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ABSTRACT

QUERY ON KNOWLEDGE GRAPHS WITH HIERARCHICAL RELATIONSHIPS

SEPTEMBER 2017

KAIHUA LIU

B.S., ANHUI JIANZHU UNIVERSITY

M.S.E.C.E, UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Lixin Gao

The dramatic popularity of graph database has resulted in a growing interest in

graph queries. Two major topics are included in graph queries. One is based on structural

relationship to find meaningful results, such as subgraph pattern match and shortest-path

query. The other one focuses on semantic-based query to find question answering from

knowledge bases. However, most of these queries take knowledge graphs as flat forms

and use only normal relationship to mine these graphs, which may lead to mistakes in the

query results. In this thesis, we find hierarchical relationship in the knowledge on their

semantic relations and make use of hierarchical relationship to query on knowledge

graphs; and then we propose a meaningful query and its corresponding efficient query

algorithm to get top-k answers on hierarchical knowledge graphs. We also design

algorithms on distributed frameworks, which can improve its performance. To

demonstrate the effectiveness and the efficiency of our algorithms, we use CISCO related

products information that we crawled from official websites to do experiments on

distributed frameworks.
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CHAPTER 1

INTRODUCTION TO KNOWLEDGE GRAPH QUERIES AND CONTRIBUTION

This chapter presents an overview of up-to-date graph query research, which is

related to our graph query idea and algorithms. And we also propose our ideas and

contribution to query on knowledge graphs with hierarchical relationships.

1.1 Knowledge graphs

Large scale networks, including google knowledge graphs provide our raw

materials to answer real-life questions. Besides google knowledge graphs, many popular

knowledge graphs like DBPedia [1] and Freebase [2] which collect useful knowledge and

facts of the work into information networks. For example, freebase is a very popular

knowledge base used for research. Freebase is a pratical and scalable tuple database used

to maintain general human knowledge. It contains more than 125,000,000 tuples, more

than 4000 types and more than 7000 properties. These tuples provide the chance to build

data-oriented application including graph search engine. The key components of freebase

includes: A scalable Tuple Store, An HTTP/JSON-Based API, lightweight and

collaborative type system, large and various data set and standard rules in formulation.

Figure 1 is an example knowledge about Francis Ford showed on web service.

Figure 1: Freebase example
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1.2 Overview of research on graph query

Knowledge graph(KG) queries become a very popular topic in research, lots of

types of searches have been developed, such as shortest-path search [9, 3], reachability

search [8], and pattern match query [24, 5, 12]. Some knowledge graph-based queries

also incorporate semantic parsing to support open-domain question answering(QA) [22]

and provide a deep understanding of questions. Graph searches show meaningful results

based on relationships among knowledge. However, most of queries mentioned above

just take KGs as a flat graph, and use connections among vertices of the KG to find

answers. For instance, among these queries, pattern match query is often discussed. In the

pattern match query, we have a data graph G with m vertices, a query graph Q with n

vertices, and a parameter δ; If m vertices in G have similar labels and adjacent

conditions as Q , and corresponding distances are no larger than δ, this subgraph is the

one that matches Q . Apparently, only node types and connectivity conditions are

considered in these queries. But when we consider semantic meanings or other

relationships into knowledge relations, hierarchy appears in part of knowledge graphs,

which means some nodes are a subset of others. Hierarchical information is very common

in all the information around us like relationship among animal spices, so we can make

good use of this kind of relations to find more meaningful results.

This chapter covers our ideas to search on knowledge graphs with hierarchical

relationships. We also represent related example and analysis to prove our ideas in

building and searching on knowledge graphs considering hierarchical relationships.
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1.3 Knowledge graph query with hierarchical relationships

1.3.1 Knowledge graph and hierarchical structure formulation

As we talked above, current popular knowledge graphs like freebase are just to

connect information items based on their facts. The way that they store related

information items is Tuple Store which helps scalability of data creation and maintenance.

The knowledge graphs we use here needs to be formulated into hierarchical

structure. In this kind of knowledge graphs, two major relationships exist and we use the

type of edge to represent this relationship. The first one is hierarchical relationship, two

nodes which have this kind of relationship means that one node is the super class of the

other. Another relationship is non-hierarchical relationship, this kind of relationship is the

same as connections in the freebase, which just represents correlated information items.

We use adjacent lists to store graphs, including edge types, for further usage.

