University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses 1911 - February 2014

January 2008

An Orthogonally-Fed, Active Linear Phased Array
of Tapered Slot Antennas

Andrew R. Mandeville
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

Mandeville, Andrew R., "An Orthogonally-Fed, Active Linear Phased Array of Tapered Slot Antennas" (2008). Masters Theses 1911 -
February 2014. 114.
Retrieved from https://scholarworks.umass.edu/theses/114

This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 -
February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact

scholarworks@library.umass.edu.


https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Ftheses%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses/114?utm_source=scholarworks.umass.edu%2Ftheses%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

AN ORTHOGONALLY-FED, ACTIVE LINEAR PHASED ARRAY OF
TAPERED SLOT ANTENNAS

A Thesis Presented

by

ANDREW R. MANDEVILLE

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of
MASTER OF SCIENCE
May 2008

Electrical and Computer Engineering



© Copyright by Andrew R. Mandeville 2008

All Rights Reserved



AN ORTHOGONALLY-FED, ACTIVE LINEAR PHASED ARRAY OF
TAPERED SLOT ANTENNAS

A Thesis Presented
by

ANDREW R. MANDEVILLE

Approved as to style and content by:

Robert W. Jackson, Chair

Daniel H. Schaubert, Member

Marinos Vouvakis, Member

C.V. Hollot, Department Head
Electrical and Computer Engineering



To my mom and dad.



ACKNOWLEDGEMENTS

I would like to thank my advisors Professor Jackson and Professor Schaubert for
providing me with the opportunity to study under their guidance. Their insights,
mentorship, and patience have been very much appreciated. Also, I would like to thank
Professor Vouvakis for serving as a member on my committee, as well as for providing
helpful suggestions and discussions.

John Nicholson of UMass, and Mike Gouin and Bill LaPlante of Sensata
Technologies provided a great deal of assistance with the assembly, soldering, and
wirebonding of the antenna packages in this project. Their help was invaluable in my
completion of this thesis.

Finally, I would like to acknowledge my fellow graduate students in CASCA for
their moral and practical support, including Justin Creticos, Steve Holland, Sreenivas

Kasturi, Eric Marklein, Georgios Paraschos, and Mauricio Sanchez.



ABSTRACT

AN ORTHOGONALLY-FED, ACTIVE LINEAR PHASED ARRAY OF
TAPERED SLOT ANTENNAS

MAY 2008

ANDREW R. MANDEVILLE, B.S.E.E., VIRGINIA POLYTECHNIC INSTITUTE
AND STATE UNIVERSITY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Robert W. Jackson

An active, broadband antenna module amenable for use in low cost phased
arrays is proposed. The module consists of a Vivaldi antenna integrated with a
frequency conversion integrated circuit. A method of orthogonally mounting endfire
antennas onto an array motherboard is developed using castellated vias. A castellated
active isolated Vivaldi antenna package is designed, fabricated, and measured. An 8x1
phased array of castellated, active Vivaldi antenna packages is designed and assembled.
Each element has approximately one octave of bandwidth centered in X-band, and each
is mounted onto a coplanar waveguide motherboard. Radiation patterns of the array are

measured at several frequencies and scan angles.
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CHAPTER 1

INTRODUCTION

1.1 Active Antennas

Active antennas, active integrated antennas, and active arrays are the focus of
much interest in current research. Traditionally, antennas have been viewed as
individual components in a microwave system, connected to the transmitter/receiver
circuitry by transmission line. However, in many applications it is advantageous to
integrate antennas and microwave circuitry into a single package. In an active antenna,
one or more active electronic devices are incorporated within the radiating structure of
an antenna. By integrating electronics and the antenna into a single package, one can
achieve improvements in the performance, size, and cost of a system, all of which are
critical factors in the design of phased arrays. Active antennas and active arrays are
described in detail in [1]-[3].

The incorporation of upconversion/downconversion electronics at the antenna
can help improve system performance. Conductor and dielectric losses in a
transmission line increase as a function of frequency. Dissipative losses caused by
lossy transmission lines increase the insertion loss and noise figure of a system.
Additionally, unshielded transmission line structures such as microstrip or coplanar
waveguide become increasingly efficient radiators as frequency is increased, and
spurious radiation from an antenna’s feed structure may increase the sidelobe and cross-
polarization levels of the antenna’s far-field pattern. In a phased array where many
elements must be excited, large feed networks are required, and losses in such structures

may severely degrade the system performance. By upconverting/downconverting in



frequency at the antenna, it is possible to substantially limit the amount of distance over
which high frequency signals must propagate, which will keep dissipative losses and
unwanted radiation to a minimum.

The integration of the full RF front end circuitry can yield additional
performance improvements. In order to minimize noise figure, it is desirable to make a
low noise amplifier the first stage following the antenna in a microwave receiver.
Placing the receiver at the antenna ensures that the length of transmission line between
the antenna and LNA is minimized. Likewise, integrating the transmitter circuitry
allows moderate power amplifiers to be used at each element in an array, rather than a
single high power amplifier at the input of the feed network. By spreading the power
amplification over the aperture, much lower power levels are dissipated in the feed
network.  This allows for the use of components with lower power handling
capabilities, and improves efficiency. Additionally, thermal dissipation is spread across
a much larger area. Finally, spreading the RF circuitry across the array aperture allows
for the graceful degradation of the array. As such, in an active array, the failure of a
single element, or even multiple elements, would not catastrophically impact the array’s
performance.

Reductions in the size and cost of a system can also be achieved by using active
antennas. In a microwave system, the size of the antenna is often a limiting factor in
how small the system may be. In an active antenna, the radiating area is utilized as a
surface on which to mount electronics. The antenna serves as a package for the

electronic devices and in some configurations may also serve additional mechanical



functions such as a heat sink. In other configurations the antenna may serve as a filter
or resonator for the active circuitry.

Active elements are well suited for mass-production in low-cost automated
processes, as electronic packages can be mounted onto an active antenna using pick and
place technology. In active integrated antennas where the radiator and the active
devices share a common substrate, an entire active package can be fabricated in a single
process. Because frequency conversion takes place at the antenna, only low frequency
signals need to be transferred off an active antenna module. This allows for simpler

interconnects and lower cost feed networks to be used.

1.2 Background and Motivation

Planar antennas fabricated using printed circuit board (PCB) techniques are
well-suited for use as integrated antennas. Patch antennas are popular for use as
radiating elements in active configurations due to their small size, low profile, and the
ease of integration with their feed lines. A major drawback to patch antennas is that
they suffer from narrow bandwidths. Tapered slot antennas (TSA) are a class of planar
antennas, which are more suitable for wideband applications. Phased arrays that use
TSA elements are known to operate over multiple octaves of bandwidth, and are
capable of widescan performance. Vivaldi antennas are a type of TSA with
exponentially flared slots. The electrical performance of Vivaldi antennas and Vivaldi
arrays will be discussed in more detail in Chapters 3 and 4.

From a performance standpoint, Vivaldi arrays are often attractive; however, the

assembly of such arrays can be problematic. One problem is that Vivaldi elements are



generally electrically large, and as such, it may be difficult to use Vivaldi arrays in
space-limited or low-profile applications. A second problem is that Vivaldi elements
radiate in the endfire direction. The main beam of an endfire antenna is located in the
same plane as the antenna’s feed. In order for a Vivaldi array to radiate at broadside,
the individual elements must be oriented orthogonally to the face of the array aperture.

Figure 1.1 shows examples of a typical Vivaldi arrays.

(b)

Figure 1.1: Examples of Vivaldi Arrays, for references see [4] and [5]



Figure 1.1a shows an array assembled by Kasturi [4]; the elements within the array are
held in place with metallic slats, which double as a ground plane. Figure 1.1b is an
example of a dual-polarized Vivaldi array in an “egg crate” configuration [5]. Cards of
Vivaldi elements in an egg-crate type configuration are fit together using slots, or
individual elements may be soldered together. Several observations can be made from
the arrays in Figure 1.1. First, the Vivaldi antennas are printed on cards containing
multiple, electrically-connected elements. Currently, Vivaldi arrays are designed and
built with the elements electrically-connected, for reasons which will be discussed in
Chapter 4. Secondly, each element in the array is fed in the plane of the board with an
end launch connector. Finally, it is apparent that the designs are constructed from
techniques which cannot easily be implemented in automated processes. The
mechanical characteristics of the arrays above, as well as TSA arrays in general,
preclude the use of TSA elements in low cost applications. However, because of their
superior performance it would be highly desirable to be able to produce TSA elements
that are amenable for use in low cost phased arrays. For the reasons stated in the
previous section, a low cost array would use active antenna packages as elements. Such
elements would need to be modular, fabricated using standard, low cost techniques, and
capable of being incorporated onto an array motherboard in an automated process. An

illustration of a phased array containing such elements is shown in Figure 1.2.



