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ABSTRACT

QUALITY FACTOR OF HORIZONTAL WIRE DIPOLE
ANTENNAS NEAR PLANAR CONDUCTOR OR

DIELECTRIC INTERFACE

FEBRUARY 2015

ADEBAYO ADEYEMI

B.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Do-Hoon Kwon

Quality factor of a dipole over a conducting ground plane is predicted. Quality

factor is also generated as a function of the electrical ground separation and the

electrical length. The optimal ground separation for largest bandwidth is obtained.

A dipole near a dielectric interface is also studied for quality factor prediction. The

predicted quality factor is generated as a function of position and electrical length.

Quality factor is generated for a dipole inside the dielectric half space, and a dipole

above the dielectric half space.
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CHAPTER 1

INTRODUCTION

Fundamental limits on small antennas have been an interesting topic of research

since 1947. Chu [1] and McLean[2], for example, found physical limits on small

antennas in terms of the radiation quality factor Q. Quality factor is an important

performance parameter in describing the transmission and receiving capability of an

antenna because it is related to gain, beam-width, impedance and radiation pattern.

For antennas in free space, physical limits on linearly polarized antenna has been

illustrated [3]. In [3], Gutstafson et al. describe a physical limit on antennas as

GK(k̂, ê)B ≤ 2η(−k̂, ê)k3
c

2

(

ê · γ∞ · ê+ (k̂ × ê) · γ∞ · (k̂ × ê)
)

. (1.1)

where GK is the minimum partial realized gain, k̂ is the direction of the incident wave,

ê is the preferred polarization, kc is the first dominant resonance wavenumber, B is

the fractional bandwidth, η is the absorption efficiency that is closely approximated

by 0.5, and γ∞ is the high-contrast polarizability dyadics.

However, practical antennas do not operate in free space, but in realistic environ-

ments. For example, an antenna may operate in the presence of a large ground plane

or a conducting platform. A penetrable scatterer may be present in the vicinity. This

makes the bandwidth limit of a conductor- or material-backed antenna an interest-

ing topic of practical importance. In the presence of a ground plane or a material

half space, the quality factor Q is an equally applicable descriptor of bandwidth for

narrowband resonant antennas.
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In this study , an approximate quality factor Q of a dipole over a ground plane

in terms of ground separation is obtained. In addition, the Q of a wire dipole in the

presence of a lossless dielectric half space is studied. For a thin-wire dipole, the Q is

found in terms of the electrical separation between the wire dipole and the half space,

and the electrical length of the dipole. Both cases of the dipole on the free space

side and in the dielectric half space are considered. The effect of the permittivity

of the dielectric half space is analyzed by investigating Q in terms of the relative

permittivity for a dipole of fixed electrical length and position from the free space

dielectric interface.

This thesis is arranged as follows; An overview of limitations of free space antennas

in terms of a quality factor is provided in Chapter 2. Chapter 3 investigates the Q

bound of a dipole backed by a conducting ground plane. A dipole will be placed

at different heights from the PEC ground and the height that is associated with the

smallest quality factor(largest bandwidth) will be noted. The Q bound is based on an

approximate integral identity for the extinction cross section of a conductor backed

dipole. A closed form expression will be derived for the dipole. In Chapter 4, the

quality factor of a dipole backed by dielectric half space will be discussed. A numerical

method is used to obtain the Q lower bound. Finally, in Chapter 5, the quality factor

of a dipole immersed in a dielectric half space will be discussed.

2



CHAPTER 2

BANDWIDTH LIMITATION OF SMALL ANTENNAS IN

FREE SPACE

The radiation quality factor (Qrad) of electrically small antennas has been an in-

teresting part of research in antenna community for decades. The most cited work

on the quality factor of electrically small antenna is Chu’s radiation Q for omnidirec-

tional antennas. In 1948, he found a lower bound on Qrad using a sphere enclosing an

electrically small antenna by exciting only the lowest TM spherical mode to account

for the external field enclosing the antenna [1]. A dipole antenna of length l ≈ 2a is

enclosed by a sphere of radius a as shown in Figure 2.1.

�����������������������������������������������������������������������������������������������������������������������������������������������������������

a

l

Dipole

Circumscribing sphere

����������������������������������������������������������������������������������������������������������������������������������������������������

Figure 2.1. A dipole antenna enclosed by a sphere.

The lower limit is

Qrad =
1

ka
+

1

k3a3
. (2.1)

3



For quality factor limit on small antennas, however, Chu was not the first to con-

sider this limit. Prior to Chu’s work, Wheeler [4] already noted that the frequency

bandwidth limitation for narrow band antennas depend on their sizes with effects on

radiation pattern and invariably the practical efficiency of the antenna. Later on,

Collin and Rothschild [5] expanded Chu’s work to cylindrical geometries. In 1969,

Fante [6] took a new path on the problem by deriving an expression for Q by in-

corporating both TM and TE excitation mode, unlike only TM excitation modes in

Chu’s bandwidth limit. Another drawback of Chu’s lower bound is that the energy

stored inside the hypothetical circumscribing sphere was not included.This makes the

Chu bound a conservative limit, which may not be easily approached using realistic

antennas. For spherical antennas, Thal [7] gave an exact calculation that includes the

energy stored inside as well as outside the sphere. However, the Thal bound on Q

was given in terms of numerical values. Collins and Hansen[8] gave an approximate,

simplified formula for Thal bound as

Q ≈ 1√
2ka

+
3

2(ka)3
. (2.2)

Recently, Gustafsson et al. [3] studied the effect of antenna’s shape on bandwidth.

Gustafsson’s physical limitation on antennas is closely related to this thesis because

the same technique was used to derive the Q bound for narrowband antennas. This

technique is discussed in Section 2.1.

Most of the work on the quality factor Q of electrically small antennas is applicable

to antennas in free space. However, practical antennas do not operate in free space.

Often they are in the vicinity of a conductor or a material. Therefore, understanding

the quality factor of an antenna when it is placed in the vicinity of a conductor or

a material is important. The radiation Q of an electrically small antenna close to a

conducting plane has been studied by Sten et al [9]. They used a single large sphere

that encloses the small antenna and its image. Then, the Chu lower bound expression
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was used on this sphere. The resulting Q turns out to be too conservative (too low to

be approached by practical antennas). Chang et al. [10] obtained a tight lower bound

on the radiation Q for electrical small antennas over a conducting ground plane by

evaluating energies both internal and external to the spherical antenna surface in the

presence of a ground plane. In all, bounds on the antenna Q that have been reported

to date are mostly for small antennas of spherical shape. Although spherically shaped

antennas are convenient for analysis using spherical vector wave functions, practical

antennas are not of spherical shape.

In this thesis, therefore, the Q of an horizontal dipole placed near a conducting

ground will be investigated. In addition, Q of an horizontal dipole near a dielectric

half space will also be studied. Derivation of Q lower bounds in these scenarios

are based on the technique used by Gustafsson et al. An brief explanation of the

technique is provided in the following the Section 2.1.

2.1 Limitations of Antennas of Arbitrary Shapes Based on

Scattering Technique

Due to the ease of analysis using spherical vector wave functions, the lower bounds

on the radiation Q is typically given in terms of the dimension of the smallest sphere

that encloses the antenna geometry [1] [4]. However, sphere is not usually a practical

antenna geometry. Treating antennas as scatterers, its physical limitation can be

found incorporating the effect of the antenna shape. Gustafsson et al derived physical

limitations on bandwidth, quality factor, directivity and realized gain for antennas

of arbitrary shape based on a scattering technique [11]. Also, the derived bandwidth

bound clarifies the contribution of the magnetic and the electric properties of the

antenna. Since this thesis is based on the same approach used by Gustafsson et al,

this scattering-based technique is explained.
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Antennas can be considered as scatterers as well as absorbers of electromagnetic

waves.

Einc

z

x

Antenna

Figure 2.2. Antenna subject to plane wave illumination.

A linearly polarized plane wave, Einc = êE0e
−jkk̂·r, incident on an antenna is scat-

tered and absorbed by the antenna as illustrated in Figure 2.2. A complex function

h in terms of the scattering dyadic S is defined as [11]

h(k; k̂, ê) = 4π
ê · S(k; k̂) · ê

k
. (2.3)

where ê is the electric polarization of the incident wave, k̂ is the incident direction, k

is the free space wavenumber, and S is the scattering dyadic. Then, h is an analytic

function in the lower half of the complex-k plane [11] in Figure 2.3, which is Im{k} <

0. The function h is related to the extinction cross section, σext(k; k̂, ê), through the

optical theorem as Imh(k; k̂, ê) = σext(k; k̂, ê). The low frequency behavior of h is

given by [12]

h(k; k̂, ê) =
(

ê · γe · ê+ (k̂ × ê) · γm · (k̂ × ê)
)

k +O(k2) as k → 0. (2.4)
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where γe and γm are the electrostatic and magnetostatic polarizability dyadic respec-

tively.

Re(k)

Im(k)

Figure 2.3. Integration contour in the complex k-plane.

This leads to integral for the extinction cross section and the resulting sum rule

is [11]
∞
∫

0

σext(k)

k2
dk =

π

2

(

ê · γe · ê+ (k̂ × ê) · γm · (k̂ × ê)
)

(2.5)

where σext is the sum of the absorption and the scattering cross sections of the antenna

under a plane wave illumination. It is noted that σext is non-negative and real valued.

The left hand side of (2.5) is frequency dependent, and the right hand side of (2.5)

depends on the material property and shape of the antenna at zero frequency. This

sum rule is applicable to antennas of arbitrary shape where the effect of the shape is

incorporated in the polarizability values.

