
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

2015

Hardware Monitors for Secure Processing in
Embedded Operating Systems
Tedy Mammen Thomas
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been
accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Thomas, Tedy Mammen, "Hardware Monitors for Secure Processing in Embedded Operating Systems" (2015). Masters Theses. 302.
https://scholarworks.umass.edu/masters_theses_2/302

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2/302?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

HARDWARE MONITORS FOR SECURE PROCESSING IN EMBEDDED

OPERATING SYSTEMS

A Thesis Presented

by

TEDY MAMMEN THOMAS

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

SEPTEMBER 2015

ELECTRICAL AND COMPUTER ENGINEERING

© Copyright by Tedy Mammen Thomas 2015

All Rights Reserved

HARDWARE MONITORS FOR SECURE PROCESSING IN EMBEDDED

OPERATING SYSTEMS

A Thesis Presented

by

TEDY MAMMEN THOMAS

Approved as to style and content by:

Russell Tessier, Chair

Tilman Wolf, Member

Daniel Holcomb, Member

C. V. Hollot, Department Head

Electrical and Computer Engineering

 To my mother, Anuja

 and my father, Thomas.

v

ACKNOWLEDGMENTS

I would like to thank Professor Russell Tessier for giving me the opportunity to work

on this project and for his constant motivation and guidance. I am also grateful to Professor

Tilman Wolf and Professor Daniel Holcomb for agreeing to be on my thesis committee. I

would like to extend my gratitude to Arman Pouraghily and Kekai Hu for their contributions

in this project. Finally, I would like to thank Justin Lu for his valuable suggestions and

support.

vi

ABSTRACT

HARDWARE MONITORS FOR SECURE PROCESSING IN EMBEDDED OPERATING

SYSTEMS

SEPTEMBER 2015

TEDY MAMMEN THOMAS

 B.TECH. E.C., COCHIN UNIVERSITY OF SCIENCE & TECHNOLOGY

M.S. E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Russell Tessier

Embedded processors are being increasingly used in our daily life and have become

an important part of many types of infrastructure in the world. As people start depending

more on embedded systems for personal and business processing operations, the attacks on

these systems have also been on a rise. Existing defense mechanisms targeted for desktop and

server processors cannot be used to defend embedded systems as these system exhibit

constraints on processing performance and processing power and energy. Thus, embedded

systems require low overhead security approaches to ensure that they are protected from

attacks.

This thesis describes a hardware based approach to monitor the operation of an

embedded processor instruction-by-instruction, where deviations from expected program

behavior are detected within the time associated with the execution of an instruction.

Previous work in this area has focused on monitoring a single task on a CPU while here a

novel hardware monitoring system that can monitor multiple active tasks in an operating-

system-based platform is presented. This approach doesn’t need any change in application

binary code. The hardware monitor is able to track context switches that occur in the

vii

operating system and ensure that monitoring is performed continuously, thus ensuring system

security.

This thesis describes the design of the system as well as results obtained from a

prototype implementation of the system on an Altera DE4 FPGA board. It is demonstrated in

hardware that applications can be monitored at instruction level without execution slow-down

and buffer overflow attacks can be defeated using this system. When an attack occurs, it is

detected within a cycle and the attack task is killed before it can harm the system. The system

uses an off-chip DRAM for storing the application binary and the operating system kernel. A

centralized graph memory is implemented on-chip to support the storage of all monitoring

graphs associated with the system. MiBench benchmarks such as qsort, bitcount, stringmatch,

basicmath and dijkstra are used to evaluate the system.

viii

TABLE OF CONTENTS

 Page

ACKNOWLEDGMENTS ... v

ABSTRACT .. vi

LIST OF TABLES ... x

LIST OF FIGURES .. xi

CHAPTER

1. INTRODUCTION ... 1

1.1. Attacks and Defenses in Embedded Systems ... 4

1.2. Organization of the document ... 6

2. BACKGROUND AND RELATED WORK ... 7

2.1. Related work ... 7

2.1.1. Security Issues in Embedded Processor ... 7

2.1.2. Monitoring Systems ... 7

2.1.3. Recovery .. 9

2.1.4. Embedded Processor Context Switch .. 10

2.2. Single-Task Monitoring System ... 10

2.3. Summary ... 14

3. SYSTEM & SECURITY MODEL .. 15

3.1 Secure Processing with Hardware Monitors ... 15

3.2. Operating System Interaction and Recovery .. 17

3.3. Security Model .. 18

3.3.1. Attack Example .. 18

3.3.2. Security Requirements ... 19

3.3.3. Attacker Capabilities .. 19

4. OPERATING SYSTEM MANAGEMENT .. 21

4.1. Processor Interface .. 21

4.2. Task Creation .. 22

4.3. Context Switch .. 24

4.4. Task Delete ... 26

4.5. Summary ... 27

5. SYSTEM ARCHITECTURE .. 28

5.1. Task Management in the Operating System ... 28

5.2. Multi-Task Hardware Monitor System ... 29

ix

5.3. DMA Interface to Centralized Graph Memory ... 31

5.4. OS-to-Monitor Interface for Context Switch .. 34

5.5. OS-to-Monitor Interface for Process Creation .. 35

5.6. OS-to-Monitor Interface for Process Deletion .. 36

5.7. Dual-core Monitoring System Design .. 36

5.8. Summary ... 39

6. PROTOTYPE IMPLEMENTATION .. 40

6.1. System Setup ... 40

6.2. Monitor Context Management .. 44

6.3. Monitor Process Creation and DMA interface ... 45

6.4. Attack Detection and Protection ... 47

6.5. Monitoring System Resources .. 51

6.6. Dual-Core Monitoring System .. 53

7. CONCLUSION .. 56

BIBLIOGRAPHY .. 58

x

LIST OF TABLES

Table Page

1: System recovery time... 49

2: Resource use on DE4 FPGA .. 51

3: Monitoring graph size .. 52

4: Cycle count and time delay for various operations .. 52

5: Resource use for dual-core embedded system ... 55

xi

LIST OF FIGURES

Figure Page

1: Embedded devices installed base forecast [11] ... 1

2: Attack on packet processing system in network router data plane [8] 2

3: Embedded processor system with hardware monitor .. 3

4: State machine generation from processing binary [17] ... 11

5: NFA state machine [17] ... 12

6: DFA state machine using powerset construction [17] ... 12

7: Grouping of states [17] .. 12

8: Memory representation of DFA monitoring graph [17] .. 13

9: System architecture of Multi-Task Hardware Monitor system 16

10: Attack detection and system recovery ... 18

11: Processor interface ... 21

12: Multiple tasks in µC/OS-II [18] ... 23

13: Reporting task create in software... 24

14: Context save of suspended task [18].. 25

15: Context restore of next task [18].. 25

16: Reporting context switch in software .. 26

17: Reporting task delete in software... 27

18: Detailed view of multi-context monitoring system ... 30

19: System architecture with centralized graph memory ... 32

20: DMA controller interface ... 33

21: Dual-core monitoring system... 37

22: DDR interface .. 41

xii

23: NIOS II setup in Qsys .. 41

24: Offline analysis .. 42

25: Attack code .. 43

26: Console display during stack smashing ... 43

27: SignalTap waveforms showing monitor context switch .. 44

28: SignalTap waveforms showing monitor process creation 45

29: SignalTap waveforms showing monitor task creation ... 46

30: SignalTap waveforms showing detection of an attack .. 47

31: Console Display showing task detection and deletion... 48

32: SignalTap waveforms showing monitor task delete .. 49

33: Recovery process in the embedded system .. 50

34: DDR2 address space partition to support dual Nios II core 53

35: SignalTap waveform shwoing graph transfer in dual-core monitoring system 54

1

CHAPTER 1

INTRODUCTION

Embedded processing systems are widely used and are key technology for control

systems, the Internet of Things, personal health monitoring, home automation, and many

other application domains. Figure 1 illustrates the rise in the usage of embedded devices. Due

to their wide use and the importance of their tasks, embedded systems needs to be protected

from hacking attacks. With an increasing number of embedded systems being connected to

networks, one typical attack against embedded systems is through the global Internet.

Figure 1: Embedded devices installed base forecast [11]

Many embedded systems are based on general-purpose processing systems that are

vulnerable to the same types of attacks as conventional desktop and server computers, albeit

for a different set of applications. The National Vulnerability Database (NVD) [24] shows

2

that around 10% of vulnerabilities (6518 out of 66,399) in systems are related to overflows

that can be exploited via a network. Many of these overflows then enable an attacker to

execute malicious code. Thus, this thesis focuses on protecting embedded systems from this

important type of attack. Figure 2 illustrates a denial of service attack generated in-network

by exploiting this inherent vulnerability of embedded network processors [8].

Internet

router
router

router

router

end-

system

packet processing system in data plane

network processor

o
ff

-c
h

ip
 m

e
m

o
ry

processor

core

processor

core

processor

core

processor

core

I/O interface

interconnect

control

processor

m
e

m
o

ry
 i
n

te
rf

a
c
e

m
e

m
o

ry
 i
n

te
rf

a
c
e

memory

memory

memory

o
ff

-c
h

ip
 m

e
m

o
ry

network interface switch fabric interface

packet

attack

end-

system

end-

system

router

Figure 2: Attack on packet processing system in network router data plane [8]

While desktop and server computers have the processing power to run malware

detection software (e.g., virus scanner, intrusion detection software, etc.), embedded systems

are typically not able to do so due to resource constraints (e.g., limited power budget, limited

processing capacity, etc.). Instead, hardware-based protection mechanisms have been

3

developed, in particular “hardware monitors”, as illustrated in Figure 3. These monitors look

for deviations from expected processor behavior using run time processing information. In

case of an attack, the monitor detects deviation from expected behavior and a suitable

recovery process is initiated.

Embedded Processor

Instruction

Memory

Data

Memory

Comparison

Logic

Expected

Program

Behavior

Run Time Information

Recovery Measures

Embedded System Hardware Monitor

Monitor Controller

Figure 3: Embedded processor system with hardware monitor

A variety of different hardware-based solutions have been proposed to protect

embedded processing systems. In general, there have been two shortcomings in existing work:

 Monitoring on systems with complex workloads is based on coarse indicators (e.g.,

function call sequence). This approach leaves the system vulnerable to attacks that

happen between these indicators (e.g., within a function call).

