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ABSTRACT

DISSIPATIVE QUANTUM TRANSPORT USING THE
PAULI MASTER EQUATION

SEPTEMBER 2009

BO FU

B.Sc., HUAZHONG UNIVERSITY OF SCIENCE OF TECHNOLOGY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Massimo (Max) V. Fischetti

On the way to develop a complete full-band quantum transport simulation using

the Pauli Master Equation, we show our present results on 1D n-i-n resistors, 1D

double barrier resonant tunneling diodes (DBRTD), and 2D double-gate field effect

transistors (DGFETs) using a simplified parabolic, spherical effective-mass band-

structure model accounting for nonpolar scattering with acoustic (elastic) and optical

(inelastic) silicon-like phonons. We also consider the effect of point-like dopants on

the access resistance of thin-body double gate devices.
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CHAPTER 1

INTRODUCTION

1.1 Overview

As CMOS technology enters into nanoscale, quantum effects become dominant.

Traditional device simulation based on the semiclassical Boltzmann Transport Equa-

tion (BTE) [24, 11, 8] can not reveal electrostatic properties correctly. Models totally

relying on quantum mechanics are needed.

1.2 Simulation approaches

In order to study quantum transport, there are mainly three methods: Wigner

functions (WF) [28, 9], Non-equilibrium Green Functions (NEGF) [23, 20, 4, 5] and

the Pauli master equation (PME) [6, 7]. These approaches are all capable to handle

quantum transport problems but from different perspectives. The moments of the

WF result in quantum mechanical macroscopic models such as the density gradient

model, effective potential approach and quantum hydrodynamic model. To appreciate

the difference of PME and NEGF, we can simply look at the way they calculate the

electron density in the quantum transport framework.

n =

∫ ∞

0

dEPlocal(E)fFD(E), (1.1)

where Plocal(E) = P (E)|Φ(E)|2 is the local density of state. In NEGF, the infinity

integral is calculated by discretizing energy with a grid fine enough to simulate the

continuous energy states existing in the thermodynamic equilibrium in the contacts.
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NEGF also assumes that for any energy, the amplitude of the injected wave function

is unit, so that the wave function should not be normalized in the device, leaving

the fundamental meaning that wave function is a measure of probability. PME, on

the other hand, strongly depends on the discretization of energy spectrum. Instead

of integrating over continuous energy, it sums up the contribution of each standing

modes over energy

n =
∑
E

P (E)fFD(E)|Φ(E)|2, (1.2)

where wave function Φ(E) in this case must be normalized to the area of the device.

Regarding scattering, PME treats the traveling states as scattering states, apply-

ing Fermi’s Golden rule to calculate the transition rates between different states. In

NEGF there is no satisfactory method to include scattering efficiently, because a set of

Dyson equations (an integral form of Schrödinger equation) which form a convenient

starting point for the development of a perturbation expansion, have to be solved.

People have tried phenomenological ways such as introducing Büttinger probes [1],

which adds extra scattering energy term Σs to the retarded Green’s function

GR = [EI −H − Σ1 − Σ2 − Σs]
−1. (1.3)

Recent Jin’s work accounting electron-phonon scattering in the NEGF framework

shows very promising results [13, 12].

In all, compared with the NEGF method, the PME promises a smaller compu-

tational cost when accounting for weak inelastic scattering processes. This work

employs the PME and the purpose of this thesis is to present the ability of the PME

in handling dissipative quantum simulations.
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1.3 Outline of the Thesis

The thesis is organized as following. Chapter 2 presents about the physics for-

mulation of the PME. Chapter 3 discusses its numerical implementation. Chapter 4

presents results regarding two simple 1D examples, n-i-n resistors and double barrier

resonant tunneling diodes (DBRTD). Chapter 5 shows the results on non phase-

breaking interactions and electron-phonon processes in assessing the quantum access

resistance of thin-body double-gate field effect transistors (DGFETs). We draw the

conclusion in Chapter 6.
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CHAPTER 2

THEORY FORMULATION

When the active region of a device is smaller than the dephasing length of the

electrons, off-diagonal elements of the density matrix can be ignored [26]. Following

the standing wave decomposition method [6] [7] [17], scattering states are used as basis

states on which the density matrix is represented in the presence of weak scattering.

For an open system the PME can be written as:

∂ρu

∂t
=

∑
v

(Wuvρv −Wvuρu) +

[
∂(fu − ρu)

∂t

]

res

, (2.1)

where u and v are indices labeling scattering states. The first and second terms on

the right hand side can be considered respectively as master and contact operators

acting on the density matrix. The transition rate Wuv from v to u can be evaluated

using Fermi golden rule:

Wuv =
2π

h̄
| < u|Hint|v > |2δ(Eu − Ev ± h̄ωq), (2.2)

where Hint is the interaction Hamiltonian, Eu and Ev are the total energy for electrons

in states u and v, while ωq is either the phonon frequency or zero if the scattering

process is elastic.

The PME can be solved employing a Monte Carlo (MC) algorithm [11, 8] in a

way very similar to the case of the BTE, since the hard-to-treat collisional terms are

left unchanged, the only difference being that in the PME the field driving term dis-

appears thanks to its diagonalization in the scattering-state representation. The non-

equilibrium electrostatics is obtained by solving the PME coupled with Schrödinger,

4



Poisson and current continuity equations at the contacts until self-consistency is

reached [6].
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CHAPTER 3

NUMERICAL IMPLEMENTATION

Figure 3.1. Flowchart of solving PME

The numerical implementation of PME can be divided into two main steps as

shown in the flowchart of Fig. 3.1. First, we need to find self-consistent ballistic

solution in the basis of scattering states and then in the second step, transitions of

electrons (diagonal terms of density matrix) between different scattering states and

with contacts are evaluated to include irreversible processes. Since the 2D case is

conceptually similar to the 1D case except for the presence of evanescent waves when
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considering traveling waves injected from contacts, the emphasis is placed on 1D. The

differences will be discussed in 2D.

3.1 PME in 1D

3.1.1 Ballistic solution

The Master equation is based on transitions between scattering states and con-

tacts. The first problem we have to handle is to find the scattering states. Standing

wave decomposition is our choice. First, we consider the open system as closed by

solving the one dimension time independent schrödinger equation

− h̄2

2

d

dx
(

1

m∗
dΨp(x)

dx
) + V (x)Ψp(x) = EpΨ(x), (3.1)

twice with two different boundary conditions to obtain enough standing wave states.

