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ABSTRACT 

HARDWARE MONITORS FOR SECURE PROCESSING IN EMBEDDED OPERATING 

SYSTEMS 

 

SEPTEMBER 2015 

 

TEDY MAMMEN THOMAS 

 

 B.TECH. E.C., COCHIN UNIVERSITY OF SCIENCE & TECHNOLOGY 

 

M.S. E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Russell Tessier 

 

Embedded processors are being increasingly used in our daily life and have become 

an important part of many types of infrastructure in the world. As people start depending 

more on embedded systems for personal and business processing operations, the attacks on 

these systems have also been on a rise. Existing defense mechanisms targeted for desktop and 

server processors cannot be used to defend embedded systems as these system exhibit 

constraints on processing performance and processing power and energy. Thus, embedded 

systems require low overhead security approaches to ensure that they are protected from 

attacks.  

This thesis describes a hardware based approach to monitor the operation of an 

embedded processor instruction-by-instruction, where deviations from expected program 

behavior are detected within the time associated with the execution of an instruction. 

Previous work in this area has focused on monitoring a single task on a CPU while here a 

novel hardware monitoring system that can monitor multiple active tasks in an operating-

system-based platform is presented. This approach doesn’t need any change in application 

binary code. The hardware monitor is able to track context switches that occur in the 
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operating system and ensure that monitoring is performed continuously, thus ensuring system 

security.  

This thesis describes the design of the system as well as results obtained from a 

prototype implementation of the system on an Altera DE4 FPGA board. It is demonstrated in 

hardware that applications can be monitored at instruction level without execution slow-down 

and buffer overflow attacks can be defeated using this system. When an attack occurs, it is 

detected within a cycle and the attack task is killed before it can harm the system. The system 

uses an off-chip DRAM for storing the application binary and the operating system kernel. A 

centralized graph memory is implemented on-chip to support the storage of all monitoring 

graphs associated with the system. MiBench benchmarks such as qsort, bitcount, stringmatch, 

basicmath and dijkstra are used to evaluate the system. 
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CHAPTER 1 

INTRODUCTION 

 

 

Embedded processing systems are widely used and are key technology for control 

systems, the Internet of Things, personal health monitoring, home automation, and many 

other application domains. Figure 1 illustrates the rise in the usage of embedded devices. Due 

to their wide use and the importance of their tasks, embedded systems needs to be protected 

from hacking attacks. With an increasing number of embedded systems being connected to 

networks, one typical attack against embedded systems is through the global Internet.  

 

 

Figure 1: Embedded devices installed base forecast [11] 

 

Many embedded systems are based on general-purpose processing systems that are 

vulnerable to the same types of attacks as conventional desktop and server computers, albeit 

for a different set of applications. The National Vulnerability Database (NVD) [24] shows 
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that around 10% of vulnerabilities (6518 out of 66,399) in systems are related to overflows 

that can be exploited via a network. Many of these overflows then enable an attacker to 

execute malicious code. Thus, this thesis focuses on protecting embedded systems from this 

important type of attack. Figure 2 illustrates a denial of service attack generated in-network 

by exploiting this inherent vulnerability of embedded network processors [8].  
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Figure 2: Attack on packet processing system in network router data plane [8] 

 

While desktop and server computers have the processing power to run malware 

detection software (e.g., virus scanner, intrusion detection software, etc.), embedded systems 

are typically not able to do so due to resource constraints (e.g., limited power budget, limited 

processing capacity, etc.). Instead, hardware-based protection mechanisms have been 
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developed, in particular “hardware monitors”, as illustrated in Figure 3. These monitors look 

for deviations from expected processor behavior using run time processing information. In 

case of an attack, the monitor detects deviation from expected behavior and a suitable 

recovery process is initiated. 
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Figure 3: Embedded processor system with hardware monitor 

 

A variety of different hardware-based solutions have been proposed to protect 

embedded processing systems. In general, there have been two shortcomings in existing work: 

 Monitoring on systems with complex workloads is based on coarse indicators (e.g., 

function call sequence). This approach leaves the system vulnerable to attacks that 

happen between these indicators (e.g., within a function call). 

 Fine-grained monitoring systems do not support multi-task workloads on operating 

systems. This constraint limits the applicability of this single-task monitoring systems to 

specialized domains (e.g., embedded control systems, network processors, etc.). 

To make hardware monitors an effective protection mechanism for attacks on 

embedded systems in any application domain, it is critical to develop fine-grained monitoring 

on multi-task embedded systems. In this work, the design of a hardware monitoring system 
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that coordinates with the task switching dynamics of an operating system to verify every 

instruction executed by applications is presented. This approach neither requires any changes 

to application binary, nor detection software in the operating system. Thus the processor core 

defense can be implemented efficiently and is backward compactable with the existing 

embedded system code. The result from this thesis can aid in defending the embedded 

processing systems from various different domains and make them more enduring against an 

increasing range of attacks.  

1.1. Attacks and Defenses in Embedded Systems 

Many important functions in today’s global infrastructure are implemented using 

embedded systems. The value of the data being processed in embedded systems and the 

operations they perform are enough reasons for attacks to target these systems. Some of the 

major motivations towards the attacks on embedded systems are information theft, energy 

drainage, confusion of the sensor, device reprogramming, network intrusion, physical 

intrusion, etc [25]. 

The focus of this thesis is on code injection attacks, where malicious code is injected 

remotely (e.g., via a network). This type of attack is extensively used in practice. Stuxnet [19] 

is very popular example of this type of attack which led to the physical destruction of 

embedded controllers because malicious code was injection into them. Although, Stuxnet is a 

very complex example based on embedded systems with advanced operating systems, there 

are also examples for low-end embedded systems such as smart cards and RFID chips [32]. 

 The typical characteristics of embedded systems such as limited processing 

performance and battery power make conventional software-based defenses, such as virus 

scanners or other intrusion detection system, unsuitable. Particularly in real-time 

environments, it is not acceptable to account for the unknown processing overhead of 
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malware detection software. Also, considerable portions of the energy budget of an 

embedded system maybe required by software-based malware detection.  

In this work, the design of the hardware-based protection mechanism is such that it 

doesn’t come in the way of the operation of the embedded system, which still being able to 

reliably detect any attack that changes the operation of the system. The hardware monitoring 

system, in particular, does not slow down the embedded processor nor does it require any 

changes to the application binary.  

Prior work that has proven effective in detecting code injection attacks [7, 17] forms 

the basis of this thesis. The focus of prior work was on network processing systems, a certain 

type of embedded system with single-threaded workload. This thesis focuses on the 

expansion of this work to make it practical for real-time embedded systems with multiple-

threaded workloads that are controlled by an operating system (OS). 

The goal of this thesis is to develop a Multi-task Hardware Monitor (MTHM) system 

that can protect modern embedded processors with real-time performance constraints from 

attacks that are targeted at vulnerabilities in embedded system. The specific contributions of 

this thesis are: 

 Design of a Multi-task Hardware Monitor system that supports multi-tasking contexts and 

that operates in sync with an embedded operating system. 

 Design of a centralized graph memory circuitry for the storage of all monitoring graphs 

associated with the embedded processor core and its interface to the Multi-task Hardware 

Monitor system. 

 Embedded system recovery when an attack is detected by the Multi-task Hardware 

Monitor system.  
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 Prototype implementation of the system on an Altera DE4 board using DRAM for 

application storage. 

 Evaluation of the prototype and demonstration of system protection from stack smashing 

attack. 

1.2. Organization of the document 

The rest of the thesis document is organized as follows. Chapter 2 provides a brief 

overview of the background and related work. Chapter 3 describes the system and security 

model that is representative of the embedded system that can be attacked remotely. Chapter 4 

describes the operating system management in the embedded system and Chapter 5 discusses 

the system architecture. Chapter 6 explains the prototype implementation and Chapter 7 

concludes the thesis with directions for future work. 



