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ABSTRACT

FAST PARAMETER-SPACE SWEEP OF WIDEBAND
ELECTROMAGNETIC SYSTEMS USING BT-POD

FEBRUARY 2010

WEI WANG

B.Sc, ZHEJIANG UNIVERSITY, P.R. CHINA, JUNE 2007

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Marinos N. Vouvakis

Modeling and design of high frequency electronic systems such as antennas

and microwave devices require the rigorous numerical solution of Maxwell’s equa-

tions. The frequency-domain (time-harmonic) tangential vector finite element method

(TVFEM) for Maxwell equations results in a second-order dynamical electromagnetic

model that must be repeatedly solved for multiple frequencies, excitation or material

parameters each design loop. This leads to extremely long design turnaround that

often is not optimal. This work will propose an accurate, error controllable and ef-

ficient multi-parametric model order reduction scheme that significantly accelerate

these parameters sweep. At the core of this work is the proper orthogonal decompo-

sition (POD) sampling technique and balanced truncation (BT) algorithm that are

used to reduce multi-parameter spaces that include frequency, material parameters

and infinite array scan angles. The proposed methodology employs a novel computa-

tional scheme based on adaptive POD sampling and the singular value decomposition

vi



(SVD) of the low-rank Hankel matrix. Numerical examples confirm the significant

time savings and good accuracy of the method for a diverse set of high-frequency

electromagnetic systems.
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CHAPTER 1

INTRODUCTION

1.1 Overview

This thesis work proposes a computational algorithm for the fast and error con-

trollable parameter-space sweep for electromagnetic (EM) devices and systems. In

the context of this work, the parameter-space consists of the operating frequency,

material properties, and the scanning direction of an infinite antenna array. The fast

parameter-space sweep is achieved via the model order reduction (MOR) paradigm,

namely, the original computational model is approximated and replaced by a much

smaller one (reduced model) that retains the dominant behavior of the original sys-

tem. The fast parameter sweep is then achieved by repeatedly solving the reduced

problem. At the core of this work is the proposed balanced truncation and proper

orthogonal decomposition (BT-POD) algorithm. In this thesis, BT-POD has been

used in conjunction with the tangential vector finite element method (TVFEM), to

study the behavior of various EM systems such as antennas and microwave devices.

1.2 Motivation

Full-wave computational electromagnetics (CEM) methods such as the tangen-

tial vector finite element method have revolutionized the design and optimization of

microwave devices, antennas and RF integrated circuits (RFICs). Instead of prototyp-

ing using textbook approximate theories, or ”rules of thumb”, modern high-frequency

electronics design uses CEM algorithms for virtual prototyping. Such design cycles

1



usually consist of repeatedly updating and solving a parameterized model of the de-

vice or system, to find fields and other engineering figures-of-merit that meet desired

specifications. Since the accuracy of CEM methods such as the finite element method

(FEM) mostly relies on the three-dimensional meshing of the model, highly accurate

modes result in system of equations with very high degrees of freedom (DoF), that

requires miniutes or hours for each solve. Given that a typical design process could

require hundreds or thousands of such solutions to the variation of various input pa-

rameters, the importance of a fast parameters sweep algorithm for CEM is paramount.

The proposed algorithmic developments will impact the design of antenna, RF

and microwave system since they provide design tools that can help engineers design

faster, and better devices or systems. Specifically, this work will impact the design of

EM systems through:

• Fast frequency sweep of ultra-wide band systems.

• Fast parameters sweep and optimization of antenna scanning angles and mate-

rial properties.

1.3 Review of Previous Work

The model order reduction paradigm was first proposed in the control commu-

nity [1], [2], and since then has found many applications in areas such as structural

engineering [3], [4], computational fluid dynamics (CFD) [5], [6], IC interconnect

modeling [7], [8] and electromagnetics simulation [9], [10]. In general, the MOR tech-

niques aim to present a compact computational model with significantly reduced DoF

representation that retains the essential dynamic behavior of the original full order

model.

Much of the theoretical developments in MOR have come from control [1] and ap-

plied mathematics community. The truncated balanced realization (TBR) of Moore

[11] was among the first MOR method that provided an accurate low-order approxi-

2



mation of the state-space system. Later, Glover in [12] extended the work of Moore

by introducing MOR based on the Hankel operator with rigorous error bounds. The

proper orthogonal decomposition (POD) method [13], also known as Principal Com-

ponent Analysis (PCA) [14] or Karhunen-Loeve (K-L) expansions [15], aims to obtain

low-dimensional approximation of the full-order model and has been used by various

engineering applications such as turbulence analysis [16] and structural vibrations

[17]. For general references in MOR, the interested readers are encouraged to refer to

several monographs [18], [19] and journal special issues [20], [21] devoted to this area.

Among all MOR methods, there are two broad categories: (1) Krylov based MOR,

and (2) singular value decomposition (SVD) based MOR. The following sections re-

view the work in these two categories.

1.3.1 Krylov-based MOR

An early development on model reduction of model based parameter estimation

was the asymptotic waveform evaluation (AWE) algorithm of Pillage and Rohrer [22].

The AWE algorithm generates a Pade approximation of the output quantity through

the explicit moment-matching of the transfer function. Although surprisingly suc-

cessful, an efficient AWE lacks robustness due to poor conditioning of the Grahm

matrix. In 1995, Freund and Feldmann [23] proposed the Pade via Lanczos (PVL) al-

gorithm which altogether elliminates the explicit moment-matching of AWE by using

the two-sided Lanczos algorithm [24]. PVL requires approximately similar computa-

tional cost as AWE but is more robust and leads to more broadband reduced models.

Both PVL and AWE can produce non-passive reduced models. When the reduced

model is used to co-simulate hybrid EM/active circuits systems, the non-passivity

of the EM reduced model can lead to overall instabilities. To preserve the passiv-

ity of the reduced model, Odabasioglu and Celik proposed the PRIMA algorithm [7]

which employs the Arnoldi process [25] to generate orthogonal basis for Krylov space.
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Elfadel and Ling later extended the Arnoldi algorithm to multipoint passive model

order reduction using rational Krylov subspace basis [26], where multiple frequency

expansion points are used for the reduction thus leading to reduced models with wider

frequency response. The Krylov MOR has been also extended to second-order dy-

namical system that is encountered in physical systems with loss or gain. Su et al.

[27] applied Krylov vectors and parameter matching to analyze second-order damped

structural dyanmical system, and Bai et al. [28] introduced a second-order Arnoldi

method to solve quadratic eigenvalue problems.

Kyrlov MOR methods are numerically efficient, easy to integrate with various

computational kernels such as finite difference method (FDM), boundary element

method (BEM), FEM, etc. However, Krylov MOR methods have several drawbacks:

(1) They do not have rigorous error bounds and estimation have been proven difficult

or impossible to establish [19], (2) They are numercal unstable due to the break-down

of the inherent Krylov subspace orthogonalization process, and (3) They are difficult

to parallelize due to the global communication required for the orthogonalization

process.

1.3.2 SVD-based MOR

SVD-based MOR has attracted the recent interests of researchers in applied math-

ematics, IC and structural dynamic community. The majority of the published work

is based on the early development of Moore’s work on truncated balanced realization

(TBR) [11]. Although the TBR algorithm provides a solid theoretical foundation

for SVD MOR that is based on the reachability and observability gramians result-

ing from the solution of the Lyapunov eqautions [19], the numerical computation of

the approach is impossible for large-scale systems. Thus significant computational

research has been devoted to developing numerically efficient SVD MOR methods for

large-scale systems. Penzl in [29] was among the first to tackle this problem through
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a cyclic low-rank Smith method. Penzl’s method seeks the approximation of the

low-rank system gramians resulting from large sparse Lyapunov equations. In aero-

nautics, Willcox and Peraire [30] proposed to combine the POD algorithm [16] with

the concept of balancing realization [19] to obtain a low-rank approximation of system

gramians. Li and White [31] presented the Cholesky factors-alternating direction im-

plicit (CF-ADI) to approximate solution of Lyapunov equations. Phillips and Silveira

proposed Poor Man’s TBR [32] for IC interconnect systems, which approximates the

frequency domain system gramians by a small set of frequency domain solutions of

the system. Recently, Losse and Mehrmann [33] proposed to analyze system gramians

conditions for second-order model.

In general, the central idea behind the SVD-based MOR is to seek a balanced

reduction representation of the orignal system through the SVD of system gramians

which requires the solution of Lyapunov equation. The exact SVD MOR methods are

robust, have explicit error bounds and estimation and result to stable reduced system

with minimal DoFs, but are numerically inefficient. The major challenge ahead is to

develop SVD MOR methods that use approximate gramian computations, but lead

to robust, optimal and stable reduced systems.

1.3.3 Full-wave Electromagnetic Analysis via MOR

In CEM community, much of the MOR work relies on the Krylov-based methods

because of their numerical efficiency for very large-scale models (A typical EM model

requires more than 10 thousand DoFs). Miller proposed model based parameter es-

timation (MBPE) [34, 35, 36] by using fitting models obtained from first-principle

models or measured data. Cockrell and Beck [37] used the AWE technique to ana-

lyze frequency-domain EM problems using Method of Moments for radar cross section

(RCS) applications. Slone et al. [38] proposed a multipoint Galerkin AWE (MGAWE)

technique to simulate wideband EM systems, and later the well-conditioned AWE
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(WCAWE) scheme [39] to overcome the ill-conditioning problems of AWE. Weile

and Michielssen used generalized versions of single expansion point Krylov subspace

termed rational Krylov MOR to analyze frequency selective surfaces [40]. Wu and

Cangellaris applied the Krylov MOR to solve for the scattering parameters of mi-

crowave circuits [41]. It should be remarked that in constrast to the multipoint

expansion strategy employed in [38], Weile et al. and Wu et al. applied the single

point expansion Krylov MOR. The adavantage of this technique is the FE matrix

needs to be factorized only once and all Krylov vectors are generated by forward-

backward substitution. However, in most cases the optimal expansion location is a

priori unknown. On the other hand, the multipoint expansion strategy offers flexi-

bility in selecting expansion frequencies and therefore a better quality reduced model

can be obtained to capture the system spectral response.

To mitigate the lack of error control of Krylov MOR methods [19], many re-

searchers proposed the use of adaptive frequency sampling strategies in conjunction

with rational multipoint Krylov MOR. Such methods do not require apriori knowledge

of the expansion points used for the Krylov subspace, leading to broader bandwidth

reduced systems, and have better error control. A early version of adaptive frequency

sampling algorithm was developed in [42] where a rational fitting method to evaluate

the system response with minimal samples. Recently, Schultschik et al. [43] proposed

an adaptive multi-point fast frequency sweep technique based on Krylov subspace

method.

