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ABSTRACT

ANALYZING SPARK PERFORMANCE ON SPOT INSTANCES

SEPTEMBER 2017

JIANNAN TIAN

B.Sc., DALIAN MARITIME UNIVERSITY, CHINA

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David Irwin

Amazon Spot Instances provide inexpensive service for high-performance computing.

With spot instances, it is possible to get at most 90% off as discount in costs by bidding

spare Amazon Elastic Computer Cloud (Amazon EC2) instances. In exchange for low

cost, spot instances bring the reduced reliability onto the computing environment, be-

cause this kind of instance could be revoked abruptly by the providers due to supply and

demand, and higher-priority customers are first served.

To achieve high performance on instances with compromised reliability, Spark is ap-

plied to run jobs. In this thesis, a wide set of spark experiments are conducted to study its

performance on spot instances. Without stateful replicating, Spark suffers from cascad-

ing rollback and is forced to regenerate these states for ad hoc practices repeatedly. Such

downside leads to discussion on trade-off between compatible slow checkpointing and
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regenerating on rollback and inspires us to apply multiple fault tolerance schemes. And

Spark is proven to finish a job only with proper revocation rate. To validate and evaluate

our work, prototype and simulator are designed and implemented. And based on real

history price records, we studied how various checkpoint write frequencies and bid level

affect performance. In case study, experiments show that our presented techniques can

lead to ˜20% shorter completion time and ˜25% lower costs than those cases without such

techniques. And compared with running jobs on full-price instance, the absolute saving

in costs can be ˜70%.
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CHAPTER 1

INTRODUCTION

Cloud computing has become an overwhelmingly effective solution to build low-cost,

scalable online services (Infrastructure as a Service or IaaS). Providers such as AWS Elas-

tic Compute Cloud (AWS EC2) [2], Google Compute Engine [3] and Microsoft Azure [4]

manage large-scale distributed computing infrastructures and rent this compute capac-

ity to customers. Compute capacity, abstracted from computing resource, storage, and

network bandwidth, etc., is rented out as virtual server instance. There are situations

when cloud providers have unused, active resources, and put their idle capacity up at

a cleaning price to maximize revenue. Compared to those full-price instances, spot in-

stances are much (usually 80%) cheaper for compromised reliability [2]. In the literature,

the terms spot instance, transient server, preemptible instance have been used interchangeably

to represent virtual server that can be revoked by the provider. In this paper, we will use

nomenclature spot instance for simplicity. Spot instance allows customers to bid at any

expected price [1]. The provider sets a dynamic base price according to the supply and

demand of compute capacity, and accepts all the bids over the base price. On acceptance,

customers who bid are granted those instances. On the other hand, if later the base price

exceeds that user’s bid, those instances are revoked by the provider.

In nature, spot instance cannot compete with always-on instance in sense of QoS; such

a fact forces customers put non-critical background jobs on spot instances. Among multi-

ple QoS metrics, particularly availability and revocability are the main concern. Availability
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is defined as the ratio of the total time a functional unit is capable of being used during

a given interval to the length of the interval [18]. In comparison, revocability indicates

whether a spot instance is revoked under certain circumstance. For instance, if there are

high-rate price alteration in a short time, the high availability can still exist, however, re-

vocation numbers can be large. Moreover, revocation can be severe and abrupt; in a short

period, the amplitude of the price change can be large and the price does not rise grad-

ually. And spikes can be extensively observed in figure of price history. In our concern,

working against revocability of spot instances while most prior work focuses on availabil-

ity as indicated in Section 3.

On revocation, all the data and application that are deployed on instances are lost

permanently. This incurs overhead from not only downtime, restart time but time to

recover from loss and rollback as well. Therefore, job completion time increases when

using spot instances. Rising bid effectively decrease the possibility of hitting base price

and hence rate of instance revocation. Such a cost-reliability trade-off can lead to some

sophisticated bidding strategy to minimize the total resource cost. On the other hand,

with software supported fault tolerance schemes, the job completion time can also be

minimized.

To seek feasibility of complete jobs on spot instances in decent time, we deployed

Spark and utilized its fault tolerance mechanism. Unlike checkpoint, Spark does not re-

cover from disk snapshot by default; nor does it recovers from duplicate memory states

that are transferred to other networked machines before failure. On submission of appli-

cation, Spark yields a list of function calls in order from the program code and hosts it on

the always-on driver node. Such a list is called lineage and is used for task scheduling and

progress tracking. An implication is that when the current job is interrupted, intermediate

states are lost but regenerated in order according to the lineage. Such a rollback, if there

2



is no other supplementary fault tolerance mechanism in use, can hit the very beginning

of the lineage. With lineage-based recomputing, Spark would handle occasional inter-

ruption well [29], however, revocation triggered node failure is much more frequent, and

Spark is not specifically designed for such an unreliable computing environment. Theo-

retically, if rollback to the very beginning occurs can possibly make the job exceed timeout

and never end. This brought about the first question that leads to the thesis: what is the

impact of node revocation on Spark job completion time and what are factors that affect

performance?

To alleviate painful repeated rollbacks, we applied compatible checkpoint mechanism

on Spark. By default, checkpoint is not utilized due to overhead from I/O operation be-

tween memory and low-speed disk; if there is no interruption, routine checkpoint write

does nothing but increase the job completion time. However, by dumping snapshot onto

disk and later retrieving to the working cluster, checkpoint makes it possible that job con-

tinues at the most recently saved state, and this would benefit those long jobs even more.

Therefore, trade-off lies between routine checkpoint write overhead and painful rollback.

A question emerges naturally: is there optimum that minimizes job completion time?

Noticed that the optimization is based on natural occurrence failure that approximately

satisfies Poisson Distribution, and it is different from that of market-based revocation. So

the question is that whether the mechanism still works on spot market where instances are

bid. These questions lead to the thesis. Contributions of this thesis are listed below.

• Effectiveness experiment is designed based on prototype Spark program. It proves

the effectiveness that Spark cluster can get over frequent revocations. We tested

10, 20, 30 and 60 seconds as mean time between node number alteration (MTBA), and

we found cases with MTBA above 30 seconds can meet time restriction to recover.
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Noticed that this MTBA is much less that price change (not necessarily making node

revoked) from the spot market.

• factors from the cluster configuration and job property are discussed since they may

affect Spark performance. They are namely partition number, job iteration number,

and mean time between node number alteration. We figured out that higher parti-

tion degree leads to less processed partition loss and hence shorter recovery time.

And as is pointed out, shorter MTBA impacts on complete time more. And longer

task suffers even more for the recovery process is even longer than those short jobs.

• Mixed fault tolerance scheme is developed and extensively discussed. With the inspi-

ration of optimal checkpoint write interval in single-node batch-job case, we found

that such optimum is valid for distributed MapReduce job. Noticed that in both

cases revocation occurrence satisfies Poisson Distribution. In later case studies, we

can see that checkpointing with proper optimal interval according to different mar-

ket information can help lower costs when using spot instances.

• Analytic Experiments based on real price history (A collection of example price his-

tory records are hosted on the repository of this project [5].) are conducted. To

validate and evaluate our work, prototype and simulator are designed and imple-

mented. We studied how various checkpoint write frequencies and bid level affect

performance. Results from experiments show that our presented techniques can

lead to ˜20% shorter completion time and ˜25% lower costs than those cases with-

out such techniques. And compared with running jobs on full-price instance, the

absolute saving in costs can be ˜70%.
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CHAPTER 2

BACKGROUND

2.1 Spot Instance

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides resiz-

able computing capacity in unit of instance . Amazon EC2 provides a wide selection of

instance types to meet different demands. There are three basic pricing models for in-

stances from Amazon EC2: Reserved Instance, On-demand Instance and Spot Instance.

• Reserved instances allow customers to reserve Amazon EC2 computing capacity for

1 or 3 years, in exchange for up to 75% discount compared with On-demand (full-

price) instance pricing.

• On-demand (hereinafter interchangeable with full-price) instance is more flexible.

Customers pay for compute capacity by the hour so that they can request instance

when instances are needed.

• Spot instances allow customers to bid on spare compute capacity at discounted

price. Customers pay willingly any price per instance hour for instances by specify-

ing a bid.

Spot instance can be acquired when there are idle instances from Reserved and On-

demand pools. Since the performance of spot instance is equivalent to that of full-price

instance, customers can save a lot on performance-thirsty required jobs. The provider sets

dynamic spot price for each instance type in different geographical and administrative

5



type Reserved On-demand Spot

price high, w/ discount high low
volatility N/A N/A high

availability guaranteed not guaranteed not guaranteed
revocability N/A N/A when underbid

Table 2.1: Cost-availability trade-off among instance pricing models

zone. Customers bid at desired price for spot instances. If a customer’s bid is over that

base price, the customer acquires the instances. On the other hand, if later spot price goes

up and exceed the original bid, the customer’s instances are revoked and permanently ter-

minated. In consequence, hosted data and deployed applications are lost, and job suffers

from rollback. If bid is risen, customers are more safe to meet less revocations and hence

shorter job completion time. We can see that in exchange for low cost, the reliability of

spot instances is not guaranteed. Table 2.1 shows comparison of instance pricing models.

