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ABSTRACT

OPTIMAL BASIS FOR ULTRASOUND RF APERTURES:
APPLICATIONS TO REAL-TIME COMPRESSION

AND BEAMFORMING

FEBRUARY 2014

SHARMIN KIBRIA

B.Sc., BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Patrick A. Kelly

Modern medical ultrasound machines produce enormous amounts of data, as

much as several gigabytes/sec in some systems. The challenges of generating, stor-

ing, processing and reproducing such voluminous data has motivated researchers to

search for a feasible compression scheme for the received ultrasound radio frequency

(RF) signals. Most of this work has concentrated on the digitized data available

after sampling and A/D conversion. We are interested in the possibility of com-

pression implemented directly on the received analog RF signals; hence, we focus on

compression of the set of signals in a single receive aperture. We first investigate

the model-free approaches to compression that have been proposed by previous re-

searchers that involve applications of some of the well-known signal processing tools

like Principal Component Analysis (PCA), wavelets, Fourier Transform, etc. We also

consider Bandpass Prolate Spheroidal Functions (BPSFs) in this study. Then we

consider the derivation of the optimal basis for the RF signals assuming a white noise
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model for spatial inhomogeneity field in tissue. We first derive an expression for the

(time and space) autocorrelation function of the set of signals received in a linear

aperture. This is then used to find the autocorrelation’s eigenfunctions, which form

an optimal basis for minimum mean-square error compression of the aperture signal

set. We show that computation of the coefficients of the signal set with respect to

the basis is approximated by calculation of real and imaginary part of the Fourier

Series coefficients for the received signal at each aperture element, with frequencies

slightly scaled by aperture position, followed by linear combinations of corresponding

frequency components across the aperture. The combination weights at each fre-

quency are determined by the eigenvectors of a matrix whose entries are averaged

cross-spectral coefficients of the received signal set at that frequency. The principal

eigenvector generates a combination that corresponds to a variation on the standard

delay-and-sum beamformed aperture center line, while the combinations from other

eigenvectors represent aperture information that is not contained in the beamformed

line. We then consider how to use the autocorrelation’s eigenfunctions and eigenval-

ues to generate a linear minimum mean-square error beamformer for the center line

of each aperture. Finally, we compare the performances of the optimal compression

basis and to that of the 2D Fourier Transform.
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CHAPTER 1

MEDICAL ULTRASOUND: IMAGE FORMATION AND
COMPRESSION PROBLEM

1.1 Introduction

Ultrasound, one of the most popular modalities in medical imaging, is used to

image internal organs of the human body, map blood flow and show tissue motion.

Its popularity arises from its high resolution real-time image generation capability

without the use of harmful radiation and mostly non-invasive nature of application.

An ultrasound system generates images by sending high frequency sound waves inside

the body and then processing the received returns reflected from the organs. This

chapter gives a general idea about how ultrasound images are generated, the chal-

lenges of processing the signals and the motivation behind our work with ultrasound

RF signals.

1.2 General Idea Behind Ultrasound Imaging

The central element of an ultrasound system is the array of piezoelectric ultra-

sound transducers. Transducers are devices that convert one form of energy into

another by changing their internal structure. Ultrasound transducers convert electri-

cal energy into acoustical energy and vice versa. A short but high frequency electrical

pulse in the 2MHz to 20MHz range is used to excite the transducers in the ultrasound

transmitter to generate the sound waves. The transmitted waves get reflected by the

internal organs and are received by the receiving transducer array. The transducers

in the receiver convert the received sound waves into electrical signals.
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To image an organ, the portion of interest is at first divided into several scan

lines. Then a number of transducer elements in the transmitter array (also called

an aperture for that scan line) are excited using a high voltage and short electrical

pulse. The sound wave generated in each transducer is then delayed appropriately

to focus onto a specific point on a specific scan line. This process is called trans-

mit beamforming. The focused sound wave then propagates along the scan line and

gets reflected as it goes through various tissue layers with different material prop-

erties. The reflected sound waves are received at the receiver transducer array and

are converted into electrical signals. The signals received at different elements of the

array are aligned by again applying appropriate delays and then summed to get the

received beamformed signal. Then an image line is generated by detecting peaks in

the beamformed signal using envelope detection and then log compression is used to

reduce the dynamic range for efficient display. Once all the amplitudes for all the

scan lines have been detected, scan conversion needs to be performed to display the

image on a CRT monitor for analysis by the doctor or ultrasound technician.

1.3 The Challenges in Ultrasound Signal Processing and the

Motivation for Our Work

Although ultrasound has the advantage of not using harmful radiation, the image

quality is far behind that of other imaging modalities. To scan large areas quickly

and to improve the image quality, the number of transducer elements in the transmit-

ter and receiver array and the sampling frequency needs to be increased. In modern

ultrasound systems, a typical transducer array can have 64-256 elements and the

number is expected to grow rapidly in the future. The increasing number of trans-

ducer elements complicates the front end of the system. As these transducers can

operate at a sampling frequency of 25-60 MHz, they can even generate tens of Giga-

bytes or tens of billions of samples per second for high-resolution images. Processing,
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storage, transportation and reproduction of the huge number of samples can be quite

expensive.

From an ultrasound system designer’s point of view, the challenges are to reduce

the cost of processing by finding a feasible compression scheme that reduces the num-

ber of samples needed to process, retains the quality of the image, and simplifies the

front end of the ultrasound system. Most of the compression schemes have been im-

plemented digitally and require analog-to-digital conversion before processing, which

is quite expensive. These signal processing challenges motivated us to formulate a cost

effective real-time compression scheme. As beamforming of received pulse-echo data

generally involves the combination of signals from multiple channels within an aper-

ture, we also develop a scheme for minimum mean-square error (MSE) beamforming

that is compatible with our compression scheme.

1.4 Our Contributions and Organization of Rest of the The-

sis

In our work we are interested in the possibility of compression of the set of signals

in a single receive aperture. We first investigate the model-free approaches to com-

pression that have been proposed by previous researchers that involve applications

of some of the well-known signal processing tools like Principal Component Anal-

ysis (PCA), Wavelets, Fourier Transform, etc. We also consider Bandpass Prolate

Spheroidal Functions (BPSFs) in this study.

Then we consider the derivation of the optimal basis for the RF signals assuming

a white noise model for spatial inhomogeneity field in the tissue. We first derive an

expression for the (time and space) autocorrelation’s eigenfunctions, which form an

optimal basis for compression of the aperture signal set. We show that computa-

tion of the coefficients of the signal set with respect to the basis is approximated by

calculation of the Fourier Series coefficients for the received signal at each aperture

3



element, with frequencies scaled by aperture position, followed by linear combinations

of corresponding frequency components across the aperture. The combination weights

at each frequency are determined by the eigenvectors of a matrix whose entries are

averaged cross-spectral coefficients of the received signal set at that frequency. The

principal eigenvector generates a combination that corresponds to a variation on the

standard delay-and-sum beamformed aperture center line, while the combinations

from other eigenvectors represent aperture information that is not contained in the

beamformed line. We then consider how to use the autocorrelation’s eigenfunctions

and eigenvalues to generate a linear minimum mean-square error (LMMSE) beam-

former for the center line of each aperture. Finally, we compare the compression

performances of the optimal basis and 2D Fourier Transform.

Chapter 2 provides a simple description of the functionality of the portion of the

ultrasound system we are interested in the analog front-end and beamformer. In

chapter 3, we discuss some significant previous works on ultrasound RF compression

and also investigate the performance of some of those techniques. In chapter 4, we

discuss how we developed the optimal basis approach, its compression performance,

and the minimum MSE beamformer. We also compare the compression performances

of optimal basis and 2D Fourier Transform. This chapter is followed by concluding

remarks and suggestions for future work.
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CHAPTER 2

ULTRASOUND ANALOG FRONT-END AND
BEAMFORMER AT A GLANCE

This chapter provides a brief description of the functionality of the analog front-

end and beamforming part of the ultrasound system. This will make it easier to

understand which part of the overall system we are dealing with.

Figure 2.1. General block diagram of a medical ultrasound system as shown in
Texas Instruments white paper [2]
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Figure 2.1 shows the overall diagram of the ultrasound system. At first there

is the transmitter and receiver part which is followed by the analog front-end that

denoises and digitizes the signal. The analog front-end is followed by the signal pro-

cessing block for image formation and enhancement which is divided into three parts-

front-end, mid-end and back-end processing. The front-end includes the beamformer,

mid-end processing includes components for filtering, detection and log compression,

and the back-end includes scan conversion, speckle reduction and other processing

components to enhance the image and prepare it for final display.

A critical component of the transmitter and receiver of the system is the ultra-

sound transducer. Each transmitter and receiver is made of an array of piezoelectric

ultrasound transducer elements that transmit focused energy into the body and re-

ceive the resulting reflections. Each element is connected to the system with fine

coaxial cables. High voltage multiplexing switches located in the transmitter and

receiver are used to connect the number of active transducer elements required for

the operation. A digital transmit beamformer generates the proper time-delayed

and phase shifted digital excitation signal to form a focused transducer signal. The

signals are then converted into analog signals and after being amplified using low-

noise-amplifiers (LNAs), excite the transducer elements. The excited piezoelectric

transducer elements convert the electrical energy into high frequency acoustical en-

ergy. An acoustical impedance matched layer of the transducer and a conducting gel

is used to help the generated focused sound wave penetrate the human body. The

sound wave propagates through different tissue layers and gets reflected. Due to the

nonlinear nature of the human body, the signal experiences frequency-dependent at-

tenuation and loses energy after going a certain distance. The reflected returns from

the tissue boundaries are received at the receiver transducer array and are converted

into electrical signals by the transducer elements. These signals are then forwarded

to the analog front-end of the system.