Researchers in EM have used MOR to reduce systems for fast frequency sweep

(single-parameter MOR), but also multi-parameter sweep that involve material prop-

erties. Weile and Michielssen proposed a generalized Krylov MOR method for two-

paramete linear system [44]. In [45], they utilized the proposed method in [44] to

analyze Frequency-Selective Surface (FSS) with parameters of frequency and incident
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angle. Recently, Farle et al. applied a multi-dimensional Krylov MOR to perform

fast sweep based on frequency and material properties [46].

1.4 Summary of Contributions

It will be beneficial to state the main contributions of this work and provide a

clear distinction with previously published work.

The majority of the this research focuses on SVD based model reduction for fast

frequency sweep of frequency domain models arising from FEM discretization. To

the best of our knowledge, it is the first time in the CEM community to introduce

the SVD based MOR technique for EM simulations of large-scale wideband devices

and systems. The proposed BT-POD MOR method shares a similar flavor with low-

rank POD of Willcox [30] and poor man’s TBR method [32] since low-rank gramian

representations are generated. However, unlike these methods that form the balancing

transformations through eigenvalue decomposition or SVD of the POD snapshots, the

present method forms the low-rank Hankel matrix from the POD snapshots, which

is significantly smaller in size, therefore the balancing transformations are computed

considerably more efficient.

This work is the first to use a multi-dimensional model reduction for infinite array

problems in electromagnetics, and according to the author’s knowledge, the first to

extend SVD based methods to multi-parameter reduction.

Last but not least, the adaptive frequency sampling strategy proposed in this

work differs from all the adaptive methods summarized in section 1.3.3. In contrast

to finding error in each adaptive step based on interpolated scattering parameter [42]

or error at every sweep point [43], the adaptive BT-POD uses goal-oriented indicators

that are based on the error evaluation of recovered fields on the device ports, leading to

a efficient process of seeking minimal number and optimal locations of the parameter

samples.
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1.5 Thesis Outline

This thesis is organized as follows. In chapter 2, we will summarize the frequency

domain TVFEM model used for the model reduction and describe the theory and

algorithic developments behind the BT-POD. Numerical results will demonstrate the

validity and efficiency of the proposed methodology. In chapter 3, the BT-POD

algorithm is extended to multiple parameters. The work is limited to frequency and

material parameters and scan angles of infinite array TVFEM models. The BT-POD

algorithm is extended via an adaptive POD sampling strategy proposed in chapter 4,

and a microwave waveguide filter problem is shown to verify the algorithm.
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CHAPTER 2

FAST FREQUENCY SWEEP WITH BALANCED
TRUNCATION - PROPER ORTHOGONAL

DECOMPOSITION

This chapter presents a frequency-domain model-order reduction scheme using the

balanced truncation and proper orthogonal decomposition (BT-POD) for first-order

dynamical systems resulting from tangential vector finite element method (TVFEM)

[47]. Even though the theoretical developments assume first order or loss-less second

order dynamical systems, the method is applicable to general second order systems

arising from the TVFEM models of general EM systems. The proposed model reduc-

tion technique is capable of modeling wideband EM systems, which is considerably

more challenging than that of narrowband or multiband systems, due to the large

information capacity of the wideband systems. The proposed model reduction tech-

nique seeks the approximate (low-rank) reachability and observability gramian of the

system through the POD sampling in frequency domain. The present approximation

is equivalent to approximating the gramian computation by a numerical quadrature,

over the frequency bandwidth of interest. This approach shares the similar flavor with

method of snapshot POD [30] and Poor Man’s TBR [32] since all methods seek for a

balancing transformation through sampling in the frequency domain. However, the

proposed method offers a significant computational adavantage because it attempts

to generate the balancing transformation through the SVD of the low-rank Hankel

matrix [19], instead of explicitly performing the eigenvalue decomposition (EVD) of

the two gramians. Following such approach, the balanced transformation matrices

are used in a Petrov-Galerkin (oblique) projection scheme to reduce the original sys-
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tem. The numerical examples in this section include three different EM systems,

a band-pass microstrip filter, a broadband BAVA antenna element and an infinite

Vivaldi array. Through the careful analysis of these examples, various results are pre-

sented that validate the proposed method and demonstrate its numerical efficiency

and accuracy.

2.1 Boundary Value Problem

The goal is to model the dynamical (frequency) behavior of broadband electro-

magnetic systems by using the time-harmonic (frequency-domain) TVFEM. Figure

2.1 shows such a general system where various materials, excitation and boundary

conditions are present. Such physical models are encountered in electromagnetic

radiation, wave-guided, or scattering problems. The time-harmonic representation

boundary value problem (BVP) of Figure 2.1 reads as:

Seek E ∈ H0 (curl; Ω) such that

∇× 1
µr
∇× E− εrk2

oE = −jωµ0J
imp, in Ω,

n̂× E = 0, on ΓPEC ,

n̂× 1
µr
∇× (E− Ei) + jko

√
εr
µr

n̂× (E− Ei)× n̂ = 0, on ∂Ω,

(2.1)

where Ω is a finite computational domain, E is the total electrical field inside Ω, Jimp

is a given port excitation current, Ei = E e−jki·r is the given incident field where ki

denotes the direction of the incident plane wave. The relative permittivty and relative

permeability of the media are denoted by εr, µr, respectively, and k0 = 2πf
√
ε0µ0 is

the free-space wave-number at operational frequency f . The outward pointing unit

vector normal to the bounding surface is denoted by n̂. It is noted that the last equa-

tion in Equation (2.1) refers to the first order absorbing boundary condition (ABC)

[48] applied at the truncation surface ∂Ω, and is used to eliminate unwanted reflection

from ∂Ω, in an attempt to emulate the behavior of unbounded free-space. It is also
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Figure 2.1. A generic EM system used for the developments in this chapter.

worth noting that the proposed BT-POD algorithm is not be restricted to the above

boundary condtions as it will be demonstrated by the numerical examples in this

chapter. In fact BT-POD has been used in conjunction with domain decomposition

method that use Robin type transmission boundary conditions [49] and Floquet cell

TVFEM that make use of periodic boundary condition [50].

The electrical field E is sought in the space of tangentially continuous fields defined

by

H0 (curl; Ω) = {u ∈ H0 (curl; Ω) |n̂× u = 0 on ΓPEC ,u ∈ H (curl; Ω)}, (2.2)

where

H (curl; Ω) = {u ∈ H (curl; Ω) | ∇ × u ∈ (L2 (Ω))3 ,u ∈ (L2 (Ω))3}, (2.3)

where L2 (Ω) is the set of square integrable functions over computational domain Ω.
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2.1.1 Variational (Weak) Statement

The BVP statement in 2.1 will be solved via the finite element method which is

based on a variational reformulation of the BVP. This section will breafly outline the

procedure, used to arrive at a continuous variational statement.

From the partial differential equation in (2.1), a residual functional can be formed

as

r (E) = ∇× 1

µr
∇× E− k2

oεrE + jωµ0J
imp ∈ H0 (div; Ω) , (2.4)

which belongs to the normally continuous vector function space defined by

H0 (div; Ω) = {u ∈ H0 (div; Ω) | n̂ · u = 0 on ΓPEC ,u ∈ H (div; Ω)}, (2.5)

where

H (div; Ω) = {u ∈ H (div; Ω) | ∇ · u ∈ (L2 (Ω))3 ,u ∈ (L2 (Ω))3}. (2.6)

Instead of searching for electrical field E that satisfies (2.1), the goal will be to find

an electric field E that makes residual functional r (E) zero. A systematic approach

of achieving this goal is to try various functions E ∈ H(curl,Ω) into r(E) and then

test each residual functional r (E) with appropriately chosen functions v through an

appropriately defined duality-paring. The result of such procedure leads to

〈r (E) , v〉H(div)×H(curl) = 0,

where

〈r (E) , v〉H(div)×H(curl) =

∫
Ω

r (E) · v dV.

After some algebraic manipulations that involve integration by parts and enforcement

of the absorbing boundary condition (2.1), results the following variational statement
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Seek E ∈ H0 (curl; Ω) s.t.

b (E,v) = g (v) , ∀ v ∈ H0(curl; Ω), (2.7)

where the bilinear form b and the linear from g are given by

b (E,v) =

∫
Ω

∇× v · 1

µr
∇× E dr3 − k2

o

∫
Ω

v · εrE dr3

+ jk0

∮
∂Ω

n̂× v · n̂× E dr2,

g (v) =

∮
∂Ω

n̂× v · n̂×
(
jkoE

i − n̂× 1

µr
∇× Ei

)
dr2

− jωµ0

∫
Ω

Jimp · v dr3.

2.1.2 Discrete Variational (Galerkin) Statement and TVFEM

The solution of the variational statement (2.7) is sought via the Galerkin dis-

cretization procedure of the continuous function space H0 (curl; Ω) in (2.2). The

solution of the original problem is sought through defining sequences of similar prob-

lems over finite dimensional subspaces Vh ⊂ H (curl; Ω). The discrete variational

(Galerkin) statement reads as

Seek Eh ∈ Vh ⊂ H0 (curl; Ω) s.t.

b (Eh,vh) = g (vh) , ∀ vh ∈ Vh ⊂ H0(curl; Ω) (2.8)

where

Vh = {u ∈ H0 (curl; Ω) |u|κ ∈ ND1 (κ) , κ ∈ K},

where ND1 denotes first Nedelec family of tangentially continuous finite element

spaces [51], where κ is a tetrahedron in the mesh K of the geometry (K = ∪i κi).