2.1.1 Spot Market

Spot market is a fair market where the provider and customers mutually agree on

the service price above an base price. The base price fluctuates according to supply and

demand. Spot price ranges from 0.1x to 10x full price of the same instance type. On rare

occasions, although it goes over 1.0x full price, it is far below 1.0x on average. Despite

of the average low price, the price change can be severe; price change abruptly to a high

level and fall to a rather low level in a short period (short enough so that a job cannot even

be finished).

Table A1 in Appendix shows pricing for On-demand (full-price) instance in east-us-1

as of year 2014. and Table A2 in Appendix chapter shows pricing for newly released fixed-

duration as complementary pricing model.
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types mean 3rd 5th 10th 25th median 75th 90th 95th 97th

c3

large 0.179 0.159 0.160 0.161 0.165 0.170 0.176 0.187 0.198 0.210
xlarge 0.207 0.165 0.167 0.170 0.177 0.191 0.214 0.252 0.292 0.329

2xlarge 0.232 0.181 0.184 0.189 0.202 0.221 0.250 0.287 0.312 0.339
4xlarge 0.251 0.168 0.172 0.178 0.191 0.214 0.254 0.327 0.417 0.498
8xlarge 0.215 0.162 0.163 0.166 0.172 0.185 0.208 0.247 0.281 0.326

d2

xlarge 0.172 0.103 0.103 0.103 0.106 0.160 0.205 0.259 0.305 0.341
2xlarge 0.130 0.105 0.106 0.107 0.112 0.121 0.132 0.145 0.173 0.205
4xlarge 0.126 0.103 0.103 0.104 0.105 0.109 0.122 0.156 0.194 0.226
8xlarge 0.122 0.102 0.102 0.103 0.104 0.108 0.129 0.145 0.173 0.181

g2 2xlarge 0.197 0.126 0.129 0.134 0.148 0.175 0.215 0.267 0.307 0.353
8xlarge 0.355 0.151 0.160 0.174 0.201 0.269 0.385 0.651 1.000 1.000

i2

xlarge 0.123 0.100 0.101 0.101 0.104 0.115 0.140 0.152 0.160 0.167
2xlarge 0.125 0.103 0.103 0.104 0.108 0.118 0.133 0.148 0.159 0.169
4xlarge 0.139 0.103 0.104 0.104 0.106 0.115 0.147 0.185 0.205 0.218
8xlarge 0.122 0.101 0.101 0.102 0.103 0.107 0.129 0.156 0.161 0.169

m3

medium 0.156 0.131 0.131 0.134 0.139 0.148 0.169 0.185 0.200 0.210
xlarge 0.164 0.138 0.140 0.144 0.151 0.161 0.172 0.185 0.196 0.206

2xlarge 0.170 0.139 0.141 0.145 0.154 0.166 0.180 0.198 0.212 0.224
large 0.151 0.132 0.133 0.135 0.138 0.144 0.154 0.175 0.199 0.218

r3

large 0.129 0.100 0.101 0.102 0.106 0.114 0.128 0.150 0.179 0.210
xlarge 0.186 0.104 0.106 0.112 0.126 0.147 0.191 0.284 0.379 0.474

2xlarge 0.168 0.111 0.114 0.119 0.131 0.151 0.183 0.227 0.268 0.303
4xlarge 0.145 0.099 0.100 0.102 0.107 0.117 0.140 0.192 0.267 0.344
8xlarge 0.165 0.112 0.114 0.119 0.130 0.151 0.181 0.218 0.256 0.288

Table 2.2: Mean, median spot price and other percentiles in 90 days
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2.1.2 Market Volatility

Same-type instances are priced approximately the same across different geographical

regions. Here we take us-east-1 as example to analyze on spot market volatility in the

Unites States.

Instances are differentiated by purpose, e.g. general-purpose, memory-optimized for

intensive in-memory computing, and GPU-optimized for graph algorithms and machine

learning. For full-price instances, all same-purpose instances are price the same for unit

performance. A unit performance is defined by price per EC2 Compute Unit (ECU), and

it can be represented alternatively as ratio of spot price to full price. So we adopted this

ratio as standardized price to measure the spot price as illustrated in Equation 2.1.

ratio =
spot price

on-demand price
=

spot price/ECU number
OD price/ECU number

=
spot price per ECU
OD price per ECU

, (2.1)

where full-price is fixed for each type.

Due to supply and demand, the ratio for same-purpose instance can be different. An

example of comparison between m3.medium and m3.xlarge is shown in Figure 2.1. On

bidding strategies, we may bid for several small instances or a single large instance deliv-

ering the same performance. Which to bid may depend on the granularity to which a job

is partitioned. And it is related to Section 3.2. This brings forth a critical question: high

revocation rate causes cascading node failure and data loss, is it even feasible to deploy

application even with abundant fault-tolerant mechanisms? This leads to observation on

volatility of the market. Although this can lead to a sophisticated bidding strategies, in

this paper, we are not going to discuss further on this.

We also gave a general comparison among all instance types in Figure 2.2. In spot

market, bidding level determines availability. To give an intuitive view over availability,

we supposed in the past three months, we bid for each type of instance at exactly the mean
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Figure 2.1: Price history comparison of m3.medium and m3.xlarge

price and count revocation number; thus revocation rate due to underbids can reflect the

spot market volatility. We defined revocation rate as revocation number per 24 hours.

(only records in most recent three months can be retrieved from official source; however,

3rd-party communities maintain much longer history).

Figure 2.2 shows widely distributed bid-revocation information. In this Figure, X-axis

is given by mean spot price during 90 days (in this project, it is March 13 to June 13, 2016),

and the data is standardized as ratio of spot price to full-price. Y-axis is given by mean

revocation number every 24 hours when bid level is set to the aforementioned mean price.

As we can see, most instance types (g2.8xlarge type is the only exception in this study)

are lowly priced but revocation rates are widely distributed. We can take c3.2xlarge,

c3.4xlarge, g2.2xlarge and c3.large as examples.

2.1.3 Alternative Service

Preemptible instance from Google Compute Engine (GCE) is an alternative option of the

spot instances. Customers also create and run virtual machines on its infrastructure [3].

GCE might terminate (preempt) these instances if it requires access to those resources for

other tasks, although pricing is not auction based (fixed instead). Additionally, Compute

Engine has a finite number of available preemptible instances, so customer might not be

9
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type mean revoc.
price rate

c3.large 0.215 48.1
c3.xlarge 0.220 845.2

c3.2xlarge 0.240 1496.5
c3.4xlarge 0.257 907.9
c3.8xlarge 0.215 656.8
d2.xlarge 0.191 111.6

d2.2xlarge 0.151 51.0
d2.4xlarge 0.170 52.9
d2.8xlarge 0.160 28.1
g2.2xlarge 0.248 483.1
g2.8xlarge 0.679 86.2

i2.xlarge 0.123 267.1
i2.2xlarge 0.126 403.0
i2.4xlarge 0.148 192.7
i2.8xlarge 0.125 108.1

m3.medium 0.199 33.3
m3.large 0.169 174.5

m3.xlarge 0.173 1039.8
m3.2xlarge 0.183 956.3

r3.large 0.130 191.5
r3.xlarge 0.204 739.0

r3.2xlarge 0.169 1418.5
r3.4xlarge 0.162 616.7
r3.8xlarge 0.178 888.5

Figure 2.2: Market volatility comparison

able to create them during peak usage [15]. Comparison of AWS Spot Instance and GCE

preemptible instance is listed in Table 2.3.

provider AWS Spot Instance Preemptible Instance

pricing fluctuating, bidding required fixed
condition of yielding bidding failure preempted by higher high-priority tasks
on yielding instance terminated (same) instance terminated

Table 2.3: Comparison of Spot Instance and Preemptible Instance

2.2 Spark the Framework

Apache Spark is a general-purpose parallel-compute framework that supports exten-

sive data processing primitives. Spark Core, a collection of core functionality, drives high-

level applications. There is an optimized engine that supports general execution graphs,
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Spark SQL for SQL and structured data processing, MLib for machine learning, GraphX for

graph processing, and Spark Streaming. Spark structure is shown in Figure 2.3.

Apps

Spark
SQL

Spark
Streaming

MLib
(machine 
learning)

GraphX
(graph)

Spark Core

HDFS, S3

Mesos Hadoop YARN

Infrastructure

Access and 
Interfaces

In-house Apps

Processing
Engine

Storage

Resource
Virtualization

Hardware

Figure 2.3: Spark cluster components

In this paper, we focus on designing programs with primitives from Spark Core. These

primitives are classified into two categories, transformation and action. A complete list of

transformation and action is shown in Table A2.

2.2.1 In-memory Computing

Traditional Hadoop Distributed File System (HDFS) is an abstract distributed file system

primarily for managing data. Although HDFS is primarily for Hadoop application, it

is ubiquitously used by distributed frameworks. Due to the fact that for read operation

is much frequent than write operation, it is designed write-once-many-access feature for

simple coherence and derived intermediate states are written back to disk. For those

applications that mainly work over data access rather than data write, HDFS contributes

high throughput; however, it is against the nature of those applications that generate vast

of intermediate results. Particularly, when it comes to iterative tasks, it incurs severe

overhead of swapping transient states out and in to low-speed storage, thus it deteriorates

the overall performance.
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Spark incorporates popular MapReduce methodology. Compared with traditional

Hadoop MapReduce, Spark does not write intermediate results back to low-speed disk.