The two different boundary conditions are Dirichlet boundary condition and Neumann

boundary conditions:





Ψp|x=0, L =0, Dirichlet

dΨp

dx
|x=0, L =0, Neumann

(3.2)

Dirichlet boundary condition requires the wave function to be zero at boundaries

and the Neumann boundary condition requires the derivative of wave function to be

zero at boundaries. They are also known as sine-like and cosine-like solutions. The

reason is following. Since there is no current in a close system, wave function must

only contain the real part, we can write the analytical solution in a general form

Ψp(x) = Apsin(kx + θ), (3.3)

with its derivative

dΨp(x)

dx
= Apkcos(kx + θ), (3.4)

7



where Ap is the amplitude and θ ∈ (−π
2
, π

2
] is the phase shift. For the Dirichlet bound-

ary condition Ψp(x)|x=0, L = 0, we have θ = 0, yielding Ψp(x) = Apsin(kx), which

is sine-like. For the neumann boundary condition, dΨp(x)

dx
|x=0, L = 0, we have θ = π

2
,

yielding Ψp(x) = Apcos(kx) which is cosine-like. Our discretization of the continuous

energy spectrum is complete and robust. Fig. 3.2 shows the occupation of states after

self-consistency obtained in a 1D n-i-n device at equilibrium. Solid rectangles are the

original data which does not fit the usual distribution of density versus energy based

on the Fermi-Dirac function. But if we apply Fast Fourier transform (FFT), the aver-

age effect (shown as a solid red line) is exactly the desired distribution. Therefore our

approach is mathematically correct to illustrate the system and the physics meaning

can be interpreted if we consider the net effect.

0.0 0.1 0.2 0.3 0.4 0.5
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 10 point FFT Smoothing
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Figure 3.2. 1D n-i-n device electron occupation of states at equilibrium (black
rectangular dots) and its FFT average (red solid line).

Mathematically, mixed boundary conditions other than sine and cosine are not

necessary. The reason is that sine-like and cosine-like solutions are the orthogonal

basis of the whole solution space; any other solution could be expressed as a linear

8



combination of them. It can not offer more accurate result. On the contrary one has

to solve non-linear eigenvalue problems, because sine-like and cosine-like are the only

linear cases. Normalization will be another problem for mixed boundary conditions.

Sine and cosine are orthogonal and each carries a weight of 1, when both of them

are included we can simply normalized to 1
2
. Other phases rather than 0 and π

2
need

to find its own weight first. That’s the reason why the inclusion of ±π
4

with the

normalization of 1
4

does not work properly[17].

After two sets standing wave solutions {Esin
p ,Ψsin

p } and {Ecos
p ,Ψcos

p } are obtained,

the eigen values and eigen functions containing enough information to represent the

local density of states of the device, we need to decompose standing waves into trav-

eling waves injected from two contacts. For a given injecting energy Ep, traveling

waves at the boundary i can be written as

Φi
p(x) = ai

pe
−iki

px + bi
pe

iki
px, (3.5)

where ai
pe
−iki

px is the incoming wave with ai
p its injection amplitude and bi

pe
iki

px is the

reflection wave with bi
p the reflection amplitude as shown in Fig. 3.3.

Decomposing Eq. (3.3) in the same form as Eq. (3.5)

Ψp(x) =
iAp

2
e−iθe−ikpx +

Ap

2i
eiθeikpx, (3.6)

we can easily have the injection amplitude

ai
p =

iAi
p

2
e−iθ. (3.7)

Finding the value of Ai
p is even straight forward. For θ = 0, sine-like, Ψp(x)|x=0, L = 0,

from Eq. (3.4),

Ai
p =

1

ki
pcosθ

dΨp(x)

dx
|x=0, L =

1

ki
p

dΨp(x)

dx
|x=0, L. (3.8)
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Figure 3.3. Incoming wave ae−ikx with its reflection wave beikx from left; incoming
wave ãeikx with its reflection wave b̃e−ikx from right.

Similarly, for θ = π
2
, cosine-like, dΨp(x)

dx
|x=0, L = 0, from Eq. (3.3),

Ai
p =

1

sinθ
Ψp(x)|x=0, L = Ψp(x)|x=0, L. (3.9)

There is an interesting phenomenon that regardless of the injection energy is of

sine-like or cosine-like, its amplitude only depends on the standing wave solution at

the contact. For sine-like it depends on the derivative of standing wave, while for

cosine-like it depends on the standing wave itself. In another word, what happens

inside the device has no direct influence on the injection amplitude. This result still

stands in the two dimension case as will be show in the next section.

We have solved the closed system and obtained the injection energy along with

their amplitude for traveling waves from both contacts. Esin
p and Ecos

p are then

together arranged from low to high and truncated at a point Emax (typically Emax =

Ehigh
F + 20kBT ) where the occupation is insignificant to reduce the computation cost

. The next step consists calculating all the traveling states by solving the open

boundary condictions Shrödinger equation which can be written as:

10



[EpI −H − Σ1 − Σ2]Φ
i
p = Si

p = iγi
p, (3.10)

where H is the system Hamiltonian, Ep is the injection energy, I is identity matrix, Σ1

and Σ2 are the self-energy terms describing the interaction with two contacts, right

hand side of the equation is known as the source term (Si
p) and the broadening effect

(iγi
p). Eq. (3.10) is given in a matrix form similar to the NEGF approach. Instead of

inverting the left hand side to obtain the retarded Green’s function, we simply solve

this linear equation to find the traveling states Φi
p.

Since the eigenstates are doubly sampled and each set has a weight of 1, for a given

energy Ei
p injected from contact i the traveling wave function must be normalized as

∫ L

0

(
2∑

i=1

|Φi
p(x)|2) =

1

2
, (3.11)

where Φi
p(x) is the traveling wave injected from contact i (cathode to the anode or

anode to the cathode in 1D). The occupation of the individual state p of contact i is

given by

ρi
p =

∫ ∞

0

dE⊥ · 2 · 1

2π

dkT

dE⊥
fFD(Ei

F , E⊥, Ei
p), (3.12)

where

fFD(Ei
F , E⊥, Ei

p) =
1

1 + e
Ei

p+E⊥−Ei
F

kBT

(3.13)

is the Fermi-Dirac distribution. E⊥ is the kinetic energy corresponding to motion

in the infinite transverse plane not included in the simulation domain. Ei
F is the

Fermi level at contact i which has to be adjusted to satisfy charge neutrality at the

boundaries before the Schrödigner-Poisson loop starts because the discretization of

the continuous energy changes its value. Inserting Eq. (3.13) into Eq. (3.12) and

integrating, ρi
p has a simple explicit expression in 1D

ρi
p =

m∗kBT

πh̄2 ln(1 + e
Ei

F−Ei
p

kBT ). (3.14)

11



The electron density therefore can be written as:

n(x) =
2∑

i=1

max∑
p=1

ρi
p|Φi

p(x)|2. (3.15)

When a self-consistent solution is sought, one can find that charge neutrality at

boundaries is hard to achieve especially under high bias voltage, due to the open

nature of the device. When bias is applied, electrons move from cathode to the anode

creating current. As a whole system, electrons flowing from cathode to anode will

eventually come back to the cathode via the external circuit, but this external circuit

is not included in our simulation domain. So the net effect is that charge is missing

at the source and gathering at the drain as shown in Fig. 3.4(a).
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Figure 3.4. 1D n-i-n (each region being 15nm, n being 1019cm−3) self-consistent
electron density under various bias (a) without and (b) with drift wave vector. Arrow
direction shows the increase of bias voltage.