7 

 

CHAPTER 2 

BACKGROUND AND RELATED WORK 

 

 

This chapter provides a brief review of related work that provides context for the 

research. We will also look into the implementation details of the single-task monitoring 

system and see how this work needs to be expanded to monitoring of multi-task embedded 

systems.  

2.1. Related work 

2.1.1. Security Issues in Embedded Processor 

A variety of techniques can be used to attack an embedded processor [25]. Physical 

security can be achieved by employing tamper resistant designs as described by Ravi et al. 

[31]. Embedded processors are also susceptible to side-channel attacks (e.g., differential 

power analysis [16]), although it is not considered in this work. Embedded systems are also 

exposed to remote attacks in a networked framework as considered by Wood et al. [39]. Most 

of the time, these attacks take advantage of weakness in user software to take control of 

embedded processor operation. Repetitive messages are often sent to entice the processor to 

reveal secret information [31], especially if cryptographic protections are weak. Malicious 

code can also be inserted if the security is weak, in which case, an embedded processor is re-

tasked [25]. Processor debug and test ports are used by other software attacks to extract vital 

processor information [33]. 

2.1.2. Monitoring Systems 

Constrained programming environments for embedded processors have been 

proposed to address security concerns [14]. However, a full and diverse programming 

environment is required by many embedded processors.  The usage of these approaches for 
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security can lead to high overhead in embedded operating systems. Advanced techniques 

such as multiple independent levels of security (MILS) [26] are used by comprehensive 

embedded processor software systems to effectively isolate different processes and their data. 

In low-overhead embedded systems with minimal OS capabilities, this additional security 

layer may not be appropriate. In this work, security is achieved by monitoring processor 

execution. Monitoring has been used also in system by Arora et al. [3] and the IMPRES 

system [29], but a fine-granularity of monitoring is used by our monitor. Information is 

collected across multiple executed instructions in determining if the operation is valid in 

SAFE-OPS system by Zambreno et al. [40]. Attacks and errors can be detected by this system 

at the end of such a sequence, whereas our monitor can immediately detect the first 

instruction that deviates from expected behavior.  

A control flow graph for monitoring program execution is also used by Abadi et al. 

[1]. Integrity checks were introduced into the micro-architecture by Nakka et al. and the 

system used special check instructions [23]. In the system by Ragel et al. [30], 

microinstructions are introduced to monitor fault detection, return address checks and 

memory boundary checks. Unlike this, our monitor doesn’t require any changes in the 

machine code to implement the necessary checks.  A general, hardware-based architecture is 

developed by Goginat et al. [12] to protect embedded systems against a range of attacks. 

Chen et al. [9] proposes a log-base architecture (LBA) approach for monitoring using 

multiple processor cores. An unmodified program is run on one core while special monitoring 

hardware records all executed instructions in a log that scans for attacks and failures by 

software on another core. This architecture is very powerful and can detect a range of 

problems, but requires large log buffers [10]. This may introduce serious limitations in 

embedded system and also delay attack detection. Our monitor is able to detect deviations in 

operation within one instruction and is thus more suitable. 
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Various other security approaches have been directed at embedded processor 

execution. One of them involves tagging of non-instruction memory pages with NX (No 

eXecute) or XD (eXecute Disable) bits. By doing so, control flow change to a piece of code 

that belongs to data memory is prevented. This technique is useful in preventing buffer 

overflow attacks. A similar purpose is served by pre-set values placed on the stack called 

stack canaries. Before control flow change, these values are checked to verify that specific 

locations (e.g., a return address) have not been modified [28]. Shao et al. [34] describes 

another technique to defend against buffer overflow attacks, where bound checks are used 

and function pointers are protected by XORing them with a secret key. Although, none of 

these approaches consider a case where an attacker tires to overwrites instruction memory. 

Zhang et al. propose the use of co-processors to monitor operating system kernel data 

structure [41]. In this approach, a hardware co-processor is implemented separately. The idea 

of information flow is used to determine if data is authentic or malicious in the system 

proposed by Suh et al. [37]. Alternatively, embedded operating systems can create a separate 

task to evaluate the control flow of multiple tasks [28]. However, these types of systems 

require the design of a complex operating system and its integration with the processor.  

Advanced security approaches such as virus scanners and trusted execution hardware which 

are found in general-purpose computers are not appropriate for many low-end embedded 

systems. The solution presented in this work has simple interfaces to the micro-architecture. 

Our system uses dedicated hardware monitors to monitor the system and reduce the 

vulnerability of the system without using any user-level code. 

2.1.3. Recovery 

A large portion of prior work related to embedded processor recovery has focused on 

recovery from hardware faults rather than external attacks. Soft errors in the processor 

datapath are detected and recovered with minimal performance loss using datapath 
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redundancy in the system proposed by Bournoutian et al. [5]. The concept of checkpoints and 

rollbacks [27] are used in many embedded processors in the presence of detected faults, 

which leads to fast recovery. These approaches are effective for the occasional soft errors, but 

are insufficient for a targeted attack. Unused processors in a multi-core network are used to 

provide redundancy in the system by Luo and Fan [20]. So even if a specific core fails, 

processing is moved to an idle core. Although all these techniques are effective, none of them 

address monitoring and recovery from network attacks.  

2.1.4. Embedded Processor Context Switch 

The frequent context switching in embedded processors has made the use of task 

monitoring complicated. Numerous prior approaches have been developed to reduce the 

impact of context switches on real time behavior. Some of these approaches are applicable to 

the saving of monitor state. Isolation of possible context switches to points in a task when the 

live sets of registers are at a minima was proposed by Zhou et al. [42]. This can accelerate 

context switch time because these points reduce the amount of register information which 

must be saved. Alternatively, by breaking down larger task into smaller ones, it is possible to 

reduce the need for pre-emptive context-switching [4]. But the need to schedule many small 

tasks could be a challenge for an embedded operating system. Multiple threads can be 

compressed into a single thread as another extreme approach [35]. Although this would 

increase resource usage as this eliminates thread switching and all tasks must be compiled 

and monitored together.  

2.2. Single-Task Monitoring System 

This section describes the working of the single-task monitoring system which has 

been proven effective in defending network processors from network attacks [17]. Network 

processors are designed to execute network applications (e.g. IPv4) effectively and consist of 

a single-threaded workload. Since it is critical to detect deviation in expected behavior of the 
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application within a single cycle, it is important that the monitor is able to retrieve the next 

state information of every instruction which is being monitored within a single cycle. The 

monitoring graph is essentially a state-machine where each instruction is represented by a 

state and an edge represents the transition from the instruction to its next valid instruction. A 

4-bit hash of the instruction is used to label these edges and it helps in reducing the size of the 

monitoring graph. The monitoring graph is generated using the application binary as shown 

in Figure 4.  

 

 

 

 

 

 

Figure 4: State machine generation from processing binary [17] 

 

However, the next instructions from a control flow instruction share the same hash 

value and it leads to non-determinism in the monitoring graph.  This non-determinism gets 

multiplied if the control flow instructions continue and it can lead to a complex 

implementation of the monitoring graph. Figure 5 illustrates such a scenario where state 3 

and 5 can be reached from state 2 for input condition c. This problem is addressed by 

converting the non-deterministic graph into a deterministic graph by using powerset 

construction. Figure 6 illustrates the deterministic graph for the corresponding non-

deterministic graph after powerset construction. It can be seen that states 3 and 5 are 

combined into a single state {3,5} and can be reached from state 2 for input condition c.  
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Figure 5: NFA state machine [17] 

 

 

 

 

 

Figure 6: DFA state machine using powerset construction [17] 

 

As mentioned earlier, it is critical that state transitions are implemented with one 

memory access per instruction and hence all necessary information is encoded in a single 

table entry and the states are grouped by the number of outgoing edges, i.e. a state belongs to 

group g if its previous state has g outgoing edges. For example, groups are shown with 

different colors in Figure 7. It can be seen in the figure that a state can belong to multiple 

groups (state f belongs to group 2 because a has two outgoing edges and to group 3 because 

e has three outgoing edges). 
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Figure 8 shows the system architecture of the single-task monitoring system. Each 

entry in the memory contains a sequence of number of next states, offset in state group, valid 

hash values on outgoing edges and the memory is logically divided into groups.  A register 

file with 16 entries stores the base address for each group. The hash comparison logic 

determines if the one-hot coded hash bit of the incoming processor instruction is set in the 

valid hash values read from the memory and calculates the value of k, which is the position of 

matching hash among the valid hash values. If the one-hot coded hash bit is not set, then it 

means an illegal operation has taken place, indicating an attack and recovery measures are 

initiated. Otherwise, the next state transition is found by multiplying the number of next 

states and offset in state group and adding it to group base address and the value of k. Thus, 

by just one memory access, it is possible to determine the state-transition. The representation 

of the graph memory is compact and ensures high performance implementation of the 

hardware monitoring system. The single-task hardware monitoring system is able to reliably 

detect and recover from an attack without reducing the processing performance of the 

processor core. 