A physical bound on the ratio of directivity and Q for an electrically small antenna

in free space is achieved, and Gustafsson’s D/Q limit for an antenna in free space [11]

is
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D

Q
≤ ηk3

c

2π

(

ê · γ∞ · ê + (k̂ × ê) · γ∞ · (k̂ × ê)
)

. (2.6)

where k̂ is the direction of the incident wave, ê is the preferred polarization, D is the

directivity, Q is the quality factor, kc is the first dominant resonant wavenumber, η

is the absorption efficiency that is closely approximated by 0.5, and γ∞ is the high-

contrast polarizability dyadics. Since D of small antennas is approximately 1.5, Q for

a small antenna can be obtained from (2.6).
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CHAPTER 3

DIPOLE BACKED BY A CONDUCTING GROUND

PLANE

3.1 Approximate Integral Identity for a Wire Dipole over a

Ground Plane

A cylindrical thin-wire dipole of radius a and length l that is placed above an

infinite perfect electric conductor(PEC) ground plane at the distance d is subject to

a linearly polarized plane wave illumination as shown in Figure 3.1 and it is denoted

as problem a. For the purpose of expressing the extinction cross section, a free space

PEC

x

l
d

2a

z
θ

inc

θ
i

Figure 3.1. A dipole above a PEC ground(problem a).

configuration having two antennas and one incident plane wave is defined as shown

in Figure 3.2 and it is denoted as problem b.
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The PEC ground is removed and an image dipole is placed at the image position

of the original dipole. These two dipoles in free space are now separated by 2d. Note

that problem b is not a result of the image theory because no image of the incident

field is present. This is now a problem of two antenna in free space under plane wave

ki

Einc

θ
inc

�

�
�

l
d

2a

d

2a

S+

S-

x

kr

Eb
s

ki

Eb
s

Figure 3.2. Free space configuration for a dipole above a PEC ground(problem b).

illumination. The extinction cross section of the dipole over a ground plane of interest

(problem a) is expressed as

σext = −4π

k
Im
{

êr∗ · Sa

(

k, k̂r
)

· êi
}

, (3.1)

which is the optical theorem for a scatterer over a PEC ground. It is given in terms

of the complex amplitude of the scattering dyadic Sa in the direction of specular

reflection and the wavenumber k. Since an integral identity for σext is sought, the

antenna is treated as a scatterer of a plane wave rather than a radiator. Often in

the antenna community, a surface equivalent principle same as Huygens principle is

employed when the radiation problem is replaced with scattering problem [13]. For

scatterers in free space, the extinction cross section(σext(k)) is related to the forward
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scattering coefficient of the far field of scatterer through the optical theorem. Rather

than analyzing scattering in the presence of a ground plane, it is easier to treat

scattering in free space. Problem b in Figure 3.2 describes scattering by two antennas

in free space. Although problem b is not equivalent to problem a via the image

theory, the extinction cross section of problem a is related to the free space scattering

characteristics of problem b. In terms of the scattering coefficient of problem b in the

forward and specular directions, σext(k) is expressed as

σext(k) = −4π

k
Im
{

êr∗ · Sb(k, k̂
r) · êi + êi∗ · Sb(k, k̂

i) · êi
}

, (3.2)

where Sb is the scattering amplitude dyadic, k is the free space wavenumber, êr and

êi are the unit vectors of polarization of the specular field and the incident field

respectively. The scattering amplitude dyadic is related to the far zone scattered field

as

Es
b =

e−jkr

r
Sb ·Einc. (3.3)

Position vector, polarization vector, and propagation vector can be decomposed into

vertical and transverse component as r′ = rt + ẑz′, êi = et + ẑez and kk̂i = kt + ẑkz

respectively. σext can be written in terms of total fields in problem b as

σext(k) =
1

|E0|
Im{−2e∗t ·

∮

S

r′n̂ · [(ktj sin kzz
′ + ẑkz cos kzz

′)× η0Hb

+jk sin kzz
′Eb]e

jkt·r′tds′ + ẑj2e∗z ·
∮

S

r′n̂ · [(ktj cos kzz
′

−ẑkz sin kzz
′)× η0Hb + jk cos kzz

′Eb]e
jkt·r′tds′},

(3.4)

where η0 is the free space impedance and S contains both S+ and S−. Magnetic

surface current terms for problem b are not in (3.4) because the thin-wire dipole is
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perfectly conducting. Now the electric field Eb over S
+ and S− is asymptotically at

low frequency and it can be written as [14]

Eb(r
′) = Eb0(r

′)e−jkk̂i·r′, k → 0, (3.5)

where Eb0(r
′) is the static electric field distribution. In the low frequency limit (k →

0), it can be shown that σext(k) is expressed as [14]

σext(k) = Im
{

4k[(e∗
t · γbe · êi) sin2 kzd+ (ẑe∗

z · γbe · êi) cos2 kzd]
}

, k → 0, (3.6)

Where γbe is the electric polarizability of one antenna of the two antennas in problem

b, e∗
z is the z-component vector of the polarization unit vector and e∗

t is the remaining

portion of the polarization unit vector contained in the xy-plane. For horizontal thin-

wire dipole, the induced dipole moment has no z-component for a dipole illuminated

with normal incident plane wave. Therefore, the second term in the bracket in (3.6) is

equal to zero. Dividing both sides of (3.6) by k2 sin2 (kd cos θi) and applying Cauchy

integral theorem by integrating over a closed contour in the lower half of the complex

plane [3], we obtain

∞
∫

0

σext(k)

k2 sin2 (kd cos θi)
dk = 2πe∗

t · γbe · êi. (3.7)

This relates the extinction cross section of the antenna to its static electric polarizabil-

ity via a weighted extinction cross section integrated over all positive real frequency.

The agreement between the rhs and lhs of (3.7) is listed in Table 3.1. Except at the

smallest separation, a reasonable agreement is observed between the two sides.

To establish the approximate nature of the sum rule (3.7), consider the extinction
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Table 3.1. Validation of the integral identity for a wire dipole above a PEC ground.

Separation(d) LHS COMSOL(p) RHS Percent diff.
1.00 7.50e-3 1.17e-3 7.35e-3 1.3
0.50 7.50e-3 1.17e-3 7.35e-3 1.3
0.45 7.50e-3 1.17e-3 7.35e-3 1.3
0.40 7.00e-3 1.17e-3 7.35e-3 5.4
0.35 7.00e-3 1.17e-3 7.35e-3 5.4
0.30 7.00e-3 1.17e-3 7.35e-3 5.4
0.25 7.00e-3 1.17e-3 7.35e-3 5.4
0.20 7.00e-3 1.17e-3 7.35e-3 5.4
0.15 6.80e-3 1.17e-3 7.35e-3 8.1
0.10 6.90e-3 1.16e-3 7.29e-3 6.8
0.05 7.00e-3 1.13e-3 7.10e-3 1.4
0.04 7.20e-3 1.11e-3 6.90e-3 4.1
0.03 7.50e-3 1.10e-3 6.90e-3 4.2
0.02 6.80e-3 1.01e-3 6.30e-3 7.4
0.01 6.80e-3 9.40e-4 5.70e-3 13.2

cross section σext(k) for problem b in Figure 3.2. It is given in terms of the scattering

amplitude dyadic Sb as

σb,ext(k) = −4π

k
Im
{

êi∗ · Sb

(

k, k̂i
)

· êi
}

. (3.8)

Define the function hb = (−4π/k)êi∗ · Sb

(

k, k̂i
)

· êi such that σb,ext(k) = Im {hb}.

Limiting our attention to thin-wire antennas with the wire axis parallel to the xy-

plane so that the magnetic polarizability is negligible, it follows that hb is analytic in

the low-half of the complex-k plane [11] and

hb =
[

êi∗ · (2γbe) · ê
]

k +O
(

k2
)

, k → 0, (3.9)

where the factor of two accounts for the presence of two identical antennas. The

integral sum rule for σb,ext(k) is

∞
∫

0

σb,ext(k)

k2
dk =

π

2
e∗
t · (2γbe) · êi. (3.10)
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In (3.2), define ha = (−4π
k
)
{

êr∗ · Sb(k, k̂
r) · êi + êi∗ · Sb(k, k̂

i) · êi
}

such that σext(k) =

Im {ha} . For thin-wire antennas under consideration, a PEC wire parallel with the

xy-plane with the z-coordinate limited to z = d, we have

ha = 2hb sin
2 kzd. (3.11)

Using (3.11) in the derivation of (3.10) leads to (3.7). The additional assumption

used in writing (3.11) is Eb = Eb0e
−jkk̂i·r′ , where Eb0 represents the amplitude of the

surface field on the two antennas that possesses a mirror symmetry with respect to

the xy-plane. This condition assumes that the boundary electric field of one antenna

is not affected by the presence of the other antenna. In other words, the boundary

field of either antenna in problem b is the same as when the other antenna is absent.

This assumption is expected to be accurate when the ground separation d is large.

Hence, the approximate sum rule (3.7) is expected to be accurate for wire antennas

that are not too close to the ground plane.

A polarizability represents the physical property of the scatterer. It is a measure

of responsiveness of a local element to the external field, and it is defined in terms

of the induced dipole moment of the particle. The polarizability of a scatterer(an

antenna in our case) depends on the shape and material of the object. In statics,

there are electrostatic and magnetostatic polarizabilities. In our case, the electrostatic

polarizability, γbe, of a perfectly conducting thin circular cylinder is relevant. The

polarizability value will be obtained numerically in this thesis for a typical wire dipole.

