 Boolean Satisfiablity . 3
1.1.3 Model Checking . 4
1.1.4 Automatic Test Pattern Generation . 5

1.2 Motivation. 6

2. PREVIOUS WORK . 8

2.1 Binary Decision Diagrams (BDDs) . 9
2.2 Binary Moment Diagrams (BMDs) . 11
2.3 Taylor Expansion Diagrams (TEDs) . 13
2.4 Symbolic Algebra . 16
2.5 Arithmetic Bit-Level (ABL) . 18
2.6 Satisfiability Modulo Theories (SMT) . 19
2.7 Summary . 20

3. ALGEBRAIC MODELING OF ARITHMETIC NETWORKS 22

3.1 Arithmetic Network . 22
3.2 Mathematical Model of Arithmetic Network . 24

vii

4. MATHEMATICAL FORMULATION OF FUNCTIONAL
VERIFICATION PROBLEM . 30

4.1 Mathematical Formulation . 30
4.2 Computing the Signature . 32
4.3 Residual Expression . 34

5. THEOREMS AND BOOLEAN MODELS . 39

5.1 Theorems . 39
5.2 Imposing Binary Constraints . 44
5.3 Deriving Boolean Constraints . 44
5.4 Verifying Incorrect Designs . 58

6. SATISFIABILITY MODULO THEORY (SMT) 62

6.1 Introduction to SMT . 62
6.2 SMT Solvers . 63

6.2.1 MathSAT . 64
6.2.2 Yices . 64
6.2.3 Z3 . 65

6.3 Relation of the Proposed Verification Method to SMT Techniques 65
6.4 Comparison with SMT solvers . 66

7. ANALYSIS OF RESULTS . 68

7.1 Functional Verification System . 68
7.2 Experimental Setup . 68
7.3 Gate-level Arithmetic Circuits . 70

7.3.1 Carry Look-Ahead Adder . 70
7.3.2 Ripple Carry Adder . 71
7.3.3 Parallel Prefix Adder . 73

7.4 Multipliers . 73

8. CONCLUSIONS AND FUTURE WORK . 78

APPENDIX: FUNCTIONAL VERIFICATION FLOW 82

BIBLIOGRAPHY . 90

viii

LIST OF TABLES

Table Page

5.1 Truth table for full-adder circuit in Figure 5.2(a) . 46

6.1 Comparison with SMT solvers (without Boolean constraints, RE 6= φ).

(MO = out of memory 4GB, TO = timeout after 1800sec) 66

6.2 Comparison with SMT solvers (with Boolean constraints, RE = φ). 67

7.1 CPU runtime for computing algebraic signature for n-bit carry look ahead

adder with basic logic gates (RE = φ). 71

7.2 CPU runtime for computing algebraic signature for n-bit ripple carry

adder in structured form (composed of full adders) (RE = φ). 71

7.3 CPU runtime for computing algebraic signature for n-bit ripple carry

adder with gate level implementation (RE 6= φ). 72

7.4 CPU runtime for computing algebraic signature for n-bit integer

multipliers without additional constraints (RE 6= φ). 75

7.5 CPU runtime for computing algebraic signature for n-bit integer

multipliers with additional constraints propagated in the network

(RE = φ). 76

7.6 CPU runtime for computing algebraic signature for n-bit integer

Booth-encoded multipliers with additional constraints propagated in

the network (RE = φ). 76

A.1 Options available in the multiplier generator. 83

ix

LIST OF FIGURES

Figure Page

1.1 Formal verification flow. 2

1.2 An example of SAT. 4

1.3 Model Checking. 5

2.1 Two equivalent expressions having the same BDD.
(a)F = a′bc + abc+ ab′c; (b) G = ac+ bc . 9

2.2 Application of BDD to SAT. 10

2.3 Binary Moment Diagrams: (a) The moment decomposition principle;
(b) BMD for binary encoded integer X = 4x2 + 2x1 + x0; (c)
*BMD for X = [x2 x1 x0]. 12

2.4 *BMD representation for Boolean operators: a) not: x′ = (1− x); b)
and: x ∧ y = x · y; c) or: x ∨ y = x+ y − xy; d) xor:
x⊕ y = x+ y − 2xy. 13

2.5 RTL verification using canonical TED representation: (a), (b)
Functionally equivalent RTL modules; (c) The isomorphic TED
for the two designs. 14

3.1 Logic-level Half-adder, ha(a, b) . 23

3.2 Modeling of logic gates using half-adders: (a) S =xor(a, b),
C =and(a, b) of half-adder; (b) or gate d = C + S derived from
two half-adders; (c) truth table for C, S, d. 24

3.3 Arithmetic network of a 7-3 counter. 25

4.1 Signed 2× 2 multiplier network. 35

5.1 Arithmetic network of a (7-3) counter. 41

x

5.2 Configuration in Netlist. 45

5.3 Full Adder symbol : x1 + x2 + x3 = 2x5 + x4 . 47

5.4 Signed 2× 2 multiplier network. 48

5.5 Signed 3× 3 multiplier network. 52

5.6 BDD of a signed 3× 3 multiplier network. 54

5.7 Gate level implementation of parallel prefix adder (courtesy of
[52]) . 55

5.8 Parallel Prefix Adder network. 56

5.9 Incorrect signed 2× 2 multiplier network with signals x5 and x6

incorrectly routed. 59

7.1 Flowchart of the functional verification system. 69

7.2 Deriving inputs for multiplier networks. 74

7.3 Computational complexity of our approach. 77

xi

CHAPTER 1

INTRODUCTION

1.1 Formal Verification

With the increasing size and complexity of integrated circuits (IC) and systems on

chip (SoC), design verification has quickly become a dominating factor of the overall

design flow. In today’s designs over 75% of the entire design effort and cost is devoted

to verification, making it the most challenging and expensive part of the overall design

process. Of particular importance (and difficulty) is verification of arithmetic datap-

aths and their components, such as multipliers. Checking for functional correctness

of arithmetic circuits and datapaths remains a major concern in IC and SoC design

flows.

In early stages of CAD for synthesis and verification, simulation was a predomi-

nant technique for design verification. Simulation is based on computing the output

values for a sequence of input patterns, and as such is an exhaustive technique. Its

success depends on computing response to all input patterns and hence there is every

possibility that there might be design errors which may never get identified during

logic simulation. Also, as the size and complexity of the design grows, the number

of input pattern grows exponentially which makes it impossible to verify the overall

design using logic simulation. These drawbacks have led to the develpment of Formal

Verification techniques which are based on proving global mathematical properties of

the design rather than simulating circuit responses for a particular input sequence.

The most promising approach to verification of arithmetic designs is formal verifi-

cation, which proves functional correctness of a design using mathematical logic and

1

formal reasoning instead of simulation. Various techniques for functional verification,

such as Binary Decision Diagrams (BDDs), Boolean satisfiability checking (SAT)

methods, model checking, property checking, and equivalence verification, have been

used as a proof process. An overview of a formal verification flow is shown in Figure

1.1

Figure 1.1. Formal verification flow.

As shown in Figure 1.1, in formal verification environment the specification and

design description are first converted into mathematical models. These models include

finite state machines, temporal logic, Boolean functions and other logic expressions.

The mathematical models are then verified using different canonical representations,

satisfiability checks and automatic test-pattern generation techniques. Unlike logic

simulation, which requires exhaustive check of design responses to all possible input

combinations, formal methods use mathematical models of the design to prove its

properties and functionality.

2

1.1.1 Equivalence Checking

Equivalence Checking or Equivalence Verification is concerned with verifying

whether two designs are equivalent or not. Equivalence checking can be applied to

two designs at the same design level or at different design levels. Based on the type

of equivalence definition, equivalence checking can be applied to either combinational

parts of the design or to the sequential part. Today, combinational designs as large

as having 10 million gates can be efficiently verified by contemporary equivalence

verification tools with the notable exception for complex arithmetic circuits.

A number of canonical graph-based representations are used to solve equiva-

lence checking for combinational designs. They include decision diagrams such as

Binary Decision Diagrams (BDDs) [6] and their many variants, Binary Moment Dia-

grams (BMDs) [7], Taylor Expansion Diagrams (TEDs) [11] and others. Since BDDs

and BMDs cannot efficiently represent abstract designs, Taylor Expansion Diagrams

(TEDs) and Finite-field Decision Diagrams (FFDDs) were introduced. These are ex-

tensions of BDDs and BMDs with input and output represented as symbolic variables.

The difference between the two classes of diagrams lies in the arithmetic representa-

tion of data; TEDs use integer arithmetic, whereas FFDDs use finite field arithmetic.

They also differ in the type of decomposition used; TEDs use Taylor series expansion

whereas FFDDs use multi-valued Galois field (GF) decomposition. These canonical

representations are reviewed in the next chapter.

1.1.2 Boolean Satisfiablity

Boolean Satifiability (SAT) [20] is a constraint satisfaction problem that appears

in computer-aided design of VLSI circuits and in Artificial Intelligence. Given func-

tion φ, SAT checks for a variable assignment for which function φ is true. If there

exists such an assignment of variables then φ is satisfiable, else it is unsatisfiable.

Despite the fact that Boolean Satisfiability is NP-complete, SAT is used in many

3

real world problems including test pattern generation, equivalence checking, testing,

logic synthesis, logic simulation and others. Most SAT solvers use Conjunctive Nor-

mal Forms (CNFs). The goal is to prove that there are no input patterns for which

the outputs of the two designs differ. This can be solved by connecting the outputs

through a ”miter”, F , that includes an XOR gate as shown in Figure. 1.2. If the

output of a miter F = 1 is satisfiable, the two designs are different, and the SAT

solver provides an example of input patterns(counter-proof) for which F1 6= F2. Oth-

erwise, such constructed SAT problem is Unsatisfiable (unSAT), in which case the

designs are equivalent. In summary, the equivalence problem is reduced to proving

Unsatisfiability of such a structure.

Figure 1.2. An example of SAT.

1.1.3 Model Checking

Model Checking [8], or Property Checking, is a technique which determines

whether the design satisfies the properties given in its specification. A model checking

tool accepts system requirement (model) and a property (specification) to ensure that

the model and the property are satisfied. The model checking tool returns ”true” if

4

the model satisfies the property, otherwise it returns a counter-example. The idea

of providing a counter-example is to detail the reason for the property not being

satisfied by the model. Thus by analyzing the counter-example the source of error

can be found and rectified and the model can be tried again. This repetitive process

of checking if a given property is satisfied and generating counter-example ensures

that several properties are satisfied giving confidence in the correctness of the design.

Over the years, model checking has undergone remarkable improvement owing to the

improvement in SAT techniques [20]. The basic idea of model checking approach is

illustrated in Figure 1.3

Figure 1.3. Model Checking.

1.1.4 Automatic Test Pattern Generation

Automatic Test Pattern Generation (ATPG) [10] is a technique of generating

test vectors as stimulus for testing the circuits for manufacturing faults. Manufactur-

ing faults are physical defects in the circuit generated during manufacturing process,

which result in incorrect operation of the circuit. The faults led to the circuit sig-

5

nals being permanently stuck at either logical 0 or 1. Several efficient algorithms have

been developed for stuck-at faults detection using Boolean reasoning. Thus using Au-

tomatic Test Pattern Generation techniques, powerful formal verification techniques

can be formed. Automatic test pattern generation is often used in conjunction with

SAT.

1.2 Motivation

Unlike gate-level logic designs, which can be handled using Boolean methods,

arithmetic designs require treatment on higher abstraction levels. Techniques based

on decision diagrams or SAT solvers that work at the circuit and logic level are not

scalable for complex arithmetic systems as they require “bit-blasting”, i.e., flattening

of the entire design into bit-level netlists. Some of the recent approaches to verification

use Satisfiability Modulo Theories (SMT) and symbolic algebra methods, but they

suffer from lack of adequate models that can harness the inherent bit-level nature of

complex arithmetic designs.

The work described in this thesis aims at overcoming some of these limitations.

It presents a novel approach to perform functional verification of arithmetic circuits,

which combines algebraic description of the arithmetic design with the bit-level de-

tails, using linear algebra techniques. The proof of correctness is obtained by modeling

the arithmetic circuit as a network of half adders and full adders and computing an

algebraic signature of the circuit using a standard LP solver. The computed sig-

nature is then compared with the reference signature (golden model) provided by

the designer to determine if the design is correct. The computation of the algebraic

signature is very fast and scalable as it is based on a simple manipulation of a set

of linear equations without finding variable assignments (typical of SAT approaches)

and without imposing integer constraints on its variables. In addition to functional

verification and property checking, the method can be used to extract circuit behav-

6

ior from its structural description by computing its input signature. The proposed

technique can be used in conjunction with, or as one of the SMT engines (theories)

to enhance capabilities of the current SMT solvers.

7

CHAPTER 2

PREVIOUS WORK

Several methods have been proposed to check an arithmetic circuit against its spec-

ification at a higher level of abstraction. Different variants of canonical graph-based

representations have been proposed, including Binary Decision Diagrams (BDDs) [6]

or their variants such as Multiplicative Power Hybrid Decision Diagrams (*PHDDs)

[9], Hybrid Decision Diagrams (HDDs) [12], etc. These representations are commonly

referred to as Decision Diagrams. Decision diagram is a graph based structure where

the nodes of the graph represent the variables and the edges represent the decompo-

sition of the function with respect to the individual variables.

An important feature of decision diagrams is canonicity, meaning that the repre-

sentation of a function with such a diagram is unique. Two combinational circuits

can be checked for equivalency by simply checking if their decision diagrams are iso-

morphic. In practice, the decision diagrams for the two functions are built in the

same manager, so the test for isomorphism reduces to checking if the two functions

point to the same root of the diagram.

More advanced methods include Binary Moment Diagrams (BMDs) [7] and Taylor

Expansion Diagrams (TEDs) [11] that attempted to represent the design at higher

levels of abstraction. The next section reviews the different canonical diagram repre-

sentations.

8

2.1 Binary Decision Diagrams (BDDs)

The most commonly used decision diagram representation is Binary Decision

Diagram (BDD). [6] BDD is a canonical representation of Boolean functions repre-

sented as a directed acyclic graph. It provides a more compact representation than

truth-tables, Sum of Products (SOPs) form, or Conjunctive Normal Forms (CNFs)

for most of the Boolean functions used in the area of VLSI design. BDDs are based

on the Shannon function decomposition, where the function is decomposed into two

co-factors fx = 0 and fx = 1. Individual paths lead to taking a decision x=0 or x=1,

hence the name ”decision diagrams”. Efficient algorithms exist to represent Boolean

functions as BDDs. BDDs represent Boolean functions and logic circuits at bit-level

and are used to verify bit-level designs, such as control and random logic. They are

extensively used in verification and logic synthesis but also in satisfiability and test-

ing. Bryant [6] proposed an algorithm to reduce ordered BDDs, known as Reduced

Ordered BDDs (ROBDDs). This form is irredundant, canonical and minimal.

 a

 b

 c

 G

3 0 6

3 0 5

3 0 4

01

 a

 b

 c

 F

b06

b05

b04

01

Figure 2.1. Two equivalent expressions having the same BDD. (a)F = a′bc+ abc+
ab′c; (b) G = ac + bc

9

An example of use of BDD in equivalence checking is shown in Figure 2.1. The

two function F and G are equivalent and hence their BDDs are identical (for the same

ordering of variables).

Another application of BDDs is in solving Boolean Satisfiability (SAT), illustrated

in Figure 2.2 with a BDD for F = a(b + c). In-order to find a satisfiability solution

for F = 1(0) one needs to find a path from the root of the BDD to terminal node 1

(0). In this case the paths ab or ab′c provide a satisfiability solution, i.e., a = b = 1

or b = 0, a = c = 1 satisfies F = 1.

Figure 2.2. Application of BDD to SAT.

BDDs have emerged as data structure of choice in logic synthesis, SAT, and

Boolean logic representation, but their application to verification of arithmetic cir-

cuits is limited. In general, solutions based on bit-level decision diagrams suffer from

high computational complexity due to exponential growth of the BDD size for com-

plex arithmetic circuits such as multipliers. For example, a BDD for 14×14 multiplier

10

cannot be built in a typical modern computer due to large memory size required by

its data structure. Recognizing this weakness, researchers turned to other canonical

forms, such as BMDs, TEDs, and others capable of representing designs at higher

levels of abstraction than a bit-level.