 Fine-grained monitoring systems do not support multi-task workloads on operating

systems. This constraint limits the applicability of this single-task monitoring systems to

specialized domains (e.g., embedded control systems, network processors, etc.).

To make hardware monitors an effective protection mechanism for attacks on

embedded systems in any application domain, it is critical to develop fine-grained monitoring

on multi-task embedded systems. In this work, the design of a hardware monitoring system

4

that coordinates with the task switching dynamics of an operating system to verify every

instruction executed by applications is presented. This approach neither requires any changes

to application binary, nor detection software in the operating system. Thus the processor core

defense can be implemented efficiently and is backward compactable with the existing

embedded system code. The result from this thesis can aid in defending the embedded

processing systems from various different domains and make them more enduring against an

increasing range of attacks.

1.1. Attacks and Defenses in Embedded Systems

Many important functions in today’s global infrastructure are implemented using

embedded systems. The value of the data being processed in embedded systems and the

operations they perform are enough reasons for attacks to target these systems. Some of the

major motivations towards the attacks on embedded systems are information theft, energy

drainage, confusion of the sensor, device reprogramming, network intrusion, physical

intrusion, etc [25].

The focus of this thesis is on code injection attacks, where malicious code is injected

remotely (e.g., via a network). This type of attack is extensively used in practice. Stuxnet [19]

is very popular example of this type of attack which led to the physical destruction of

embedded controllers because malicious code was injection into them. Although, Stuxnet is a

very complex example based on embedded systems with advanced operating systems, there

are also examples for low-end embedded systems such as smart cards and RFID chips [32].

 The typical characteristics of embedded systems such as limited processing

performance and battery power make conventional software-based defenses, such as virus

scanners or other intrusion detection system, unsuitable. Particularly in real-time

environments, it is not acceptable to account for the unknown processing overhead of

5

malware detection software. Also, considerable portions of the energy budget of an

embedded system maybe required by software-based malware detection.

In this work, the design of the hardware-based protection mechanism is such that it

doesn’t come in the way of the operation of the embedded system, which still being able to

reliably detect any attack that changes the operation of the system. The hardware monitoring

system, in particular, does not slow down the embedded processor nor does it require any

changes to the application binary.

Prior work that has proven effective in detecting code injection attacks [7, 17] forms

the basis of this thesis. The focus of prior work was on network processing systems, a certain

type of embedded system with single-threaded workload. This thesis focuses on the

expansion of this work to make it practical for real-time embedded systems with multiple-

threaded workloads that are controlled by an operating system (OS).

The goal of this thesis is to develop a Multi-task Hardware Monitor (MTHM) system

that can protect modern embedded processors with real-time performance constraints from

attacks that are targeted at vulnerabilities in embedded system. The specific contributions of

this thesis are:

 Design of a Multi-task Hardware Monitor system that supports multi-tasking contexts and

that operates in sync with an embedded operating system.

 Design of a centralized graph memory circuitry for the storage of all monitoring graphs

associated with the embedded processor core and its interface to the Multi-task Hardware

Monitor system.

 Embedded system recovery when an attack is detected by the Multi-task Hardware

Monitor system.

6

 Prototype implementation of the system on an Altera DE4 board using DRAM for

application storage.

 Evaluation of the prototype and demonstration of system protection from stack smashing

attack.

1.2. Organization of the document

The rest of the thesis document is organized as follows. Chapter 2 provides a brief

overview of the background and related work. Chapter 3 describes the system and security

model that is representative of the embedded system that can be attacked remotely. Chapter 4

describes the operating system management in the embedded system and Chapter 5 discusses

the system architecture. Chapter 6 explains the prototype implementation and Chapter 7

concludes the thesis with directions for future work.

7

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter provides a brief review of related work that provides context for the

research. We will also look into the implementation details of the single-task monitoring

system and see how this work needs to be expanded to monitoring of multi-task embedded

systems.

2.1. Related work

2.1.1. Security Issues in Embedded Processor

A variety of techniques can be used to attack an embedded processor [25]. Physical

security can be achieved by employing tamper resistant designs as described by Ravi et al.

[31]. Embedded processors are also susceptible to side-channel attacks (e.g., differential

power analysis [16]), although it is not considered in this work. Embedded systems are also

exposed to remote attacks in a networked framework as considered by Wood et al. [39]. Most

of the time, these attacks take advantage of weakness in user software to take control of

embedded processor operation. Repetitive messages are often sent to entice the processor to

reveal secret information [31], especially if cryptographic protections are weak. Malicious

code can also be inserted if the security is weak, in which case, an embedded processor is re-

tasked [25]. Processor debug and test ports are used by other software attacks to extract vital

processor information [33].

2.1.2. Monitoring Systems

Constrained programming environments for embedded processors have been

proposed to address security concerns [14]. However, a full and diverse programming

environment is required by many embedded processors. The usage of these approaches for

8

security can lead to high overhead in embedded operating systems. Advanced techniques

such as multiple independent levels of security (MILS) [26] are used by comprehensive

embedded processor software systems to effectively isolate different processes and their data.

In low-overhead embedded systems with minimal OS capabilities, this additional security

layer may not be appropriate. In this work, security is achieved by monitoring processor

execution. Monitoring has been used also in system by Arora et al. [3] and the IMPRES

system [29], but a fine-granularity of monitoring is used by our monitor. Information is

collected across multiple executed instructions in determining if the operation is valid in

SAFE-OPS system by Zambreno et al. [40]. Attacks and errors can be detected by this system

at the end of such a sequence, whereas our monitor can immediately detect the first

instruction that deviates from expected behavior.

A control flow graph for monitoring program execution is also used by Abadi et al.

[1]. Integrity checks were introduced into the micro-architecture by Nakka et al. and the

system used special check instructions [23]. In the system by Ragel et al. [30],

microinstructions are introduced to monitor fault detection, return address checks and

memory boundary checks. Unlike this, our monitor doesn’t require any changes in the

machine code to implement the necessary checks. A general, hardware-based architecture is

developed by Goginat et al. [12] to protect embedded systems against a range of attacks.

Chen et al. [9] proposes a log-base architecture (LBA) approach for monitoring using

multiple processor cores. An unmodified program is run on one core while special monitoring

hardware records all executed instructions in a log that scans for attacks and failures by

software on another core. This architecture is very powerful and can detect a range of

problems, but requires large log buffers [10]. This may introduce serious limitations in

embedded system and also delay attack detection. Our monitor is able to detect deviations in

operation within one instruction and is thus more suitable.

9

Various other security approaches have been directed at embedded processor

execution. One of them involves tagging of non-instruction memory pages with NX (No

eXecute) or XD (eXecute Disable) bits. By doing so, control flow change to a piece of code

that belongs to data memory is prevented. This technique is useful in preventing buffer

overflow attacks. A similar purpose is served by pre-set values placed on the stack called

stack canaries. Before control flow change, these values are checked to verify that specific

locations (e.g., a return address) have not been modified [28]. Shao et al. [34] describes

another technique to defend against buffer overflow attacks, where bound checks are used

and function pointers are protected by XORing them with a secret key. Although, none of

these approaches consider a case where an attacker tires to overwrites instruction memory.

Zhang et al. propose the use of co-processors to monitor operating system kernel data

structure [41]. In this approach, a hardware co-processor is implemented separately. The idea

of information flow is used to determine if data is authentic or malicious in the system

proposed by Suh et al. [37]. Alternatively, embedded operating systems can create a separate

task to evaluate the control flow of multiple tasks [28]. However, these types of systems

require the design of a complex operating system and its integration with the processor.

Advanced security approaches such as virus scanners and trusted execution hardware which

are found in general-purpose computers are not appropriate for many low-end embedded

systems. The solution presented in this work has simple interfaces to the micro-architecture.

Our system uses dedicated hardware monitors to monitor the system and reduce the

vulnerability of the system without using any user-level code.

2.1.3. Recovery

A large portion of prior work related to embedded processor recovery has focused on

recovery from hardware faults rather than external attacks. Soft errors in the processor

datapath are detected and recovered with minimal performance loss using datapath

10

redundancy in the system proposed by Bournoutian et al. [5]. The concept of checkpoints and

rollbacks [27] are used in many embedded processors in the presence of detected faults,

which leads to fast recovery. These approaches are effective for the occasional soft errors, but

are insufficient for a targeted attack. Unused processors in a multi-core network are used to

provide redundancy in the system by Luo and Fan [20]. So even if a specific core fails,

processing is moved to an idle core. Although all these techniques are effective, none of them

address monitoring and recovery from network attacks.

2.1.4. Embedded Processor Context Switch

The frequent context switching in embedded processors has made the use of task

monitoring complicated. Numerous prior approaches have been developed to reduce the

impact of context switches on real time behavior. Some of these approaches are applicable to

the saving of monitor state. Isolation of possible context switches to points in a task when the

live sets of registers are at a minima was proposed by Zhou et al. [42]. This can accelerate

context switch time because these points reduce the amount of register information which

must be saved. Alternatively, by breaking down larger task into smaller ones, it is possible to

reduce the need for pre-emptive context-switching [4]. But the need to schedule many small

tasks could be a challenge for an embedded operating system. Multiple threads can be

compressed into a single thread as another extreme approach [35]. Although this would

increase resource usage as this eliminates thread switching and all tasks must be compiled

and monitored together.

2.2. Single-Task Monitoring System

This section describes the working of the single-task monitoring system which has

been proven effective in defending network processors from network attacks [17]. Network

processors are designed to execute network applications (e.g. IPv4) effectively and consist of

a single-threaded workload. Since it is critical to detect deviation in expected behavior of the

11

application within a single cycle, it is important that the monitor is able to retrieve the next

state information of every instruction which is being monitored within a single cycle. The

monitoring graph is essentially a state-machine where each instruction is represented by a

state and an edge represents the transition from the instruction to its next valid instruction. A

4-bit hash of the instruction is used to label these edges and it helps in reducing the size of the

monitoring graph. The monitoring graph is generated using the application binary as shown

in Figure 4.