Instead, Spark maintains all necessary data and volatile states in memory.

2.2.2 Resilient Distributed Datasets

Resilient Distributed Datasets (RDD) is the keystone data structure of Spark. Partitions

on Spark are represented as RDD. By default, necessary datasets and intermediate states

are kept in memory for repeated usage in later stages of the job. (Under rare circumstance,

with insufficient physically memory, in-memory states are swapped out onto low-speed

disk, resulting in severely downgraded performance.) RDDs can be programmed per-

sistent for reuse explicitly, such an operation is materialization; otherwise, RDDs are left

ephemeral for one-time use.

On job submission to Spark, the program code is unwound and recorded as a list

of procedural function calls, terminologically lineage. On execution, lineage is split into

stages. A stage can start with either a transformation or an action. A transformation liter-

ally transform a type of data hosted in RDD into another type in RDD while an action in

the end output data in regular types that are not used for in-memory computing. With

syntactical support of lazy evaluation, Spark starts executing transformation operations

only when the program interpreter hits action after those transformations. Such a scheme

is used for scheduling and fault tolerance (see details in Section 2.3). Scala programming

language [14] is used to call function in Spark program.
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2.3 Fault Tolerance

2.3.1 Recomputing from Lineage

Consistent with in-memory computing, fault tolerance is accomplished by utilizing

lineage as preferred. To simplify question, Spark driver program is hosted on supposedly

always-on instance. Thus lineage generated in driver program is never lost and fault

tolerance system can fully work towards recovery.

On node failure, volatile states in memory are lost. Rather than recover from du-

plicate hosted on other machine before failure, this part of lost node can be computed

from other states; specifically, it can be generated from original datasets. With progress

tracked in lineage, recovery can start from the very beginning of the lineage and finally

reaches the failure point. Programmatically, Spark supports recomputing from lineage

and checkpoint mechanism. And these are discussed in Section 2.3.3 and 2.3.4. Multiple

fault tolerance mechanisms and schemes are also compared in Section 3.3.

2.3.2 Node Failure Difference

There are several differences lying between natural node failure in datacenter and

revocation triggered failure.

• in industry, mean time to fail (MTTF) are used measure failure interval in unit of

hundreds of days, which is much longer ( 10,000x) than interval for a price change

thus potential revocation.

• natural node failure occurrence obeys non-memorizing distribution. In the single-

node case, Poisson Distribution is reasonable approximation. However, there is no

evidence showing that revocation triggered node failure obey such distribution.

• Spot prices fit in to Pareto and exponential distributions well [32] while revocation

distribution is more complex for different bidding schemes.
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Some sophisticated bidding strategies [32, 23] are derived. While some argued there is

no need to bid the cloud [24, 26] for different reason (see details in Section 3.2). We focus

on invariant in running Spark job on spot instances no matter how we bid the cloud.

2.3.3 Naı̈ve Fault Tolerance Scheme

Recomputing from lineage makes it possible to recover from failure without external

backups. However, the effectiveness of the exploiting recomputing scheme is undeter-

mined. There are some positive factors from the cluster configuration that help recover.

• data storage and application are deployed differently. Data is hosted on HDFS clus-

ter other than the compute cluster, or hosted in S3 bucket.

• it is inexpensive and preferred to deploy driver program on a single always-on node

to avoid lineage loss.

More related cluster configuration is listed in Section 4.1.

However, there many negative factors that undermines the recovery severely.

• Revocation is much more frequent than natural node failure in datacenter, and

• Despite the strong resilience of Spark (recovering when there is only small number

of nodes in the cluster), revocations in sequence applies cascading state losses on

the cluster, making it even harder to recover.

A fault tolerance scheme is application with specified parameter of its cornerstone

mechanism. Compared to natural node failure, this fault tolerance mechanism is not de-

signed for high failure rate. It is highly possible to exceed system-specified timeout, and

the job is terminated. This leads to a later effectiveness experiment stated in Section 4.2.

As we pointed out later, although it is not guaranteed to complete job without exceeding

timeout, we can cut off those timeout tasks by configuring mean time between failure.
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2.3.4 Checkpoint

Compatible checkpoint write is disabled in Spark by default for performance consid-

eration. This supplemental mechanism can be enabled both in program code and configu-

ration. Technically, RDD can be differentiated by storage level (see details in Table A1). By

default, MEMORY ONLY is preferred to use to achieve better performance. Flexible on-disk

materialization for specific RDDs can be done by programming rather than hard-setting

ON-DISK for all RDDs. On job failure, disk-cached states will be immediately ready after

loading. This alleviate cascading rollbacks and recompute from beginning. However, if

there is no failure, routine checkpoint write is wasteful, only to extend job completion

time. This motivate us to utilize mixed fault tolerance scheme.

2.3.5 Mixed Fault Tolerance Scheme

As discussed earlier, we can balance overhead of routine disk write and rollback. This

arise the second question, what the optimum of checkpoint write interval is if any. In-

spired by single-node batch-job case, we applied a first-order approximation on finding

optimum of checkpoint write interval to minimize the total job completion time. The

evaluation is shown in Chapter 6.
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CHAPTER 3

RELATED WORKS

This thesis focuses on analyzing the performance and cost of running distributed data-

intensive workloads, such as Spark jobs, on transient servers, such as AWS Spot Instances

and GCE Preemptible Instances. Below, put our work in the context of prior work that has

examined a variety of bidding strategies and fault-tolerance mechanisms for optimizing

the cost and performance on such transient servers.

3.1 Cloud Computing

There are several topics related to cloud computing infrastructure.

• In-memory computing Data reuse is common in many iterative machine learning and

data mining [29]. Pessimistically, the only way to reuse before computations is to

write it to external stable storage system, e.g. HDFS [8]. Specialized frameworks,

such as Pregel [21] for iterative graph computations and HaLoop [9] for iterative

MapReduce, have been developed. However, these frameworks support limited

computation patterns. In contrast, Spark is general-purposed and offers primitives

for data processing. The abstraction for data reuse as well as fault tolerance is (RDD).

Materialization can be toggled by programming in sense of data reuse with the sup-

port of RDDs. In the programmed application, a series of data processing procedure

along with explicit materialization of intermediate data is logged as lineage. Such a

setting lead to quick recovery and does not require costly replication [29].
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• Multi-level storage Although materialization of reused data boosts performance, node

loss annihilates such efforts and makes it useless on high-volatile cluster. In our

work, we took a step back. We took advantage of multiple storage level (see Ta-

ble A1); not only low latency in the process but the global minimizing completion

time is the goal. To resolve such issue, we employ checkpointing along with built-in

recovery form other RDDs. Despite the fact that overhead from disk-memory swap-

ping is introduced again, we leverage its short recovery and avoidance of recompute

from very early stage of a logged lineage.

• Practice In-memory computing requires abundant memory capacity in total. Spark

official claimed that the framework is not as memory-hungry as it sounds and the

needed original datasets are not necessary to loaded into memory instantly; in ad-

dition, multiple storage level, including memory and/or disk and the mixed use

of them, can be configured to resolved the issue of materialization required capac-

ity [6]. It could be true if base memory capacity is satisfied when the cluster node

availability is stable, however, when node availability is low, performance suffers

from both the limited memory capacity and memory state loss such that swapping

in and out happens frequently and thus latency becomes much more serious. Such

overhead is also discussed in Chapter 6.

3.2 Bidding the Cloud

Spot price alteration reflects and regulates supply and demand. This is proven and

discussed further in [10]: for the provider, it is necessary to reach market equilibrium

such that QoS-based resource allocation can be accomplished.

• Strategic bidding Zheng et al. [32] studied pricing principles as a critical prerequisite

to derive bidding strategies and fit the possibility density function of spot price of
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some main types by assuming Pareto and exponential distributions. Such fitting

helps predict future spot prices. He et al. [16] implemented a scheduler for bidding

and migrate states between spot instances and always-on on-demand instances.

Analysis in [22] shows the sensitivity of price change; a small increase (within a spe-

cific range) in bid can lead to significant increment in performance and decrement

in cost. Though the sensitivity to price is also observed in our experiment (as shown

in Chapter 6), it is more than aforementioned reason. 1) qualitative change occurs

when bid is slightly increased to the degree where it is above price in most of time.

And scarcely can revocation impact on performance and thus total cost; instead the

dominating overhead is from routine checkpoint write to disk. 2) on the other hand,

when bid is not increased high enough to omit most of revocations, a dramatically

high performance is accomplished by much less rollback when checkpointed at ap-

propriate frequency.