2.2 Binary Moment Diagrams (BMDs)

Another form of canonical graph-based diagrams that are more applicable to

arithmetic functions than BDDs are Binary Moment Diagrams (BMDs) introduced by

Bryant [7]. BMDs are based on moment decomposition principle that treat arithmetic

functions as linear functions with Boolean input and integer output. BMDs are used

in verifying arithmetic designs with bit-level inputs and integer outputs.

BMDs use modified Shannon’s expansion, where the Boolean variable is treated

as a binary(0,1) integer variable. The complement of x is modeled as x = 1− x and

the terms of the expansion are regrouped as

f(x) = (1− x) · fx + x · fx = fx + x · (fx − fx) = fx + x · f∆x

Here “·”, “+” and “-” denote multiplication, addition and subtraction, respectively.

The above decomposition is termed asmoment decomposition where fx is the constant

moment, and (f∆x = fx − fx) is the linear moment. Thus, a Boolean function f is

treated as a linear function in x, with fx as the constant term, and f∆x as the linear

coefficient of f , the partial derivative of f with respect to x. This transformation

relies on the fact that the variable x is still Boolean, i.e., it evaluates to either 0 or 1.

Each node of a BMD represents a function based on its moment decomposition,

as shown in Figure 2.3(a). The two edges coming from a node represent the constant

moment (shown in dashed lines) and the first moment (shown in solid lines) of the

11

x0

x2

x1

0 1 2 4

f =x∆

y y

x0

x2

x1

0 1

1

2

4

(b)

f

f(x=1)−f(x=0)f(x=0)

x

(c)(a)
Figure 2.3. Binary Moment Diagrams: (a) The moment decomposition principle;
(b) BMD for binary encoded integer X = 4x2+2x1+x0; (c) *BMD forX = [x2 x1 x0].

function with respect to the decomposing variable. The BMD representation of the

unsigned integer X = 4x2 + 2x1 + x0 encoded with n = 3 bits is shown in Figure

2.3(b). The three constants at the terminal nodes of the BMD can be moved to

the edges and represented as edge-weights, as shown in Figure 2.3(c). This diagram

is known as multiplicative binary moment diagram or *BMD. There are two major

features that differentiate *BMDs from decision diagrams.

• BMDs are not decision diagrams since they are based on the moment decom-

positions and not on the bit-wise Shannon expansion.

• BMDs are multiplicative diagrams, i.e., each path from the root to the terminal

node is a product of the variables labeling the nodes and edge weights along the

path. As such, they are not applicable to SAT.

In addition to integer word-level functions, a *BMD can be used to represent

Boolean logic. The equations used to model Boolean logic are as follows:

NOT : x′ = (1− x) (2.1)

AND : x ∧ y = x · y (2.2)

OR : x ∨ y = x+ y − x · y (2.3)

XOR : x⊕ y = x+ y − 2x · y (2.4)

12

0 1

x

y

0 1

x

1

−1

x

y y
−1

0 1

y

x

y

−2

NOT AND OR XOR

Figure 2.4. *BMD representation for Boolean operators: a) not: x′ = (1 − x); b)
and: x ∧ y = x · y; c) or: x ∨ y = x+ y − xy; d) xor: x⊕ y = x+ y − 2xy.

Figure 2.4 shows BMD representations for these basic Boolean operators [7]. In

the diagrams, x and y are Boolean variables represented by binary variables, and +

and · represent algebraic operators of add and mult, respectively. The resulting

functions are 0,1 integer functions.

In principle, a word-level BMD can efficiently represent integer multiplication,

since its size grows linearly with the size of the multiplier’s input. However, BMDs

require word-level information about the design, which is usually not available or

is hard to extract from optimized bit-level implementation. Also, an integer (word-

level) output of a BMD cannot be split into individual bits, which severely limits

its application to arithmetic, bit-level verification. Another limitation is that BMDs

cannot be used for solving SAT problems since they are multiplicative diagrams, i.e.,

the weights combine multiplicatively along the path from the terminal node to the

root. Solving integer-valued SAT problem in this structure is similar to solving integer

factorization problem which is known to be hard.

2.3 Taylor Expansion Diagrams (TEDs)

To address some of the limitations of BMDs and BDDs, and in particular the need

for a more abstract representation of designs with arithmetic components, another

type of diagram, Taylor Expansion Diagram (TED), has been introduced [11]. TEDs

are based on Taylor series expansion of polynomial representation of the computations

13

expressed by the design. TED representation maps word-level inputs into word-

level outputs and represents the infinite precision computation as polynomial. TEDs

can be used in verification of designs at behavioural and algorithmic levels, such as

datapath and signal processing systems, due to their power of abstraction, canonicity

and compactness. The computations in such designs are expressed as polynomials

and represented with TEDs, with memory requirements orders of magnitude smaller

than those of other representations. TEDs can also be used to transform the initial

functional representation into a structural representation, such as data-flow graphs

(DFG), which makes them applicable to behavioural and high-level synthesis.

Construction of a TED for an RTL design starts with building trivial TEDs for its

primary inputs. Partial expansion of the word-level input signals is often necessary

when one or more bits from any of the input signals fan out to other parts of the

design. This is the case in the designs shown in Fig. 2.5 (a) and (b), where bits

ak = A[k] and bk = B[k] are derived from word-level variables A and B. In this case,

the word-level variables must be decomposed into several word-level variables with

shorter bit-widths.

a > bk k

ak

bk

−

+
* 1

0

D

F1

s1

B
A

ak

bk

D

F2*

*

− 0
1

s2

B

A

(b)

(a)

 F1 F2

D

aK.1

-1

aK.2

bK.1

Ahi

-1

Bhi

-1

T1

256 Alo.2

32

Alo.1

-1

256

Blo.2

32

Blo.1

-1

16

-64

8

bK.2

-1

 D

 aK

 bK

 Ahi

 Bhi

 Alo

 Blo

(c)

Figure 2.5. RTL verification using canonical TED representation: (a), (b) Func-
tionally equivalent RTL modules; (c) The isomorphic TED for the two designs.

14

Once all the abstracted primary inputs are represented by their TEDs, Taylor Ex-

pansion Diagrams can be constructed for all the components of the design. TEDs for

the primary outputs are then generated by systematically composing the constituent

TEDs in the topological order, from the primary inputs to the primary outputs. For

example, to compute A + B in Fig. 2.5 (a) and (b), the add operator is applied

to functions A and B (each represented in terms of their abstracted components).

The subtract operation, A − B, is computed by first multiplying B with a constant

−1 and adding the result to the TED of A. The multipliers are constructed from

their respective inputs using the mult operator, and so on. To generate a TED for

the output of the multiplexors, the Boolean functions s1 and s2 first need to be con-

structed as TEDs. Finally, the TEDs for the primary outputs are generated using the

mux operator with the respective inputs. As a result of such a series of composition

operations, the outputs of the TED represent multi-variate polynomials in terms of

the primary inputs of the design.

After having constructed the respective ordered, reduced, and normalized Taylor

Expansion Diagram for each design, the test for functional equivalence is performed

by checking for isomorphism of the resulting graphs. In fact, the TED-based verifi-

cation is similar to that using BDDs and BMDs: the generation of the TEDs for the

two designs under verification takes place in the same TED manager; when the two

functions are equivalent, both functions point to the same root of the common TED,

shown in Fig. 2.5(c).

It should be noted that the arithmetic operations in these designs assume that

no overflow is produced by any of the intermediate signal. That is, functions F1

and F2 are functionally equivalent under an infinite precision computation model.

This limitation is a natural consequence of the design representation on the abstract

level, where notion of the individual bits is not available. The major limitation is

15

that TEDs cannot express individual output bits (eg; sign) as function of word-level

inputs. Splitting of signals is a problem as well.

2.4 Symbolic Algebra

Computations encountered in behavioural design specifications such as digital

signal and image processing designs, digital filter designs, and designs that employ

complex transformations, such as DCT, DFT, WHT, etc. can be represented in

terms of polynomials. For the purpose of component mapping, polynomial models

of high level design specifications have been used in behavioural synthesis in [32,

33, 26]. For each component (operator), a polynomial representation is created and

the polynomials are matched by comparing their co-efficients. However, for large

multivariate polynomials, comparing and storing large matrices becomes inefficient.

Commercial symbolic algebra tools, such as Maple [40], Mathematica [41], and

MatLab [43], use advanced symbolic algebra methods to perform efficient manipu-

lation of mathematical expressions, including fast multiplication, factorization, etc.

These tools have also been used for the purpose of polynomial mapping, namely,

to perform simplification modulo polynomial as in [26]. However, despite the un-

questionable effectiveness of these methods for classical mathematical applications,

they are less effective in modeling of large scale digital circuits and systems, and

in particular in polynomial verification. For example, symbolic algebra tools offered

by Mathematica and alike cannot unequivocally determine the equivalence of two

polynomials. The equivalence is checked by subjecting each polynomial to a series

of expand operations and comparing the coefficients of the two polynomials ordered

lexicographically.

Recently, a number of computer symbolic algebra methods have been applied to

model RTL designs with arithmetic components as polynomial expressions, mostly for

equivalence checking. A polynomial abstraction technique based on the fundamental

16

theorem of algebra has been proposed in [27]. This abstract model preserves the con-

trol and data properties of the original system and can be verified via symbolic model

checking. Some of the newer approaches combine symbolic computation methods

with the relational modeling techniques from Kleene algebra [17],[50]. In [51] both

the data path and the control part of the design are encoded using polynomials, and

the verification is performed in a generalized bounded model checking style.

A concept of polynomial functions over finite integer rings has been introduced

in [30] to perform equivalence verification of arithmetic data-paths with fixed bit-

width. Similar to BMDs, its applicability to verification of arithmetic circuits is

limited as it relies on a word-level representation of the datapaths, which is often

not available. An attempt to address modular datapath verification and optimization

problem is discussed in [1]. It uses Horner expansion diagram (HED) to reduce

and prove equivalence of portions of datapaths modeled as polynomials over finite

integer rings. This work is limited to relatively small DSP designs, such as filters,

that can be represented as polynomials of higher degree. It basically suffers from the

same problem as TED. An approach to verification of bit-level implementations using

theory of Grobner basis over fields has been proposed by [47] and adopted by others

[31, 49]. These methods are very complex and limited to small polynomials.

Kalla [31] proposed a method of equivalence checking of two polynomials imple-

mented in n-bit representation by checking if the difference between the two expres-

sions is a ”vanishing polynomial”, i.e., if it reduces to 0 modulo n. This method,

however, relies on a complicated theory of Grobner basis and requires the use of

symbolic algebra systems such as Maple. Furthermore, the ”vanishing polynomial”

method cannot be easily used to compare two complex arithmetic designs expressed

on arithmetic Boolean level and with logic gates.

A technique based on term rewriting was proposed [46] for RTL equivalence check-

ing, using a database of rewrite rules for typical multiplier implementation schemes.

17

However, the method cannot be automated for non-standard implementations. Au-

tomated techniques for extracting arithmetic bit level information from gate level

netlists has been proposed in the context of equivalence checking [45] and debugging

[29].

2.5 Arithmetic Bit-Level (ABL)

Automated techniques for extracting arithmetic bit level information from gate

level netlists has been proposed in the context of equivalence checking [45] and debug-

ging [29]. In [45, 49] a gate level network of an addition circuit (a basic component

of the multiplier) is modeled as a network of half adders, called arithmetic bit-level

(ABL) network, and a heuristic ABL normalization was added to enable their com-

parison [48]. Since ABL representation is not unique, a heuristic ABL normalization

was proposed to enable their comparison [48]. Basically, the ABL description of addi-

tion networks and bit-wise multiplication is transformed into a reduced normal form,

using commutative and distributive laws. Such normalization process enables struc-

tural similarities between the design under verification and the specification given as

a property, which simplifies job for standard equivalence checkers. In [49] ABL nor-

malization is combined with the techniques of computer algebra to produce a set of

equivalent “variety subset problems”. ABL components are modeled by polynomials

over unique ring, and the normal forms are computed w.r.t. the Grobner basis over

rings Z/2n using modern computer algebra algorithms. ABL descriptions can be also

derived from the gate-level implementations using Red-Muller decomposition tech-

niques, but they yield unduly large polynomials of high degree. All these methods

are computationally intensive and are not scalable to large designs.

A simplified version of this technique has been recently presented by the same

group [25], replacing expensive Grobner base computation by direct generation of

polynomials representing individual output bits in terms of the primary inputs. How-

18

ever, no general method for deriving such (potentially very large) polynomials and

comparing them in a systematic way against the specification has been proposed.

A high-level multiplier description language has been introduced in [18] to model

a wide range of common implementations at a structural (gate-level) and arithmetic

level. The correctness of the created model is established by bit-level transforma-

tions matching the model against a standard multiplication specification. The model

is also translated into a gate level netlist to be compared with the implementation

using standard equivalence checker. The method relies on a large amount of struc-

tural similarity between the two models that enables the use of standard equivalence

checkers.

It is important to emphasize that this approach relies on the existence of structural

similarities, which is common in standard equivalence checkers in industry. However,

a pair of designs to be checked for equivalence are often structurally different. For

example, word-level signals at the output of first level boxes (Add, Sub in Figure 2.5

(a) and *,* in (b)) look structurally similar, but are not equivalent (A+B,A−B vs

A2, B2). This makes a verification tool that relies on such similarity difficult. This

can be illustrated with a pair of designs in Figure 2.5. In contrast, no assumption is

made in our work about structural similarity; instead, the formal proof for functional

equivalence is provided using mathematical model and specifically, standard linear

algebra.

2.6 Satisfiability Modulo Theories (SMT)

Another direction of research into design verification investigates Satisfiability

Modulo Theory (SMT) solvers. Satisfiability Modulo Theories (SMTs) solve formal

properties at higher level than Boolean functions. SMT is a generalization of Boolean

SAT, in which the binary variables are replaced by predicates or binary-valued func-

tions of non-binary variables. These predicates may come from a variety of under-

19

lying theories. SMT solvers combine Boolean SAT with specialized solvers for some

well-defined theories, such as Boolean logic, linear arithmetic, theory of equality of

uninterrupted functions, theory of bit-vectors, theory of arrays and list structures and

others [4] [19]. SMTs can enrich Conjunctive Normal Form (CNF) with linear con-

straints, arrays, all-difference constraints, uninterpreted functions, etc. SMT solvers

use the same engine as SAT, but integrates theory reasoning and Boolean reasoning.

Despite great advances of SAT solvers in verification, notably in property checking,

their applicability to functional verification of highly-optimized custom datapath im-

plementation remains limited [49].

Some of the SMT solvers for quantified free linear arithmetic include MathSAT

[37], YICES [38], Z3 [39], and for non-linear arithmetic ABSolver [3] and iSAT [36].

New SMT solvers are developed continually, including those to efficiently solve linear

inequalities in integer domain (Mistral) [16]. Our work is related to this topic but

tackles the problem in a way that does not require solving a decision problem or

finding a satisfying assignment for the integer variables.

2.7 Summary

In summary:

• Standard verification techniques based on decision diagrams and Boolean SAT are

unable to handle arithmetic functions efficiently, especially multipliers.

• ILP methods are ineffective, as they inevitably require finding satisfying assign-

ments for all integer or binary variables. Such a process is known to be computation-

ally prohibitive for large designs.

• Current symbolic algebra methods are limited to relatively small designs that can

be represented as polynomials. Advanced methods based on Grobner theory are very

complex, and efficient algorithms for solving the associated verification problem are

not readily available.

20

• Standard industry practice that performs functional verification by bringing the

implementation and specification to a common level (typically gate-level) and using

equivalence checking, relies on structural similarity between the two designs, which

is often absent. The same is true for current ABL methods reviewed here.

In contrast, in this thesis no assumption is made about internal structural sim-

ilarity between the implementation (arithmetic circuit) and the specification (its in-

tended function). In fact, the specification is given just as a simple linear expression

that relates word-level output to bit-level inputs. Such a specification can be triv-

ially derived for all the known arithmetic designs, such as different adders, simple

and recoded multipliers, etc. The only requirement is that the design is arithmetic,

combinational, and the designer knows its intended function.