Figure 1.2: Planar Vivaldi Array with Modular, Surface Mountable Elements

Modular antenna packages like the ones shown in Figure 1.2 would not only ease the
fabrication and assembly of an array, but would also allow for the quick removal of
failed elements. The active packages in the illustration are surface mounted onto a
coplanar waveguide (CPW) motherboard, which contains the array’s feed network and
control lines. An array of surface-mountable elements could easily be assembled in an
automated process. In order to minimize cost, the elements should be fabricated using
low-cost PCB techniques, and other standard, automated techniques such as solder

reflow and wirebonding.



1.3 Thesis Objectives

Generally stated, the objective of this thesis was to develop active Vivaldi
antenna modules for use in low-cost phased arrays. The modules were to be designed
such that they could be orthogonally mounted onto a coplanar waveguide motherboard,
and fabricated using simple PCB processes. Specifically, the following deliverables

were proposed:

Design a surface-mountable active Tapered Slot Antenna package for use in low
cost phased arrays.

e Design packages that could be orthogonally-fed from a CPW
motherboard, and could be manufactured using standard low cost PCB
fabrication processes.

e Integrate a mixer into the microstrip feed of a Vivaldi antenna, and
prototype the layout by designing and measuring an active slotline

package.

Design, fabricate, and measure passive and active isolated Vivaldi antenna
packages.

e Design an isolated Vivaldi antenna with roughly one octave of

bandwidth, centered in X-band, on a 20 mil thick Rogers 5880 substrate.

e Design a castellated Vivaldi antenna package, and integrate it with an

off-the-shelf frequency conversion IC. The packages were to be

orthogonally mounted onto a CPW motherboard.



e Measure the return loss and radiation patterns of the Vivaldi elements,
and compare the results with simulation data. Additionally, the
efficiencies and radiation patterns of the passive and active

configurations were to be compared.

Design, fabricate, and measure a linear phased array of active Vivaldi elements.

e Design an 8xl element array of Vivaldi elements, with at least one
octave of bandwidth at broadside, and capable of a 40" E-plane scan.

e Design modular, castellated Vivaldi antenna packages for use within the
8x1 element array. The packages were to be integrated with a mixer IC,
and orthogonally mounted onto a CPW motherboard.

e Assemble the 8x1 element array, and design and build a phase control
network to implement the beam scanning.

e Measure the array patterns for several frequencies and scan angles, and

compare the results with simulation data.



CHAPTER 2

PROJECT OVERVIEW

2.1 Orthogonally-fed Vivaldi Antennas

As was stated in the introduction, it is desirable to design low-cost, active
Vivaldi element packages, which may be incorporated onto a phased array motherboard
using a surface-mount-like technique. Currently, the elements for many TSA arrays are
designed with feed networks that are located on the same PCB as the antennas
themselves. Such designs are not applicable for surface-mounting. In order to achieve
a surface mountable Vivaldi antenna package, the antennas must be orthogonally fed.
In [6], TSA were orthogonally fed using an aperture coupling configuration. Aperture
coupling would not be usable at IF, and thus was not an acceptable solution for this
project. Additionally, the paper made no reference to the method with which the TSA
were mounted onto the ground plane.

For this project an orthogonal mounting scheme was developed that was simple,
mechanically sound, and operated well for frequencies from DC through X-band. The
solution was to employ castellated vias at the edge of the antenna packages. Castellated
vias (or castellations) are essentially semicircular vias, and have been used to provide
electrical connections for ceramic integrated circuit packages [7]. When implemented
on PCB structures, castellated vias can be manufactured by fabricating standard plated-
through vias, then simply cutting the vias in half. Therefore, a castellated board can be
produced using the same low-cost processes used to manufacture other PCB structures.
Figure 2.1 illustrates the general concept of using castellations for surface mount

applications.



Figure 2.1: CPW-Microstrip Castellated Interconnection

In the scheme shown in Figure 2.1, a microstrip PCB is orthogonally mounted on a
coplanar waveguide motherboard. In order to mount the microstrip board, solder is
reflowed through the castellations. The castellations provide an electrical connection
between the CPW signal line and the microstrip line, an electrical connection between
the CPW and microstrip ground planes, and a mechanical connection between the two
boards. The CPW signal ground doubles as a ground plane for an antenna mounted
onto the motherboard.

In order to evaluate the electrical and mechanical performance the castellated
interconnection, a simple prototype of the structure shown in Figure 2.1 was designed,
built, and measured. The prototype consisted of a castellated microstrip PCB mounted
on a small CPW motherboard. Both transmission lines were designed on 31 mil thick
FR-4 substrates. Additionally, a 62 mil thick FR-4 support package was attached as
shown in Figure 2.1. Because the Vivaldi antennas for this thesis were specified to
operate through X-band, the castellated interconnection needed to perform well up to 12

GHz. The prototype structure was analyzed using CST Microwave Studio, a full wave,

10



3D, computational electromagnetics software package, which utilizes the Finite
Integration-Time Domain method. Time domain methods are well suited for analyzing
wideband problems, thus CST was used to simulate many of the broadband structures
encountered in this thesis.

The simulations of the prototype were designed to analyze what effect the
castellations, the perpendicular junction between the CPW and microstrip lines, and the
support package had on overall electrical performance of the structure. Because the
castellations extend all the way through the mounted element, a stub equal to the width
of the element’s substrate is added to the coplanar feed line.

At 12 GHz, a 31 mil long stub of CPW is roughly .05 wavelengths long, and
can be considered electrically short. The prototype was simulated with and without
castellated vias; and, it was concluded that at 12 GHz the extra length had very little
effect. However, if castellations are to be used at higher frequencies, or with thicker
substrates, such a stub may be electrically large, and would have to be accounted for. A
more significant effect in the performance of the prototype was caused by the junction
between the CPW and the microstrip. In general, a change in height of a transmission
line tends to introduce capacitance, thereby lowering the line impedance. Furthermore,
the addition of a dielectric covering to a transmission line also lowers the line
impedance. As a result, the CPW-to-microstrip transition at the castellated
interconnection may be viewed as a section of transmission line with lower impedance.
In order to compensate for capacitance at the junction, a linear taper of both the CPW
and microstrip lines was applied at the transition. Figure 2.2 shows simulation results

comparing CPW-to-microstrip transitions with and without compensation.
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Figure 2.2: Simulated Return Loss of CPW-Microstrip Transition

The results indicate that the compensation at the castellated interconnection does indeed
improve the return loss at the junction. An inexpensive prototype of the design was
fabricated and measured. A small, 50 ohm microstrip trace on a 31-mil-thick PCB was
orthogonally mounted onto a 50 ohm grounded CPW motherboard using castellated
vias. The microstrip trace was 1.54 mm in width, and the CPW trace was 1.27 in width
with a gap of 0.51 mm. The castellated vias were 0.5 mm in diameter and spaced 1 mm
apart. The ends of both the microstrip and CPW lines were terminated in end-launch
coaxial connectors to facilitate measurements. Figure 2.3 shows a comparison between
the measured and simulated return loss of the prototype. Time windowing was

performed on the measured results to remove reflections from the coaxial connectors.
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Figure 2.3: Measured Return Loss of CPW-Microstrip Transition

There is relatively good agreement between the measured and simulated results. The
measured results demonstrate that the castellated interconnection has better than 15 dB
return loss over the desired band of operation. The Vivaldi antennas in thesis were
manufactured on a 20-mil-thick Rogers 5880 substrate (g, = 2.2, tand =.001), with a 62-
mil-thick support package, and were mounted on an FR-4 CPW motherboard. The
castellated interconnection for this configuration was designed and simulated. A plot of

the simulated return loss for the design is shown in Figure 2.4.
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Figure 2.4: Simulated Return Loss of CPW-Microstrip Transition

2.2 Active Packages

The Vivaldi antennas designed for this thesis were used as elements in active
antenna packages. The motivation for using an active antenna scheme was described in
Chapter 1. In general, Vivaldi antennas (as well as other TSA) consist of two
transmission line structures: the radiating tapered slotline, and a feed line, which is
typically stripline or microstrip. In [8] and [9], two and three terminal semiconductor
devices were integrated with TSA slotline structures. However, the impedance of a
slotline transmission line tends to be fairly high, and is not suitable for integration with
ICs designed for the typical 50 ohm reference impedance. Alternatively, electronic
devices may be integrated with the antenna feed line, which would present a 50 ohm
impedance. In [10], active components were integrated within the microstrip feed
network of a linear array of TSA elements, which was printed on a single card. In this
thesis, an active device was integrated with the microstrip feed of the Vivaldi antenna.