The use of periodic boundary condition may help to solve this problem, but it

changes the system to be quasi-open, and it cannot include far-from-equilibrium

which is of interest because periodic boundary conditions are enforceable only at

equilibrium. This problem affects all quantum transport simulations, but it may not

be obvious in the literature because of following reasons [22, 9]: (1) devices operating

near equilibrium are minimally affected; (2) floating boundary conditions are used to
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solve Poisson equation, thus forcing the potential to be ”flat” near the contacts; (3)

the Fermi level is not as the same as at the contact but adjusted in a self-consistent

way; (4) very high doping is used to minimize the potential change; (5) a drift wave

vector kD is introduced. Since there is no perfect model for the contact, every method

mentioned above has its own merit in a certain sense. Because of the clear physics

meaning, we favor the kD drift vector approach. Its improved result is compared in

Fig. 3.4(b).

Eq. (3.14) shows that occupation relies on the Fermi energy of the contact. When

the device is operating under non-equilibrium, a feedback drift wave vector from

device to the contact will change the Fermi-Dirac distribution in Eq. (3.13) and

eventually occupy traveling states ”correctly” to satisfy charge neutrality. Suppose

the drift wave vector in the transport direction is kD, then the total energy can be

written as

E =
h̄2(k − kD)2

2m∗ + E⊥ =
h̄2k2

2m∗ +
h̄2kD(kD − 2k)

2m∗ + E⊥, (3.16)

substitute h̄2k2

2m∗ = Ep we have

E = Ep +
h̄2kD(kD − 2k)

2m∗ + E⊥. (3.17)

It is obvious that the longitudinal energy is shifted from Ep to Ep + h̄2kD(kD−2k)
2m∗ due

to the drift vector. Updating Ei
p in Eq. (3.13), a new expression for the drifted

Fermi-Dirac distribution is obtained as:

fFD(Ei
F , E⊥, Ei

p) =
1

1 + e
Ei

p+
h̄2ki

D
(ki

D
−2ki

p)

2m∗ +E⊥−Ei
F

kBT

, (3.18)

and updating Ei
p in Eq. (3.14), the drifted occupation of each state becomes:
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ρi
p =

m∗kBT

πh̄2 ln(1 + e
Ei

F−Ei
p−

h̄2ki
D(ki

D−2ki
p)

2m∗
kBT ). (3.19)

The determination of kD can be done in several ways. It can be directly set by

satisfying charge neutrality at the contact, or conserving current flux in the device

and contact, or even some higher moment (such as energy) continuity at boundaries.

Enforcing continuity of higher moments of the distribution is a hard numerical task.

We have tried the other two and find charge neutrality works but not as well as current

flux conservation. So ki
D is chosen to satisfy current continuity equation J i

dev = J i
cont.

The current density in the device can be expressed as

J i
dev = − ieh̄

2m∗

2∑
i=1

max∑
p=1

ρi
p · 2Im[(∇Φi

p)
∗Φi

p] · (−n̂), (3.20)

and the current density at the contact i is given

J i
cont = −e

h̄ki
D

m∗ ni, (3.21)

where ni is the electron density at the interface of device and contact.

After including kD we can obtain the correct occupation and electron density.

Thus we can solve Poisson equation:

−∇(ε(x)∇ϕ(x)) = e(ND(x)− n(x)). (3.22)

The solution ϕ is then back to Ec = ∆Ec−eϕ where ∆Ec is the conduction band offset

by different materials. When coupled to the Schrödinger equation, Poisson equation

is nonlinear. Newton-Raphson method [3] is usually needed to improve convergence.

But unlike traditional coupled Schrödinger-Poisson solvers, the introduction of drift

wave vector makes the formulation slightly different.
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Using the FEM method to discretize Eq. (3.22), we have:

TPn×nϕn×1 = Dn×n(Nd − n)n×1, (3.23)

TP is the mass matrix and D is the stiffness matrix. They both capture the operator

−∇(ε(x)∇)
e

. Define fPn×1 := TPn×nϕn×1 −Dn×n(Nd − n)n×1.

Similarly the current continuity equations can be written in a matrix form as:

Jdev2×1 = Jcont2×1 . (3.24)

The matrix has 2 rows because there are two contacts in the 1D case. Define fJ2×1 :=

Jdev2×1 − Jcont2×1 .

The total unknowns we need to find are vectors ϕn×1 and kD2×1 . Put Eq. (3.23)

and Eq. (3.24) into a big matrix, and define

f(n+2)×1 :=




fPn×1

fJ2×1


 , (3.25)

correspondingly the unknowns can be written

x(n+2)×1 :=




ϕn×1

kD2×1


 . (3.26)

Now it is very clear that we need to find x(n+2)×1 such that f(n+2)×1 = 0. After

this simple transform, we can now apply the standard Newton method. Its Jacobian

matrix is calculated by

df

dx
=




∂fP

∂ϕ
∂fP

∂kD

∂fJ

∂ϕ
∂fJ

∂kD


 . (3.27)

The term ∂fP

∂ϕ
measures how electron density changes as the potential changes.

Apply the definition of fP , we have ∂fP

∂ϕ
=

∂(TPn×n
ϕn×1−Dn×n(Nd−n)n×1)

∂ϕn×1
= TPn×n +

15



Dn×n( ∂nn×1

∂ϕn×1
)n×n. The physics meaning becomes clearer. But it is not easy to calcu-

late the correct value simply because local density does not only depend on the local

potential. Any feedback of local potential will influence on the global density by solv-

ing the Schrödinger equation. We can evaluate it using semiclassical approximation

that ∂n
∂ϕ

= e
kBT

Nc
2√
π

1
2
F− 1

2
(

Elocal
F −∆Ec+eϕ

kBT
), where Elocal

F is the local fermi level. It has

been tested that even the non-degenerate approximation ∂n
∂ϕ

= n e
kBT

(“mistakenly”

estimate F− 1
2

with F 1
2
) can give good convergence result. This treatment comes from

random phase approximation (RPA), which can be proven by using time independent

perturbation [25].

The term ∂fP

∂kD
is the influnce of drift vector (current) on the electron density in

the device. Since we have the analytical expression in Eq. (3.15) and Eq. (3.19),

although tedious its explanation is straightforward.

∂fJ

∂ϕ
describes the current density behavior as the potential changes. The current

density in the device is calculated by Eq. (3.20). It depends on the occupation of

states ρi
p and the flux term Im[(∇Φi

p)
∗Φi

p]. A sudden perturbation of potential will

affect both terms via the solution of Schrödinger equation, but unfortunately there

is no easy way to evaluate this change. Numerical evaluation by the secant method

does not give good results, as discovered by Laux [17]. In that paper this value is set

to zero (imply no connection) and we follow the same procedure. The non-quadratic

convergence characteristics and soft-convergence may be related to this choice. We

leave the open question for now.

The term ∂fJ

∂kD
expresses the relation between current and drift vector. This can

be analytically done from Eq. (3.20) and Eq. (3.21).

Linearizing Eq. (3.25), we have:

xj+1 = xj − (
df

dxj

)−1f(xj). (3.28)
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Starting from some initial guess x0 (for ϕn×n we can use the self-consistent semi-

classical solution, kD2×1 can be set to zero or to the value the bias point calculated

previously), coupled with Schrödinger Eq. (3.10) we continue the iteration of Eq.

(3.28) under the proper boundary conditions to calculate xj (j=1,2,3 ...), until a

required convergence criteria is met, leading to the ballistic solution.