Figure 4: State machine generation from processing binary [17]

However, the next instructions from a control flow instruction share the same hash

value and it leads to non-determinism in the monitoring graph. This non-determinism gets

multiplied if the control flow instructions continue and it can lead to a complex

implementation of the monitoring graph. Figure 5 illustrates such a scenario where state 3

and 5 can be reached from state 2 for input condition c. This problem is addressed by

converting the non-deterministic graph into a deterministic graph by using powerset

construction. Figure 6 illustrates the deterministic graph for the corresponding non-

deterministic graph after powerset construction. It can be seen that states 3 and 5 are

combined into a single state {3,5} and can be reached from state 2 for input condition c.

 […]

 49c: 97c20010 lhu v0,16(s8)

 4a0: 00000000 nop

 4a4: 2c420033 sltiu v0,v0,51

 4a8: 1440000a bnez v0,4d4

 4ac: 00000000 nop

 4b0: 3c026666 lui v0,0x6666

 4b4: 34430191 ori v1,v0,0x191

 4b8: 97c20010 lhu v0,16(s8)

 […]

49c

4a0

4a4

4a8

4ac

4b0

4b4

4b8

0

7

11

10

10

7

3

6

4d4

12

Figure 5: NFA state machine [17]

Figure 6: DFA state machine using powerset construction [17]

As mentioned earlier, it is critical that state transitions are implemented with one

memory access per instruction and hence all necessary information is encoded in a single

table entry and the states are grouped by the number of outgoing edges, i.e. a state belongs to

group g if its previous state has g outgoing edges. For example, groups are shown with

different colors in Figure 7. It can be seen in the figure that a state can belong to multiple

groups (state f belongs to group 2 because a has two outgoing edges and to group 3 because

e has three outgoing edges).

a

b

c

d

e

f

g

h

2

7

3

11

2

14

0

7

9
a

b

c

d

e

f

g

h

2

7

3

11

2

14

0

7

9

grouping

Group 1

Group 2

Group 3

Figure 7: Grouping of states [17]

61
a

2
b

{3,5}
c

4
d

5
e f

f

1 2 3 4 5
b c d e f

c

6
a

13

Figure 8 shows the system architecture of the single-task monitoring system. Each

entry in the memory contains a sequence of number of next states, offset in state group, valid

hash values on outgoing edges and the memory is logically divided into groups. A register

file with 16 entries stores the base address for each group. The hash comparison logic

determines if the one-hot coded hash bit of the incoming processor instruction is set in the

valid hash values read from the memory and calculates the value of k, which is the position of

matching hash among the valid hash values. If the one-hot coded hash bit is not set, then it

means an illegal operation has taken place, indicating an attack and recovery measures are

initiated. Otherwise, the next state transition is found by multiplying the number of next

states and offset in state group and adding it to group base address and the value of k. Thus,

by just one memory access, it is possible to determine the state-transition. The representation

of the graph memory is compact and ensures high performance implementation of the

hardware monitoring system. The single-task hardware monitoring system is able to reliably

detect and recover from an attack without reducing the processing performance of the

processor core.

Figure 8: Memory representation of DFA monitoring graph [17]

2

number of

next states

0

offset in

state group

0000 0000 1000 0100

valid hash values on

outgoing edges

2 1 0000 1000 0000 1000

1 1 0000 0000 1000 0000

1 0 0000 0010 0000 0000

3 0 0000 0000 0010 0101

...

1 0 0000 0010 0000 0000

...

...

a

c

b

f

e

d

f

h

g

group 1

group 2

group 3

0x0000

0x0002

0x0006

...

group 1

group 2

group 3

group 16

...

group base

address

-1

mult

add

...

k

(position of

matching hash

among valid

hash values)

one-hot

encoding

...

hash

compari-

son

...

4-bit hash

function

processor

instruction

reset/

recovery

32
32

4

4

16

16

4

4

16

1

state machine memory

14

However, this approach can only be applied for ensuring security in single-thread

processor cores and is not sufficient to provide security for a real-time embedded processor

with multi-threaded workload. Hence it is necessary to develop a Multi-task Hardware

Monitor system that can coordinate with the embedded system to enable dynamic context

switches and recovery when attacks are detected.

2.3. Summary

This chapter introduced related work that is essential for understanding the prototype

system. Also a brief overview of the background work was provided. The next chapter

outlines the system and security model used for this work.

15

CHAPTER 3

SYSTEM & SECURITY MODEL

To provide the necessary context for the Multi-Task Hardware Monitor system design

presented in Chapter 5, the operation of MTHM and the security model for this work is

briefly discussed [38].

3.1 Secure Processing with Hardware Monitors

Hardware monitors are components that are co-located with processor cores to track

processing of software on that core. The objective is to access the operation of the processor

and determine when incorrect behavior is detected (which can be due to faults or malicious

attacks). As discussed in related work, there are a number of different approaches to

monitoring based on what information is communicated from the processor to the monitor

and what information is used to determine if that behavior is normal.

In this work, the hardware monitor receives information about every instruction

executed on the processor core and compares it to a monitoring graph that is based on the

analysis of the processing binary (similar to [21]). Each instruction is represented by a 4-bit

hash value (to reduce the size of the monitoring graph compared to the size of the binary) and

the state transitions correspond to possible control flow paths between the instructions. We

use a deterministic finite automation (DFA) representation of the monitoring graph as

described in Chapter 2.

The system architecture of the Multi-Task Hardware Monitor systems which supports

multiple tasks is illustrated in Figure 9. The figure shows that application binaries are

analyzed offline. During runtime, the comparison logic in MTHM matches the monitoring

graph to the currently active task on the processor. To do the operation, the OS-to-Monitor

Interface (OMI) communicates the necessary context information between the processor and

16

the monitor. When the processor execution does not match the expected behavior reflected in

the monitoring graph of the current task, a task reset signal is sent from the monitor to the

processor to terminate the current task.

processor

core

instruction memory

data memory

I/O interface

comparison

logic

mon. memory

e
m

b
e

d
d

e
d

 p
ro

c
e

s
s
o

r

h
a

rd
w

a
re

 m
o

n
it
o

r

hash of

processing

instruction

task reset

o
ff
lin

e

a
n

a
ly

s
is

ru
n

ti
m

e
 o

p
e

ra
ti
o

n

processing code

binary

monitoring

graph

... ...

processing code mon. graph

task context

OS or active task

context info

active graph

Figure 9: System architecture of Multi-Task Hardware Monitor system

It is important to note that the hardware monitoring system is isolated from the

processor and thus cannot be tampered with remotely by the attacker (e.g., to change the

monitoring graphs to match an attack). Related work discusses how to achieve such isolation

while still enabling dynamic installation of hardware monitoring graphs through the use of

cryptographic mechanisms [15].

It is to be noted that this thesis do not consider intrusion detection heuristics, which

may be slow and computationally expensive. Instead, a novel multi-task monitoring system

17

that can detect deviations from normal processing with a single instruction is presented. Such

fast detection is important for real-time embedded systems since the processing time for tasks

may be only a few microsecond.

3.2. Operating System Interaction and Recovery

Operating systems are used in embedded systems to manage workloads that consist of

multiple tasks that dynamically become active on various cores of the system. The system

uses operating system to enable the coordination between the processor and hardware

monitor as described above. When a context switch happens, the monitoring state needs to be

saved, just like processor state needs to be saved in the processor core. Also we need to

ensure that this coordination doesn’t slow down the processor. The monitor can support

multiple tasks running on the core without interfering with the real-time operation of the

embedded system. Chapter 4 describes in detail the design of the OS-to-monitor

communication mechanism in the system.

In addition, OS also assists in recovery steps when an attack is detected by the

monitoring hardware since these recovery operations cannot easily be customized in

hardware. Different applications require different levels of recovery (e.g., a simple processor

reset for network operations or complex check-pointing for transaction-style processing). It is

to be noted that the change in OS to support hardware monitoring and recovery is the only

change to any software in the embedded system. In the system, on detection of deviation

from expected processing behavior, the hardware monitor notifies the OS to kill the currently

active task. The attack code is terminated by executing an Interrupt Service Routine (ISR) to

kill the task. After terminating the malicious task, the embedded processor continues its

normal operation and starts executing the next high ready task. Figure 10 illustrates the attack

detection and recovery process in the embedded OS. Thus, the recovery process in the system

doesn’t affect other tasks running on the embedded processor core.

18

Figure 10: Attack detection and system recovery

3.3. Security Model

To justify how the system provides a secure processing environment, the security

model that is basis for this work is discussed briefly.

3.3.1. Attack Example

In this work, the focus is on the class of attacks that aim to change the processing

behavior of the embedded system. This class of attack is very board and encompasses a

number of specific attacks. Hence one specific example is illustrated, but note that many

other attacks are covered by this work.

In this scenario, the I/O functionality of the embedded system is used to cause the

embedded processor to misbehave. Intentional modification of processor stack (e.g., stack

smashing) is used to generate this type of attack. By making a controlled change in the stack,

19

it is possible for an attacker to change the control flow such that malicious code is executed.

This type of attack is very common and is used in Internet to gain access to end-systems via

vulnerable software. Code Red worm is one of the most famous example for this kind of

attack that exploited a vulnerability in a service of the Windows operating system and used it

to spread itself around the globe [6, 22]. As the growth of embedded systems increases, these

types of attacks will continue to spread. In our prototype implementation, a similar attack

code is used to test the system.

3.3.2. Security Requirements

It is required that the system meets the following security requirements:

 SC1: The system should only allow execution of code as programmed in the executable

binaries of each task.

 SC2: Secure processing should be provided for multiple, dynamically changing tasks.

 SC3: Malicious code execution in one task should not affect other tasks.

In addition to security, these are also practical performance requirements. As it is

shown in the results, the hardware monitor does not reduce the performance of the embedded

processor in any way. The only overhead is a few instructions in the operating system code

when switching tasks, which lead to a negligible reduction in processing speed.

3.3.3. Attacker Capabilities

The following assumptions are made about the capabilities of an attacker that tries to

change the operation of the embedded system and/or tries to execute malicious code on the

embedded system:

 AC1: An attacker can provide any input through input/output interface of the embedded

system.