1.3.2 Query on knowledge graphs example

In this thesis, we propose a new query doing search on knowledge graphs with

hierarchical relationships, we also provide corresponding efficient ranking algorithm and

implementation. Searches on this kind of knowledge graphs provide more meaningful

results than most of up-to-date graph searches and traditional search engines, it will use

the hierarchical relationship to get more interesting and trustworthy information.
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Figure 2 Knowledge graph schema

We provide an example to show the concept of query on knowledge graphs with

hierarchical relationships. Figure 2 is the schema of the knowledge graph that we use to

do experiments, it includes CISCO products and their properties. The majority of nodes

with hierarchical relationship are different CISCO products series, CISCO product series

that is located at higher hierarchy covers all other products and these relationships. The

hierarchical relationships in this knowledge graphs can be recognized directly by

semantic meanings. In the schema, hierarchical relationship connects products at different

levels. Products located at higher level are more general, and lower level products are

subsets of their connected higher level products. In Figure 3(b), Cisco Unified IP Phones

9900 is located at higher level and it is subset of Cisco Unified IP Phones 9900 Series.

Using CISCO products knowledge graph, we gives an example to show the usage

of hierarchical relationships and the essence of our query on graphs. Figure 3(a) is a

query graph, given a product CISCO product Cisco Unified IP Phones 9900 Series

Firmware version 9.4(.1) and prior, and we want to search for all possible vulnerabilities

that affect this product. Figure 3(b) is the data graph related to this query. In Figure 3(b),

red node is the source node, blue nodes are intermediate nodes during the query, yellow
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nodes are target nodes and gray nodes are other unrelated nodes during the query.

Obviously, several answers are presented. The first category is confirmed answers, which

are directly connected to the source node or attributes of source node’s ancestors, for

instance Cisco Unified IP Phone 9900 Series Denial of Service Vulnerability and Cisco

Unified IP Phone 8900/9900 Series Crafted SDP Packet Vulnerability; The other

category is potential answers which are also tightly connected to the source node, but we

can’t make sure of their correctness; These kind of answers may locate at lower level or

siblings of the source node’s ancestors, so we predict them as vulnerabilities may not be

detected, such as Cisco 9900 Series Phone Arbitrary File Download Vulnerability.

Potential answers are ranked by their relevant positions in hierarchy and shortest distance

on the graph.

(a) Query Graph

(b) Part of data graph related to the query graph

Figure 3 Hierarchy-based query and answer example
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1.4 Summary of contributions

In our work, our goal is to make good use of knowledge graphs with hierarchical

relationships and design efficient algorithms at this situation. To summarize, the key

contributions are as follows,

(1) We propose a new way to construct knowledge graphs. In our knowledge graphs,

information entities are not only simply connected, but they are also formulated if

hierarchical relationships exist.

(2) We present a new query on knowledge graphs including hierarchical relationship, and

an effective ranking score, which contains both distance and relative position in hierarchy

factors on knowledge graphs.

(3) We give an efficient implementation strategy of the ranking algorithm on distributed

system. Combined with the ranking algorithm, we use bounding ranking scores to find

top-k results fast.

(4) In the evaluation part, we do experiments on both single source query and star query,

and compare our algorithm with baseline ranking algorithm which only makes distance as

the key factor. Then we use the ground truth to prove our effectiveness of our query

algorithms.
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CHAPTER 2

PROBLEM DEFINITION

In knowledge graphs, each node represents an information entity; Nodes in the

graph have multiple types; Edges have types that depends on types of nodes which they

connect and contain relationships information between two nodes on each end,

hierarchical relationship or non-hierarchical relationship. In this chapter, we gives a

detailed definition of graph queries on hierarchical knowledge graphs and the problem we

solve in this kind of graph query.

2.1 Hierarchical knowledge graph modeling

The knowledge graph is modeled as a graph ))(),(,,( ElVlEVG GGGG , where GV is

a set of vertices with labeling and GE is a set of edges with labeling in the

graph. )(VlG denotes the vertex labeling function which maps the label to information

entities. )(ElG denotes the edge labeling function. The size of G is defined as || GV ,

referring to the size of vertex set. At some situations, two nodes have no hierarchical

relationship and we just label it as non-hierarchical relationship, such as the relation

between CISCO products and their vulnerability attributes.

As is the schema of the hierarchical knowledge graph in Figure 2, for a product

name, it may connect to a more general series product name or more specific products in

a hierarchical way, and it may also have relationship to its vulnerabilities and bugs. Each

vulnerability also has its attributes, such as bug ids, workarounds and critical degrees. A

product series name may also connect to other series which have attributes in common. It

represents a kind of weak relevance without hierarchical property. Using these
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connections, we can find complete information including both direct and indirect

correlation to the given information.

2.2 Query graph illustration

A graph subG is a subgraph of G , which contains a part of connected nodes in

graph G . We define a query graph using its all source nodes sV and type of target

nodes t , then describe it as ),( tVQ s . During the process of querying for answers, we can

generate subG derived from source nodes. Answers are located at the margin of subgraphs.