3.1.2 Scattering

In order to solve the PME by the MC method in the similar framework as BTE,

classical representative electrons have to be assigned to each state according to their

occupation. Assume a total number Ntot of super-particles, the weight carried by

each ”electron” will be

ω =

∫ L

0
dxn(x)

Ntot

(3.29)

in units of m−2. Applying this to Eq. (3.19), the occupation of each state p associate

with contact i can be represented by electrons with number N i
p = ρi

p/ω. For an elec-

tron j (j ≤ N i
p) in such state, its total energy is Eij

p = Ei
p + Eij

p⊥ . Note that electrons

occupying the same state have the same longitudinal energy Ei
p. The scattering rate

depends on the total energy, so a transverse energy Eij
p⊥ must be assigned to each

electron individually based on the product of density of state and the Fermi-Dirac

distribution in Eq. (3.18). Thanks to the simple 2D density of state (m∗/πh̄2 in 1D

transport, independent of energy), this can be done analytically following the direct

technique [11]:

Eij
p⊥ = Ei

F −Ei
p −

h̄2ki
D(ki

D − 2ki
p)

2m∗ − kBT{ln[(1 + e
Ei

F−Ei
p−

h̄2ki
D(ki

D−2ki
p)

2m∗
kBT )r − 1]} (3.30)

where r ∈ (0, 1) is a pseudo-random number. On the other hand in 2D or 3D transport

simulations, since the integral over energy cannot be done analytically, a conventional

rejection technique [11] has to be used. This usually requires additional CPU time as

will be shown in the next section.
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The Master equation for an open system can be written as:

∂ρu

∂t
=

∑
v

(Wuvρv −Wvuρu) + [
∂(fu − ρu)

∂t
]res, (3.31)

where u, v ∈ p. Applying the Fermi golden rule, the transition rate Wuv from v to u

can be evaluated as:

Wuv =
2π

h̄
| < u|Hint|v > |2δ(Eu − Ev ± h̄ωq), (3.32)

where Hint is the interaction Hamiltonian, δ function conserves the energy, Eu and

Ev are the total energy for electrons in states u and v respectively, ωq is the phonon

frequency or zero if the scattering process is elastic. Note in 3.32 the extra term the

form factor Fvi′ui, distinguishing the result from semi-classical particles:

Fvi′ui =

∫ L

0

dx|Φi′
v (x)|2|Φi

u(x)|2. (3.33)

Calculation of form factor can be very time consuming due to the large amount of

scattering states and to the numerical calculation of the integral itself. We store it in

a look-up table and update it when at each Schrödinger-Poisson update.

Having fixed a small time δt (≈ 10−15s), for an electron j in state u occupied by

the injection from contact i, the scattering probability will be:

P ij
u = δt

∑
v

Wuv =
δt

τ ij
u

(3.34)

Similarly to the Monte Calor in the semi-classical case, the probability for all

scattering processes can be calculated and compared to a random number to select

the process occurring at a given time step. Figure 3.5 demonstrates how the selection

process works.
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Figure 3.5. Scattering process Pi+1 happens when random number r falls into the
interval (

∑
Pi,

∑
Pi+1).

We loop over all contacts and scattering states to finish the scattering processes in

the device. Then the phenomenological treatment of the contact starts. For a state

u populated by contact i, the electron occupation in the device ρi
u is compared with

the population f i
u. If ρi

u > f i
u, then the net electron flux (f i

u−ρi
u

ω
) will be injected into

the device at a rate h̄ki
u

m∗ |Ai
u|2, and vice-versa.

The number of super-particles can be converted to electron density after com-

pletion of scattering processes and exchange with contacts. The Poisson equation is

solved again and the new potential is used to solved the Schrödinger equation, thus

obtaining new scattering states. The new potential is treated as a sudden perturba-

tion and super-particles are assigned to these new states with the probability based

on the overlap factor between the old state |ui > and the new state < u′i|

Fui,u′i = | < u′i|ui > |2. (3.35)

Similar to the procedure of simulating the scattering processes, rejection technique is

applied. The only difference is that the reassignment of electrons is among the states

from the same contact because the electron transport direction is conserved.

The iteration of Monte Carlo, Poisson and Schrödinger continues until the po-

tential, the occupation of states and the current do not show any significant change.

Due to the random noise induced by Monte Carlo, we are not expecting to achieve

the same accuracy as in the ballistic case. Figure 3.6 shows the current behavior in

a iteration process of 2D Taper device at VDS = 0.3V , VGS varies from 0 to 0.3V.
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Figure 3.6. Current behavior in a iteration process of 2D Taper device at VDS =
0.3V , VGS varies from 0 to 0.3V.

3.2 PME in 2D

2D open system can be partitioned into device region Ω0, lead regions Ωi(i=1,2,3...)

as shown in Fig. 3.7. The boundary that Ωi and Ω0 meet is Γi, other boundaries are

Γ0.

3.2.1 Ballistic solution

Unlike in 1D, charge neutrality at the contact is no longer at certain point, in 2D

it is the integral along the Γi. First we need to find the 1D Schröndinger-Poisson

self-consistent solution for all the Γi [18] and use the obtained potential as the fixed

boundary condition in the following 2D simulation. Define a local coordinate (ηi,ξi)

at the contact Γi as shown in Fig. 3.8. The Schröndinger equation therefore can be

written as:

− h̄2

2
[

d

dξi

(
1

m∗
ξi
(ξi)

dχi
m(ξi)

dξi

)] + V (ξi)χ
i
m(ξi) = Ei

mχi
m(ξi), (3.36)
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Figure 3.7. Partition of 2D geometry. Ω0 is the device region; Ωi (i=1,2,3...) is the
lead region and Γi is the boundary where they meet. Other boundary of Ω0 is Γ0.

with the boundary condition χi
m(0) = χi

m(di), where m stands for different modes,

m∗
ξi
(ξi) is the effective mass, allowed to be space dependent. χi

m(ξi) is the wave func-

tion of mth mode at contact i. Being the orthogonal basis, it needs to be normalized

as ∫ di

0

χi
l(ξi)χ

i
m(ξi)dξi = δlm. (3.37)

Similar to Eq. (3.14) and Eq. (3.15), the electron density along the lead is

n(ξi) =
∑
m

m∗
ξi
kBT

πh̄2 ln(1 + e
Ei

F−Ei
m

kBT )|χi
m(ξi)|2. (3.38)

The poisson equation

−∇(ε(ξi)∇ϕ(ξi)) = e(ND(ξi)− n(ξi)) (3.39)

is then solved with neumann boundary condition ∂ϕ
∂ξi
|ξi=0 = ∂ϕ

∂ξi
|ξi=di

= 0. Once self-

consistency is achieved, the line integral of charge (
∫ di

o
dξi(n(ξi)−ND(ξi))) should be

compared with zero to check whether charge neutrality is satisfied. If not, change the

initial guess of the mid-point potential and continue the iteration. Standard secant
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Figure 3.8. Local coordinate (ηi,ξi) at contact Γi where ηi is along the transport
direction. di is the lead width of Ωi.

method [3] can be applied to make it converge fast. Figure 3.9 shows the converged

simulation result of a 3nm and 6nm boundary respectively.