20

 AC2: An attacker can start and stop any task from an installed binary in the embedded

system (within the limitation of a maximum number of active tasks).

 AC3: An attacker can tamper with any of the binaries.

In order to provide a practical solution for secure processing in an embedded system,

we also require some reasonable constraints on attacker capabilities:

 AC4: An attacker cannot tamper with the operating system itself.

 AC5: An attacker cannot tamper with the hardware monitoring system (e.g., modifying

monitoring graphs for installed executables)

As discussed above, this proposal does not discuss the secure installation of

monitoring graphs, which has been solved in related work [15], in more detail. Next chapter

provides a comprehensive discussion on the operating system management which is one of

the key aspects in this research.

21

CHAPTER 4

OPERATING SYSTEM MANAGEMENT

In this chapter, we discuss about the OS activities which are communicated to the

Multi-Task Hardware Monitor for its smooth operation. Task creation, context switch and

task delete are the three operations whose information is vital to the Multi-Task Hardware

Monitor. This chapter also talks about how the operating system communicates with the

hardware monitor and keeps the monitor updated about its activities.

4.1. Processor Interface

The processor interface is a set of four registers created for communication between

the operating system and the hardware monitor. Whenever task create or context switch or

task delete occurs, the operating system writes into these registers regarding the details of the

operation. The hardware monitor reads these registers to take necessary action to coordinate

with the operating system as explained in Chapter 5. Figure 11 shows a simple block diagram

of the processor interface.

2-PID

1-GID

0-Operation

3-Enable

Operating

System

Hardware

Monitor

Processor Interface

Figure 11: Processor interface

The Operation register is used to indicate what operation is happening in the OS. 0x01

indicates a task create, 0x02 indicates a context switch and 0x03 indicates a task delete. The

GID register is used to write the graph ID (GID) of the newly created task in case of a task

22

create operation. The GID of a process is used to identify various graphs located in the

hardware monitor. Section 5.3 explains in detail the role of GID in the system architecture.

The PID register is used to write the process ID (PID) of the new task in case of a task create

or PID of the newly scheduled task in case of a context switch or PID of the deleted task in

case of a task delete. Whenever the Operation register is read by the hardware monitor, it

flushes its content to acknowledge that it has been read. This also helps in avoiding any

confusion when multiple task create or context switch or task delete operations happen

consecutively. The Enable register is used to inform the hardware monitor if an OS activity is

going on in the operating system or program execution is happening. If an OS operation is

being executed on the processor, then this register is set to 0x0 and the hardware monitor

need not monitor these instructions since we know that the operating system is secure and

cannot be tampered with by an attacker. Once the program execution starts, this register is set

to 0x1 and the hardware monitor begins to monitor the processor instructions. Thus, this

register is used to enable/disable the hardware monitor.

4.2. Task Creation

A task/process is a simple program running on the CPU. In µC/OS-II, each task is

given a unique priority and has its own set of CPU registers and stack. When a new task is

created in µC/OS-II, it is assigned a task control block (TCB), which is a data structure used

by µC/OS-II to maintain the state of a task when it is preempted. Figure 12 illustrate how

multiple tasks are handled in µC/OS-II [18]. Multiple tasks reside in the memory and when a

task is scheduled to run next, its TCB contents are moved to the CPU registers (context) for

its execution.

The user creates a new task by calling OSTaskCreate(). This function requires four

arguments: a pointer to the task code, a pointer to the argument that is passed to the task,

pointer to the top of the stack that is assigned to task and the desired priority of the task. In

23

µC/OS-II, the priority of the task acts as the process ID since each task has a unique priority.

The OSTaskCreate() is modified such that whenever a task create occurs, the hardware

monitor is notified about it. The OSTaskCreate() also reports the PID and GID to the

hardware monitor. Since task create is an operating system activity, the Enable register is set

to 0x0 before entering this function.

Figure 12: Multiple tasks in µC/OS-II [18]

Figure 13 illustrates how the hardware monitor is notified of task creation. In this

figure, it can be seen that the operation register is set to 0x1 to indicate a task create.

Corresponding GID and PID are also written into the respective registers (in this case, GID

and PID are both the priority of the task).

24

IINT8U OSTaskCreate (void (*task)(void *p_arg), void *p_arg, OS_STK *ptos, INT8U prio)

{

 IOWR(PROCESSOR_INTERFACE, 1, prio); // Report GID of new task

 IOWR(PROCESSOR_INTERFACE, 2, prio); // Report PID of new task

 IOWR(PROCESSOR_INTERFACE, 0, 1); // Report a task create operation

}

Figure 13: Reporting task create in software

4.3. Context Switch

A context switch happens when the OS kernel decides to run a different process on

the CPU. A context switch is triggered by an OS event or a timer. Before this can happen, the

OS needs to save the current task’s context (CPU registers) in its stack and restore the new

task’s context from its stack. The priority of each task decides which task needs to run next.

Once the next task for execution is determined, the operating system initiates the context

switch process. The scheduler decides which task to run next. Like most commercial real-

time OS, µC/OS-II uses a preemptive type of kernel, which means whenever a higher priority

task is ready to run, the current active task is suspended and the higher priority task is given

control of the CPU [18]. Figure 14 shows the context of the CPU registers being saved into

the TCB of the current task (OSTCBCur) during a context switch. Next, the higher priority

task (OSTCBHighRdy) is made the current task (OSTCBCur) and the states of this task are

restored into the CPU registers as shown in Figure 15.

25

Figure 14: Context save of suspended task [18]

Figure 15: Context restore of next task [18]

26

In µC/OS-II, OS_Sched() is used to determine the next task which is ready to run and

this function is modified to notify the hardware monitor about context switch and PID of the

next task. As before, a context switch is an operating system activity and hence the Enable

register is set to 0x0 before entering this function. In Figure 16, it can be seen that the

OS_Sched() writes 0x2 into the Operation register to indicate a context switch and also writes

the PID of the next task into the PID register (which in this case is OSPrioHighRdy).

void OS_Sched (void)

{

 IOWR(PROCESSOR_INTERFACE, 2,OSPrioHighRdy); // Report PID of next task

 IOWR(PROCESSOR_INTERFACE, 0, 2); // Report a context switch operation

}

Figure 16: Reporting context switch in software

4.4. Task Delete

Sometimes we need to delete a task because it is no longer required to run on the

processor or because it is identified as a malicious task. Deleting a task returns it to a dormant

state and the task is no longer scheduled by µC/OS-II [18]. A task can be deleted by calling

OSTaskDel(). PID of the task to be deleted is given as the argument to this function. Once

the task is deleted, its associated OS_TCB is freed and can be used by another task to be

created.

27

void OSTaskDel (INT8U prio)

{

 IOWR(PROCESSOR_INTERFACE, 2, prio); // Report PID of deleted task

 IOWR(PROCESSOR_INTERFACE, 0, 3); // Report a task delete operation

}

Figure 17: Reporting task delete in software

It is necessary to inform the monitor about a task delete as it helps in removing

redundant graph information from the monitor and creates space for another monitoring

graph. It can be seen in Figure 17 that the OSTaskDel() is modified to communicate the

necessary task delete information to the monitor. 0x3 is written into the Operation register to

indicate a task delete and the PID (prio) of the deleted task is written into the PID register.

The Enable register is set to 0x0 before entering OSTaskDel() since task delete is an OS

activity.

4.5. Summary

This chapter talked about how the OS communicates with the hardware monitor. Also

the role of processor interface in signaling the monitor about the OS activity was discussed.

Next chapter explains in detail the system architecture and how the monitor behaves to

signals received from OS.

28

CHAPTER 5

SYSTEM ARCHITECTURE

In this chapter, the system architecture for the system is presented. This chapter talks

about how the activities in the operating system are coordinated with the Multi-Task

Hardware Monitor to ensure continuous tracking of processor operation [38].

5.1. Task Management in the Operating System

A key aspect of our monitoring system is its ability to fit seamlessly within the

context switch operations of a typical operating system. As noted in Chapter 6, the time

required to switch monitoring graphs for different task is significantly less than the typical

time required for other activities in a context switch. In this implementation, graph switching

is synchronized with other OS actions (e.g., register file save and restore) that occur during a

context switch so that user tasks are protected at all times, Typical context switch activities

for embedded operating systems, such as µC/OS-II used for this work include:

1. A timer or other OS event generates an interrupt triggering a context switch.

2. The OS scheduler determines the next process for execution. This implementation uses a

priority based scheme, although round-robin or other schedulers would also be

appropriate.

3. The OS provides the PID of the next process to the monitoring system, triggering a

monitoring graph switch in the monitor. This switch includes monitor state saving for the

process currently being monitored, and a restoration of monitoring state for the next

process.

4. Concurrently, the OS saves process state (registers, program counter, etc.) for the current

task to main memory.

29

5. The OS retrieve process state for the next process from main memory and restores it to

processor registers.

6. The OS checks the status of the monitoring system to confirm that the monitor for the

next process is ready to use.

7. The OS sends a trigger to the monitoring system to start monitoring for the newly-loaded

processes.

After the context switch is completed, the processor sends every instruction executed

for the process to the monitoring system. In the next section, we provide a detailed view of

the monitoring system and how it interacts with the processor for steps 3, 5, and 6 above.

5.2. Multi-Task Hardware Monitor System

A detailed view of our monitoring subsystem is shown in Figure 18. The portions of

the monitoring system can be split into monitoring hardware (three boxes in upper left corner

of the figure), which checks the per-instruction operation of the companion processor, graph

memory, which stores states information about monitoring of each process, controller and

processor interface. Design of the controller was done by Arman Pouraghily.

The monitoring hardware checks each processor instruction using information from

the monitoring graphs stored in graph memory. In the figure, graphs for four separate

applications are stored in slots in the graph memory. Each graph includes one row per

instruction, effectively representing expected program control flow as a state machine [17]. A

read address pointer indicates the entry in the graph that corresponds to the instruction that

has just completed execution. During the execution of an instruction, a multi-bit (in this case

4-bit) hash value of the instruction is generated and converted to a one-hot representation.