6



Figure 2.2. The portion of ultrasound analog front-end and beamformer we are
working on

The analog front-end of the ultrasound system is a sophisticated part consisting of

analog signal processing components like Low-Noise-Amplifiers (LNAs), Time Gain

Compensation (TGC) amplifiers that remove noise and distortion in the signal, and

Analog to Digital Converters (ADCs) that digitize the analog receive signals. The

received signals are processed by the LNAs to denoise and add sufficient gain to

the signals. Then, a Variable-Gain Amplifier (VGA) is used to compensate for the

frequency attenuation experienced by the signal and to help to map the signal to get

the dynamic range required for the ADC. An Anti-Aliasing Filter (AAF) is used to

remove any high-frequency noise and interference from the signal and preserve the

time-domain response of the signal.

The signal is then converted into digital form by the ADC with acceptable cost

and power levels for further processing. The ADC used in this application is typically

a 12-bit device running from 40Msps to 60Msps. The existing system can generate up

to several Gigabytes of quantizer samples per second. Increase in the image dynamic

range can require an ADC converter with more bit capacity and thus can further

complicate the analog front-end.
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The digitized signal output from the ADC is then beamformed in the beamformer.

Although both analog and digital beamformers exist, most systems use digital beam-

formers. The beamforming control unit applies the appropriate time delays to the

received aperture signals from an aperture, and then the beamformer sums the de-

layed signal to generate the beamformed signal. The beamformed signals are then

processed further in the front-end, mid-end and back-end blocks to convert them into

a format that is suitable to display on a CRT monitor for diagnostic purposes.
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CHAPTER 3

INVESTIGATION BASED ON PREVIOUS WORKS

3.1 Previous Works on Compression and Beamforming of

Ultrasound Signals

Much work has been done for the development of both lossless and lossy com-

pression schemes for ultrasound signals. Lossy compression reduces the number of

samples at the cost of sacrificing image quality; which might not be acceptable to

the ultrasound practitioners. Lossless compression provides great image quality but

not great compression. As medical imaging practitioners are sensitive to any error

introduced in the processing, there is always a trade-off between how much error due

to compression can be tolerated to retain the desired image quality.

Previous work on lossless compression of ultrasound RF data includes [7] from

researchers at Texas Instruments. The authors exploited the high correlation between

successive image lines and achieved a lossless compression of 2:1-3:1. They used a

delay-and-subtract procedure to have destructive interference and significantly reduce

the power of the adjacent lines. The residual data needs fewer bits to encode and

thus results in compression. In another paper [8], the same researchers achieved a 6:1

lossy compression by exploiting correlation between adjacent signals in both lateral

and axial direction. The decorrelation in the lateral direction is done using Discrete

Cosine Transform or Hadamard Transform. The decorrelation in the axial direction

is done using customized orthogonal wavelet packets that are optimized for a partic-

ular ultrasound probe. The paper in [3] discusses a compressive sensing approach

for compressing raw ultrasound RF signals using only 10%-50% samples. They used
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recently introduced directional wave atoms as basis for sparse representation of sub-

sampled RF signals. The paper in [13] discusses the application of finite rate of

innovation framework to ultrasound imaging that can reduce the sampling rate by 2

orders of magnitude. They derived a condition on the sampling kernel which allows

perfect reconstruction of periodic streams from a minimal number of samples. How-

ever, this work imposes severe assumptions on the nature of the received signals, and

only represents large signal impulses; the part of the signal due to scattering, which

is also considered informative by medical practitioners, is discarded.

There has been a volume of work on beamforming as well. As beamforming is

an irreversible process it is a challenge to combine the RF signals in an optimal

way to preserve the diagnostic information they contain. The paper in [1] discusses

different beamforming approaches like delay-and-sum beamforming, phase-matched

beamforming, amplitude matched beamforming, 1D matched filtered beamforming,

2D matched-filtered (2DMF) beamforming, etc. Under the assumption that acquisi-

tion noise is well described as an additive wideband Gaussian white-noise process, they

showed that signal compression across receive-aperture channels after a 2D matched-

filtering operation results in no loss of diagnostic information.

3.2 The Compression Approaches We Investigated

To find an optimal compression approach, we investigated the existing compression

approaches without assuming any model for the ultrasound signal. Then we developed

a model for the ultrasound signal and derived the optimal basis for compression.

We tried some of the approaches mentioned above. We could not use the lossless

compression approach developed in [7] as it was not applicable for real-time com-

pression. The sampling scheme in [13] requires the prior knowledge of the number

of peaks in the RF signal in question. In our trials, it showed good results when we

had knowledge of the number of peaks in the signal beforehand. But in a real-time
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ultrasound signal, we do not know the number of peaks beforehand, and in our trials

if we assumed an incorrect number of peaks the method performed poorly. Hence,

we did not further investigate that approach.

The following section discusses the compression approaches we investigated. We

used peak-signal-to-noise ratio (PSNR) and compression ratio (CR) as measures of

the compression performance those have been used other researchers previously.

The compression ratio (CR) is defined as

CR = 100× no. of non-zero coefficients used for reconstruction

total no. of coefficients
(3.1)

PSNR is the peak signal-to-noise ratio, defined as

PSNR = log10

( xmax√
MSE

)
(3.2)

Where xmax=maximum amplitude of the signal

For a signal x and its approximation xr, the Mean Squared Error (MSE) is defined

as

MSE =

∑
N

∑
M(x− xr)2

M ×N
(3.3)

3.2.1 Principal Component Analysis

In our preliminary stages of investigation we used Principal Component Analysis

(PCA), which is a simple non-parametric method for reducing high dimensional data

to lower dimension. PCA was a suitable option as it uses the data itself to generate

a basis without assuming any model.

Principal Component Analysis (PCA) converts a set of observations of possibly

correlated variables into a set of values of uncorrelated variables called principal

components. PCA helps to identify the most meaningful basis to re-express a data

set. This helps to filter out noise and reveal the hidden structure. Our goal in
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investigating PCA was to get some idea of the degree of compression that might be

possible.

We generated the PCA by calculating the eigenvector decomposition of the (em-

pirical) covariance matrix for a given set of data. The tutorial in [10] discusses the

procedure for PCA calculation. Assume we have a data set x = [x1, . . . , xn]T with

covariance matrix CX . The matrix CX can be calculated by

CX =
1

n
(x− µX)(x− µX)T (3.4)

where µX =mean of x

(x− µX)T= transpose of (x− µX)

Let the eigenvectors of CX be arranged as column vectors of the matrix Φ. Then

the PCA coefficients for a given signal x found by projecting the data set onto the

subspace created by the eigenvectors can be calculated by

c = ΦTx (3.5)

To get compression, we threshold the coefficients to get a coefficient vector cr and

the approximation of the signal is recovered using

xr = Φcr (3.6)

For the following example, we used a 250 sample window of an ultrasound cyst

phantom data set generated using a 65 element transducer array with a carrier fre-

quency of 3MHz. The sampling frequency was 100MHz. The number of PCA coef-

ficients needed to reconstruct the signal set with 0.01% MSE was 16.8% of the total

number of samples.
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Figure 3.1. Comparison of RF signal and reconstructed signal using PCA

Table 3.1. Compression using PCA

Energy Conserved Compression Ratio PSNR(dB)
99.99 5.9524 48.1486

Figure 3.1 shows the comparison of actual RF signal and reconstructed signal

using PCA. The following table shows the performance of compression using PCA.

Although PCA finds the best basis for compression, eigenvalue-eigenvector decom-

position in real-time is difficult. As we are working on a real-time implementation,

we cannot use PCA for compression.

3.2.2 Compression using Bandpass Prolate Spheroidal Functions (BPSFs)

For the next compression approach we decided to choose an appropriate basis

that matches the properties of RF signals. Due to the nonlinear nature of the human

body, the generated ultrasound signal shows frequency-dependent attenuation and

loses energy after going a certain distance, and thus can be assumed as a time-limited

signal. After denoising, we can consider the signal to be bandlimited as well.

The well-known paper by Slepian [11] discusses approximately the properties

of the Prolate Spheroid Wave Functions that can be considered as both time and

band-limited within certain interval. Prolate spheroids φn are defined with respect
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to a finite interval t ∈ [−l, l] and a frequency interval f ∈ (−B,B). They form an

orthogonal and complete set for functions in L2(−∞,∞) that are bandlimited to

f ∈ (−B,B). ∫ ∞
−∞

φn(t)φm(t)dt = δnm (3.7)

They also form an orthogonal and complete set in L2(−l, l).

∫ l

−l
φn(t)φm(t)dt = λnδnm (3.8)

where λn is the fraction of the energy of φn that lies in the interval (−l, l).

An important property of prolate spheroids is that among all the orthogonal sets

L2(−l, l), prolate spheroids have the highest energy concentration in the band of

frequencies f ∈ (−B,B) with respect to which they are defined.