The focus will be obtaining a physical bound on the bandwidth of the antenna in terms

of the resonance quality factor, Q, and in terms of the electrostatic polarizability. A

discussion on evaluation of polarizability from COMSOL is in appendix B.
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3.2 Lower Bound of the Resonance Quality Factor (Q)

Starting from the integral identity (3.7), it is desired to find a lower bound for

the resonance quality factor Q. The extinction cross section σext(k) is related to

the scattering cross section of an antenna and the absorption cross section of the

antenna. It is the sum of the two cross sections, i.e, σext(k) = σs(k) + σa(k) where

σs(k) is the scattering cross section and σa(k) is the absorption cross section. For a

lossless antenna under plane wave illumination, the absorbed power corresponds to

the power received and delivered to the load. Since cross sections are non-negative

real quantities, we have

σext(k) ≥ σa(k). (3.12)

This inequality can be used to derive the bandwidth bound of the antenna. However,

the equality in (3.12) means that there is no scattering at all, which is not possible

for a recieving antenna.. Therefore, bandwidth bounds derived from (3.14) tend to be

too conservative. By introducing an absorption efficiency, a tight bandwidth bound

may be obtained. Hence, we use

σext(k) ≈ σa(k)/ηabs. (3.13)

where ηabs is the absorption efficiency. For narrowband antennas around the resonance

frequency where impedance is matched, it is known that ηabs is approximately equal

to 0.5 [3]. (3.13) will be used to find the lower bound on the quality factor. In antenna

terms, the absorption cross section can also be written as

σa(k) = Aem(k)(1− |Γ(k)|2), (3.14)

where Aem(k) is the maximum effective area of the antenna [13], and (1− |Γ(k)|2) is

the impedance mismatch factor or reflection effeciency. Now σext(k) can be replaced
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in (3.7) to give

1

ηabs

∞
∫

0

Aem(k)(1− |Γ(k)|2)
k2 sin2 (kd cos θi)

dk ≈ 2πe∗
t · γbe · êi. (3.15)

Since Aem(k) can also be written in terms of the directivity D as λ2D
4π

. (3.15) can

then be written as

π

ηabs

∞
∫

0

D(k)(1− |Γ(k)|2)
k4 sin2 (kd cos θi)

dk ≈ 2πe∗
t · γbe · êi, (3.16)

where λ = 2π
k

has been used. Also, the constant factors can be pulled out of the

integral in (3.15). For the study of a thin-wire dipole backed by a PEC ground plane,

let us choose a normally incident plane wave (θi=0). The directivity in the direction

of the incoming wave and the mismatch 1− |Γ(k)|2 both depend on the wavenumber

k, so, they have to remain inside the integral. At this point, the frequency depen-

dent D(k) and 1− |Γ(k)|2 may be replaced by mathematical models appropriate for

resonant antennas. The models are discussed in the following subsections.

3.2.1 Model for D(k)

The directivity of an horizontal infinitesimal dipole over a PEC ground plane is

available in [13], which is equal to

D(k) =
4 sin2(kd)

R(kd)
, (3.17)

where d is the distance from the dipole to the ground plane. The function R(kd) is a

factor that appears in the radiated power expression and it is given by

R(kd) =

[

2

3
− sin(2kd)

2kd
− cos(2kd)

(2kd)2
+

sin(2kd)

(2kd)3

]

. (3.18)
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The expression for directivity, in (3.17), for an infinitesimal dipole used to derive a Q

bound is not a function of the antenna size. Since the Q bound derived from (3.16)

depends on the directivity as a function of frequency, it will be accurate for small

antennas and the accuracy will degrade for larger antennas. The Q bound will be

tested using a self-resonant dipole of approximately a half-wavelength. Therefore,

it is important to recognize the difference between the directivities of infinitesimal

and short(up to a half wavelength) dipoles. In Figure 3.3, directivity in the +z axis

direction is compared with respect to frequency between an infinitesimal dipole and

a thin-wire dipole of length l = 0.2m obtained using the numerical analysis package

FEKO based on method of moments technique. The directivity model is compared

with the simulated directivity in the low frequency range, where the physical an-

tenna may be approximated as an infinitesimally short antenna as shown in Figure

3.3. With increasing frequency, the physical antenna has a higher directivity than

the infinitesimally short dipole over the range of ground separation less than a half

wavelength.
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Figure 3.3. Comparing directivity from FEKO and model at d = 0.25 m.
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3.2.2 Model for 1− |Γ(k)|2

Similar to a thin wire dipole antenna in free space, a conductor-backed dipole will

be a resonant antenna that operates over a narrow bandwidth. A typical resonant

response for the reflection coefficient is illustrated in Figure 3.4,

kC k2k1

�

������

k

����

����

Figure 3.4. Single narrow band model.

and the associated mismatch factor is shown in Figure 3.5. Around the resonance

frequency fc, the resonant behavior of the narrowband antenna may be represented

by the response of a second-order resonant circuit. Considering a series-RLC circuit,

a quality factor Q can be associated with the circuit response around resonance. The

mismatch factor 1− |Γ(k)|2 of a series resonance circuit can be written as [15]

1− |Γ(k)|2 = 1

1 + (Q
2
)2( k

kc
− kc

k
)2
, (3.19)

where kc is the wavenumber at resonance and it is noted that 1−|Γ(k)|2 = O(k2) as k →

0. Use of parallel-RLC circuit leads to the same expression for the mismatch factor.

The wavenumbers k1 and k2 denote the edge wavelengths referenced to the half-power

points on both sides of kc, which are related to kc via kc =
√
k1k2. The quality factor

Q of this resonance is related to the 3dB fractional bandwidth via
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2

Q
=

k2 − k1
kc

. (3.20)

� f1 fc f2

0.5

1

�����
�
�

freq(MHz)

Figure 3.5. Narrow band mismatch 1− |Γ(k)|2 model.

For a dipole over a ground plane, it was observed from simulated results in Fig-

ure 3.7 that 1−|Γ(k)|2 = O(k4) as k → 0. A proper model for 1−|Γ|2 should not only

be accurate around the resonance wavelength, but also should have a correct order of

k at low frequencies. Hence, the mathematical model for impedance mismatch factor

for a dipole over a PEC ground plane is defined as

1− |Γ(k)|2 = k2R(kd)

k2
cR(kcd)(1 + (Q

2
)2( k

kc
− kc

k
)2)

, (3.21)

where

R(kcd) =

[

2

3
− sin(2kcd)

2kcd
− cos(2kcd)

(2kcd)2
+

sin(2kcd)

(2kcd)3

]

(3.22)

is the value of the function R(kd) at k = kc and 1 − |Γ(k)|2 = O(k4) as k → 0.

In order to validate this model, the mismatch is compared between the model using
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appropraite values kc and Q values and full-wave simulation results using FEKO.

In FEKO, a dipole of length l = 0.2m over an infinite conducting ground plane is

simulated. The dipole is fed at the center as shown in Figure 3.6.

Figure 3.6. A thin wire dipole above PEC in FEKO.

The simulated input impedance was post processed to find the mismatch factor.

This process is repeated for different ground separation d. Figure 3.7 shows a compar-

ison of the model and the simulated impedance mismatch factors for three different

values of d. A reasonable agreement was obtained in all test cases, validating the

accuracy of (3.21).

Now that this model (3.21) has been validated, (3.17) and (3.21) were entered

into the integral identity in (3.16). The resulting expression is

∞
∫

0

dk

k2(1 + (Q
2
)2( k

kc
− kc

k
)2)

≈ R(kcd)k
2
cηabs

2
(ēt

∗.γbe.ê
i). (3.23)
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Figure 3.7. Comparison of 1− |Γ(k)|2 at different distance d (a) d = 0.025 m. (b)
d = 0.125 m. (c) d = 0.875 m.
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This is an indefinite integral for deriving a lower bound on Q. The integral can be

evaluated in a closed form, resulting in an expression showing the lower bound of Q

Q ≈ λ3
c

R(kcd)4π2ηabs(ēt∗.γbe.êi)
. (3.24)

Proof of the integral evaluation can be found in appendix A. As stated earlier, ηabs

=0.5 can be used, while R(kcd) and λc are the respective values at the resonant

design frequency. The polarizability(γbe) represents physical(geometrical and mate-

rial) properties of the antenna, which can be evaluated numerically for an antenna of

interest.

3.3 Numerical Result

The derived resonance Q lower bound in (3.24) is tested for a thin-wire dipole

antenna using simulations. Using the closed form expression of the Q lower bound,

numerical results were generated for a physcial antenna at a different distance d above

the PEC ground plane. We considered dipole of length l = 0.2m, and wire radius

a = 1.0mm.

In order to evaluate the theoretical Q lower bound(3.24), the polarizability must

be obtained for the values of d considered. At each d, the polarizability was obtained

using COMSOL Multiphysics 4.3, which is a numerical analysis package based on the

finite element method. In COMSOL, the two-antenna configuration in Figure 3.2 was

analyzed to find the electrostatic polarizability, which requires evaluation of a surface

integral over antenna surface. Only the electrostatic polarizability of the antenna

needs to be obtained; the magenetostatic polarizability of the thin-wire geometry

under consideration is equal to zero. Figure 3.8 shows the electric polarizability as a
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Figure 3.8. The electric polarizability of the dipole above PEC at different ground
separation d.

function of the ground separation d. As d is increased, the polarizability converges to

a constant value of 1.17 m3. This makes sense because at larger ground separations

from the ground plane, both the image and the real dipole antennas are far apart

from each other, so that their interaction is negligible. At smaller d, the polarizability

decreases with decreasing d because two antenna with a close separation behaves like

a single antenna with a cross section that is twice as large as the individual antenna.

After obtaining the polarizability values for different distance d, the Q lower bound

can be evaluated for a wide range of electrical separation from the ground plane,

characterized by kcd and the electrical length of the dipole quantified by kcl. A

surface color plot of Q is obtained as function of the dipole electrical length and the

electrical ground separation as shown in Figure 3.9.

In order to validate the predicted Q lower bound, a half-wave dipole antenna is

simulated and its resonance Q is evaluated from the input reflection coefficient. An

half-wave dipole corresponds to kcl = π, and the predicted lower bound can be read

from Figure 3.9 along the corresponding horizontal line. The predicted Q bound are
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Figure 3.9. Surface plot of kcl, kcd and Q for a dipole above a PEC ground plane.
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Figure 3.10. Comparison of Q from FEKO simulation and closed form at kcl = π.
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compared with the simulation results obtained from FEKO in the Figure 3.10. The

predicted and simulated Q values are close to each other, validating the derived Q

lower bounds.