Solving the 2D problem semi-classically with the Thomas-Fermi approximation,

gives an initial guess of the potential which can be smoothed by solving 2D Poisson

equation again applying the converged electron density but use ϕ(ξi) as boundary

conditions. Use the smoothed potential to solve 2D Schrödinger equation

− h̄2

2
[
∂

∂x
(

1

m∗
∂Ψp(x, y)

∂x
) +

∂

∂y
(

1

m∗
∂Ψp(x, y)

∂y
)] + V (x, y)Ψp(x, y) = EpΨp(x, y) (3.40)

with dirichlet and neumann boundary conditions. The general solution at contact i

is

Ψp(ηi, ξi) =

N i
p∑

m=1

Ai
pmχi

m(ξi)sin(ki
pmηi + θi)

+
M i−2∑

m=N i
p+1

Ai
pm

2
χi

m(ξi)[e
−ikpmηi − cot(θi +

π

4
)eikpmηi ],

(3.41)

with its derivative
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Figure 3.9. Electron density and potential energy of 1D self-consistent solution of
(a) 3nm and (b) 6nm boundary.

∂Ψp(ηi, ξi)

∂ηi

=

N i
p∑

m=1

Ai
pmki

pmχi
m(ξi)cos(k

i
pmηi + θi)

−
M i−2∑

m=N i
p+1

iAi
pm

2
ki

pmχi
m(ξi)[e

−ikpmηi + cot(θi +
π

4
)eikpmηi ],

(3.42)

where Ai
pm is the amplitude of the mth mode of energy state p, and ki

pm is the cor-

responding wave vector. Note ki
pm is real when 1 ≤ m ≤ N i

p (Ep > Ei
m) and is

imaginary when m ≥ N i
p + 1 (Ep < Ei

m). The summation is ideally to be infinity but

it is constrained by the numerical implementation. Since Ei
m is obtained from the

Eq. (3.36), the maximum m is the number of boundary nodes M i minus 2.

Follow the same procedure in 1D when θi = 0 we can derive that sine-like solution

Ψp(ηi, ξi) =
N i∑

m=1

Ai
pmχi

m(ξi)sin(ki
pmηi)− i

M i−2∑

m=N i+1

Ai
pmχi

m(ξi)sin(ki
pmηi), (3.43)

and cosine-like solution when θi = π
2

Ψp(ηi, ξi) =

Mi−2∑
m=1

Ai
pmχi

m(ξi)cos(k
i
pmηi). (3.44)
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As mentioned, in 2D because of the existence of evanescent waves, the boundary

condition formation is more complicated than 1D. We apply the quantum transmitting

boundary method (QTBM) proposed by Lent and Kirkner [19] and developed by Laux

[17]. Traveling waves in lead i can be written as

Φi
p(ηi, ξi) =

M i−2∑
m=1

[ai
pmχi

m(ξi)e
−iki

pmηi + bi
pmχi

m(ξi)e
iki

pmηi ] (3.45)

where ai
pm is the injection amplitude of the mth mode, and bi

pm is the corresponding

refection amplitude. χi
m(ξi) is the 1D wave function of the mth mode distinguishing

the expression in Eq. (3.5). Note in Laux paper he claims that ai
pm 6= 0 when

m ≥ N i + 1 which is different from Lent and Kirkner’s formulation. We followed

his method. They both separate Eq. (3.45) into a real wave vector part and an

imaginary wave vector part, but indeed the expression is the same for both cases.

Here, we choose to write it in this concise way.

Decompose Eq. (3.41) into the same format as Eq. (3.45)

Ψp(ηi, ξi) =

N i
p∑

m=1

iAi
pm

2
χi

m(ξi)e
−ikpmηie−iθ +

N i
p∑

m=1

Ai
pm

2i
χi

m(ξi)e
ikpmηieiθ

+
M i−2∑

m=N i
p+1

Ai
pm

2
χi

m(ξi)e
−ikpmηi −

M i−2∑

m=N i
p+1

Ai
pm

2
χi

m(ξi)cot(θi +
π

4
)eikpmηi ],

(3.46)

compare, we have

ai
pm =

iAi
pm

2
e−iθ, 1 ≤ m ≤ N i

p

=
Ai

pm

2
, m ≥ N i

p + 1

(3.47)

For θ = 0, sine-like, Ψ|Γi
= 0, Eq. (3.42) simplifies to

∂Ψp(ηi, ξi)

∂ηi

|ηi=0 =

N i
p∑

m=1

Ai
pmki

pmχi
m(ξi)− i

M i−2∑

m=N i
p+1

Ai
pmki

pmχi
m(ξi), (3.48)
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therefore,

Ai
pm =

1

ki
pm

∫ di

0

χi
m(ξi)

∂Ψp(ηi, ξi)

∂ηi

|ηi=0dξi, 1 ≤ m ≤ N i
p

=
i

ki
pm

∫ di

0

χi
m(ξi)

∂Ψp(ηi, ξi)

∂ηi

|ηi=0dξi, m ≥ N i
p + 1

(3.49)

substitute back into Eq. (3.47), we can reach an elegant expression similar to 1D case

for all 1 ≤ m ≤ M i − 2

ai
pm =

i

2ki
pm

∫ di

0

χi
m(ξi)

∂Ψp(ηi, ξi)

∂ηi

|ηi=0dξi. (3.50)

For θ = π
2
, cosine-like, ∂Ψ

∂η
|Γi

= 0, Eq. (3.41) simplifies to

Ψp(ηi, ξi) =
M i−2∑
m=1

Ai
pmχi

m(ξi), (3.51)

therefore, for 1 ≤ m ≤ M i − 2

Ai
pm =

∫ di

0

χi
m(ξi)Ψp(ηi, ξi)|ηi=0dξi, (3.52)

hence,

ai
pm =

1

2

∫ di

0

χi
m(ξi)Ψp(ηi, ξi)|ηi=0dξi. (3.53)

Arrange standing wave states according to the energy increases, the schrödinger

equation is ready to be solved:

[EpI −H −
n∑
i

]Φi
p = Si

p = iγi
p, (3.54)

where
∑n

i sums all of contacts. Follow the same procedure in 1D to normalize wave

functions and then electron occupation in 2D is given by:

ρi
p =

√
2m∗kBT

πh̄
F− 1

2
(
Ei

F − Ei
p − h̄2ki

D(ki
D−2ki

p)

2m∗

kBT
), (3.55)
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if drift wave vector kD is taken into consideration. Fj(x) =
∫∞

0
dt tj

et−x+1
is the complete

Fermi-Dirac integral to the order of j. In this notation, Fj(x) = Fj(x)Γ(j + 1). Since

dFj(x)

dx
= Fj−1(x), we have

dFj(x)

dx
= Γ(j + 1)Fj−1, which is helpful to evaluate the

Jacobian matrix. The electron density then is

n(x, y) =
n∑

i=1

max∑
p=1

(
M i−2∑
m=1

ci
pmρi

p)|Φi
p(x, y)|2, (3.56)

where ci
pm is the weighting factor for injection energy Ep from contact i, weighted at

transverse energy level Ei
m. It can be obtained from ai

pm

ci
pm = |ai

pm|2/
M i−2∑
m=1

|ai
pm|2. (3.57)

The current expression is similar to 1D

J i
dev = − ieh̄

2m∗

∫ di

0

dξi

n∑
i=1

max∑
p=1

(
M i−2∑
m=1

ci
pmρi

p) · 2Im[(∇Φi
p)
∗Φi

p] · (−n̂), (3.58)

and the current density at the lead i is

J i
lead = −e

h̄ki
D

m∗

∫ di

0

dξiND(ξi). (3.59)

Solve the Poisson equation and update the potential in the Schrödinger equation

and repeat the iteration by Newton Method as defined in 1D until the ballistic solution

is found.