The bandlimited and time-limited natures of these functions match the properties

of several types of signals seen in practice. For example, they have already been used

as a basis for the compression of EEG signals [9] with very good results.

The prolates discussed by Slepian were lowpass in nature, but we need a basis that

has the additional property of a bandpass spectrum like the modulated ultrasound

signal. The paper in [6] discusses Bandpass Prolate Spheroidal Functions (BPSF)

which are bandpass analogues of the prolate spheroids. We applied the BPSFs for

lossy compression of the ultrasound signals. These BPSFs are the eigenfunctions

φn(t) of the following equation

λφ(x) =

∫ l

−l
S0(x− x′)φ(x′)dx′ (3.9)

where

S0(x− x′) = sinc[2B0(x− x′)] cos[2πf0(x− x′)] (3.10)
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B0=Bandwidth of the signal

f0=center frequency of the signal.

If we have a data vector x ∈ <n and have a matrix Φ with BPSFs as the column

vectors, then we get the coefficients using equation (3.2) and after thresholding the

coefficients we can recover the sparse approximation of the signal using equation (3.3).

For this example we used the same cyst phantom data we used for compression

using PCA. We calculated the compression for 99.99% energy conservation in the

reconstructed signal. For the calculation of BPSF we used a bandwidth B0 =4MHz

and center frequency f0 =3MHz. Table ?? shows the compression performance of

BPSF for reconstructing the RF signal.

Table 3.2. Compression using BPSF

Energy Conserved Compression Ratio PSNR(dB)
99.99 2.8857 49.8881

Figure 3.2 shows the comparison of a signal with the reconstructed signal using

BPSFs. The time interval is 250 samples at 100MHz sampling rate, that is, 2l = 2.5µs.

Figure 3.2. Reconstruction of ultrasound RF signal using BPSF
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The sinc in kernel in (3.7) controls the time interval over which the prolate

spheroids can be considered to be concentrated and it depends on the inverse of

the bandwidth of the signal. As the bandwidth of ultrasound signals is in the MHz

range, the BPSF tends to die out after a couple µs time interval and forces us to limit

our processing to small time intervals only.

Figure 3.3. Comparison of compression performance using PCA and BPSF for
various sparsity levels

Figure 3.3 shows the comparison between performance of compression using PCA

and BPSF for various levels of sparsity. From the figure, we can see that PCA per-

forms better than BPSF for all levels of sparsity. For this we used signals from 65

transducers.

3.2.3 Wavelet and Wavelet Packet Decomposition

We then analyzed our signals with wavelets, which is one of the most power-

ful tools used in signal processing. Wavelet decomposition uses scaled and shifted

versions of a mother wavelet to decompose a signal into its high and low frequency

components. A good amount of compression can be achieved if a signal can be ex-

pressed as a combination of only a couple of scaled versions of the mother wavelet.
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As an ultrasound signal can be thought of as a superposition of scaled and shifted

versions of the transmitted pulse, wavelet decomposition can be expected to provide

good compression. The paper in [14] used the same idea to filter ultrasound signals

using wavelets.

During a level 1 decomposition using wavelets, the signal is divided into low and

high-frequency components. For further levels of decomposition, the low frequency

part is divided into low and high-frequency parts and the high-frequency part re-

mains intact. During wavelet packet decomposition, both the low and high frequency

spectrum are further divided.

For testing, we used a phantom cyst data set generated using the Field II sim-

ulation program [5]. We took a block of 250×65 signal points reflected from the

cyst phantom and did level-4 wavelet decomposition using Daubechies 10, Coiflet 5,

Symlet 6 and Symlet 8 wavelets. We chose these wavelets as they are short-duration

pulses just like the ultrasound pulse. We used the MATLAB built-in GUI for both 1D

and 2D wavelet and wavelet packet decomposition. We used a level-4 decomposition

in all cases. The coefficients found during decomposition were thresholded and the

signal was reconstructed using the remaining coefficients.

In the methods described above, we compressed the signal in 1D only, i.e., we just

compressed the individual received transducer signals in an aperture. The results

we found from the 2D wavelet decomposition showed the compression ratio can be

improved by exploiting the correlation in the received signal in successive transducer

elements. As the ultrasound signal is a bandpass signal, wavelet packet decomposition

showed better performance.

Tables 3.3-3.6 compare the performances of different wavelet analysis approaches

for the same energy conservation in the reconstruction.
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Table 3.3. 1D analysis using wavelets.

Wavelet Name % Energy Conserved Compression Ratio PSNR(dB)
coif5 99.99 3.4245 47.7959
db10 99.99 3.8916 47.917
sym6 99.99 3.8667 47.6305
sym8 99.99 3.8375 48.1203

Table 3.4. 1D analysis using wavelet packets.

Wavelet Name Energy Conserved Compression Ratio PSNR(dB)
coif5 99.99 5.4634 48.1581
db10 99.99 5.6774 48.0814
sym6 99.99 3.9216 47.8988
sym8 99.99 4.8842 48.3023

Tables 3.3 and 3.4 show the compression performances using 1D wavelet and

wavelet packet decomposition for the same energy conservation. For both cases db10

showed better performance.

Tables 3.5 and 3.6 show the compression performances using 2D wavelet and

wavelet packet decomposition for the same energy conservation. In both cases sym8

showed the best result.

Table 3.5. 2D analysis using wavelets.

Wavelet Name Energy Conserved Compression Ratio PSNR(dB)
coif5 99.99 4.6965 57.917
db10 99.99 4.665 57.9695
sym6 99.99 4.9396 57.9016
sym8 99.99 5.0138 57.9512
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Table 3.6. 2D analysis using wavelet packets.

Wavelet Name Energy Conserved Compression Ratio PSNR(dB)
coif5 99.99 8.9021 57.745
db10 99.99 8.3122 58.0143
sym6 99.99 9.6334 57.9098
sym8 99.99 10.3247 57.9246

Figure 3.4 and 3.5 show the compression performances using 1D wavelets and

wavelet packet decomposition respectively. The figures show the compression perfor-

mances using Daubechies 10, Coiflet 5, Symlet 6 and Symlet 8 wavelets.

Figure 3.4. % sparsity vs % error curve for compression using 1D wavelet decom-
position

From the figures we can see that for both 1D wavelet and 1D wavelet packet de-

composition, db10 shows the best error performance for a given sparsity level.
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Figure 3.5. % sparsity vs % error curve for compression using 1D wavelet packet
decomposition

Figure 3.6 and 3.7 show the compression performances using 2D wavelets and

wavelet packet decomposition respectively. From the figure we can see that in case of

2D wavelet decomposition sym8 shows the best performance for each sparsity level.

For the wavelet packet decomposition case sym8 is again showing the lowest error

percentage for each sparsity level, i.e., better compression results.

Figure 3.6. % sparsity vs % error curve for compression using 2D wavelet decom-
position

20



Figure 3.7. % sparsity vs % error curve for compression using 2D wavelet packet
decomposition

3.2.4 2D Fourier Transform

Finally, we investigated the compression performance of the 2D Fourier Transform.

We took a block of signal points and applied the Fourier Transform both in axial

and lateral directions on it. The motivation behind using Fourier Transform was

Karhunen-Loève Transform (KLT) of the received signals that decorrelates the signal

components. In fact, it is well-known that for 2D data sets modeled as having block-

circulant covariances, the KLT is the 2D DFT. The following table shows the results

we found using 2D FFT for compression.

Table 3.7. Analysis using 2D FFT.

Energy Conserved Compression Ratio PSNR(dB)
99.99 7.1309 50.4406

The 2D FFT gave us quite good compression results, and from the implementation

point of view it seems feasible. Although the 2D FFT gives us good results, it is not

clear how it is related to the optimal compression scheme. So we decided to find the

optimal basis using a random process model for the received ultrasound signals.
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3.2.5 Our Approach: Optimal Basis for Real-Time Compression of Ul-

trasound RF Signals

All the work before this point was done without assuming a model for the ul-

trasound signal. Finally, we decided to find the optimal basis for 2D compression

of the ultrasound signal starting from a model of the signal. Many models have

been developed for an ultrasound RF signal. For example, the well-known paper by

Jensen in [4] developed a model for the propagation and scattering of ultrasound

in tissue. The expression for the received field was calculated by solving appropriate

wave equations. On the other hand, the paper [15] discusses linear system models for

ultrasound imaging. We found the optimal basis for compressing the ultrasound data

in 2D using the concepts in [4]. This approach is described in the next chapter.
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CHAPTER 4

OUR APPROACH: OPTIMAL BASIS FOR REAL-TIME
COMPRESSION OF AN ULTRASOUND SIGNAL

APERTURE

As mentioned previously, we are interested in the possibility of compression im-

plemented directly on the received analog signals, so we focus on efficient real-time

representations for RF signals comprising a single receive aperture. At first we derive

an expression for the (time and space) autocorrelation function of the set of signals

received in a linear aperture. This is then used to find the autocorrelation’s eigen-

functions, which form the optimal (Karhunen-Loève) basis for compression of the

aperture signal set.