In this work, the functional verification is solved using standard linear algebra

techniques. In contrast to the existing ILP methods it does not require solving an ILP

problem. Instead, the computation is based on a simple manipulation of a set of linear

equations, similar to Gaussian elimination, without performing variable assignments

(typical of SAT approach) and without imposing integer constraints on its variables.

This method can be used to enhance capabilities of current SMT solvers by integrating

it as one of the SMT engines (theories).

Thus it can be seen that verification of arithmetic designs remains an unsolved

problem and that it could be solved only at the level that incorporates Boolean (bit)

level view of the design.

21

CHAPTER 3

ALGEBRAIC MODELING OF ARITHMETIC

NETWORKS

3.1 Arithmetic Network

It has been shown that any arithmetic circuit can be expressed as a network of

half-adders (ha), full-adders (fa) and basic logic gates (xor, and, or, and inv) [45].

For this reason, in this work we will refer to such a representation as an arithmetic

network, and we will use the terms circuit and network interchangeably. Furthermore,

logic gates can also be converted to a simple combination of ha or fa circuits [49].

As a result, any arithmetic circuit can be expressed solely in terms of ha, fa and

inverters. For the purpose of this work, an arithmetic network is represented as a

directed graph G = (V,E), where V is a set of vertices and E is a set of directed edges.

Vertex v ∈ V models an arithmetic operator (ha, fa) or inverter. An edge e ∈ E

represents an electrical signal connecting two vertices. Each signal in the network is

represented by a variable xk.

Each arithmetic or logic operator is modeled with a set of linear equations that

involves variables representing its input and output signals. For example, a half-adder

(ha) with binary inputs a, b, binary outputs S (sum) and C (carry out), is modeled

as

a+ b = 2C + S (3.1)

Similarly, a full adder (fa) with binary inputs a, b, cin, binary outputs S and C is

modeled as

a+ b+ cin = 2C + S (3.2)

22

Figure 3.1. Logic-level Half-adder, ha(a, b)

Logic gates can be similarly represented by algebraic equations by deriving their

functions from a half adder. This can be seen from Figure 3.1 of a logic-level half

adder circuit. Specifically, xor(a, b) is simply a sum output, S, of the half adder

ha(a, b), and the and(a, b) is the carry-out output, C, of ha(a, b).

The or gate, d =or(a, b), can be similarly derived (using deMorgan’s law) from

the carry out (and) output of the ha by inverting its inputs and outputs:

(1− a) + (1− b) = 2(1− d) + S (3.3)

Or, equivalently

a + b = 2d− S (3.4)

Combining this equation with the equation (3.1) for ha gives C + S = d. As a

result, an or(a, b) gate can be modeled with the following equations involving two

half adders:

a + b = 2C + S

C + S = d
(3.5)

Figure 3.2 shows ha model for the basic logic gates, AND, OR and XOR. The cor-

rectness of the equations can be verified with the truth table provided in the figure.

23

a b

C S

(a)

a b

HA1

C S
C S

HA2

C S

d

(b)

a b C S d
0 0 0 0 0
1 0 0 1 1
0 1 0 1 1
1 1 1 0 1

(c)

Figure 3.2. Modeling of logic gates using half-adders: (a) S =xor(a, b),
C =and(a, b) of half-adder; (b) or gate d = C + S derived from two half-adders; (c)
truth table for C, S, d.

Finally, the inverter gate y =inv(x) can be trivially modeled by the following

equation: x+ y = 1.

3.2 Mathematical Model of Arithmetic Network

The functionality of an arithmetic network composed of ha, fa and inv nodes can

be represented by a system of linear equations whose variables are inputs xI , outputs

xO and internal signals xS. There is one equation for each ha, fa, xor gate or and

gate (3.1) and (3.2), and a pair of equations (3.5) for an or gate.

Example 1. Figure 3.3 represents a 7-3 counter, composed of full adders.

The following equations can be derived for this network using the fa model de-

scribed above.

x1 + x2 + x3 − 2x11 − x12 = 0

x4 + x5 + x6 − 2x13 − x14 = 0

x12 + x14 + x7 − 2x15 − x10 = 0

x11 + x13 + x15 − 2x8 − x9 = 0

(3.6)

Mathematically, we can represent it as:

24

x1x2x3

FA1

C S

x12

x4x5x6

FA2

C S
x14

x7

FA3

C S

x10

x11 x13

x15

FA4

C S
x8 x9

S2 S1 S0

Figure 3.3. Arithmetic network of a 7-3 counter.

A x = b (3.7)

where A is an m× n constraint matrix, x is an n-vector representing the signals and

b is a constant vector. For the 7-3 counter, we have:

1 1 1 0 0 0 0 0 0 0 −2 −1 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 −2 −1 0

0 0 0 0 0 0 1 0 0 −1 0 1 0 1 −2

0 0 0 0 0 0 0 −2 −1 0 1 0 1 0 1

.

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

=

0

0

0

0

25

We now describe a method to represent such a network by a single algebraic sig-

nature expression that can be used to verify the circuit against its intended function.

First, we introduce the concept of a Reference Signature, which provides the ex-

pected relationship between primary inputs and outputs of the arithmetic circuit, and

serves as a ”golden model” of the circuit.

Definition 3.2.1. The Input Signature, or SigI(N), of an arithmetic circuit, N,

is a linear combination of primary input variables that represents the integer function

computed by the circuit.

Example 2. For a 7-3 counter, N7−3, with inputs {x1,x2,x3,x4,x5,x6,x7}, the input

signature is given by:

SigI(N7−3) = x1 + x2 + x3 + x4 + x5 + x6 + x7 (3.8)

Example 3. For a n-bit binary adder, NA, with inputs {a0, b0, · · · , an−1, bn−1}, the

input signature is given by:

SigI(NA) =

n−1
∑

i=0

2iai +

n−1
∑

i=0

2ibi

Example 4. Consider a 2-bit unsigned multiplier, NM2, with inputs {a0, b0, a1, b1}.

Since the multiplier is a non-linear circuit, we first need to convert its primary inputs

into new variables called partial product terms, ppI as follows:

A · B = (2a1 + a0).(2b1 + b0)

= 4a1b1 + 2a1b0 + 2a0b1 + a0b0

= 4pp3 + 2pp2 + 2pp1 + pp0

(3.9)

The variables ppi become primary inputs to our multiplier and the input signature is

given by:

SigI(NM2) = 4pp3 + 2pp2 + 2pp1 + pp0 (3.10)

26

Mathematically, Input Signature, SigI(N), can be represented as:

SigI(N) = rTI xI

Where rI is a input signature vector and xI is a set of primary inputs.

Example 5. In the case of a 2-bit unsigned multiplier, we have:

rTI xI = [4 2 2 1]

x1

x2

x3

x4

Where x1 = pp3, x2 = pp2, x3 = pp1 and x4 = pp0.

Definition 3.2.2. The Output Signature, or SigO(N), of an arithmetic circuit,

N, is defined as a linear combination of the primary output signals that represent the

n-bit encoding of the output word computed by the circuit.

Example 6. For a 7-3 counter, N7−3, with outputs {x8,x9,x10}, the output signature

is given by:

SigO(N7−3) = 4x8 + 2x9 + x10 (3.11)

Example 7. For a n-bit binary adder, NA, with outputs {C, Sn−1, Sn−2 · · · , S0}, the

output signature is given by:

SigO(NA) = 2n · C +

n−1
∑

i=0

2i. Si

Example 8. For a 2-bit unsigned multiplier, NM2, with outputs {z3, z2, z1, z0}, the

output signature is given by:

SigO(NM2) = 8z3 + 4z2 + 2z1 + z0 (3.12)

27

In general, an output signature for any arithmetic circuit with n outputs Si is repre-

sented as

SigO(N) =
n−1
∑

i=0

2i Si

Mathematically, Output Signature, SigO(N), can be represented as:

SigO(N) = rTO xO

Where rO is a output signature vector and xO is a set of primary outputs.

Example 9. In the case of a 2-bit unsigned multiplier, we have:

rTO xO = [8 4 2 1]

z3

z2

z1

z0

Definition 3.2.3. The Reference Signature, or Ref(N), of an arithmetic circuit

is defined as the difference between its output signature and input signature and is

given by:

Ref(N) = SigO − SigI (3.13)

Mathematically in terms of input and output signature vectors, the Reference

Signature, Ref(N) is defined as follows:

Ref(N) = [−rI rO]
T

xI

xO

Where rI is a input integer signature vector, rO is an output integer signature vector,

xI is a set of primary inputs and xO is a set of primary outputs.

28

Example 10. For the 7-3 counter example, with xI = [x1, · · · , x7] and xO =

[x8, x9, x10], the reference signature, Ref(N), is given by:

Ref(N7−3) = 4x8 + 2x9 + x10 − x1 − x2 − x3 − x4 − x5 − x6 − x7 (3.14)

Or, equivalently as

[−rI rO]
T

xI

xO

= [−1 − 1 − 1 − 1 − 1 − 1 − 1 4 2 1]

xI

xO

Here the output signature corresponds to the 3-bit encoding of the output word, while

the input signature is a sum of the input bits.

In our work an arithmetic network N will be similarly represented by its algebraic

signature, Sig(N), and compared to the reference signature Ref(N). For the circuit

to be functionally correct, its algebraic signature must match its reference signature,

i.e.,

Sig(N) = Ref(N) (3.15)

Definition 3.2.4. The Algebraic Signature, or Sig(N), of an arithmetic network

N, is given by:

Sig(N) = rT x

Where r = [rI rO rS] is an integer signature vector and x = [xI xO xS]
T is a set

of variables representing signals.

Our goal is to compute an algebraic signature of a network as a means of proving

its functionality expressed by the reference signature. This can be accomplished by

setting up a linear system describing the arithmetic network and solving it using a

linear programming (LP) solver described in next section.

29

CHAPTER 4

MATHEMATICAL FORMULATION OF FUNCTIONAL

VERIFICATION PROBLEM

This section describes the method for computing algebraic signature for arith-

metic networks using linear algebra techniques and discusses the issue of signature

matching.

4.1 Mathematical Formulation

Let n be the total number of signals in the network, each represented by a variable

xk, and m be the number of linear equations in the system. The network is then

represented in matrix form as

A x = b (4.1)

Where A is an m× n matrix representing the network, x is an n-vector representing

the signals, and b is a constant vector of size m.

The vector x of signal variables is further partitioned into a set of input signals

xI , output signals xO, and internal signals xS. Matrix A is similarly partitioned into

submatrices AI , AO, AS. Then, the system Ax = b can be written as:

AIxI + AOxO + ASxS = b

Where AI is the matrix A restricted to the columns associated with primary input

signals xI , AO is the matrix A restricted to the columns of primary output signals xO

and AS is the matrix A restricted to the columns of internal signals xS.

30

For the 7-3 counter of Fig. 3.3, xT = [x1, . . . , x15], where x
T
I = [x1, x2, x3, x4, x5, x6, x7],

xT
O = [x8, x9, x10], x

T
S = [x11, x12, x13, x14, x15], n = 15, m = 4 and b = 0.

Mathematical representation of the network is given as follows:

A =

x1 x2 x3 x4 x5 x6 x7 | x8 x9 x10 | x11 x12 x13 x14 x15

1 1 1 0 0 0 0 | 0 0 0 | −2 −1 0 0 0

0 0 0 1 1 1 0 | 0 0 0 | 0 0 −2 −1 0

0 0 0 0 0 0 1 | 0 0 −1 | 0 1 0 1 −2

0 0 0 0 0 0 0 | −2 −1 0 | 1 0 1 0 1

b =

0

0

0

0

Given an arithmetic network, represented by A x = b, the system computes its

algebraic signature vector r = [−rI , rO, rS], in an attempt to match the reference

signature vector [−rI , rO]. This is done by combining the rows of A into a single

algebraic signature Sig(N) = rT x, by finding a linear combination α of rows of A

that produces r = [−rI , rO, rS]. This operation is similar to a classical Gaussian

elimination. Intuitively, since we want to eliminate all the internal signals from the

algebraic signature, we want to have rS = 0. By doing this, only primary input and

output signals will be involved in the signature. It will be shown later that rS = 0 is

sufficient but not a necessary condition for satisfying the reference signature.

Recalling that matrix A and variables x are partitioned into groups associated

with inputs, outputs, and internal signals, the signature Sig(N) = rT x for network

N is obtained from a signature vector, r, computed as follows:

r = ATα ⇔

AT
I α = −rI

AT
Oα = rO

AT
Sα = rS

(4.2)

Here α is a vector of integer coefficients (to be computed) that reduces linear equations

defined by matrix A to the signature vector r. Vectors rO and rI are provided by the

31

user as part of the reference signature to be verified. Since the goal is to match the

algebraic signature with the reference, we need to find vector α such that

[AI , AO]
T α =

−rI

rO

(4.3)

Such a computation can be done easily and efficiently using any linear programming

(LP) system. The LP system solves these equations in terms of α as a constraint

satisfaction problem, with no objective function. Basically, searching for α is searching

for a linear combination of the rows of matrix A that results in the algebraic signature

for the network.This is typically done using Simplex algorithm during the pre-solving

phase of any LP system, which is fast and scalable.

Note that no integer constraints need to be imposed on variables x since we are

solving for α and not for x. This is the main difference between our approach and all

the known approaches based on LP or ILP proposed so far, making this computation

fast, efficient and highly scalable.

4.2 Computing the Signature

Given the network, described by A x = b, and its reference signature [−rI , rO]

xI

xO

,

its algebraic signature, rT x, is computed with the following two-step approach. First

we attempt to solve the system described by equations,

AT
I α = −rI

AT
Oα = rO

AT
Sα = 0

with given rI , rO and with rS forced to 0. If the solution to this system exists,

there exists α for which these equations hold, the reference signature is valid and the

32

circuit is proved to be correct. In this case resulting vector α provides the desired

linear combination of the rows of A that reduces it to the reference signature without

any internal signals, xS.

If the system is infeasible, we relax the constraint on rS so that rS is no longer

required to be 0 and solve a reduced system in which rS is allowed to take arbitrary

value. We refer to this process as ”Completing the Signature” (in terms of rS), i.e.,

we solve the following linear system for α using standard LP solver:

AT
I α = −rI

AT
O α = rO

(4.4)

Note that the vector rS associated with internal variables xS is not being used in the

computation. If the system still has no solution, i.e, there is no linear combination

of rows of A that will produce the algebraic signature that matches the reference

signature vector [−rI , rO], the circuit is incorrect. If the system has solution, α, the

signature vector rS associated with the internal variables is computed as follows:

rS = AT
S α

Ideally, we would like to have all the internal variables eliminated from the algebraic

signature, i.e., rS = 0, as a condition for satisfying the reference signature. However,

this may not always be possible with a basic system of equality constraints, A x = b,

and additional constraints of Boolean nature may need to be imposed. This issue,

and the consequences of non-zero rS, will be illustrated by the following examples.

Let us revisit the 7-3 counter circuit described by equation (3.6) with the reference

signature given by equation (3.14). Its input and output reference signature vectors

are given by:

rTI = [−1 − 1 − 1 − 1 − 1 − 1 − 1]

rTO = [4 2 1]

33

According to our procedure, we first force rS to zero and compute α using the following

relationship:

[AI , AO, AS] α =

−rI

rO

0

The system has the following solution:

αT = [−1 − 1 − 1 − 2]

Subsequently, the following signature is computed for this system:

Sig(N7−3) = rT x = −x1 − x2 − x3 − x4 − x5 − x6 − x7 + 4x8 + 2x9 + x10.

The internal signals xS = [x11, x12, x13, x14, x15] have been completely eliminated,

so that the computed signature matches the reference signature and the design is

considered correct.