2.1.3 Finite Element Discretization

The finite element basis ND1(κ) used in this work is characterized by the triplet

(K Pκ Σκ), where
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K = tetrahedrons,

Pκ =
(
P̃1

)3

⊕ S2, (2.9)

Σκ = {Σe ∪Σf},

where K is the set of the elements, Pκ is the set of polynomials and Σ is the set of

degrees-of-freedom. In (2.9) P̃k is the space of kth order homogeneous polynomials,

Sk = {u ∈ (P̃k)
3 |x · u = 0} and the FEM DoFs on tetrahedron edges e and faces f

are linear functionals given by:

Σe = {
⋃

e∈κ,p∈[0,1]

`e,p(u),where `e,p(u) =
1

|e|

∫
e

qe,p u · t̂ dt,∀qe,p ∈ P1(e)},

and

Σf = {
⋃

f∈κ,p∈[0,1]

`f,p(u),where `f,p(u) =
1

|f |

∫
f

qf,p · u× n̂f dS,∀qp,f ∈ (P0(f))2},

where |e| is the edge length and |f | is the face area. The vector n̂f is the outward

pointing unit normal on the face f . The physical meaning of the above degrees-of-

freedom is that they represent the moments of the circulation of the electric field

across the tetrahedron edges, or the surface moments of the tangential fields across a

face. Using the above FEM triplet, the FEM basis wi ∈ ND1(κ) is constructed, the

fields on the trial function space Vh are expanded as

Eh =
N∑
n=1

eiwi, (2.10)

where the test function space

V ∈ span{w1,w2, · · · ,wN}. (2.11)
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Substituing (2.10) and (2.11) into the discrete variational statement the following

TVFEM matrix equation can be obtained

(
s2M + sD + S

)
e = b,

y = CTe,
(2.12)

where e = [e1, e2, · · · , eN ]T ∈ CN , s = jω is the Laplace frequency

Sij =

∫
Ω

∇×wj ·
1

µr
∇×wi dr

3,

Dij =
1

c

∮
∂Ω

n̂×wj · n̂×wi dr
2,

Mij =
1

c2

∫
Ω

wj · εrwi dr
3, (2.13)

bj =

∮
∂Ω

n̂×wj · n̂×
(
s

c
Ei − n̂× 1

µr
∇× Ei

)
dr2

− sµ0

∫
Ω

wj · Jimp dr3,

Cij = sµ0

∫
Ω

wi · Jmodej dr3,

where c denotes the speed of light in free space. {S,D,M} ∈ CN×N where N denotes

the total number of DoF in the TVFEM model, e ∈ CN×1 is a vector with the electric

fields DoFs, and C ∈ CN×P is a matrix that maps the electric field to the engineering

quantity of interest, where in this specific case it has been chosen to be the scattering

parameter at each port in the model. Here we have assumed that there are P ports

in the EM model, and y ∈ CP×1 represents the system outputs that often are the

reflection coefficients or scattering parameters at each port. Note that equation (2.12)

is the frequency (dynamical) representation of the TVFEM model that includes lossy

or active linear media, conductors, wave ports, and ABC boundary condition. This

general form remains unchanged when driven infinitely periodic problems such as

infinite antenna arrays or frequency selective surfaces, where the explicit form of M

and S must be modified.
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Within the context of this work, we only consider the EM radiation problems

which implies Ei = 0, thus the right-hand-side b could also be written as

b = C f ,

where f = [f1, f2, · · · , fP ]T ∈ CP×1 is the excitation coefficient vector of EM system

ports. Finally, the TVFEM model considered in this work is given as follows

(
s2M + sD + S

)
e = C f ,

y = CTe.
(2.14)

2.2 First-order Linear Time Invariant System Gramians

Before developing the proposed algorithm, we first review some theory for the

general first-order dynamical time systems of the form:

d
dt

x(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(2.15)

where A ∈ RN×N ,B ∈ RN×P ,C ∈ RP×N ,D ∈ RP×P are the constant linear maps

of a P -input, P -output linear system. x ∈ RN×1 is the state of the system, while

u ∈ RP×1 is the input function and y ∈ RP×1 is the output function.

The frequency domain representation of (2.15) is obtained via the Laplace trans-

form,

sx = Ax + Bu,

y = Cx + Du.
(2.16)

In control theory, a set of positive definite matrices called gramians are associated

with the first-order LTI system of (2.16) [19]. These gramians play an important role
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in system input-output manipulation. Namely, the reachability gramian PPP ∈ RN×N

allows to identify the extent to which a state of the system x can be manipulated

through the input u, whereas the observability gramian QQQ ∈ RN×N encodes the

information of state-to-output. Physically, system gramians are related to the energy

that can be coupled to the system and from the system, for a given set of inputs and

outputs. More specifically, the reachability gramian PPP and observability gramian QQQ

define the following energy inner products,

Er = x∗PPP−1x,

Eo = x∗QQQx,
(2.17)

where Er denotes the minimum energy required to steer the system from state 0 to

x, while Eo is the maximum energy that could be obtained by observing the system

output at state x with zero excitation. Implicitly, the above definition implies that

the eigenvalue decomposition (EVD) of the gramian could identify the modes (states)

that do not contribute a lot of energy in the output or are not ”energized” by the

input. In the words of mode analysis, this addresses that such low energy modes can

be eliminated all together leading to a reduced model representation of the original

system model. This fundamental concept is behind any SVD-based MOR technique.

The present work will follow the same principle for MOR.

The two gramians of a first order LTI system satisfy the continuous-time Lyapunov

equations [19],

APPP +PPPA∗ + BB∗ = 0,

A∗QQQ+QQQA + C∗C = 0.
(2.18)

Since Lyapunov equations are matrix-matrix linear equations and the gramians

are dense matrices even when A,B and C are sparse, solving such system to obtain
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PPP and QQQ is impractical for large-scale problems (e.g. N > 103). Therefore obtaining

the gramians from (2.18) is a major computational bottleneck for SVD-MOR.

This work will attempt to an alternative computation of gramians that is based

on the following lemma.

Lemma 2.2.1 (Frequency-domain representation of gramians) If PPP and QQQ are the

continuous-time gramians of a stable first order LTI system given by (2.16) that satisfy

(2.18), then they can be represented in the following frequency-domain form

PPP =
1

j2π

∫ j∞

−j∞
(sI−A)−1 BB∗ (−sI−A∗)−1 ds,

QQQ =
1

j2π

∫ j∞

−j∞
(−sI−A∗)−1 C∗C (sI−A)−1 ds.

(2.19)

Proof Left multiply with (sI−A)−1 and right multiply with (−sI− A∗)−1, the first

equation of (2.18) becomes

PPP (−sI−A∗)−1 + (sI−A)−1PPP = (sI−A)−1 BB∗ (−sI−A∗)−1 .

Thus a complex s-plane integration is obtained as

∮
C

PPP (−sI−A∗)−1 ds+

∮
C

(sI−A)−1PPP ds =

∮
C

(sI−A)−1 BB∗ (−sI−A∗)−1 ds,

(2.20)

where integral contour C = CI +C∞ is shown in Figure 2.2. In this figure, the poles

of (sI−A)−1, i.e., the eigenvalues of A are denoted by crosses, whereas the poles of

(−sI−A∗)−1 which corresponds to the adjoint system, i.e., the eigenvalues of −A∗

are denoted by dots. The integration contour C is defined such that it includes all the

poles of the system while all the poles of the adjoint system are exlucded. According

to Cauchy-Goursat theorem and Cauchy integral formula [52],

∮
C

PPP (−sI−A∗)−1 ds = 0,
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∮
C

(sI−A)−1PPP ds

= j2π
n∑
i=1

(sI−A)−1PPP (s− si)

= j2πPPP

where {si, i = 1, 2, · · · , n} are the eigenvalues of A.

The right-hand-side of (2.20) is further written as

∮
C

(sI−A)−1 BB∗ (−sI−A∗)−1 ds

=

∫
CI

(sI−A)−1 BB∗ (−sI−A∗)−1 ds+

∫
C∞

(sI−A)−1 BB∗ (−sI−A∗)−1 ds.

At C∞, s→∞, thus

lim
s→∞

(sI−A)−1 BB∗ (−sI−A∗)−1 = 0.

Therefore,

∮
C

(sI−A)−1 BB∗ (−sI−A∗)−1 ds =

∫ j∞

−j∞
(sI−A)−1 BB∗ (−sI−A∗)−1 ds,

and this leads to

PPP =
1

j2π

∫ j∞

−j∞
(sI−A)−1 BB∗ (−sI−A∗)−1 ds. (2.21)

The observability gramian can be obtained in the similar way.
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Figure 2.2. Contour integration over s-plane.

Alternatively, the two gramians in (2.19) can be rewritten in terms of system

transfer functions as,

PPP =
1

j2π

j∞∫
−j∞

H(s)H∗(s) ds,

QQQ =
1

j2π

j∞∫
−j∞

H∗a(s)Ha(s) ds,

(2.22)

where the transfer function H is that of the forward form and Ha that of the adjoint

form are given as

H(s) = (sI−A)−1 B,

Ha(s) = C (−sI−A∗)−1 .
(2.23)
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The frequency domain representation of the gramians in (2.26) suggests an alter-

native computation that bypass altogether the expensive solution of the Lyapunov

equations. It is noted that this is the key observation that is exploited in this work.

2.3 TVFEM System Gramians Approximation

Equation (2.14) describes the dyanmical behavior of an EM system formulated

by TVFEM with input f , output y and the electric field e, i.e., system internal state

variables. This equation describes a second-order system which tends to be more

difficult and expensive to solve than first-order system. In the following derivation, we

assume that the dissipation term in (2.14) denoted by sD is only perturbative, which

means that the losses is considerablly small thus the form of first-order gramians

will be assumed valid. Although this assumption is not strictly true for radiation

and scattering problems, it has been found through numerical observations to give

sufficiently good results. It must be highlighted here that although the form of the

gramian is approximated to be first order, the full second order transfer function

has been used for the computation of the gramians from a number of numerical

experiments. Therefore approximating (2.14) to the first-order LTI form:

(s′M + S)e = C f ,

y = CTe,
(2.24)

where s′ = s2.

The benefit of (2.24) is we can numerically solve the TVFEM system gramians

through applying the LTI system gramians formulation in terms of system transfer

functions, which is given in (2.19) and (2.23). Thus two transfer functions for forward

and adjoint form of the original TVFEM system (2.14) are introduced by
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H(s) = (s2M + sD + S)
−1

C ∈ CN×P

Ha(s) = C∗ (s2M− sD + S)
−1 ∈ CP×N

(2.25)

It is observed that the integration range for system gramians found in (2.19) covers

the entire complex imaginary axis which is not reasonable for real computations. An

intuitive way to tackle this problem is to convert the integration along only the postive

complex imaginary axis. Consider the quantity,

H′(s) = H(s)H∗(s),

and

H′(−s) = H(−s)H∗(−s)

=
(
s2M− sD + S

)−1
CC∗

(
s2M + sD + S

)−1

= H∗(s)H(s)

= H′(s).

Therefore for all casual systems, H′(s) = H(s)H∗(s) is an even function over the

s-plane. Similarly, the same conclusion to the adjoint quantity H′a(s) = H∗a(s)Ha(s).

Thus system gramians integration in (2.19) can be elegantly written as

PPP =
1

πj

j∞∫
0

H(s)H∗(s) ds,

QQQ =
1

πj

j∞∫
0

H∗a(s)Ha(s) ds.

(2.26)

As mentioned before, this work will attempt to compute system gramians by the

complex integration over the imaginary Laplace axis instead of solving the Lyapunov
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equations. This integration problem can be tackled through the use of numerical

quadratures. It is apparant to observe that thse quadratures would require the evalu-

tion of integrant matrix H(s)H∗(s) at each discrete sampling frequency si, therefore

require the solution of a TVFEM model at that frequency. In this chapter, the sim-

plest integration rule based on the Riemannian sum will be used. Following such

approach, based on the infinite gramians expression in (2.26), system gramians over

[smin, smax] can be approximated as

P̃PP =
smax − smin

jKπ

K∑
k=1

H(sk)H
∗(sk),

Q̃QQ =
smax − smin

jKπ

K∑
k=1

H∗a(sk)Ha(sk),

(2.27)

where K is the total number of sampling points. Figure 2.3 briefly illustrates the

Riemannian sum approximation of system reachability gramian.