• Not bidding Some argued not biding is better without knowing the market operating

mechanisms deeply. Not developing bidding strategies can be attributed to several

reasons: 1) Technically, IaaS providers can settle problem of real-time response to

market demand [33], and short-term prediction is hard to achieve, 2) customers can

always find alternative instances within expected budget [24] for market is large

enough, 2) there are abundant techniques that [25, 24] ensure state migration within

the time limit and 3) some pessimistically deemed that it is not even effective to bid

the cloud since cascading rollbacks caused by revocation is so painful to recover

from and framework improvement is the key point to solution [26].
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3.3 Fault Tolerance

Bidding strategy is helpful and we need specified bidding schemes to conduct experi-

ments and to compensate less effective bidding strategies, we fully utilized fault tolerance

mechanisms to archive equivalent effectiveness. And despite of intention of not bidding

the cloud, we set different bid levels for 1) it is related performance and sometime per-

formance is sensitive to the corresponding availability, and 2) data-intensive MapReduce

batch jobs has been studied in [20, 16, 11]. Our part of job is not the traditional MapRe-

duce with static original datasets that is pre-fetched and processed, rather some job does

not really rely on old intermediate states, i.e. streaming, although QoS is not guaranteed.

Most of the prior work focuses on improving availability and thus QoS by develop-

ing bidding strategies. Nevertheless, higher availability does not necessarily result in

low revocation rate. Yet Spark is employed to process data-intensive jobs, high-rate price

alteration may lead to high revocation rate. There are several main fault-tolerance ap-

proaches to minimize impact of revocations (i.e. intermediate state loss and progress

rollback): checkpointing, memory state migration and duplicate and recomputing from

original datasets.

• Live migration/duplication Prior work of migration approaches is presented in [24, 25].

And fast restoration of memory image is studied in [31, 19]. In contrast, our origin

working dataset is hosted on always-on storage while intermediate is mostly gener-

ated online for ad hoc practices expect the checkpointed portion to avoid overhead

from network [30]. And these static integrity, i.e. integrity is ensured due to com-

plete duplication differs from freshly regenerated intermediate states. Such differ-

ence lead to our investigation on more than checkpointing schemes.
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• Fault tolerance schemes Checkpointing for batch jobs [12, 13] and its application on

spot instances [27] are studied. We adopt the origin scheme into distributed case

and mixed use of both checkpoint read and regeneration.

[28] gives four basic and various derived checkpointing schemes with mean price

bidding. In our work, mean price bidding is only used for illustrating market volatil-

ity(see Section 2.1.2); yet mean price bidding is not key to optimize. Listed basic

checkpointing schemes includes hour-boundary, rising edge-driven, and adaptively

deciding checkpointing. Results from [28] shows empirical comparison among cost-

aware schemes; however, 1) before extensive discussion on other three basic meth-

ods, hour-boundary checkpointing can still be deeply investigated by changing check-

point write interval and 2) for different bidding-running cases, the optimal check-

point write interval can be different, which implies routing checkpoint write of

variable interval can be employed; such a method along with its derived variable-

interval checkpoint write can be effective while maintaining its simplicity.

In addition, compared to [20, 16, 11] where given grace period of 2 minutes is used

for live migration, in our case, the grace period is mainly used to finish writing

checkpoint to external HDFS. (Otherwise, even the next stage can be finished, it is

lost in the next moment.)
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CHAPTER 4

DESIGN

4.1 Cluster

Suppose we choose a cluster of nodes from a node pool. And this cluster comprises a

single master node (driver node) and multiple slave nodes (executor nodes). Via control

panel we can control over the cluster in the remote datacenter. Noticed that a node reg-

istered under a framework can be easily replaced since compute capacity is ubiquitously

multiplexed and we can always migrate workload from one to another [17]. Before we

run Spark jobs on instances and recover job from failure, we first figured out how driver

and executor nodes work in the cluster.

4.1.1 Driver Node Life Cycle

Driver node goes with the cluster until the cluster is terminated or expires. The driver

node handles 1) partition designation as well as balance workload throughout the cluster,

2) catching exceptions catch, 3) recovering from node failure, 4) issuing checkpoint write if

appropriate, and 5) synchronizing progress through all the executor nodes. Spark driver

node life cycle is depicted in Figure 4.1.

4.1.2 Executor Node Life Cycle

As we can see, after acquiring the executor node once its bidding is over the threshold

price set by the service provider. After being acquired, executor node is under control

of driver node and is to be designated workloads. If there is no interruption caused by
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underbid, the node runs and finally exits peacefully; otherwise it is terminated and its

alternative is requested to the cluster. Executor node life cycle is depicted in Figure 4.1.
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“(<event-name>)” indicates time elapsed or event emerging during the state transaction.
“<transaction-condition>” indicates transaction condition from one state to another. 

Presumedly interruption occurs only when executor node runs into “ready and 
computing” phase. And presumedly we don’t bid for more nodes whose total number 
exceeds the original setting..

Figure 4.1: Life cycles of nodes in cluster

4.1.3 Job Classification

Real-world jobs can be roughly classified into two categories:

1. Iterative MapReduce application as an example is one kind; when executed on

Spark cluster, stages are inter-dependent since input for a stage is always the out-

put from previous stage. Obviously in such cases, the all the intermediate and final

results can be attributed to the first stage and the very input datasets. In this way,

if a revocation occurs, all the active nodes are paused until the lost intermediate are

generated from the very beginning.
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2. Unlike stage-interdependent tasks, when the node number decreases, there is no

need to start over, rather, old lost RDDs is simply not needed any more; instead, the

processing capacity shrinks. A good example would be streaming; although there

is no iteration that forms a stage, streaming often comes with data retrieving and

analyzing online, which could be coded into transformations and actions.

4.1.4 Cluster Prototype

We built a prototype dynamic cluster whose node number always changes. A specific

number of full-price (always-on) instances to ensure full control over the node availabil-

ity. Cluster can be manipulated via control panel such that Spark executor processes are

manually terminated and restarted on need basis. Such a design simulates node loss and

new node requests in the spot market.

Suppose Spark runs under periodic pattern of fluctuating node availability. And such

a given pattern is discretized to fit in to integer node number (see Figure 4.2). Thus

job completion time in such a dynamic cluster can be observed and compared to that

in static cluster with no node number change. The sample rate determines mean time be-

tween mandatory pattern alteration and the interval is defined as a unit time. Noticed that

in a periodic pattern, there are two phases, 1) on ascending phase, new nodes are added

and 2) on descending phase, nodes are revoked. So shrinking MTBA can either boost

computing (on ascending phase) or deteriorate node loss even more and vice versa. In

later results (see Section 6.2), we can see that MTBA is key parameter and may determine

whether Spark can survive cascading/consecutive revocations or not.
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Figure 4.2: Pattern to apply on Spark cluster

4.2 Effectiveness Experiment

We conduct experiments to prove that it is possible to run Spark job in decent time with

proper parameters. Noticed that number of data partitions, or RDD, are constant from the

view of the system; rather than in a queue to be designated on new nodes, these RDDs

are crammed on existing active nodes. For discussing effectiveness and more details,

the amplitude, cached RDD number, and mean time to fail are manipulated. We hard-

set some factors to reasonably simplify the problem (see Table 4.1). And we conduct

experiments over parameters that listed below.

4.2.1 Amplitude

Amplitude of pattern is a direct parameter that impacts. We first set a (10± 6)-node

dynamic cluster, which in long term average node number is 10. A stage holds 0+ trans-

formation and 1+ action calls; recall that lazy evaluation lying in the scheduling basis and

RDD, if lost, is regenerated from the lineage back to a specific stage (need action to trig-

ger). Thus with the cached and to-be-regenerated RDD number constant, theoretically,

if the job recoverable, a stage with less active executor node would run for long time to

finish this stage. To exemplify the varying situation, we first set a (10± 4)-node dynamic

cluster whose mean node number in long term is the same with a 10-node static cluster
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parameters how it affects

performance in
static cluster

Performance in the static cluster outlines the best performance
that can be possibly achieved in the dynamic cluster. In the dy-
namic cluster, if there is no node failure and thus rollback, job
completion by stage whose time determined by the performance
in the static cluster would not be repeated. So avoiding revocation
as much as possible lead to optimal results.

timeout Timeout is criterion for the system to terminate the job and time
limit within which node connectivity issues must be resolved. By
default, after three attempts on reconnection with the failed node,
the current job will be killed by driver program.

CPU core More available CPU cores are almost positive for everything.
In our experiment, we restricted CPU core per node (using
m3.medium instances).

checkpoint
write

Checkpointed job does not need to start over. However, if there is
no failure, checkpoint write time is wasteful. In the effectiveness
experiment, to test if Spark without high-latency checkpointing
can complete jobs.

Table 4.1: Factors that potentially affect resilience

without node loss and addition. Later a change in amplitude are discussed. Results of

these sub-experiments are stated in Chapter 6.

4.2.2 Parallelism Degree

Cached RDD number (or parallelism degree) in total is set to 20, making maximum of

hosted RDD number on each executor node less than 2.0. By default, an equivalent CPU

core can process 2 RDDs at the same time thus as active node decreases, average number

of RDD hosted on executor node exceeds 2.0 and simply lengthen job completion time

for this stage by at least 100%. There is also an auxiliary experiment to see how RDD per

node impacts performance.
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4.2.3 Mean Time to Fail/revoke

The interval, or mean time to fail/revoke, is the key impact from the exterior envi-

ronments, and whether the Spark cluster could recover from the turbulent technically

depends on whether the capacity to recover meet the deadline (there is a timeout in the

system).