In Figure 3(a), we give a query graph. We want to find confirmed vulnerabilities

and potential vulnerabilities of Cisco Unified IP Phones 9900 Series Firmware version

9.4(.1) and prior on a hierarchical knowledge graph. Figure 3(b) is the subgraph related

to this product. The candidate answers of query graph are located at the margin of the

subgraph in Figure 3(b). As for the difference between confirmed vulnerabilities and

potential vulnerabilities, confirmed ones should be ancestors of the source node and can

be confirmed to be correct based on it hierarchical relationship; But potential ones are

only related in space and has no strong hierarchical relationships. Different vulnerabilities

are distinguished by ranking score. The method of ranking will be illustrated in the next

chapter.

Obviously, vulnerability Cisco Unified IP Phone 9900 Series Denial of Service

Vulnerability can be found on traditional search engine, like Google. Based on the

hierarchical relationship, vulnerabilities like Cisco Unified IP Phone 8900/9900 Series

Crafted SDP Packet Vulnerability, Cisco Unified IP Phones 9900 Series Image Upgrade

Command Injection Vulnerability and so on, can also be found as confirmed results,
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because these attributes have broader effects on IP Phones products, including Unified IP

Phone 9900 Series. The vulnerability like Cisco 9900 Series Phone Arbitrary File

Download Vulnerability may also be found as potential risk, because of closeness in

distance on the hierarchical knowledge graph.

2.3 Answers to the hierarchy-based query

Given a knowledge graph with hierarchical relationship, and a query graph with

known data and target data attributes, the problem is to find all possible target nodes with

rankings. The answers are defined as all the nodes that meet target data attribute

requirements and directly connected to or several hops away from the source node. Edges

along the path from a source node to a target node include both types of edges, change of

hierarchy and attribute related type. They are used to determine ranking scores on each

step. In order to terminate searching subgraphs from source nodes, the termination

condition is defined as reaching to the wanted types of nodes or the end of graph.

In this work, we also propose the top-k hierarchy-based query problem, which

returns the most correlated k answers that are more likely to be ones we want. The

ranking scores show both the relevant position to the source node in hierarchical structure

and the distance away from the source node. Answers with higher ranking scores should

be more preferred ones.
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CHAPTER 3

METHODOLOGY IN RANKING CANDIDATES AND ACCELERTING

QUERIES

In this chapter, we give a formal presentation of the algorithm in searching and

ranking results found on knowledge graphs. To benefit the description of our algorithm,

we do research on the undirected knowledge graph with labeled vertices and edges. The

labels of edges are used to distinguish different relationships. For convenience, we use

“graph” to represent the knowledge graph in this section.

3.1 Ranking score function

3.1.1 Baseline ranking score function

Most of current knowledge graph query algorithms only consider distance and the

number of shortest paths into ranking scores. For a target unode and a query

graph ),( tVQ s , the type of unode is t , and its baseline ranking scores specifies how

relevant it is to each source node in sV in query graph, defined as follows:

vuuR
s

vu

Vv

vuN
l

baseline  


),(
),(

)( 

Where  is a constant between 0 and 1, sV is the set of source nodes in the query

graph ),( tVQ s , ),( vul is the length of the shortest path between unode and

vnode , ),( vuN is the number of shortest paths. Obviously )(uRbaseline is larger when

node u has shorter length to each source node or more shortest paths between two nodes.

According to the baseline ranking score function, we can find query results located at
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closer to each source node with higher rank; If there are more shortest paths between two

nodes, the ranking score is higher.

3.1.2 Hierarchy definition

In a graph, we can find several candidates during the search, so ranking them

becomes necessary. The ranks of candidates should base on closeness to the known data

in both the structure of graph and semantic realities. Figure 4 is an example of a subgraph,

we use this example to illustrate our ranking rules. According to facts in graphs, answers

which are directly connected to the source node should be ranked at first like Node A in

Figure 4, it can also be found directly on Google. Then results which are superclass of the

source node, their properties are more likely to be the results ranked the same as directly-

connected candidates. Candidates which are superclass of known data, should also be

taken as reliable candidates, like Node B and Node C in Figure 4. Finally, potential

candidates should be ranked, and two situations should be considered. One is like Node E

in Figure 4, it is the sibling of the source node’s ancestors. The other one is like Node D

in Figure 4, it is the subclass of the source node. The reason why they are potential

candidates is that they are just connected indirectly, and have no reliable relationship

based on hierarchy.

Here, we describe how to give each result a ranking score. For unode found as an

answer and related to vnode in the graph, its hierarchy relative to the known data is

defined as its own hierarchy or the hierarchy of its parent node. We define the hierarchy

as the relative hierarchy to the source node. For example, in Figure 4, Node A’s hierarchy

is 0),( sourcenodeAH ; Attribute E comes from higher hierarchy and its parent’s node
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is located at one level higher than the source node, so it is defined as

1),( sourcenodeEH ; Attribute D located at lower hierarchy is 1),( sourcenodeDH .