 

 

 

 

 

 

 

Figure 8: Memory representation of DFA monitoring graph [17] 
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However, this approach can only be applied for ensuring security in single-thread 

processor cores and is not sufficient to provide security for a real-time embedded processor 

with multi-threaded workload. Hence it is necessary to develop a Multi-task Hardware 

Monitor system that can coordinate with the embedded system to enable dynamic context 

switches and recovery when attacks are detected.   

2.3. Summary 

This chapter introduced related work that is essential for understanding the prototype 

system. Also a brief overview of the background work was provided. The next chapter 

outlines the system and security model used for this work. 
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CHAPTER 3 

SYSTEM & SECURITY MODEL 

 

To provide the necessary context for the Multi-Task Hardware Monitor system design 

presented in Chapter 5, the operation of MTHM and the security model for this work is 

briefly discussed [38].  

3.1 Secure Processing with Hardware Monitors 

Hardware monitors are components that are co-located with processor cores to track 

processing of software on that core. The objective is to access the operation of the processor 

and determine when incorrect behavior is detected (which can be due to faults or malicious 

attacks). As discussed in related work, there are a number of different approaches to 

monitoring based on what information is communicated from the processor to the monitor 

and what information is used to determine if that behavior is normal. 

In this work, the hardware monitor receives information about every instruction 

executed on the processor core and compares it to a monitoring graph that is based on the 

analysis of the processing binary (similar to [21]). Each instruction is represented by a 4-bit 

hash value (to reduce the size of the monitoring graph compared to the size of the binary) and 

the state transitions correspond to possible control flow paths between the instructions. We 

use a deterministic finite automation (DFA) representation of the monitoring graph as 

described in Chapter 2. 

The system architecture of the Multi-Task Hardware Monitor systems which supports 

multiple tasks is illustrated in Figure 9. The figure shows that application binaries are 

analyzed offline. During runtime, the comparison logic in MTHM matches the monitoring 

graph to the currently active task on the processor. To do the operation, the OS-to-Monitor 

Interface (OMI) communicates the necessary context information between the processor and 
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the monitor. When the processor execution does not match the expected behavior reflected in 

the monitoring graph of the current task, a task reset signal is sent from the monitor to the 

processor to terminate the current task. 
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Figure 9: System architecture of Multi-Task Hardware Monitor system 

It is important to note that the hardware monitoring system is isolated from the 

processor and thus cannot be tampered with remotely by the attacker (e.g., to change the 

monitoring graphs to match an attack). Related work discusses how to achieve such isolation 

while still enabling dynamic installation of hardware monitoring graphs through the use of 

cryptographic mechanisms [15]. 

It is to be noted that this thesis do not consider intrusion detection heuristics, which 

may be slow and computationally expensive. Instead, a novel multi-task monitoring system 
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that can detect deviations from normal processing with a single instruction is presented. Such 

fast detection is important for real-time embedded systems since the processing time for tasks 

may be only a few microsecond.  

3.2. Operating System Interaction and Recovery 

Operating systems are used in embedded systems to manage workloads that consist of 

multiple tasks that dynamically become active on various cores of the system. The system 

uses operating system to enable the coordination between the processor and hardware 

monitor as described above. When a context switch happens, the monitoring state needs to be 

saved, just like processor state needs to be saved in the processor core. Also we need to 

ensure that this coordination doesn’t slow down the processor. The monitor can support 

multiple tasks running on the core without interfering with the real-time operation of the 

embedded system. Chapter 4 describes in detail the design of the OS-to-monitor 

communication mechanism in the system. 

In addition, OS also assists in recovery steps when an attack is detected by the 

monitoring hardware since these recovery operations cannot easily be customized in 

hardware. Different applications require different levels of recovery (e.g., a simple processor 

reset for network operations or complex check-pointing for transaction-style processing). It is 

to be noted that the change in OS to support hardware monitoring and recovery is the only 

change to any software in the embedded system. In the system, on detection of deviation 

from expected processing behavior, the hardware monitor notifies the OS to kill the currently 

active task. The attack code is terminated by executing an Interrupt Service Routine (ISR) to 

kill the task. After terminating the malicious task, the embedded processor continues its 

normal operation and starts executing the next high ready task. Figure 10 illustrates the attack 

detection and recovery process in the embedded OS. Thus, the recovery process in the system 

doesn’t affect other tasks running on the embedded processor core. 
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Figure 10: Attack detection and system recovery 

 

3.3. Security Model 

To justify how the system provides a secure processing environment, the security 

model that is basis for this work is discussed briefly. 

3.3.1. Attack Example 

In this work, the focus is on the class of attacks that aim to change the processing 

behavior of the embedded system. This class of attack is very board and encompasses a 

number of specific attacks. Hence one specific example is illustrated, but note that many 

other attacks are covered by this work. 

In this scenario, the I/O functionality of the embedded system is used to cause the 

embedded processor to misbehave. Intentional modification of processor stack (e.g., stack 

smashing) is used to generate this type of attack. By making a controlled change in the stack, 
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it is possible for an attacker to change the control flow such that malicious code is executed. 

This type of attack is very common and is used in Internet to gain access to end-systems via 

vulnerable software. Code Red worm is one of the most famous example for this kind of 

attack that exploited a vulnerability in a service of the Windows operating system and used it 

to spread itself around the globe [6, 22].  As the growth of embedded systems increases, these 

types of attacks will continue to spread. In our prototype implementation, a similar attack 

code is used to test the system. 

3.3.2. Security Requirements 

It is required that the system meets the following security requirements: 

 SC1: The system should only allow execution of code as programmed in the executable 

binaries of each task. 

 SC2: Secure processing should be provided for multiple, dynamically changing tasks. 

 SC3: Malicious code execution in one task should not affect other tasks. 

In addition to security, these are also practical performance requirements. As it is 

shown in the results, the hardware monitor does not reduce the performance of the embedded 

processor in any way. The only overhead is a few instructions in the operating system code 

when switching tasks, which lead to a negligible reduction in processing speed. 

3.3.3. Attacker Capabilities 

The following assumptions are made about the capabilities of an attacker that tries to 

change the operation of the embedded system and/or tries to execute malicious code on the 

embedded system: 

 AC1: An attacker can provide any input through input/output interface of the embedded 

system. 
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 AC2: An attacker can start and stop any task from an installed binary in the embedded 

system (within the limitation of a maximum number of active tasks). 

 AC3:  An attacker can tamper with any of the binaries. 

In order to provide a practical solution for secure processing in an embedded system, 

we also require some reasonable constraints on attacker capabilities:  

 AC4:  An attacker cannot tamper with the operating system itself. 