Figure 2.3. System reachability gramian approximation via Riemannian sum.

It should be remarked that such approach is considered as Proper Orthogonal

Decomposition (POD) method [53] which is a powerful and elegant way to obtain
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a low-dimensional descriptions of high-dimensional system. A careful observation of

(2.27) results that the gramians can be expressed in the following matrix form,

P̃PP = UU∗,

Q̃QQ = L∗L,
(2.28)

where

U =

√
smax − smin

jKπ
[H(s1) H(s2) · · · H(sK)] ∈ CN×KP

and

L =

√
smax − smin

jKπ
[Ha(s1) Ha(s2) · · · Ha(sK)] ∈ CN×KP

where P is the total number of ports inside the EM system. It is worth noting

that (2.28) is the most important step of the proposed BT-POD algorithm. (2.28)

suggests a low-rank Choleski factorization of the gramians. The factorized form of

(2.28) resembles the Choleski factorization of the gramian matrices, thus L and U are

the low-rank Choleski factors of system gramians. More importantly, the low-rank

factors contain the same information as the gramians, but require significantly lower

memory for storage (N × KP instead of N × N) since KP � N due to the rank

deficient nature of the system gramians.

As can be seen, the computation of the low-rank Choleski factors require the so-

lution of the full model at a set of discrete sampling frequency points in the entire

bandwidth for each port excitation. As will be explained later, this part of computa-

tion is the most time consuming step in the proposed BT-POD algorithm. However,

the efficiency can be significantly improved by performing a parallel computation for

different frequency points and port excitation without any communication between

different processor nodes.
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2.4 Model Balancing and Truncation

Many model order reduction techniques perform the reduction by observing the

input and the output separately thus leading to a reduced model that is not optimal.

In a balanced MOR technique like BT-POD, system states that are simultaneously

difficult to reach and observe are identified and discarded at the truncation step. Here

the main question is how to find a transformation that identifies such states.

In contrast to previous work [30], [32] that attempts to perform the EVD of PPP

and QQQ, this work will attempt a computationally more efficient approach based on

the low-rank Hankel matrix [19]. The Hankel matrix is given in terms of the Choleski

factors,

HHH = U∗L, (2.29)

where in the case of low rank U and L, the dimension of Hankel matrixHHH is KP×KP .

The Hankel matrix is in general non-symmetric and its diagonalization

HHH = WΣV∗ (2.30)

are the Hankel singular values (HSVs) and W and V are the left and right singular

vectors. To further reduce the size of the reduced model, a truncation strategy based

on the HSVs is considered. The HSVs and vectors are partitioned as

Σ =

Σ1

Σε

 , (2.31)

and

W = [W1 Wε], V∗ = [V1 Vε]
∗. (2.32)

In (2.31) and (2.32), the singular values and vectors have been partitioned into two

groups denoted by subscripts 1 and ε. Subscript ε is to denote singluar values (and
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corresponding singular vectors) that are below a user defined, small truncation value,

which is used to discard low energy modes (system states). It should be emphasized

that the HSVs rapidly decay to zero, with a decay rate which heavily depends on the

information capacity of the system. Only the modes with large singular values carry

enough energy and that will be the modes that are used to form the reduced system.

Some research work about estimating the bounds of Hankel singular values have been

done in the past, and those can be found in [19].

A typical decay of Hankel singular values from an EM model is given in Figure

2.4 where a truncation tolerence ε = 10−4 leads to a reduced model with n = 12

significant modes. It is also worth noting the above process closely resembles the

Karhunen-Loeve (K-L) expansion [15] of stochastic systems or principal component

analysis (PCA) [54].

Figure 2.4. Truncation on Hankel singular values.

In LTI system theory, the system is reachable or observable only if the reachabil-

ity or observability gramian matrices are diagonalizable via Shure decomposition as
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follows

DPPP = TPPP T∗, DQQQ = T−∗QQQT−1, (2.33)

where DPPP and DQQQ are diagonal matrices. The concept of balancing is to find such

non singular transformation T that minimizes the following quantity,

min
T

trace
[
TPPP T∗ + T−∗QQQT−1

]

Or in other words, to find T such that DPPP = DQQQ.

The balancing transformation is achieved through the following theorem.

Theorem 2.4.1 (Balancing transformation) Given the reachable, observable and sta-

ble first order LTI system in (2.16), and the corresponding gramian PPP and QQQ, the

transformation

T ≡ TL = V∗1L
∗,

T−1 ≡ TR = UW1

(2.34)

is a balancing transformation.

Proof

DPPP = TPPP T

= TLPPP T∗L

= (V∗L∗) UU∗ (LV)

= V∗ (L∗U) (U∗L) V

= V∗ (VΣW∗) (WΣV∗) V

= (V∗V) Σ (W∗W) Σ (V∗V)

= Σ2
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DQQQ = T−∗PPP T−1

= T∗RQQQTR

= (W∗U∗) L∗L (UW)

= W∗ (U∗L) (L∗U) W

= W∗ (WΣV∗) (VΣW∗) W

= (W∗W) Σ (V∗V) Σ (W∗W)

= Σ2

Therefore DPPP = DQQQ, it is a balancing transformation.

2.5 TVFEM Model Reduction

The reduced TVFEM model through a Petrov-Galerkin projection with the trans-

formation matrices in (2.34) is obtained as

(
s2M̃ + sD̃ + S̃

)
ẽ = B̃ f̃ ,

ỹ = C̃ ẽ,
(2.35)

where

S̃ = TL S TR ∈ Cn×n

M̃ = TL M TR ∈ Cn×n

D̃ = TL D TR ∈ Cn×n

B̃ = TL C ∈ Cn×P

C̃ = CT TR ∈ CP×n

(2.36)

Having reduced the full TVFEM model to that of (2.35), a full bandwidth sweep of

system response can be performed very fast through a direct solver since the size of
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the reduced system n satisfies

n ≤ KP

while in most of the situations, KP < 50.

2.6 Algorithm Summary and Complexity Analysis

To better understand the BT-POD approach for frequency parameter sweep, an

algorithm description (Algorithm 1) is provided that includes the most important

steps.
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Algorithm 1 : BT-POD MOR for TVFEM
INPUT:
ε: HSVs truncation tolerance
tols: iterative solution tolerence
K: expansion points number on system Gramian integral dimension
smin smax: minimum and maximum frequency
M : sweep number (M � K)

OUTPUT:
n: dimension of reduced-order system
ỹ: output parameter of interests

DEFINITIONS:
UN×KP : matrix concatenated by Hi, for i: 1→ KP
LKP×N : matrix concatenated by Hi

a, for i: 1→ KP
P : total number of ports

s = jω: Laplace frequency

1: Assemble global FEM matrices M, D, S and excitation matrix B, C.

2: POD sampling
for sk (k : 1→ K)

Find uniformly distributed sk
for port p : 1→ P

Find excitation coeff. fp
Solve iteratively (s2M + sD + S)e = Bfp, H(k−1)P+p = e

[Solve adjoint problem iterative (s2M− sD + S)e = Cfp, H
(k−1)P+p
a = e]

end for
Concatenate Hk,p on U and Hk,p

a on L files, update U∗L
end for

3: Perform SVD on Hankel Matrix
U∗L=WΣV∗

4: Truncate SVD (W, Σ, V∗):
Σ1

n×n: σi > ε, for i : 1→ n
W = [W1 Wε], V∗ = [V1 Vε]

∗

5: Construct balancing transformation matrices
TL = V1

∗L∗ TR = UW1

6: Construct reduced system matrices M̃, D̃, S̃, B̃ and C̃ by
M̃ = TL M TR D̃ = TL D TR S̃ = TL S TR B̃ = TL B C̃ = CT TR

7: Perform frequency sweep
for sm (m : 1→M) Solve reduced system via a direct solver

(s2
mM̃ + smD̃ + S̃)ẽ = B̃ f̃m

ỹ = C̃ ẽ

end for
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Some issues with the proposed algorithm are still open. All sampling frequencies

are chosen as uniformly distributed over the entire frequency band, and the total

number of POD samples is empircally deduced since the priori knowledge of the

system response is unknown. One possible solution to tackle this is to employ the

adaptive sampling strategy which will be presented in Chapter 4.

The computational complexity of the proposed BT-POD algorithm are briefly

discussed here. The computational cost for the POD sampling is the dominant part,

and is estimated to be 2KP · O(N1.1−1.3) since the iterative solver pMUS [55] is

used to solve the forward and adjoint problem for each port and frequency sample.

Table 2.1 shows the computational complexity both in time and memory for the most

important steps of proposed algorithm.

Table 2.1. BT-POD computational time & memory complexity.

POD Sampling SVD Reduction Sweep

Time 2KP ·O(N1.3) O(K3) K2·O(N) + nK2·O(N) O(n3)
Memory PO(N)+γ·O(N) O(K2) n·O(N) O(n2)

Electromagnetic information theory suggests that the sampling number K ∝ kD

where k is the wave number and D denotes the size of TVFEM domain. For three-

dimensional problems, the relation between sampling number K (or truncated size

n) and the number of DoFs N is

K ∝ αN
1
3

n ∝ βN
1
3

where α, β are very small constant. Therefore the algorithm worst case scaling is

O(N1.66) in time and O(N1.3) in memory.
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Although the POD sampling is the dominant time-consuming part, fortunately

this part is embarrassingly parallel and without any communication required between

different cores. This advantage and the resulting time saving will be presented and

verified in the following numerical examples.

2.7 Numerical Results

In this section the numerical results for the wideband frequency parameter sweep

via the BT-POD MOR of various TVFEM models will be presented. To illustrate

the validity of proposed method, systems with different operation bandwidth and

EM boundary conditions will be used. The three representative examples include a

narrowband two-port printed microwave filter, a wideband antenna and a wideband

infinite array. Alongside to the frequency response, various intermediate algorithm

quantities and parameters will be presented to verify the controllable error and nu-

merical efficiency (e.g. serial v.s. parallel run time) of BT-POD.

Throughout this section, the point-by-point TVFEM refers to the direct TVFEM

solution at each frequency point with iterative solution tolerence chosen as ε = 10−3

except when stated otherwise. The TVFEM iterative solver is based on a hierarchical

multigrid (pMUS) method [55]. All serial computations were performed in a PC with

3.2 GHz Intel Pentium dual-core processor and 2 GB RAM. Parallel simulations were

performed on a 11 node (88 processor) MacPro cluster with ten 2.8 GHz Xeon quad-

core processors and 4 GB RAM per core. All codes were implemented in C++, gcc

4.3.3 and the openMPI library on double precision complex arithmetic.