3.1.2 Ranking score definition

According to the hierarchical relationship in the graph, if we want to find the

target information with given information, directly connected information item and its

superclass’s information item should be ranked higher; Others’ ranks are determined by

their structural position on the graph. Firstly, we introduce our final ranking score, which

considers the effectiveness of all source nodes to the target node. Given a query

graph ),( tVQ s and a specific unode with type t , the ranking score is:





sVv

vuruR ),()(

Where sV is the set of source nodes in the query graph ),( tVQ s and ),( vur is the

closeness score of vnode and unode . For single source’s query, the ranking score is

simplifies as ),()( vuruR  when vu  . For star query, the ranking score is the

summation of closeness scores as above; every closeness score is between unode to each

source node.

The closeness score aims at evaluating the closeness between two nodes based on

both distance and hierarchy information, so it should meet following requirements: a. The

closer two nodes are, the higher closeness score is; b. More shortest paths between two

nodes make the closeness score higher; c. When we takes hierarchy changes into

consideration, different hierarchy changes have different influences on the closeness
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score and results should follow the hierarchical relationship on the graph. Based on

previous requirements, the closeness score is defined as:





 

 


otherwise

vuif
vur

vuN
vuHl

vuHl vu
vu }

),(
),(

,1),({max max),(
max),(

1
),(



Where ),( vul is the length of shortest path between u and v, ),( vuN is the number of

shortest paths from vnode to unode ,  is a constant between 0 and 1; ),(max vuH is the

maximum relative hierarchy between u and v , and it has direction property, so

),(),( maxmax uvHvuH  . The reason why we use maximum relative hierarchy

between u and v is that we want to make good use of hierarchical information, and if we

make sure a node located at higher level and have higher score, we have no reason to

rank it lower. Therefore, we can make sure that the attribute of known data and attributes

that belong to its superclass have largest closeness score 1 . For other results, their

closeness scores are always smaller than 1 and depend on ),( vuN ， ),( vul and ),(max vuH .

When vu  , ),(max),( vuHl vu  shows the deviation away from results with higher ranking

scores on the graph and is always no smaller than 0; Larger deviation makes ranking

score smaller, which also meets hierarchical structure of the graph. For non-hierarchical

relationship on the graph, we just need to set ),(max vuH to be 0 in the closeness score.

If unode is located at 100 hops away from vnode and wnode is located at 101 hops

away from vnode , their ranking score should be similar as ratio of distance is 0.99

which indicates their distance differences can almost be ignored. But if unode is located

at 1 hop away from vnode and wnode is located at 2 hops away from vnode , the ratio

is 0.5 and the difference of distance is very important in evaluating the ranking score. So
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we design our ranking score in exponential form, which fits ranking score attributes

mentioned above.

Figure 4 An example of knowledge subgraph with hierarchical structure

3.2 Bounding ranking score

To find top-k answers, a naive way to get them is to list out all nodes with the type

we want, and sort them by their ranking score, then we can get top-k answers from all

sorted answers. In order to accelerate the process of identifying top-k answers, we use the

bounding ranking score of each node to terminate searching on some parts of graphs and

filter out impossible results.

As is mentioned above, we use bounding ranking scores, instead of exact ranking

scores, to find top-k answers. So for a specific target node u, we define the bounds of

ranking score as:





sVs

t
s

t surVuR ),(),(
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sVs

t
s

t surVuR ),(),(

Where sV is the set of source nodes, ),( sur t and ),( sur t are the lower and upper

bounding of the closeness score. The reason of using the sum of ranking score is to add

all influence from source nodes to our final metric and show the overall effectiveness.

The definition of bounding of closeness score is discussed below.

Given a source node, at each iteration we refines the bounding closeness score, and

update the bound of top-k lower-bound closeness scores. Then we use the kth largest

lower-bound ranking score to do termination check on all paths and terminate searching

on paths whose upper-bound ranking scores have already smaller than the kth largest

lower-bound ranking score. Following is the illustration of ranking score's upper and

lower bounds.

We denote the source node as s and other nodes as v . The upper-bound and lower-

bound closeness score of s and v is denoted as ),( svr t and ),( svr t , where t represents

the iteration number of query. Initially, when 0t , the upper-bound and lower-bound of

the source node are:

1),(0 ssr and 1),(0 ssr

For other nodes, which are at least one step away from the source node, their

bounding closeness scores are set to be:

0),(0 svr and ),(0 max),( vuHsvr 
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At each iteration, the lower-bound ranking score of node v is updated using all its

neighbors. In the following formula, )(vS is the set of parent nodes of v , and we use its

parent nodes’ lower bound to get v ’s upper-bound.





