It is interesting to note that the lowest Q corresponding to the broadest bandwidth

for this dipole antenna over a PEC ground is predicted around a ground separation

kcd = 2. This corresponds to a distance of 0.3λ from the conducting ground plane for

a simulated dipole. This is an interesting result because a conductor-backed dipole is

typically designed with a quarter-wave ground separation. It means that the typical

quarter-wave separation is not optimal from the bandwidth point of view.

Table 3.2. Q of a dipole above a PEC ground for different distance(d) evaluated at
-3dB.

Distant(d) f1(MHz) f2(MHz) fc(MHz) 1/Q Q

0.1 590 877.6 719.57 0.200 5
0.11 584.1 950.8 745.23 0.246 4.065
0.12 579.1 1013 765.92 0.284 3.521
0.13 575.4 1034 771.3 0.298 3.356
0.135 574.5 1032 769.99 0.297 3.367
0.14 573.6 1027 767.5 0.296 3.378
0.15 572.6 1005 758.59 0.285 3.509
0.16 574.3 980.7 750.48 0.271 3.690
0.17 577 953.8 741.85 0.254 3.937

To make a quantitative comparison, the Q values evaluated from the reflection

coefficient Γ from FEKO simulations at different ground separations around d = λ/4

are compared. Table 3.2 confirms the lowest Q occurs at d = 0.13m. Hence, from

both predicted and simulated Q values we conclude that the broadest bandwidth is

achieved at a ground separation of d ≈ λ/3. The fractional bandwidth is improved

from 40.0% of the quater-wave separation case to 60%.
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3.3.1 Q Comparison for a Small Antenna

In order to evaluate the effect of ground plane for electrically small antennas, the

Q values for a small antenna (kcl = 1) in free space is compared with the Q when

backed by a conducting ground plane. The Q expression for an antenna of arbitrary

material composition in free space is found from [11]

D

Q
≤ η(−k̂, ê)k3

c

2π

(

ê · γ∞ · ê +
(

k̂ × ê
)

· γ∞ ·
(

k̂ × ê
))

, (3.25)

where the high-contrast polarizability dyadics γ∞ is obtained using PEC for the an-

tenna material. From (3.25) D = 1.5 can be used for electrically small dipoles to find

the Q bound for free space antennas.
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Figure 3.11. Comparison of resonance Q values for the dipole in free space and the
same antenna over a ground plane of kcl = 1.

The free space Q has been evaluated, and it is compared with that of the same

antenna over a ground plane in Figure 3.11 with respect to ground plane. It is noted

that, at lower kcd, the Q of a conductor backed dipole is higher than that of the
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same antenna in free space. As kcd is increased the Q reduces below the free space

counterpart.
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CHAPTER 4

DIPOLE ABOVE A DIELECTRIC HALF SPACE

4.1 Approximate Integral Identity for a Dipole above Dielec-

tric Half Space

Now let’s consider a horizontal dipole placed above a dielectric half space as shown

in Figure 4.1.

�

2a

���������

�����������

z

�

zd

x

ki

Hinc Einc

Figure 4.1. A thin wire dipole above a dielectric half space.

An approximate integral equation for the extinction cross section for this dipole is

derived, which will be used to derive a lower bound expression for quality factor Q. In

a case where two different media are present in addition to the antenna, the incident

field onto the antenna is defined as the total field generated by the original source

field in the absence of the antenna, but in the presence of the different media. The
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scattered field is the difference between the total field(with both the media and the

antenna present) and the incident field. Consider a linearly-polarized plane wave

normally incident on the free space dielectric interface from the dielectric side having

a perfect polarization match with a dipole. We define the original source fields as

Einc = x̂E0e
−jkz, and Hinc = ŷH0e

−jkz, (4.1)

where E0 is a complex amplitude and H0 = E0/η. In addition k and η are the

wavenumber and the intrinsic impedance of the incident(dielectric) medium respec-

tively. The source-field nature is indicated by the superscript ‘inc.’ Now the incident

fields on the antenna are those of the transmitted plane wave, given by

Ei = x̂E0Te
−jk0z, and Hi = ŷH0(2− T )e−jk0z, (4.2)

where T = 2η0/(η+η0) is the transmission coefficient, k0 is the free space wavenumber,

and η0 is the free space intrinsic impedance. There will be a reflected plane wave

inside the dielectric propagating in the −z direction, but it is not of concern from the

antenna’s viewpoint. With this definition of the incident fields, the extinction cross

section of the antenna will account for the antenna’s property in the presence of a

medium interface.

The total electric and magnetic fields (E,H) can be decomposed into the incident

(Ei,Hi) fields and the scattered fields (Es,Hs). The extinction cross section is the

sum of the absorption cross section and the scattering cross section given by

σext(k0) = σa(k0) + σs(k0). (4.3)

Both the absorption and scattering cross sections can be written in terms of the power

delivered to the load PL and the power scattered by the antenna PS respectively as
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σa(k0) =
2η

|E0|2
PL, and σs(k0) =

2η

|E0|2
PS. (4.4)

Note that the powers need to be normalized by the power density of the original

source field. The powers PL and PS can be expressed as the powers leaving a closed

surface bounding the antenna using the total fields and using the scattered fields,

respectively, as

PL = −1

2

∮

S

Re{E×H∗} · n̂ds′, and PS =
1

2

∮

S

Re{Es ×Hs∗} · n̂ds′, (4.5)

where S denotes a close surface that encloses the antenna. Using (4.5), the extinction

cross section is expressed as

σext(k0) = − η

|E0|2
Re

{
∮

S

(Ei ×H∗ + E×Hi∗) · n̂ds′
}

. (4.6)

Equation (4.2)can be substituted into (4.6) to give

σext(k0) =
η

|E0|2
Re

{

x̂E∗
0T

∗ · ẑ ×
∮

S

[

(n̂×H)× ẑ +
1

η0
(n̂× E)

]

ejk0z
′

ds′
}

. (4.7)

The expression in the bracket in (4.7) can be expanded, and the extinction cross

section becomes

σext(k0) =
η

|E0|2
Re

{

x̂
η

η0
E∗

0T
∗ · jk0ẑ×

∮

S

[ẑ × r′(ẑ · n̂× η0H− n̂ · E)− r′(ẑ · n̂×E+ n̂ · η0H)] ejk0z
′

ds′
}

.

(4.8)

Now, we expand the total fields as a power series with respect to k0, and keep the

terms of the lowest-order to find the low-frequency asymptotic expression. The fields
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approach their static quantities, allowing them to be expressed in terms of static

potential as

E = E0 = −∇Φ0, and H = H0 = −∇Ψ0, (4.9)

where Φ0 and Ψ0 are the electrostatic and magnetostatic potentials respectively. The

low frequency asymptotic expression for σext can be written as

σext(k0) = − 1

|E0|2
Re

{

x̂
η

η0
E∗

0T
∗ · jk0

(

ẑ × ẑ × p

ǫ0
+ ẑ × η0m

)

+O(k2)

}

=
1

|E0|2
Re

{

jk0
η

η0
T ∗E∗

0

(

x̂ · p
ǫ0

+ ŷ · η0m
)

+O(k2)

}

, k0 → 0,

(4.10)

where p and m are the electrostatic and magnetostatic dipole moments, respectively.

They are defined by

p = ǫ0

∮

S

(

n̂Φ0 − r′
∂Φ0

∂n

)

ds′, and m =
1

η0

∮

S

(

n̂Ψ0 − r′
∂Ψ0

∂n

)

ds′. (4.11)

Using the relative permittivity ǫr of the medium (4.10) can be rewritten as

σext(k0) = Re

{

jk0
1√
ǫr
T ∗

(

x̂ · p/ǫ0|E0|
+ ŷ · η0m

η|H0|

)

+O(k2)

}

, k0 → 0, (4.12)

where E0 = ηH0 has been used. A closed contour integral of σext(k0)/k
2
0 over a

contour in the lower half plane of the complex-k plane of Figure 2.3 can be performed

using the Cauchy integral theorem, resulting in an integral identity

∞
∫

0

σext(k0)

k2
0

dk0 =
π

2
√
ǫr
T

(

x̂ · p/ǫ0|E0|
+ ŷ · η0m

η|H0|

)

. (4.13)

The fact that the transmission coefficient T at the dielectric-free space interface is a

real-valued constant for lossless dielectric has been used. Since σext(k0) is not related

to the forward scattering coefficient due to the presence of the dielectric half space,
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(4.13) is not expected to hold exactly. The approximate nature of (4.13) can be

understood by considering a related problem that has an exact integral identity for

the extinction cross section. For this purpose, consider the same antenna in free space

without the dielectric half space, subject to an x-directed incident field of electric

field amplitude (1 + Γ)E0. The associated extinction cross section σext(k0) satisfies

the integral sum rule

∞
∫

0

σfs,ext(k0)

k2
0

dk0 =
π

2
√
ǫr
T

(

x̂ ·
pfs/ǫ0

T |E0|
+ ŷ · mfs

T |H0|

)

, (4.14)

where pfs and mfs are the induces dipole moments. Re-scaling σfs,ext with the

incident power density from the dielectric medium in Figure 4.1, (4.14) becomes

∞
∫

0

1

k2
0

[

σfs,ext(k0)
|T |2
η0/η

]

dk0 =
π

2

|T |2
η0/η

(

x̂ ·
pfs/ǫ0

T |E0|
+ ŷ · mfs

T |H0|

)

=
π

2
√
ǫr
T

(

x̂ · p/ǫ0|E0|
+ ŷ · η0m

η|H0|

)

.

(4.15)

Comparing (4.13) and (4.15), it can be concluded that (4.13) is expected to be ac-

curate when p and m approach pfs and mfs, respectively, i.e., when the induced

static dipoles in the presence of a dielectric half space are similar to those in the ma-

terials absence. Hence we expect the agreement of both sides of (4.13) will improve

as the dipole is positioned away from the interface and deteriorate as the dipole is

moved closer to the interface. The validity of the identity can be numerically tested.