2.7.1 Microstrip Low-pass Filter

The first problem is a microstrip low pass filter that has been numerically and

experimentally studied in [56]. This is a classic example, and is used to validate the

accuracy of proposed algorithm. Apart from demonstrating the validity of BT-POD,
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a study of the effect of HSV truncation tolerance on the overall accuracy will be

presented.

The two-port microstrip filter is shown in Figure 2.5 along with the dimensional

parameters. The filter is printed on a dielectric with εr = 2.2 and its response com-

bines both wideband and notch characteristics. The problem is modeled with 80, 332

second-order TVFEM unknowns and first-order absorbing boundary conditions on

the top and side boundaries. The s-parameter frequency response of the filter com-

puted by BT-POD are given in Figures 2.6(a) (b) and 2.7(a) (b) when ten uniformly

distributed sampling points in the desired frequency range are used. The BT-POD

results are compared with the point-by-point TVFEM sweep which is considered the

reference. As seen in Figures 2.6-2.7, the results show very good agreement, not only

with the point-by-point sweep, but with measurements as well. The measurements

deviate from both methods only at the higher frequency region, but such deviation is

not surprising since both measurements and simulations have their own limitations

in that frequency region (e.g. connectors, discretization, etc). The downward arrows

on the horizontal axis indicate the POD frequency sampling (expansion) points used

in the integral approximation of the gramians. Embeded in these plots is the result

obtained via an adaptive multipoint Krylov algorithm [10]. To study the truncation

tolerence effects on the s-parameter error are shown in Figure 2.8, two different tol-

erences are used (ε1 = 10−3 and ε2 = 10−7). The two cases are plotted in Figure 2.8

where (a) shows the Hankel singular values and respective reduced order size where

as (b) depicts the |s11| error v.s. frequency. It is obvious that smaller truncation

threshold yields more accurate reduced-order model, thus lower s-parameter errors.

The important point in this plot is that the truncation tolerence ε is approximately

of same order as the error on |s11|, which indicates that ε can be used as an error

indicator. The computational statistics for this simulation is listed in Table 2.2. It
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is worth noting that BT-POD is as fast as the adaptive Krylov, but the former does

not utilize a adaptive algorithm, that could potentially speed-up the computation.
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Figure 2.5. 3D geometry and dimensions of microstrip low-pass filter.
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Figure 2.6. s11 frequency response comparison of BT-POD with point-by-point
TVFEM sweep, a Krylov MOR and measurements [56]; (a) magnitude; (b) phase.
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Figure 2.7. s21 frequency response comparison of BT-POD with point-by-point
TVFEM sweep, a Krylov MOR and measurements for Microwave low-pass filter in
Figure 2.5; (a) magnitude; (b) phase.
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Figure 2.8. Effects of HSV truncation tolerence on the |s11| error of the microstrip
low-pass filter in Figure 2.6(a); (a) Hankel singular values truncation with different
tolerence; (b) corresponding |s11| error vs frquency.
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Table 2.2. Computational statistics for low-pass filter problem.

Method Sweep # Time(hh:mm:ss) Speedup Memory

Point-by-point TVFEM 250 0:50:12 - 125 MB
Krylov MOR 250 0:4:59 10.07 75 MB

Serial BT-POD 250 0:4:54 10.24 125 MB

2.7.2 Isolated BAVA Element

In this example, an isolated element of a broadband Balanced Antipodal Vivaldi

Antenna (BAVA) is used to demonstrate the numerical performance of BT-POD for

radiation problems and to study the effects of different number of POD frequency

sampling points on s-parameter error. The simulated structure is adopted from [57]

and its geometry and dimensions and material parameters are shown in Figure 2.9.

For simulation environment, this antenna is excited by a wave port from the back of

the ground plane, and is enclosed by a first-order ABC terminated air box placed at

least 2λ away from the element, where λ is the wavelength in free space at highest

frequency 8.5 GHz. The entire computational domain is discretized with 462,298

second-order TVFEM unknowns. The s11 frequency response of the antenna is given

in Figure 2.10(a) and (b), where the point-by-point computation superimposed with

the BT-POD results for two different POD sampling (frequency expansion) numbers.

It is noted that for only six expansion frequency points the BT-POD is able to capture

accurately the response in the entire band 1.5− 8.5 GHz. It is worth noting that the

peak memory for BT-POD never exceed that required by the point-by-point TVFEM

sweep, while the time savings are approximately two orders-of-magnitude. Figure

2.11(a) shows that six POD sampling points can maintain -20dB s11 error over the

entire 8:1 band. Figure 2.11(b) depicts s11 relative error in Hankel norm H2 vs.

POD sampling number, it is observed that the relative error stagnates when the

POD sampling number reaches 10, this is believed to be due to the finite tolerance

tols = 10−3 employed in the iterative solution. Detailed computational statistics for
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this example are listed in Table 2.3, where both serial and parallel implementations of

BT-POD are compared. These results have been obtained using 100 frequency sweep

points within the band for both methods. From this table two important conclusions

can be drawn (a) BT-POD is orders of magnitude faster than the point-by-point

(discrete) sweep, and (b) the parallel scalability for this problem is above 90% for 6

processors.
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Figure 2.9. 3D geometry and dimensions of the BAVA
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Figure 2.10. Effect of POD sampling number for an isolated BAVA element example;
(a) |s11| vs frquency; (b) BT-POD s11 phase vs. frequency.
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Figure 2.11. Effect of POD sampling number for an isolated BAVA element; (a)
|s11| error vs. frequency; (b) BT-POD H2 error of |s11| vs. sample point number.
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Table 2.3. Computational statistics for BAVA problem.

Method Time(hh:mm:ss) Speedup Memory

Point-by-point TVFEM Sweep tFEM = 11:38:40 - 825MB
Serial BT-POD ts = 00:42:05 tFEM/ts = 16.60 825MB

Parallel BT-POD tp = 00:07:41 ts/tp = 5.48 825MB×6

2.7.3 Infinite Vivaldi Array

The final example is used to demonstrate the versatility of BT-POD to various EM

boundary conditions and non-LTI systems through the simulation of the radiation by

an infinite Vivaldi array. In this problem, the effects of the iterative solver tolerance

and POD sampling points choice on the s11 error will be studied. To the best of our

knowledge, this is the first time that MOR is used to speed-up simulations of 3D

infinite periodic structures. An infinite periodic problem is modeled using periodic

boundary conditions that are highly dispersive [50] and do not comply with the LTI

system theory, thus traditional MOR methods fail to predict the dynamic behavior of

such systems. On the other hand, BT-POD appears to work very well on such system

because of its simple POD sampling approach and its reliance on system gramians

and Hankel singular values instead of system eigenvalues.

The simulated array structure is shown in Figures 2.12(a) and (b). The infinite

array is modeled with non-conforming mesh periodic boundary conditions adopted

from [50]. The total number of second-order TVFEM unknowns in the computational

domain is 158,024 and ABC BCs is used at the top boundary. A number of exper-

iments are presented to demonstrate the benefits of proposed methodology. A plot

of the active reflection coefficient versus frequency is plotted over three octaves of

bandwidth in Figure 2.13(a). The figure shows the reference response along with two

8 POD samples results, one obtained via iterative tolerence chosen as tols = 10−3 and

the other with tols = 10−2. It is noted that very good accuracy is achieved with only

eight expansion (sample) frequency points and iterative solver tolerance of 10−3. The
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fact that even high iterative solver tolerance values, e.g. 10−2, are able to predict the

response at most of the frequency band was a pleasant surprise, that will be further

explored in future studies. A similar error study of s11 relative error on H2 vs. POD

sampling number was also performed as shown in Figure 2.13(b). Figures 2.14(a)

and (b) show the effects of the iterative solver tolerance and number of sampling

points on the decay rate of Hankel singular values (HSVs), where the reference result

was obtained with iterative tolerance 10−4 and 20 POD sampling points. These fig-

ures indicate that approximately eight sampling points are enough to produce stable

HSVs above 10−3, which is in agreement with the conclusions of Figure 2.13(b). This

hinges on the fact that the decay of the Hankel singular values, that are available

before the reduction process, can be used as error estimators in an adaptive sampling

approach. Computational statistics from this section are listed in Table 2.4, for a 100

point frequency sweep. It should be remarked that the parallel scalability reduces to

63% whereas the results of the BAVA example (Table 2.3) gave 91%. This is because

at low frequency (1 − 2 GHz) the employed iterative method takes longer time to

converge at desired tolerence, therefore the parallel load balancing is disturbed.

Table 2.4. Computational statistics for infinite Vivaldi array problem.

Method Time(hh:mm:ss) Speedup Memory

Point-by-point TVFEM Sweep tFEM = 03:36:04 - 729MB
Serial BT-POD ts = 00:19:21 tFEM/ts = 11.7 729MB

Parallel BT-POD tp = 00:03:49 ts/tp = 5.06 729MB × 8
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(a)

(b)

Figure 2.12. Infinite single-polarized Vivaldi array geometry adopted from [58]; (a)
3D array and scanning arrangement; (b) element geometry and dimensions.
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Figure 2.13. BT-POD accuracy on the infinite single-polarized Vivaldi array; (a)
Comparison of |Γa| vs. frequency; (b) ‖Γa‖H2 relative error vs. expansion points.
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CHAPTER 3

MULTI-PARAMETER BT-POD

In the design and optimization of microwave/RF systems such as antennas or

microwave circuits, various design parameters including material permittivity and

permeability, or antenna excitation parameters such as scan angles are used to meet

design specifications. This design and optimization process usually involves repeat-

edly solving the EM system with many different parameter values which will tremen-

dously prolong the simulation time.

In this chapter, the BT-POD algorithm will be extended to accomodate multi-

parameter models where frequency, materials and scan angles are varied concurrently.

The multi-parameter space sweep is achieved in a two step process: (1) An off-

line stage where coarse parameters space sampling is used to produce the multi-

dimensional balancing transformations, and (2) an on-line stage that parameters space

sweep via the solution of the reduced model. It is believed that the multi-parametric

BT-POD MOR technique will significantly speed-up engineers to design and optimize

high-frequency electromagnetic systems.

Multi-parameter model reduction in EM has been an active research area. In

[44], Weile et al proposed a two-parameter sweep technique that is based on Krylov

MOR. In [45], they utilized this method to analyze frequency-selective surface with

frequency and incident angle parameters. Farle et al. applied a multi-dimensional

Krylov MOR [46] to perform frequency and material spaces sweep.

In this work, a sharp contrast from previous multi-parameter MOR is that, the re-

duction process will be translated into a numerical integration over a multi-dimensional

47



space. Therefore this MOR paradigm can be extended to multi-dimensional spaces

through the use of simple or specialized numerical quadratures in high dimensions.

For example, some advanced multi-dimensional numerical integration methods such

as Monte-Carlo [59] or sparse grid integration rules [60] can be incorporated with the

multi-parametric BT-POD technique thus tremendously enhance its performance.