We show that we can calculate the coefficients with respect to the basis by calcu-

lating Fourier Series coefficients for the received signal at each aperture element with

frequencies slightly scaled by aperture position, followed by linear combinations of

corresponding frequency components across the aperture. The combination weights

at each frequency are determined by the eigenvectors of a matrix whose entries are

averaged cross-spectral coefficients of the received signal set at that frequency. The

set of coefficients larger than some threshold forms the compressed representation of

the aperture signal set. We can also use the coefficients, along with the autocorrela-

tion eigenvalues, to form a linear minimum mean-squared error (LMMSE) estimate of

the reflectivity of the point scatterers along the center line (i.e. a beamformed center

line).
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4.1 Derivation of the Autocorrelation Function

Consider an N -element linear receive aperture centered at (lateral, elevation, ax-

ial) position (0, 0, 0), with elements spaced by distance ∆ in the lateral direction.

Figure 4.1. N -element linear receive aperture centered at (lateral, elevation, axial)
position (0, 0, 0)

We assume that the transmitted pulse is focused at depth z0 along the axial line

at the aperture center. Let x(t, k) denote the signal received from the focal region at

the kth aperture element. Jensen [4] developed a model for the received (scattered)

signal at a given position in terms of the transmitted pulse (or “pulse-echo signal”)

and a “spatial impulse response” that characterizes the transmit/receive system in

time and space. From Jensen’s model for scattered signals received from the focal

zone (and neglecting observation noise) we can write

x(t, k) =

∫
r(v){p(t) ∗ h(k, v, t)}dv (4.1)

where v = (x, y, z) denotes spatial position; r(v) is the tissue inhomogeneity

field that gives rise to the scattered signal; h(k, v, t) is the spatial impulse response

for receiver position (k∆, 0, 0), object position v, and time t; p(t) is the pulse-echo
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signal; and “*” denotes convolution in time. We further assume that the spatial

impulse response can be decomposed as

h(k, v, t) = g(t, (x, y), k) ∗ δ
(
t− 1

c
‖v‖ − 1

c
‖(k∆, 0, 0)− v‖

)
(4.2)

where g is a function that can vary with aperture element position, object lateral

and elevation position, and time (but not with depth in the focal region); c is the speed

of sound in tissue; and the impulse represents propagation time from the aperture

center to v and from v to the kth aperture element. This form of the spatial impulse

response is consistent with experimental results shown in [5]. Define p(t, (x, y), k) =

p(t) ∗ g(t, (x, y), k) and let

T (v, k) =
1

c
‖v‖+

1

c
‖(k∆, 0, 0)− v‖) (4.3)

Then

x(t, k) =

∫
r(v)p(t− T (v, k), (x, y), k)dv (4.4)

After doing the Taylor series expansion of T (v, k) around the focal point (0, 0, z0),

keeping the terms up to first order in x, y and z − z0, and converting the spatial

variables (x, y, z) to time variables (t1, t2, t3) by the relation time = 2
c
(space), we get

x(t, k) ≈
∫
r(t1, t2, t3)p(t− Tk − αkt3 + βkt1, (t1, t2), k)dt1dt2dt3 (4.5)

where Tk = 1
c
{z0 +

√
z2

0 + (k∆)2}, αk = 1
2

{
1 + z0√

z20+(k∆)2

}
, βk = 1

2

{
k∆√

z20+(k∆)2

}
We define the time-aligned received signals y(t, k) = x(t + Tk, k) and their auto-

correlation function

Ry([t, k]; [τ, l]) = E{y(t, k)y(τ, l)} (4.6)
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=

∫
v1

∫
v2

p(t− αkt3 + βkt1, (t1, t2), k)p(t− αlτ3 + βlτ1, (τ1, τ2), l) (4.7)

E{rt(t1, t2, t3)rt(τ1, τ2, τ3)}dt1dt2dt3dτ1dτ2dτ3

If we assume a white noise tissue inhomogeneity field, so that

E{r(t1, t2, t3)r(τ1, τ2, τ3)} = σ2δ(t1 − τ1, t2 − τ2, t3 − τ3) (4.8)

We get

Ry([t, k]; [τ, l]) = σ2

∫
v1

p
(
t−αkt3 +βkt1,

(
t1, t2), k)p

(
τ−αlt3 +βlt1, (t1, t2), l

)
dt1dt2dt3

(4.9)

Let q
(
t, (t1, t2), k

)
= p
(
− αkt, (t1, t2), k

)
then eq. (4.9) becomes

Ry([t, k]; [τ, l]) = σ2

∫
v1

q

(
t3−

t

αk
−βk
αk
t1, (t1, t2), k

)
q

(
t3−

τ

αl
−βl
αl
t1, (t1, t2), l

)
dt1dt2dt3

(4.10)

Let s = t3 − t
αk
− βk

αk
t1 to get

Ry([t, k]; [τ, l]) =σ2

∫
t1

∫
t2

[ ∫
s

q
(
(t1, t2), s, k

)
q

(
(t1, t2), s+

[
t

αk
− τ

αl

]
+

[
βk
αk
− βl
αl

]
t1, l

)
ds

]
dt1dt2 (4.11)

As
[
βk
αk
≈ βl

αl

]
we can modify eq. (4.11) in the following way

Ry([t, k]; [τ, l]) ≈ σ2

∫
t1

∫
t2

[ ∫
s

q
((
t1, t2

)
, s, k

)
q

(
(t1, t2), s+

[
t

αk
− τ

αl

]
, l

)
ds

]
dt1dt2

(4.12)

Then we define the cross-correlation function

c
(
b, (t1, t2), (k, l)

)
=

∫
s

q
(
s, (t1, t2), k

)
q
(
s+ b, (t1, t2), l

)
ds (4.13)
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From eq. (4.12) we get

Ry([t, k]; [τ, l]) = σ2

∫
t2

∫
t1

c
([ t
αk
− τ

αl

]
, (t1, t2), (k, l)

)
dt1dt2 (4.14)

Define

d(t, (k, l)) = σ2

∫
t1

∫
t2

c(t, (t1, t2), (k, l))dt1dt2 (4.15)

Then eq. (4.14) becomes

Ry([t, k]; [τ, l]) = d

(
t

αk
− τ

αl
, (k, l)

)
(4.16)

That is: the autocorrelation of the time-aligned received aperture signals is formed

from the cross-correlations of the (time-scaled, reversed and shifted) received pulses

averaged across the lateral and elevation extent of the tissue region, and the auto-

correlation for samples from signals at different aperture positions depends on the

difference in the sample times scaled according to the positions.

4.2 Derivation of the Optimal Basis for Compression

We now want to find the eigenfunctions and eigenvalues of the autocorrelation.

Let us define z(t, k) =
√
αky(αkt, k), so z(t, k) has autocorrelation

E{z(t, k)z(τ, l)} = Rz([t, k]; [τ, l])

=
√
αkαlRy([αkt, k]; [αlτ, l])

=
√
αkαld(t− τ, (k, l)) (4.17)

Let b(t, (k, l)) =
√
αkαld(t, (k, l)). Then the eigenfunctions φ(t, k) and eigenvalues

η of the autocorrelation defined by (4.17) must satisfy

N−1∑
l=0

∫ T
2

−T
2

b(t− τ, (k, l))φ(τ, l)dτ = ηφ(t, k);−T
2
≤ t ≤ T

2
, k = 0, . . . , N − 1 (4.18)
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Assume that for each k, φ(t, k) must be time limited to −T
2
≤ t ≤ T

2
. Then we

can write

φ(t, k) =
∑
i

µ(i, k)pi(t) (4.19)

where {pi(t); i = 0, 1, . . . } comprise any complete orthonormal (CON) set for

L2[−T
2
, T

2
] and µ(i, k) = 〈φ(i, k), pi〉.

Now, substitute eq. (4.19) into eq. (4.18) and take the Fourier Transform (over

t) of eq. (4.18). The result is

N−1∑
l=0

B(f, (k, l))
∞∑
i=0

µ(i, l)Pi(f) = η
∞∑
i=0

µ(i, k)Pi(f) ;

for all f, k = 0, . . . , N − 1 (4.20)

where B(f, (k, l)) and Pi(f) are Fourier Transforms of b(t, (k, l)) and pi(t) respec-

tively. Let µ = {µ(i, k); i = 0, 1, . . . ; k = 1, . . . , N − 1} ∈ l2 × [0, . . . , N − 1]. Define

the linear transformation P : l2 × [0, . . . , N − 1] → L2(−∞,∞) × [0, . . . , N − 1] by

[Pµ](f, k) =
∑∞

i=0 µ(i, k)Pi(f). Let P ∗ : L2(−∞,∞)×[0, . . . , N−1]→ l2×[0, . . . , N−

1] denote the adjoint of P . Then for every x ∈ L2(−∞,∞)× [0, . . . , N − 1] we have

〈µ, P ∗x〉 =
∞∑
i=0

µ(i, k){[P ∗x](i, k)}∗

= 〈Pµ, x〉

=
∑
k

∫ ∞
−∞

X∗k(f)
∑
i

µ(i, k)Pi(f)df (4.21)

which implies that

[P ∗x](i, k) =

∫ ∞
−∞

Xk(f)P ∗i (f)df (4.22)
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So, since
∫∞
−∞ Pi(f)P ∗j (f)df = 〈Pi, Pj〉 = δij, we have

[P ∗Pµ](j, k) =

[
P ∗
{ ∞∑

i=0

µ(i, k)Pi(f)

}]
(j, k)

=

∫ ∞
−∞

∞∑
i=0

µ(i, k)Pi(f)P ∗j (f)df

=
∞∑
i=0

µ(i, k)

∫ ∞
−∞

Pi(f)P ∗j (f)df

= µ(j, k) (4.23)

which verifies that P ∗ = P−1.