This one-hot encoding is compared against expected next-instruction hash values (valid hash)

that are stored in the graph entry for the previously executed instruction. Since branch

instructions may have several possible next instructions, and, consequently, several possible

30

valid hashes, multiple one-hot valid hash bits may be set per entry. A match of any of these

hashes indicates a valid instruction. If no match occurs, an illegal instruction has been

executed, leading to the generation of a recovery signal which is used by the processor for

process termination.

32

31 10x0000h

14 20x1200h

x 0xxxx

x 0xxxx

GID
of Active
Processes

Base Addr

4 14

21 14

11 31

x xxxx

GIDPID Valid

1

1

1

0

4 0x0002h

21 0x0004h

11 0x0000h

x xxxx

PID Address Pointer Valid

1

1

1

0

Address
Pointer

+

override

0

1

Frame
Address

Hash
Comparison

CPU
Instruction

Valid HashNext State

...

...

...

Group1 Addr

Group3 Addr

Group1 Addr

Group3 Addr

0x1200h + 0x0000h:

0x1200h + 0x0008h:

0x0008h:

0x0000h: Group1 Addr

Group3 Addr

Group1 Addr

Group3 Addr

Valid HashNext State

...

...

...

Slot 4 Region

Slots 2 and 3
Regions

Slot 1 Region

Group 1

Group 2

Group 3

Group 4

0x0008h

0xffffh

0x000eh

0x000ah

...

read data

Base Addresses
Register File

Graph Memory

write data

14

16

16 4

Sequencing
logic

4

Position of
matching hash in
the hash vector

14

Read Address

14

Control FSM

One-hot
encoding

Hash
calculation

Recovery
signal

PID

GID

Operation

Done

From the
CPU

Pipeline

Processor
interface

CPU
Interrupt
controller

load

Controller

DMA

14 32

Write dataWrite address Write enable

Graph pool

PID addresses

PID to GID binding GID to frame binding

Enable/Disable

Figure 18: Detailed view of multi-context monitoring system

The next read address (memory row) in the monitoring graph is determined using

next state information stored in the current entry, the matched hash value, and information

stored in base address registers which group states based on fanin count [17]. These values

are combined via addition in the sequencing logic box in the figure. The resulting address is

stored in the address pointer and subsequently added to the start address for the appropriate

graph slot for the application (frame address). The implemented monitor requires only one

memory lookup per instruction.

31

Effectively, the monitoring information for each process at any given point in

execution is defined by the contents of the address pointer, the monitoring graph for the

process and the contents of the base address registers. If a context switch is requested, these

values must be updated to use values for the requested next process.

5.3. DMA Interface to Centralized Graph Memory

The graph memory shown in Figure 18 stores the monitoring graph information for all

the active processes in the embedded system. However, there are other processes which could

become active at some point later in time whose monitoring graph information is not present

in the graph memory. Hence a centralized graph memory is used to store the monitoring

graph information of all the processes and the monitoring system copies the necessary graph

information from the centralized graph memory when a new process is executed on the

embedded processor system whose graph information is not available in the monitor graph

memory. A new monitoring graph can be securely downloaded into the centralized graph

memory by using the approach mentioned in related work [15]. There are two main reasons

why it is advantageous to have a centralized graph memory instead of storing all the

monitoring graphs in the graph memory of the monitoring system:

1. Downloading new monitoring graphs into the centralized graph memory doesn’t get in

the way of the operation of the hardware monitoring system. New graphs can be

downloaded securely into the system even when the monitoring system is tracking the

embedded processor operation for any deviations.

2. The centralized graph memory can be shared between multiple hardware monitoring

systems to monitor multi-core embedded systems. This can help in reducing the resource

usage of the system. Monitoring systems can avoid storing irredundant graph information

and copy new graph information from the centralized graph memory when needed.

32

processor

core

instruction memory

data memory

I/O interface

comparison

logic

mon. memory

e
m

b
e

d
d

e
d

 p
ro

c
e

s
s
o

r

h
a

rd
w

a
re

 m
o

n
it
o

r

hash of

processing

instruction

task reset

o
ff
li
n

e

a
n

a
ly

s
is

ru
n

ti
m

e
 o

p
e

ra
ti
o

n

processing code

binary

monitoring

graph

...
...

processing code mon. graph

task context

OS or active task

context info

active graph C
e

n
tr

a
li
z
e

d
 G

ra
p

h

M
e

m
o

ry

DMA

Controller
mon. graph

mon. graph

mon. graph

mon. graph

External DRAM

 Figure 19: System architecture with centralized graph memory

Figure 19 illustrates the system architecture with centralized graph memory. The

monitoring graphs of the applications are stored in the centralized graph memory. When the

hardware monitor requires a new graph to be loaded into its monitor memory, it informs the

DMA controller and the DMA controller facilitates the graph transfer from the centralized

graph memory to the monitor memory.

A DMA controller as shown in the Figure 20 is used to interface the centralized graph

memory and the monitoring system. When a new process is created in the embedded

processor, the OS reports the GID and the PID of the new process to the hardware monitor.

The hardware monitor checks whether the graph information for this new process is available

in the monitor graph memory. This can be done by checking the GID to frame binding

storage. If not, it sends the GID of the newly created process which is obtained from the

processor interface to the DMA controller. The DMA controller uses this information to

locate the address of the graph in the centralized graph memory using a look-up table in the

33

DMA controller. After locating the address of the graph, the DMA controller initiates the

transfer of the graph information from the centralized graph memory to the monitor graph

memory.

The DMA operation begins by setting the DMA_start signal high. The GID of the

graph to be copied is passed to the DMA controller, which is used to locate the address of the

graph in the centralized graph memory. Once the graph is located, the graph transfer

operation is initiated by setting the Write signal high. The address and data of the new graph

are loaded through the DMA_address and DMA_data ports respectively. The time required to

load a new graph from the centralized graph memory to the monitor graph memory depends

on the number of entries in the monitoring graph of the new process since it takes 1 cycle to

copy one memory entry from the centralized graph memory to the monitor graph memory.

Once the graph transfer operation is complete, the DMA_done signal is set high.

Hardware Monitor

Graph Memory
Centralized Graph Memory

GID-to-ADDR.

Converter

Addr/Data

Buffer

Control Signals

GID Address

DMA_DataDMA_Data

DMA_Done

Read

DMA_Start

Write

DMA Controller

DMA_Addr DMA_Addr

Figure 20: DMA controller interface

34

5.4. OS-to-Monitor Interface for Context Switch

In case of a context switch, control information is exchanged between the processor

and the monitoring system. The exchange of monitoring information starts when the

processor writes the PID of the next process into the PID register in the processor interface

of the monitoring system and sets a bit in the Operation register. The monitoring system

control FSM then performs the following actions:

1. The address pointer for the currently executing process is saved in the PID address

storage so that it can be restored for the next invocation of the process.

2. The GID associated with the next process is located in the PID to GID binding storage

using the PID written to the processor interface.

3. If the GID of the next process differs from the ID of the previous one, the base address

registers are loaded with values for the graphs of the next process. These values are

loaded from the graph memory (e.g., Group0 Addr, etc).

4. The GID is used to determine the frame address for the start of the appropriate

monitoring graph in graph memory for the process. This information is stored in the GID

to frame binding storage.

5. The address pointer value for the next process is restored from the PID addresses storage.

6. The Done bit is set in the processor interface indicating that the monitoring system is

now ready to monitor the next process. This bit can be read by the processor.

7. Once all other context switch activity for the next process has concluded (e.g., processor

registers are loaded), the processor sets an Enable bit in the processor interface, restarting

monitoring. The processor waits until this bit set is successfully made, ensuring

synchronization. Instructions of the newly-loaded process are then monitored.

In chapter 6 it is shown that these steps can be performed in 18 clock cycles for our

prototype system.

35

5.5. OS-to-Monitor Interface for Process Creation

When a new process is being created by the OS, it is assigned a unique PID and GID

by the operating system. Since many processes of the same application may exist, the GID

may not be unique. The following steps are used to initialize the security monitor for the new

process.

1. The two identifiers (GID and PID) are passed to the monitor via the processor interface.

The monitor first searches for an empty slot in the PID addresses storage and PID to GID

binding storage to insert the new bindings.

2. While making these associations, the GID to frame binding storage is searched to

determine if the appropriate graph is already loaded. If it is available, the next step is

skipped.

3. If the GID is not found in the GID to frame binding storage, the GID is inserted into the

table. The new graph is then loaded from the centralized graph memory using the DMA

interface. Following graph loading, the base addresses are updated.

4. The Done bit is set in the processor interface indicating that the monitoring system is

now ready to monitor the next process. This bit can be read by the processor.

During system startup, monitoring graphs are loaded from an external centralized

graph memory for the new processes that will be executed by the processor. If a new process

replaces an existing one, the PID addresses, PID to GID binding, GID to frame binding, and

graph memory are updated to include information about the new process. This update is made

via the Control FSM. Concurrently, the processor performs a series of process creation

operations including initialization of the process stack and control block (registers, etc.). In

Chapter 6, it is noted that while process creation can require hundreds of cycles for the

processor, if the appropriate monitoring graph is already in the monitoring graphs is already

36

in the monitoring system, monitoring information update for process creation requires 20

cycles for the monitoring system.

5.6. OS-to-Monitor Interface for Process Deletion

When a process is deleted by the OS, the processor writes the PID of the deleted

process into the PID register in the processor interface of the monitoring system and sets a bit

in the Operation register. The following steps are used to remove the corresponding

monitoring graph information from the monitoring system.

1. The PID of the deleted process is passed to the monitor via the processor interface. The

monitor first searches for a matching entry in PID addresses storage and PID to GID

binding storage. If found, the valid pointer for that corresponding PID is set to 0.

2. The GID associated with the deleted process is located in the PID to GID binding storage

using the PID written to the processor interface. The number of active processes for that

GID is decremented by 1 in the GID to frame binding storage

3. The Done bit is set in the processor interface indicating that the monitoring system is

now ready to monitor the next process. This bit can be read by the processor.

While loading new graph information from the centralized graph memory, PID

addresses storage and PID to GID binding storage rows with 0 set for valid pointer are

considered as empty rows and can be used by the new graph for updating its information.

Thus, at any given moment, the hardware monitoring system can support monitoring of four

active processes in the system.