It is tested for a dielectric material of ǫr = 40, which was chosen to represent the

permittivity of muscle [16]. The geometry of the thin-wire PEC antenna is given by

l = 0.5 m and a = 2.5 mm. The z-coordinate of the dipole axis is zd. The mag-

netic dipole moment on the right hand side of identity is negligible and thus it can

be dropped because the antenna is thin and perfectly conducting. The lhs of (4.13)

is obtained from frequency-swept simulation using FEKO, and the rhs of (4.13) is
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obtained from COMSOL. Figure 4.2 illustrates the simulation setup in FEKO and

COMSOL. In FEKO, σext(k0) was obtained from the scattered power as a function of

frequency, and then (4.4) was used. After getting σext(k0), numerical integration was

performed. In COMSOL, a static background electric field is applied to a sufficiently

large cuboidal simulation volume to imitate an unbounded space and the strength of

the induced dipole moment was obtained using (B.1). The Table4.1 lists the agree-

ment between the lhs and rhs of the identity. The agreement slightly deteriorates as

the zd is lowered toward zero, but we obtain an overall reasonable agreement over the

range of zd considered. As in the case of a wire dipole backed by a PEC ground, the

(b)

(a)

Figure 4.2. A thin wire dipole above a dielectric half space in (a) FEKO (b)
COMSOL.

σext(k0) in the integral can be replaced with equality

σext(k0) ≈
σa(k0)

ηabs
. (4.16)

The absorption cross section, σa(k0), can be replaced with

σa(k0) = Ae(k0) =
λ2

4π
D(k0)(1− |Γ(k0)|2) =

π

ǫrk2
0

D(k0)(1− |Γ(k0)|2), (4.17)
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Table 4.1. Validation of the integral identity for a wire dipole above a dielectric half
space for ǫr = 40.

Separation(zd) LHS COMSOL( p

ǫ0
) RHS Percent diff.

1 0.0131 0.0183 0.0136 3.7
0.55 0.0131 0.0184 0.0136 3.7
0.5 0.0131 0.0184 0.0136 3.7
0.45 0.0131 0.0184 0.0136 3.7
0.35 0.0131 0.0184 0.0136 3.7
0.30 0.0131 0.0184 0.0137 4.4
0.25 0.0131 0.0185 0.0137 4.4
0.20 0.0131 0.0186 0.0138 5.1
0.15 0.0133 0.0188 0.0139 4.3
0.10 0.0136 0.0193 0.0143 5.0
0.05 0.0146 0.0209 0.0155 5.8
0.04 0.0152 0.0217 0.0161 5.6
0.03 0.0160 0.0228 0.0169 5.3
0.02 0.0176 0.0323 0.0187 5.9
0.01 0.0219 0.0323 0.0239 8.4

where 1 − |Γ(k0)|2 is the impedance mismatch factor, D is the directivity, λ is the

wavelength, ǫr is the relative permittivity of the dielectric, and k0 is the free space

wavenumber. Here, it should be remembered that the wavelength is the one in

medium where the directivity is evaluated which is the wavelength inside the di-

electric. When all the substitutions are made, the integral identity in (4.13) becomes

π

ηabs

∞
∫

0

D(k0)(1− |Γ(k0)|2)
k4
0

dk0 ≈
π
√
ǫr

2
T

(

x̂ · p/ǫ0|E0|
+ ŷ · η0m

η|H0|

)

. (4.18)

Now, the next step is obtaining a model for the mismatch 1−|Γ|2 and the directivity

D. This is the focus of the following sections.

4.2 Model for 1− |Γ(k0)|2

In order to derive a model for this problem, we start from the model of 1−|Γ|2 for

a resonant antenna in free space around the resonance frequency and modify it to fit
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the behavior of the mismatch with respect to frequency. Within the frequency band

of resonance, the mismatch factor can be accurately modeled using (3.19) in terms of

the center wavelength k0c and the resonance quality factor Q. In the integral on the

lhs of (4.18), we find that the contribution to the integral is not dominated by the

resonance frequency band and the contribution from the low frequency range is non-

negligible. An approximate low-frequency behavior of 1 − |Γ|2 can be accounted for

by matching the order of frequency dependence as k0 → 0. Therefore, by introducing

a factor ( k0
k0c

)2 to the standard narrowband response (3.19), the resonant behavior of

the mismatch factor around the resonance frequency is preserved while a correct low

frequency dependence is accounted for. Hence, the model for the mismatch is set to

1− |Γ(k0)|2 =
(

k0
k0c

)2
1

1 + (Q
2
)2( k0

k0c
− k0c

k0
)2
. (4.19)

This model has the correct order of O (k4
0) at low frequency. This model is compared

with the mismatch from FEKO simulation for different dipole position zd in Fig-

ure 4.3. The model matches the impedance mismatch factor from simulation around

resonance as well as in the low frequency limit. The model also closely follows the sim-

ulated mismatch as the frequency is increased from zero to the resonance frequency.

Therefore, it is a good mathematical model that can be used for 1− |Γ|2 in (4.13).

4.3 Model for D(k0)

The directivity D in the integrand of (4.18) is a function of frequency. Here,

it is important to remember that this directivity is in a fixed direction rather than

the maximum directivity. This fixed direction is the direction of the incoming wave,

which is the z axis direction (θ = π) for this dipole in free space.

In the study of directive properties of antennas for transmission into material half

space, Smith considered the case where a Hertzian dipole radiates into a half space
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Figure 4.3. Comparison of 1 − |Γ(k0)|2 at different distance zd. (a) zd = 0.15 m.
(b) zd = 0.5 m. (c) zd = 0.85 m.
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as illustrated in Figure 4.4 [17]. We can evaluate the directivity looking normally

into the dielectric half space for D to use in (4.18). Smith focused on the space

2-Half space

1- Air

00

900 zd

Field Pattern

Dipole

1800

Figure 4.4. Smith’s directive properties of antennas transmitting into half space.

wave characteristics rather than surface waves that flows along the interface between

the half space and the adjacent medium. Fields of an antenna over a half space are

expressed as an integral over 2-D spectra of propagating and evanescent plane waves.

The directivity of a Hertzian electrica dipole antenna over a half space is expressed

as [17]

D(θ) =
4πr̂ · Re[~Sr

c (r, θ)]
∫∫

r̂ · Re[~Sr
c (r, θ, φ)dΩ

=
2k2

1| ~A+( ~K = 0)|2
πζ2(1 + k12)2Pin

. (4.20)

The second expression in (4.20) is given in terms of the spectral density ~A+. In

(4.20), r̂ is the unit vector in the direction from the antenna to a far-field position

in the dielectric medium, ~Sr
c (r, θ) is the complex far-zone Poynting vector, ~A+ is

the spectral density that has both parallel and normal component, k12 = k1
k2

is the

ratio of the wavenumbers in the two media (k1 is the same as k0 in this work), ζ2 is

the impedance of the half space, and Pin is the input power. The directivity for

horizontal electric dipole above a dielectric half space is written as [17]
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De =
8k21

(1 + k12)2







4

3
−

1
∫

0

[

R‖ −
(

k1
γ1

)2

R⊥

]

· cos (2γ1h)ρdρ

− 1

k1

k21
∫

1

|γ1|e−2|γ1|h ·
[

Im(R‖) +

∣

∣

∣

∣

k1
γ1

∣

∣

∣

∣

2

Im(R⊥)

]

ρdρ







−1

.

(4.21)

In (4.21), k12 = k1/k2, k21 = k2/k1, the parallel reflection coefficient R‖(K) =

(k2
2γ1 − k2

1γ2)/(k
2
2γ1 + k2

1γ2), the perpendicular reflection coefficient R⊥(K) =

(γ1 − γ2)/(γ1 + γ2), the parallel transmission coefficient T‖(K) = 2k1k2γ1/(k
2
2γ1 + k2

1γ2),

the perpendicular transmission coefficient T⊥(K) = 2γ1(γ1 + γ2), γ1 = −
√

K2 − k2
1,

γ2 = −
√

K2 − k2
2, ρ = K/k1, and K =

√

k2
x + k2

y. The directivity from (4.21) is

compared with that from FEKO simulation for an electrically small dipole, in Figure

4.5. In FEKO simulation, a short dipole of length l = 0.02m is used. An excellent

agreement between the theoretical and numerical results is observed at all frequen-

cies considered. In Figure 4.5, it is noticed that directivity stays high away from the

low-frequency range compared with that of the same antenna in free space, which

is 1.5. This may appear counter-intuitive because of a large impedance mismatch

between free space and the dielectric medium. In Figure 4.6 simulated directivity

patterns from FEKO are shown for a dipole on the free space side and a dipole on the

dielectric side at two frequencies. For a small dipole above the dielectric interface at

zd = 0.5 m, directivity patterns in the two principal planes are shown at 500 MHz and

1500 MHz in Figure 4.6 (a) and (b). Directivity is higher looking into the dielectric

(θ = π) than in the opposite direction into free space (θ = 0). However, numerical

results show that a larger portion of the total radiated power radiates into the free

space side. Figure 4.6(c) and (d) show the directivity in the principal planes for a

small dipole inside dielectric with zd = 0.5 m at two frequencies. It is observed that

more power is radiated into the dielectric than into free space. The same behavior

occurs when a dipole antenna is placed on the interface of a lossless dielectric half

space [18]. In addition, the directivity is higher into the dielectric than toward free
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space. Thus, it is concluded that directivity is higher into the dielectric than into

free space when the antenna is placed either on the surface of the interface, above the

dielectric half space or inside the dielectric half space.
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Figure 4.5. Directivity comparison between FEKO and [17] for infinitesimal dipole
above half space.

Since (4.21) will be used in deriving the Q bound while practical antennas have

non-negligible lengths, it is instructive to compare (4.21) with the accurate directivity

of a a practical self-resonant dipole of half wavelength. This comparison is made in

Figure 4.7, where a reasonable agreement is observed in the low frequency range, but

not at high frequencies.