Now define an operatorB : L2(−∞,∞)×[0, . . . , N−1]→ L2(−∞,∞)×[0, . . . , N−

1] by

[Bx](f, k) =
N−1∑
l=0

B(f, (k, l))Xl(f) (4.24)

Now note: since b(t, (k, l)) is an autocorrelation function, it follows that B is

positive definite and self-adjoint. In fact,

〈Bx, x〉 =
N−1∑
k=0

∫ ∞
−∞

{N−1∑
l=0

B(f, (k, l))Xl(f)

}
X∗k(f)df

=
N−1∑
k=0

N−1∑
l=0

∫ ∞
−∞
{b(t, (k, l)) ∗ xl(t)}xk(t)dt

=
N−1∑
k=0

N−1∑
l=0

∫ ∞
−∞

∫ ∞
−∞
{b(t− τ, (k, l))xl(τ)}xk(t)dτdt

=
N−1∑
k=0

N−1∑
l=0

∫ ∞
−∞

∫ ∞
−∞

E{z(t, k)z(t, l)}xl(τ)xk(t)dτdt

= E

{[N−1∑
k=0

∫ ∞
−∞

z(t, k)xk(t)dt

]2}
≥ 0 (4.25)

which verifies that B is positive definite. Also note that b(t, (k, l)) = b(−t, (l, k)),

which implies that B(f, (k, l)) = B∗(f, (l, k)). Hence,
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〈x,By〉 =
N−1∑
l=0

∫ ∞
−∞

Xl(f)

[N−1∑
k=0

B(f, (k, l))Yk(f)

]∗
df

=
N−1∑
l=0

∫ ∞
−∞

Xl(f)

[N−1∑
k=0

B∗(f, (k, l))Yk(f)

]∗
df

=
N−1∑
k=0

∫ ∞
−∞

[N−1∑
l=0

B(f, (k, l))Xl(f)

]
Y ∗k (f)df

= 〈Bx, y〉 (4.26)

which verifies that B is self-adjoint.

Now, from eq. (4.24) and the definition of P we have

[BPµ(f, k)] =
N−1∑
k=0

B(f, (k, l))
∞∑
i=0

µ(i, l)Pi(f) (4.27)

By eq. (4.20) we have BPµ = ηPµ; and since P ∗ = P−1, it follows that

P ∗BPµ = ηµ (4.28)

where P ∗BP : l2 × [0, . . . , N − 1] → l2 × [0, . . . , N − 1] is positive definite and

self-adjoint. It’s helpful to put eq. (4.28) in the form of an (infinite) vector-matrix

equation. Note that

[P ∗BPµ](j, k) =

∫ ∞
−∞

N−1∑
l=0

B(f, (k, l))
∞∑
i=0

µ(i, l)Pi(f)P ∗j (f)df

=
∞∑
i=0

{N−1∑
l=0

µ(i, l)

∫ ∞
−∞

B(f, (k, l))Pi(f)P ∗j (f)df

}
(4.29)

Define the N -vector µi =


µ(i, 0)

...

µ(i, N − 1)

, for each i = 0, . . . , and for each (j, i)

define the N × N matrix Aji =
∫∞
−∞B(f)Pi(f)P ∗j (f)df where B(f) is the N × N

matrix having (k, l)th element B(f, (k, l)). Then from eqs. (4.28) and (4.29) we get
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∞∑
i=0

Ajiµi = ηµ
j
; j = 0, 1, 2, . . . (4.30)

Finally, define the infinite vector µ =



µ
0

µ
1

µ
2

...


and let A be the (positive definite,

self-adjoint) infinite block matrix having (j, i)th block Aji. Then by eq. (4.30) we

have

Aµ = ηµ (4.31)

Approximate solutions to eq. (4.31) may lead to practical approximations to

solutions of eq. (4.18). In particular, if we choose the basis pi(t) appropriately, we

may be able to approximate the matrix A in such a way that approximate solutions

to eq. (4.31) are easy to obtain.

Several bases have been proposed for compressing ultrasound signals, including

orthogonal wavelet packets that are matched to transmitted pulses [8], and directional

wave atoms [3]. However, it is not clear that these lead to any particularly convenient

expression for A. In this work we assume that (as is typically the case in practice) the

observation interval length is much greater than the inverse of the system bandwidth.

In particular, we assume that B(f) is smooth over intervals that are large compared

to 1
T

. Figure 4.2 and 4.3 demonstrates this property for the values of k = 11, l = 11

and k = 13, l = 15 respectively.
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Figure 4.2. Demonstration of the smoothness of B(f, (k, l)) for k = 11, l = 11

Figure 4.3. Demonstration of the smoothness of B(f, (k, l)) for k = 13, l = 15

We use the Fourier Series basis

p0(t) =
1√
T

rect

(
t

T

)

pi(t) =


√

2
T

sin
(
π i+1

T
t
)

rect
(
t
T

)
, i odd, i>0√

2
T

cos
(
π it
T

)
rect

(
t
T

)
, i even, i > 0

(4.32)
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where rect(x) =


1, |x| < 1

2

0, otherwise

Then we get

P0(f) =
√
T sinc(fT )

Pi(f) =


1
j

√
T
2

{
sinc

(
T
[
f − i+1

2T

])
− sinc

(
T
[
f + i+1

2T

])}
, i odd, i > 0√

T
2

{
sinc

(
T
[
f − i

2T

])
+ sinc

(
T
[
f + i

2T

])}
, i even, i > 0

(4.33)

It follows that

A00 =

∫ ∞
−∞

B(f)T sinc2(fT )df

≈ B(0) (4.34)

and for i odd, i > 0

Ai,i = Ai+1,i+1

≈
∫ ∞
−∞

B(f)
T

2

{
sinc2

(
T

[
f − i+ 1

2T

])
+ sinc2

(
T

[
f +

i+ 1

2T

])}
df

≈ 1

2

{
B

(
i+ 1

2T

)
+B

(
− i+ 1

2T

)}
(4.35)

= <
{
B

(
i+ 1

2T

)}

Ai,i+1 = −Ai+1,i

≈ j

∫ ∞
−∞

B(f)
T

2

{
sinc2

(
T

[
f − i+ 1

2T

])
− sinc2

(
T

[
f +

i+ 1

2T

])}
df

≈ j

2

{
B

(
i+ 1

2T

)
−B

(
− i+ 1

2T

)}
(4.36)

= −=
{
B

(
i+ 1

2T

)}
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Ai,l ≈ 0, for all other (i, l) (4.37)

So, the matrix A in eq. (4.31) can be approximated by the (positive definite,

self-adjoint) infinite block diagonal matrix.

Ã =



B(0)

<
{
B
(

1
2T

)}
−=
{
B
(

1
2T

)}
=
{
B
(

1
2T

)}
<
{
B
(

1
2T

)}
<
{
B
(

2
2T

)}
−=
{
B
(

2
2T

)}
=
{
B
(

2
2T

)}
<
{
B
(

2
2T

)}
. . . . . .


Let {η(i), i = 0, 1, . . . } denote the eigenvalues of Ã, with {µ(i), i = 0, 1, . . . }

being a corresponding orthonormal set of eigenvectors. We can specify these as

follows: Let {λ0, . . . , λN−1} denote the eigenvalues of B(0), with {γ
0
, . . . , γ

N−1
}

being a corresponding orthonormal set of eigenvectors; and for m = 1, 2, . . . , let

{σm,0, . . . , σm,2N−1} denote the eigenvalues of

<{B( m2T )} −={B( m2T )}
=
{
B
(
m
2T

)}
<
{
B
(
m
2T

)}
 with

{νm,0, . . . , νm,2N−1} being a corresponding orthonormal set of eigenvectors. Then we

can set:

(i) For i = 0, . . . , N − 1

η(i) = λi

µ(i)(l) =


γi(l), l = 0, . . . , N − 1

0, otherwise

(4.38)

(ii) For i = (2m− 1)N + n,m = 1, 2, . . . ;n = 0, 1, . . . , 2N − 1
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η(i) = σmn

µ(i)(l) =


νmn(l), l = (2m− 1)N, . . . , (2m+ 1)N − 1

0, otherwise

(4.39)

Now, let {η0n, n = 0, 1, . . . , N − 1} ∪ {ηmn,m = 1, 2, . . . ;n = 0, 1, . . . , 2N − 1}

denote the eigenvalues of the autocorrelation of eq. (4.17) and {φ0n, n = 0, 1, . . . , N−

1}∪ {φmn,m = 1, 2, . . . ;n = 0, 1, . . . , 2N − 1} being a corresponding orthonormal set

of eigenfunctions. Then from eqs. (4.19), (4.32), (4.38) and (4.39), it follows that

these (approximately) have the form:

(i) for n = 0, . . . , N − 1

η0n = λn

φmn(t, k) =
1√
T
γn(k),

for k = 0, 1, . . . , N − 1; |t| ≤ T

2
(4.40)