5.7. Dual-core Monitoring System Design

In this section, we explain how the Multi-Task Hardware Monitor system can be

extended to monitor dual-core embedded processors. The architecture of the dual-core

monitoring system is illustrated in Figure 21. Two MTHM systems are co-located with the

dual-core embedded processor to track the processing of the software on individual cores as

37

in the case of a single-core monitoring system. The centralized graph memory is shared

among both the MTHM systems and graphs can be loaded into the monitoring systems when

required without slowing down the embedded system.

An arbiter is used to access the centralized graph memory. When a monitoring system

needs to copy a new graph from the centralized graph memory, it requests the arbiter to grant

access to the centralized graph memory. If the centralized graph memory is free, then the

arbiter grants access to the requesting monitoring system. If the centralized graph memory is

busy, then the monitoring system requesting access waits until the centralized graph memory

becomes free. If both the monitors make a request at the same time, priority is given to

Monitor1 by default.

CORE I MONITOR I MONITOR II CORE II

ARBITER

DMA INTERFACE +

CENTRALIZED GRAPH

MEMORY

Run Time

Information

Recovery

Measures

Run Time

Information

Recovery

Measures

Req1 Req2
RAM_wr

address

1

RAM_data

_in1

RAM_data

_in2

RAM_wr

address

2

DMA_

start

DMA_

done
DMA_

addr

DMA_

data

DDR2

Figure 21: Dual-core monitoring system

38

When Monitor1 needs to copy a new graph from the centralized graph memory, it sets

the Req1 signal high. The arbiter on receiving this request from Monitor1, checks whether the

centralized graph memory is used by Monitor2. The centralized graph memory is currently

busy if the DMA_Done port in Figure 20 is low. If not, then the arbiter establishes a

connection between the DMA interface and Monitor1 and the necessary graph can be

transferred from the centralized graph memory to Monitor1. Now if suppose, Monitor2 also

needs to copy a new graph from the centralized graph memory, it sets the Req2 signal high.

The arbiter receives this request and on checking the DMA_Done port, it finds out that the

centralized graph memory is currently being used by Monitor1. The arbiter waits until the

centralized graph memory is free and then establishes a connection between the DMA

interface and Monitor2.

In Chapter 6, it is noted that process creation requires 600 cycles in the embedded

processor while process creation in monitor requires on an average 140 cycles. Hence, even if

one monitoring system has to wait till the other monitoring system finishes copying the graph,

the waiting monitoring system will still have enough time to copy the necessary graph before

process creation is finished in the embedded processor.

All task management activities such as process creation and context management and

its interface to the monitoring system remains the same as in the case of the single-core

monitoring system. This approach can also be extended to monitor multi-core embedded

systems as the arbiter can manage multiple requests to the centralized graph memory. Priority

of the process can be used to determine which monitor gets access to the centralized graph

memory when multiple requests are made at the same time.

39

5.8. Summary

This chapter explained the system architecture for the monitoring system and the

coordination of the operating system activities with the Multi-Task Hardware Monitor. The

graph transfer operation from the centralized graph memory to the monitoring system was

also discussed in this chapter. Finally, this chapter showed how the monitoring system can be

extended to support dual-core embedded systems.

40

CHAPTER 6

PROTOTYPE IMPLEMENTATION

This chapter describes the system setup for the prototype implementation and shows

how monitor context management and task management happens in the system. In the later

sections, the system is verified by an attack code and shows how the monitor can detect the

attack to defend the embedded processor system [38].

6.1. System Setup

To verify the functionality of our monitoring system, we implemented an embedded

NIOS II processor plus monitoring system using a Stratix IV GX230 FPGA located on an

Altera DE4 board. A single-core NIOS executing a µC/OS-II operating system was used for

testing. Monitoring logic and memory were implemented in on-chip resources. Since modern

day embedded processing systems have numerous applications being executed on them, we

have implemented an external DRAM interface to the system and use off-chip DRAM to

support the storage of multiple application binaries and OS kernel. DDR2 SDRAM available

on the Altera DE4 board is used for storing the application binaries and the OS kernel. DDR2

is the second generation DDR and offers a maximum transfer rate of 3200 MB/s. Figure 22

illustrates the DDR2 SDRAM interface system level diagram. An Altera DDR2 controller is

used to handle the complex aspects of using DDR2 SDRAM which includes initializing the

memory devices, managing SDRAM banks and keeping the devices refreshed at appropriate

intervals [2]. Altera DDR2 SDRAM controller can be up to 90% efficient and hence offers a

maximum transfer rate of 2880 MB/s. Figure 23 shows NIOS II setup in Qsys with DRAM

controller interface.

41

Nios II

Embedded Processor

DDR2 SDRAM Controller

DDR2 SDRAM

Hardware Monitor

Control &

Address

Data

Control Module

Data-Path Module

I/O

Module
Runtime

Information Recovery
Data WR

Data RD

Address

Control

DQ/DQS

DM

ADDR

RAS/CAS/WE

CKE/CS

CK/CKn

Figure 22: DDR interface

Figure 23: NIOS II setup in Qsys

Monitoring graphs were generated by passing code through a standard compiler flow

to generate assembly-level instructions [17].

42

Nios II-GCC

compiler

Instruction

Info

Branch

Info

NFA to DFA conversion

Memory generator

Benchmark Source Code

Memory Initialization File

 Figure 24: Offline analysis

The output of the compiler allows for the identification of branch instructions and

their target address. This information was used to generate monitoring graphs as shown in

Figure 24 for five MiBench [13] applications (bitcount, qsort, stringmatch, basicmath and

dijkstra) and malicious stack-smashing attack code. Monitoring graph information for all

Mibench applications can be generated using offline analysis and our examination of all

MiBench benchmarks determined that the target for all dynamic branches could be

determined at compile time.

The attack code we use for our system is a simple C function which accepts a

character string from an I/O port and copies it to a buffer located on the processor stack [36],

as shown in Figure 24. The attack code was generated by Kekai Hu.

43

void process_input(char *stringpassed) {

 char name[90];

 strcpy(name,stringpassed);

 printf("Processing string .. !\n");

 return;

}

Figure 25: Attack code

In this poorly designed code, no check is made to determine if the string stringpassed

is longer than the target buffer, so the return address of the function can be over-written with

an address which points into the user-provided input string. Instead of characters, this “string”

can contain processor instructions which repetitively print out “Attacked!!” on a terminal in a

loop, although much more malicious behavior could be imagined. A monitor for the code is

able to detect the unplanned control flow jump and kill the process before the attack can

perform this activity. The hash value stored in the monitoring graph for the application will

not match the values for the malicious instructions as they are executed during the attack. As

shown in the Figure 26, we have confirmed that this attack will lead to unexpected results (an

attack message) if monitoring is not used.

 Figure 26: Console display during stack smashing

44

6.2. Monitor Context Management

The ability to perform numerous context switches between multiple processes of the

two monitored MiBench benchmarks have been verified both via simulation and in emulation

hardware. This switch includes both standard process state used by the processor (e.g.,

register information, stack) and monitoring information using the mechanism outlined in

Chapter 5. Altera SignalTap, a hardware debugger, was used to generate the waveforms

shown in Figure 27.

Monitor readyPID change Context Switch CPU ready

Figure 27: SignalTap waveforms showing monitor context switch

The waveforms show the synchronization between the processor and the monitor as a

result of the context switch. First, the processor notifies the monitoring system of the switch

by writing the PID of the next process into the processor interface. The monitor switch is

started by the processor writing into the Operation register of the interface. The value of the

address_pointer for the old process is stored and the value for the new process is restored

to/from PID address storage immediately after this trigger. The base address registers are

then configured using the write_data port shown in Figure 18. After the control FSM

performs the monitor update, the Done signal is set in the processor interface indicating the

monitor context switch is finished. Finally, after the processor finishes other context switch

operations, it sets the Enable signal in the processor interface to restart monitoring. The

45

processor waits a cycle until this write is complete. Monitoring for the new process starts

with the first instruction received from the process.

Experiments in simulation and in lab on FPGA hardware showed that the processor is

able to process data for the MiBench benchmarks equally fast both with and without

monitoring (e.g., no slowdown for monitoring). Context switch time is extended by 5 cycles

versus no monitoring to allow for monitor context switches. This overhead accounts for the

data exchanges between the processor and the monitoring system for synchronization.

Overall, we found that the number of cycles needed to perform a monitor context switch is 18

versus the 34 cycles needed for the processor to save and restore registers (note that monitor

and processor context switch occur in parallel).

6.3. Monitor Process Creation and DMA interface

The system has been verified for its ability to load new graph information into the

hardware monitor when a new process is created in the embedded processor. If the graph

information is not available in the graph memory of the monitoring system, then the required

graph information is copied from the centralized graph memory through the DMA interface.

Figure 28 illustrates SignalTap waveforms for process creation activity in the monitor.

GID change PID change Task Create Monitor ready

Figure 28: SignalTap waveforms showing monitor process creation

 The processor first writes the identifiers (GID and PID) of the new process into the

processor interface. The monitor process creation begins when the processor sets a bit in the

46

Operation register of the processor interface. If the graph information is present in the

monitoring system, the new base addresses are configured using the write_data port shown in

Figure 18. After the control FSM is complete, the Done signal is set in the processor interface

to indicate the monitor task creation is finished.

 If the GID of the new process is not found in the GID to frame binding storage, then

the graph information for the process needs to be copied from the centralized graph memory.

Figure 29 illustrates SignalTap waveforms during DMA operation when a graph is copied

from the centralized graph memory to the monitoring system. It can be seen from the

waveform that the DMA operation begins when DMA_start signal is set high. The GID of the

graph to be copied is written into the GID port and this information is used to locate the graph

in the centralized graph memory. Once the graph is located, the graph copy operation begins

by setting the DMA_wren signal high. The address and data of the new graph are transferred

using the DMA_address and DMA_data port shown in Figure 20. Once the DMA operation is

complete, the DMA_done signal goes high.

Task Create Graph copy starts Graph copy ends

Figure 29: SignalTap waveforms showing monitor task creation

The amount of time needed to create a new process in the OS is about 600 clock

cycles versus 20 to create process information in the monitor. If a monitoring graph is loaded

from main memory, the cycle count required for the monitor increases to include reading the

47

number of rows in the monitoring graph for the new process into graph memory. It is noted

that the number of rows in the monitoring graph is about 120 for each of our applications.