However, it should be noted that accuracy of the directivity used in developing

the model in the low frequency is most important because there is a 1/k4
0 weight that

attenuates the integrand at high frequencies in (4.18). Since the expression for D is

not in a closed form, we cannot find a Q bound in a closed form by substituting the

directivity expression into (4.18) as was done in the case of dipole above a PEC ground

in Chapter 2. Hence the Q lower bound will be numerically generated. Numerical
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Figure 4.6. Polar plot of the directivity pattern of a dipole of length l = 0.01λ. (a)
dipole above half space at 500 MHz. (b) dipole above half space at 1500 MHz. (c)
dipole inside half space at 500 MHz. (d) dipole inside half space at 1500 MHz.
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Figure 4.7. Directivity comparison between FEKO and [17] for a half-wave dipole
above a dielectric half space at zd = 0.5 m.

results for the resonance Q bound for a dipole antenna above a dielectric half space

is considered in the next section.

4.4 Numerical Result

4.4.1 High permittivity case ǫr = 40

In order to obtain the Q bound for this problem using (4.18), numerical integration

must be performed since there is no closed form expression for the integral. Even with

accurate directivity values obtained from numerical analysis, it should be checked if

the model for the extinction cross section, and therefore the integrand, agrees well with

full-wave simulation results of a physical antenna. For an example case of l = 0.5 m,

a = 2.5 mm, zd = 0.5 m, and ǫr = 40, the extinction cross section is compared between

the model and the simulation result in Figure 4.8. For the model-generated value,

(4.18) with an absorption efficiency value of ηabs = 0.5 is used. The simulation results

for σext is generated by a receiving antenna simulation. The extinction cross section

can be computed from the scattered and received power quantities from numerical

analysis. In Figure 4.8, a reasonable agreement is observed. Since the model uses
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the directivity of an infinitesimal dipole, the difference is attributed in part to the

inaccuracy of the directivity in the model. As a check, another extinction cross section

is plotted based on (4.18) and (4.17), but using the accurate directivity obtained from

a transmitter simulation in FEKO. An improvement is observed for the agreement,

confirming that the main source of difference is the use of (4.21) in the model of σext.

Comparison of the integrand is shown in Figure 4.9, which demonstrates a reasonable

agreement between the frequency-dependent model and the accurate numerical result.

For a given combination of the electrical length of the dipole, k0cl, and the position of

the dipole relative to the material interface, k0czd, the value of Q can be found using

(4.18). Figure 4.10 shows a color surface plot of Q with respect to k0czd and k0cl.
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Figure 4.8. Comparison between σext from FEKO receiving antenna, σext using the
directivity from (4.21), and σext using the directivity from FEKO at zd = 0.5 m.

To inspect the expected Q behavior for a fixed-length dipole as a function of

the separation from the material interface, consider a dipole at k0cl = π, which

corresponds to a practical half-wave dipole. This fixed electrical length corresponds

to a cut on the surface plot, and it is compared with quality factor obtained from

FEKO in the Figure 4.11. It is observed that the predicted Q is close to the simulated
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Figure 4.9. Comparison between integrand from FEKO receiving antenna, one using
directivity from (4.21), and one using directivity from FEKO at zd = 0.5 m.

Q and follows the same trend with respect to k0czd, and also that the predicted Q is

consistently lower. This is attributed to the lower value of D used in the model than

that of the dipole of correct length. As a check, another Q is found numerically from

(4.18) using the accurate directivity value from FEKO simulations. The associated

Q values are also shown in Figure 4.11. It confirms that the slightly low directivity

from (4.21) is the reason for slightly lower predicted Q values.

4.4.2 Low permittivity case ǫr = 4

In this section, dipole Q values are predicted associated with a dielectric half space

od a permittivity value in the low range. Here a value of ǫr = 4 is chosen. First, the

approximate integral identity (4.13) is tested for this permittivity value. The dipole

geometry is kept at l = 0.5 m, a = 2.5 mm. Comparison of both sides of (4.13) is

made in Table 4.2. Over the entire range of zd considered, the error is 5% or less,

validating the derived identity.
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Figure 4.10. Surface plot for quality factor for dipole above a dielectric half space
when ǫr = 40.
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Figure 4.11. Quality factor comparison at k0cl = π when ǫr = 40.
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Using the same procedure as in the ǫr = 40 case, a surface plot of the predicted Q

Table 4.2. Validation of integral identity for a wire dipole above a dielectric half
space for ǫr = 4.

Separation(zd) LHS COMSOL( p

ǫ0
) RHS Percent diff.

1 0.0247 0.0183 0.0257 4.3
0.5 0.0246 0.0184 0.0257 4.3
0.45 0.0246 0.0184 0.0257 4.3
0.35 0.0246 0.0184 0.0257 4.3
0.30 0.0246 0.0184 0.0257 4.3
0.25 0.0247 0.0185 0.0258 4.3
0.20 0.0247 0.0185 0.0258 4.3
0.15 0.0249 0.0186 0.0260 1.8
0.10 0.0252 0.0189 0.0264 2.0
0.05 0.0264 0.0199 0.0278 5.0
0.04 0.0270 0.0203 0.0284 4.8
0.03 0.0279 0.0209 0.0291 4.1
0.02 0.0294 0.0221 0.0308 4.6
0.01 0.0337 0.0252 0.0352 4.3

is generated as a function of the electrical length, k0cl, and the electrical separation to

the material interface, k0czd, as shown in Figure 4.12. Comparing with Figure 4.10, Q

changes more slowly with respect to the separation from the material interface. The

behavior of Q is inspected for a fixed length of half wavelength and the predicted Q

values are compared with those obtained from full-wave FEKO simulations in Figure

4.13. The predictedQ values are close to the simulated Q values, but also consistently

lower by a small amount. This is again attributed to the underestimated directivity in

(4.21) associated with an infinitesimal dipole that was used in deriving the predicted

Q.

In conclusion, an integral identity for the extinction cross section for an antenna

over a dielectric half space has been derived and validated for a large and a small

permittivity cases over a wide range of dipole position. An extinction cross section

model based on a constant absorption efficiency with frequency-dependent directiv-

ity and impedance mismatch factor is effective in reproducing the integrand of the
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Figure 4.12. Surface plot for quality factor of a dipole above a dielectric half space
when ǫr = 4.
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Figure 4.13. Quality factor comparison at k0cl = π when ǫr = 4.
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identity with a reasonable accuracy. The predicted resonance Q values were tested

against simulated values and a reasonable agreement was found. It was found that

the predicted Q values were consistently lower by a small amount than the simulated

values due to the underestimated directivity associated with an infinitesimal dipole

used in modeling the extinction cross section.

4.4.3 Effect of Permittivity on Q

A dipole of fixed electrical length kcl = π is placed above a dielectric half space,

and its Q is studied as the permittivity is varied. A surface plot of the predicted Q

is shown in Figure 4.14 as a function of permittivity and electrical separation. It is
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Figure 4.14. Quality factor for dipole of electrical length k0cl = π as function of
permittivity ǫr.

noted that as the permittivity of the dielectric is reduced, the Q approaches a constant

value of 4.4 associated with the antenna in an unbounded free spaces. In addition,
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Q approaches the same constant value at large ground separation. Furthermore, it

is noted that this Q associated with free space is not the minimum possible value.

There are combinations of ǫr and k0czd that achieve lower Q values.

4.4.4 Q Comparison for a Small Antenna

In order to evaluate the effect of a half space for electrically small antenna above

a dielectric half space, the Q value for a small antenna corresponding to k0cl = 1 in

free space is compared with the Q when it is placed above a dielectric half space. The

free space Q is evaluated using (3.25), and it compared with the Q in the presence of

a dielectric half space with ǫr = 40 with respect to the electrical separation in Figure

4.15. At lower k0czd, it is noted that the Q in the presence of a dielectric half space
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Figure 4.15. Comparison between the free space Q and the resonance Q of an
electrically small antenna (k0cl = 1) above a dielectric half space when ǫr = 40.

is lower than free space Q, suggesting an increased bandwidth. As k0czd is increased,

the Q of the dipole above a dielectric half space alternates around the Q of the same

antenna in free space. With increasing separation to the material interface, a trend

of converging Q toward the free space Q of the same antenna emerges.
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CHAPTER 5

DIPOLE INSIDE A DIELECTRIC HALF SPACE

5.1 Approximate Integral Identity for Wire Dipole inside a

Dielectric Half Space

In this section, we will study a dipole inside a dielectric half space for bandwidth.

The problem configuration is illustrated in Figure 5.1.

The incident field is chosen to be normally incident on the free space-dielectric

l

2a

���������

�����������

ki

z

�

zd

x

Hinc Einc

Figure 5.1. A thin wire dipole inside a dielectric half space.

interface from the free space side, so that the dipole will experience a single plane

wave. An approximate integral identity for a dipole immersed in a dielectric half

space can be obtained following the same process used for a dipole above a dielectric
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half space in Chapter 4. in terms of the total fields on the antenna bounding surface

S, the extinction cross section is given by

σext(k) =
η0

|E0|2
Re

{

x̂E∗
0T

∗ · (−ẑ)×
∮

S

[

(n̂×H)× (−ẑ) +
1

η
(n̂×E)

]

e−jkz′ds′
}

.

(5.1)

This is different from (4.7) in four aspects. First, the original source field is from the

free space side, so the normalizing power density is |E0|2/2η0. Second, the propagation

direction of the incident wave the dipole experiences is the −ẑ direction. Third, the

wavenumber for the incident field is k. Finally, the transmission coefficient T is given

by T = 2η/(η + η0). In the low frequency limit, σext is expressed as

σext(k) =
1

|E0|2
Re

{

jk
η0
η
E∗

0T
∗

(

x̂ · p
ǫ0

+ ŷ · ηm
)

+O(k2)

}

= Re

{

jkǫrT
∗

(

x̂ · p/ǫ0|E0|
+ ŷ · ηm

η0|H0|

)

+O(k2)

}

, k → 0.