4.2.4 Mean Time to Write Checkpoint

Later when we combined usage of both lineage and traditional checkpoint mecha-

nisms, how often we conduct checkpoint write also affect Spark cluster performance.

From [13], we know that for a single-node batch-job, the job completion time is given

by

Tw(τ) = Ts︸︷︷︸
solve time

+

(
Ts

τ
− 1
)

δ︸ ︷︷ ︸
checkpointing

dump time

+ [τ + δ] φ(τ + δ) n(τ)︸ ︷︷ ︸
recovery time

+ Rn(τ)︸ ︷︷ ︸
restart time

, (4.1)

where Ts denotes job completion time without failure (solve time), n(τ) interruption time,

δ time to write a checkpoint file, φ(τ + δ) fraction of interruption averagely, and R time

to restart. And the optimum of mean time to write checkpoint is given by τopt =
√

2δM,

where M denotes mean time to interrupt. Not only can it be used for verification that

the simulator reflects real-world cases, we expect to extend its scope to distributed cases.

On the other hand, when real history price is used to simulate the cluster, Equation 4.1

does not quite apply any more, and hidden mathematically representation is still to be

discovered.

4.3 Simulator

For real-world tasks it takes at least 10 minutes to finish a task, and even longer time

to repeatedly get reasonable result with less deviations. To speed up development, we
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Figure 4.3: Simpler cluster life cycle description

designed a simulator. An intuitive idea to simulate the cluster is to multithread the sim-

ulator program. In details, we can deploy one thread for driver node and multiple for

executor nodes. However, to stick with the goal rather than simply emphasize on the

mechanism or implementation, as well as ability to extend the program in the future, we

prioritize the observation of partition progress; in comparison, node is container where

partitions of workload is hosted, and node life cycle that later as we can see, could be

logically integrated as a whole cluster.

In Figure 4.1, we can see that life cycle mostly coincides with executor node in the

cluster except for the partition is designed to live until the job is finished. After tentatively

implementing a multi-threading prototype, we found it was neither easy to extend nor

necessary: 1) stage completion time for an iteration is determined by the longest partition

processing time from a specific node in the cluster, thus the competing process is trivial

to record in the simulator, and 2) cost exists as long as instances are on. Thus, in sense

of optimization, we can simply calculate the longest processing time for that stage. And
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checkpoint mechanism would pause the processing, thus processing and checkpoint if

any are executed in serial under the scheduling from driver node. Thus a much simpler

as well as much faster single-threaded simulator is implemented from the angle of the

while cluster. In the description of the cluster, we focus on how partition state is transited.

See details in Figure 4.3.
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CHAPTER 5

IMPLEMENTATION

Most parts for this project is implemented in Python, Shell Script and illustrative ap-

plications are in Scala. Also project platform is available and open-sourced at https:

//github.com/JonnyCE/project-platform. And this chapter is organized in three parts:

1) Cluster setting, 2) platform and 3) pattern-based controller implementation.

5.1 Cluster Setup

Components listed in Table 5.1 are necessary to set up a cluster. Unfortunately, there

is no handy deploy tool from Amazon official; in fact, Amazon’s command line tools

are quite fault-prone when deploying manually. At this stage we use both Spark EC2

(released by Spark group) and implemented console tools based on Python Boto 2.3.8,

and this will be the part comprising our abstraction interface.

component version usage

Spark 1.2.x or 1.3.x Framework where applications submitted
HDFS Hadoop 2.4+ Delivering distributed file system
Mesos 0.18.0 or 0.21.0 Working as resource allocator
YARN Hadoop 2.4+ Mesos alternative, negotiator

Scala 2.10 Front end for Java runtime
Python 2.6+ Boto 2 package is employed for customization

Java 6+ Backend for Hadoop, Scala and Spark
Bash built-in Built-in script interpreter

Table 5.1: Components and compatibility
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• EC2 Spot Instances With a pool of spot instances [1], we can request flexible number

of node to use. At this stage, we use Spark official EC2 deployment tool to automate

authorization between driver and executor nodes. To manipulate the execute node,

an ancillary control panel is also implemented based on AWS Boto API and Secure

Shell (SSH) pipe as supplement. And to deliver better performance, in the effective-

ness experiment, we employ a m3.large instance as driver node, and m3.medium as

executor instances.

• Storage Master-slave modeled HDFS cluster consists of a single namenode that man-

ages the file system namespace and regulates access to file by clients and a number

of datanode. HDFS exposes a file system namespace and allows user data to be

stored in files [7]. The existence of a single HDFS namenode in a cluster simplifies

the architecture of the system. the namenode is designed to be the arbitrator and

repository for all HDFS meta-data and user data never flows through the namenode.

In this paper We presume that the HDFS cluster (storage) the Spark cluster do not

overlap. At this stage, we also can use AWS S3 Bucket for easier deployment.

Now, we host Spark application (.jar) with experiment dataset and tarball of Spark

framework in the bucket.

• Resource Allocator Mesos or YARN could be used to multiplex resource usage due to

the essence that there are multiple frameworks running on each single node. Mesos

is designed to offer resources and collect feedback (accepted or refused) from multi-

tenant frameworks which do nothing against the nature of frameworks [17]. Yet

YARN is an alternative choice that we did not take a close look at. To port Mesos on

our target operating system, we compiled Mesos of both 0.18.0 and 0.21.0 and one

of them is chosen to be installed as default one.
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Spark, the Framework This experiment is to focus on fault tolerance and resilience fea-

tures of Spark. Among different distributions of Spark, we choose binary package

that is pre-built for Hadoop 2.4+. And two most recent versions, 1.2.2 and 1.3.1, in

regard to compatibility.

• Control panel We have implemented different components for this project platform

shown in Table 5.2.

component description

console based on AWS Boto 2.38 to request lookups and make snap-
shot/user image on current cluster

experiment a spot market request simulator, generating and propagating avail-
ability pattern to the Spark framework

logger recording and analyzing availability pattern impact
graphic library supporting data visualization
math library containing price analysis tools

Table 5.2: Control panel

• PageRank demo application The lineage of example PageRank consists 13 stages: 2

distinct actions, 10 flatmap transformations for there are 10 iterations and 1 collect

action.

• Cluster setting The cluster is set as shown in Table 5.3. Noticed that time factor setting

is based on such a cluster. In the experiments based on simulation in Section 6.3, a

time unit (40 seconds) is based on stage completion time.

5.2 Simulator Implementation

The behavioral pseudo-code for the simulator essence is list below.

The simulator, as core part of the experiment, is implemented in C++ for better perfor-

mance, while analytical jobs are done in Python and shell scripts.
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overview driver m3.large

executor m3.medium, with 2.4 GiB memory per node for Spark
worker

usage cores unlimited, 10 for most of time
memory 300 to 500 MiB/12.8 GB in total
disk 0 B for we did not set up checkpoint write

application description PageRank with 10 iterations
variable iteration count, in this case we set it constant 10; partition

number as known as RDD caching degree, or degree of par-
allelism

language Scala 2.10 with Java 1.7 as backend
package .jar package to submit

dataset source https://snap.stanford.edu/data/web-Google.html

filesystem hosted on S3 bucket: s3n://spark-data-sample/web-

Google.txt

description containing 875713 nodes, 5105039 edges

Table 5.3: Cluster setting

1 initialization

2

3 while not all partitions finished processing:

4 if time to interrupt:

5 chosen victim nodes are "down"

6 hosted partitions roll back to checkpoint

7

8 if iteration -based:

9 select only lagging partitions to resume

10 else:

11 select all partitions to resume

12 designate corresponding partitions to active nodes

13

14 overhead of resume applied if any

15 bring back nodes if appropriate

16 process partitions

17

18 if checkpoint enabled and time to write:

19 checkpoint write

20

21 done
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CHAPTER 6

EVALUATION

6.1 Evaluation of Effectiveness Experiment

Job completion time is lengthened when there is loss and fallback and varies according

to specific parameters. Presumably, there is no re-partitioning that changes parallelism

degree, i.e. partition number of a task. In a dynamic cluster, with constant compute

capacity of a single node (we only focus on CPU related capacity), stage completion time

always varies due to fluctuating node number of the cluster.

Quantitatively, we set a cluster of constant 10 nodes, or a 10-node static cluster as

pivot. In the effectiveness experiment, we set a node number fluctuating according to

a periodic pattern with average value 10, i.e. a cluster of (10 ± m) nodes. With such

technique, in sense of node availability (the number of available node for computing),

these two clusters are at the same cost in average. Nevertheless, a (10±m)-node cluster

should not be the equivalence of a 10-node static cluster; a (10+ m)-node cluster loses 2m

nodes due to revocations on purpose.

We would show the impacts from multiple aspects:

• Amplitude of the node availability varies in different scenarios; a 10 ± m1- and a

10± m2-node cluster (m1 6= m2) share the same cost on average if running for the

same time in the long term. However, to finish a exactly same jobs, the completion

time may varies.