3.2.2 Scattering

Applying the same PME approach in 1D, we can discretize the energy and cal-

culate the scattering rate in k-space using Fermi golden rule, inelastic dissipative

scattering characteristics can be therefore obtained.
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CHAPTER 4

APPLICATION OF PME IN 1D DEVICES

4.1 n-i-n

Figure 4.1. Illustration of 1D n-i-n device.

As shown in Fig. 4.1 the n-i-n resistor is composed of three parts: two highly

doped silicon (1020cm−3) at two sides, in between is the intrinsic region. Each region

has the same length 15nm. A uniform mesh is built along the device with a step

∆x = 0.25nm, which yields 180 elements and 181 nodes. Single effective mass m∗ =

0.98m0 is used. Temperature is fixed at 300K. Scattering processes included are

optical phonon absorbtion and emission, and acoustic phonon scattering.

Figure 4.2 shows the I-V characteristics when the device is working under bias

ranging from 0 to 0.5V with a step 0.05V. Both ballistic and scattering solutions are

27



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0

2

4

6

8

25

50

75

100

C
U

R
R

E
N

T 
D

E
C

R
E

A
S

E
 P

E
R

C
E

N
TA

G
E

 (%
)

 Ballistic
 Scattering

C
U

R
R

E
N

T 
D

E
N

S
IT

Y
 (1

06  A
/c

m
2 )

VOLTAGE (V)

 Decrease Percentage

Figure 4.2. Comparison of the calculated I-V characteristics of a 1D n-i-n resis-
tor operating ballistically (solid square symbols, solid black line) and with phonon
scattering (open circle symbols, dashed red line). The scattering-induced percentage
reduction of the current is shown by the solid triangle symbols, dotted blue line.

given. Scattering induced current decrease is very obvious and almost as high as 60%

at high bias. This can be verified by checking the drift velocity along the device as

shown in Fig. 4.3. Velocity is greatly reduced in the presence of scattering comparing

to its ballistic value.

Figure 4.4 plots the current occupation versus energy at the bias 0.5V. It also

illustrates the decrease of current. We can see that current starts to increase at

energy Ep = 0. This current is due to electrons tunneling though the potential

barrier from cathode to anode. As Ep increases, the tunneling barrier appesrs to be

smaller, so the current increases very fast. At a certain point, electrons with high

kinetic energy can directly transport from cathode to anode. This contribution of

current, although those electrons have high velocity, will eventually decrease because

of the low occupation when energy goes high.
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and in the scattering limit (dash lines) under different bias. Arrow direction shows
the bias increases.

In Fig. 4.5 the electron density and potential energy when the device is operating

at the bias voltage 0.5V are shown with and without scattering. As we can see, the

electron density does not change too much except a little increase at the right side

of original intrinsic region. This change feeds back to the poisson equation will cause

slight increase of the potential barrier, which leads the decrease of current.

This increase of electron density can be well explained in Fig. 4.6. The solid black

and open rectangular dots show the electron occupation at the anode and cathode

respectively in the ballistic case at the bias 0.5V. They satisfy the usual Fermi-Dirac

distribution. Note the open black rectangular dots are a little bit irregular but the

net effect does satisfy, the same reason explained and showed in Fig. 3.2. Due to the

scattering processes, higher energy of anode states which originally few occupied will

be occupied by hot electrons from cathode although back scattering also happens.

The occupation of the cathode states almost remains the same because they are

mainly filled up by the cathode contact. More direct real space illustration of this
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Figure 4.4. Ballistic current and scattering current occupation comparison at the
bias voltage 0.5V.

phenomenon is plotted in Fig. 4.7, which compares the energy spectrum of the

ballistic coherence transport and non coherent scattering transport [13].

4.2 Double-Barrier Resonant Tunneling Diode

The second 1D structure we have studied is a Si DBRTD with the following dimen-

sions: 10.0(n)-0.5(SiO2)-2.0(i)-0.5(SiO2)-10.0(n) (nm). n is highly doped 1020cm−3.

Offset of conduction band between Si and SiO2 is 3.1eV. Figure 4.8 shows its geom-

etry. The whole device is equally discretized into 92 elements with 4x = 0.25nm.

Effective mass for Si is m∗ = 0.98mo and for SiO2 we use m∗ = 0.5mo. Room tem-

perature 300K is used. Bias range is from 0 to 0.8V with a step 0.05V. Its ballistic

conduction band profile is plotted at various biases in Fig. 4.9.

Figure 4.10 plots its I-V characteristic. Bistability in the ballistic and scattering

are both included. Regarding bistability both the first resonant state and second

resonant state are shifted lower when the applies bias is decreasing. For the first
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Figure 4.5. Differences of Electron density and potential energy at ballistic and
scattering cases under the bias voltage 0.5V

resonant state, it shifts from 0.2V to 0.05V and the second resonant state shifts from

0.65V to 0.5V. To understand the influence of accumulation charge on bistability [14,

2], we compare the conduction band profile and electron density respectively for point

(a)/(b) and (c)/(d) in Fig. 4.11. In (a) there is more electron charges accumulated in

the double-barrier well than in (b), so more electrons can participate the transport,

the current is higher. (c) has two electron charge bumps in the well much larger than

those in (d), so the current is much higher.

It is also clear to check the energy spectrum of electron density for (c) and (d) as

shown in Fig. 4.12(c) and Fig. 4.12(d). They are at the same bias, but obviously

that in Fig. 4.12(c) there is a resonant state that filled up by the electrons from

left. While in Fig. 4.12(d) no resonant state is occupied so there is no accumulation

charge in the well. Similarly, energy spectrum of electron density for (a) and (b)

are plotted in Fig. 4.12(a) and Fig. 4.12(b). There is accumulation charges in both

cases as shown in Fig. 4.11(a). But it reveals that the accumulation charges are

from different contacts. In Fig. 4.12(a) it is from left while in Fig. 4.12(b) it is
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due to the electron from the right. This explains the reason for bistability: following

different bias history (increase or decrease), the charge occupation is different, so is

the self-consistent potential energy which results in the different current density [15].

Since scattering breaks the coherence necessary to induce the resonance, scattering

induced current decrease in this Si/SiO2 RTD is tremendously large as shown in Fig.

4.10. To illustrate the effect of scattering, we compare the energy spectrum of the

electron density for (e) and (f) in Fig. 4.12(e) and Fig. 4.12(f). Two resonant states

are occupied in both cases. The difference is that when scattering is introduced,

electrons in the higher resonant state in (e) will lose energy or scattering out. On

the contrary, more electrons will scatter into the lower energy state. We plot the

occupation of notch states (resonant states in the notch) with and without scattering

in Fig. 4.13. Note in the ballistic limit, the notch states should not be filled up
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because it should totally depend on the scattering processes. This unphysical effect is

used to obtain a flat potential band in the ballistic case as discussed by Frensley [9].