(5.2)

Note that E0 = η0H0 because the antenna is illuminated from free space. A

contour integral in the complex-k plane along the real-k axis as shown in Figure 2.3

gives an integral identity

∞
∫

0

σext(k)

k2
dk =

πǫr
2

T

(

x̂ · p/ǫ0|E0|
+ ŷ · ηm

η0|H0|

)

. (5.3)

The difference from (4.13) is that ǫr appears in the numerator. It should be

remembered that the source field illuminates the medium interface from the free

space side. The integral identity (5.3) is expected to be approximate because the

forward scattering is not occurring in an unbounded space. In fact, the scattering

configuration under consideration is closely related to the scattering by the same

antenna in an unbounded dielectric space having the same relative permittivity as

the dielectric half space. Similarly to dipole scattering above the free space-dielectric

interface considered in Chapter 4, the integral sum rule (5.3) is expected to become
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accurate when the induced static dipole moments p and m are not affected by the

medium interface, i.e., when the dipole location is not close to the interface. It is

necessary to validate (5.3) for the scattering configuration under consideration. For

an example PEC thin-wire dipole of l = 0.5 m and a = 2.5 mm. Table 5.1 compares

the two sides of the integral identity for different z-coordinate of the horizontal dipole

zd inside the dielectric. For all the depths considered, both sides agree within 4.1%

or less, so the equality is validated for the test case. As in the case of a dipole over a

dielectric half space, the difference between the two sides slightly increase when the

dipole is placed close to the medium interface. The integral can be converted from

one in terms of σext to one involving σa using the relationship σext = σa/ηabs. The

absorption cross section is expressed as

σa = Ae(k) =
λ2
0

4π
D(k)(1− |Γ(k)|2) = π

k2
0

D(k)(1− |Γ(k)|2). (5.4)

In (5.4), the free space wavelength needs to be used because the far-zone direction

of directivity evaluation is the direction of the source wave from free space. Once

models for D and the impedance mismatch factor for a narrowband resonant antenna

are developed and confirmed, the resonance Q can be predicted using (5.3).

5.2 Model for 1− |Γ(k)|2

A similar reasoning applies to the mismatch of a dipole inside a dielectric half

space as did for a dipole in free space above the medium interface. In other words,

around the resonant wavenumber inside the dielectric kc, the mismatch follows the

standard 2nd-order resonance behavior. In the low frequency limit, the mismatch is

of O(k4). Hence, the same model given in (4.19) is adopted

(1− |Γ(k)|2) = k2

k2
c ((1 + (Q

2
)2( k

kc
− kc

k
)2)

. (5.5)
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Table 5.1. Validaion of the integral identity for wire dipole inisde a dielectric half
space for ǫr = 40.

Position(zd) LHS COMSOL( p

ǫ0
) RHS Percent diff.

-0.01 0.0587 0.0131 0.0612 4.1
-0.02 0.0662 0.0142 0.0665 0.5
-0.03 0.0703 0.0154 0.0722 2.6
-0.04 0.0731 0.0161 0.0756 3.3
-0.05 0.0752 0.0164 0.0766 1.8
-0.06 0.0767 0.0169 0.0792 3.2
-0.10 0.0804 0.0177 0.0828 2.9
-0.125 0.0815 0.0179 0.0837 2.6
-0.15 0.0823 0.0179 0.0841 2.1
-0.20 0.0831 0.0181 0.0850 2.2
-0.25 0.0835 0.0183 0.0850 2.8
-0.30 0.0837 0.0183 0.0856 2.2
-0.35 0.0841 0.0183 0.0857 1.9
-0.40 0.0840 0.0183 0.0858 2.1
-0.45 0.0841 0.0184 0.0858 2.0
-0.50 0.0841 0.0184 0.0864 2.7
-1.0 0.0842 0.0184 0.0864 2.6

For an example, a dipole of l = 0.5 m and a = 2.5 mm, (5.5) was tested against

FEKO simulation results for three different dipole locations zd = −0.05 m,−0.5 m,

and −0.85 m. Comparison between the modeled and simulated mismatches is made

in Figure 5.2.

The model intends to capture the first, dominant resonance, so we conclude that

(5.5) is adequate for modeling the mismatch. It can be noted that the resonance

frequencies shifts to lower values compared with those of the same dipole above the

half space. The frequency of the first resonance is 300MHz for the dipole above a half

space and it is 47MHz when it is placed inside the dielectric which is scaled by
√
ǫra

5.3 Model for D(k)

As in the case of a dipole above a dielectric half space, the directivity expres-

sion from [17] is employed for a dipole inside a dielectric half space. The problem
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Figure 5.2. Comparison of 1 − |Γ(k)|2 at different distance zd (a) zd = −0.05 m.
(b) zd = −0.5 m. (c) zd = −0.85 m.
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is illustrated in Figure 5.3. It shows a Hertzian electric dipole inside a half space

transmitting into free space.

2-Half space

1- Air

00

900

-zd

Field Pattern

Dipole

1800

Figure 5.3. Smith’s directive properties of a dipole antenna transmitting into air
from half space

The directivity expression is [17]

De =
8k21

(1 + k12)2







4

3
− 1

k1

k21
∫

0

γ1 ·
[

R‖ −
(

k1
γ1

)2

R⊥

]

· cos (2γ1h)ρdρ

− 1

k1

1
∫

k21

γ1

[

Re(R‖e
−2γ1h) +

(

k1
γ1

)2

Re(R⊥e
−2|γ1|h)

]

ρdρ







−1

.

(5.6)

where k12 = k1/k2, k21 = k2/k1, the parallel reflection coefficient

R‖(K) = (k2
2γ1 − k2

1γ2)/(k
2
2γ1 + k2

1γ2), the perpendicular reflection coefficient R⊥(K) =

(γ1 − γ2)/(γ1 + γ2), the parallel transmission coefficient T‖(K) = 2k1k2γ1/(k
2
2γ1 + k2

1γ2),

T⊥ = 2γ1(γ1 + γ2), γ1 = −
√

K2 − k2
1, γ2 = −

√

K2 − k2
2, ρ = K/k1, and K =

√

k2
x + k2

y . As a validation of the theoretical formulation as well as its numerical

implementation, the directivity in the +z axis direction computed from (5.6) and

obtained from FEKO simulation of a very short dipole (l = 0.01λ) are compared in

Figure 5.4 at two different dipole locations. An excellent agreement is observed. Since

our model of D will use the directivity of an infinitesimal dipole and it will be used in

deriving the resonance Q bound of dipoles of non-negligible lengths, it is worthwhile
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to compare the model to the simulated directivity for a dipole (a half wavelength

inside the dielectric at 47 MHz). It can be observed that the model is accurate in the

low frequency range only as shown in Figure (5.5). Still, the directivity of (5.6) shows

a reasonable agreement around the resonance frequency of 47 MHz. Together with

the fact that σext(k) in (5.3) is weighted by 1
k2
, inaccuracy of D at high frequencies

does not significantly compromise the accuracy of the resulting Q bound.

5.4 Numerical Result

5.4.1 High permittivity case ǫr = 40

For a high permittivity test case, ǫr = 40 is chosen. The accuracy of the extinction

cross section and the resultant integrand of (5.3) between the model and numerical

simulation is first checked to validate the model for σext. For an example, a case

with l = 0.5 m, a = 2.55 mm and zd = −0.5 m the integrand of (5.3) computed

in three different methods are compared in Figure 5.6. Figure 5.7 shows that the

two integrands generated using two different directitivity values and together with

the mismatch models (5.5) closely follow the FEKO-generated integrand. Some of

this difference between the modeled quantities (solid blue) and the numerical analysis

results (red dash) is attributed to the directivity of an infinitesimal dipole used for

D. If the exact, numerically obtained directivity is used instead, the agreement of

σext between the model (solid green) and the simulation results (red dash) slightly

improves.

Over a range of the dipoles electrical length, kcl, and the electrical location of

the antenna in z, kczd, the predicted resonance Q value is shown as a color plot in the

Figure 5.8. A horizontal cut in Figure 5.8 at kcl = π corresponds to a half-wavelength

dipole inside the dielectric. The predicted Q values and those from numerical sim-

ulations are compared Figure 5.9. In most of the kczd range, the theory slightly
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Figure 5.4. Comparison between directivity from FEKO and [17] at (a) zd =
−0.25 m. (b) zd = −0.5 m.
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Figure 5.5. Comparison between directivity from FEKO and [17] at (a) zd =
−0.25 m. (b) zd = −0.5 m.
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Figure 5.6. Comparison between σext from FEKO receiving antenna, σext using
directivity from (5.6) and σext using directivity from FEKO at zd = −0.5 m.

underestimates the resonance Q, which is in part attributed to the slightly lower

value of the directivity D used in the model.
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Figure 5.7. Comparison between integrand from FEKO receiving antenna, one using
directivity from (5.6), and one using directivity from FEKO at zd = −0.5 m.
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Figure 5.8. Surface plot for quality factor for dipole inside a dielectric half space
when ǫr = 40.
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Figure 5.9. Quality factor comparison at kcl = π when ǫr = 40
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5.4.2 Low permittivity case ǫr = 4

The derived integral identity is first tested for this case. For the thin-wire dipole

with l = 0.5 m, a = 2.5 mm, both sides of the integral identity (5.3) are compared in

Table 5.2. A reasonable agreement with a maximum difference of 5.8% is observed,

thus validating the approximate identity.

A surface plot is plotted in Figure 5.10 for the predicted Q as a function of the

electrical length and the position along the z axis inside the dielectric. For any fixed

electrical length, the Q is a function of the dipole position relative to the medium

interface. Inside this low permittivity dielectric, Q depends more weakly on kczd than

in the high permittivity dielectric case. In Figure 5.11, the predicted Q is compared

with the actual Q from FEKO analysis for the half-wave dipole case. In most of the

range considered, the predicted Q is slightly lower than the actual Q obtained from

FEKO simulations, part of which is attributed to the directivity of an infinitesimal

dipole used in constructing the model of σext. In conclusion, an approximate integral

Table 5.2. Validation of integral identity for a wire dipole inside dielectric half space
for ǫr = 4.