For the best performance, the device was integrated such that the amount of
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transmission line between it and the radiating structure was minimized. In practice, an
active package would contain a full RF front-end. For simplification, only a mixer IC
was integrated with the active packages in this project. An off the shelf mixer chip, the
Hittite HMC130 IC, was chosen as the active component. The HMC130 is a double
balanced diode mixer which has a bandwidth from 6 to 11 GHz, requires an LO drive
power between 9 and 15 dBm, and has a conversion loss of 7 dB. Additionally, it is
packaged on a 1.48 mm square, surface mountable die. A datasheet for the HMC130 is
included in Appendix C.

In order to evaluate the performance of the mixer when integrated within the
microstrip feed, an active slotline prototype was designed and built. The prototype
consisted of a slotline fed by a microstrip line, which was integrated with the mixer IC.
The slotline was terminated with a second microstrip feed line. In order to transfer a
signal from the microstrip to the slotline, which is on the other side of the substrate, a
microstrip-to-slotline transition is required. At the transition the microstrip line is
terminated in a radial stub and the slotline is terminated in a circular cavity as shown in

Figure 2.5.

Figure 2.5: Simulation Geometry for Microstrip-fed Slotline
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The radial stub and circular cavity are designed to present a virtual short circuit and
virtual open circuit respectively, over a wide band of operation. The input impedance
and bandwidth at the transition can be controlled by varying the radius and flare angles
of the stub, the width of the slotline, and the diameter of the circular cavity [11]. A
microstrip-to-slotline transition was designed such that it had better than 15 dB return
loss from 6 to 11 GHz, which corresponded to the mixer bandwidth. The structure
shown in Figure 2.5 was simulated in CST Microwave Studio, and a design meeting
desired specs was achieved. The simulated slotline was 3 cm long and located on a 20-
mil-thick Duroid substrate. The same microstrip-to-slotline transition was used in the
Vivaldi elements described in Chapters 3 and 4, and dimensions are shown in Appendix

B. Figure 2.6 shows the simulated return loss of the designed microstrip-fed slotline.

8,4 (dB)

-40\
4

8
Frequency (GHz)

Figure 2.6: Simulated Return Loss of Microstrip-fed Slotline
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Figure 2.7 illustrates the layout that was used to integrate the IC with the

microstrip feed of the structure designed above.

Duroid Substrate

Support Package

Castallation

Ve Ve Ve Ve WY _,L/\W\_“i\_
Figure 2.7: Feed Layout of Active Slotline Prototype

The mixer package was mounted onto a copper pad, which was connected to the
metallization on the opposite side with vias, and served as a local ground for the IC.
Microstrip feed lines for the IF and LO signals were included, and connected to lines on
the motherboard with castellated vias. Note that the castellations for the IF and LO feed
lines are 0.5 mm in diameter, while the other castellations are 1 mm in diameter. This
was done so that the vias would fit within the width of the tapered microstrip lines,
which was 0.92 mm. The RF line is a shortened version of the microstrip feed line
designed above. All of the feed lines were matched to 50 ohms, which on 20-mil-thick
Duroid corresponds to a width of 1.47 mm. An electrical connection between the I1C
and the microstrip feed lines was achieved using gold bondwires. Wirebonding is a
commonly used technique, and may be carried out in automated processes. Gold-plated
jumper tabs were attached to the copper lines to provide a gold-on-gold connection for

wirebonding. In practice the lines could be gold plated, which would make the jumper
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tabs unnecessary. Both the mixer and the jumper tabs were connected to the copper
surface using conductive silver epoxy. The prototype was fabricated on a 20-mil-thick
Rogers 5880 Duroid substrate by E-Fab, Inc. of Santa Clara, CA. In addition, a small
CPW motherboard printed on FR-4 was also fabricated. ©— The active package was
soldered onto the CPW on a hotplate. A small rig was used to hold the package in place

during the reflow cycle. Figure 2.8 shows images of the completed prototype.

(a) (b)

(c)

Figure 2.8: (a) Front View; (b) Back View; (c) Close-up of Integrated Feed of Active Slotline Prototype
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In order to determine the performance of the prototype, the conversion loss of
the structure was measured. The conversion loss was found by taking the ratio of the
input IF power, which was supplied by a network analyzer, to the output RF power,
which was measured using a spectrum analyzer. A signal generator was used to supply
the LO drive of 15 dBm. A plot of the conversion gain (the reciprocal of conversion

loss) vs. frequency is shown in Figure 2.9.

Conversion Gain (dB)
L=

| | L | | 1 | | [ |
6.5 7 75 8 85 8 85 10 105 "
Frequency (GHz)

Figure 2.9: Measured Conversion Gain of Active Slotline Prototype

The measured conversion gain of the prototype is about 0.5 to 1.5 dB lower than the
device conversion gain provided by the manufacturer. These discrepancies correlate
well with the simulated insertion loss of the slotline structure. Therefore, it was
concluded that the scheme used to integrate the mixer was acceptable for use with the

Vivaldi elements.
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CHAPTER 3

INDIVIDUAL VIVALDI ANTENNA

3.1 Vivaldi Design

The Vivaldi antenna is a member of a class of elements known as tapered slot
antennas (TSA). TSA were introduced in 1974 by Lewis et al [12], and since then have
been studied as isolated radiators and as elements in phased arrays. Essentially, TSA
may be thought of as planar analogs to horn antennas. A horn antenna is implemented
by the flaring of a metallic waveguide; likewise, TSA are implemented by the flaring of
a slotline. As a slotline is widened, it becomes an increasingly efficient radiator. On a
TSA, waves propagating on the slotline are shed into free space as they travel along the
tapered section. It is this traveling wave radiation characteristic that allows TSA to
operate over wide bandwidths. Many different taper profiles have been utilized for
TSA; the name Vivaldi was introduced by Gibson [13] in 1979, and specifically refers
to TSA with exponentially flared slots.

A single element, microstrip-fed Vivaldi antenna was designed for this thesis. A
microstrip feed was chosen rather than a stripline feed so that the mixer could be
integrated on the same layer as the feed lines, eliminating the need for vias to transfer
signals between layers. However, unlike stripline feeds, microstrip feeds are
unshielded; therefore, they are free to radiate, and may add asymmetry to a Vivaldi’s
radiation pattern. Also, microstrip lines are generally wider than striplines of the same
impedance, and will take up more space on the structure. Figure 3.1 shows the typical

layout of a microstrip-fed Vivaldi antenna.
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Figure 3.1: Important Parameters for the (a) tapered slot, (b) microstrip feed of Vivaldi Antenna

The impedance and radiation characteristics of a Vivaldi antenna can be controlled by
varying the parameters illustrated in Figure 3.1. Important parameters in the design of a
TSA include the length of the antenna, D, and the width of the open end of the slotline,
H,. Because TSA are traveling wave antennas, they are generally multiple free space
wavelengths long when used as isolated radiators. Typical values for D given in

literature range between 2A, and 12X,. Likewise, the width of the taper opening also
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should be electrically large, and H, is typically greater than A,/2 [11]. Since the
mechanism of radiation in a TSA comes from the tapered slotline, the opening rate, R,,
is also a critical design parameter. As was stated, the taper profile for a Vivaldi antenna
is exponential, and is given as

R
x=ce" +c,, where

X =X

cl = R,z, R,z ? and (3'1)
e —e
Rz, Rz,
_ xle - x2€
27 eRaZz _ eRuZl

In order to excite a mode on the slotline, a microstrip-to-slotline transition, which
includes the microstrip feed line and radial stub shown in Figure 3.1a, and the circular
cavity shown in Figure 3.1b, is required. Such a transition was designed in Chapter 2,
and was included in the Vivaldi antenna designed in this chapter.