In this chapter, only simple tensor product numerical quadratures will be used for

POD sampling. Numerical experiments will include an infinite Vivaldi array problem

and an infinite PUMA array problem to demonstrate the validity and efficiency of

the multi-parameter BT-POD.

3.1 Multi-Parametric BT-POD Model Reduction

3.1.1 Parameterized TVFEM Model

The TVFEM model presented in Chapter 2 is parameterized with respect to fre-

quency (s) multiplying constant matrices, therefore it can not be used for excitation

angle (θ, φ) and material (ε, µ) sweeps. In order to perform multi-parametric sweep,

all TVFEM matrices become parameters independent, therefore one must consider

the model,

[M(s, εεε′) + D(s, εεε′′) + S(µµµ) + T(s,β)] e(s, εεε′, εεε′′,µµµ,β) = C(s, εεε′) f , (3.1)

where εεε′, εεε′′, µµµ, and βββ are the parameter space,

εεε′ = {ε′1, ε′2, · · · , ε′M}

εεε′′ = {ε′′1, ε′′2, · · · , ε′′M}

µµµ = {µ1, µ2, · · · , µM}

β = {θ, φ}
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where M is the number of material regions where the material permittivity and

permeability of that region is εm = ε′m − jε′′m and µm, m = 1, 2, · · · ,M . β is the

scanning direction of an infinite phased array. It is being noted that the periodic

boundary conditions of the periodic TVFEM [50] has been added (T) to takes account

of periodic structure EM modeling problems, an explicit form of T can be found in

[50].

Therefore, a parameterized TVFEM model is achieved as

[
s2

M∑
m=1

ε′mMm + s
M∑
m=1

ε′′mDm +
M∑
m=1

1

µm
Sm + e±sβ·d T

]
e(s, ε′ε′ε′, ε′′ε′′ε′′,µµµ,β) = C(s, ε′ε′ε′) f ,

(3.2)

where

(Mm)ij =
1

c2

∫
Ωm

wj ·wi dr
3,

(Dm)ij =
1

c

∮
∂Ωm

n̂m ×wj · n̂m ×wi dr
2,

(Sm)ij =

∫
Ωm

∇×wj · ∇ ×wi dr
3,

where Ωm is the region occupied by material (εm, µm). d is the displacement of two

adjacent domains along the direction of the infinite periodicity. Figure 3.1 briefly

illustrates the partition of the FE mass matrix M when M = 3. Following such ap-

proach, instead of performing reduction on FE matrices S,D,M in previous chapter,

each FE matrix in (3.2) need to be reduced such that a multi-parametric sweep can

be achieved.

3.1.2 Multi-Parameter Space System Gramians Approximation

As stated in chapter 2, TVFEM system gramians are approximated through nu-

merical quadratures over the frequency bandwidth of interest which can be found in

(2.26)-(2.28). In the previous chapter, this integration is performed in 1D Laplace
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(a)

(b)

Figure 3.1. A computational domain Ω partitioned by three material regions Ωi(i =
1, 2, 3) and the corresponding partition of the mass matrix M in the parameterized
model; (a) domain partition; (b) mass matrix partition.
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frequency s-domain as shown in Figure 3.2(a). This concept can be extended to

multiple dimensions through the use of simple tensor product. A multi-dimensional

quadratures as shown in Figures 3.2(b) and (c) over the range of parameters of inter-

ests.

Based on Lemma 2.2.1, the system gramians in a 3D parameter space of interest

(s, ζ, η) can be defined as

PPP = k

∞∫
0

∞∫
0

j∞∫
0

H(s, ζ, η)H∗(s, ζ, η) ds dζ dη,

QQQ = k

∞∫
0

∞∫
0

j∞∫
0

H∗a(s, ζ, η)Ha(s, ζ, η) ds dζ dη

(3.3)

where k is a constant scalar, ζ, η can be the material parameters or scan angles.

H(s, ζ, η) and Ha(s, ζ, η) are the transfer functions from the forward and adjoint

form of the original problems. Similar to Chapter 2, the integrations are evaluated

with simple Reimannian quadratures, but in the tensor product form. These quadra-

tures require the evaluation of H(s, ζ, η)H∗(s, ζ, η) and H∗a(s, ζ, η)Ha(s, ζ, η) at each

discrete parameter spaces position (sk, ζi, ηj) , k = 1, 2, · · · , K, i = 1, 2, · · · , I, j =

1, 2, · · · , J , where K, I, J are the total number of POD sampling points along each

parameter space. Therefore, the multi-parameter TVFEM system gramians P̃PP and

Q̃QQ in (3.3) are

P̃PP = k∆V
K∑
k=1

I∑
i=1

J∑
j=1

H(sk, ζi, ηj)H
∗(sk, ζi, ηj)

Q̃QQ = k∆V
K∑
k=1

I∑
i=1

J∑
j=1

H∗a(sk, ζi, ηj)Ha(sk, ζi, ηj)

(3.4)

where ∆V = ∆s∆ζ ∆η, ∆s, ∆ζ and ∆η are the discretization grid length over

parameter space s, ζ, and η, respectively.
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Figures 3.2(a)-(c) briefly illustrate the integration strategy employed in this approach,

where 1D frequency expansion locations in Figure 3.2(a) are denoted by red arrows,

2D frequency-material expansion points with red arrows shown in Figure 3.2(b), and

dots in Figure 3.2(c) mean the (s, ζ, η) expansion location in 3D space. For the

purpose of visibility, dots in the same ζ-η plane are marked with the same color.

Similar to (2.28), the approximated gramians in (3.4) are expressed in the matrix

form

P̃PP = UU∗

Q̃QQ = L∗L
(3.5)

where the low-rank Choleski factor U and L are given by

U =
√
k∆V [H(s1, ζ, η) H(s2, ζ, η) · · · H(sK , ζ, η)] ∈ CN×(KP ·I·J),

and

L =
√
k∆V [Ha(s1, ζ, η) Ha(s2, ζ, η) · · · Ha(sK , ζ, η)] ∈ CN×(KP ·I·J),

where

H(sk, ζ, η) = [H(sk, ζ1, η1) H(sk, ζ1, η2) · · · H(sk, ζ2, η1) · · · H(sk, ζI , ηJ)],

Ha(sk, ζ, η) = [Ha(sk, ζ1, η1) Ha(sk, ζ1, η2) · · · Ha(sk, ζ2, η1) · · · Ha(sk, ζI , ηJ)].

for k = 1, 2, · · · , K. Therefore the Hankel matrix with respect to parameter spaces

(s, ζ, η) is constructed through

HHH = U∗L ∈ C(K·P ·I·J)×(K·P ·I·J)
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(a)

(b)

(c)

Figure 3.2. Illustration of the POD sampling over (a) 1D frequency axis; (b) 2D
(f, ε) parameter spaces; (c) 3D (s, ζ, η) paramters spaces.

53



With this Hankel matrix the balanced truncation (2.31) and reduction steps described

in sections 2.4 are used to obtain the reduced matrices S̃, D̃, M̃, and C̃. The final

multiparametric reduced model used in the sweep part is given by

[
s2

M∑
m=1

ε′mM̃m + s

M∑
m=1

ε′′mD̃m +
M∑
m=1

1

µm
S̃m + e±sβ·d T̃

]
ẽ(s, εεε′, εεε′′,µµµ,β) = C̃(s, εεε′) f̃

(3.6)

3.2 Numerical Results

In this section, two illustrative numerical examples of the multi-parameter BT-

POD algorithm are presented. The first example involves the frequency and scan

angles (f, θ, φ) multi-parametric sweep of an infinite Vivaldi array model, while the

second one involves the multiple material and frequency (εr1, εr2, f) sweep of a planar

ultra wideband array model. Through this section the reference result will be the

point-by-point periodic TVFEM sweep that requires an individual solution at every

combination point in the 2D parameter space (f, ε) or 3D space (f, θ, φ). All serial

computation were performed in a PC with 3.2GHz Intel Pentium dual-core processor

with 2GB RAM, while the parallel computing were performed on an Apple MacPro

cluster with eleven nodes of two 3.2GHz Xeon quad-core processors and 352GB dis-

tributed RAM. All codes were implemented in C++ and compiled by gcc 4.3.3.

3.2.1 Infinite Vivaldi Array

This section will describe the performence of the multiparameter BT-POD when

frequency and θ and φ angles of the infinite Vivaldi array problem which has been

described in the previous chapter is considered. The operating bandwidth of interest

is 1-6 GHz, and the scanning varies from φ = 0◦ to 90◦ and θ = 0◦ to 60◦. The POD

expansion points for all the three parameters are uniformly distributed in a tensor

product fashion along the ranges of interest, and the number of samples along each

dimension are given in Table 3.1. The decay of Hankel singular values (HSVs) is
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shown in Figure 3.3. In this simulation, the HSVs truncation tolerance was chosen

as ε = 10−8, and it is observed that the dominant modes from HSVs are retained in

the reduced model (reduced size=128). The H-plane (φ = 0◦) VSWR and the active

reflection coefficient phase results from the fast parametric sweep are shown in Figures

3.4(a)-(b), while the point-by-point periodic-cell TVFEM results performed as ∆θ =

5◦ are plotted in Figures 3.4(c)-(d). As shown in the figures, the multi-dimensional

BT-POD accurately predicts the active reflection coefficient of the array over the

entire frequency and angle spectrum. To verify this, the absolute error compared with

the point-by-point periodic-cell TVFEM is plotted in Figure 3.5. It should be noted

that BT-POD captures the sharp H-plane resonance at 4.5GHz (Figure 3.4(a)), since

no vias were used across the fins of the Vivaldi model. This was intentionally done

so evaluate the accuracy of BT-POD in cases where sharp resonances are present.

The VSWR and the phase of active reflection coefficient of the Vivaldi array at

φ = 30◦, 45◦ and 90◦ are shown in Figure 3.6. The computational statistics of

the serial BT-POD compared with the traditional point-by-point periodic TVFEM

method are shown in Table 3.2. It is worth noting that three orders of magnitude

speed improvement was achieved. It is also observed that the achieved speedup

from parallel computing is quite small in terms of the total number of cores, this is

because the construction of transformation matrices and system reduction are not

performed by parallel computing while these two steps take most of the time of

the entire simulation. It should be remarked that the wall time for point-by-point

simulation is only estimated from a smaller simulation of (θ, f) (see Figure 3.4(a)).