33



• An implication of node availability decrement undermines performance; such a

decrement happens in the descending phase of the pattern. If there is no change

in node availability and the node number remains at a certain level, the completion

time is only determined by the workload and compute capacity. And if the dynamic

cluster, within a short duration, the average compute capacity is the same with one

in the static cluster but job completion time increases, we assume there is extra over-

head for node availability fluctuation

• Reservation of always on node. (unfinished) There has been discussion on whether

to employ always-on node to guarantee the performance or not. For the sake of

simplicity, only an illustration is shown in Figure 6.2, and we choose not to utilize

such alway-on instances for simplicity.

6.1.1 Base Completion Time

To settle the question of existence of overhead from node availability change, we first

measured job completion time in a static cluster as pivot. Job completion time comprises

each stage completion time. To standardize, we measured stage completion time where

constant partitions are mapped onto various number of executor nodes. And such mea-

surement guided the development of the simulator for parameter configuration. The

static cluster for measuring base completion time is configured as: 1) 10 m3.medium ex-

ecutor nodes, or 10 active CPU cores, 2) each instance has 1 CPU core, able to process 2

partitions in the same time and 3) demo MapReduce application contains 10 iterations.

Job completion time is shown in Table A5, and Figure 6.1.

In this experiment, we designated 20 partitions onto 10 nodes. As partition number

is increased from 2 to 20, job completion time drops; hosted partition number decreased

from 10.0 to 1.0. Noticed that stage completion time slightly increases when less than 2.0
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partitions are hosted on a CPU core on average. In addition, job completion time sum

total is approximately the same as what is given in the Spark WebUI (a built-in graphical

control panel) Result is shown in Table A5 and Figure 6.1.
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Figure 6.1: Figure for Table A5

6.1.2 Job Completion in Dynamic Cluster

In the effectiveness experiment, we applied a pattern to node availability to a cluster

with at most 10 + m executor nodes, making it a dynamic cluster. And there is no extra

fault tolerance mechanisms applied except the internal one. We set the amplitude of pat-

tern from {4, 6, 8}, making the (maximum, minimum) of a cluster node number (14, 6),

(16, 4) and (18, 2) respectively. For each case, we also set comparison of cases with and

without reserved always-on nodes in the cluster. The discrete pattern is in unit of 30

seconds; node number is changed compulsorily every 30 seconds. Below 30 seconds, re-

vocation is intensified and the cluster can hardly recover and exceed the timeout caused

by cascading fallback. Timeline of each case is shown in Figure 6.2 and it shows the feasi-

bility of completing job with appropriate parameters.

We ran the same application (10 iterations) in the dynamic cluster for four times. Trend

shows that small drop from maximum of the pattern lead to shorter completion time.

Comparing a (10± 4)- and a (10± 6)-node cluster, we noticed that gap in performance

35



is small and even negligible with these case study; however, a (10± 8)-node alteration

shows obvious violation on the executing and the completion time is lengthened much

more in contrast to (10 ± 4) case. Trend also shows that running job in the ascending

phase of the pattern is much shorter than in the descending phase, which is intuitive and

expected. Nevertheless, in this illustrative evaluation, we accessed to full control over

the node availability, otherwise, in the real-world, we cannot predict on the phase change

of the market and the alteration of price is not gradually but abruptly. Moreover, the

absolute overhead is dense, even the (10± 4) cluster ran the task for much longer time

than the bad cases shown in Figure 6.1. Such a result can be attributed to the lack of proper

fault-tolerant mechanisms.

In addition, reserved always-on (on-demand) instances boost the performance. And

on rare occasions, if node availability is extremely low, and memory capacity is far more

below abundant, even loading dataset on need basis cannot be smooth; rather, virtual

memory swapping between memory and disk is automatically invoked and the latency

is magnified. In sense of guaranteeing enough memory capacity, always-on instances can

be put into use. However, on balancing the complexity of design, the cost and income,

and such technique is not applicable to all types of jobs. We proceed later experiments

without such technique.

6.2 Impacts of Parameters

In each experiment, we have 3 dynamic cluster with different pattern amplitude; a

single parameter is varying while others are unaltered. Also in each experiment consists

of at least 20 submissions of the example PageRank application. To simulate the real-word

cases, we submit application to the cluster at arbitrary phase of periodical availability

pattern.
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Figure 6.2: Running time in dynamic cluster

So far we gain some illustrative results as shown in Figure 6.3. The first figure shows

the impact on job completion time by changing MTBA. Trending is that longer MTBA

interval leads to smaller variance of job completion time although sometimes some scat-

tered cases have much longer job completion time. The second figure shows the impact

on job completion time by changing lineage length, in this case, the iteration number. The

trending reflects the correctness of intuition that either larger amplitude (corresponding

to less availability) or longer iteration makes cluster even harder to recover. If we compare

amplitude varying and iteration varying separately, we find that variance beyond 25 to 75

percentile increasing holds, although as iteration number increases, monotonicity of job

completion time within 1.5 IQRs no longer valid. The third figure shows the impact on

job completion time by changing partition number. It is straight forward that increasing

parallelism degree from 10 to 20 leads to lower overhead and faster time finishing job. Yet

it is not always valid that amplitude increasing surely deteriorate recovery. More scrutiny

is needed on this part.
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Figure 6.3: Parameter impacts on job completion time

6.3 Results from Simulation

Verification With inspiration of optimization in single-node batch-job case, we were to

apply optimum for distributed jobs. Before that, we first verified the simulator by running

a single-node batch job. After the correctness is proven, we extended the experience to

distributed cases and conducted a simple MapReduce to gain result, and it turned out to

be applicable. Both cases are under such restrictions: 1) revocation occurrence satisfies the

approximation of Poisson distribution, 2) a state of the job at one moment is dependent

on previous states, and 3) revocation failure rate is proper such that with checkpoint write

a job could be finished. Both cases are shown in Figure 6.4.

Figure 6.4: Verification and extension
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Experiments based on simulation From the actual execution on real Spark Instances,

we gathered some data: 1) in a static cluster, stage completion time is around 40 seconds

when average RDD number on an executor node is less than 2.0. and 2) Spark cluster can

recover from a revocation every 30 seconds averagely (based on both pre-selected pattern

and Poisson Distribution). With these a posteriori experience, we did some case studies

with simulations of m3.large instance, and we get some sample results listed below. And

these results are main patterns selected various experiments.

In Figure 6.5 we can see that overall trend shows that overhead from checkpoint write

impact on performance when checkpoint writing too frequently but alleviated when the

write interval set to appropriate value; however, when there are inadequate checkpoints,

severe performance deterioration takes place and becomes even worse when checkpoint

write is towards absolutely absent. Thus we see a small drop to local minimum in both

job completion time and total cost, and it becomes global minimum.

Figure 6.6 shows a pattern that resembles one in Figure 6.5. As we can see, the pattern

goes flat because there is the short duration of price alteration, where limited revocations

impact on job completion time thus total cost.

In Figure 6.7, we see that at bid of 0.16x, like patterns shown in Figure 6.5 and Fig-

ure 6.6, a small drop occurs, leading to local minimum in both job completion time and

total cost, after that, both rises. Another observation is that when we slightly rise the bid,

we can see then the only overhead is from routine checkpoint write.

Figure 6.6 shows drop and steady trending toward situation in which there is no

checkpoint write. This is attributed to constant number of revocations exist during the

job processing. Recall that if there are cascading revocations, Spark may hit timeout and

failed the job (see Section 2.1.2). So we use this to determine to what degree shorter com-

pletion time and cost saving can be achieved. In this case, with mixed fault tolerance
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scheme, ˜20% shorter completion time and ˜25% lower cost are achieved than the situation

of no checkpoint write; and compared with cases of running jobs on full-price instance,

the absolute saving in costs can be ˜75%.
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Figure 6.5: Pattern of small drop 1
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0.16 260 / 21.5% 342 / 59.8% 342 / 59.8% 375 / 17.5% 508 / 23.7% 500 / 23.4%
0.15 304 / 42.1% 370 / 72.9% 370 / 72.9% 392 / 18.3% 500 / 23.4% 500 / 23.4%
0.17 337 / 57.5% 425 / 98.6% 425 / 98.6% 400 / 18.7% 517 / 24.2% 571 / 26.7%

Figure 6.6: Pattern of small drop and constant

Noticed that result can be changed a lot when parameters are slightly tweaked. For

example, starting timeframe can lead to good or bad timing when encountering price

change, and d grace period also contributes to the timing.

Presumably, all clusters go through revocations. We conclude that:
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0.19 N/A 260/21.5% 235/9.8% N/A 485/22.7% 440/20.6%
0.18 N/A 275/28.5% 260/21.5% N/A 460/21.5% 440/20.6%
0.17 N/A 285/33.2% 280/30.8% N/A 440/20.6% 440/20.6%
0.16 320/49.5% 600/180.4% N/A 420/19.6% 850/39.7% N/A

Figure 6.7: Price-sensitive pattern

1. Optimum checkpoint write interval tends to be small, i.e. overhead from checkpoint

write is much smaller than that from rolling back with RDD recovery.

2. The robust of checkpointing in sense of interval could help lower the price of using

spot instances and work according to market information.