The Vivaldi was designed to operate over a frequency range of 6 to 11 GHz,
which is the bandwidth of the HMC130 mixer. The substrate was specified to be 20-
mil-thick Duroid. All other parameters were free to vary, although the length was kept
relatively short in order to preserve mechanical stability and to keep costs down.
Simulations were performed using CST Microwave Studio. Initially, solutions were
found for elements backed by an infinite ground plane. When good solutions were
obtained, they were re-simulated on a finite ground plane of 12 cm x 10 cm, which was
the size of the motherboard used for measurements. The primary consideration for
designing the Vivaldi element was that the bandwidth requirement was met. It was also
desirable to have patterns which were well-formed, but specific performance

requirements such as beamwidth and sidelobe levels were not set. Figure 3.2 shows the
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simulated return loss for the designed Vivaldi antenna on both finite and infinite ground

planes.
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-10

15+

15,1 (dB)
%]
=

-25

30+

-35

.40 | | 1 1 i |
0 6
Frequency (GHz)

Figure 3.2: Simulated Return Loss of Isolated Vivaldi Element

The designed Vivaldi exhibits better than 10 dB return loss from about 5 GHz to greater
than 12.5 GHz. The bandwidth for an element on a finite ground plane is roughly the
same as that for an element on an infinite ground; however, the element on the infinite
ground plane has generally lower return loss within the band of operation. The
radiation patterns for this element are shown in section 3.3.1, and are compared with
measured results. Since the designed element met the bandwidth requirement, it was

considered an acceptable design for fabrication.

3.2 Fabrication and Assembly

The Vivaldi packages were fabricated by E-Fab, Inc. The feed layout for the passive

element was as shown in Figure 3.1b and the feed layout for the active element was
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similar to the layout used for the active slotline prototype described in Chapter 2. Full
dimensioned drawings of the packages are included in Appendix B. A CPW
motherboard was fabricated on a FR-4 substrate. The antenna and its motherboard are

shown in Figure 3.3.

Figure 3.3: Fabricated Vivaldi Element and Motherboard

It was found that the 20 mil thick Duroid substrate was very flexible, and that the
copper lamination caused the antenna to warp noticeably.

A more refined process was used to mount the Vivaldi Antennas than was used
assemble the prototypes described in Chapter 2. Rather than using a fixed rig on a
stationary hotplate, the antenna was assembled on a conveyor-belt, which ran over a
hotplate. The hotplate consisted of multiple sections that were heated to a different
temperature. Solder-paste was applied to the castellations, and the Vivaldi packages
were held in place on the motherboard using clips. The moving setup was designed to
approximate the ideal temperature profile for reflowing solder. In addition, it allowed
the amount of time the IC was exposed to high temperatures to be minimized. Images

of an assembled antenna-motherboard structure are shown in Figure 3.4 and Figure 3.5.

24



Figure 3.4: Vivaldi Antenna Mounted on CPW Motherboard

Figure 3.5: Close-up of Castellated Interconnection for Active Vivaldi Antenna Package
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3.3 Measurements

In order to validate the simulation solutions, and to compare the performances of

the passive and active Vivaldi elements, the return loss and radiation patterns were

measured for the fabricated antennas.

3.3.1 Passive Vivaldi Measurements

The return loss of the passive Vivaldi antenna was measured in order to validate
the computational results. Time-windowing was applied in order to remove reflections
caused by the SMA connector from the measurement. Because the orthogonal CPW-to-
microstrip transition is located close to the Vivaldi’s microstrip feed, it was not possible
to window it out of the measurements. The measured return loss is compared to the

simulated return loss (on a finite ground plane) in Figure 3.6.
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Figure 3.6: Measured Return Loss of Passive Vivaldi Antenna
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There is fairly good agreement between the measured and simulated results. The peaks
and nulls generally agree, although the measured return loss is higher than the simulated
return loss. This discrepancy can be attributed to reflections from the CPW-microstrip
transition.

In addition to return loss, both the co-polarization and the cross-polarization far-
field radiation patterns were measured. The AUT (antennas under test) was used as a
receive antenna, while the probe antenna was the transmit antenna. The probe antennas
were C-band and X-band open-ended waveguides (OEWG). The AUT was mounted on
a rotary arm, and was separated from the probe antenna by a distance of 48 inches (1.22
meters). An antenna’s far-field is defined as the region where the radial component of
the antenna’s radiated field is small enough to be considered negligible. The radial

distance from an antenna to its far-field is given as

2D?
R =
i )

(3-1)

where D is the largest physical dimension of the antenna, and 1 is the free space
wavelength. The largest dimension of the Vivaldi antenna was its height, which was
12.0 cm. At the highest frequency of operation (11 GHz) the free space wavelength
was 2.72 cm. Given these values, Ry is 1.06 meters; therefore, the AUT to probe
spacing was sufficient for a far-field measurement. Figure 3.7 and Figure 3.8 are plots
which compare the measured far-field co-polarization patterns with simulated patterns
for the E-plane and H-plane respectively. The simulated patterns were computed for a

Vivaldi with a finite ground plane of 12 cm x 10 cm.
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Figure 3.7: Measured vs. Simulated E-Plane Co-polarized Radiation Patterns of Passive Isolated Vivaldi
Element at: (a) 6 GHz; (b) 7 GHz; (c) 8 GHz; (d) 9 GHz; (¢) 10 GHz; (f) 11 GHz (Continued next page)
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Figure 3.7, continued: Measured vs. Simulated E-Plane Co-polarized Radiation Patterns of Passive
Isolated Vivaldi Element at: (a) 6 GHz; (b) 7 GHz; (c) 8 GHz; (d) 9 GHz; (¢) 10 GHz; (f) 11 GHz
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Figure 3.8: Measured vs. Simulated H-Plane Co-polarized Radiation Patterns of Passive Isolated Vivaldi
Element at: (a) 6 GHz; (b) 7 GHz; (c) 8 GHz; (d) 9 GHz; (e) 10 GHz; (f) 11 GHz
(Continued next page)
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Figure 3.8, continued: Measured vs. Simulated H-Plane Co-polarized Radiation Patterns of Passive
Isolated Vivaldi Element at: (a) 6 GHz; (b) 7 GHz; (¢) 8 GHz; (d) 9 GHz; (e) 10 GHz; (f) 11 GHz

Although there is fairly good agreement between the measured and simulated results,
some discrepancies exist, especially at higher frequencies. In both principle planes, the

measured patterns display increased asymmetry and sidelobe levels relative to the
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simulated patterns as frequency is increased. These discrepancies are likely due to
spurious radiation from the antenna’s CPW feed line. Additionally, the patterns may be
affected by the bend in the antenna caused by the flexible substrate, and the metallic

pedestal on which the antenna was mounted.

3.3.2 Active Vivaldi Measurements

In order to evaluate the performance of the active Vivaldi element, its far-field
radiation pattern was measured for several frequencies. Because the measurement
involved a conversion in frequency, the measurement loop shown in Figure 3.9 was
used. The AUT was used as a receive antenna, and the received signal was
downconverted to IF. In order to ensure the signal that the PNA receives is at the same
frequency as the transmitted signal, an external mixer was added to the loop to

upconvert the IF output from the AUT back to RF.

RF

IF
Lo
x «
Signal Generator 2 PNA 1

Figure 3.9: Schematic of Setup Used to Measure Active Antenna
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The measured patterns for the active Vivaldi element are shown in Figure 3.10 and

Figure 3.11.

~ —Measured
N,/ Simulated
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Figure 3.10: Measured vs. Simulated E-Plane Co-polarized Radiation Patterns of Active Isolated Vivaldi
Element at: (a) 6 GHz; (b) 7 GHz; (c) 8 GHz; (d) 9 GHz; (e) 10 GHz; (f) 11 GHz
(Continued next page)
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Figure 3.10, continued: Measured vs. Simulated E-Plane Co-polarized Radiation Patterns of Active
Isolated Vivaldi Element at: (a) 6 GHz; (b) 7 GHz; (c) 8 GHz; (d) 9 GHz; (e) 10 GHz; (f) 11 GHz
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Figure 3.11: Measured vs. Simulated H-Plane Co-polarized Radiation Patterns of Active Isolated Vivaldi
Element at: (a) 6 GHz; (b) 7 GHz; (c) 8 GHz; (d) 9 GHz; (e) 10 GHz; (f) 11 GHz
(Continued next page)
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Figure 3.11, continued: Measured vs. Simulated H-Plane Co-polarized Radiation Patterns of Active
Isolated Vivaldi Element at: (a) 6 GHz; (b) 7 GHz; (¢) 8 GHz; (d) 9 GHz; (e) 10 GHz; (f) 11 GHz

In general, there is good agreement between the measured patterns for the active
Vivaldi antenna and the simulated data. The measured E-plane patterns of the active
Vivaldi antenna match the simulated data better than the same measurements for the

passive Vivaldi, especially at 10 GHz and 11 GHz. The H-plane patterns also agree
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fairly well, although there is some asymmetry in the main beam. It is possible that this
asymmetry is caused by the bend of the antenna, as well as the metallic pedestal

backing the antenna.

3.3.3 Comparison of Active and Passive Elements

One of the primary advantages of using active antennas is that frequency
conversion takes place at the antenna, eliminating transmission through lossy feed
networks. As was explained in Chapter 1, integrating a mixer at the antenna should
help improve the efficiency of a system, as well as reduce spurious radiation from feed
lines. In this section, the efficiencies and radiations patterns of the passive Vivaldi
element and the active Vivaldi element will be compared.