4.3 Residual Expression

An interesting question arises, what if the computed signature Sig(N), in addition

to the reference signature, contains an expression associated with the internal signals,

i.e., if rS 6= 0. We refer to such an expression as a Residual Expression, denoted

RE(N):

RE(N) = Sig(N)− Ref(N) = rTS xS (4.5)

Does the existence of a non-empty residual expression, RE(N) 6= ∅ imply that the

system does not satisfy the reference signature and the design is incorrect? It turns

out that it is not necessarily the case, and that rS = 0 is a sufficient but not a necessary

condition for the circuit to be correct. It will be shown in Chapter 5 that as long

34

as RE(N) evaluates to zero for all values of internal signal variables xS produced by

the network, the network signature will match the reference signature and the design

will be correct. This case is illustrated with the following example.

Example 1: Consider a signed 2×2 multiplier network, NM2, shown in Figure 4.1.

pp0pp1pp2pp3
x4

x13

x2

x14

x3

x15

HA1

C S

x5

x6

HA2

C S
x17

x12x16

x1

x1

x5

HA3

C S
x7 x8

HA4

C S
x10

x11x9

z0z1z2z3

Figure 4.1. Signed 2× 2 multiplier network.

The network is described by the following equations:

x14 + x15 − x6 − 2x5 = 0

x1 + x5 − x17 − 2x16 = 0

x7 + x8 − x10 − 2x9 = 0

x1 + x5 − x8 − 2x7 = 0

x2 + x14 = 1

x3 + x15 = 1

x4 − x13 = 0

x17 + x12 = 1

x10 + x11 = 1

(4.6)

35

or, equivalently in matrix A x = b with:

A =

x1 x2 x3 x4 | x11 x12 x6 x13 | x5 x7 x8 x9 x10 x14 x15 x16 x17

0 0 0 0 | 0 0 −1 0 | −2 0 0 0 0 1 1 0 0

1 0 0 0 | 0 0 0 0 | 1 0 0 0 0 0 0 −2 −1

0 0 0 0 | 0 0 0 0 | 0 1 1 −2 −1 0 0 0 0

1 0 0 0 | 0 0 0 0 | 1 −2 −1 0 0 0 0 0 0

0 1 0 0 | 0 0 0 0 | 0 0 0 0 0 1 0 0 0

0 0 1 0 | 0 0 0 0 | 0 0 0 0 0 0 1 0 0

0 0 0 1 | 0 0 0 0 | 0 0 0 0 −1 0 0 0 0

0 0 0 0 | 0 1 0 0 | 0 0 0 0 0 0 0 0 1

0 0 0 0 | 1 0 0 0 | 0 0 0 0 1 0 0 0 0

b =

0

0

0

0

1

1

0

1

1

Here x1 = pp3, x2 = pp2, x3 = pp1, x4 = pp0 and x11 = z3, x12 = z2, x6 =

z1, x13 = z0. The combination of ha3 and ha4 models an or gate (see equation

3.5) that appears in this network. Inputs to the network are partial product terms

{pp0, pp1, pp2, pp3}, generated by a partial product generator module, from the actual

inputs of the multiplier, a1, a0, b1, b0. Hence, the expected input signature, SigI(NM2),

for the network is:

SigI(NM2) = (−2a1 + a0)(−2b1 + b0)

= 4a1b1 − 2a1b0 − 2a0b1 + a0b0

= 4pp3 − 2pp2 − 2pp1 + pp0

(4.7)

The output signature is obtained directly from the encoding of the output bits,

SigO(NM2) = −8z3 + 4z2 + 2z1 + z0, so the reference signature for this design is:

[rO, − rI]
T

xO

xI

= Ref(NM2) = −8z3 +4z2 +2z1 + z0 − 4pp3+2pp2+2pp1− pp0

In order to compute an algebraic signature, first we try to solve the system for α by

forcing rS to zero using the following relationship:

36

AT α =

−rI

rO

0

In this case there is no feasible solution to the system. Therefore, we try to complete

the signature in-terms of rS. Subsequently we must consider rS to be a free signal

and find α using the following relationship:

[AI , AO]
T α =

−rI

rO

This system has a solution, αT = [−2 − 4 − 8 0 − 8 4 1 2 2] and the corresponding

algebraic signature computed by the system is:

Sig(NM2) = −4pp3 + 2pp2 + 2pp1 − pp0 − 8z3 + 4z2 + 2z1 + z0 (4.8)

+8x7 + 4x8 − 8x10 + 4x17

In this case Sig(N)− Ref(N) 6= ∅, and has a residual expression,

RE(NM2) = rTS xS = −8x7 − 4x8 + 8x10 − 4x17

associated with the internal signals. Does this mean that our system does not satisfy

the reference signature and the design is incorrect? It turns out that this expression

actually evaluates to zero with the help of additional constraints, to be discussed in

the next section.

In summary, we have seen two cases:

• When rS = 0, all the internal signals are automatically eliminated from the

input/output relationship

37

• When rS 6= 0, some internal signals. are present but the residual expression can

be reduced to zero for all values of the internal variables that can be produced

by the system which will be discussed in the next section.

38

CHAPTER 5

THEOREMS AND BOOLEAN MODELS

In this section we will present a set of theorems that govern our approach to

functional verification of arithmetic circuits. In the following, the circuit is considered

correct if it satisfies the functionality expressed by the reference signature i.e., if its

algebraic signature matches the reference signature. We also discuss the need for

additional constraints to properly model the inherent Boolean nature of arithmetic

circuits.

5.1 Theorems

Theorem 5.1.1. Given an arithmetic circuit N represented by A x = b with reference

signature Ref(N) = [−rI , rO]
T

xI

xO

, the ciruit is incorrect if there is no solution

to equation,

[AI , AO]
T α =

−rI

rO

Proof. The lack of solution to this equation indicates that the coefficients associated

with the input and output variables do not match those of the reference signature.

Hence the circuit does not satisfy the reference signature and by definition it is in-

correct.

The remaining theorems consider the case when the computed algebraic signature

contains residual expression, RE(N). We distinguish two cases:

39

• When there is no residual expression (RE = φ) in the algebraic signature, i.e.

when rS = 0; and

• When RE(N) is not empty (rS 6= 0) but RE(N) = rTS xS evaluates to zero for

all possible values of internal variables xS produced by the circuit.

Theorem 5.1.2. Given an arithmetic circuit N represented by A x = b with reference

signature Ref(N) = [−rI , rO]
T

xI

xO

, the circuit is correct if its computed algebraic

signature matches exactly the reference signature and contains no residual expression

RE(N), i.e., rS = 0. That is RE(N) = φ is a sufficient condition for the arithmetic

circuit to be correct.

Proof. By definition, the Residual Expression, RE(N), is the difference between its

algebraic signature (rT x) and reference signature, [−rI , rO]
T

xI

xO

, that is

RE(N) = rT x− [−rI , rO]
T

xI

xO

Since

rT x = [−rI , rO, rS]
T

xI

xO

xS

We have

RE(N) = [−rI , rO, rS]
T

xI

xO

xS

− [−rI , rO]
T

xI

xO

= rTS xS

40

If the circuit has no residual expression, RE(N) = φ, then

RE(N) = rTS xS = 0

which implies that rS = 0. That is, no internal signal variables are involved in the

signature and hence the algebraic and reference signatures match indicating that the

circuit is correct.

Example: To illustrate this case, consider again a (7-3) counter in Figure 5.1.

x1x2x3

FA1

C S

x12

x4x5x6

FA2

C S
x14

x7

FA3

C S

x10

x11 x13

x15

FA4

C S
x8 x9

S2 S1 S0

Figure 5.1. Arithmetic network of a (7-3) counter.

The network has the following sets of variables, xT
I = [x1, x2, x3, x4, x5, x6, x7],

xT
O = [x8, x9, x10], x

T
S = [x11, x12, x13, x14, x15] and can be described by a set of linear

equations 3.6, repeated here for reference.

x1 + x2 + x3 − 2x11 − x12 = 0

x4 + x5 + x6 − 2x13 − x14 = 0

x12 + x14 + x7 − 2x15 − x10 = 0

x11 + x13 + x15 − 2x8 − x9 = 0

41

The reference signature is given by:

Ref(N) = 4x8 + 2x9 + x10 − (x1 + x2 + x3 + x4 + x5 + x6 + x7) (5.1)

ans reference signature vectors are given by:

−rTI = [1 1 1 1 1 1 1]

rTO = [4 2 1]

Computation of the signature using the linear system

[AI , AO, AS]
T α =

−rI

rO

0

gives the following solution:

αT = [−1 − 1 − 1 − 2]

That is, there exists a linear combination α of rows of A whose sum reduces to a

reference signature without any internal signals (rS = 0). The resulting algebraic

signature is:

rT x = 4x8 + 2x9 + x10 − x1 − x2 − x3 − x4 − x5 − x6 − x7

The signature is identical with the reference signature of Equation 5.1 and does not

contain any of the internal signals, xs, i.e., rs = 0. Hence the design is correct.

A stronger, necessary and sufficient condition for circuit correctness is thatRE(N) =

0, i.e., when a possibly non-empty RE(N) = rTS xS , with rS 6= 0, evaluates to zero for

42

all possible values of xS generated by the circuit. The fact that RE(N) 6= φ does not

necessarily mean that the circuit is incorrect. The numerical value of RE(N) must

be proved to be zero.

Theorem 5.1.3. Given an arithmetic circuit N represented by A x = b with reference

signature Ref(N) = [−rI , rO]
T

xI

xO

, the circuit is correct iff RE(N) = rTS xS = 0

i.e., it evaluates to zero for all the values of xS produced by the network.

Proof. As previously shown, the residual expression RE(N) can be written as

RE(N) = [−rI , rO, rS]
T

xI

xO

xS

− [−rI , rO]
T

xI

xO

= rTS xS

If the circuit has non-empty residual expression, the vector rS 6= 0 and the only way

RE(N) can evaluate to zero is that the linear combination of variables xS evaluates

to zero. If this is the case, RE(N) = 0 and Sig(N) = Ref(N). If the residual

expression evaluates to zero for all values of xS, then RE(N) = rTS xS = 0 and

Sig(N) = Ref(N), i.e., the circuit is correct.

Now, let’s assume that the circuit is correct, and show that it implies thatRE(N) =

0. Again, recall that Sig(N) − Ref(N) = RE(N). If the circuit is correct, then

Sig(N) = Ref(N) and RE(N) = 0

Note that Theorem 5.1.3 expresses a more general case than the one stated in

Theorem 5.1.2 for RE(N) = φ. This is because RE(N) = rTS xS = 0 can be obtained

by either having rS = 0 (empty RE(N)) or, for non-zero rS, having the linear combi-

nation rTS xS evaluate to zero. This theorem points out to an interesting difficulty in

proving correctness of arithmetic circuit in cases where RE is non-empty. Additional

constraints must be imposed on the circuit in an attempt to simplify linear equations

or to prove RE = 0 directly.

43

The following section explains this issue.

5.2 Imposing Binary Constraints

Proving that RE = 0 for all the values of internal signals poses a new problem

that requires additional insight into a binary nature of the network. This can be

done by examining the circuit and deriving additional constraints, in form of Boolean

invariants and assertions. Deriving such invariants is done routinely and efficiently

by logic synthesis and verification tools, such as ABC [22, 5]. However, our initial

experience shows that the problem may be simpler as it relates to a special class of

designs, namely integer arithmetic circuits. These constraints are of binary nature

and can be viewed as special cases of Boolean constraints needed to properly model

the integer arithmetic semantic of the network. Our initial analysis shows that these

constraints can be classified as follows:

• Structural constraints, caused by fanout of internal signals; these can be easily

modeled as equality constraints on the corresponding signals (such as x8 = x17 in

Example 2);

• Boolean constants that can be propagated in the network, such as the C output of

two half-adders connected in series (e.g., signal x9 in Example 2, Figure 4.1); and

• Binary constraints that may result from specific network configurations, such as

internal signals of a gate-level implementation of a full-adder. In some cases, such as

those for multipliers shown in Table 7.4, they can be derived relatively easily, but in

general cases the problem may require more work.

5.3 Deriving Boolean Constraints

We first demonstrate how to derive Boolean constraints in a HA network shown in

Figure 5.2. Such a network often appears in arithmetic circuits composed of wallace

trees. We will show that this network represents a full adder (FA) circuit and will

44

x1 x2

HA1

C S

x7

x6

x3

HA2

C S

x4

x8

HA3

C S
x10 x9

HA4

C S

x11 x5

x1 + x2 − 2x7 − x6 = 0
x3 + x6 − 2x8 − x4 = 0
x7 + x8 − 2x10 − x9 = 0
x9 + x10 − 2x11 − x5 = 0

(5.2)

Figure 5.2. Configuration in Netlist.

derive the constraints on some of the internal signals resulting from this configura-

tion. This will provide important Boolean information necessary to correctly model

arithmetic circuit as a system of algebraic equations.

First we prove that x11 = 0. The C and S outputs of a HA (in this case HA3) are

never equal to 1 at the same time, i.e., C ·S = 0. Since x11 = x10 ·x9, we have x11 = 0.

Hence, the equations 5.2 can be rewritten as

x1 + x2 − 2x7 − x6 = 0

x3 + x6 − 2x8 − x4 = 0

x7 + x8 − 2x10 − x9 = 0

x9 + x10 − x5 = 0

Next, we will show that x10 = 0 by considering the following Boolean equations,

where ∧ represents AND, ∨ represents OR and ⊕ represents XOR.

45

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0
0 1 1 0 1 1 0 1 1 0 0
1 0 0 1 0 1 0 0 0 0 0
1 0 1 0 1 1 0 1 1 0 0
1 1 0 0 1 0 1 0 1 0 0
1 1 1 1 1 0 1 0 1 0 0

Table 5.1. Truth table for full-adder circuit in Figure 5.2(a)

x7 = x1 ∧ x2

x6 = x1 ⊕ x2

x8 = x6 ∧ x3 = (x1 ⊕ x2) ∧ x3

x10 = x7 ∧ x8 = (x1 ∧ x2) ∧ ((x1 ⊕ x2) ∧ x3) = 0

Since x10 = 0, the equation

x7 + x8 − 2x10 − x9 = 0

simplifies to

x7 + x8 − x9 = 0

And with x11 = 0, we have

x5 = x9 = x7 + x8

As a result HA3 and HA4 can be replaced by a simplified HA such that x5 = x7+x8.

The modified equations clearly indicate that the circuit in Figure 5.2(a) forms a Full-

adder (FA):

x1 + x2 + x3 = 2x5 + x4

The proof that this network represents a full adder can also be done by computing

46

its algebraic signature, namely in Figure 5.2

x1 + x2 + x3

= 2x7 + (x6 + x3)

= 2x7 + 2x8 + x4

= 2(x7 + x8) + x4

= 2x5 + x4

As we will see later, the constraint that the internal OR variable (x10) is zero in such

a configuration is essential in simplifying linear equations of the network to prove its

functional correctness.

x1x2x3

FA

C S

x4x5

Figure 5.3. Full Adder symbol : x1 + x2 + x3 = 2x5 + x4

The proof that x10 = 0 can be also shown using algebraic equations, rather than

Boolean, as follows:

x6 = x1 + x2 − 2x1 · x2

x7 = x1 · x2

x8 = x6 · x3 = x1 · x3 + x2 · x3 − 2x1 · x2 · x3

x10 = x7 · x8

= x1 · x2(x1 · x3 + x2 · x3 − 2x1 · x2 · x3) = x1 · x2 · x3 + x1 · x2 · x3 − 2x1 · x2 · x3 = 0

The above simplification is true for Boolean variables.

47

pp0pp1pp2pp3
x4

x13

x2

x14

x3

x15

HA1

C S

x5

x6

HA2

C S
x17

x12x16

x1

x1

x5

HA3

C S
x7 x8

HA4

C S
x10

x11x9

z0z1z2z3

Figure 5.4. Signed 2× 2 multiplier network.

Example 1: Let us revisit the signed 2×2 multiplier network, shown in Figure 4.1.

The network is described by set of linear equations 4.6, repeated here for reference.

x14 + x15 − x6 − 2x5 = 0

x1 + x5 − x17 − 2x16 = 0

x7 + x8 − x10 − 2x9 = 0

x1 + x5 − x8 − 2x7 = 0

x2 + x14 = 1

x3 + x15 = 1

x4 − x13 = 0

x17 + x12 = 1

x10 + x11 = 1

The partial product terms {pp0, pp1, pp2, pp3} are generated from the actual inputs of

the multiplier, a1, a0, b1, b0, by a partial product generator module.