0),(}})),({max(,min{

0),(),(
),(

1)|(|
1

),(1

)(

1),(

11

max svrsnr

svrsvr
vsr

tvSnvHt

vSn

svHt

tt

t



For upper-bound of node v , if its lower bound at 1t iteration remains zero , that

means this node hasn’t been visited during the query. So its upper-bound should keep

decreasing, and may remove itself from candidate set, or stopping searching on this path,

here we set it to be 1),(),(  svHl vu . Otherwise, its upper bound should be set as larger one

between its lower bound ),( svRt and ),(1 svr t , because we want to let each node on

the graph can be considered as much as possible. So we define it as:










 



0),(
0),(}),(,),(max{

),( 1),(

1

),( svR
svRsvrsvr

svr
tsvHl

ttt
t

sv


For those nodes who are visited more than twice in different iterations, we always

ignore later visits, because they should have smaller ranking score and plays minor

impact on ranking.

In Figure 5, we gives an example of single source query and its changes of

ranking scores.
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Figure 5 An example of ranking score bounds propagation

3.3 Top-k Emergence Test

In this subsection, we illustrate the top-k emergence test which can help us

determine if the top-k answers have been found. During the process of searching results,

we can get intermediate top-k lower-bound ranking scores of found results. For still

visiting nodes, we can compare the upper-bound ranking score of currently visiting nodes

iR to kth largest lower-bound kR of found results, and then terminate paths whose iR

smaller than kR . The reason of stopping searching on those paths is that the defined the

ranking score function is monotone decreasing, and even if there is preferred results on

this path, they will not have influence on final results.

In Figure 6, we give the pseudo-code of our query process. Given the query graph

),( tVQ s , we start searching from all the source nodes, and find all nodes with type t as

candidate set; During this process, we need to refine upper and lower bounds of candidate

set, and do termination check. After several iterations, we can get a candidate set  with

size k and return it.

file:///E:/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
file:///E:/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
file:///E:/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
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Figure 6 Pseudo-code of implementation

3.4 Breadth-first search to find candidates

Starting from a source node, we use the Bread-first search(BFS) to find target

nodes. Along all paths from the source node to target nodes, we have two condition to

terminate searching. One is that nodes are the type that we want, and use its ranking score

to do further processing like bounds refinement; The other is to use bounds of ranking

scores. An example BFS process can be seen in Figure 7. In this process, we start

searching at Node A. When Node F is found, and its type meets our requirement and it

will be saved for further processing. As BFS goes, we can find Node B and its upper-

bound ranking score isn't enough, then we will terminate searching nodes along this path,

even if there are nodes with type we need. In the next subsection, we show the distributed

strategy using this branch and bound algorithm to improve its query performance.
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Figure 7 BFS process
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CHAPTER 4

DISTRIBUTED IMPLEMENTATION

4.1 Distributed Implementation

To show the previous algorithm's distributed implementation strategy, our

algorithm is implemented on the Hadoop [22], a popular distributed computing

framework. Hadoop includes two parts, one is map-reduce computing paradigm, which

computes the ranking algorithm; the other is HDFS, which helps us to save intermediate

values between two iterations.

4.1.1 Breadth-first search on Map-Reduce

In order to implement Breadth-first search using map-reduce paradigm, we need

different labels to show the process of searching. For nodes which are being visited

during the search, we label them as gray color; For nodes haven't been visited, we mark

them as white; Nodes have been visited, we mark them as black; When we find target

type of nodes, mark them as red. Each time, we only generate new nodes who are

neighbors of processing nodes(gray nodes), and use these new nodes to update the status

of these neighbors, both label(color) and ranking score are managed in reduce phase.

Because we still need to record distance during between the source node and target nodes,

and can't let each path vacillate back and forth between two nodes, each time generating

new nodes based on neighbor, we should ignore parent nodes. In other words, the status

of parent nodes can't be updated by their son nodes.

To implement on the Hadoop, after each iteration, we need to save current states

of all nodes into HDFS. For the next iteration, computing framework needs to read them
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from HDFS for computation of current iteration. The Hadoop process in Figure 7 is

shown in Figure 8.

Figure 8 BFS process on Hadoop

4.1.2 Top-k Identification on Distributed framework

After each iteration of breadth-first Search, some nodes are labeled and ranking

scores are computed. Then the results of search are selected and saved in the HDFS.

As talked about in the previous section, in order to accelerate finding results, we

need to get a filtered candidate set and terminate paths that are impossible to find

candidate nodes. In Figure 9, it shows the procedure of data processing in each iteration.

Each time, data is loaded from HDFS to the master node of the cluster; In the master,

each record is pre-processed by appending kth largest lower bound ranking score found in

the previous iterations; Then records are assigned to workers for further computation. In

each worker, two jobs are needed. Firstly, calculating its own ranking score based on its

parent's ranking score and the distance away from the source node; After that, we

compare the ranking score to the kth largest one and determine if we need to continue

searching on this path; If not, just set as visited, otherwise, set it to be visited and created

new records of its neighbors for the other job. Secondly, based on output of previous jobs,



22

update the status of nodes found by previous jobs. Before saving the processed data into

HDFS, we need to update the top-k largest lower bound ranking score if target nodes are

founded in master machine.