The difference in efficiency between the passive and active elements was
determined by comparing |S,;|, which was measured for each element in the far-field
range. The AUT were separated from the probe antennas by a distance of
approximately 1.2 meters. A C-band OEWG was used as the probe antenna for
measurements from 6-8GHz, and an X-band OEWG was used for measurements from
9-11GHz As was noted, the setups used to measure the passive and active elements
differed, as such, each measurement loop contained different sources of loss. Although
both setups used the same RF cables, the passive loop contained an extra length of RF
cable. In the active loop, the external mixer and the IF cable in the setup shown in
Figure 3.9 added loss to that measurement. The cable losses and the conversion loss of
the external mixer were measured, and the |S;;| measurements were adjusted
accordingly. Measurements were taken for several RF frequencies, with the IF held

constant at 100 MHz. The results of the measurements for both the passive and active
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elements are shown in Table 3.1. The value A is the difference between the [S;;| values
of the active and passive configurations. Additionally, the insertion loss of a CPW line
with same dimensions as the feed for the passive Vivaldi antenna was measured, and
the results are included in Table 3.1, as are estimated values of the mixer conversion

loss, which were obtained from the device datasheet.

Table 3.1: Comparison of Passive and Active Vivaldi Elements

1Sa1] 1S21] Mixer CPW

Frequency (Passive (Active A Conversion | Insertion
Antenna) Antenna) Loss Loss
6.0 GHz -31.2dB -37.3dB -6.1 dB 8.0 dB 1.6 dB
7.0 GHz -33.0dB -37.3dB -4.3 dB 7.3 dB 1.8 dB
8.0 GHz -34.0 dB -38.2dB -4.2 dB 6.8 dB 2.1dB
9.0 GHz -40.5 dB -44.4 dB -3.9dB 6.8 dB 24 dB
10.0 GHz -39.8dB -44.1 dB -4.3 dB 6.8 dB 3.0dB
11.0 GHz -39.7dB -44.5 dB -4.8 dB 7.3 dB 3.3dB

In order to check the results obtained, the mixer conversion loss was added to A, while
the CPW insertion loss was subtracted, and the calculated totals were found to be within
+/- 1 dB. Theoretically, the total difference between the two antenna configurations
when all losses are considered should be close to 0 dB. The +/- 1 dB differences may
be the result of drift between measurements, as well as differences between the actual
mixer conversion loss and the estimated values. In general, the results indicate that the
active configuration has a higher efficiency than the passive configuration once
conversion loss is taken into account. This improvement in efficiency is the result of

frequency conversion at the antenna, which allows for the transmission of a low-
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frequency IF signal through the antenna’s lossy CPW feed line, rather than a high-
frequency RF signal.

As was stated previously, frequency conversion at the Vivaldi element should
help improve the overall radiation patterns of the prototype structure. The results
shown in the previous two sections demonstrate that the measured co-polarization
patterns for the active antenna configuration agree better with the simulated patterns
than do the patterns for the passive configuration. The patterns for the passive
configuration are likely affected by radiation leaking from the microstrip and CPW feed
lines. Because downconversion takes place at the antenna in active configuration, the
amount of transmission line over which the RF signal must propagate is limited, as a
result, the source of spurious radiation, is significantly reduced.

Another effect of the antennas’ feed lines is to introduce asymmetry into the
structures. Such asymmetry has the effect of increasing cross-polarization levels. The
cross-polarized radiation patterns were measured for both the passive and active Vivaldi
configurations. Figure 3.12 and Figure 3.13 show comparisons between the measured

cross-polarization patterns of the two configurations.
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Figure 3.12, continued: E-Plane Cross-polarized Radiation Patterns of Passive and Active Isolated
Vivaldi Elements at: (a) 6 GHz; (b) 7 GHz; (c¢) 8 GHz; (d) 9 GHz; (e) 10 GHz; (f) 11 GHz
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Figure 3.13: H-Plane Cross-polarized Radiation Patterns of Passive and Active Isolated Vivaldi Elements
at: (a) 6 GHz; (b) 7 GHz; (¢) 8 GHz; (d) 9 GHz; (e) 10 GHz; (f) 11 GHz
(Continued next page)
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Figure 3.13, continued: H-Plane Cross-polarized Radiation Patterns of Passive and Active Isolated
Vivaldi Elements at: (a) 6 GHz; (b) 7 GHz; (¢) 8 GHz; (d) 9 GHz; (e) 10 GHz; (f) 11 GHz
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In the E-plane, the peak cross-polarization level of the passive Vivaldi is
generally higher than that of the active element. Radiation from the radial stub is most
likely the primary source of cross-pol for the active element in the E-plane. In the
passive configuration, the microstrip feed also radiates at the RF frequency, thereby
leading to the higher cross-pol. In the H-plane, the cross-polarization is much higher
for the passive configuration, which is most likely caused by radiation from the CPW
feed line. In the active configuration, the CPW feed lines carry LO and IF signals, and
therefore, do not contribute to the RF radiation patterns at the measurement frequency.
The high frequency LO signal will introduce significant cross-pol at that frequency.
However, in practice an oscillator could also be integrated, thereby limiting all high

frequency signals to the antenna package.

3.4 Summary

The results obtained demonstrate the viability of the active Vivaldi element
configuration. In general, the active configuration was shown to exhibit improvements
in both efficiency and radiation patterns over the passive configuration. For this
project, the analysis of the isolated element was performed primarily as the first step in
designing an array of elements. However, there are a number of applications that make
use of isolated Vivaldi elements. Such applications would most likely require elements
with better bandwidth and radiation characteristics than the element presented here.
The Vivaldi element designed in this thesis had slightly more than an octave of
bandwidth, which appeared to be limited by the bandwidth of the microstrip-to-slotline

transition. Additionally, the antenna’s sidelobe levels are fairly high, and its gain varies

41



substantially as a function of frequency. One method that has been shown to improve
the radiation characteristics of isolated TSA elements is the incorporation of corrugated
slots along the edges of the antenna [14]. The Vivaldi element from this thesis was
resimulated with corrugations, and the antenna’s radiation patterns improved
substantially. The results of the simulations are presented in more detail in Appendix

A.
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CHAPTER 4

ACTIVE VIVALDI ARRAY

4.1 Array Design

4.1.1 Background

Arrays of Vivaldi antennas have been widely studied due to their broad
bandwidth and good performance at wide scan angles. Tapered Slot Antennas were
first proposed as elements for phased arrays by Lewis et. al in 1974 [12]. Vivaldi
elements couple strongly when located in an array environment; therefore, mutual
coupling has a dominant effect on the performance of a Vivaldi array. As a result, the
design of Vivaldi antennas as an array element may be very different from the design of
an isolated element. Elements which perform poorly on their own may operate very
well when used in an array. For instance, while isolated Vivaldi elements are multiple
wavelengths long, array elements may be one wavelength or less [15]. Although
mutual coupling is desirable from a performance standpoint, it complicates the analysis
of Vivaldi arrays. Full wave analyses are the only way to accurately compute the
effects of coupling, and because Vivaldi elements are electrically large, even small
arrays can be computationally demanding to analyze. For that reason, Vivaldi elements
are often simulated in an infinite array using a periodic boundary condition. Infinite
array analysis is often a very good approximation for large arrays, but it has been shown
[17] that truncation effects may be severe in small arrays of Vivaldi antennas. For the
design of the array in this thesis, elements were first simulated in an infinite array

environment, and then a finite array of the elements was simulated.
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4.1.2 Design of 8x1 Linear Array

The design specs for the array were established such that the finished product
would provide a good demonstration of concept without being excessively difficult and
expensive to fabricate. It was decided that an 8x1 element linear array would be a good
demonstration, while still being a feasible prototype to construct. As was the case for
the isolated Vivaldi element, the array was designed to have 2:1 VSWR bandwidth from
6-11 GHz. Additionally, it was designed such that it was capable of an E-plane scan of
40 degrees from broadside.