The reference signature is given by

48

[rO, rI]
T

−xI

xO

= −8x11 + 4x12 + 2x6 + x13 − 4x1 + 2x2 + 2x3 − x4

As before, we try to solve the system for α by forcing rS to zero. In this case, the

system has no solution. So we use the following equation to compute the signature

[AI , AO]
T α =

−rI

rO

This system has solution, αT = [−2 − 4 0 0 − 8 4 − 1 2 2] and the corresponding

algebraic signature is:

rT x = −8x11 + 4x12 + 2x6 + x13 − 4x1 + 2x2 + 2x3 − x4 (5.3)

+8x7 + 4x8 − 8x10 + 4x17

Note that in this case the algebraic signature has a non-empty residual expression:

rTS xS = −8x7 − 4x8 + 8x10 − 4x17 (5.4)

associated with the internal signals. According to Theorem 5.1.3, in order to prove

that the design is correct we must check if the residual expression evaluates to zero

for all possible values of x7, x8, x17 and x10 produced by the network. To do that,

note that signals x8, x17 are equivalent outputs S of ha2 and ha3 that share the same

inputs, i.e., x8 = x17. By substituting this relation into equation 5.4, we obtain:

rTS xS = −8x7 − 8x8 + 8x10 (5.5)

49

Recall that x9 = 0 since this is the output of second HA in the OR configuration.

The C output of the second HA modeling the OR gates is always zero as proven

earlier (Figure 5.2(a)). Hence equation

x7 + x8 − x10 − 2x9 = 0

simpliefies to

x7 + x8 − x10 = 0

Substituting this relation into equation 5.5, we obtain:

rTS xS = −8x10 + 8x10 = 0

With the residual expression equal to zero the algebraic signature is equal to the

reference signature, proving that the design is correct.

There is another way to prove this using result of Theorem 5.1.2. Namely, add

the constraints

x9 = 0

x8 = x17

x7 = x16

to A x = b. The new system has solution, αT = [−2 0 −8 −4 −8 4 −1 2 2 −16 8 8]

and the corresponding algebraic signature is:

rT x = −8x11 + 4x12 + 2x6 + x13 − 4x1 + 2x2 + 2x3 − x4

This signature is identical to the reference signature and it can be seen that there is

no residual expression proving that the design is correct.

50

Example 2: Consider a signed 3×3 multiplier network, NM3, shown in Figure 5.6.

The network is described by the following equations:

x2 = 1− x1

x4 = 1− x3

x6 = 1− x5

x8 = 1− x7

x9 + x10 = 2 ∗ x12 + x11

x1 + x13 = 2 ∗ x15 + x14

x12 + x14 = 2 ∗ x17 + x16

x17 + x15 = 2 ∗ x19 + x18

x18 + x19 = x20

x3 + x16 = 2 ∗ x22 + x21

x22 + x5 = 2 ∗ x24 + x23

x20 + x23 = 2 ∗ x26 + x25

x26 + x24 = 2 ∗ x28 + x27

x27 + x28 = x29

x25 + x7 = 2 ∗ x31 + (1− x30)

x25 + x7 = 2 ∗ x33 + x32

x32 + x33 = x34

x34 + x35 = 2 ∗ x37 + x36

x29 + x36 = 2 ∗ x39 + x38

x39 + x37 = 2 ∗ x41 + x40

x40 + x41 = x42

x42 = 1− x43

x45 = x44

x11 = x46

x21 = x47

51

x30 = x48

x38 = x49

x43 = x50

(5.6)

Inputs to the network are partial product terms {x2, x4, x6, x8, x9, x10, x13, x35, x45},

INV

 - sum -

x1

INV

 - sum -

x3

INV

 - sum -

x5

INV

 - sum -

x7

 - sum -

x7

 - sum -

 - sum -

x12

x11

x14

 - sum -

x15

x17 x16

 - sum -

x18x19

 - sum -

x20

x22

x21

x23

 - sum -

x24

x26 x25x25

 - sum -

x27x28

 - sum -

x29

x30

x31

 - sum -

x32x33

 - sum -

x34

x36

 - sum -

x37

x39

x38

 - sum -

x40x41

INV

x42

x43

x44x46x47x48x49x50

x2 x4x6x8 x9 x10x13x35 x45

Figure 5.5. Signed 3× 3 multiplier network.

generated by a partial product generator module, from the actual inputs of the mul-

tiplier, a2, a1, a0, b2, b1, b0. Hence, the expected input signature, SigI(NM3), for the

network is:

52

SigI(NM3) = (−4a2 + 2a1 + a0)(−4b2 + 2b1 + b0)

= 16a2b2 − 8a2b1 − 4a2b0 − 8a1b2 + 4a1b1 + 2a1b0 − 4a0b2 + 2a0b1 + a0b0

= 16x35 − 8x8 − 4x4 − 8x6 + 4x13 + 2x10 − 4x2 + 2x9 + x45

(5.7)

The output signature is obtained directly from the encoding of the output bits,

SigO(NM3) = x44 + 2x46 + 4x47 + 8x48 + 16x49 − 32x50, so the reference signature

for this design is:

Ref(NM3) = x44 + 2x46 + 4x47 + 8x48 + 16x49 − 32x50

−16x35 + 8x8 + 4x4 + 8x6 − 4x13 − 2x10 + 4x2 − 2x9 − x45

As before, we first try to solve the system for α by forcing rS to zero. In this case,

the system has no solution. So we relax rS and use the following equation to compute

the signature

[AI , AO]
T α =

−rI

rO

This system has solution and the corresponding algebraic signature computed by the

system is:

Sig(NM3) = x44 + 2x46 + 4x47 + 8x48 + 16x49 − 32x50 − 16x35

+8x8 + 4x4 + 8x6 − 4x13 − 2x10 + 4x2 − 2x9 − x45 + 4x3 + 8x5 + 8x7 − 4x21

−8x30 − 16x38 + 32x43 + 4x12 + 4x14 + 8x15 − 16x34 + 16x36 + 32x37

(5.8)

In this case Sig(N)− Ref(N) 6= ∅, and has a residual expression,

RE(NM3) = −4x3 − 8x5 − 8x7 + 4x21 + 8x30 + 16x38 − 32x43 − 4x12

−4x14 − 8x15 + 16x34 − 16x36 − 32x37

associated with the internal signals. It can be shown that this expression actually

evaluates to zero, for all possible values of xS produced by the network. This can be

53

proved by adding some additional constraints (Boolean invariants) associated with

the network. In particular, find that variables x19, x28, x41 are actually zero for all

possible values produced by the network. The proof for this was given in Section

5.2. We also verified this by generating a BDD for this network and found that the

variables x19, x28, x41 are zero as shown in Figure 5.6

 x10

 x9

 x1

 x13

 x3

 x5

 x7

 x35

 x11 x21

7 3 0

 x30

7 3 a

 x31

7 4 9

 x38

7 5 a

 x42

7 6 a

 x19

7 7 8

 x28

0

 x33

7 3 9

7 3 5

7 4 8

7 4 7

7 5 9

7 5 8

7 7 7

7 7 6

72d 7 2 e 7 6 9

7 6 8

1

7 7 47 4 4 7 6 67 3 6 7 5 4

7 5 7 7 5 37 3 47 3 3 7 4 e7 4 0 7 4 3 7 7 376f 7 7 57 4 6 7 6 5 7 6 17 6 7

7 7 2

76d

7 6 4

7 6 3

7 5 2

7 4 a75f

74d

74c

73f

7 3 e

7 3 17 3 2 7 6 e

7 7 1

7 4 2

73d

7 6 0

76c7 5 e

7 6 2

75c

76b

75b

75d73b73c 7 7 0

Figure 5.6. BDD of a signed 3× 3 multiplier network.

It can also be seen from the network that signals x31, x33 are equivalent outputs

C of the HAs that share the same inputs i.e., x7 and x25 and the S outputs of these

HAs are just inverted, i.e.,

x32 = 1− x30

Now that we know that some of the variables are zero for all possible values of

xS produced by the network, we can now add the corresponding constraints to the

network.

x19 = 0

x28 = 0

x41 = 0

x31 = x33

x32 = 1− x30

54

This system has solution and the corresponding algebraic signature is

Sig(NM3) = x44 + 2x46 + 4x47 + 8x48 + 16x49 − 32x50

−16x35 + 8x8 + 4x4 + 8x6 − 4x13 − 2x10 + 4x2 − 2x9 − x45

It can be seen that there is no residual expression and the algebraic signature is equal

to the provided reference signature, proving that the design is correct.

Example 3: Consider the example of a parallel prefix adder, NA4, shown in Figure

5.7. This is a gate level implementation of a 4-bit parallel prefix adder. The arithmetic

Figure 5.7. Gate level implementation of parallel prefix adder (courtesy of [52])

network in terms of half-adders is shown in Figure 5.8. Primary inputs to the network

are ao, a1, a2, a3, b0, b1, b2, b3, cin. Hence the expected input signature, SigI , for the

network is:

SigI(NA4) = ao + 2a1 + 4a2 + 8a3 + b0 + 2b1 + 4b2 + 8b3 + cin

55

 - sum -

 - sum -

n 7

 - sum -

n 7

dc7

 - sum -

 - sum -

n 6

ds9

 - sum -

 - sum -

n 1 3

 - sum -

n 5

n 5

 - sum -

 - sum -

n 1 1

 - sum -

n 3

 - sum -

n 3

 - sum -

 - sum -

n 1

n 1

 - sum -

n 9

dc3

s[0]

 - sum -

cout

 - sum -

n 2

 - sum -

n 4

n 8

s[3]

n 1 5

ds12

dc5 ds3

dc6 ds6 n 1 4

ds11

n 1 0

s[2]

P3 ds10

n 1 2

s[1]

dc4 ds0

b[0] a[0]cinb[1] a[1]b[2] a[2]b[3] a[3]

Figure 5.8. Parallel Prefix Adder network.

The output signature is obtained directly from the encoding of the output bits,

SigO(NA4) = 16cout + 8s3 + 4s2 + 2s1 + s0

Hence the expected reference signature is:

[rO, rI]
T

xO

−xI

= 16cout+8s3+4s2+2s1+s0−ao−2a1−4a2−8a3−b0−2b1−4b2−8b3−cin

In order to compute an algebraic signature, first we try to solve the system for α by

forcing rS to zero using the following relationship:

56

AT α =

−rI

rO

0

In this case the system has no solution. Therefore, we try to complete the signature

in terms of rS. Subsequently we must consider rS to be free signals and find α using

the following relationship:

[AI , AO]
T α =

−rI

rO

This system has solution and the corresponding algebraic signature is:

rT x = 16cout + 8s3 + 4s2 + 2s1 + s0

−ao − 2a1 − 4a2 − 8a3 − b0 − 2b1 − 4b2 − 8b3 − cin

−2dc7 + 2n6 − 4n13 − 8n11 − 16n9 − 2dc3 + 16dc4 + 16ds0

+8n2 + 4n4 − 16n8 − 8n10 − 4n12

In this case the algebraic signature has a non-empty residual expression:

RE(N) = rTS xS = 2dc7 − 2n6 − 4n13 + 8n11 + 16n9 + 2dc3 − 16dc4 − 16ds0

−8n2 − 4n4 + 16n8 + 8n10 + 4n12

associated with the internal signals. To prove that the design is correct we must check

if the residual expression evaluates to zero for all possible values of xS produced by

the network. This can be done by imposing Boolean constraints as discussed earlier.

From the network shown in Figure 5.8, we can see that the variables dc4, dc5 and dc6

are zero (this is the relation that we proved earlier in the OR configuration shown in

57

Figure 5.2(a)). It can also be seen that the signals ds9 and s0 share the same inputs

and hence they are equal. This can be modeled by adding the constraints:

dc4 = 0

dc5 = 0

dc6 = 0

ds9 = s0

to the linear system A x = b. The new system has solution and the corresponding

algebraic signature is:

rT x = 16cout + 8s3 + 4s2 + 2s1 + s0

−ao − 2a1 − 4a2 − 8a3 − b0 − 2b1 − 4b2 − 8b3 − cin

This signature is identical to the reference signature and it can be seen that there is

no residual expression proving that the design is correct.

5.4 Verifying Incorrect Designs

In this section we show the effect of incorrect design on its algebraic signature.

The following Lemma is a direct consequence of Theorem 5.1.3

Lemma 5.4.1. Given an arithmetic circuit N represented by A x = b with refer-

ence signature Ref(N) = [−rI , rO]
T

xI

xO

, if RE(N) = rTS xS 6= 0 i.e., it does

not evaluate to zero for all the values of xS produced by the network, the circuit is

incorrect.

Example: To show the signature of an incorrect design we consider the example

of a signed 2×2 multiplier network that will make it incorrect by introducing some

58

modifications. The design is modified in such a way that the inputs to HA3 are x1

and x6 instead of x1 and x5 as it would be in a correct design. The incorrect version

of the network, shown in Figure 5.9.

pp0pp1pp2pp3
x4

x13

x2

x14

x3

x15

HA1

C S

x5

x6

HA2

C S
x17

x12x16

x1

x1

x6

HA3

C S
x7 x8

HA4

C S
x10

x11x9

z0z1z2z3

Figure 5.9. Incorrect signed 2× 2 multiplier network with signals x5 and x6 incor-
rectly routed.

The network is described by the following equations:

x14 + x15 − x6 − 2x5 = 0

x1 + x5 − x17 − 2x16 = 0

x7 + x8 − x10 − 2x9 = 0

x1 + x6 − x8 − 2x7 = 0

x2 + x14 = 1

x3 + x15 = 1

x4 − x13 = 0

x17 + x12 = 1

x10 + x11 = 1

(5.9)

59

or, equivalently in matrix A x = b with:

A =

x1 x2 x3 x4 | x11 x12 x6 x13 | x5 x7 x8 x9 x10 x14 x15 x16 x17

0 0 0 0 | 0 0 −1 0 | −2 0 0 0 0 1 1 0 0

1 0 0 0 | 0 0 0 0 | 1 0 0 0 0 0 0 −2 −1

0 0 0 0 | 0 0 0 0 | 0 1 1 −2 −1 0 0 0 0

1 0 0 0 | 0 0 1 0 | 0 −2 −1 0 0 0 0 0 0

0 1 0 0 | 0 0 0 0 | 0 0 0 0 0 1 0 0 0

0 0 1 0 | 0 0 0 0 | 0 0 0 0 0 0 1 0 0

0 0 0 1 | 0 0 0 0 | 0 0 0 0 −1 0 0 0 0

0 0 0 0 | 0 1 0 0 | 0 0 0 0 0 0 0 0 1

0 0 0 0 | 1 0 0 0 | 0 0 0 0 1 0 0 0 0

b =

0

0

0

0

1

1

0

1

1

The reference signature for the network remains the same as in the previous case

as it refers to a correct (reference) design

Ref(N) = [−rI , rO]
T

xI

xO

= −8x11 + 412 + 2x6 + x13 − 4x1 + 2x2 + 2x3 − x4

As before, we try to solve the system for α by forcing rS to zero. In this case, the

system has no solution. So we use the following equation to compute the signature

[AI , AO]
T α =

−rI

rO

This system has solution, αT = [−6 − 4 0 0 − 8 4 − 1 2 2 0] and the corresponding

algebraic signature is:

rT x = −8x11 + 4x12 + 2x6 + x13 − 4x1 + 2x2 + 2x3 − x4

+12x5 + 8x7 + 4x8 − 8x10 − 4x14 − 4x15 + 4x17

By construction, the input/output signatures match those of the reference signature

(otherwise the system will have no solution) but the algebraic signature has a residual

60

expression, different than before

rTs xs = −12x5 − 8x7 − 4x8 + 8x10 + 4x14 + 4x15 − 4x17

Unlike in the previous example, this expression does not evaluates to zero for all

possible values of xS produced by the network. This is because the signals x8, x17

and x7, x16 are not equivalent which makes RE(N) 6= 0. This can also be confirmed

by simulation.