As we can see, scattering processes indeed increase the occupation of these states.

But they are still not strong enough. Impurity and electron electron interaction may

have to be also included.
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(a) Ballistic

(b) Scattering

Figure 4.7. (a) and (b) show the coherent ballistic transport and noncoherent
transport with the spectrally resolved electron density at bias 0.5V respectively.
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Figure 4.8. Geometry of Si/SiO2 double barrier resonant tunneling diode.
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Figure 4.9. Conduction band profile of Si/SiO2 double barrier resonant tunneling
diode at various biases with an increase of 0.05V.
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CHAPTER 5

APPLICATION OF PME IN 2D DEVICES

We simulate four double-gate Field Effect Transistors (DG-FETs) with different

geometries. They are straight, taper I, taper II and dog bone. Fig. 5.1 shows their

2D triangular mesh created by EasyMesh [21].

(a) STRAIGHT (b) DOG BONE

(c) TAPER I (d) TAPER II

Figure 5.1. 2D triangular meshes of various geometries.

Their specific sizes are given in Fig. 5.2. Source and drain, each being 10nm, are

highly doped 1020cm−3. Channel is intrinsic with a length of 3nm. Gate is 7nm long

with 2nm overlap on both source and drain side. SiO2 is 1nm thick. For the straight

and taper II, the source and drain thickness is 3nm and for taper I and dog bone is

6nm. The whole simulation domain is discretized into small triangle meshes. Typical

nodes number is about 500 to 600. Device operating temperature is set to 300K.

Consider the reasonably small value of the gate leakage current, in this work we

ignore it by requiring the wave function to be zero at the gate contacts. Hence the

gate bias is simply simulated by proper boundary conditions.
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Figure 5.2. Specific sizes for four DG-FETs.

5.1 Ballistic Transport

To have a direct view of the self-consistent solution. Fig. 5.3 plots the self-

consistent electron density for devices operating at VGS = 0.3V and VDS = 0.5V . It

is very clear that for dog bone, taper I and taper II there are strong reflections because

of the geometry effects, which causes higher electron density. While for straight, no

reflection is observed from the electron density. But in Fig. 5.3(a), we can see that

there is a region in the source the electron density is extremely low. This effect shows

that the source cannot supply enough electrons under higher bias. We can increase

the region of the source (wider of longer) or reduce the overlap length of gate and

source to minimize the effect [17].

Their individual drain current versus gate voltage is plotted in Fig. 5.4. As we can

see for the same gate bias the straight device has the highest current, followed by the

taper I, taper II and dog bone has similar result. From semiclassical perspective, we

expect the dog bone has the highest current and then the taper I and II be the same,

the current for the straight should be the minimum because semiclassical resistance is

defined as R = ρl/s: dog bone is the widest, the straight is the thinnest, taper I and II

are the same in the middle. To correctly explain this phonomenom we have to include

quantum resistance [27, 17]. For the straight, incoming waves transport through the

device directly without any reflection. But for other geometries, reflections happen

in the device more or less as shown in the electron density. This reflection induced
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(a) STRAIGHT (b) DOG BONE

(c) TAPER I (d) TAPER II

Figure 5.3. Electron density for all DGFETs operating at VGS = 0.3V , VDS = 0.5V .
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Figure 5.4. IDS-VDS in the ballistic limit.
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quantum resistance which is comparable to the semiclassical resistance has to be taken

into account in order to correctly explain the current characteristic.
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Figure 5.5. IDS-VGS in the ballistic limit.

To study the subthreshold gate control, IDS-VGS for each device is plotted in Fig.

5.5. Taper II and dog bone show a higher subthreshold slop 93mV/Dec compared

with the straight and taper I 83mV/Dec. Note this simulation result is different from

Laux’ because we deliberately shrink the size of the devices (length and width). Not

only our subthreshold slop is higher than his, but also the difference between dog

bone/taper II and straight/taper I is distinguishable.

To illustrate the effect of gate control, we plot the line electron density along the

transport direction by doing the integral of the 1D cross section. The result when the
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Figure 5.6. Line electron density (integral of cross section) along transport direction
for DGFETs.
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device is in equilibrium is given in Fig. 5.6. As gate bias increases, the conduction

band at the gate is pulling downward and the electron density is increasing. More

electrons will accumulate in the channel. When source-drain bias is applied, more

electrons can participate the transport, hence larger current is obtained.

5.2 Cone Barriers

We add upward cone-like barriers in the Hartree potential to mimic the effect of

the ionized impurities. Fig. 5.7 shows one situation of the self-consistent potential

when 5 barriers are introduced. The cone has a height of 0.3eV and a radius 0.5nm.

Scatters are placed randomly on the source region. Fig. 5.8 is the corresponding

electron density.

(a) STRAIGHT (b) DOG BONE

(c) TAPER I (d) TAPER II

Figure 5.7. Potential energy when five cone barriers are introduced in the Hartree
potential of DGFETs at equilibrium.
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(a) STRAIGHT (b) DOG BONE

(c) TAPER I (d) TAPER II

Figure 5.8. Electron density when five cone barriers are introduced in the Hartree
potential of DGFETs at equilibrium.
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To evaluate the effect of cone barriers on the IDS-VDS characteristics statistically,

we run the simulation 4 times with different random placement and average the results

as shown in Fig. 5.9. Color dots represent the current value under different barriers

placement. Solid black line is the ballistic case and the dashed red line is the average

result for the scattering. The fact that current reduction due to scattering is very

obvious.
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Figure 5.9. Calculated IDS-VDS characteristics at various VGS in the ballistic limit
(solid black line) and in the cone barriers (dashed red line) with five random distri-
bution of dopants in the source averaged from four different spatial configurations
(different shape and color dots).
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5.3 Ionized Dopants

Although the cone barrier method can capture the way ionized dopants scattering

affects the current, it is limited to just an intuitive evaluation due to the following

facts: we choose a cone-like barrier to simplify the real screening potential; the number

of scatters is chosen arbitrarily; the hight and width of cone is also chosen without

any theoretical justification; where to put those scatters is an statical process which

cannot be handled easily. More accurate solution accounts for impurity scattering can

be achieved by replacing the evenly distributed dopant with singular dopant charges,

following the work by Gilbert and Ferry [10]. In our 2D simulations, these scatterers

consist of line charges with linear density (∼ e/LTF , where LTF is the Thomas-Fermi

screening length) and areal density required to mimic the effect of the ionized dopants.

These centers constitute non-phase-breaking scatterers, decoherence and dissipation

emerging only after performing an average over their configurations [16].

Singular charges can be expressed as a delta function δ(xi, yi), numerically in FEM

this can be interpolated as a small region (Si) composed by certain triangles including

the desired node i. For all the scatters introduced, charge neutrality equation has to be

satisfied:
∫

S
Nd(x, y)ds =

∫
S

δ(xi, yi)dS ≈ ∑
i

∫
Si

N i
d(Si)dSi. After evenly distributed

dopants have been replaced by singular charges, impurity scattering with screening

effect can be automatically included in our solution in the same frame work as the

ballistic case.