In [4] Kasturi designed and built a 16x15 planar array of stripline-fed Vivaldi
elements. For reference, a 16x1 linear subarray was removed from the array, and active
reflection coefficients of elements in the array were found empirically. The active
reflection coefficient provides a measure of the reflection coefficient for an element in
an array in which all elements are driven. For a uniformly-lit, N-element linear array,

the active reflection coefficient of an element with index m is given as [16].
N o .
rma — sznea/kndX sin @, (4 1)
n=1

where S, are the n-port scattering parameters of the array, £ is the free space
wavenumber, d, is the linear spacing between elements, and 6, is the scan angle. Figure
4.1 shows the active reflection coefficient for a central element in the linear array,

which was calculated from measured S-parameters.
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Active Refiection Coefficient for Central Element of 16 Element Linear Amray of Vivald Antennas
T

Adtive Reflection Coefftiert (dB)

Figure 4.1: Measured Active Reflection Coefficient for Central Element in 16x1 Array of Vivaldi
Antennas (see [4] for Array Dimensions)

The measurements demonstrated that the 16x1 linear array operates well from 3 to 12
GHz. It was concluded that the linear subarray represented a good baseline from which
to design the 8x1 array for this project.

Like the isolated element, the array elements were designed to be microstrip-fed
Vivaldi antennas with 20 mil thick Duroid substrates. As such, the microstrip-to-slotline
transition designed in Chapter 2, and incorporated on the isolated element, was also
utilized to feed the array elements. The 16x1 array described above was used to provide
a basis for the dimensions of the antennas’ height, aperture width, and opening rate.
The width of the antenna modules was designed such that the elements could be spaced
close enough to avoid grating lobes, while providing enough space to fit the mixer IC
and feed lines. In order to prevent grating lobes, elements must be spaced less than a
certain distance, dmax, Which is given as [18]

A
S 4-2
1+sin@, *+2)

max
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where /, is the free space wavelength at the highest frequency of operation, and 6, is the
maximum scan angle. The maximum operating frequency of the array was specified to
be 11 GHz and the maximum scan angle was specified to be 40 degrees from broadside.
Using these values, the maximum allowable spacing was found to be 16.3 mm. The
layout of the Vivaldi packages, which is described in more detail in section 4.2.1, was
designed such that the inter-element spacing was 15 mm, which is less than dp,x. With
15 mm spacing, the grating lobe frequency for a 40 degree scan is 12.1 GHz.
Simulations for both infinite and finite array setups were performed in Ansoft
HFSS, a commercially available software package which utilizes the Finite Element
Method (FEM). Infinite array simulations are less computationally intensive than finite
array simulations; therefore, the array elements were initially designed in an infinite
array. Also, since a practical array would consist of many more elements than the 8x1
array designed for this project, the infinite array results may be useful for a future
design of a large array of these elements. Figure 4.2 shows the computed active
reflection coefficient for an infinite linear array of electrically-connected Vivaldi

antennas aimed at broadside.
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Figure 4.2: Simulated Active Reflection Coefficient for Infinite-by-1 Array of Vivaldi Antennas

The dashed line in Figure 4.2 represents an active reflection coefficient corresponding
to VSWR = 2 (-9.54 dB). Therefore, it is apparent that the infinite array is in band over
a frequency range from 4 GHz to 14 GHz, a bandwidth of 3.5:1. However, the
bandwidth would be limited depending on the grating lobe frequency corresponding to
the maximum scan angle. As was stated, for a 40 degree scan the grating lobe
frequency for this array was 12.1 GHz. The E-plane scan performance was evaluated
at angles of 20, 30 and 40 degrees from broadside. The VSWR computed at those scan

angles are shown in Figure 4.3
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Figure 4.3: Simulated VSWR of Infinite-by-1 Array of Vivaldi Elements for Several Scan Angles

The array performance for a 20 degree scan is very similar to the broadside
performance, in fact, the upper limit of the 2:1 VSWR bandwidth increases slightly. As
the array is scanned further from broadside, its performance worsens. For a 30 degree
scan the maximum VSWR in the band of interest (6-11 GHz) was 2.14, and for a 40
degree scan it was 2.87. The VSWR curve for a 40 degree scan has large peak at
around 12.3 GHz, which most likely corresponds to the onset of a grating lobe.
Because the array was designed to be a receive antenna, the relatively high VSWR of
2.87 was deemed acceptable.

While infinite array analysis is a good predictor for the performance of large
arrays of Vivaldi antennas, it is less suitable for use in the design of small arrays. In
small arrays, truncation effects may severely affect performance. As the size of an
array is reduced, there are fewer elements; therefore, the effects of mutual coupling are

weaker, especially towards the edge of the array. Since mutual coupling is utilized to
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improve the bandwidth of the array elements, truncation may reduce bandwidth for
elements near the array edge. Additionally, scattering and diffraction from the array
edges may lead to resonances within the band of operation, which may cause further
discrepancies between the results of infinite and finite array analyses. In order to
determine the severity of truncation effects, the full 8x1 array was simulated in HFSS.
A brute force method of meshing the entire structure and solving was employed. A port
was assigned at each of the 8 elements in the array, and the 8-port scattering matrix was
computed. The active reflection coefficients for the elements in the array were found as
a post-processing step by applying the computed S-parameters in Equation 4-1. The
structure was meshed assuming no phase shift between elements, which may cause
some inaccuracy in the computations when a phase shift is introduced. This is because
the adaptive mesher used in HFSS refines the mesh based on field intensity. When the
array is scanned, the field intensity on the structure will change, and the broadside mesh
may not accurately capture these changes. Figure 4.4 shows the active reflection
coefficient for a central element and for an edge element in the finite array at scan
angles of 0, 20, 30, and 40 degrees from broadside. The active reflection coefficients
are compared with those of an infinite array comprised of the same elements, as well as
with the return loss of an element isolated from the array environment. Note that the
array is scanned towards the higher indexed elements. The array has the same
dimensions as the one shown in Figure B.3 in Appendix B, but with elements

electrically connected, and without the dummy elements present.
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Figure 4.4: Simulated Active Reflection Coefficients of Elements in an 8x1 Array of Vivaldi Elements
for scan angles of (a) 0 ; (b) 20 ; (c) 30 ; (d) 40 (Continued next page)
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Figure 4.4, continued: Simulated Active Reflection Coefficients of Elements in an 8x1 Array of Vivaldi

Elements for scan angles of (a) 0; (b) 207; () 30'; (d) 40

The results of the finite array simulations indicated that significant truncation effects

occur in the 8x1 array. The results for the central element agree fairly well with the
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infinite array results in terms of the peak magnitude; however, there are some
discrepancies in the locations of peaks and nulls, especially at broadside. At a 40
degree scan, the peak active reflection coefficient is about 1 dB higher than that of the
infinite array; this may be caused by truncation effects, or by the inaccuracies of using a
broadside mesh. The performance of the edge element is significantly worse than that
of the central element. The results for the edge element fall between those of the
infinite array and those of the isolated element.

In order to improve the performance of the finite array, dummy elements were
added to the array’s edges. A dummy element is simply a non-excited element, which
is terminated in a matched load. Dummy elements are utilized to provide a less abrupt
termination of the array, and as a result, reduce truncation effects. Because dummy
elements are purely passive, they do not need to be integrated with electronics, and do
not significantly increase the complexity of an array’s feed network. The 8x1 array was
resimulated with a single dummy element included at both of the array’s edges. Figure

4.5 shows the computed active reflection coefficients for elements within this array.
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Figure 4.5, continued: Simulated Active Reflection Coefficients of Elements in an 8x1 Array (Edge
Elements Terminated) of Vivaldi Elements for scan angles of (a) 0 ; (b) 20 ; (¢) 30 ; (d) 40
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The plots above indicate that adding dummy elements improves the performance of the
edge element. At broadside, the edge element exhibits an active reflection coefficient
better than 10 dB across most of the band. The array was also simulated with two
dummy elements on either edge; however, it was determined that the additional

elements had little impact on the array’s performance.

4.1.3 Effects of Modularity

Ultimately the Vivaldi elements in the array were to be fabricated as modular
packages. In the simulations described above, all the array elements were electrically
connected. However, it has been shown [19] that separating elements in a TSA array
leads to severe impedance anomalies, which may significantly reduce bandwidth. The
8x1 array described in the previous section was resimulated with electrically separated
elements. A gap one substrate thickness (20 mil) in width was introduced between each
element, while all other array parameters were left the same. Figure 4.6 shows the
active VSWR for a central element in the array with element separation compared to the

VSWR of the same element in the array with connected elements.
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Figure 4.6: Simulated VSWR for Central Element in 8x1 Array of Vivaldi Antennas with and without
Electrical Separation Between Elements

It is apparent that impedance anomalies occur around 6 GHz and 10 GHz, limiting the
2:1 VSWR bandwidth for broadside scan to 2 GHz. Such anomalies were studied in
[20], and were attributed to slotline resonances excited in the interelement gaps. These
resonances were shown to occur at frequencies when the gaps were odd multiples of A/4
in length. In order to make use of modular Vivaldi elements in phased arrays, a method
must be developed to suppress these resonances. For this project, copper strips were
soldered across the gaps to suppress slot resonances. However, such a method of
connecting elements is not amenable with the low cost techniques discussed in this
thesis. In the absence of a low cost solution for suppressing slot resonances, the gap-
induced anomalies described here remain a major obstacle preventing the widespread

use of modular TSA elements.
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4.2 Array System Components and Assembly

4.2.1 Active Element Layout

The layout of the array elements was similar to the layout of the individual
Vivaldi antenna described in Chapter 3, but on a smaller scale. As was explained in the
previous section, the active element packages had to fit within a spacing of 16.36 mm in
order to prevent the onset of grating lobes. Additionally, since there was a 20 mil gap
between elements, the maximum width of the antenna packages was limited to 15.85
mm. In order to minimize coupling, the feed lines were separated by two substrate
thicknesses (40 mil). Using these guidelines, an element with a width of 14.49 mm was
designed. The fabricated Vivaldi element packages are shown in Figure 4.7.