(ii) for m = 1, 2, . . . ;n = 0, 1, . . . , 2N − 1

ηmn = σmn

φmn(t, k) =

√
2

T

[
νmn(k) sin

(
2π
m

T
t

)
+ νmn(k +N) cos

(
2π
m

T
t

)]
for k = 0, 1, . . . , N − 1; |t| ≤ T

2
(4.41)

Finally, we can define eigenvalues {λmn} and corresponding eigenfunctions {ψmn(t, k)}

for the autocorrelation function (given by eq. (4.16)) for the aperture signal set

{y(t, k)}:

λmn = σmn

ψmn(t, k) =
1
√
αk
φmn

(
t

αk

)
, k = 0, 1, . . . , N − 1; |t| ≤ αkT

2
(4.42)
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We can verify that {ψmn(t, k)} is an orthonormal set in L2[−α0T
2
, α0T

2
] × · · · ×

L2[−αN−1T

2
, αN−1T

2
]:

〈ψnm(t, k), ψij(t, k)〉 =
N−1∑
k=0

∫ αkT

2

−αkT
2

ψmn(t, k)ψij(t, k)dt

=
N−1∑
k=0

∫ αkT

2

−αkT
2

√
2

αkT

{
νmn(k) sin

(
2πmt

αkT

)
+ νmn(k +N) cos

(
2πmt

αkT

)}
√

2

αkT

{
νij(k) sin

(
2πit

αkT

)
+ νij(k +N) cos

(
2πit

αkT

)}
dt (4.43)

from which it follows that

〈ψmn, ψij〉 = 0, i 6= m; (4.44)

For i = m;

〈ψmn(t, k), ψmj(t, k)〉

=
N−1∑
k=0

∫ αkT

2

−αkT
2

√
2

αkT

{
νmn(k) sin

(
2πmt

αkT

)
+ νmn(k +N) cos

(
2πmt

αkT

)}
√

2

αkT

{
νmj(k) sin

(
2πmt

αkT

)
+ νmj(k +N) cos

(
2πmt

αkT

)}
dt

=
N−1∑
k=0

2

αkT

∫ αkT

2

−αkT
2

{
νmn(k) sin

(
2πmt

αkT

)
+ νmn(k +N) cos

(
2πmt

αkT

)}
{
νmj(k) sin

(
2πmt

αkT

)
+ νmj(k +N) cos

(
2πmt

αkT

)}
dt

=
N−1∑
k=0

{
νmn(k)νmj(k) + νmn(k +N)νmj(k +N)

}

=
2N−1∑
k=0

νmn(k)νmj(k)

=


1, j = n

0, j 6= n
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The signal set coefficients with respect to the basis {ψmn}(that is, the KLT coef-

ficients of the aperture signal set) are given by

For m = 0;n = 0, . . . , N − 1

ymn = 〈y, ψmn〉

=
N−1∑
k=0

∫ αkT

2

−αkT
2

y(t, k)ψmn(t, k)dt

=

√
1

αkT

N−1∑
k=0

γn(k)

∫ αkT

2

−αkT
2

y(t, k)dt

For m = 1, 2, . . . ;n = 0, 1, . . . , 2N − 1

ymn =

√
2

αkT

N−1∑
k=0

{
νmn(k)

∫ αkT

2

−αkT
2

y(t, k) sin

(
2πmt

αkT

)
dt+

νmn(k +N)

∫ αkT

2

−αkT
2

y(t, k) cos

(
2πmt

αkT

)
dt

}
(4.45)

That is, the coefficients are calculated by first finding the real and imaginary part

of Fourier Series coefficients of the received aperture signals (at frequencies scaled

according to aperture position). Then the real and imaginary parts of the Fourier

Series coefficients at the mth frequency are multiplied by weights νmn(k) and νmn(k+

N), respectively, which are components of eigenvectors of the mth diagonal block of

Ã, and summed across the aperture.

The aperture signal approximations that would be reconstructed from a set of

KLT coefficients have the form

ŷk(t, k) =
∑
n

∑
m

ymnψmn(t, k) (4.46)
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4.3 LMMSE Estimation of Tissue Reflectivity Using the Op-

timal Basis

The {ymn} calculated can be used for estimating the linear minimum mean-

squared error (LMMSE) estimate of the reflectivity of the point scatterers on the

scan line; in other words, for generating the beamformed signal at the aperture cen-

ter using the LMMSE estimate.

Let r0 =
{
r(0, 0, z), |z − z0| ≤ cT

4

}
denote the portion of the scattering field that

we wish to estimate based on the received signals y = {y(t, k)}. It is well known [12]

that the LMMSE estimate of r0, given y, has the form

r̂0 = Rr0yR
−1
y y (4.47)

where Rr0y= cross-correlation of r0 and y

Ry=autocorrelation of y

Assume that y satisfies our model given in section (4.1), along with added obser-

vation noise. Then with the eigenfunctions found in section (4.2) we can write

y =
∑
n

∑
m

ymnψmn + n (4.48)

where ψ
mn

= {ψmn(t, k)}=(m,n)th eigenfunction

n = {n(t, k)}=observation noise assumed to be white with variance σ2
N

Then with respect to the basis {ψmn}, Ry is diagonal with eigenvalues ρmn =

λmn + σ2
N where λmn is the (m,n)th eigenvalue found in Section (4.2). Hence

[
R−1
y y
]
(t, k) =

∑
m,n

ymn
ρmn

ψmn(t, k) (4.49)
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Rr0y has the (z′, (t, k))th entry E{r(0, 0, z′)y(t, k)}; so from eq. (4.4)

Rr0y = E{r(0, 0, z′)y(t, k)}

= E{r(0, 0, z′)
∫
r(v)pk(t+ Tk − T (v, k), (x, y), k)dv}

= σ2pk(t+ Tk − T ((0, 0, z′), k), (0, 0), k) (4.50)

So we can form the LMMSE beamformed aperture center line by

r̂0(z′) = σ2
∑
k

∫ αkT

2

−αkT
2

pk(t+ Tk − T ((0, 0, z′), k), (0, 0), k)
∑
m,n

ymn
ρmn

ψmn(t, k)dt (4.51)

4.4 Implementation in MATLAB

In this section we discuss how we implemented the entire scheme in MATLAB. For

generating ultrasound RF data we used the well-known Field II simulation program

[12] which is based on the calculation of the spatial impulse response.

The first step of the process is the generation of the basis functions using eq.

(4.40). For this we have to calculate the eigenfunctions νmn(k) of the Aij block of the

infinite block matrix Ã which has the following structure

Ã =



B(0)

<
{
B
(

1
T

)}
−=
{
B
(

1
T

)}
=
{
B
(

1
T

)}
<
{
B
(

1
T

)}
<
{
B
(

2
T

)}
−=
{
B
(

2
T

)}
=
{
B
(

2
T

)}
<
{
B
(

2
T

)}
. . . . . .


The block diagonal entries of Ã matrix are made of the real and imaginary parts

of B matrix at frequencies fm = m
T

. The entries of the B matrix at frequencies

fm = m
T

are basically the Fourier series coefficients of b(t, (k, l)) at those frequencies.
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As b(t, (k, l)) =
√
αkαld(t, (k, l)), we can calculate b(t, (k, l)) using the definitions of

d(t, (k, l)) in eqs. (4.13)-(4.15) and then calculate the Fourier series coefficients at

frequencies fm = m
T

to generate the entries of the matrix B.

The time domain expression of d(t, (k, l)) involves integration which increases

the complexity of computation. To reduce the complexity we used the properties

of Fourier transform to get a simplified expression in frequency domain. We can

calculate the (k, l)th entries of the D
(
m
T

)
matrix using the following expression.

D
(m
T
, (k, l)

)
=

∫
d(t, (k, l)) exp

(
− j2πm

T
t

)
dt (4.52)

Using the definition of d(t, (k, l)) in eqs. (4.13)-(4.15), we get

D
(m
T
, (k, l)

)
=

∫
ηi

∫
ξi

∫
t

c
(
t, (ξi, ηi), (k, l)

)
exp

(
− j2πm

T
t

)
dtdξiηi

=

∫
ηi

∫
ξi

∫
s

∫
t

q(s, (ξi, ηi), k)q(s+ t, (ξi, ηi), l) exp

(
− j2πmt

T

)
dtdsdξiηi

=

∫
ηi

∫
ξi

∫
s

q(s, (ξi, ηi), k)

∫
t

q(s+ t, (ξi, ηi), l) exp

(
− j2πmt

T

)
dtdsdξidηi

=

∫
η1

∫
ξi

Q

(
m

T
, (ξi, ηi), l

)∫
s

q(s, (ξi, ηi), k) exp

(
j2π

ms

T

)
dsdξidηi

=

∫
ηi

∫
ξi

Q∗
(
m

T
, (ξi, ηi), k

)
Q

(
m

T
, (ξi, ηi), l

)
dξidηi (4.53)

As q((ξi, ηi), t, k) = p((ξi, ηi),−αkt, k) we get

D

(
m

T
, (k, l)

)
=

∫
ηi

∫
ξi

P
(
m
Tαk

, (ξi, ηi), k
)

αk

P ∗
(
m
Tαl

, (ξi, ηi), l
)

αl
dξidηi (4.54)

So the (k, l)th entry of the B
(
m
T

)
matrix is calculated using

B

(
m

T
, (k, l)

)
=
√
αkαlD

(
m

T
, (k, l)

)
(4.55)

=

∫
ηi

∫
ξi

P
(
m
Tαk

, (ξi, ηi), k
)

√
αk

P ∗
(
m
Tαl

, (ξi, ηi), l
)

√
αl

dξidηi
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We calculated the block diagonal entries of the matrix Ã using the real and imag-

inary parts of the matrix B
(
m
T

)
.