Figure 9 Distributed implementation structure

To sum up, the way to terminate searching on a specific path is to stop updating

the status of its neighbors, meanwhile lots of works about networking and updating status

can be removed, like Node B in Figure 7 and Figure 8. Top-k lower-bound ranking score

can also be listed out during BFS, which saves time of sorting lower-bound ranking

scores and getting the kth largest one on single machine.
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CHAPTER 5

EXPERIMENTAL EVALUATION

In this chapter, we present our graph analysis to prove the significance and

necessity of querying on hierarchical knowledge graphs. Then we evaluate the

performance of our ranking algorithm by comparing with baseline algorithm’s results.

5.1 Experimental dataset

The dataset we use to test our algorithm and implementation has shown as the

example in first section, and the schema is shown in Figure 1. We collect these data from

nearly 2000 CISCO official web pages, the majority of data is about CISCO products and

its attributes. The information is extracted by web crawler implemented by dom4j,

including both structured entities, semi-structured entities and plain text containing useful

content. More graph details are listed in table 1.

Number of node types Number of edge types Number of nodes Number of edges Average Degree

3 2 8978 24990 5.57

Table 1 Graph specific information

Semi-structured data refers to information that can be extracted directly from web

pages without much post processing. For instance, BugId is located at introduction part,

we just reach to this part of HTML source and target at specific type of tags or ids, then

we can get the bug id. Because this bug is also related to certain vulnerability, we store

this relationship as well. Meanwhile, information in the tables and bulleted lists is also

extracted in the similar way.

Obviously, Structured data can be easily used to build the hierarchical knowledge

graph, as the relationship among items has already defined in the web pages. But for
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plain texts, we can't take a paragraph as an item, so further processing is still needed. To

identify and extract information segment from a paragraph, we use natural language

processing(NLP) algorithm, Part-of-Speech Tagger [19]. Most recent Part-of Speech

Tagger uses Conditional Random Field [16] to tag word’s sequences and find entities in

our plaintext.

To formulate information items into hierarchical knowledge graph, more steps are

needed. First, we use k-means clustering [10] to group information items, so similar

products are classified into one group. Products in each group represent tightly-related

information items, for instance, same products with different versions. In this way, we get

various groups. In each group, hierarchy is built based on facts of their relations, for

example, some information items are subset of others. Among groups, they are connected

based on similar attributes or common technologies. Compare to relevance of items

inside each group, relationships of different groups are not that close, so these

connections should locate at lower level in the hierarchical knowledge graph.

The work flow of constructing hierarchical knowledge graph is shown in Figure 10.
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Figure 10 Work flow of constructing KB graph

5.2 Viability for hierarchical structure analysis

The key purpose of using hierarchy information in knowledge graphs is to find a

complete query result set for users. In the knowledge graph with hierarchical relationship,

if a node v doesn’t have any properties, but directly or indirectly connected to other

nodes with properties, these properties can potential query results; Or node v have lots of

meaningful properties, it maybe helpful to increase the size of its related nodes’

information set.

Because the hierarchical structure plays an important role in our query results, we

use following metrics to evaluate our hierarchical structure in the knowledge graph:

X is the number of attribute nodes with designated property connected to a

CISCO’s product vnode ;
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Y is the number of designated attribute nodes connected to node v’s same

hierarchy or higher hierarchy nodes;

Z is the number of CISCO’s product nodes with same or higher hierarchy

of vnode and designated properties.

Z/X ratio is the ratio of higher level products nodes and designated connected nodes

to the source node. We use Z/X ratio to show the complexity of hierarchical structure;

The larger than Z/X ratio is, the more complex the hierarchical structure is. And Y/X

ratio indicates that we can find more potential results using hierarchical relationships than

directly connected results. We use these two metrics to show the necessity and viability

of our query in hierarchical knowledge graphs, which can help us find more interesting

results. We randomly choose 20 CISCO product in our graph and use Z/X ratio and Y/X

ratio to evaluate properties of our graph. Z/X ratio indicates the number of related nodes

in the hierarchical structure, which may also shows the necessity to do search with

hierarchical relation information. Y/X ratio shows how many potential results may be

found based on hierarchical knowledge graph. In Figure 3(b), for product Cisco Unified

IP Phones 9900 Series version 9.3(.4) and prior, its X value is 1, Y value is 5 and Z

value is 3; So Z/X ratio is 3 and Y/X ratio is 5, and these two values show that complex

hierarchical structure related to this product; We can also potentially get more

trustworthy results based on hierarchical relationships.
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Figure 11 Hierarchical structure complexity of sample products

Figure 12 Potential results considering hierarchical structure

Using these two metrics, we can see complex hierarchy structure and a great

number of potential results can be found in hierarchical knowledge graphs. It shows our

query is meaningful and useful to optimize current graph search concepts and algorithms.
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5.3 Single source’s query example and analysis

The section focuses on our current evaluation work on the accuracy of the query.