 AC5: An attacker cannot tamper with the hardware monitoring system (e.g., modifying 

monitoring graphs for installed executables) 

As discussed above, this proposal does not discuss the secure installation of 

monitoring graphs, which has been solved in related work [15], in more detail. Next chapter 

provides a comprehensive discussion on the operating system management which is one of 

the key aspects in this research. 
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CHAPTER 4 

OPERATING SYSTEM MANAGEMENT  

 

In this chapter, we discuss about the OS activities which are communicated to the 

Multi-Task Hardware Monitor for its smooth operation. Task creation, context switch and 

task delete are the three operations whose information is vital to the Multi-Task Hardware 

Monitor. This chapter also talks about how the operating system communicates with the 

hardware monitor and keeps the monitor updated about its activities. 

4.1. Processor Interface 

The processor interface is a set of four registers created for communication between 

the operating system and the hardware monitor. Whenever task create or context switch or 

task delete occurs, the operating system writes into these registers regarding the details of the 

operation. The hardware monitor reads these registers to take necessary action to coordinate 

with the operating system as explained in Chapter 5. Figure 11 shows a simple block diagram 

of the processor interface. 

2-PID

1-GID

0-Operation

3-Enable

Operating 

System

Hardware 

Monitor

Processor Interface

 

Figure 11: Processor interface 

 

The Operation register is used to indicate what operation is happening in the OS. 0x01 

indicates a task create, 0x02 indicates a context switch and 0x03 indicates a task delete. The 

GID register is used to write the graph ID (GID) of the newly created task in case of a task 
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create operation. The GID of a process is used to identify various graphs located in the 

hardware monitor. Section 5.3 explains in detail the role of GID in the system architecture. 

The PID register is used to write the process ID (PID) of the new task in case of a task create 

or PID of the newly scheduled task in case of a context switch or PID of the deleted task in 

case of a task delete. Whenever the Operation register is read by the hardware monitor, it 

flushes its content to acknowledge that it has been read. This also helps in avoiding any 

confusion when multiple task create or context switch or task delete operations happen 

consecutively. The Enable register is used to inform the hardware monitor if an OS activity is 

going on in the operating system or program execution is happening. If an OS operation is 

being executed on the processor, then this register is set to 0x0 and the hardware monitor 

need not monitor these instructions since we know that the operating system is secure and 

cannot be tampered with by an attacker. Once the program execution starts, this register is set 

to 0x1 and the hardware monitor begins to monitor the processor instructions. Thus, this 

register is used to enable/disable the hardware monitor.  

4.2. Task Creation 

A task/process is a simple program running on the CPU. In µC/OS-II, each task is 

given a unique priority and has its own set of CPU registers and stack. When a new task is 

created in µC/OS-II, it is assigned a task control block (TCB), which is a data structure used 

by µC/OS-II to maintain the state of a task when it is preempted. Figure 12 illustrate how 

multiple tasks are handled in µC/OS-II [18]. Multiple tasks reside in the memory and when a 

task is scheduled to run next, its TCB contents are moved to the CPU registers (context) for 

its execution. 

The user creates a new task by calling OSTaskCreate( ). This function requires four 

arguments: a pointer to the task code, a pointer to the argument that is passed to the task, 

pointer to the top of the stack that is assigned to task and the desired priority of the task. In 
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µC/OS-II, the priority of the task acts as the process ID since each task has a unique priority. 

The OSTaskCreate( ) is modified such that whenever a task create occurs, the hardware 

monitor is notified about it. The OSTaskCreate( ) also reports the PID and GID to the 

hardware monitor. Since task create is an operating system activity, the Enable register is set 

to 0x0 before entering this function.  

  

Figure 12: Multiple tasks in µC/OS-II [18] 

 

Figure 13 illustrates how the hardware monitor is notified of task creation. In this 

figure, it can be seen that the operation register is set to 0x1 to indicate a task create. 

Corresponding GID and PID are also written into the respective registers (in this case, GID 

and PID are both the priority of the task). 
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IINT8U  OSTaskCreate (void (*task)(void *p_arg), void *p_arg, OS_STK *ptos, INT8U prio)

{

        . . . . . .

        . . . . . .

        IOWR(PROCESSOR_INTERFACE, 1, prio); // Report GID of new task

        IOWR(PROCESSOR_INTERFACE, 2, prio); // Report PID of new task

        IOWR(PROCESSOR_INTERFACE, 0, 1); // Report a task create operation

        . . . . . .

        . . . . . .

}

 

Figure 13: Reporting task create in software 

 

4.3. Context Switch 

A context switch happens when the OS kernel decides to run a different process on 

the CPU. A context switch is triggered by an OS event or a timer. Before this can happen, the 

OS needs to save the current task’s context (CPU registers) in its stack and restore the new 

task’s context from its stack. The priority of each task decides which task needs to run next. 

Once the next task for execution is determined, the operating system initiates the context 

switch process. The scheduler decides which task to run next. Like most commercial real-

time OS, µC/OS-II uses a preemptive type of kernel, which means whenever a higher priority 

task is ready to run, the current active task is suspended and the higher priority task is given 

control of the CPU [18]. Figure 14 shows the context of the CPU registers being saved into 

the TCB of the current task (OSTCBCur) during a context switch.  Next, the higher priority 

task (OSTCBHighRdy) is made the current task (OSTCBCur) and the states of this task are 

restored into the CPU registers as shown in Figure 15.  
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Figure 14: Context save of suspended task [18] 

 

 

Figure 15: Context restore of next task [18] 
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In µC/OS-II, OS_Sched( ) is used to determine the next task which is ready to run and 

this function is modified to notify the hardware monitor about context switch and PID of the 

next task. As before, a context switch is an operating system activity and hence the Enable 

register is set to 0x0 before entering this function. In Figure 16, it can be seen that the 

OS_Sched( ) writes 0x2 into the Operation register to indicate a context switch and also writes 

the PID of the next task into the PID register (which in this case is OSPrioHighRdy). 

 

void  OS_Sched (void)

{

        . . . . . .

        . . . . . .

        IOWR(PROCESSOR_INTERFACE, 2,OSPrioHighRdy); // Report PID of next task 

        IOWR(PROCESSOR_INTERFACE, 0, 2); // Report a context switch operation

        . . . . . .

        . . . . . .

}

 

Figure 16: Reporting context switch in software 

 

4.4. Task Delete 

Sometimes we need to delete a task because it is no longer required to run on the 

processor or because it is identified as a malicious task. Deleting a task returns it to a dormant 

state and the task is no longer scheduled by µC/OS-II [18]. A task can be deleted by calling 

OSTaskDel( ). PID of the task to be deleted is given as the argument to this function. Once 

the task is deleted, its associated OS_TCB is freed and can be used by another task to be 

created. 
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void  OSTaskDel (INT8U prio)

{

        . . . . . .

        . . . . . .

        IOWR(PROCESSOR_INTERFACE, 2, prio); // Report PID of deleted task

        IOWR(PROCESSOR_INTERFACE, 0, 3); // Report a task delete operation

        . . . . . .

        . . . . . .

}

 

Figure 17: Reporting task delete in software 

 

It is necessary to inform the monitor about a task delete as it helps in removing 

redundant graph information from the monitor and creates space for another monitoring 

graph.  It can be seen in Figure 17 that the OSTaskDel( ) is modified to communicate the 

necessary task delete information to the monitor. 0x3 is written into the Operation register to 

indicate a task delete and the PID (prio) of the deleted task is written into the PID register. 

The Enable register is set to 0x0 before entering OSTaskDel( ) since task delete is an OS 

activity. 

4.5. Summary 

This chapter talked about how the OS communicates with the hardware monitor. Also 

the role of processor interface in signaling the monitor about the OS activity was discussed. 

Next chapter explains in detail the system architecture and how the monitor behaves to 

signals received from OS.  
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CHAPTER 5 

SYSTEM ARCHITECTURE 

 

In this chapter, the system architecture for the system is presented. This chapter talks 

about how the activities in the operating system are coordinated with the Multi-Task 

Hardware Monitor to ensure continuous tracking of processor operation [38].  