Position(zd) LHS COMSOL( p

ǫ0
) RHS Percent diff.

-0.01 0.0386 0.0144 0.0403 4.2
-0.02 0.0417 0.0156 0.0435 4.1
-0.03 0.0435 0.0160 0.0447 2.7
-0.04 0.0447 0.0170 0.0460 2.8
-0.05 0.0456 0.0170 0.0464 1.7
-0.06 0.0463 0.0173 0.0484 5.8
-0.10 0.0479 0.0180 0.0502 4.6
-0.15 0.0486 0.0182 0.0509 4.5
-0.20 0.0480 0.0185 0.0512 6.3
-0.25 0.0492 0.0185 0.0514 4.3
-0.30 0.0492 0.0185 0.0514 4.3
-0.35 0.0492 0.0185 0.0515 4.7
-0.40 0.0492 0.0185 0.0515 4.7
-0.45 0.0492 0.0185 0.0516 4.7
-0.50 0.0491 0.0185 0.0516 4.8
-1.0 0.0493 0.0185 0.0516 4.5
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identity for the extinction cross section of a dipole antenna inside a dielectric half

space was derived and numerically validated. Using a model for the extinction cross

section for a narrowband dipole, the resonance Q value was predicted as a function

of the antenna length and position relative to the free space-dielectric interface. For

two example media having a high and low permittivities, the predicted Q values

were compared with the actual Q values obtained from simulations and a reasonable

agreement was observed.

Figure 5.10. Surface plot for quality factor for dipole inside a dielectric half space
ǫr = 4.

5.4.3 Effect of Permittivity on Q

In this section, quality factor Q of a thin wire dipole inside a dielectric as a

function of permittivity of the half space is studied. The thin wire dipole has a fixed

of physical length (l = 0.5 m). In 5.12, the predicted Q is plotted as a function of the

relative permittivity and the electrical position(|kczd|) inside the dielectric. At high
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Figure 5.11. Quality factor comparison at kcl = π using directitiy from FEKO.

values of permittivity, predicited Q shows a larger variation with respect to antenna

position compared with low permittivity cases. The predicited Q cases approaches a

constant value associated with the antenna in unbounded free space as ǫr is reduced

toward unity. Also, at large electrical separations from the interface, the predicited

Q approaches approaches another constant associated with the same antenna in an

unbounded dielectric medium.

5.4.4 Q Comparison for a Small Antenna

In order to evaluate the effect of an interface with free space for an electrically

small antenna inside a dielectric half space, the Q value for a small dipole of kcl = 1 in

unbounded dielectric is compared with the Q of the same antenna is inside a dielectric

half space. The antenna Q in an unbounded dielectric is evaluated using (3.25) with

the impedance and wavenumber evaluated for dielectric medium. This is compared

with Q of the same dipole when the dielectric becomes a half space in Figure 4.15

with respect to the electrical separation to the free space-dielectric interface.
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Figure 5.12. Quality factor for a dipole fixed length 0.5λ as function of permittivity
ǫr.
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Figure 5.13. Comparison of free-space Q and resonance Q of an electrically small
antenna (kcl = 1) inside a dielectric half space of ǫr = 40.
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CHAPTER 6

CONCLUSION

The resonance quality factor Q of a thin wire dipole in the presence of a con-

ducting ground plane has been studied. An integral sum rule for the extinction cross

section of the antenna was first derived. For narrowband resonance response, a math-

ematical model for the impedance mismatch factor was developed. The directivity of

an infinitesimal horizontal dipole over a ground was used together with the mismatch

factor in the integral sum rule to derive the Q bound. A closed-form expression for

the antenna Q was obtained as a function of ground separation separation and elec-

trostatic polarizability of the antenna. With respect to the ground separation, the

predicted lowest quality factor which correspond to the broadest bandwidth was con-

firmed using full-wave numerical analysis. For dipole antennas backed by a ground

plane quater-wave separation is typically chosen, but the highest bandwidth or low-

est quality factor was obtained at a distance approximately λ/3. At electrically large

ground separation, the Q approaches a constant value. This is expected because the

effect of the ground plane is minimal when an antenna is far separated from the

ground, approaching the free space characteristics. However, when the antenna is

close to the ground plane, the quality factor increases.

In the second part, a dipole in the presence of a dielectric half space was studied.

Both a dipole above a dielectric half space as well as a dipole inside a dielectric half

space were considered. An integral identity for the extinction cross section was de-

rived, and numerically validated using an example configuration for each case. For a

high and a low relative permittivities of 40 and 4, the predicted Q bound was evalu-
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ated as a function of the antenna position and the electrical length of the dipole. For

resonant half wave dipoles, the predicted Q values were compared with full-wave nu-

merical simulation results, which showed a reasonable agreement. For larger electrical

separations between the medium interface and the wire dipole, the Q was predicted to

approach constant value as expected. When a resonant antenna is not in free space,

the quality factor and the associated impedance bandwidth are different from those

of the same antenna in free space. To date, the standard approach to evaluating

the antenna Q and bandwidth for antennas in simple, non-free space environments

such as a ground plane or material half space has been frequency-swept, full-wave

numerical simulation. The Q bounds in this study represent one of the first efforts to

evaluate and predict the antenna characteristics in practical operating environments

without resorting to numerical analysis.
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APPENDIX A

PROOF OF QUALITY FACTOR’S LIMIT

In this section, details of the integral evaluation are provided for (3.23), which is

reproduced below.

∞
∫

0

dk

k2(1 + (Q
2
)2( k

kc
− kc

k
)2)

≤ R(kcd)k
2
cηabs

2
(ēt

∗.γbe.ê
i) (A.1)

Here k is the free space wavenumber, kc is the wave-number at the resonant frequency

of the antenna, Q is the resonance quality factor, ηabs is the absorption efficiency and

γbe is the polarizability of the antenna. An indefinite integral of the form

∞
∫

0

dk

R2

(A.2)

is available in [19], where R2 is a polynomial in k of the fourth order. The LHS of

(A.1) can rewritten as

1

kc

∞
∫

0

dx

Q2x4

4
+
[

1− Q2

2

]

x2 + Q2

4

(A.3)

where x= k
kc

and dx = dk
dkc

. The function Rk = a + bx2 + cx4 can be equated to the

denominator of (A.3), giving a = Q2

4
, b =

[

1− Q2

2

]

and c = Q2

4
. A condition to check

according to [19] is if h2 < 0. (A.2) has a closed-form result given by

∞
∫

0

dk

R2

=
1

4cq3 sinα

{

sinα

2
ln

[

x2 + 2qx cos α
2
+ q2

x2 − 2qx cos α
2
+ q2

]

+ 2 cos
α

2
tan−1

[

x2 − q2

2qx sin α
2

]}

∣

∣

∣

∞

0

(A.4)
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where h =
√
b2 − 4ac. After substituting a,b and into h, we find h2 = 1 − Q2.

Since Q > 1 for practical narrowband antennas, it is concluded that the condition

h2 < 0 is satisfied. In (A.4), q = 4

√

a
c
= 1, cosα =

[

1− 2
Q2

]

, sin α
2

= 1
Q

and

sinα =
2(
√

Q2−1)

Q2 . After substituting these into (A.4), the first term in the braces is

zero because ln(1) = 0 at both limits. The second term in the braces and the factor

1
4cq3 sinα

give a simple answer

∞
∫

0

dk

R2
=

1

2kc(
√

Q2 − 1)

{

0 +
2(
√

Q2 − 1)

Q

[π

2
− (−π

2
)
]

}

=
1

kc

π

Q
(A.5)

Hence, (A.1) becomes

1

kc

π

Q
≤ R(kcd)k

2
cηabs

2
(ēt

∗.γbe.ê
i) (A.6)

The final expression for the Q bound is

Q ≥ λ3
c

R(kcd)4π2ηabs(ēt∗.γbe.êi)
(A.7)

which is given as (3.24)
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APPENDIX B

NUMERICAL EVALUATION OF POLARIZABILITIES

Static polarizability values used in all cases in this study were evaluated numer-

ically using COMSOL Multiphysics, which is based on the finite-element technique.

Electrostatic and magnetostatic dipole moments p and m of a scatterer are defined

by [12]

p/ǫ0 =

∮

S

(

n̂Φ0 − r′
∂Φ0

∂n

)

ds′, and η0m =

∮

S

(

n̂Ψ0 − r′
∂Ψ0

∂n

)

ds′. (B.1)

where ǫ0 is the permittivity of free space, S is the surface that encloses the antenna,

Φ0 is the electrostatic potential, Ψ0 is the magnetostatic potential, r′ is the position

vector of the antenna, and η0 is the free space intrinsic impedance. For the thin-wire

dipole antenna considered in this study, the magnetostatic polarizability is minimal

and it can be set to zero because dipole antenna is perfectly conducting.

In COMSOL Multiphysics natively supports the surface integral for, p/ǫ0 is eval-

uated on a closed surface of the dipole. For the rhs of the integral to represent the

polarizability value, the strength of the background static field should by set to unity.

This can be achieved by applying an appropriate electric potential difference for giv-

ing a unit field Einc = x̂V/m = 1 onto the antennas as shown in Figure B.1.

The electric potential at x = −lx/2 is set to V = −lx/2 and V = lx/2 at

x = −lx/2. Then Einc = x̂( lx
2
− −lx

2
)/lx = x̂V/m. A unknown, constant potential

is assigned to the antenna surface, as appropriate for PEC material. Both the box
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Figure B.1. Model in COMSOL

and the dipole are then finely meshed. The electric polarizability is evaluated as a

superposition of contributions from each discretized element surface of S as

p/ǫ0 =
1

ǫ0

N
∑

i=1

(

M
∑

j=1

pj

)

(B.2)

where pj is the polarizability contribution from each tetrahedral on the dipole surface

S, N is the number of the faces and M is the number of tetrahedral on each face of

the dipole. A large value of M is associated with a very fine mesh and thus gives a

numerically converged value of the electrostatic polarizability.
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