RE(N) = −12x5 − 8x7 − 4x8 + 8x10 + 4x14 + 4x15 − 4x17 6= 0

With the residual expression not equal to zero the algebraic signature is not equal to

the provided reference signature, proving that the design is incorrect.

61

CHAPTER 6

SATISFIABILITY MODULO THEORY (SMT)

6.1 Introduction to SMT

An important direction of research in functional verification looks into Satisfia-

bility Modulo Theories (SMT) solvers. SMT is a generalization of Boolean SAT, in

which the binary variables are replaced by predicates or binary-valued functions of

non-binary variables. These predicates may come from a variety of underlying theo-

ries. SMT solvers combine Boolean SAT with specialized solvers for some well-defined

theories, such as Boolean logic, linear arithmetic, theory of equality of uninterrupted

functions, and others [4] [19]. Some of the SMT solvers for quantified free linear

arithmetic include MathSAT [37], YICES [38], Z3 [39], and for non-linear arithmetic

ABSolver [3] and iSAT [36]. New SMT solvers are developed continually, including

those to efficiently solve linear inequalities in integer domain (Mistral) [16]. Our work

is related to this topic but tackles the problem in a way that does not require solving

a decision problem or finding a satisfying assignment for the integer variables.

Satisfiability Modulo Theories (SMT) [2] check if a formula is satisfiable or not

when they are given in first-order logic, with associated background theories. If the

formula is satisfiable, SMT returns a satisfying solution; otherwise it generates a proof

of unsatisfiability. SMTs are used in various applications [2] such as hardware verifi-

cation at higher levels of abstraction (RTL and above), verification of analog/mixed-

signal circuits, verification of hybrid systems, software model checking, software test-

ing and in finding vulnerabilities, verifying electronic voting machines, and in the

field of security.

62

The formulas used in SMT are specified in first-order logic. First-order logic is a

mathematical notation with expressions involving propositional symbols, predicates,

functions and constant symbols and quantifiers. The difference between first-order

logic and propositional (Boolean) logic is that the latter involves only propositional

symbols and operators. In contrast, first-order logic are made up of sequences of

symbols. Some of the useful theories [2] used in SMT are given below:

• Equality (with uninterpreted functions)

• Linear arithmetic (over Q or Z)

• Difference logic (over Q or Z)

• Finite precision bit-vectors

• Arrays/memories

• Miscellaneous :Non-linear arithmetic, strings, sets, etc

Theory of equality and uniterpreted functions (EUF) is also called as free theory

since function symbols can take any meaning. Finite-precision bit-vector arithmetic

are used to solve arithmetic (add, subtract, multiply, divide) and bit-wise logical (and,

or, xor) operations. Theory of linear arithmetic involves a Boolean combination of

linear constraints and are used in verification of analog circuits. Difference logic

is a Boolean combination of linear constraints and is used in processor datapath

verification. Arrays/memories are useful in modeling data structures in both software

and hardware [2].

6.2 SMT Solvers

The introduction of Satisfiability Modulo Theory (SMT) resulted in the devel-

opment of a number of satisfiability solvers. These solvers were developed in both

63

academia as well as industry. A Satisfiability Modulo Theories Competition (SMT-

COMP) [34] is conducted every year to enhance advances in SMT, especially in the

field of hardware and software verification. The Satisfiability Modulo Theories Li-

brary (SMT-LIB) [35] provides a common description for the background theories

and a library of benchmarks. The SMT-LIB also specifies a common input and

output format for SMT solvers. A number of SAT solvers are currently available

online. In this thesis we compared our approach with three of those solvers which

have performed very well in the SMT-COMP in the field of integer arithmetic namely

MathSAT, Yices and Z3.

6.2.1 MathSAT

MathSAT [37] is a SMT solver for formal verification. This is a joint project of

DISI-University of Trento and FBK-IRST. MathSAT employs a DPLL[14, 13, 21,

23]-based decision procedure for solving the SMT problem for various theories like

Equality and Uninterpreted Funtion (EUF), linear arithmetic over the Reals (LA(R))

and over the intergers (LA(Z)) and Difference Logics (DL). MathSAT integrates the

state of the art SAT solver along with a variety of solvers for different theories and

performs optimization. MathSAT has been used in different applications varying

from formal verification of inifinite state systems to equivalence checking and model

checking of RTL hardware designs.

6.2.2 Yices

Yices [38] is an efficient and flexible, high performance SMT solver developed by

the Computer Science labaratory at SRI International. It supports the theories that

are part of the SMT-LIB library. Some of the theories supported by Yices are lin-

ear real and integer arithmetic, extensional arrays, fized-size bit-vectors, quanitifers,

lambda expressions, etc. Yices is also freely available to users. Yices architecture

64

integrates a DPLL-based SAT solver along with a core theory solver which handles

EUF and satellite theories to support arithmetic, arrays, etc.

6.2.3 Z3

Z3 [39] is a fast and efficient SMT solver, developed at Microsoft Research. Z3

also supports all the theories that are part of the SMT-LIB library. Some of the

theories that are supported by Z3 are linear real and integer arithmetic, fized-size

bit vectors, quantifiers, extensional arrays and uninterpreted functions. Z3 also has

various testing and verification tools from Microsoft Research integrated with it. Like

Yices, Z3 also has an architecture which integrates a DPLL-based SAT solver, a core

theory solver and a satellite theory solver. Apart from that, Z3 also has an E-matching

abstract machine for solving quantifiers. The advantage of Z3 over other solvers is

that it integrates different theory solvers in an efficient combination and also allows

new theories to be added to the architecture without modifying the core.

6.3 Relation of the Proposed Verification Method to SMT

Techniques

In principle, given the system of linear equations A x = b, describing network N ,

and the reference signature Ref(N), checking if the network satisfies the reference

signature can be modeled as satisfiability (SAT) problem. Specifically, we need to

show that:

(Ax = b) ∧ (Ref(N) 6= 0) (6.1)

is unsatisfiable (unSAT), i.e., we need to show that it will never be the case that the

network N does not satisfy Ref(N).

We performed this test on a number of arithmetic circuits with known and proved

functionality using two SMT solvers that support linear integer arithmetic, namely

Yices [38], and Z3 [39].

65

6.4 Comparison with SMT solvers

The experiments were conducted on a 2Ghz machine running Linux, with Intel(R)

Dual Core(TM) T3200 processor and 3GB RAM. The results of the experiment with

SMT solvers are shown in Table 6.1 for unsigned multipliers up to 32 × 32 bits and

for a Prefix Adder. The SMT solvers were given the same set of constraints as our

solver. As shown in the table, Yices and our method can solve the Prefix Adder very

Design Z3 Yices Our method
(sec) (sec) (sec)

mult 3× 3 0.23 0.02 ≤ 0
mult 4× 4 466.36 0.05 ≤ 0
mult 8× 8 MO TO ≤ 0

mult 16× 16 MO TO 0.02
mult 24× 24 MO TO 0.04
mult 30× 30 MO TO 0.07
mult 32× 32 MO TO 0.09

Prefix Adder 160.31 0.05 0.01

Table 6.1. Comparison with SMT solvers (without Boolean constraints, RE 6= φ). (MO
= out of memory 4GB, TO = timeout after 1800sec)

fast, while Z3 needs 160 seconds. (by the way, without the ha constraint expressed

by equation xC + xS ≤ 1 that solution is 460 sec). Neither of the SMT solvers were

able to solve the problem for multipliers with more than 8 bits, while our method

computes the signature (with a non-empty residual expression) in a fraction of a

second for multipliers upto 32 bits. Z3 runs out of memory (4GB) while Yices is

unable to complete the computation in 30 minutes.

We conducted another set of experiments by adding some of the Boolean con-

straints discussed in Section 5.2. The results are shown in Table 6.2 for unsigned

multipliers up to 32 × 32 bits. The addition of Boolean constraints (OR configu-

ration) resulted in our method computing the signature that is free of residual ex-

66

pressions. From the table, we can see that our method computes the signature much

faster than the SMT solvers.

Design Z3 Yices Our method
(sec) (sec) (sec)

mult 3× 3 0.01 0.01 ≤ 0
mult 4× 4 0.02 0.02 ≤ 0
mult 8× 8 0.07 0.04 ≤ 0

mult 16× 16 0.81 0.18 0.02
mult 24× 24 7.00 0.29 0.03
mult 30× 30 21.88 0.54 0.05
mult 32× 32 28.98 0.58 0.06

Table 6.2. Comparison with SMT solvers (with Boolean constraints, RE = φ).

While the application of SMT solvers to property and model checking is unques-

tionable, their use in functional verification of custom arithmetic circuits remains to

be explored. This is because the decision-based verification methods can only check

a limited number of properties, explicitly given by the designer, and it is difficult to

translate a problem of testing the circuit functionality into a finite number of proper-

ties. The size of the resulting decision space is likely to be prohibitive. These solvers

have potential to solve the arithmetic verification problem, but need to be enhanced

with new, more efficient and adequate bit-level arithmetic models. We believe that

the algebraic formulation of the arithmetic verification problem presented in this work

can be used to enhance capabilities of SMT solvers by introducing a new model based

on computing the algebraic signature for a circuit.

67

CHAPTER 7

ANALYSIS OF RESULTS

7.1 Functional Verification System

A detailed flow of the arithmetic verification procedure based on algebraic signa-

ture computation is shown in Fig. 7.1. The input to the system is the description of

the arithmetic network N , composed of arbitrary logic gates, ha and fa operators,

along with the reference signature provided by the designer. The system computes

a complete signature of the network and reports if there is a non-empty residual

expression RE(N) that needs to be examined.

If the residual expression contains internal signal variables, additional constraints

may need to be learned from the network, as described earlier, and imposed on the

system. The system is solved again with an enhanced system of constraints A′x′ = b′.

Note that by construction (equation 4.4) the signature vector of a correctly de-

signed circuit will always match its reference signature, otherwise the system has no

solution, and the circuit is declared incorrect.

7.2 Experimental Setup

The algebraic verification technique described here has been implemented as a

prototype program written in c. The program uses GNU Linear Programming Kit

GLPK package [44] to solve the associated linear system and follows the flow shown

in Fig. 7.1. Using this program, we conducted a set of experiments on a number of

arithmetic circuits, including different adders and large integer multipliers. The input

68

Figure 7.1. Flowchart of the functional verification system.

to the program is the expected reference signature and the output is the complete

algebraic signature in terms of all the variables in the network.

The experiments were conducted on a 2Ghz machine running Linux, with Intel(R)

Dual Core(TM) T3200 processor and 3GB RAM. For multiplier designs, we used a

multiplier generator software, courtesy of the University of Kaiserslauten [42], to

generate a bit-level structural verilog code. For different adder implementations we

wrote RTL codes for different adder implementations in Verilog. The RTL code

was then synthesized using Synopsys Design Compiler [15]. We used the Ohio State

University’s Standard Cell library [24], which is available online, for synthesizing our

adders in structured form (composed of only full-adders) or gate-level (composed of

logic gates). The verilog code was parsed using our home-grown parser to produce a

network of HA, FA and basic logic gates. A system of linear equations was generated

69

from the netlist, as described in Section 4.1. Finally, a program written by André

Rossi [28] with link to GLPK was used to generate the signature for the network,

given the expected reference signature.

7.3 Gate-level Arithmetic Circuits

First, we examined the case when the arithmetic circuit is represented as gate-

level network. We carried out a set of experiments with different types of adders.

Some of the different adders we examined were Carry Look-Ahead Adder, Ripple

Carry Adder and Parallel Prefix Adder. Equations 3.9 and 3.12 show how to derive

the input and output signatures for binary adders, using primary inputs and primary

outputs.

7.3.1 Carry Look-Ahead Adder

The carry look-ahead adder was implemented in RTL and then synthesized using

Synopsys Design Compiler with a standard cell library from Ohio State University.

The synthesized adders were strictly gate-level designs. The number of gates used

in the designs were approximately equal to twice the number of constraints reported

in Table 7.1. We carried out a set of experiments for adders upto 256 bits. The

table gives the following data: the size of the adder (in the number of bits n of each

operand); the number of linear equations (constr); and the CPU time of our method

to compute the signature.

It should be noted that the results tabulated above gives a solution with empty

residual expression. However, this was obtained only after adding some additional

constraints to the network. Without adding the additional constraints we got a

solution with non-empty residual expression. Once the internal variables of RE(N)

were identified, it was an easy task to prove that these signals are always zero in the

context of the circuit. The carry look-ahead adder network had the OR configuration

70

Size(n)
CarryLookAheadAdder
Constr. CPU(sec)

4 20 ≤ 0
8 40 ≤ 0
16 80 ≤ 0
24 120 ≤ 0
32 160 0.010
64 320 0.010
128 640 0.020
256 1024 0.030

Table 7.1. CPU runtime for computing algebraic signature for n-bit carry look ahead
adder with basic logic gates (RE = φ).

and by adding the constraint that the internal signal C of the OR configuration,

whose inputs come from two half-adders (reconvergent fanout), is equal to zero, we

obtained a solution with empty residual expression. We had already proved that the

internal signal C in the OR configuration is zero in Section 5.3.

Size(n)
RippleCarryAdder
Constr. CPU(sec)

8 8 ≤ 0
16 16 ≤ 0
24 24 ≤ 0
32 32 ≤ 0
48 48 ≤ 0
64 64 0.010
128 128 0.010

Table 7.2. CPU runtime for computing algebraic signature for n-bit ripple carry adder
in structured form (composed of full adders) (RE = φ).

7.3.2 Ripple Carry Adder

The ripple carry adder, like carry look-ahead adder, was implemented in RTL and

then synthesized using Synopsys Design Compiler with a standard cell library from

Ohio State University. We synthesized these adders in two forms: the designs were

71

represented in structured form (composed of full-adders) and in the other form the

adders were represented as gate-level designs. The number of gates used in the designs

were approximately equal to twice the number of constraints reported in Table 7.3.

We carried out a set of experiments for adders upto 256 bits. The table gives the

following data: the size of the adder (in the number of bits n of each operand); the

number of linear equations (constr); and the CPU time of our method to compute

the signature.

It should be noted that the results tabulated in Table 7.2 gives a solution with

empty residual expression. This is quite obvious considering the fact these designs

were in structured form (composed of only full-adders). We have already seen in

Section 4.2 that when the designs are represented with only full-adders, we get a

solution with empty residual expression. Hence there was no necessity to add any

additional constraints.

Size(n)
RippleCarryAdder
Constr. CPU(sec)

4 32 ≤ 0
8 64 ≤ 0
16 64 ≤ 0
24 192 ≤ 0
32 256 ≤ 0
64 256 0.010
128 512 0.020
256 1024 0.030

Table 7.3. CPU runtime for computing algebraic signature for n-bit ripple carry adder
with gate level implementation (RE 6= φ).

The results shown in Table 7.3 gives a solution with non-empty residual expression.

For these class of designs, we need to examine additional constraints that need to

be added to the network to obtain a solution with empty residual expression. By

analyzing the ripple carry adder network we found out that these designs did not

72

have the OR configuration as in the case of carry look-ahead adders or any of those

Boolean constraints we discussed in Section 5.2. Hence we need to further investigate

to find out the additional constraints that might be needed to obtain an empty residual

expression. This is an open problem and is considered to be a future work.

7.3.3 Parallel Prefix Adder

We used an example of a Parallel Prefix Adder, taken from [52] and shown in

Figure 5.7. We implemented this design in Verilog and then synthesized as earlier

using the Ohio State library. Initially we solved the original problem A x = b with

the equality constraints obtained from the network structure, without any additional

constraints. We obtained a non-empty residual expression in terms of the internal

signals. It was found that the combination of all the internal signals evaluated to

0. We proved this by simulation. Later by examining the network structure and

by adding some of the Boolean constraints discussed earlier, we obtained an empty

residual expression. Thus proving that the computed algebraic signature matches the

reference signature. But for bigger designs which had multiple fan-outs, we were not

able to identify the Boolean constraints that might be necessary to obtain an empty

residual expression. Hence as in the case of ripple carry adders, we need to further

investigate to find out the additional constraints that might be needed to obtain an

empty residual expression. This is an open problem and is considered to be a future

work.