5.1. Task Management in the Operating System 

A key aspect of our monitoring system is its ability to fit seamlessly within the 

context switch operations of a typical operating system. As noted in Chapter 6, the time 

required to switch monitoring graphs for different task is significantly less than the typical 

time required for other activities in a context switch. In this implementation, graph switching 

is synchronized with other OS actions (e.g., register file save and restore) that occur during a 

context switch so that user tasks are protected at all times, Typical context switch activities 

for embedded operating systems, such as µC/OS-II used for this work include: 

1. A timer or other OS event generates an interrupt triggering a context switch. 

2. The OS scheduler determines the next process for execution. This implementation uses a 

priority based scheme, although round-robin or other schedulers would also be 

appropriate. 

3. The OS provides the PID of the next process to the monitoring system, triggering a 

monitoring graph switch in the monitor. This switch includes monitor state saving for the 

process currently being monitored, and a restoration of monitoring state for the next 

process. 

4. Concurrently, the OS saves process state (registers, program counter, etc.) for the current 

task to main memory. 
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5. The OS retrieve process state for the next process from main memory and restores it to 

processor registers. 

6. The OS checks the status of the monitoring system to confirm that the monitor for the 

next process is ready to use. 

7. The OS sends a trigger to the monitoring system to start monitoring for the newly-loaded 

processes. 

After the context switch is completed, the processor sends every instruction executed 

for the process to the monitoring system. In the next section, we provide a detailed view of 

the monitoring system and how it interacts with the processor for steps 3, 5, and 6 above. 

5.2. Multi-Task Hardware Monitor System 

A detailed view of our monitoring subsystem is shown in Figure 18. The portions of 

the monitoring system can be split into monitoring hardware (three boxes in upper left corner 

of the figure), which checks the per-instruction operation of the companion processor, graph 

memory, which stores states information about monitoring of each process, controller and 

processor interface. Design of the controller was done by Arman Pouraghily.  

The monitoring hardware checks each processor instruction using information from 

the monitoring graphs stored in graph memory. In the figure, graphs for four separate 

applications are stored in slots in the graph memory. Each graph includes one row per 

instruction, effectively representing expected program control flow as a state machine [17]. A 

read address pointer indicates the entry in the graph that corresponds to the instruction that 

has just completed execution. During the execution of an instruction, a multi-bit (in this case 

4-bit) hash value of the instruction is generated and converted to a one-hot representation. 

This one-hot encoding is compared against expected next-instruction hash values (valid hash) 

that are stored in the graph entry for the previously executed instruction. Since branch 

instructions may have several possible next instructions, and, consequently, several possible 
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valid hashes, multiple one-hot valid hash bits may be set per entry. A match of any of these 

hashes indicates a valid instruction. If no match occurs, an illegal instruction has been 

executed, leading to the generation of a recovery signal which is used by the processor for 

process termination. 
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Figure 18: Detailed view of multi-context monitoring system 

 

The next read address (memory row) in the monitoring graph is determined using 

next state information stored in the current entry, the matched hash value, and information 

stored in base address registers which group states based on fanin count [17]. These values 

are combined via addition in the sequencing logic box in the figure. The resulting address is 

stored in the address pointer and subsequently added to the start address for the appropriate 

graph slot for the application (frame address). The implemented monitor requires only one 

memory lookup per instruction.  
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Effectively, the monitoring information for each process at any given point in 

execution is defined by the contents of the address pointer, the monitoring graph for the 

process and the contents of the base address registers. If a context switch is requested, these 

values must be updated to use values for the requested next process. 

5.3. DMA Interface to Centralized Graph Memory 

The graph memory shown in Figure 18 stores the monitoring graph information for all 

the active processes in the embedded system. However, there are other processes which could 

become active at some point later in time whose monitoring graph information is not present 

in the graph memory. Hence a centralized graph memory is used to store the monitoring 

graph information of all the processes and the monitoring system copies the necessary graph 

information from the centralized graph memory when a new process is executed on the 

embedded processor system whose graph information is not available in the monitor graph 

memory. A new monitoring graph can be securely downloaded into the centralized graph 

memory by using the approach mentioned in related work [15]. There are two main reasons 

why it is advantageous to have a centralized graph memory instead of storing all the 

monitoring graphs in the graph memory of the monitoring system: 

1.  Downloading new monitoring graphs into the centralized graph memory doesn’t get in 

the way of the operation of the hardware monitoring system. New graphs can be 

downloaded securely into the system even when the monitoring system is tracking the 

embedded processor operation for any deviations. 

2. The centralized graph memory can be shared between multiple hardware monitoring 

systems to monitor multi-core embedded systems. This can help in reducing the resource 

usage of the system. Monitoring systems can avoid storing irredundant graph information 

and copy new graph information from the centralized graph memory when needed. 
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 Figure 19: System architecture with centralized graph memory 

 

Figure 19 illustrates the system architecture with centralized graph memory. The 

monitoring graphs of the applications are stored in the centralized graph memory. When the 

hardware monitor requires a new graph to be loaded into its monitor memory, it informs the 

DMA controller and the DMA controller facilitates the graph transfer from the centralized 

graph memory to the monitor memory. 

A DMA controller as shown in the Figure 20 is used to interface the centralized graph 

memory and the monitoring system. When a new process is created in the embedded 

processor, the OS reports the GID and the PID of the new process to the hardware monitor. 

The hardware monitor checks whether the graph information for this new process is available 

in the monitor graph memory. This can be done by checking the GID to frame binding 

storage. If not, it sends the GID of the newly created process which is obtained from the 

processor interface to the DMA controller. The DMA controller uses this information to 

locate the address of the graph in the centralized graph memory using a look-up table in the 
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DMA controller.  After locating the address of the graph, the DMA controller initiates the 

transfer of the graph information from the centralized graph memory to the monitor graph 

memory.  

The DMA operation begins by setting the DMA_start signal high. The GID of the 

graph to be copied is passed to the DMA controller, which is used to locate the address of the 

graph in the centralized graph memory. Once the graph is located, the graph transfer 

operation is initiated by setting the Write signal high. The address and data of the new graph 

are loaded through the DMA_address and DMA_data ports respectively. The time required to 

load a new graph from the centralized graph memory to the monitor graph memory depends 

on the number of entries in the monitoring graph of the new process since it takes 1 cycle to 

copy one memory entry from the centralized graph memory to the monitor graph memory. 

Once the graph transfer operation is complete, the DMA_done signal is set high.  
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Figure 20: DMA controller interface 
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5.4. OS-to-Monitor Interface for Context Switch 

In case of a context switch, control information is exchanged between the processor 

and the monitoring system. The exchange of monitoring information starts when the 

processor writes the PID of the next process into the PID register in the processor interface 

of the monitoring system and sets a bit in the Operation register. The monitoring system 

control FSM then performs the following actions: 

1. The address pointer for the currently executing process is saved in the PID address 

storage so that it can be restored for the next invocation of the process. 

2. The GID associated with the next process is located in the PID to GID binding storage 

using the PID written to the processor interface. 

3. If the GID of the next process differs from the ID of the previous one, the base address 

registers are loaded with values for the graphs of the next process. These values are 

loaded from the graph memory (e.g., Group0 Addr, etc). 

4. The GID is used to determine the frame address for the start of the appropriate 

monitoring graph in graph memory for the process. This information is stored in the GID 

to frame binding storage. 

5. The address pointer value for the next process is restored from the PID addresses storage. 

6. The Done bit is set in the processor interface indicating that the monitoring system is 

now ready to monitor the next process. This bit can be read by the processor. 

7. Once all other context switch activity for the next process has concluded (e.g., processor 

registers are loaded), the processor sets an Enable bit in the processor interface, restarting 

monitoring. The processor waits until this bit set is successfully made, ensuring 

synchronization. Instructions of the newly-loaded process are then monitored. 

In chapter 6 it is shown that these steps can be performed in 18 clock cycles for our 

prototype system. 
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5.5. OS-to-Monitor Interface for Process Creation 

When a new process is being created by the OS, it is assigned a unique PID and GID 

by the operating system. Since many processes of the same application may exist, the GID 

may not be unique. The following steps are used to initialize the security monitor for the new 

process. 