Table 3.1. BT-POD sampling parameters for the infinite Vivaldi array example.

f θ φ

# of POD samples 8 4 5
# of sweep points 101 61 91
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Figure 3.4. Comparison of (f, θ) sweep between the multi-parameter BT-POD and
point-by-point periodic-cell TVFEM for the infinite Vivaldi array example at φ = 0◦;
(a) VSWR vs.(f, θ) via BT-POD; (b) Phase vs.(f, θ) via BT-POD (c) VSWR vs
(f, θ) via point-by-point periodic-cell TVFEM ; (d) Phase vs. (f, θ) via point-by-
point periodic-cell TVFEM.
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∆θ = 5◦ for the infinite Vivaldi array example.
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Figure 3.6. Three-parameter BT-POD sweep on (f, θ, φ) for the infinite Vivaldi
array example; (a) VSWR at φ = 30◦; (b) Γ phase at φ = 30◦; (c) VSWR at φ = 45◦;
(d) Γa phase at φ = 45◦; (e) VSWR at φ = 90◦; (f) Γa phase at φ = 90◦.
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Table 3.2. Computational statistics of BT-POD for infinite Vivaldi array example.

Solution Method Size Wall Time Peak Memory Time Speed Up

Point-by-point Peri-
odic TVFEM

158, 024 ≈ 778 days1 729 MB -

Multi-dimensional
BT-POD (serial)

128 ts=06:52:57 729 MB tFEM/ts = 2667.4

Multi-dimensional
BT-POD (parallel)

128 tp=00:32:31 729 MB ts/tp = 12.7

3.2.2 Infinite PUMA Array

This example considers the system response of the two-port PUMA infinite an-

tenna array, shown in Figure 3.7, when frequency and two material property param-

eters are considered. As shown in Figure 3.7 , the antenna unit cell consists of a

multi-layer structure with different relative permittivity εr values. The behavior of

the antenna is quite sensitive to the dielectric properties of the substrate εr2 and

the superstrate εr1. In this example the operating bandwidth is 6-20 GHz, and both

permitivities of the material layers vary from εr = 1− 7. The periodic TVFEM unit

cell is discretized with 152, 360 second-order TVFEM unknowns. The POD expan-

sion points used to generate the reduced-order model for the 3D parametric sweep

form a tensor product in the parametric space. The total number of expansion and

sweep points in each parameter-space dimension are listed in Table 3.3. The decay

of normalized Hankel singular values is shown in Figure 3.8 with a HSVs truncation

tolerance ε = 7× 10−6, thus the size of the reduced model is 158. The results of this

simulation are shown in figure 3.9 where a comparison of the active reflection coeffi-

cient of the proposed multi-dimensional BT-POD versus the point-by-point periodic

TVFEM is given. The two results agree quite well over the entire space which is also

1Estimated.
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verified by the error study in Figure 3.10. It is noted that the point-by-point simu-

lation was performed over a 2D parameter space (εr1, εr2) with coarser discretization

(∆εr = 0.4) on both axises. To further illustrate the versatility of the 3D parameter

simulation, the active reflection coefficient versus (εr1, εr2) is plotted at frequencies

f = 10, 14 and 20 GHz in Figure 3.11. The computational statistics from this section

are listed in Table 3.4 for a 71 × 61 × 61 sweep. It is being noted that the memory

cost of BT-POD exceeds the point-by-point TVFEM, this is because to speed up the

process of constructing transformation matrices TL and TR, multiple columns of U

and L are stored in memory. It also should be remarked that the wall time for point-

by-point unit cell TVFEM simulation is only estimated, based on a 2D parametric

sweep.

Table 3.3. BT-POD sampling parameters for the infinite PUMA array example.

f εr1 εr2

# of POD samples 10 5 5
# of sweep points 71 61 61

Table 3.4. Computational statistics of BT-POD for the infinite PUMA array.

Solution Method Size Wall Time Peak Memory Speed-up

Point-by-point
Periodic-cell FEM

152, 360 ≈ 214 days1 708 MB -

Multi-dimensional
BT-POD

158 ts=07:15:40 1050 MB tFEM/ts = 708

1Estimated.
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Figure 3.7. Geometry of infinite PUMA array. Material parameter εr1 and εr2 of
the top and bottom dielectrics are used in the multi-parameter BT-POD sweep.
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Figure 3.8. Decay of Hankel singular values for the infinite PUMA array example
with HSVs truncation tolerence ε = 7× 10−6.
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Figure 3.9. Comparison of multi-parameter BT-POD with point-by-point periodic
TVFEM sweep at f=8 GHz; (a) |Γa| at port 1 vs (εr1, εr2) via BT-POD; (b) |Γa| at
port 1 vs. (εr1, εr2) via point-by-point periodic TVFEM.
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Figure 3.10. Active reflection coefficient |Γa| (port 1) error [dB] vs. (ε1, ε2) with
∆ε=0.4 on both axies for the infinite PUMA array example.
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Figure 3.11. Active reflection coefficient of PUMA at various frequencies versus
(εr1, εr2); (a) f = 10GHz; (b) f = 14GHz; (c) f = 20GHz.
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CHAPTER 4

ADAPTIVE BT-POD IN FREQUENCY-DOMAIN

Up to this point, all MOR results have been produced through uniform POD sam-

pling in the parameter space. Although uniform sampling strategies lead to obvious

parallelization benefits due to the a-priori knowledge of sampling point number and

location, they are less efficient and robust because sampling locations are not optimal.

The aim of this chapter is to enhance the reliability and efficiency of the BT-POD

algorithm through an adaptive sampling strategy. This goal will be achieved through

the development of error estimates and indicators. These goal-oriented residual indi-

cators will be used to guide the adaptive POD sampling process and terminate the

iteration. In terms of selecting new frequency expansion points, the proposed ap-

proach differs from the adaptive s-parameter interpolation method [42] and adaptive

multipoint method [43]. In [42], the authors proposed a simple rational polynomial

interpolation model which lacks the error control. In [43], a field recovery scheme was

proposed but it leads to prohibitive computations for large-scale problems. Here the

goal-oriented estimates give managable size problems and lead to reliable estimates.

The final result is a more stable and efficient POD sampling process that leads to more

robust reduced models. Numerical results on a large-scale waveguide filter TVFEM

model are used to illustrate the performance of the adaptive BT-POD algorithm.

4.1 Local and Global Error Indicators

The goal-oriented error indicators employed here are based on the residual error

field reaction with wave-port modal fields, therefore give an estimate of the error on
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the output quantity of interest (s-parameter in this case). This is contrary to most

traditional indicators that are based on field norms (global field energy), thus they

are expected to be more reliable and lead to minimal reduced models. Both local and

global goal-oriented indicators will be used. Local indicators are used to find the next

POD sample location, while the global indicator is used to terminate the adaptive

process.

To determine the accuracy of the reduced solution, the reduced soluton vector

ẽ(s) = Ã(s)−1 f̃(s) ∈ Cn×1 at frequency s is recovered to full order through (2.36)

ẽr(s) = TR ẽ(s) ∈ CN×1, (4.1)

where N is the full DoFs. If the full TVFEM system matrix at frequency s is denoted

by A(s) = s2M+sD+S, one can find how close ẽr(s) is to ẽ(s), the true full solution

through the

r(s) = b(s)−A(s) ẽr(s). (4.2)

A residual functional J(·): H(div; Ω) → R is used to minimize the error of system

scattering parameters,

J(r(s)) =
P∑
i=1

|
∫
Ai

R(s) · Emode
i (s) dr2 |, i = 1, 2, · · · , P, (4.3)

where

R(s) =
N∑
i

r(s) ·wi,

where P is the total number of EM waveports, the electric modal field on ith waveport

at frequency s is denoted by Emode
i (s), Ai is the surface occupied by ith port. However,
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(4.3) gives an error estimate with respect to a certain frequency point. Therefore, an

error estimate over the frequency bandwidth [si, si+1] is introduced as

ei =
1

3
(J(r(si)) + J(r(s′i)) + J(r(si+1))) , (4.4)

where

s′i =
1

2
(si + si+1) . (4.5)

Such error is defined locally over frequency band [si, si+1], thus it is local error es-

timate. Meanwhile, a global error estimate over the entire frequency bandwidth of

interest can be determined by,

E = ‖e‖`2 =
1

K − 1

√√√√K−1∑
i

|ei|2, (4.6)

where

e = [e1, e2, · · · , eK−1] ,

K is the number of POD sampling points.

In the adaptive POD sampling procedure, local and global error estimates are

evaluated at each adaptive pass. New frequency points, are obtained through ranking

all local error indicators and selecting to sampling only at the m frequency segments

with the largest estimates. Figure 4.1 briefly illustrates a situation where two new

sample points (marked as black arrows) are added in one adaptive pass (e1 � e2 �

e3).

The most time consuming part in computing the error indicators is the full solution

recovery of (4.1) and matrix-vertor multiplication (4.2), at all the sampling points si

and candidate sampling points s′i. Fortunately, the sampling number K is usually

quite small (K < 50) the computational overhead remains reasonable.
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Figure 4.1. Locations of candidate freuqency points and corresponding local error
indicators in adaptive BT-POD algorithm.

4.2 Adaptive Construction of Hankel Matrix

As emphasized in previous Chapters, the POD sampling process can be interpreted

as a numerical quadrature over the parameter spaces. This perspective of approxi-

mating system gramians can be extended to the adaptive BT-POD algorithm, where

the adaptive process leads to adaptive gramian quadratures.

The controllability gramian in s-domain is modified as

PPP ≈ smax − smin
Kπ

∑
s∈{s1,s2,··· ,sK}

H(s) H∗(s), (4.7)

where the sample points {s1, s2, · · · , sK} have been computed by Algorithm 2. Figures

4.2(a)-(b) show the comparison between uniform sampling strategy and adaptive

sampling strategy with the same number of sampling points.

Since at each adaptive pass, system gramians are adaptively approximated, thus

the Hankel matrix, which is the cross product of the low-rank Choleski factors of

system gramians, is also adaptively updated.

Assume a single-port EM device is considered, and a set of sampling frequency

after a number of adaptive steps have been obtained, denoted as

{s1, s2, · · · , sK}, (4.8)
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(a)

(b)

Figure 4.2. Comparison of numerical integration for system controllability gramian
approximation; (a) via uniform frequency sampling; (b) via adaptive frequency sam-
pling.
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and the corresponding solution spaces through solving the forward and adjoint form

of the original system are given as

UK = [H(s1) H(s2) · · · H(sK)],

LK = [Ha(s1) Ha(s2) · · · Ha(sK)],
(4.9)

thus the Hankel matrix is constructed as

HHHK = U∗K LK , (4.10)

where K indicates the Hankel matrix that is obtained through performing POD

sampling with K frequency points in the entire frequency band. After building the

reduced-order model and the error estimation process, the error indicator identifies a

new sampling point, denoted as sK+1, thus the solution spaces U and L read as

UK+1 = [H(s1) H(s2), · · · ,H(sK) H(sK+1)],

LK+1 = [Ha(s1) Ha(s2), · · · ,Ha(sK) Ha(sK+1)],
(4.11)

and its corresponding Hankel matrix yields as

HHHK+1 = U∗K+1 LK+1 = [U∗K H(sK+1)] [LK Ha(sK+1)]

=

 HHHK U∗K Ha(sK+1)

H(sK+1)∗ LK H(sK+1)∗Ha(sK+1).