7.4 Multipliers

We also experimented with different multipliers, including Booth-encoded, and

non-Booth multipliers. Since multipliers are non-linear networks, we first needed to

transform their description into a linear form suitable for our system. This can be

done readily by partitioning the design into two blocks: Boolean circuit G, which

73

Figure 7.2. Deriving inputs for multiplier networks.

generates partial products (using known recoding scheme) and a linear network N

which uses these partial/recoded products as inputs, as shown in Figure 7.2.

Circuit G can be verified trivially using Boolean methods, such as ABC [22], as

long as the recoding scheme used to design the circuit is given. The input to our

linear system can then be easily extracted from the boundary of the two blocks.

Equation 4.7 shows how to derive the reference signature for area multiplier, using

partial product, aibj . Similar expressions can be readily obtained for Booth-recoded

products. In fact, we have derived expressions for such input signatures for radix 2

Booth multipliers using the known Booth recoding methods and used them to prove

Booth multipliers, obtaining CPU times similar to those shown in Table 7.4.

Table 7.4 shows our results for a set of integer unsigned multipliers up to 256 bits.

The table gives the following data: the size of the multiplier (in the number of bits

n of each operand); the number of linear equations (constr); the CPU time of our

method to compute the signature for unsigned multipliers.

74

Size (n) Multipliers
Unsigned(n× n)

Constr. CPU(sec)
3 21 ≤ 0
4 44 ≤ 0
8 216 ≤ 0
16 944 0.020
24 2184 0.040
30 3450 0.070
32 3936 0.110
53 10971 0.760
64 16064 1.570
128 64896 25.450
192 146496 136.290
256 260864 446.950

Table 7.4. CPU runtime for computing algebraic signature for n-bit integer multipliers
without additional constraints (RE 6= φ).

It should be noted that the results shown in Table 7.4 gives a solution with non-

empty residual expression. However, these expressions had an interesting property

which made it very easy to prove that RE(N) = rTS xS = 0. Namely, all coefficients

rS of this expression had the same sign. This reduces the proof rTS xS = 0 to showing

that each signal xS in the expression is independently zero. Once the internal variables

of RE(N) are identified, it was an easy task to prove that these signals are always zero

in the context of the circuit. Using the example of the circuit in Figure 4.1, it is easy

to prove that x9 = 0. Similar cases were found in the multiplier circuits. In the case of

the multipliers in Table 7.4 the only signals xS in RE(N) are the internal signals C of

the OR configuration, whose inputs come from two half-adders (reconvergent fanout).

The experiments in Table 7.4 were repeated with the Boolean constraints imposed

on the network, as discussed earlier in Section 5.2 and the signatures were computed.

The computed signatures were free of residual expressions and the results are shown

in Table 7.5. The CPU time for arithmetic proof (AP) of integer multipliers, reported

75

Size(n) Multipliers AP [18]
Unsigned(n× n) Signed(n× n) (sec)

Constr. CPU(sec) Constr. CPU(sec)
4 36 ≤ 0 44 ≤ 0 -
8 264 ≤ 0 184 ≤ 0 -
16 720 0.020 752 0.010 -
24 1656 0.030 1704 0.040 7
32 2976 0.060 3040 0.060 -
53 8268 0.320 8374 0.330 480
64 12096 0.630 12224 0.640 840
128 48768 8.750 49024 8.750 -
192 110016 45.230 110400 46.210 -
256 195840 151.950 196352 153.930 -

Table 7.5. CPU runtime for computing algebraic signature for n-bit integer multipliers
with additional constraints propagated in the network (RE = φ).

in [18] is also shown. The AP results were computed on a comparable 64-bit 2GHz

Power5 machine, and reported only for 24, 53 and 64 bit integer multipliers. No larger

multipliers were reported for the purpose of comparison.

Size(n)
Booth− encodedMultipliers

Unsigned(n× n) Signed(n× n)
Constr. CPU(sec) Constr. CPU(sec)

4 46 ≤ 0 34 ≤ 0
8 148 ≤ 0 118 ≤ 0
16 496 0.040 430 0.040
24 1036 0.150 934 0.130
32 1768 0.410 1630 0.360
64 6616 6.210 6334 5.940
128 25528 126.900 24958 134.770

Table 7.6. CPU runtime for computing algebraic signature for n-bit integer Booth-
encoded multipliers with additional constraints propagated in the network (RE = φ).

Table 7.6 shows our results for a set of integer Booth-encoded signed and unsigned

multipliers. The columns are organized similarly to those in Table 7.5. The results

reflect computing signature with no residual expression.

76

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

20

40

60

80

100

120

140

160

No:of gates (n)

C
P

U
 T

im
e

(s
ec

)

Figure 7.3. Computational complexity of our approach.

Figure 7.3 shows the computational complexity of our approach where CPU run-

time is plotted against the number of gates in the design. The number of gates used

in the design is approximately equal to twice the number of constraints reported in

Table 7.5. It can be observed from Figure 7.3 that, in contrast to ILP methods, whose

runtime complexity are exponential, the computational complexity of our approach

is polynomial. The graph shows that the complexity is below O(N2). This is pre-

dictable since we never solve a decision problem or an ILP problem in integer domain.

This confirms our claim that our method is efficient and scalable.

77

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

We developed a new methodology and a prototype system for functional verifica-

tion of arithmetic circuits based on computing algebraic signature. Such a signature

uniquely describes the behavior of the design, and as such it can be useful for different

forms of functional verification. The purpose of this work was to show a potential of

the proposed technique to verify functionality of arithmetic networks. For arithmetic

designs, such as multipliers, the completion of the signature was followed up by a

proof that the residual signature expression reduces to zero. This issue has been in-

vestigated, the complexity of the problem seems to be significantly smaller than the

original one. This was done as a part of this work for certain class of designs. This is

one of the main thrusts of our work.

The proposed technique can be used in Functional verification, by providing the

reference signature. In this case, the system will complete the signature in terms of

the internal variables. If the system is feasible, the reference signature is consistent

with the network, which proves its functionality specified by the signature. There

are two important cases to be considered here: a) rS = 0 where the internal signals

are eliminated from the input/output relationship, which was also the case in the

7-3 counter design; and b) rS 6= 0. It can be shown that if the reference signature

is correct, the residual polynomial rTS xS reduces to zero for all values of variables

in xS produced by the network. If the reference signature is incorrect, the residual

expression does not reduce to zero.

78

The following are the possible directions in which this work can be carried forward

in the future:

• RTL and gate-level Verification

The proposed technique can be also used to verify RTL and gate-level networks against

their behavioural arithmetic specifications. This can be implemented by developing

techniques and algorithms to verify both RTL and gate-level networks against their

behavioral arithmetic specifications. For gate-level implementations, the gate-level

network can be converted to a network of half-adders, using the proposed model-

ing of gates as has and fas. The model can be enhanced with additional constraints

(xc+xs ≤ 1) properly turned into equalities using slack variables. Additional Boolean

invariants may need to be learned and derived from the circuit, as discussed earlier,

in order to obtain a signature without a residual expression. If the resulting resid-

ual expression contains internal signals, the content of that expression needs to be

examined and proved to be zero using Boolean methods.

Our technique can be readily extended to arithmetic circuits specified at RTL and

higher levels. The basic algebraic equations for HA and FA, shown in Section 3.1,

can be extended to RTL arithmetic descriptions with word-level arithmetic operators.

For example, an n-bit adder A+B can be written as a single equation

A+B = 2nC + S

Where variables A, B and S are n-bit words and C is a carry-out bit. Additional

encoding information in n bits can be provided as additional equation,
∑n−1

i=0
2i Si if

needed.

• Property Checking

The described technique is directly applicable to property checking. This can be ac-

complished by representing the property P by its own algebraic signature SigP (N) =

rT xP and checking if it is consistent with the reference signature of the network

79

using equation AT
P α = rP , where index P refers to the “property” to be proven. The

feasibility of the resulting linear system will indicate whether such a consistency is

maintained, and hence if the property is satisfied.

• Equivalence Checking

The system can also be used for equivalence checking between different levels of

design description, by computing and comparing the signatures of the two designs

under comparison.

• Extracting Circuit Behavior

The proposed signature-based method will also be used to extract functional behavior

of the design. This can be done by using only the output signature SigO(N) = rTO xO

to compute the input signature, SigI(N) = rTI xI . Given the output signature vector

rO, we first solve the equation, AT
O α = rO and use the computed vector α to obtain

input signature vector as rI = −AT
I α. The result can be trusted only if the residual

expression RE is zero. This is the case of the 7-3 counter in Fig. 3.3, equation

(3.6). Extraction of a design behavior is a unique feature, which to the best of our

knowledge, is not offered by any other system.

• Debugging

Investigation on how to use the residual expression to identify bugs in the circuit can

be done. This can be done by analyzing the internal signal variables if the Simplex

phase I (presolver) of the LP solver fails. If LP is infeasible, the non-zero values

assumed by these variables provide essential information which equations (i.e., which

arithmetic operators) prevent the LP from being feasible. In addition, if LP is feasible

but the residual expression RE cannot be reduced to zero, the content of the resulting

RE will be used to reason about bugs. This would be an ambitious but a novel and

worthwhile task.

• Datapath Verification

The proposed verification method can be extended to handle datapaths. The main

80

challenge on this front would be to obtain a reference signature for the entire datapath.

Such a signature may not be available in a closed analytical form, required by our

system, or can be hidden in the HDL description of the design. In this case the design

will have to be partitioned into smaller blocks for which reference signatures can be

generated with the help of Boolean solvers, such as ABC [22].

81

APPENDIX

FUNCTIONAL VERIFICATION FLOW

Multiplier Generator:

The different multiplier designs used in this thesis were generated by a multiplier gen-

erator software obtained from the University of Kaiserslauten [42] which produced a

bit-level structural verilog code. We experimented with different multipliers, includ-

ing Booth-encoded, and non-Booth multipliers. The software gives the description of

the generated circuit in Blif, Verilog and VHDL. The partial products description of

the generated circuit is presented in Blif. A brief description of the options available

in the software is given below:

./genmult Options

-a 〈int〉 Bit-width of multiplicand
-b 〈int〉 Bit-width of multiplier
-s Signed multiplication

Default - Unsigned
-m Signed non-Booth Baugh-Wooley scheme

Default - Modified non-Booth Baugh-Wooley scheme
-e 〈1|2〉 Default - non-Booth encoded algorithm is applied

Type 1 - Booth encoded algorithm, using logic units
Type 2 - Booth encoded algorithm, using arithmetic units
ATTENTION: 〈−e2〉 is compatible with following options only:
-a, -b, -t, -o (requires -v 1), -v 1, -f, -g, -r

-t Tree structure of adders
Default - Cascade structure

-o 〈filename〉 Create circuit file
-p 〈filename〉 Create part-prod Blif file
-f 〈filename〉 Create part-prod scheme file
-g 〈filename〉 Create test bench file (a theorem for ’GateProp’-tool)

(option -v is required to be next)

82

-c Generate compile-tauri file for ’GateProp’-tool and/or
specify there the circuit file to be analyzed by vhdl2gates,
print on screen: name of circuit file and main entity
(optionally specify after corresponding -o and -v 〈2〉)

-+ Separate command line data between two multipliers
-N 〈int〉 1. Number of all specified multipliers

specify after all multipliers related data only !!!
2. Separate command line data between multipliers and adder
default by N = 1

-v 〈1|2〉 The format to print a complete circuit or a partial product part
Default - Blif format
Type 1 - Verilog format (the next after option -o or -g)
Type 2 - VHDL format (the next after option -o or -g)

-r Read signal names meaning
Remark: 1. (-o, -p, -f, -g) 〈cout〉 - print data on the screen

2. The count of specified circuits begins from zero

Table A.1. Options available in the multiplier generator.

We illustrate the use of the software on a signed 2 × 2 multiplier. It can be

generated by the following command:

./genmult -a 2 -b 2 -s -o mults2b.v -v1

The following verilog file is generated by the software:

// generated by : . / genmult −a 2 −b 2 −s −o mults2b . v −v1
// s igned 2x2 standard non−Booth mu l t i p l i e r (modif . Baugh−
Wooley) with primary inputs : a , b primary output : p
module mult sn 2x2 (p , a , b) ;
// The input−v e c t o r s o f the c i r c u i t #0:
input [1 : 0] a ;
input [1 : 0] b ;
// The only output−vec to r :
output [3 : 0] p ;
// ∗∗∗∗∗ Pa r t i a l products ∗∗∗∗∗
a s s i g n pp0 = a [0] & b [0] ;
a s s i g n pp1 = a [1] & b [0] ;
a s s i g n nn0 = ˜pp1 ;
a s s i g n pp2 = a [0] & b [1] ;
a s s i g n nn1 = ˜pp2 ;
a s s i g n pp3 = a [1] & b [1] ;
// ∗∗∗∗∗ Pa r t i a l products ∗∗∗∗∗
// ∗∗∗∗∗ Adders ∗∗∗∗∗
ha sum sa0 0 (sa0 , nn1 , nn0 , ca0) ;
a s s i g n sa1 = ca0 ˜ˆ pp3 ;

83

a s s i g n ca1 = ca0 | pp3 ;
a s s i g n sa2 = ˜ca01 ;
// car ry s i g n a l : ca0 2 i sn ’ t invo lved in the pro ce s s
// ∗∗∗∗∗ Adders ∗∗∗∗∗
// ∗∗∗ outputs ∗∗∗
a s s i g n p [0] = pp0 ;
a s s i g n p [1] = sa0 ;
a s s i g n p [2] = sa1 ;
a s s i g n p [3] = sa2 ;
endmodule

module ha (sum , inp0 , inp1 , car ry) ;
input inp0 , inp1 ;
output sum , car ry ;
a s s i g n sum = inp0 ˆ inp1 ;
a s s i g n car ry = inp0 & inp1 ;
endmodule

Equation Format:

The verilog file is converted into a set of equations in the form of half-adders, full-

adders and basic logic gates. The conversion of the verilog file to the linear equation

format was done by a parser written in Perl. The following format is used for the

equations:

A half-adder (HA) with inputs a, b and outputs S, C is written as

a + b - S - 2*C = 0

A full-adder (FA) with inputs a, b and cin and outputs S, C is written as

a + b + cin - S - 2*C = 0

A Buffer with input a and output b is written as

a - b = 0

An Inverter with input a and output b is written as

a + b = 1

An OR gate with input a, b and output d is written as

84

a + b - S - 2*C = 0

S + C - d = 0

The following is the equation file generated by our parser for the signed 2×2 multiplier

shown above.

nn0 + pp2 = 1
nn1 + pp1 = 1
nn1 + nn0 − sa0 − 2 ∗ ca0 = 0
ca0 + pp3 + sa1 − 2 ∗ C0 = 1
ca0 + pp3 − S XR − 2 ∗ C AND = 0
S XR + C AND − ca1 = 0
sa2 + ca1 = 1
p [0] − pp0 = 0
p [1] − sa0 = 0
p [2] − sa1 = 0
p [3] − sa2 = 0

Linear Programming Solver:

The Linear Programming (LP) solver used in this thesis was GNU Linear Pro-

gramming Kit (GLPK)[44]. GLPK is a free software available for solving large

scale linear programming (LP), mixed integer programming (MIP), and other math-

ematical programming problems. The package includes several components such as

primal and dual-simplex methods, primal-dual interior-point method, branch and cut

method, etc. The GLPK package is a set of routines which are organized in the form

of a callable library. The program to call the GLPK package, called archi-sig, was

written by André Rossi [28]. We developed another parser which takes the equation

file as its input and generates an output file which follows the format required by the

GLPK solver. The format of the program is as follows:

The first line has 6 integers:

n npi nfs npo nps m

n: Total number of variables (i.e. signals) in the problem,

npi: Number of primary inputs,

nfs: Number of free internal signals,

npo: Number of primary outputs,

85

nps: Number of signals in the (given) partial signature,

m: Number of constraints in the architecture.

PI // Set of npi numbers in 1, · · · , n : indexes of primary inputs

FS // Set of nfs numbers in 1, · · · , n : indexes of free internal signals

PO // Set of npo numbers in 1, · · · , n : indexes of primary outputs

PS // Set of nps numbers in 1, · · · , n : indexes of the signals in the (given) partial

signature

vps // Set of nps real multipliers for the partial signature.