1. The two identifiers (GID and PID) are passed to the monitor via the processor interface. 

The monitor first searches for an empty slot in the PID addresses storage and PID to GID 

binding storage to insert the new bindings. 

2. While making these associations, the GID to frame binding storage is searched to 

determine if the appropriate graph is already loaded. If it is available, the next step is 

skipped. 

3. If the GID is not found in the GID to frame binding storage, the GID is inserted into the 

table. The new graph is then loaded from the centralized graph memory using the DMA 

interface. Following graph loading, the base addresses are updated.  

4. The Done bit is set in the processor interface indicating that the monitoring system is 

now ready to monitor the next process. This bit can be read by the processor. 

During system startup, monitoring graphs are loaded from an external centralized 

graph memory for the new processes that will be executed by the processor. If a new process 

replaces an existing one, the PID addresses, PID to GID binding, GID to frame binding, and 

graph memory are updated to include information about the new process. This update is made 

via the Control FSM. Concurrently, the processor performs a series of process creation 

operations including initialization of the process stack and control block (registers, etc.). In 

Chapter 6, it is noted that while process creation can require hundreds of cycles for the 

processor, if the appropriate monitoring graph is already in the monitoring graphs is already 
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in the monitoring system, monitoring information update for process creation requires 20 

cycles for the monitoring system. 

5.6. OS-to-Monitor Interface for Process Deletion 

When a process is deleted by the OS, the processor writes the PID of the deleted 

process into the PID register in the processor interface of the monitoring system and sets a bit 

in the Operation register. The following steps are used to remove the corresponding 

monitoring graph information from the monitoring system. 

1. The PID of the deleted process is passed to the monitor via the processor interface. The 

monitor first searches for a matching entry in PID addresses storage and PID to GID 

binding storage. If found, the valid pointer for that corresponding PID is set to 0. 

2. The GID associated with the deleted process is located in the PID to GID binding storage 

using the PID written to the processor interface. The number of active processes for that 

GID is decremented by 1 in the GID to frame binding storage 

3. The Done bit is set in the processor interface indicating that the monitoring system is 

now ready to monitor the next process. This bit can be read by the processor. 

While loading new graph information from the centralized graph memory, PID 

addresses storage and PID to GID binding storage rows with 0 set for valid pointer are 

considered as empty rows and can be used by the new graph for updating its information. 

Thus, at any given moment, the hardware monitoring system can support monitoring of four 

active processes in the system. 

5.7. Dual-core Monitoring System Design 

In this section, we explain how the Multi-Task Hardware Monitor system can be 

extended to monitor dual-core embedded processors. The architecture of the dual-core 

monitoring system is illustrated in Figure 21. Two MTHM systems are co-located with the 

dual-core embedded processor to track the processing of the software on individual cores as 
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in the case of a single-core monitoring system. The centralized graph memory is shared 

among both the MTHM systems and graphs can be loaded into the monitoring systems when 

required without slowing down the embedded system. 

An arbiter is used to access the centralized graph memory. When a monitoring system 

needs to copy a new graph from the centralized graph memory, it requests the arbiter to grant 

access to the centralized graph memory. If the centralized graph memory is free, then the 

arbiter grants access to the requesting monitoring system. If the centralized graph memory is 

busy, then the monitoring system requesting access waits until the centralized graph memory 

becomes free. If both the monitors make a request at the same time, priority is given to 

Monitor1 by default.  
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Figure 21: Dual-core monitoring system 
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When Monitor1 needs to copy a new graph from the centralized graph memory, it sets 

the Req1 signal high. The arbiter on receiving this request from Monitor1, checks whether the 

centralized graph memory is used by Monitor2. The centralized graph memory is currently 

busy if the DMA_Done port in Figure 20 is low. If not, then the arbiter establishes a 

connection between the DMA interface and Monitor1 and the necessary graph can be 

transferred from the centralized graph memory to Monitor1. Now if suppose, Monitor2 also 

needs to copy a new graph from the centralized graph memory, it sets the Req2 signal high. 

The arbiter receives this request and on checking the DMA_Done port, it finds out that the 

centralized graph memory is currently being used by Monitor1. The arbiter waits until the 

centralized graph memory is free and then establishes a connection between the DMA 

interface and Monitor2.  

In Chapter 6, it is noted that process creation requires 600 cycles in the embedded 

processor while process creation in monitor requires on an average 140 cycles. Hence, even if 

one monitoring system has to wait till the other monitoring system finishes copying the graph, 

the waiting monitoring system will still have enough time to copy the necessary graph before 

process creation is finished in the embedded processor. 

All task management activities such as process creation and context management and 

its interface to the monitoring system remains the same as in the case of the single-core 

monitoring system. This approach can also be extended to monitor multi-core embedded 

systems as the arbiter can manage multiple requests to the centralized graph memory. Priority 

of the process can be used to determine which monitor gets access to the centralized graph 

memory when multiple requests are made at the same time.  
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5.8. Summary 

This chapter explained the system architecture for the monitoring system and the 

coordination of the operating system activities with the Multi-Task Hardware Monitor. The 

graph transfer operation from the centralized graph memory to the monitoring system was 

also discussed in this chapter. Finally, this chapter showed how the monitoring system can be 

extended to support dual-core embedded systems. 
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CHAPTER 6 

PROTOTYPE IMPLEMENTATION 

 

This chapter describes the system setup for the prototype implementation and shows 

how monitor context management and task management happens in the system. In the later 

sections, the system is verified by an attack code and shows how the monitor can detect the 

attack to defend the embedded processor system [38]. 

6.1.  System Setup 

To verify the functionality of our monitoring system, we implemented an embedded 

NIOS II processor plus monitoring system using a Stratix IV GX230 FPGA located on an 

Altera DE4 board. A single-core NIOS executing a µC/OS-II operating system was used for 

testing. Monitoring logic and memory were implemented in on-chip resources. Since modern 

day embedded processing systems have numerous applications being executed on them, we 

have implemented an external DRAM interface to the system and use off-chip DRAM to 

support the storage of multiple application binaries and OS kernel. DDR2 SDRAM available 

on the Altera DE4 board is used for storing the application binaries and the OS kernel. DDR2 

is the second generation DDR and offers a maximum transfer rate of 3200 MB/s. Figure 22 

illustrates the DDR2 SDRAM interface system level diagram. An Altera DDR2 controller is 

used to handle the complex aspects of using DDR2 SDRAM which includes initializing the 

memory devices, managing SDRAM banks and keeping the devices refreshed at appropriate 

intervals [2]. Altera DDR2 SDRAM controller can be up to 90% efficient and hence offers a 

maximum transfer rate of 2880 MB/s. Figure 23 shows NIOS II setup in Qsys with DRAM 

controller interface. 

 



41 

 

Nios II

Embedded Processor

DDR2 SDRAM Controller

DDR2 SDRAM

Hardware Monitor

Control & 

Address

Data

Control Module

Data-Path Module

I/O

Module
Runtime 

Information Recovery
Data WR

Data RD

Address

Control

DQ/DQS

DM

ADDR

RAS/CAS/WE

CKE/CS

CK/CKn

 

Figure 22: DDR interface 

 

 

Figure 23: NIOS II setup in Qsys 

 

Monitoring graphs were generated by passing code through a standard compiler flow 

to generate assembly-level instructions [17]. 
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 Figure 24: Offline analysis 

 

The output of the compiler allows for the identification of branch instructions and 

their target address. This information was used to generate monitoring graphs as shown in 

Figure 24 for five MiBench [13] applications (bitcount, qsort, stringmatch, basicmath and 

dijkstra) and malicious stack-smashing attack code. Monitoring graph information for all 

Mibench applications can be generated using offline analysis and our examination of all 

MiBench benchmarks determined that the target for all dynamic branches could be 

determined at compile time. 