3. Sometimes a small rise in bid can lead to qualitative change and lower bid does not

always mean lower cost.
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APPENDIX A

SPOT INSTANCE PRICE RECORDS

purpose type vCPU ECU RAM (Gib) disk (GB)
price according to usage (USD per hour)

Linux/UNIX Windows w/ SQL

general RHEL SUSE general std. web

general t2.micro 1 var. 1 EBS Only 0.01 0.07 0.02 0.02 0.07
t2.small 1 var. 2 EBS Only 0.03 0.09 0.06 0.04 0.14
t2.medium 2 var. 4 EBS Only 0.05 0.11 0.15 0.07 0.27
t2.large 2 var. 8 EBS Only 0.10 0.16 0.20 0.13 0.43
m3.medium 1 3 3.75 1 x 4 SSD 0.07 0.13 0.17 0.13 0.35 0.18
m3.large 2 6.5 7.5 1 x 32 SSD 0.13 0.19 0.23 0.26 0.70 0.37
m3.xlarge 4 13 15 2 x 40 SSD 0.27 0.33 0.37 0.52 1.27 0.73
m3.2xlarge 8 26 30 2 x 80 SSD 0.53 0.66 0.63 1.04 2.53 1.47
m4.large 2 6.5 8 EBS Only 0.13 0.19 0.23 0.25 0.93 0.26
m4.xlarge 4 13 16 EBS Only 0.25 0.31 0.35 0.50 1.12 0.44
m4.2xlarge 8 26 32 EBS Only 0.50 0.63 0.60 1.01 2.35 0.90
m4.4xlarge 16 53.5 64 EBS Only 1.01 1.14 1.11 2.02 4.64 1.84
m4.10xlarge 40 124.5 160 EBS Only 2.52 2.65 2.62 5.04 11.81 4.58

compute c3.large 2 7 3.75 2 x 16 SSD 0.11 0.17 0.21 0.19 0.56 0.27
optmized c3.xlarge 4 14 7.5 2 x 40 SSD 0.21 0.27 0.31 0.38 1.07 0.54

c3.2xlarge 8 28 15 2 x 80 SSD 0.42 0.55 0.52 0.75 2.13 1.08
c3.4xlarge 16 55 30 2 x 160 SSD 0.84 0.97 0.94 1.50 4.26 2.17
c3.8xlarge 32 108 60 2 x 320 SSD 1.68 1.81 1.78 3.01 8.52 4.33
c4.large 2 8 3.75 EBS Only 0.11 0.17 0.21 0.19 1.41 0.42
c4.xlarge 4 16 7.5 EBS Only 0.22 0.28 0.32 0.39 1.68 0.79
c4.2xlarge 8 31 15 EBS Only 0.44 0.57 0.54 0.77 3.35 1.64
c4.4xlarge 16 62 30 EBS Only 0.88 1.01 0.98 1.55 5.58 2.23
c4.8xlarge 36 132 60 EBS Only 1.76 1.89 1.86 3.09 12.57 4.27

GPU g2.2xlarge 8 26 15 60 SSD 0.65 0.78 0.75 0.77 3.82 0.96
instance g2.8xlarge 32 104 60 2 x 120 SSD 2.60 2.73 2.70 2.88

memory r3.large 2 6.5 15 1 x 32 SSD 0.18 0.24 0.28 0.30 0.96 0.40
optmized r3.xlarge 4 13 30.5 1 x 80 SSD 0.35 0.41 0.45 0.60 1.40 0.76

r3.2xlarge 8 26 61 1 x 160 SSD 0.70 0.83 0.80 1.08 2.78 1.56
r3.4xlarge 16 52 122 1 x 320 SSD 1.40 1.53 1.50 1.94 4.66 2.37
r3.8xlarge 32 104 244 2 x 320 SSD 2.80 2.93 2.90 3.50 8.76 4.00

storage i2.xlarge 4 14 30.5 1 x 800 SSD 0.85 0.91 0.95 0.97 1.23 0.99
optmized i2.2xlarge 8 27 61 2 x 800 SSD 1.71 1.84 1.81 1.95 2.46 1.99

i2.4xlarge 16 53 122 4 x 800 SSD 3.41 3.54 3.51 3.89 4.92 3.97
i2.8xlarge 32 104 244 8 x 800 SSD 6.82 6.95 6.92 7.78 9.84 7.94
d2.xlarge 4 14 30.5 3 x 2000 HDD 0.69 0.75 0.79 0.82
d2.2xlarge 8 28 61 6 x 2000 HDD 1.38 1.51 1.48 1.60
d2.4xlarge 16 56 122 12 x 2000 HDD 2.76 2.89 2.86 3.06
d2.8xlarge 36 116 244 24 x 2000 HDD 5.52 5.65 5.62 6.20

Table A1: east-us-1 On-demand instance pricing
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data collected at 11:16 PM on October 8, 2015, us-east-1

type discounted price type discounted price

spot 1-hr fixed 6-hr fixed spot 1-hr fixed 6-hr fixed

m3.medium 14% 55% 70% c4.xlarge 15% 55% 70%
m3.large 20% 55% 70% c4.2xlarge 17% 55% 70%

m3.xlarge 15% 55% 70% c4.4xlarge 16% 55% 70%
m3.2xlarge 14% 55% 70% c4.8xlarge 23% 55% 70%

m4.large 12% 55% 70% d2.xlarge 10% 55% 70%
m4.xlarge 11% 55% 70% d2.2xlarge 11% 55% 70%

m4.2xlarge 11% 55% 70% d2.4xlarge 10% 55% 70%
m4.4xlarge 12% 55% 70% d2.8xlarge 11% 55% 70%

m4.10xlarge 14% 55% 70% g2.2xlarge 11% 55% 70%
c3.large 16% 55% 70% g2.8xlarge 18% 55% 70%

c3.xlarge 18% 55% 70% r3.large 15% 55% 70%
c3.2xlarge 20% 55% 70% r3.xlarge 14% 55% 70%
c3.4xlarge 19% 55% 70% r3.2xlarge 20% 55% 70%
c3.8xlarge 19% 55% 70% r3.4xlarge 3% 55% 70%

c4.large 16% 55% 70% r3.8xlarge 11% 55% 70%

Table A2: east-us-1 Spot and Fixed-duration instance pricing

bid c3.2xl c3.4xl c3.8xl c3.l c3.xl d2.2xl d2.4xl d2.8xl d2.xl g2.2xl g2.8xl

0.12 4208.30 3941.77 2889.94 836.22 3116.36 291.73 170.89 117.63 245.48 2952.92 706.53
0.13 4208.30 3941.77 2889.94 836.22 3116.36 163.37 125.82 86.46 231.32 2815.10 704.86
0.14 4208.30 3941.77 2889.94 836.22 3116.36 91.53 99.93 58.24 218.29 2516.51 701.34
0.15 4208.30 3941.77 2889.94 836.22 3116.36 51.86 70.76 33.93 203.58 2183.04 691.92
0.16 4208.30 3934.80 2835.78 795.31 3108.72 40.96 60.23 27.38 181.41 1900.16 676.66
0.17 4198.54 3842.84 2289.62 417.47 2859.20 31.80 52.52 19.51 149.42 1629.76 655.06
0.18 4095.47 3594.43 1703.28 199.52 2341.02 25.69 44.23 11.27 127.90 1394.20 622.41
0.19 3763.73 3189.54 1270.56 109.40 1814.31 23.58 39.07 10.10 111.63 1159.24 589.04
0.20 3308.16 2719.54 966.24 74.84 1372.86 19.41 33.63 7.47 95.73 990.44 542.97
0.21 2763.84 2260.20 732.17 54.79 1050.86 16.78 28.84 5.44 80.03 840.39 511.72
0.22 2250.29 1844.71 560.76 42.29 815.73 14.32 26.57 4.37 71.14 721.26 484.78
0.23 1820.61 1508.37 436.27 31.68 647.33 12.27 21.34 3.69 61.41 618.10 457.91
0.24 1458.20 1234.52 337.92 26.61 517.17 10.98 19.08 3.36 50.34 531.99 435.38
0.25 1171.07 1022.90 263.46 22.72 425.46 9.60 18.40 3.11 43.22 462.84 412.98
0.26 933.74 861.98 199.20 20.03 358.77 8.66 16.62 3.08 36.44 400.56 393.48
0.27 730.83 731.29 149.81 17.57 300.87 8.21 15.89 3.04 31.92 341.27 364.93
0.28 572.54 623.68 120.31 16.18 253.64 7.68 15.36 3.03 28.29 296.03 352.46
0.29 446.94 538.90 99.14 14.64 217.19 6.58 13.13 2.47 24.94 256.20 329.16
0.30 349.77 447.66 82.86 13.76 187.81 6.29 12.72 2.37 21.38 226.19 314.61
0.31 267.04 399.98 72.23 12.74 163.92 5.99 11.17 2.33 17.98 191.20 295.22
0.32 216.26 358.72 64.88 12.14 142.60 5.73 10.93 2.29 15.73 180.84 281.80
0.33 172.47 326.46 59.32 11.69 126.06 5.44 10.66 2.29 14.13 165.57 270.28
0.34 139.04 296.04 54.71 11.32 108.92 5.09 10.50 2.27 12.71 156.62 256.86
0.35 110.14 270.64 49.94 11.04 97.50 4.89 10.27 2.26 11.32 150.16 245.81
0.36 86.17 246.52 45.73 10.68 87.10 4.69 9.97 2.24 10.47 142.07 233.74
0.37 70.61 227.31 42.70 10.38 78.50 4.37 9.61 2.24 9.94 134.20 220.81
0.38 58.17 209.86 40.02 10.07 70.60 4.29 9.36 2.24 9.02 130.44 213.07
0.39 47.67 194.92 37.72 9.72 61.97 4.22 8.58 2.24 8.09 121.57 174.12
0.40 40.04 180.93 35.59 9.56 55.89 4.16 8.43 2.24 7.39 117.71 169.46