6.4. Attack Detection and Protection

It has been verified in both simulation and in hardware that the monitoring system is

able to detect the stack smashing attack described above and notify the processor so that the

malicious process can be terminated. SignalTap waveforms derived from observing hardware

operation in system are shown in Figure 30. As described in Chapter 5, an attack is detected

when the hash of the CPU instruction does not match the expected value stored in the

monitoring graph for the application. In the implemented system, the hash function counts the

number of ones in the instruction to form a four-bit hash value. The figure shows the four bit

hash value, a one-hot version of the hash value, and the retrieved, expected hash value for the

instruction from the monitoring graph (read_data[15:0]). In the waveform, it can be seen that

the correct hash value is matched twice, but the third hash value is incorrect, indicating a

branch to an unexpected section of code. As a result of this detection, a recovery signal is

generated, notifying the processor that the process should be terminated.

Instruction hash matches graph memory Instruction hash doesn’t match graph memory

Attack detected

Figure 30: SignalTap waveforms showing detection of an attack

48

This recovery signal is used to generate an interrupt to the embedded processor. The

interrupt causes the current process (which is also the malicious process) to halt and OS takes

control over the processor. The OS saves the CPU registers and starts executing the interrupt

handler. The interrupt handler determines what caused the interrupt to occur and starts

executing ISR for that interrupt. In the ISR, the attack process is found by checking the PID

of the process from the PID register of the processor interface. This process is then deleted

and the ISR is exited. Now the OS scheduler determines the next ready task to run and starts

executing it on the processor. Figure 31 shows the attack process being detected and deleted

in NIOS II processor. It can also be seen from the figure that after the deletion of the attack

process, the processor starts the execution of the next process.

Figure 31: Console Display showing task detection and deletion

While the attack process is being deleted, its corresponding graph information is also

removed from the monitoring system. SignalTap waveforms for graph deletion activity in the

monitor are illustrated in Figure 32. In the waveform, it can be seen that the graph removal

process starts when the processor writes into the Operation register informing about the task

delete operation. The Kill_PID signal is made high to remove the corresponding PID entry

from the PID addresses storage and the PID to GID binding storage. At the same time,

Update_GID signal is made high to update the GID to frame binding storage. In the

waveform it can be seen that the monitor removes PID-1 from the valid array of PID

addresses storage and updates the valid array entry for GID-1 in GID to frame binding

49

storage by decrementing it by one. We can see that only the graph information for PID-0 and

GID-0 exists in the monitor which corresponds to the Task 1 running on the processor as

shown in Figure 31.

Task Delete PID-1 removed from Valid PIDs

GID-1 decremented in Valid GIDs

Figure 32: SignalTap waveforms showing monitor task delete

The time it takes for the system to recover after an attack is detected is reported in

Table 1.

Operation # Cycles

Interrupt Latency 1

Saving CPU registers 25

Interrupt Handler 129

ISR Code 30

Task Delete 126

Total 311

Table 1: System recovery time

50

From the table, we can see that the interrupt latency is 1 cycle. Thus only 2

instructions of the attack code are executed on the processor and the attack task is killed

before it can harm the system. Once the interrupt occurs, the OS takes control and saves the

CPU registers. After this, the interrupt handler is called to determine what caused the

interrupt to occur. The interrupt handler also disables certain OS features like context

switching. Later the ISR code is executed, which determines the attack task by reading the

PID register of the processor interface and deletes this task. The task delete operation takes

126 cycles. Overall, it takes 311 cycles to recover from the attack and to continue normal

operation. Figure 33 illustrates the recovery process in the embedded system.

NIOSII

TASK EXECUTION

MONITOR
TIME

INVALID INSTR.

RECOVERY SIGNAL

TASK DELETE

SAVE CPU

REGISTERS

INTERRUPT

HANDLING

EXECUTE ISR

CODE

DELETE ATTACK

TASK

Figure 33: Recovery process in the embedded system

51

6.5. Monitoring System Resources

To provide some context regarding the amount of overhead required by the

monitoring system relative to the processor, hardware results of the system reported by the

Altera Quartus II tool are shown in Table 2. The lookup table (LUT), flip-flop (FF), and

memory resources required for the monitor are appropriate compared to the processor core.

Dynamic power values are also shown in the table. These power numbers were generated

using Altera PowerPlay. Toggle rate of 12.5 was used for all the signals during power

analysis.

Resources Hardware

Monitor

Nios II

Processor

DDR2

Controller

Available

LUTs 516 1,348 5,989 182,400

FFs 525 1,235 8,003 182,400

Mem. bits 131,296 44,032 250,368 14,625,792

Pwr (mW) 46.83 105.97 672.74 -

Table 2: Resource use on DE4 FPGA

Table 3 shows the graph size for the Mibench applications used for evaluating the

system. The graph size determines the time it takes to copy a new graph from the centralized

graph memory to the monitoring system. It can be seen from the table that the average

number of memory entries is 120. In the table, the number of memory entries for an

application is higher than the application instructions because we use DFA representation of

graphs and hence control instructions have multiple entries in the graph based on their target

addresses.

52

Application # Application Instr. # Mem. entry

qsort 96 111

bitcount 60 74

basicmath 107 132

stringmatch 77 97

dijkstra 166 188

Table 3: Monitoring graph size

Table 4 reports the cycle count and time delay for each operation in the embedded

processor and the hardware monitor. Both the embedded processor and the hardware monitor

operate at a clock frequency of 100 MHZ. It is clear from the table that the hardware monitor

requires less time than the embedded processor to perform the same operation and hence

doesn’t slowdown the embedded system.

Operation # Cycles Time (us)

Nios II Monitor Nios II Monitor

Task Create 600 ~140 6 1.4

Context Switch 34 18 0.34 0.18

Task Delete 126 8 1.26 0.08

System Recovery 311 8 3.11 0.08

Table 4: Cycle count and time delay for various operations

53

6.6. Dual-Core Monitoring System

The functionality of our dual-core monitoring system was verified by using two NIOS

II processors. Both the processors use the DDR2 available on the DE4 board to store

application binaries and OS kernel. The DDR2 address space was partitioned in two to enable

the storage of both processor binaries without data corruption as shown in Figure 34. As

earlier, the monitoring logic and centralized graph memory were implemented in on-chip

resources.

00000000h-1FFFFFFFh

20000000h-3FFFFFFFh

NIOSII 1

NIOSII 2

DDR2

Figure 34: DDR2 address space partition to support dual Nios II core

To verify our dual-core monitoring system, a collection of Mibench applications were

assigned to each processor. Both the monitoring systems were able to successfully load the

required graph information from the centralized graph memory. Altera SignalTap waveforms

illustrated in Figure 35 shows graphs being transferred from the centralized graph memory to

both the monitoring systems upon request.

54

Figure 35: SignalTap waveform showing graph transfer in dual-core monitoring system

In the waveform, Monitor1 requests to access the centralized graph memory by

setting Req1 high. Since DMA_done signal is low, a connection is established between

Monitor1 and the centralized graph memory. DMA_start signal is set high to indicate the start

of the DMA transfer operation. We can see in the waveform that graph data and the graph

address are being loaded from the DMA controller to the RAM data and RAM address of

Monitor1. During this time, it is seen that Monitor2 makes a request to access the centralized

graph memory by setting Req2 high, but since DMA_done signal is low, it is made to wait till

the DMA_done signal goes high to indicate that the centralized graph memory is free to use.

Once DMA_done signal is high again, a connection is established between Monitor2 and the

centralized graph memory and similar operation is followed to transfer the required graph

from the centralized graph memory to Monitor2.

After all the required graphs are loaded into the individual monitoring systems,

operations such as process creation and context management occur in the same manner as in

the case of a single core monitoring system. We have also verified that both the monitoring

systems can track the progress of instruction flow on the respective cores without any

performance slowdown. If any attack occurs on either core, its respective monitoring system

Monitor1 makes

request

Monitor2 makes

request

DMA becomes

free
Graph Copy Graph Copy

55

is able to detect the attack and the attack process is killed without disturbing the other core

and the other tasks running on the same core.

Table 5 shows the hardware results reported by the Altera Quartus II tool for the dual-

core embedded system with monitoring hardware. Toggle rate of 12.5 was used for all signals

during power analysis using Altera PowerPlay.

Resources Dual-Hardware

Monitor

Dual-Nios II

Processor

DDR2

Controller

Available

LUTs 1,071 2,477 5,989 182,400

FFs 1,129 2,354 8,003 182,400

Mem. bits 262,592 88,064 250,368 14,625,792

Pwr (mW) 74.54 187.78 672.74 -

Table 5: Resource use for dual-core embedded system

56

CHAPTER 7

CONCLUSION

The system that has been designed and prototyped achieves the security requirements

that are put forth in Chapter 3. The key observation is that the hardware monitor can detect

when a specific task executes code that is different from the binary. In such a case, the hash

value that is reported from the processor core to the monitor does not match. There is a

chance that the attacker is lucky and the hash matches by coincidence or the attacker is clever

and aims to construct code that matches. This action however is very difficult to achieve in

practice and can be defeated by hiding the hash function [15]. If the monitor detects deviation

from the binary, then the processor is signaled to stop execution of the attacked task. Thus,

SC1 (no execution of attack code) is achieved.

The system supports multiple tasks that are switched dynamically by the operating

system. The hardware monitor follows along in sync and associates the current task on the

processor core with the correct monitoring graph. Thus, we achieve SC2 (secure processing

for multiple tasks).

Finally, when an attack occurs, the hardware monitor informs the operating system

about the attack and the targeted tasks are stopped using a conventional task termination

mechanism (similar to the kill command). This mechanism is specially designed to not affect

other tasks. Thus, SC3 (isolation of attacked task) is achieved.

We rely on the limitations of attacker capabilities, such as AC4 and AC5 (no

tampering of operating system or hardware monitor), to ensure that an attacker cannot

circumvent the security mechanism we have put in place.