The attack code we use for our system is a simple C function which accepts a 

character string from an I/O port and copies it to a buffer located on the processor stack [36], 

as shown in Figure 24. The attack code was generated by Kekai Hu. 
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void process_input(char *stringpassed) {

    char name[90];

    strcpy(name,stringpassed);

    printf("Processing string .. !\n");

    return;

}

 

Figure 25: Attack code 

 

In this poorly designed code, no check is made to determine if the string stringpassed 

is longer than the target buffer, so the return address of the function can be over-written with 

an address which points into the user-provided input string. Instead of characters, this “string” 

can contain processor instructions which repetitively print out “Attacked!!” on a terminal in a 

loop, although much more malicious behavior could be imagined. A monitor for the code is 

able to detect the unplanned control flow jump and kill the process before the attack can 

perform this activity. The hash value stored in the monitoring graph for the application will 

not match the values for the malicious instructions as they are executed during the attack. As 

shown in the Figure 26, we have confirmed that this attack will lead to unexpected results (an 

attack message) if monitoring is not used.   

 

 Figure 26: Console display during stack smashing 

 



44 

 

6.2. Monitor Context Management 

The ability to perform numerous context switches between multiple processes of the 

two monitored MiBench benchmarks have been verified both via simulation and in emulation 

hardware. This switch includes both standard process state used by the processor (e.g., 

register information, stack) and monitoring information using the mechanism outlined in 

Chapter 5. Altera SignalTap, a hardware debugger, was used to generate the waveforms 

shown in Figure 27.  

 

Monitor readyPID change Context Switch CPU ready

 

Figure 27: SignalTap waveforms showing monitor context switch  

 

The waveforms show the synchronization between the processor and the monitor as a 

result of the context switch. First, the processor notifies the monitoring system of the switch 

by writing the PID of the next process into the processor interface. The monitor switch is 

started by the processor writing into the Operation register of the interface. The value of the 

address_pointer for the old process is stored and the value for the new process is restored 

to/from PID address storage immediately after this trigger. The base address registers are 

then configured using the write_data port shown in Figure 18. After the control FSM 

performs the monitor update, the Done signal is set in the processor interface indicating the 

monitor context switch is finished. Finally, after the processor finishes other context switch 

operations, it sets the Enable signal in the processor interface to restart monitoring. The 
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processor waits a cycle until this write is complete. Monitoring for the new process starts 

with the first instruction received from the process.  

Experiments in simulation and in lab on FPGA hardware showed that the processor is 

able to process data for the MiBench benchmarks equally fast both with and without 

monitoring (e.g., no slowdown for monitoring). Context switch time is extended by 5 cycles 

versus no monitoring to allow for monitor context switches. This overhead accounts for the 

data exchanges between the processor and the monitoring system for synchronization. 

Overall, we found that the number of cycles needed to perform a monitor context switch is 18 

versus the 34 cycles needed for the processor to save and restore registers (note that monitor 

and processor context switch occur in parallel).  

6.3. Monitor Process Creation and DMA interface 

The system has been verified for its ability to load new graph information into the 

hardware monitor when a new process is created in the embedded processor. If the graph 

information is not available in the graph memory of the monitoring system, then the required 

graph information is copied from the centralized graph memory through the DMA interface. 

Figure 28 illustrates SignalTap waveforms for process creation activity in the monitor. 

 

GID change PID change Task Create Monitor ready

 

Figure 28: SignalTap waveforms showing monitor process creation  

 

 The processor first writes the identifiers (GID and PID) of the new process into the 

processor interface. The monitor process creation begins when the processor sets a bit in the 
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Operation register of the processor interface. If the graph information is present in the 

monitoring system, the new base addresses are configured using the write_data port shown in 

Figure 18. After the control FSM is complete, the Done signal is set in the processor interface 

to indicate the monitor task creation is finished.  

 If the GID of the new process is not found in the GID to frame binding storage, then 

the graph information for the process needs to be copied from the centralized graph memory. 

Figure 29 illustrates SignalTap waveforms during DMA operation when a graph is copied 

from the centralized graph memory to the monitoring system. It can be seen from the 

waveform that the DMA operation begins when DMA_start signal is set high. The GID of the 

graph to be copied is written into the GID port and this information is used to locate the graph 

in the centralized graph memory. Once the graph is located, the graph copy operation begins 

by setting the DMA_wren signal high. The address and data of the new graph are transferred 

using the DMA_address and DMA_data port shown in Figure 20. Once the DMA operation is 

complete, the DMA_done signal goes high. 

 

Task Create Graph copy starts Graph copy ends

 

Figure 29: SignalTap waveforms showing monitor task creation  

 

The amount of time needed to create a new process in the OS is about 600 clock 

cycles versus 20 to create process information in the monitor.  If a monitoring graph is loaded 

from main memory, the cycle count required for the monitor increases to include reading the 
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number of rows in the monitoring graph for the new process into graph memory. It is noted 

that the number of rows in the monitoring graph is about 120 for each of our applications. 

6.4. Attack Detection and Protection 

It has been verified in both simulation and in hardware that the monitoring system is 

able to detect the stack smashing attack described above and notify the processor so that the 

malicious process can be terminated. SignalTap waveforms derived from observing hardware 

operation in system are shown in Figure 30. As described in Chapter 5, an attack is detected 

when the hash of the CPU instruction does not match the expected value stored in the 

monitoring graph for the application. In the implemented system, the hash function counts the 

number of ones in the instruction to form a four-bit hash value. The figure shows the four bit 

hash value, a one-hot version of the hash value, and the retrieved, expected hash value for the 

instruction from the monitoring graph (read_data[15:0]). In the waveform, it can be seen that 

the correct hash value is matched twice, but the third hash value is incorrect, indicating a 

branch to an unexpected section of code. As a result of this detection, a recovery signal is 

generated, notifying the processor that the process should be terminated.  

 

Instruction hash matches graph memory Instruction hash doesn’t match graph memory

Attack detected 

 

Figure 30: SignalTap waveforms showing detection of an attack   
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This recovery signal is used to generate an interrupt to the embedded processor. The 

interrupt causes the current process (which is also the malicious process) to halt and OS takes 

control over the processor. The OS saves the CPU registers and starts executing the interrupt 

handler. The interrupt handler determines what caused the interrupt to occur and starts 

executing ISR for that interrupt. In the ISR, the attack process is found by checking the PID 

of the process from the PID register of the processor interface. This process is then deleted 

and the ISR is exited. Now the OS scheduler determines the next ready task to run and starts 

executing it on the processor. Figure 31 shows the attack process being detected and deleted 

in NIOS II processor. It can also be seen from the figure that after the deletion of the attack 

process, the processor starts the execution of the next process. 

 

 

Figure 31: Console Display showing task detection and deletion 

  

While the attack process is being deleted, its corresponding graph information is also 

removed from the monitoring system. SignalTap waveforms for graph deletion activity in the 

monitor are illustrated in Figure 32. In the waveform, it can be seen that the graph removal 

process starts when the processor writes into the Operation register informing about the task 

delete operation. The Kill_PID signal is made high to remove the corresponding PID entry 

from the PID addresses storage and the PID to GID binding storage. At the same time, 

Update_GID signal is made high to update the GID to frame binding storage. In the 

waveform it can be seen that the monitor removes PID-1 from the valid array of PID 

addresses storage and updates the valid array entry for GID-1 in GID to frame binding 
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storage by decrementing it by one. We can see that only the graph information for PID-0 and 

GID-0 exists in the monitor which corresponds to the Task 1 running on the processor as 

shown in Figure 31.   

 

Task Delete PID-1 removed from Valid PIDs

GID-1 decremented in Valid GIDs 

 

Figure 32: SignalTap waveforms showing monitor task delete  

 

The time it takes for the system to recover after an attack is detected is reported in 

Table 1.  