Table A3: Market volatility 01, highlighted if 10 revocations per hour
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bid i2.2xl i2.4xl i2.8xl i2.xl m3.2xl m3.l m3.m m3.xl r3.2xl r3.4xl r3.8xl r3.l r3.xl

0.12 501.09 366.49 117.09 282.46 3251.41 1245.54 498.22 3659.60 3844.26 1545.18 2622.84 294.83 2447.93
0.13 322.32 306.62 88.19 232.22 3249.80 1231.91 486.34 3655.48 3414.50 1188.36 2273.86 180.21 2069.16
0.14 190.69 240.62 69.54 159.23 3134.78 834.16 341.01 3478.44 2845.17 944.61 1924.46 107.87 1738.32
0.15 98.48 182.38 48.66 75.39 2688.93 431.16 246.89 2809.06 2289.04 759.98 1586.87 74.54 1462.18
0.16 52.12 135.67 20.81 31.29 2085.14 256.97 184.70 1958.68 1805.79 637.66 1298.44 54.27 1249.51
0.17 28.71 104.33 10.83 14.22 1487.50 170.09 120.43 1151.16 1383.41 546.06 1058.79 42.77 1093.04
0.18 16.60 87.87 9.73 2.94 1026.47 123.63 72.62 658.77 1061.92 475.58 844.49 34.79 957.97
0.19 12.50 69.29 9.02 2.93 718.37 91.68 44.86 406.11 835.73 420.97 633.72 28.81 854.50
0.20 11.33 48.20 8.33 2.23 508.89 69.63 29.71 261.24 659.86 381.20 524.49 25.03 762.62
0.21 10.20 34.11 7.59 2.11 379.22 54.64 20.67 181.14 530.21 344.24 438.66 21.72 687.50
0.22 9.64 23.24 7.09 2.06 284.66 40.44 15.88 124.84 426.58 314.60 370.76 19.51 619.24
0.23 8.70 19.30 6.38 1.30 216.24 31.51 12.54 89.01 344.61 284.27 314.30 17.29 563.00
0.24 7.60 17.83 5.96 1.30 163.46 25.44 9.56 64.78 288.72 258.80 269.92 15.66 516.74
0.25 7.01 16.36 5.52 1.29 123.39 21.03 7.92 50.66 242.19 237.83 235.92 14.51 472.94
0.26 5.99 12.68 4.86 1.28 94.77 17.31 6.21 42.31 203.48 218.54 204.71 13.28 434.99
0.27 5.72 11.37 4.51 1.28 71.92 13.82 5.67 37.40 174.86 201.68 180.16 11.86 403.32
0.28 5.49 10.20 4.09 1.28 49.36 11.20 5.14 35.18 150.38 186.51 156.81 11.04 372.71
0.29 5.38 9.14 3.73 1.01 41.19 9.66 3.24 32.37 130.38 174.11 136.53 10.54 346.48
0.30 5.17 7.77 3.52 1.01 31.72 8.42 2.06 29.66 113.01 162.09 118.88 10.09 322.22
0.31 4.52 7.06 2.92 0.98 26.26 7.10 2.06 25.58 98.81 148.93 103.41 9.68 301.22
0.32 4.41 6.67 2.77 0.98 21.60 6.10 2.06 21.20 85.82 139.12 92.68 8.53 279.34
0.33 4.23 6.33 2.66 0.98 18.32 5.13 2.06 16.84 75.50 130.38 83.10 8.30 261.26
0.34 4.19 6.10 2.48 0.98 14.67 4.23 2.06 14.48 66.61 120.61 74.47 8.00 243.47
0.35 4.01 5.80 2.42 0.98 11.93 3.70 2.04 13.14 58.59 112.62 67.90 7.84 228.26
0.36 3.91 5.58 2.36 0.98 10.09 3.20 2.04 12.13 50.62 105.11 62.23 7.63 214.63
0.37 3.88 5.42 2.29 0.98 8.72 2.83 2.04 11.36 42.92 97.41 57.48 7.41 202.59
0.38 3.71 5.07 2.22 0.98 7.54 2.51 2.04 10.69 36.00 86.54 52.03 7.21 191.20
0.39 2.77 4.31 2.06 0.96 6.11 2.37 2.04 10.09 29.53 80.57 48.29 7.06 181.66
0.40 2.74 4.13 1.97 0.96 5.79 2.33 2.04 9.60 22.12 74.46 44.79 6.89 170.71

Table A4: Market volatility 02, highlighted if 10 revocations per hour

RDD run time/second statistics

caching 1st 2nd 3rd average upper error lower error

degree instance instance instance value percent value percent

2 399.320 391.292 420.226 403.613 16.613 4.12% 12.321 3.05%
3 243.068 219.362 227.840 230.090 12.978 5.64% 10.728 4.66%
4 122.002 121.276 121.354 121.544 0.458 0.38% 0.268 0.22%
5 102.479 117.092 106.608 108.726 8.366 7.69% 6.247 5.75%
6 97.164 102.284 102.032 100.493 1.791 1.78% 3.329 3.31%
7 91.984 90.778 95.010 92.591 2.419 2.61% 1.813 1.96%
8 87.494 80.876 89.383 85.918 3.465 4.03% 5.042 5.87%
9 78.674 77.551 78.640 78.288 0.386 0.49% 0.737 0.94%

10 68.813 68.366 66.861 68.013 0.800 1.18% 1.152 1.69%
11 88.529 89.188 89.776 89.164 0.612 0.69% 0.635 0.71%
12 83.776 88.001 85.499 85.759 2.242 2.61% 1.983 2.31%
13 81.546 82.397 81.544 81.829 0.568 0.69% 0.285 0.35%
14 79.858 78.711 80.425 79.665 0.760 0.95% 0.954 1.20%
15 77.439 78.753 79.757 78.650 1.107 1.41% 1.211 1.54%
16 75.719 75.456 76.676 75.950 0.726 0.96% 0.494 0.65%
17 73.128 73.595 72.721 73.148 0.447 0.61% 0.427 0.58%
18 72.592 72.050 73.233 72.625 0.608 0.84% 0.575 0.79%
19 71.956 71.341 70.464 71.254 0.702 0.99% 0.790 1.11%
20 72.473 74.254 75.373 74.033 1.340 1.81% 1.560 2.11%

Table A5: Baseline job completion time
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APPENDIX B

SPARK WORKING MODES

storage level description

MEMORY ONLY Store RDD as deserialized Java objects in the JVM. If the RDD does not fit in
memory, some partitions will not be cached and will be recomputed on the fly
each time they’re needed. This is the default level.

MEMORY AND DISK Store RDD as deserialized Java objects in the JVM. If the RDD does not fit in
memory, store the partitions that don’t fit on disk, and read them from there
when they’re needed.

MEMORY ONLY SER Store RDD as serialized Java objects (one byte array per partition). This is gener-
ally more space-efficient than deserialized objects, especially when using a fast
serializer, but more CPU-intensive to read.

MEMORY AND DISK SER Similar to MEMORY ONLY SER, but spill partitions that don’t fit in memory to disk
instead of recomputing them on the fly each time they’re needed.

DISK ONLY Store the RDD partitions only on disk.
MEMORY ONLY 2,

MEMORY AND DISK 2 Same as the levels above, but replicate each partition on two cluster nodes.

Table A1: Storage level of RDD

transformations

map( f : T→ U) : RDD[T] → RDD[U]

filter( f : T→ Bool) : RDD[T] → RDD[T]

flatMap( f : T→ Seq[U]) : RDD[T] → RDD[U]

sample( f raction : Float) : RDD[T] → RDD[T] (Deterministic sampling)
groupByKey() : RDD[(K, V)] → RDD[(K, Seq[V])]

reduceByKey( f : (V, V)→ V) : RDD[(K, V)] → RDD[(K, V)]

union() : (RDD[T], RDD[T]) → RDD[T]

join() : (RDD[(K, V)], RDD[(K, W)]) → RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)], RDD[(K, W)]) → RDD[(K, (Seq[V], Seq[W]))]

crossProduct() : (RDD[T], RDD[U]) → RDD[(T, U)]

mapValues( f : V→W) : RDD[(K, V)] → RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)] → RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)] → RDD[(K, V)]

actions

count() : RDD[T] → Long

collect() : RDD[T] → Seq[T]

reduce( f : (T, T)→ T) : RDD[T] → T

lookup(k : K) : RDD[(K, V)] → Seq[V] (On hash/range partitioned RDDs)
save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table A2: Transformations and actions
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