In the expression in eq. (4.55), P
(
m
Tαk

, (ξi, ηi), k
)

and P
(
m
Tαl

, (ξi, ηi), l
)

are the

scaled Fourier series coefficients for the received signal at the kth and lth element of

the aperture for one point scatterer situated at (ξi, ηi). To get the (k, l)th entry of the

matrix B
(
m
T

)
we calculate the product for each point scatterer and then sum them

across the region of interest.

Figure 4.4. Setup for basis generation

We used the setup in Figure 4.4 to generate the basis that consists of a focused

linear ultrasound array (for transmission and reception) and a number of point scat-

terers at the focal point (z0) of the array separated in the lateral (x) direction.

To calculate the entries of the matrix B we calculated the scaling factors αk’s for

each element in the aperture and selected a few frequencies fm = m
T

at which we are

going to calculate the Fourier coefficients for the center element of the aperture.

For each point scatterer placed at lateral positions ξi, where i = 1, . . . , n, we cal-

culated the received signal set p(t, (ξi, ηi), k)′s at each element in the receive aperture

and for each frequency fm and then, we calculated the scaled Fourier coefficients

P
(
fm
αk
, (ξi, ηi), k

)
. We used the MATLAB built-in fft function for calculating the
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scaled Fourier coefficients. For the kth received aperture signal, we chose a window of

length αkT and calculated a αkT -point FFT on it. Scaling the number of points in

the FFT by αk scaled the frequencies in the spectrum by the factor of 1
αk

and gave us

the required sequence P
(
fm
αk
, (ξi, ηi), k

)
. This process is repeated for all the elements

in the aperture and the coefficients are stored in a matrix Qξi

(
m
T

)
, where ξi denotes

the lateral position of the point scatterer. The matrix Qξi

(
m
T

)
generated in this way

has (m, k)th entries corresponding to the Fourier coefficient calculated at fm
αk

for the

kth aperture element and has the following structure.

Qξi

(
m
T

)
=



P−N−1
2

(0) . . . P0(0) . . . PN−1
2

(0)

P−N−1
2

(
1

α
− (N−1)

2

T

)
. . . P0

(
1
T

)
. . . PN−1

2

(
1

α (N−1)
2

T

)
...

...
...

...
...

P−N−1
2

(
m

α
− (N−1)

2

T

)
. . . P0

(
m
T

)
. . . PN−1

2

(
m

α (N−1)
2

T

)
...

...
...

...
...


The entire process is repeated for all the point scatterers and their corresponding

coefficients are stored in individual matrices.

To calculate the (k, l)th entries of B(m
T

) matrix, we calculate the required products

P
(
fm
αk
, (ξi, ηi), k

)
P ∗
(
fm
αl
, (ξi, ηi), l

)
. For each frequency fm, we consider the correspond-

ing mth row of the matrices Qξi

(
m
T

)
. For each point scatterer, the (m, k)th elements of

the matrix Qξi

(
m
T

)
is multiplied by the conjugate of the (m, l)th element of the same

matrix. The products generated for all the point scatterers are then summed up to

produce the (k, l)th entry of the matrix D(m
T

)at that frequency. In our setup, we only

considered the point scatterers those are separated in the lateral direction, ignoring

the point scatterers in the elevation direction.

The entries of the D(m
T

) matrix are then used to generate the matrix B = ApDAp,

where Ap is a diagonal matrix with diagonal entries
{

1√
α1
, . . . , 1√

αN

}
. The matrix B

is then used to calculate the block diagonal entries of the matrix A. The eigenvectors
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of the block diagonal entries Aij are then used to calculate the optimal basis in eq.

(4.45).

For a given set of received ultrasound RF signals, at first we generate the Fourier

coefficients at scaled frequencies using MATLAB’s built-in fft for scaled window and

fft length. The real and imaginary parts of the coefficients are then used to generate

ym using equation (4.40).

For compression we only keep the coefficients that preserve 99.9999% of the to-

tal energy and discard the rest of them. For reconstruction, we first use Ŷk(
m
T

) =∑
n ymnνmn(k) to generate ymn. These ymn’s are then used to generate the recon-

structed signal ŷk(t) by applying ifft at scaled window and FFT length.

For LMMSE estimate calculation, the coefficients ymn’s are divided by the cor-

responding eigenvalues ρmn followed by the scaled inverse Fourier transform. The

reconstructed signal is then correlated using eq. (4.51) to generate the estimate.

4.5 Experimental Results

We generated a couple of phantom data sets using Field II simulation program to

test the performance of our method. The phantoms used different sizes of transducer

arrays with different numbers of active elements in the array. We used the data for

reconstruction as well as the LMMSE estimate calculation using our approach.

For all the examples, we used 2 cycles of a 3MHz sinusoid pulse for transmission.

For the first three cases, the sampling frequency was 100MHz, for the the last example,

it was 50MHz. The array of transducers is made of elements which are 5 mm high,

1mm wide and have 1
20

mm distance between them. For the entire process the array

was focused at 40mm in the axial direction.

Figure 4.5 and 4.6 show the basis vectors at a frequency at the center of the band

for 15 element and 25 element aperture, respectively. The basis function calcula-
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Figure 4.5. First two optimal basis vectors νnm(k) for n = 0, 1; k = 0, . . . , N − 1
and fm=3MHz for a 15-element aperture

Figure 4.6. First two optimal basis vectors νnm(k) for n = 0, 1; k = 0, . . . , N − 1
and fm=3MHz for a 25-element aperture

tion for each frequency showed that only the first 3-5 eigenvectors have significant

eigenvalues.

For the first example, we generated a phantom with a 2mm cyst inside that has

2000 point scatterers in it. There are 25 elements in the transmitter and receiver

array with 15 active elements for each image line generation. The phantom has a

dimension of 7mm×7mm×4mm with starting edge at 39mm. Figure 4.7 shows the

actual position of the point scatterers in the phantom in example 1.
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Figure 4.7. Actual position of the point scatterers in the phantom in example 1

Figure 4.8 shows the reconstructed signal using the optimal basis.

Figure 4.8. Signal reconstruction using optimal basis for 15 element aperture

Figure 4.9 shows the comparison of the delay and sum beamformed image, a

reconstruction using the first eigenvector and the LMMSE estimate. The LMMSE

estimate has sharper edges in the phantom image.
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Figure 4.9. Comparison of images generated using different beamforming techniques

Figure 4.10 compares the lateral profile of the cyst in the image and the LMMSE

estimate shows the narrower profile, that means the LMMSE estimate concentrates

more energy inside the cyst.

Figure 4.10. Lateral profile of the cyst

For the next example, we worked with a phantom that has 2500 point scatterers

and a hollow cyst inside. We used a 45 element transducer array for generating the

image where 15 elements are active for generating each image line. The dimension

of the phantom are 15mm×5mm×10mm with the starting edge at 30mm. The cyst

has 3mm radius and is centered at (0,0,35)mm. The image lines are separated by

0.25mm in the lateral x direction. This setup generates 31 lines in the image. Figure

4.11 shows the actual position of the point scatterers in the phantom in example 2.
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Figure 4.11. Actual position of the point scatterers in the phantom in example 2

Figure 4.12. Comparison of the actual RF signal and reconstructed signal using
optimal basis

Figure 4.12 shows the comparison of the actual signal and the reconstructed signal

retaining 99.9999% of the total energy of the received signal. We needed only 6.8682%

of the total number of coefficients for this case.

Figure 4.13 shows the comparison of the delay and sum beamformed image, re-

construction using the first eigenvector and the LMMSE estimate.
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Figure 4.13. Comparison of images generated using different beamforming tech-
niques

In our third example, we used a larger aperture of active elements to generate a

phantom that has 2 cysts in it: one with no scatterers inside and another with all

the scatterers inside. For this we used a 89 element aperture with 25 active elements

during image generation. This setup generates 65 image lines. Figure 4.14 shows the

actual position of the point scatterers in the phantom in example 3.

Figure 4.14. Actual position of the point scatterers in the phantom in example 3

Figure 4.15 shows the comparison of the images generated using delay and sum

beamformer, beamforming using first eigenvector and also the LMMSE estimate.
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Figure 4.15. Comparison of images generated using different beamforming tech-
niques for a 25 active element transducer array

From the image we can see that the LMMSE estimate shows lesser streaks in the

image and shows the patterns in the image more clearly.

For the last example, we used an even larger aperture of 129 elements with 65

active elements in it. We generated a 25mm×2mm×10mm phantom with a 3mm ra-

dius cyst inside. There are 2400 point scatterers inside the cyst. This setup generates

64 image lines. Figure 4.16 shows the actual position of the point scatterers in the

phantom in example 4.

Figure 4.16. Actual position of the point scatterers in the phantom in example 4
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Figure 4.17 shows the comparison of images generated using delay and sum and

lmmse beamforming and Figure 4.18 shows the lateral profile for the cyst.