Operation # Cycles 

Interrupt Latency 1 

Saving CPU registers 25 

Interrupt Handler 129 

ISR Code 30 

Task Delete 126 

Total 311 

 

Table 1: System recovery time  
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From the table, we can see that the interrupt latency is 1 cycle. Thus only 2 

instructions of the attack code are executed on the processor and the attack task is killed 

before it can harm the system.  Once the interrupt occurs, the OS takes control and saves the 

CPU registers. After this, the interrupt handler is called to determine what caused the 

interrupt to occur. The interrupt handler also disables certain OS features like context 

switching. Later the ISR code is executed, which determines the attack task by reading the 

PID register of the processor interface and deletes this task. The task delete operation takes 

126 cycles. Overall, it takes 311 cycles to recover from the attack and to continue normal 

operation. Figure 33 illustrates the recovery process in the embedded system. 
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Figure 33: Recovery process in the embedded system  
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6.5. Monitoring System Resources 

To provide some context regarding the amount of overhead required by the 

monitoring system relative to the processor, hardware results of the system reported by the 

Altera Quartus II tool are shown in Table 2. The lookup table (LUT), flip-flop (FF), and 

memory resources required for the monitor are appropriate compared to the processor core. 

Dynamic power values are also shown in the table. These power numbers were generated 

using Altera PowerPlay. Toggle rate of 12.5 was used for all the signals during power 

analysis. 

 

Resources Hardware 

Monitor 

Nios II 

Processor 

DDR2 

Controller 

Available 

LUTs 516 1,348 5,989 182,400 

FFs 525 1,235 8,003 182,400 

Mem. bits 131,296 44,032 250,368 14,625,792 

Pwr (mW) 46.83 105.97 672.74 - 

 

Table 2: Resource use on DE4 FPGA 

 

Table 3 shows the graph size for the Mibench applications used for evaluating the 

system. The graph size determines the time it takes to copy a new graph from the centralized 

graph memory to the monitoring system. It can be seen from the table that the average 

number of memory entries is 120. In the table, the number of memory entries for an 

application is higher than the application instructions because we use DFA representation of 

graphs and hence control instructions have multiple entries in the graph based on their target 

addresses. 
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Application # Application Instr. # Mem. entry 

qsort 96 111 

bitcount 60 74 

basicmath 107 132 

stringmatch 77 97 

dijkstra 166 188 

 

Table 3: Monitoring graph size 

 

Table 4 reports the cycle count and time delay for each operation in the embedded 

processor and the hardware monitor. Both the embedded processor and the hardware monitor 

operate at a clock frequency of 100 MHZ. It is clear from the table that the hardware monitor 

requires less time than the embedded processor to perform the same operation and hence 

doesn’t slowdown the embedded system.  

 

Operation # Cycles Time (us) 

Nios II Monitor Nios II Monitor 

Task Create 600 ~140 6 1.4 

Context Switch 34 18 0.34 0.18 

Task Delete 126 8 1.26 0.08 

System Recovery 311 8 3.11 0.08 

 

Table 4: Cycle count and time delay for various operations 
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6.6. Dual-Core Monitoring System 

The functionality of our dual-core monitoring system was verified by using two NIOS 

II processors. Both the processors use the DDR2 available on the DE4 board to store 

application binaries and OS kernel. The DDR2 address space was partitioned in two to enable 

the storage of both processor binaries without data corruption as shown in Figure 34.  As 

earlier, the monitoring logic and centralized graph memory were implemented in on-chip 

resources.  

 

00000000h-1FFFFFFFh

20000000h-3FFFFFFFh

NIOSII 1

NIOSII 2

DDR2

 

Figure 34: DDR2 address space partition to support dual Nios II core 

 

To verify our dual-core monitoring system, a collection of Mibench applications were 

assigned to each processor. Both the monitoring systems were able to successfully load the 

required graph information from the centralized graph memory. Altera SignalTap waveforms 

illustrated in Figure 35 shows graphs being transferred from the centralized graph memory to 

both the monitoring systems upon request. 
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Figure 35: SignalTap waveform showing graph transfer in dual-core monitoring system  

 

In the waveform, Monitor1 requests to access the centralized graph memory by 

setting Req1 high. Since DMA_done signal is low, a connection is established between 

Monitor1 and the centralized graph memory. DMA_start signal is set high to indicate the start 

of the DMA transfer operation. We can see in the waveform that graph data and the graph 

address are being loaded from the DMA controller to the RAM data and RAM address of 

Monitor1. During this time, it is seen that Monitor2 makes a request to access the centralized 

graph memory by setting Req2 high, but since DMA_done signal is low, it is made to wait till 

the DMA_done signal goes high to indicate that the centralized graph memory is free to use. 

Once DMA_done signal is high again, a connection is established between Monitor2 and the 

centralized graph memory and similar operation is followed to transfer the required graph 

from the centralized graph memory to Monitor2. 

After all the required graphs are loaded into the individual monitoring systems, 

operations such as process creation and context management occur in the same manner as in 

the case of a single core monitoring system. We have also verified that both the monitoring 

systems can track the progress of instruction flow on the respective cores without any 

performance slowdown. If any attack occurs on either core, its respective monitoring system 

Monitor1 makes 

request

Monitor2 makes 

request

DMA becomes 

free
Graph Copy Graph Copy
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is able to detect the attack and the attack process is killed without disturbing the other core 

and the other tasks running on the same core. 

Table 5 shows the hardware results reported by the Altera Quartus II tool for the dual-

core embedded system with monitoring hardware. Toggle rate of 12.5 was used for all signals 

during power analysis using Altera PowerPlay. 

 

Resources Dual-Hardware 

Monitor 

Dual-Nios II 

Processor 

DDR2 

Controller 

Available 

LUTs 1,071 2,477 5,989 182,400 

FFs 1,129 2,354 8,003 182,400 

Mem. bits 262,592 88,064 250,368 14,625,792 

Pwr (mW) 74.54 187.78 672.74 - 

 

Table 5: Resource use for dual-core embedded system 
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CHAPTER 7 

CONCLUSION 

 

The system that has been designed and prototyped achieves the security requirements 

that are put forth in Chapter 3. The key observation is that the hardware monitor can detect 

when a specific task executes code that is different from the binary. In such a case, the hash 

value that is reported from the processor core to the monitor does not match. There is a 

chance that the attacker is lucky and the hash matches by coincidence or the attacker is clever 

and aims to construct code that matches. This action however is very difficult to achieve in 

practice and can be defeated by hiding the hash function [15]. If the monitor detects deviation 

from the binary, then the processor is signaled to stop execution of the attacked task. Thus, 

SC1 (no execution of attack code) is achieved.  

The system supports multiple tasks that are switched dynamically by the operating 

system. The hardware monitor follows along in sync and associates the current task on the 

processor core with the correct monitoring graph. Thus, we achieve SC2 (secure processing 

for multiple tasks). 

Finally, when an attack occurs, the hardware monitor informs the operating system 

about the attack and the targeted tasks are stopped using a conventional task termination 

mechanism (similar to the kill command). This mechanism is specially designed to not affect 

other tasks. Thus, SC3 (isolation of attacked task) is achieved. 

We rely on the limitations of attacker capabilities, such as AC4 and AC5 (no 

tampering of operating system or hardware monitor), to ensure that an attacker cannot 

circumvent the security mechanism we have put in place. 

To conclude, in this thesis, an important security extension for embedded processors 

that execute multiple processes under the control of an operating system is presented. This 
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monitoring approach allows the operation of each process to be tracked at the instruction 

execution level. If a deviation from the expected instruction execution sequence is detected, 

the monitor can quickly identify and notify the processor to initiate process termination. A 

significant contribution of the work is the inclusion of multi-context support in the 

monitoring system. Monitoring state for each process can be quickly saved during a process 

context switch and previously stored state can be reloaded. Using prototyping, it was seen 

that the system is effective for multiple processes managed by an embedded OS. A stack 

smashing attack is identified and suppressed. The monitoring system is modest in size and 

does not impact the application execution time. 

In the future, we plan to extend our monitoring approach for a multi-core embedded 

processor. We also plan to look into the possibility of monitoring the operating system along 

with application monitoring. A more powerful operating system like µClinux could be used 

for future works.  
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