We put ten scatters in the devices, five in the source region and five in the drain, no

charges in the intrinsic channel. Fig. 5.10 is the obtained self-consistent conduction

band profile for straight, dog bone and taper at equilibrium. Dopants are positive

charges in the device which causes the downward spikes in the conduction band.

Meanwhile electrons are attracted and piled up in the charge region as shown in Fig.

5.11. There are quantum interference effect between singular charges especially for

two pairs of them which have the same x-axis as we can see that their potential
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(a) STRAIGHT

(b) TAPER

(c) DOG BONE

Figure 5.10. Calculated conduction band profile at equilibrium in DGFETs with
ten ‘dopants’ introduced at random positions in the source and drain region of the
devices.
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(a) STRAIGHT

(b) TAPER

(c) DOG BONE

Figure 5.11. Electron density at equilibrium in DGFETs with ten ‘dopants’ intro-
duced at random positions in the source and drain region of the devices.
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and electron density spikes are not separated. We can cut the device along the line

and plot the energy spectrum. Figure 5.12 plots the energy spectrum of the cross

section at position x=-2.0nm of device Taper at VGS=0V, VDS=0.5V. Clearly, there

is a resonant states between them. The barrier potential is not the same for the two

dopants are due to the fact there our implementation of delta function still relies on

the irregular 2D mesh.

Figure 5.12. Energy spectrum of the cross section at position x=-2.0nm of Taper
at VGS=0V, VDS=0.5V.

As in the cone-like barriers, having calculated the current-voltage characteristics

for one configuration of our pseudo-dopants, we have repeated the process for 4 dif-

ferent random configurations and have averaged the currents to obtain the IDS-VDS

characteristics shown in Fig. 5.13. We can see that at this scale, fluctuation of cur-

rent (color dots) under different spatial dopant configurations is large. The average

currents of the three devices clearly show that the influence of pure geometrical ef-

fects are greatly reduced in the presence of ionized impurity scattering. Of intetest

is also the observation that for some configurations the current in the presence of
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dopants can exceed the ballistic current. This is due to the existence of resonant

states in the screening potential well as shown in Fig. 5.12. This has been discussed

by Gilbert and Ferry [10], who showed that discrete dopants modify the potential

profile so drastically that resonant levels may induce ‘spikes’ in the current-voltage

characteristics. To clearly visualize how the resonant states in the device introduced

by the ionized scatters affect the IDS-VDS characteristics, we set a small VDS step

(0.01V) that resonant levels induce ‘spikes’ in the current-voltage characteristics as

shown in Fig. 5.14.

5.4 Dissipative Transport - Pauli Master Equation

Finally we have applied the PME framework to the study of transport in the

presence of optical and acoustic phonon scattering in 2D. The results, illustrated by

the IDS-VDS characteristics in Fig. 5.15, show that, similarly to what found in the

ballistic case, the straight geometry yields the largest current, the dog-bone geometry

the smallest. However, both the magnitude of the current as well as the difference

caused by the various geometries are greatly reduced. This is due to the fact that

scattering processes destroy the electron coherence and so reduce – but do not elim-

inate it altogether – the effects caused by the access geometry. In conclusion, the

access geometry is still found to play a role in mesoscopic device design, although

scattering (both phase-breaking and non-phase-breaking) reduces its importance.
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Figure 5.13. Calculated IDS-VDS characteristics at various VGS in the ballistic limit
(solid black line) and in the impurity scattering limit (dashed red line) with ten
random distribution of dopants averaged from four different spatial configurations of
the dopants (different shape and color dots).
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Figure 5.15. IDS-VDS at various VGS in the ballistic limit (solid black line) and in
the scattering limit (dashed red line) using Pauli Master Equation.
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CHAPTER 6

CONCLUSION

We have studied dissipative quantum transport in 1D by solving the Pauli Master

Equation in a simple isotropic effective-mass approximation self-consistently with

Poisson equation. We have found that, not surprisingly, phonon scattering reduces

current of n-i-n resistors by as much as 60%. Also, because of the loss of the coherence

required to build up the resonance, the current of a double-barrier RTD is greatly

reduced and the bistability is less obvious in the presence of scattering. We have

also evaluated the effect of ionized dopants and phonon scattering on the access

resistance of thin body DGFETs of various access geometries using 2D simulations.

Our results show that 1. ionized dopants in the source (and drain) regions cause large

‘fluctuations’ of the current but their configuration-average tends to reduce the role

played by geometrical effects; 2. phase-breaking phonon scattering also reduces the

geometrical effects to some extent, albeit not completely.
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APPENDIX A

SCATTERING RATES

We have included nonpolar scattering with optical phonons and acoustic phonons.

Their scattering rates 1/τnop
µi (~k) and 1/τnac

µi (~k) are given below [6].

1. Nonpolar Optical Phonons Scattering

1

τnop
µi (~k)

=
m∗(DK)2

op

2h̄2ρxωop





Nop

Nop + 1





∑

νi′
θ





Eν(~k′)− Eµ(~k) + h̄ωop

Eν(~k′)− Eµ(~k)− h̄ωop





Fνi′,µi

(A.1)

where (DK)op is the deformation potential, ρx the crystal density, h̄ωop the

phonon energy, Nop = 1/exp[h̄ωop/(kBT )] the Bose-Einstein phonon occupation

number, the upper line in the parenthesis corresponding to phonon absorptions,

lower line corresponding to phonon emissions. Step function equals to 1 when

variable is great than 0 or 0 when smaller than 0. Fνi′,µi is the form factor

Fνi′,µi =

∫

Ω

ds|Φi′
ν (x, y)|2|Φi

µ(x, y)|2 (A.2)

measuring the overlap of wave functions.

2. Nonpolar Acoustic Phonons Scattering

1

τnac
µi (~k)

=
m∗∆2

ackBT

2h̄3ρxc2
s

∑

νi′
θ[Eν(~k′)− Eµ(~k)]Fνi′,µi. (A.3)

where ∆ac is the acoustic deformation potential and cs is the average sound

velocity.
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APPENDIX B

OBSERVABLES

We use electron density to evaluate the observables of interest. For an observable

O, its expectation value is given by [6]

< O >=
Tr(ρO)

Tr(ρ)
(B.1)

The kinetic energy can be therefore expressed

< Ekin(~r) >=

∑
µ~ki ρµ~ki[Eµ(~k)− Ec(~r)]|Φi

µ(~r)|2∑
µ~ki ρµ~ki|Φi

µ(~r)|2 (B.2)

where Ec(~r) is the conduction band. Similarly, we can have the expression for the

velocity. The current is determined by ~J = −enV , so the velocity can be calculated

< V (~r) >=

∑
µ~ki ρµ~ki(− eih̄

2m∗ )[(∇Φi
µ(~r))∗Φi

µ(~r)− Φi
µ(~r)∗(∇Φi

µ(~r))]∑
µ~ki(−eρµ~ki)Φ

i
µ(~r)Φi

µ(~r)∗
(B.3)
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