 (4.12)

It is noticed that the extra computation cost will only happen while dealing with the

new solution vector H(sK+1) and Ha(sK+1), the added computation complexity at

each adaptive step for updating the Hankel matrix is approximately (2K + 1) ·O (N).

4.3 Adaptive BT-POD Algorithm Summary

Algorithm 2 gives the summary of adaptive BT-POD approach. The general strat-

egy goes as follows:
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(1) Start with initial POD sampling frequency points that include the lowest, highest

and middle point frequencies. Similar to the uniform BT-POD, the algorithm solves

the full TVFEM model at these frequencies and proceeds through the truncation and

reduction steps to generate an initial reduced model that will be used to find the

initial error indicators.

(2) At each adaptive step, a new reduced model is re-generated using the POD sam-

ples from the frequencies with the highest error estimates. At every adaptive pass,

adaptive BT-POD computes the local s-parameter error indicator e based on ev-

ery interval frequency band as well as the global error indicator E along the entire

freuqnecy bandwidth is computed using (4.6). Out of all these local error indicators,

the m intervals with the largest errors are bisected and the newly added points are

used for the next step POD sampling. The algorithm terminates when the global

error at a given pass is less than a user pre-defined tolerance tolE.
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Algorithm 2 : Adaptive BT-POD MOR for TVFEM.
INPUT:
ε: HSVs truncation tolerance
tols: FEM iterative solver tolerance
tolE : Global error residual tolerance
E: Global residual functional tolerance
smin smax: minimum and maximum frequency
M : sweep number

DEFINITIONS:
s′i = 1

2(si + si+1)

1: Assemble global FEM matrices and excitation coeff. M, D, S and C

2: Preliminary error estimate
i. POD sampling at s1, s2, s3, concatenate on U and L, where
s1 = smin, s2 = 1

2 (s1 + s3) , s3 = smax
ii. construct H matrix, perform SVD and transform matrices

H = U∗L = WΣV∗, TL = V∗L∗, TR = UW
iii. reduction and solve reduced problem at
s = {s1, s

′
1, s2, s

′
2, s3}

M̃ = TLMTR D̃ = TLDTR S̃ = TLSTR B̃ = TLB
(s2
i M̃ + siD̃ + S̃)ẽ = B̃ f̃i

3: Adaptive POD Sampling
while E > tolE
i. find {s′m1, s

′
m2, · · · , s′mm} as new frequency expansion points such that:

{em1, em2, · · · , emm} = max
m
{ei|, i = 1, 2, · · · , k − 1}

ii. update U′ ← U, L′ ← L, H′ ← H, k ← k +m
iii. perform SVD on Hankel matrix and construct new transform matrices

H′ = W′Σ′V′∗, TL = V′∗L′∗, TR
′ = U′W′

iv. reduce system and solve reduced problem at
s = {s1, s

′
i, s2, · · · , sk−1, s

′
k−1, sk}

v. compute local residual functional and global error E
ei = 1

3(J(r(si)) + J(r(s′i)) + J(r(si+1))), i = 1, 2, · · · , k − 1
end while

4: Fast Frequency Sweep
for sm (m = 1, 2, · · · ,M), solve reduced problem via a direct solver:

(s2
mM̃ + smD̃ + S̃)ẽ = C̃ f̃m {M̃, S̃, D̃} ∈ Ck×k, B̃ ∈ Ck×P

ỹ = C̃T ẽ
end for
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4.4 Numerical Results

In this section, a microwave waveguide filter problem is presented to validate

the proposed adaptive algorithm. All computations are performed on a single Intel

Pentium 4 2.4 GHz quad core processer with 4 GB RAM. The adaptive BT-POD

algorithm was programmed in C++ and compiled using gcc 4.3.3.

The geometry of the waveguide filter under consideration is shown in Figure 4.3.

The two-port device is discretized using 145, 889 tetrahedral elements and 901, 640

second-order TVFEM unknowns. The bandwidth of interest for this problem is be-

tween 7.8-9 GHz. The decay of Hankel singluar values obtained at each adaptive

step is shown in Figure 4.4, the reference HSVs decay is obtained through a uniform

POD sampling with 15 points (30 TVFEM solves). The important information from

this plot is that 4 adaptive passes (7 samples) are capable of reproducing HSVs that

closely resemble those of a much larger uniformly sampled POD. It is also worth not-

ing that a steep drop can be observed when the sampling point number reaches above

6, and this indicates that the minimum frequency sampling number could be 7 which

can be verified by the results that follow. To compare the effects of different sam-

pling numbers, the s11 and s21 via 3 and 4 adaptive passes are shown in Figures 4.5

and 4.6, respectively. To better quantify the error and compare the adaptive versus

uniform BT-POD, the |s11| and |s21| error versus frequency are plotted in Figure 4.7.

It is observed that the absolute errors on |s11| and |s21| are well below −25dB with 7

adaptive sampling points over most of the frequency band, while the errors obtained

through uniform POD sampling reach -5 dB. This adaptive BT-POD behavior could

be explained from that fact that each adaptive pass, only the candidate frequency

point with maximum corresponding error estimate is sampled. Figure 4.8 shows the

error comparison between 7 adaptive sampling points and 8 uniform sampling points.

It is observed that adaptive BT-POD achieves almost the same accuracy as uniform

BT-POD does with 8 samples. The computational statistics for this numerical exper-
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iment are summarized in Table 4.1 where an adaptive and uniform BT-POD of the

same of samples number and same s-parameter error are both compared. It should be

remarked that the uniform BT-POD sampling takes less time than adaptive sampling

process with same number of sampling points, this is due to the extra matrix-vector

multiplication in system reduction and recovery at each adaptive pass. However, to

obtain the same accuracy as adaptive BT-POD algorithm, more sampling points are

needed by uniform BT-POD.

Table 4.1. Computational statistics of waveguide filter by adaptive BT-POD.

Solution Method Size Sweep# Wall Time Peak Memory Speedup

Point-by-point
Periodic-cell FEM

901, 640 100 5h 26m 39s 1350 MB -

Adaptive BT-POD
(7 samples)

14 100 34m 57s 1350 MB 9.34

Uniform BT-POD
(8 samples)

16 100 36m 52s 1350 MB 8.86

Uniform BT-POD
(7 samples)

14 100 30m 12s 1350 MB 10.81
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Figure 4.3. 3D geometry of microwave waveguide filter.
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Figure 4.5. Waveguide filter with 6 non-uniform sampling points; (a) |s11| vs. fre-
quency; (b) ∠s11 vs. frequency (c) s21 vs frquency; (d) ∠s21 vs. frequency.
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Figure 4.6. Waveguide filter with 7 non-uniform sampling points; (a) |s11| vs. fre-
quency; (b) ∠s11 vs. frequency (c) s21 vs frquency; (d) ∠s21 vs. frequency.
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Figure 4.7. Waveguide filter s-parameter error study; (a) |s11| error vs. frequency at
adaptive pass=3, sample#=6; (b) s21 error vs. frequency at adaptive pass=3, sample
#=6; (c) s11 error vs. frquency at adaptive pass=4, sample#=7; (d) s21 error vs.
frequency at adaptive pass=4, sample#=7.
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Figure 4.8. Comparison of error with adaptive BT-POD at pass 3 (7 samples) and
uniform BT-POD with 8 samples; (a) |s11| error vs. frequency; (b) |s21| error vs.
frequency.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

This work proposed an error controllable model-order reduction technique for

electromagnetic systems termed balanced truncation and proper orthogonal decom-

position (BT-POD). The method was developed in conjunction with the frequency-

domain (time-harmonic) TVFEM wideband electromagneti systems. In addition, the

method was extended to handle systems that more than one system parameters are

varied. This work was limited to parameters such as excitation frequency, multiple

material parameters and infinite array scan angles. A number of numerical experi-

ments were used to demonstrate the accuracy, efficiency, robustness and versatility of

the proposed method.

Although the BT-POD MOR technique involved in this research is supposed to

work with first-order LTI system, it works suprisingly well with the second-order

TVFEM model without introducing extra unknown variables [61]. In addition, the

BT-POD successfully analyzed the three-dimensional infinite periodic structure prob-

lems that are highly dispersive systems [50] and do not comply with the LTI system

theory. The BT-POD fast sweep results showed good accuracy and are controlled by

the following three algorithm inputs: (1) TVFEM iterative solver tolerance; (2) POD

sampling points; (3) Hankel singular values (HSVs) truncation tolerance. The CPU

time savings from BT-POD is order-of-magnitude compared to the point-by-point

TVFEM simulation. Even more, the parallelization speed up for the POD sampling

part significantly reduces the total CPU time.
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The multi-parameter space BT-POD offers an efficient and accurate algorithm for

realistic system design and optimization. Numerical experiments showed quite good

accuracy with -20 to -30 dB error over the entire parameter spaces. Compared to

the point-by-point periodic-cell TVFEM, three or four order-of-magnitude CPU time

savings were achieved. Despite the considerable speed-up from multi-dimensional BT-

POD, its computational effort increases exponentially with respect to the number of

parameter spaces due to the uniform POD sampling strategy used. This is a limitation

present in all deterministic approximation schemes for high-dimensional sets and is

often termed the “curse of dimensionality”.

The proposed goal-oriented adaptive BT-POD algorithm is more efficient, robust

than uniform sampling BT-POD, while on the other hand the uniform sampling

BT-POD is easier and more efficient for parallelize. The proposed adaptive algorithm

although shares the similar flavor with [62], it is based on goal-oriented error estimates

that lead to closer to the optimal sampling. It should be noted that although the

adaptive strategy takes more time than uniform POD of the same number of samples,

it leads to more reliable reduced model and more accurate results.

5.2 Future Work

During the course of this thesis, a number of findings generated several research

questions, that could potentially lead to promising research directions, these are:

(1) Reformulate the system gramians for the second-order LTI systems that result for

realistic TVFEM model [33];

(2) Test the proposed algorithms on challenging problems such as finite antenna ar-

rays where a much larger number of ports and DoFs are present;

(3) Explore advanced multi-dimensional integration techniques such as quasi-Monte-

Carlo [59] or sparse-grid integration [60] methods to curb the complexity of MOR for

high dimensional (> 6) design parameter spaces;

82



(4) Integrate the fast parameter-space sweep with optimization algorithms like ge-

netic algorithm (GA) or particle swarm optimization (PSO) [63];

(5) Use the reduced TVFEM macromodel produced by BT-POD to co-simulate re-

alistic engineering systems such as the entire RF front-end on a radar system or the

signal integrity effects of mixed signal IC systems;

(6) Extend the proposed methodology to geometrical parameters (length, width) that

enter into the TVFEM model as non-linear function parameters. These types of prob-

lems, although challenging, are far more useful in optimization of systems than the

ones considered here.
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