Dimensioned drawings of this element are included in Appendix B.

Figure 4.7: Active Vivaldi Element Packages
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4.2.2 Array Feeding and Phase Control Networks

In order to measure the array, power division and phase control networks were
required. A practical version of the array designed in this thesis would have power
division networks printed onto the array motherboard. However, for the prototype
array, separate connectorized power dividers were used to feed both the IF and LO
signals. Each element was fed with CPW LO and IF feed lines, which were printed
onto the array motherboard (see Figure 4.11 on page 64). The power division networks
were connected to the motherboard using short lengths of coaxial cables. A primary
concern was whether the LO power delivered to each element would be sufficient to
drive the mixer diodes. In order to ensure that enough power was delivered, an
amplifier was place directly at the input of the LO power divider.

In order to electronically scan the main beam of the array, a phase control
network was required. In a phased array, the main beam is steered by introducing a
progressive phase shift between elements. The progressive phase required to scan the
main beam to an angle 6, is given as

A¢p=—kd sin0, (4-3)
where £ is the free space wavenumber and d, is the spacing between elements. For this
project, commercial, off the shelf, phase shifters were used to produce the required
inter-element phasing. Considerations for choosing phase shifters included cost,
availability, simplicity of operation, size, frequency of operation, insertion loss, and
total phase shift. Since the antenna elements were integrated with mixers, each active
element had both IF and LO ports. If the mixers are modeled as signal multipliers, then

the RF signal (after high-pass filtering to remove the image frequency) is given as
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4-4
=@cos(2n(fw + L)+ Ay +Ady) 4

where A¢,, and Ag,. are phase shifts of the LO and IF signals respectively, and K is a

conversion constant. From 4-4 it can be concluded that a phase shift introduced at
either the LO or IF frequencies will produce the same phase shift at RF. Therefore, a
choice existed of whether to implement the phase shifters at IF or at LO. For this
project, the LO signal had to have a large enough power to turn on the diode mixers,
therefore, losses in the LO feed network needed to be avoided. It was decided to
incorporate the phase shifters into the IF feed network, since losses at IF were more
tolerable. Similarly, there was some freedom about what frequencies to use for the IF
and LO signals. To further prevent losses in the LO feed network, it was desirable to
use a higher IF frequency, such that the LO frequency could be reduced.

A component search yielded several different models of phase shifters, including
mechanical, digital, and analog implementations. The different options of phase shifters

are summarized below:

e Mechanical phase shifters are operated by manually adjusting a length of
transmission line to shift phase, and thus require no external control networks.
They are also broadband, and their total achievable phase shift increases as a
function of frequency. However, commercially available mechanical phase
shifters were found to be relatively expensive, large, and fairly cumbersome to

implement.
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e Digital phase shifters use switched transmission lines to achieve discrete phase
shifts. Off-the-shelf digital phase shifters were identified to have the same cost
and size problems as the mechanical phase shifters. Additionally, some means
of inputting digital logic would have been required, thereby adding to the
complexity of use.

e Analog phase shifters use continuously variable input signals to control phase.
Analog phase shifters may utilize ferrites or variable reactive elements such as
varactor diodes. Available analog phase shifters were found to have higher
insertion loss, and to be relatively narrowband. Also, an external voltage
control network was required to control multiple phase shifters. However, a
commercially available analog phase shifter that was relatively inexpensive,
small, and worked at desirable frequencies was located, and thus was deemed to

be the best choice for this project.

The JSPHS-1000 model phase shifter from Mini-Circuits was chosen. The model
operated over the frequency band of 700 MHz to 1000 MHz, which corresponded to
desirable IF frequencies. Other attractive features included the comparatively low cost
of the components ($26 per part), the fact that the devices were surface mountable, and
the fact the width of each phase shifter fit within the interelement spacing of the array.
A datasheet for the JSPHS-1000 is included in Appendix C. One difficulty was that
each phase shifter was only capable of 180 phase shift, while 360 phase shift was
required to produce the necessary scan. For that reason, two cascaded phase shifters

were used to produce a single phase shifter.
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A CPW IF power division/phase control board was assembled on a 31 mil thick
FR-4 substrate. An 8-way power divider was created using seven 2-way surface mount
power dividers. The surface mount power dividers were inexpensive ($0.99/part), and
operated from 600 MHz to 1100 MHz. Two cascaded phase shifters were used on
seven of the eight branches of the 8-way power divider. The phase at the first element
in the array was used as the reference; therefore, phase shifters were not required in the
branch feeding that element. The two phase shifters on each branch were controlled
with a common DC voltage, which was fed on the underside of the board. Figure 4.8 is

an image of the completed IF control board.

Figure 4.8: IF Control Board

Different DC control voltages were required at each branch of the IF control board;
therefore, it was necessary to design a DC control network. Measurements indicated
that a full 360 phase shift could be achieved for a DC voltage range from 1 to 14 volts,

at a frequency of 850 MHz. A simple voltage control network was designed, which
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used seven non-inverting op-amp voltage amplifiers. The schematic for a non-inverting

voltage amplifier is shown in Figure 4.9.

Vin
Vout

Rz
. 'Rl

Figure 4.9: Non-inverting Voltage Amplifier

The output voltage for this circuit is given as
I/out = V;n (1 + &J (4'5)

An input voltage of 1 volt and an R; value of 1 kQ were used, so in order to produce a
voltage between 1 volt and 14 volts, R, needed to vary between 0 Q and 13 kQ.
Potentiometers were used to produce the variable resistance for R,. Figure 4.10 shows

the control network, which was constructed on a powered breadboard.
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Figure 4.10: DC Control Network

4.2.3 Array Assembly

The assembly of the array of Vivaldi elements was significantly more
challenging than the mounting of a single element. In the previous case, the entire
motherboard was heated on a conveyer belt-type hotplate to facilitate solder reflow
through the castellations. If the same method were used to construct the array, all of the
elements would have had to have been mounted simultaneously, otherwise some
elements would have been exposed to the reflow cycle multiple times. Some sort of rig
could have been used to hold all of the elements in place; however, it was found that the
adhesive used to attach the support package to the antenna board failed when exposed to
high temperatures. For that reason, the packages could not be mounted on a hotplate.
Instead, a soldering iron with a fine tip was used to reflow solder paste under the
castellations. Once the elements were soldered in place, the slots between the elements
were shorted by soldering copper strips across the gap. Figure 4.11 shows the
completed array. Note that the elements in the array are somewhat misaligned with
respect to one another due to the method of construction. A dimensioned drawing of

the array is included in Appendix B.
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Figure 4.11: Assembled Vivaldi Array (a) Front View; (b) Back View
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4.3 Array Measurements

The performance of the active array was evaluated by measuring its radiation
patterns for several frequencies and scan angles. It would have been very difficult to
mount the array and its power dividing networks onto the rotating positioner used in the
far-field measurement scheme; instead, the array patterns were measured using a planar
near-field scan. A planar scan measures the near-field radiation from the AUT on an
imaginary planar surface. A Fourier transform of the measured near-field is then
performed to compute the far-field patterns. Through the use of holographic projection,
it is also possible to calculate an aperture field at an arbitrary distance from the antenna.
Near-field planar scans are well-suited for measuring the patterns of high gain antennas
[21]. A drawback to using planar measurements is that the maximum far-field angle
that may be computed is limited. Since the array was fairly directive (~16 dBi), a
planar scan was considered to be an acceptable method. Because of the frequency
conversion at the array, a similar method of measurement to the one shown in Figure

3.9 was used. Figure 4.12 shows the setup used to measure the array patterns.
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Figure 4.12: Near-field Measurement Setup