All experiments are operated on virtual machines deployed on VMware workstation. The

specification of each machine is single core and 1GB memory running CentOS Linux

Version 6. The algorithm is implemented on Hadoop-1.2.1, and parameter 5.0 .

Currently, the number of nodes extracted from CISCO official websites is about 10000.

We use the CISCO product information dataset to test our algorithm and implementation.

Following is the discussion on the accuracy of top-k answers.

In the CISCO products hierarchical knowledge graph, we present following query

example in Figure 13.

Figure 13 Single source’s query example on the CISCO product graph

The example in Figure 13 is intended to find top-5 vulnerabilities that affect Cisco

Unified IP Phones 9900 Series Firmware versions 9.3.2 SR1 and prior. In Figure 14, we

present its corresponding subgraph and node-44 is its id. Apparently, not only

vulnerabilities with id node-3184, node-5593 and node-3263 are connected to this

product, a lot more related vulnerabilities can be seen on the subgraph. In this graph:

Blue Nodes: CISCO Product

Red Nodes: Vulnerability

Green Nodes: Bug_Ids

Yellow Nodes: Workaround
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And our source node is Node 44(largest one) here.

Figure 14 A subgraph example in CISCO product hierarchical knowledge graph

When  is 0.8, the top-5 query results are:

Node ID Node Name Ranking Score

3184 cisco 9900 series phone webapp buffer overflow Vulnerability 0.8

3223 cisco unified ip phones 9900 series image upgrade command

injection vulnerability

0.8

3263 multiple vulnerabilities in cisco ios xe software for 1000 series

aggregation services routers

0.8
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5593 cisco unified ip phone 8900/9900 series crafted sdp packet

vulnerability

0.8

2897 cisco 9900 series ip phone crafted header unregister vulnerability 0.64

Table 2 Query results of single source

According to the semantic meaning, we can see our results are effective and find a

potential vulnerability for this product. The query results with higher ranking scoress are

directly connected to the node-44; As for one with lower ranking score, it belongs to

node-44’s subclass, and we take it as potential results.

In order to show the effectiveness of querying on hierarchical knowledge graphs,

we compare our results with others. Here, we use results got from traditional knowledge

graph considering only the distance as metrics and compare with our hierarchy-based

query results, then we also identify if they are correct by providing related ground truth.

In Figure 15, we randomly choose 8 products and find top-10 related vulnerabilities on

both traditional knowledge graphs and hierarchical knowledge graphs, and compare their

query results. In the figure, we can always find some different query results. In order to

evaluate our query results, we search related materials of each product in the figure and

use the information as ground truth to evaluate our results. Based on our check with

ground truth, we can make sure our query results are more reliable and useful.
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Figure 15 Query results comparison

5.3 Star query example and analysis

If we have more and corresponding nodes on the graphs, we can also use our

algorithm to get useful results. Figure 16 is an example to search on the hierarchical

knowledge graph, we want to find common vulnerabilities of cisco asa software versions

prior to 9.0(3.8), cisco telepresence system software versions ix 8 (.0.1) and prior, cisco

asa software releases 9.3(.2) and prior and cisco asa versions 9.1(.3) and prior. Three of

these four products belong to a same series; The other one is a different product, it aims

to show the effectiveness to use graph relationships to find potential interesting results.

Figure 16 star query example on the CISCO product graph
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When  is 0.8, the query results of our algorithm and implementation are listed below:

Node ID Node Name Ranking Score

3115 cisco adaptive security appliance ssl vpn authentication

bypass vulnerability

3.4

4409 gnu bash environment variable command injection

vulnerability

2.314

4750 multiple vulnerabilities in openssl affecting cisco products 2.168

6183 cisco asa clientless ssl vpn portal customization integrity

vulnerability

2.0

7713 multiple cisco products root shell access vulnerability 1.952

6179 cisco asa authenticated linux shell access vulnerability 1.928

4630 multiple vulnerabilities in ntpd affecting cisco products 1.828

6217 cisco asa smart call home digital certificate validation

vulnerability

1.8

6638 openssl heartbeat extension vulnerability in multiple cisco

products

1.8

7315 cisco small business rv series and sa500 series dual wan

vpn router generated key pair information disclosure

vulnerability

1.8

Table 3 Query results of star query

Here, vulnerabilities with higher ranking score are more likely to be common

vulnerabilities. Compared with baseline algorithm mentioned before, our query answers
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are located at different positions. To evaluate the relative positions of query answers to

sources, we use following metric:

||

),(

s

Vv

V

vudist
s




Where sV is the set of all source nodes, u is a answer and ),( uvdist represents the shortest

distance between v and u .