The next m lines are built as follows:

N var1 coeff1 var2 coeff2 · · · varN coeffN = const

N : Number of variables in the constraint

var1: Index of the first variable,

coeff1: Coefficient of the first variable

· · ·

const: Constant.

name // [optional] line with n names, separated with a space.

The following is the input file to the GLPK solver for a signed 2× 2 multiplier.

18 4 10 4 8 11
2 4 7 15
1 3 5 6 8 9 10 11 12 13
14 16 17 18
2 4 7 15 14 16 17 18
2 2 −4 −1 1 2 4 −8
2 1 1 2 1 = 1
2 3 1 4 1 = 1
4 3 1 1 1 5 −1 6 −2 = 0
4 6 1 7 1 8 1 9 −2 = 1
4 6 1 7 1 10 −1 11 −2 = 0
3 10 1 11 1 12 −1 = 0
2 13 1 12 1 = 1
2 14 1 15 −1 = 0
2 16 1 5 −1 = 0
2 17 1 8 −1 = 0
2 18 1 13 −1 = 0
x14
x2
x15

86

x3
x6
x5
x1
x17
x16
x8
x7
x9
x10
x13
x4
x6
x12
x11

The above file is given as input to the GLPK solver. The solver solves the system

using the approach discussed in earlier chapters. It generates an output file which

contains the α values for the network and gives a residual expression if the reference

and algebraic signatures do not match. The following output file was generated by

the solver for the signed 2× 2 multiplier.

###
#
SIGNATURE CHECKING AND COMPLETION, + RESIDUAL EXPRESSION
Un iv e r s i t e de Bretagne−Sud , Lab−STICC
Andre Rossi , October 2010 .
#
This program must be invoked as f o l l ow s :
./ arch i−s i g in s tance . dat
#
Read f i l e f o rma t−s i g . txt f o r more .
###
Reading in s tance f i l e ”mults2b−a r ch i . in ”
The layout in ”mults2b−a r ch i . in ” conta in s n=18 s i g na l s ,

npi=4 o f them are primary inputs
n f s=10 o f them are f r e e i n t e r n a l s i g n a l s
npo=4 o f them are primary outputs
nps=8 o f them are in the (g iven) p a r t i a l s i g na tu r e .

There are m=11 c o n s t r a i n t s in that a r c h i t e c t u r e .
This i s ZS (0 elements) :
This i s PI (4 e lements) : 2 4 7 15
This i s FS (10 elements) : 1 3 5 6 8 9 10 11 12 13
This i s PO (4 elements) : 14 16 17 18
This i s PS (8 elements) : 2 4 7 15 14 16 17 18
These are the 0 elements o f CS (s i g n a l s whose c o e f f i c i e n t
should be found)
CS =
This i s PI , the s e t o f primary inputs : 2 4 7 15
This i s FS , the s e t o f f r e e i n t e r n a l s i g n a l s : 1 3 5 6 8 9

87

10 11 12 13
This i s PO, the s e t o f primary outputs : 14 16 17 18
This i s PS , the s e t o f s i g n a l s whole c o e f f i c i e n t s in the
s i g na tu r e i s known : 2 4 7 15 14 16 17 18
This i s vps , the a s s o c i a t ed c o e f f i c i e n t s : 2 2 −4 −1 1 2 4 −8
name [1]= z14
name [2]= x2
name [3]= x15
name [4]= x3
name [5]= x6
name [6]= x5
name [7]= x1
name [8]= x17
name [9]= x16
name[10]= x8
name[11]= x7
name[12]= x9
name[13]= x10
name[14]= x13
name[15]= x4
name[16]= x6
name[17]= x12
name[18]= x11
ia aux [1]=1 ja aux [1]=1 ar aux [1]=1
ia aux [2]=2 ja aux [2]=2 ar aux [2]=1
ia aux [3]=2 ja aux [3]=3 ar aux [3]=1
ia aux [4]=1 ja aux [4]=3 ar aux [4]=1
ia aux [5]=3 ja aux [5]=3 ar aux [5]=−1
ia aux [6]=4 ja aux [6]=3 ar aux [6]=−2
ia aux [7]=4 ja aux [7]=4 ar aux [7]=1
ia aux [8]=5 ja aux [8]=4 ar aux [8]=1
ia aux [9]=6 ja aux [9]=4 ar aux [9]=−2
ia aux [10]=4 ja aux [10]=5 ar aux [10]=1
ia aux [11]=7 ja aux [11]=5 ar aux [11]=−1
ia aux [12]=8 ja aux [12]=5 ar aux [12]=−2
ia aux [13]=7 ja aux [13]=6 ar aux [13]=1
ia aux [14]=8 ja aux [14]=6 ar aux [14]=1
ia aux [15]=9 ja aux [15]=6 ar aux [15]=−1
ia aux [16]=10 ja aux [16]=7 ar aux [16]=1
ia aux [17]=9 ja aux [17]=7 ar aux [17]=1
ia aux [18]=3 ja aux [18]=9 ar aux [18]=−1
ia aux [19]=5 ja aux [19]=10 ar aux [19]=−1
ia aux [20]=10 ja aux [20]=11 ar aux [20]=−1
p=9, p aux=20 , sum = 29

alpha , s o l o f the LP.
Constra int c o e f . 1 = 2
Constra int c o e f . 2 = 2
Constra int c o e f . 3 = 0
Constra int c o e f . 4 = −4
Constra int c o e f . 5 = 0
Constra int c o e f . 6 = 0
Constra int c o e f . 7 = 0
Constra int c o e f . 8 = 1

88

Constra int c o e f . 9 = 2
Constra int c o e f . 10 = 4
Constra int c o e f . 11 = −8
This i s vcs [] , the c o e f f i c i e n t s a s s o c i a t ed with CS

This i s v f s [] , the c o e f f i c i e n t s a s s o c i a t ed with f r e e
i n t e r n a l s i g n a l s
v f s [1] = 2
v f s [3] = 2
v f s [5] = −2
v f s [6] = −4
v f s [8] = −8
v f s [9] = 8
v f s [1 0] = 0
v f s [1 1] = 0
v f s [1 2] = 0
v f s [1 3] = 8
f =0.000000

Fu l l s i g na tu r e :
+2x2 +2x3 −4x1 −x4 +x13 +2x6 +4x3 −8x11 = −8x7 −4x8 +8x10 −4x17

Res idua l expr e s s i on : −8x7 −4x8 +8x10 −4x17
Total CPU time : 0 .000 seconds

89

BIBLIOGRAPHY

[1] Alizadeh, B., and Fujita, M. Modular Datapath Optimization and Verification
Based on Modular-HED. In IEEE Trans. on Computer-Aided Design (September
2010), pp. 1422–1435.

[2] Barrett, C., and Seshia, S. A. Introduction to Satisfiability Modulo Theories
(SMT). http://www.eecs.berkeley.edu/ sseshia/.

[3] Bauer, A., Pister, M., and Taqutschnig, M. Tool support for the analysis of
Hybrid Systems and Models. In Proc. Design Automation and Test in Europe
(2007), pp. 1–6.

[4] Biere, A., Heule, M., Maaren, H. V., and Walsch, T. Satisfiability Modulo The-
ories in Handbook of Satisfiability. IOS Press, 2008. Chapter 12.

[5] Brayton, R., and Mishchenko, A. ABC: An academic industrial-strength verifica-
tion tool. In Proc. Intl. Conf. on Computer-Aided Verification (2010), pp. 24–40.

[6] Bryant, R. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers 35, 8 (August 1986), 677–691.

[7] Bryant, R., and Chen, Y. Verification of Arithmetic Functions with Binary
Moment Diagrams. In Proc. Design Automation Conference (1995), pp. 535–
541.

[8] Burch, J. R., Clarke, E. M., McMillan, K. L., and Dill, D. L. Sequential Circuit
Verification using symbolic Model Checking. In Proc. Intl. Design Automation
Conference (1990), pp. 46–51.

[9] Chen, Y., and Bryant, R. E. *PHDD: An Efficient Graph Representation for
Floating Point Circuit Verification. In Proc. Intl. Conf. on Computer-Aided
Design (1997), pp. 2–7.

[10] Cheng, Kwang-Ting, and Krishnakumar, A. S. Automatic generation of Func-
tional vectors using the extended finite state Machine Model. In Proc. Intl. Conf.
on Design Automation of Electronic Systems (January 1996), pp. 57–79.

[11] Ciesielski, M., Kalla, P., and Askar, S. Taylor Expansion Diagrams: A Canonical
Representation for Verification of Data Flow Designs. IEEE Trans. on Comput-
ers 55, 9 (Sept. 2006), 1188–1201.

90

[12] Clarke, E. M., Fujita, M., and Zhao, X. Hybrid Decision Diagrams overcoming
the limitations of MTBDDs and BMDs. In Proc. Intl. Conf. on Computer-Aided
Design (1995), pp. 159–163.

[13] Davis, M., Logemann, G., and Loveland, D. A Machine Program for the Theorem
Proving. Communications of the ACM 5 (1962), 394–397.

[14] Davis, M., and Putnam, H. A Computing Procedure for Quantification Theory.
Journal of the ACM 7 (1960), 201–215.

[15] Synopsys DC Compiler. http://www.synopsys.com/Tools/Implementation/
RTLSynthesis/Pages/default.aspx.

[16] Dillig, I., Dillig, T., and Aiken, A. Cuts from Proofs: A Complete and Practical
Technique for Solving Linear Inequalities over Integers. In Proc. Intl. Conf. on
Computer-Aided Verification (July 2009), pp. 233–247.

[17] Kozen, D. Kleene Algebra with tests. In ACM Transcations on Programming
Languages and Systems (1997), pp. 427–443.

[18] Krautz, U., Wedler, M., Kunz, W., Weber, K., Jacobi, C., and Pflanz, M. Verify-
ing Full-Custom Multipliers by Boolean Equivalence Checking and an Arithmetic
BitLevel Proof. In Proc. Asia and South Pacific Design Automation Conference
(2008), pp. 398–403.

[19] Kroening, D., and Strichman, O. Decision Procedures, An Algorithmic Point of
View. Springer, 2008.

[20] Marques, J. P., and Sakallah, K. A. GRASP- a search algorithm for propositional
satisfiability. In IEEE Trans. on Computers (May 1999), pp. 506–521.

[21] Marques-Silva, J., and Sakallah, K. A. GRASP - A New Search Algorithm for
Satisfiability. In ICCAD’96 (1996), pp. 220–227.

[22] Mischenko, A., Chatterjee, S., Brayton, R., and Een, N. Improvements to Com-
binational Equivalence Checking. In Proc. Intl. Conf. on Computer-Aided Design
(2006), pp. 836–843.

[23] Moskewicz, M., Madigan, C., Y. Zhao, L. Zhang, and Malik, S. Chaff: Engineer-
ing an Efficient SAT Solver. In Proc. of 38th Design Automation Conf. (June
2001), pp. 530–535.

[24] OSU Standard Cell Library. http://vlsiarch.ecen.okstate.edu/flows/ OS-
UFreePDK45/.

[25] Pavlenko, E., Wedler, M., Stoffel, D., and Kunz, W. STABLE: A new QF-BV
SMT Solver for hard Verification Problems combining Boolean Reasoning with
Computer Algebra. In Proc. Design Automation and Test in Europe (2011).

91

[26] Peymandoust, A., and DeMicheli, G. Application of Symbolic Computer Algebra
in High-Level Data-Flow Synthesis. In IEEE Trans. on Computer-Aided Design
(2003), vol. 22, pp. 1154–1165.

[27] Raudvere, T., Singh, A. K., Sander, I., and Jantsch, A. System Level Verification
of Digital Signal Processing application based on the Polynomial Abstraction
Technique. In Proc. Intl. Conf. on Computer-Aided Design (2005), pp. 285–290.

[28] Rossi, André. Program with link to GLPK. http://www-labsticc.univ-
ubs.fr/ rossi/.

[29] Sarbishei, O., Tabandeh, M., Alizadeh, B., and Fujita, M. A Formal Approach
for Debugging Arithmetic Circuits. In IEEE Trans. on Computer-Aided Design
(May 2009), vol. 28, pp. 742–754.

[30] Shekhar, N., Kalla, P., and Enescu, F. Equivalence Verification of Polynomial
Data-Paths Using Ideal Membership Testing. In IEEE Trans. on Computer-
Aided Design (July 2007), vol. 26, pp. 1320–1330.

[31] Shekhar, N., Kalla, P., Enescu, F., and Gopalakrishnan, S. Equivalence Verifi-
cation of Polynomial Data-Paths with Fixed-Size Bit-Vectors using Finite Ring
Algebra. In Proc. Intl. Conf. on Computer-Aided Design (2005), pp. 291–296.

[32] Smith, J., and DeMicheli, G. Polynomial Methods for Compontent Matching
and Verification. In Proc. Intl. Conf. on Computer-Aided Design (1998).

[33] Smith, J., and DeMicheli, G. Polynomial Methods for Allocating Complex Com-
pontents. In Proc. Design Automation and Test in Europe (1999).

[34] Satisfiability Modulo Theories Competition (SMT-COMP).
http://www.smtcomp.org/.

[35] Satisfiability Modulo Theories Library (SMT-LIB). http://www.smtlib.org/.

[36] HySAT: A Bounded Model Checker for Hybrid Systems.
http://hysat.informatik.uni-oldenburg.de/.

[37] MathSAT 4. http://mathsat4.disi.unitn.it/index.html.

[38] Yices: An SMT Solver. http://yices.csl.sri.com/index.shtml.

[39] Z3: An Efficient SMT Solver. http://research.microsoft.com/en-
us/um/redmond/projects/z3/index.html.

[40] Maple. http://www.maplesoft.com.

[41] Mathematica. http://www.wri.com.

[42] Program to generate different types of multipliers.

92

[43] The MathWorks. http://www.mathworks.com.

[44] GNU, GLPK Linear Programming Kit. http://www.gnu.org/software/glpk/,
2009.

[45] Stoffel, D., and Kunz, W. Equivalence Checking of Arithmetic Circuits on the
Arithmetic Bit Level. In IEEE Trans. on Computer-Aided Design (May 2004),
vol. 23, pp. 586–597.

[46] Vasudevan, S., Viswanath, V., Sumners, R. W., and Abraham, J. A. Automatic
Verification of Arithmetic Circuits in RTL using Stepwise Refinement of Term
Rewriting Systems. In IEEE Trans. on Computers (2007), vol. 56, pp. 1401–
1414.

[47] Watanabe, Y., Homma, N., Aoki, T., and Higuchi, T. Application of Symbolic
Computer Algebra to Arithmetic Circuit Verification. In Proc. Intl. Conf. on
Computer Design (2007), pp. 25–32.

[48] Wedler, M., Stoffel, D., Brinkmann, R., and Kunz, W. A Normalization Method
for Arithmetic Data-Path Verification. In IEEE Trans. on Computer-Aided De-
sign (November 2007), vol. 26, pp. 1909–1922.

[49] Wienand, O., Wedler, M., Stoffel, D., Kunz, W., and Greuel, G. An Algebraic
Approach for Proving Data Correctness in Arithmetic Data Paths. In Proc.
Intl. Conf. on Computer-Aided Verification (July 2008), Springer-Verlag Berlin
Heidelberg 2008, pp. 473–486.

[50] Wu, W. T. Mathematics Mechanization. Front. Comput. Sci. China (2000), 1–8.

[51] Yang, Z., Ma, G., and Zhang, S. Formal Verification of High-Level Data-Flow
Synthesis Designs Using Relational Modeling and Symbolic Computation. Jour-
nal of Integration 43 (January 2010).

[52] Zimmermann, R. Computer Arithmetic: Principles, Architectures, and VLSI De-
sign.Lecture notes Swiss Federal Institute of Technology (ETH), Zurich, Switzer-
land. 1997.

93

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2011

	Functional Verification of Arithmetic Circuits using Linear Algebra Methods
	Mohamed Basith Abdul Ameer Abdul Kader

	Functional Verification of Arithmetic Circuits using Linear Algebra Methods