To conclude, in this thesis, an important security extension for embedded processors

that execute multiple processes under the control of an operating system is presented. This

57

monitoring approach allows the operation of each process to be tracked at the instruction

execution level. If a deviation from the expected instruction execution sequence is detected,

the monitor can quickly identify and notify the processor to initiate process termination. A

significant contribution of the work is the inclusion of multi-context support in the

monitoring system. Monitoring state for each process can be quickly saved during a process

context switch and previously stored state can be reloaded. Using prototyping, it was seen

that the system is effective for multiple processes managed by an embedded OS. A stack

smashing attack is identified and suppressed. The monitoring system is modest in size and

does not impact the application execution time.

In the future, we plan to extend our monitoring approach for a multi-core embedded

processor. We also plan to look into the possibility of monitoring the operating system along

with application monitoring. A more powerful operating system like µClinux could be used

for future works.

58

BIBLIOGRAPHY

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow intergrity

principles, implementation and applications. In ACM Conference on Computer

and Communication Security (CCS), pages 340-353, Alexandria, VA, Nov. 2005.

[2] Altera DDR and DDR2 SDRAM Controller Compiler User Guide

http://www.altera.com/literature/ug/ug_ddr_sdram.pdf.

[3] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, “Secure embedded processing

through hardware-assisted runtime monitoring,” in Proc. of the Design,

Automation and Test in Europe Conference and Exhibition (DATE’05), pages

178-183, Munich, Germany, Mar. 2005.

[4] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C.

Gruenwald, A. Torgerson, and R. Han. Mantis os: An embedded multithreaded

operating system for wireless micro sensor platforms. Mobile Networks and

Applications, 10(4):563-579, Aug. 2005.

[5] G. Bournoutian and A. Orailoglu. Dynamic transient fault detection and recovery

for embedded processor datapaths. In Proc. of the International Conference on

Hardware/Software Codesign and System Synthesis, pages 43-52, 2012

[6] CERT Coordination Centre, Carnegie Mellon University, Pittsburgh, PA. CERT

Advisory CA-2001-19 “Code Red” Worm Exploiting Buffer Overflow in IIS

Indexing Service DLL, July 2001.

[7] D. Chasaki and T. Wolf. Attacks and defences in the data plane of networks. IEE

Transactions on Dependable and Secure Computing, 9(6):798-810, Nov. 2012.

[8] D. Chasaki, W. Qiang and T. Wolf, "Attacks on Network Infrastructure," in Proc.

of 20th International Conference on Computer Communications and Networks

(ICCCN), vol., no., pp.1-8, July 31 2011-Aug. 4 2011.

[9] S. Chen, B. Falsafi, P. B. Gibbons, M. Kozuch, T.C. Mowry, R. Teodorescu, A.

Ailamaki, L. Fix, G. R. Ganger, B. Lin, and S. W. Schlosser. Log-based

architectures for general purpose monitoring of deployed code. In Proc. of the 1st

Workshop on Architectural and System Support for Improving Software

Dependability (ASID), pages 63-65, San Jose, CA, Oct. 2006.

[10] S. Chen, M. Kozuch, P. B. Gibbons, M. Ryan, T. Strigkos, O. Ruwase, E.

Vlachos, B. Falsafi, and V. Ramachandran. Flexible hardware acceleration for

instruction-grain lifeguards. IEEE Micro, 29(1):62-72, Jan. 2009.

[11] Decoding smartphone industry jargon. Business Insider, Nov. 2013.

http://www.businessinsider.com/decoding-smartphone-industry-jargon-2013-11.

http://www.altera.com/literature/ug/ug_ddr_sdram.pdf
http://www.businessinsider.com/decoding-smartphone-industry-jargon-2013-11

59

[12] G. Gogniat, T. Wolf, W. Burleson, J.-P. Diguet, L. Bossuet, and R. Vaslin.

Reconfigurable hardware for high-security/high performance embedded systems:

the SAFES perspective. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 16(2):144-155, Feb. 2008.

[13] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.

Brown. 2001. MiBench: A free, commercially representative embedded

benchmark suite. In Proceedings of the Workload Characterization, 2001.

[14] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles. PLAN: A packet

language for active networks. In Proc. of the Third ACM SIGPLAN International

Conference on Functional Programming Languages, pages 86-93. ACM, 1998.

[15] K. Hu, T. Teixeira, T. Wolf, and R. Tessier, System-level security for network

processors with hardware monitors. In Proc. of 51st Design Automation

Conference (DAC), San Francisco, CA, June 2014.

[16] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Proc. of the 19th

Annual International Cryptology Conference on Advances in Cryptology

(CRYPTO ’99), volume 1666 of Lecture Notes in Computer Science, pages 388-

397, London, United Kingdom, 1999. Springer-Verlag.

[17] H. Kumarapillai Chandrikakutty, D. Unnikrishnan, R. Tessier, and T. Wolf. High-

performance hardware monitors to protect network processors from data plane

attacks. In Proc. of 50th Design Automation Conference (DAC), Austin, TX, June

2013.

[18] J. J. Labrosse. MicroC/OS-II - The Real-Time Kernel. Second Edition. CMP

Books.

[19] R, Langner. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security Privacy,

9(3):49-51, May 2011.

[20] Y. Luo and J. Fan. Fault tolerant practices on network processors for dependable

network processing. In Proc. of IEEE International Symposium on Parallel and

Distributed Processing (IPDPS), Miami, FL, April. 2008.

[21] S. Mao and T. Wolf, “Hardware support for secure processing in embedded

systems,” IEEE Transactions on Computers, 59(6):847–854, Jun. 2010.

[22] D. Moore, C. Shannon, and J. Brown, “Code-Red: a case study on the spread and

victims of an Internet worm,” in IMW ’02: Proceedings of the 2nd ACM

SIGCOMM Workshop on Internet measurement, pages 273-284, Marseille,

France, Nov. 2002.

60

[23] N. Nakka, Z. Kalbarczyk, R. K. Iyer, and J. Xu. An architectural framework for

providing reliability and security support. In Proc. of the 2004 International

Conference on Dependable Systems and Networks (DSN), pages 585-594,

Florence, Italy, June 2004.

[24] National Institute of Standards and Technology. National Vulnerability Database.

http://nvd.nist.gov.

[25] S. Parameswaran and T. Wolf. Embedded system security – an overview. Design

Automation for Embedded Systems, 12(3):173-183, Sept. 2008.

[26] P. Parkinson and A. Baker. Mils architecture simplifies design of high assurance

systems. In EE Design, Aug. 2011.

[27] M. Pflanz. On-line error detection and fast recover techniques for dependable

embedded processors. Springer-Verlag, 1st edition, 2002.

[28] L. Pike, P. Hickey, T. Elliott, A. Tomb, E. Mertens, D. Kapp, and D. Koranek.

TrackOS: a Security- Aware RTOS. Experimental, Galois Corporations, 2012.

[29] R. G. Ragel and S. Parameswaran. IMPRES: integrated monitoring for processor

reliability and security. In Proc. of the 43rd Annual Conference on Design

Automation (DAC), pages 502-505, San Francisco, CA, USA, July. 2006.

[30] R. G. Ragel, S. Parameswaran, S. M. Kia. Micro embedded monitoring for

security in application specific instruction-set processors. In Proc. of the 2005

international conference on Compilers, architectures and synthesis for embedded

systems (CASES), pages 304-314, San Francisco, CA, Sept. 2005.

[31] S. Ravi, A. Raghunathan, and S. Chakradhar. Tamper resistance mechanisms for

secure, embedded systems. In Proc. of 17th International Conference on VLSI

Design (VLSI Design 2004), pages 605-611, Mumbai, India, Jan. 2004.

[32] M. R. Rieback, P. N. Simpson, B. Crispo, and A. S. Tanenbaum. RFID malware:

Design principles and examples. Pervasive and Mobile Computing, 2(4):405-426,

2006.

[33] K. Rosenfeld and R. Karri. Attacks and defences for jtag. IEEE Design and Test

of Computers, 27(1):36-47, Jan. 2010.

[34] Z. Shao. Q. Zhuge, Y. He, and E. H. –M. Sha. Defending embedded systems

against buffer overflow via hardware/software. In Proc. of the 19th Annual

Computer Security Applications Conference (ACSAC), pages 352-363, Las

Vegas, NV, Dec. 2003.

http://nvd.nist.gov/

61

[35] S. Shivshankar, S. Vangara, and A. Dean. Balancing register pressure and

context-switching delays in asti systems. In Proc. of International Conference on

Compilers, Architectures and Synthesis for Embedded Systems, pages 286-294,

2005.

[36] A. B. Sikiligiri. Buffer Overflow Attack and Prevention for Embedded Systems,

PhD thesis, University of Cincinnati, 2011.

[37] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program execution via

dynamic information flow tracking. In Proc. of International Conference on

Architectural Support for Programming Languages and Operating Systems,

pages 85-96, Oct. 2004.

[38] T. Thomas, A. Pouraghily, K. Hu, R. Tessier, and T. Wolf. Multi-Task support

for Security-Enabled Embedded Processors. In Proc. of 26th IEEE Conference on

Application-specific Systems, Architectures and Processors (ASAP), Toronto,

Canada, July. 2015.

[39] A. Wood and J. A. Stankovic. Denial of service in sensor networks. IEEE

Computer, 35(10):54-62, Oct. 2012.

[40] J. Zambreno, A. Choudhary, R. Simha, B. Narahari, and N. Memon. SAFE-OPS:

An approach to embedded software security. Transactions on Embedded

Computing Sys., 4(1)189-210, Feb. 2005.

[41] X. Zhang, L. van Doorn, T. Jaeger, R. Perez, and R. Sailer. Secure coprocessor-

based intrusion detection. In Proc. of European Sigops, pages 239-242, 2002.

[42] X. Zhou and P. Petrov. Rapid and low-cost context switch through embedded

processor customization for real-time and control applications. In Proc. of

IEEE/ACM Design Automation Conference, pages 352-357, June 2006.

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2015

	Hardware Monitors for Secure Processing in Embedded Operating Systems
	Tedy Mammen Thomas
	Recommended Citation

	PROTECTING NETWORK PROCESSORS WITH HIGH PERFORMANCE LOGIC BASED MONITORS