Figure 4.17. Comparison of images generated using different beamforming tech-
niques for a 65 element aperture

Figure 4.18. Lateral profile of the cyst for a 65 active element transducer array

The following table shows the performance of our compression approach for the 3

examples mentioned above.
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Table 4.1. No. of coefficients needed to represent aperture signal sets with
MSE=0.0001% using the optimal basis

Criterion Example 1 Example 2 Example 3 Example 4
No. of Elements in Aperture 15 15 25 65
Window Length (mm) 7.83 31.33 48.59 49.3
No. of Samples at 50 MHz 7626 30516 76880 208000
No. of coefficients used 1382 4252 11946 31916

From the table we can see that the optimal basis gives us a significant amount

of compression. For the same level of MSE, using compression in larger windows

requires a smaller percentage of coefficients.

For beamforming using the optimal basis coefficients we used eq. (4.51). We used

the following values of noise variance σ2
N to calculate ρmn = λmn+σ2

N . If σ2
N >> λmn

the beamformed image the effect of noise becomes too dominant. So we had to control

the value of σ2
N in such a way that the value of σ2

N is close to the value of eigenvalues

and as the eigenvalues varied from phantom to phantom the value variance varies as

well.

Table 4.2. The value of the noise variances used for beamforming using optimal
basis

Criterion Example 1 Example 2 Example 3 Example 4
value of σ2

N 1e-39 1e-38 1e-38 8e-40

We also compared the compression performances of optimal basis to that of the

previous compression approaches we investigated. As the compression we achieved

with optimal basis was a 2D compression scheme we compared it with the performance

of 2D FFT, 2D wavelet decomposition, 2D wavelet packet decomposition.

Table 4.3-4.5 shows the comparison of the compression performances for example

1. In all the cases we did the compression for 99.99% energy conservation.
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Table 4.3. Compression performances of optimal basis and 2D FFT

Criterion Optimal Basis 2D FFT
% of Energy Conserved 99.99 99.99
% of Coefficients used 6.7847 7.9948
PSNR (dB) 55.5551 55.5511

Table 4.4. Compression performances of different wavelets for 2D wavelet decom-
position

Criterion db10 coif5 sym6 sym8
% of Energy Conserved 99.99 99.99 99.99 99.99
% of Coefficients used 13.7493 13.3485 13.7699 13.8679
PSNR (dB) 55.5308 55.5355 55.5469 55.5612

Table 4.5. Compression performances of different wavelets for 2D wavelet packet
decomposition

Criterion db10 coif5 sym6 sym8
% of Energy Conserved 99.99 99.99 99.99 99.99
% of Coefficients used 8.0175 7.092 9.9867 8.7411
PSNR (dB) 55.5524 55.5662 55.5474 55.5219

From the tables we can see that optimal basis performance is better than all the

other 2D compression approaches for the same level of MSE.

4.6 Comparison with the 2D FFT

In our preliminary investigations, the 2D FFT showed pretty good compression

results. So we decided to check how much improvement we get over the 2D FFT by

using our approach. For this we took the data for the 15 element aperture in example

2 and compared the performance of both approaches.

From table 4.3 and 4.6 we can see that our approach has a slightly better per-

formance than the 2D FFT. For same amount of energy in the reconstructed signal

we needed almost 1118 coefficients less than that used for 2D FFT. In other words,
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Table 4.6. Comparison with the 2D FFT

Criterion Our Approach 2D FFT
% of Energy Conserved 99.9999 99.9999
% of coefficients used 6.5290 7.4449
No. of coefficients used 7970 9088

the 2D FFT required approximately 1.14× the number of coefficients of the optimal

basis to achieve the same MSE.

For further comparison of the performance of the two approaches we performed

LMMSE beamforming using both the optimal basis coefficients and the 2D FFT

coefficients and compared the final images.

We used eq. (4.51) for calculating the LMMSE beamformed aperture center line

except for this case we used the 2D FFT coefficients as ymn rather than the optimal

coefficients. For this we need to calculate the eigenvalues ρmn of the 2D FFT basis.

In the derivation we defined b(t, (k, l)) =
√
αkαld(t, (k, l)). For the 2D FFT case we

assume
√
αkαl = 1 and then b̃(t, l) = b(t, (0, l)) = d(t, (k, l)) will be the stationary

autocorrelation at the center of the aperture. Then the 2D FFT of b̃(t, l) will give us

the eigenvalues ρmn. R−1
y y in eq. (4.51) can be calculated by

R−1
y y =

∑
m,n

ymn
ρmn

ψmn(t, k)

= ifft

{
Y (k1, k2)

B̃(k1, k2) + σ2
N

}
(4.56)

Y (k1, k2) are the 2D FFT coefficients of the aperture signal set. The ifft part in

the equation comes from the fact that in this case ψmn(t, k) are the 2D FFT basis.

The LMMSE at the center of the aperture can be calculated using
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r̃0 = Rr0yR
−1
y y

= σ2
∑
k

∫ αkT

2

−αkT
2

pk(t+ Tk − T ((0, 0, z), k), (0, 0), k))ifft

{
Y (k1, k2)

B̃(k1, k2) + σ2
N

}
dt

(4.57)

Figure 4.19, 4.20, 4.21 and 4.22 show the comparison of the images generated by

LMMSE beamforming using optimal basis and 2D FFT coefficients for example 1,

example 2, example 3 and example 4 respectively. The images show that the images

generated using 2D FFT coefficients have slight streaks and are slightly blurrier than

the optimal basis coefficients generated image. Still the 2D FFT approximations

are pretty close to the optimal one. The reason behind the similarity between the

images comes from the fact that we are using actual pulses generated in MATLAB to

correlate both the coefficients. We used the same value of σ2
N for the LMMSE using

optimal basis and 2D FFT coefficients.

Figure 4.19. Comparison of the beamformed images using optimal basis coefficients
and 2D FFT coefficients for example 1
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Figure 4.20. Comparison of the beamformed images using optimal basis coefficients
and 2D FFT coefficients for example 2

Figure 4.21. Comparison of the beamformed images using optimal basis coefficients
and 2D FFT coefficients for example 3
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Figure 4.22. Comparison of the beamformed images using optimal basis coefficients
and 2D FFT coefficients for example 4

Finally, we compared the block diagrams of the approaches to see which approach

is more feasible to implement.

Figure 4.23. Block diagram for the implementation of optimal basis approach for
m = 0
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Figure 4.23 and 4.24 shows the block diagram for optimal basis approach for m = 0

and m = 1, 2, . . . respectively. From Figure 4.24 we can see that if we use the optimal

basis we can implement the axial scaled Fourier series part easily in analog domain.

For the spatial processing, we need to use weights determined by eigenvectors of the

block diagonal entries of the A matrix, as described in section 4.2.

Figure 4.24. Block diagram for the implementation of optimal basis approach for
m = 1, 2, . . .

Figure 4.25 shows the implementation of the 2D FFT in block diagram. The 2D

FFT can be implemented in two different ways- by doing the axial Fourier series

followed by spatial DFT or doing the spatial Fourier series at first followed by the

axial Fourier Series. Figure 4.25 shows two different ways of implementing 2D FFT.
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The axial Fourier series part in the first approach can be done in real-time but the

spatial DFT part needs to be done in digital domain. But in the second approach

we can do the spatial Fourier series first by calculating a weighted sum in real time.

Then the weighted sums go through a real time Fourier series as well.

Figure 4.25. Block diagram for implementation of 2D FFT in two different ways

As our intention was to implement a feasible compression scheme in real-time it

now becomes a matter of trade off between the two schemes. We can compress a given

signal set entirely in real-time (approach 2 in 2D FFT) but in that case we would have

to give up a certain amount of compression. On the other hand implementing the

58



optimal compression provides great compression but at the cost of implementing the

spatial part in the digital domain. In the end it is the ultrasound system designer’s

decision of how much compression he is willing to achieve at the desired cost of

implementation.
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CHAPTER 5

CONCLUSION

The goal of this work was to find an optimal compression scheme for ultrasound

RF signals. For this at first we gave some idea about the compression problem that

motivated us and also the part of the ultrasound system we are working with. Then

we investigated the performance of existing works in signal compression as well as

ultrasound signal compression. Finally we derived a basis in the form of eigenfunc-

tions of the autocorrelation function of the received signal set. The coefficients of the

signal set with respect to the basis are computed by taking Fourier Transforms (at

frequencies scaled by element position) in time, followed by weighted linear combina-

tions of the real and imaginary parts of the Fourier transform across the aperture at

each frequency. Tests on simulated data sets generated with the Field II simulation

program showed that the optimal basis required about 14% fewer coefficients than

the 2D FFT to achieve a mean-squared error of 0.0001%. The optimal basis was

also used to formulate a LMMSE beamformed aperture center line which was then

compared to standard delay-and-sum beamformed aperture center line. The LMMSE

results generally showed less smearing and streaking of image features.

We also briefly discussed how compression with both the optimal basis and 2D

FFT can be implemented. Finally, we compared the performances of beamforming

using optimal basis and 2D FFT coefficients.

Our work on optimal basis can be expanded to 2D array case. Future work can

also include actual implementation of the approach in circuit.
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