If we only consider distance as the factor to find vulnerabilities, the potential

answers should be located at the middle among all source nodes and their  are 5 on

average. But for the first answer of our query algorithm - cisco adaptive security

appliance ssl vpn authentication bypass vulnerability, its is 3.75. Apparently, our query

results are quiet different.

Finally we use ground truth of knowledge to evaluate our query results. For the

result cisco adaptive security appliance ssl vpn authentication bypass vulnerability, it

directly connects to P2 and is located at higher level relative to P3, P4 and P5. According

to semantic meanings and ground truth we get on CISCO’s official websites, this result is

good one and very trustworthy.
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CHAPTER 6

RELATEDWORK

In the field of graph data management, a lot of explorations have been made in

recent years. These algorithms are applied in social networks, bioinformatics, and

software engineering projects. It becomes nontrivial to manage graphs in different ways.

Most of graph management researches focus on five major topics, which are graph

queries, graph labeling strategies, top-k identification, distributed graph queries and

semantic-based query. In the following part, we introduce them respectively.

6.1 Graph Queries

Most of graph queries put emphasis on pattern search [24, 13] and reachability [3, 15]. As

for first kind, answers are got from subgraph isomorphism. Isomorphic subgraph may not

be exactly same as subgraphs, so they use missing nodes or edges as ranking metrics to

eliminate unconfident candidates [21] or show the factor of missing nodes and edges in

final score [12]. Some other works focus on graph indexing[25] to improve the

performance of queries. Two major categories of graph index: (1) Non mining-based

graph indexing techniques[26, 27]: this technique is to index the whole graph; (2)

Mining-based graph indexing techniques[28, 29]: instead of indexing the whole graph,

this technique extracts features from the graph and use these features to get inverted

index; When querying a subgraph, we need to extract features of this subgraph first and

then use inverted index to find it on the whole graph. In our work, we use index-free

algorithm and propagate the ranking score to our target nodes.
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6.2 Graph Labeling Strategies

The graph labeling is mainly for nodes in the graph. The goal of indexing these nodes

always aims to help find isomorphic subgraphs [14] or accelerating query speed [4, 7].

The first object has illustrated before. To decrease the query time, more information of

nodes and their neighbors should be stored; And then some low cost indexing algorithms

are also presented [4]. In our work, we not only label nodes with different types, but we

also label edge to show meaningful relations. Labels in this paper don't have too much

function to increase query efficiency.

6.3 Top-k Identification

To get top-k answers from candidate set, there are two main algorithms. First one is the

baseline method, which sort all candidates and then get k best answer from sorted

outcomes. But this way costs more memory and time. The other way is based on branch

and bound algorithms [6]. This thought is to keep refining bound of score to terminate

part of operation for optimization, then get top-k candidates directly. Here, we use this

concept to design our ranking score and make it compatible to distributed system. In this

way, efficiency and computation resources are improved.

6.4 Distributed Graph Queries

Many distributed frameworks are proposed, such as Hadoop [20], GraphLab [17], etc.

These frameworks connect different servers for parallel computation. They combine and

regulate computation and storage resources for good performance. Graph queries can also

be designed on distributed framework to achieve higher performance [11] and scalable
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objects [23]. In this paper, we use Hadoop to implement more fast branch and bound

algorithms, then find top-k answers.

6.5 Semantic Parsing Query

Using semantic parsing [22, 18] on famous knowledge bases like Freebase [2], helps us

deeply understand knowledge bases. Related research uses semantic parser to map natural

language into logical format that can be executed on knowledge graph, and then gives us

more meaningful outcomes from graph query. In this paper, we learn from the essential

thought of semantic parsing, and use semantic relation to build the knowledge graph,

which demonstrates showing authentic results collaborating our query algorithm.
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CHAPTER 7

CONCLUSION

In our work, we use both hierarchical relationship and non-hierarchical

relationship in the knowledge graphs to do graph query. Especially, we use hierarchical

relationship to find more interesting results which can not obtained by traditional search

engines and other graph search algorithms. We also propose top-k query algorithm to do

fast query on knowledge graphs with hierarchical relationships. The algorithm uses

bounding ranking scores and found results to do termination check, then we can query on

part of the knowledge graph to find interesting results. An implementation on the

distributed framework is proposed, in case that we need to query on much larger scale

knowledge graphs. Finally, we test the algorithm at two situations, single source node

query and star query. Using ground truth related to our dataset, the experiments

demonstrate that our query answers are more trustworthy and interesting.
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