When the array was measured, the effects of amplitude and phase errors needed
to be considered. In large, periodic arrays, the general effect of random excitation
errors is to increase the array’s average sidelobe level [18]. In practical phased arrays,
such excitation errors are largely caused by limited manufacturing tolerances, and are
usually assumed to be small and uncorrelated (zero mean). The primary source of
excitation errors in the 8x1 prototype array was from the coaxial cables used to connect
the LO and IF power dividers to the array motherboard. The lengths of the cables were
not controlled; therefore, an arbitrary inter-element phase error was introduced.
Additionally, the cables were chosen to be flexible, and as a result, suffered from higher
attenuation and lesser phase stability. Other sources of phase errors included limited
manufacturing tolerances, the misalignment of the array elements, and the integrated
mixer ICs. In a practical active phased array, the phase errors caused by the integrated

electronic components would be of great concern. The phase error between the
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integrated mixer ICs was measured to be approximately +/- 20" at 11 GHz and
maximum LO drive. Amplitude errors were largely caused by differing mixer
conversion losses at each of the active elements. The prototype array was not large
enough such that the excitation errors could be assumed to be zero mean; therefore, the
errors had the effect of scanning the array’s main beam from broadside, as well as

raising the sidelobe level, as shown in the measured pattern in Figure 4.13.
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Figure 4.13: Measured Broadside Radiation Pattern for Vivaldi Array with Excitation Errors

In order to determine the array’s excitation errors, the measurement loop |Sy;| was
obtained when each element was individually excited. The measured inter-element
amplitude errors, 0, and phase errors, @, at an RF frequency of 8 GHz are shown in

Table 4.1.
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Table 4.1: Excitation Errors in 8x1 Array

Element # A ()
1 -4.3 dB 0
2 -0.5dB 1117
3 -2.0dB 24’
4 0 dB -128°
5 -0.2dB -137°
6 -1.1dB 176
7 -0.9 dB 122
8 -1.4 dB 138

From the results in Table 4.1, the RMS amplitude error and RMS phase error were
calculated as 1.1 dB and 116 respectively. The amplitude errors in the array were
determined to have much less of an effect on the array’s pattern than the phase errors.
Additionally, amplitude correction would have been much more difficult to implement;
therefore, only phase errors were corrected for.

The array’s E-plane pattern was measured at frequencies of 6 GHz, 8 GHz, and
10 GHz, and for scan angles of 0, 20", and 40". At each frequency the phase errors
were calculated, and then corrected for using the phase control network described in
section 4.2.2. As was discussed, the phase shifters were controlled using potentiometers
in a DC voltage-divider network. The phase shift for each of the branches of the phase
control network was measured using a network analyzer, and the potentiometer dials at
each branch were adjusted until the prescribed phase shift was achieved. The array was
then measured with the applied phase shift/correction. Amplitude errors and some

residual phase error existed after the correction was applied. This residual error was
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determined by measuring the aperture field using holographic back-projection. Plots of

the measured aperture phase are shown in Figure 4.14.
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Figure 4.14: Measured Phase at Array Aperture for Scan Angles of (a) 0, (b) 20°

The amplitude and phase at each element were extracted from the measured aperture

field and applied to the HFSS simulations. The measured far-field radiation patterns of
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the array are compared with the corrected simulation patterns in Figure 4.15, Figure

4.16, and Figure 4.17. The simulated array was backed with a finite ground plane.
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Figure 4.15: Measured vs. Simulated E-Plane Radiation Patterns for 8x1 Array of Vivaldi Elements (0°
scan) at: (a) 6 GHz, (b) 8 GHz, (¢) 10 GHz (Continued next page)
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Figure 4.15, continued: Measured vs. Simulated E-Plane Radiation Patterns for 8x1 Array of Vivaldi
Elements (0 scan) at: (a) 6 GHz, (b) 8 GHz, (¢) 10 GHz

At broadside, the main beams of the measured array exhibits excellent agreement with
the simulations. The measurements show higher sidelobes than were predicted at wide
far-field angles. It is possible that these high sidelobes are the result of excitation
errors, and that the corrections applied to the HFSS simulations were not fully accurate.
However, the sidelobes decrease somewhat as the maximum far-field angle is increased.
This seems to indicate that the high sidelobes may be partially due to truncation effects

in the Fourier transform algorithm utilized by the near-field range software.
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Figure 4.16: Measured vs. Simulated E-Plane Radiation Patterns for 8x1 Array of Vivaldi Elements (20°
scan) at: (a) 8 GHz, (c) 10 GHz
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Figure 4.17: Measured vs. Simulated E-Plane Radiation Patterns for 8x1 Array of Vivaldi Elements (40°
scan) at: (a) 8 GHz, (c) 10 GHz

At 20 degree scan, there is increased disagreement in the sidelobe levels of the
measured and simulated patterns. Additionally, at 8 GHz there is also some

discrepancy in the main beam. The 3 dB beamwidth for the measured pattern is about
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1.5 degrees narrower than the simulated pattern. These disagreements probably result
from errors in the correction that was applied to the simulations. For a 40 degree scan
increased discrepancies exist between the measured and simulated values. At 10 GHz,
the simulated and measured main beams are located at somewhat different angles, and
there is significant disagreement between the sidelobe levels of the two patterns. At 8
GHz, the main beam of the measured pattern is broader than that of the simulated
pattern. Since the main beam is on the outer edge of the planar scan’s field of view, this

discrepancy may be a truncation effect.

4.4 Summary

In general, the prototype active array designed in this thesis provided a
successful demonstration of concept. The measured performance of the array agreed
well with simulation results when excitation errors were factored in. Without
correction, the array’s performance was dominated by excitation errors. In the future,
such errors could be largely avoided by using cables with controlled lengths and
employing a better method of construction for the array. Amplitude errors could be
reduced by ensuring that each mixer is driven with roughly the same LO power, thereby
maintaining more uniform conversion losses. Finally, a more precise phase control
network using digital phase shifters could also help reduce errors, and would make it

much easier to apply phase shifts/corrections.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

A method for manufacturing low-cost phased arrays of Tapered Slot Antenna
elements was explored in this thesis. The novel aspect of this research was the
development of low-cost active Vivaldi elements, which were manufactured using
standard PCB fabrication techniques, and were capable of being orthogonally mounted
onto a phased array motherboard. The following is a summary of the important

accomplishments and results achieved in this thesis:

A simple, low-cost method of orthogonally mounting end-fire antennas was
achieved using castellated vias. A castellated CPW-to-microstrip transition with better
than 15 dB return loss from 0 to 12 GHz was designed. Several prototypes were
constructed, and the electrical performance of the castellated interconnection was
validated. In general, the use of castellated vias proved to be an effective means of
surface mounting endfire antennas. If proper solder reflow parameters are used, the
limiting factor in the structural integrity of a castellated interconnection would be the
strength of the copper plating in the castellated vias and of the adhesive connecting the
support package. A foam support could be used to reinforce the -castellated
interconnections.

Passive and active castellated Vivaldi element packages were designed,
fabricated, and measured. An isolated Vivaldi element with a 2:1 VSWR bandwidth

from 5 to 12.5 GHz was designed an implemented in passive and active configurations.
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Both antennas were orthogonally mounted onto a 12 cm x 10 cm CPW motherboard.
The active antenna was integrated with the HMC130 mixer IC, which had a bandwidth
from 6 to 11 GHz. Both the passive and active configurations were measured, and the
results obtained agreed well with simulated values. In general, the active antenna
exhibited improvements in performance over the passive configuration. Specifically,
the E-plane radiation patterns of the active Vivaldi showed better agreement with
simulations than did the passive element. Furthermore, the active element also
exhibited improved relative efficiency, and lower cross-polarization levels.

An 8x1 phased array of active, castellated Vivaldi elements was designed,
fabricated, and measured. An element, which exhibited 3.5:1 bandwidth in an infinite
linear array, was developed. Additionally, it exhibited a scan volume of 30 degrees, and
performed adequately to 40 degrees. Finite array analyses indicated that while the
performance of central elements in an 8x1 array comparable to those in an infinite
array, truncation effects had a significant impact on the performance of edge elements.
These truncation effects were mitigated somewhat through the use of dummy elements
at the array edges. An 8 element array of active Vivaldi elements was fabricated and
assembled. Each element was integrated with an HMC130 mixer chip and mounted
onto a CPW motherboard. In order to scan the array and correct for phase errors, a
phase control network was constructed with voltage-controlled analog phase shifters.
The array patterns were measured for several frequencies and scan angles. The
measured patterns exhibited good agreement with simulated patterns, and most
discrepancies between the measured and simulated results could be attributed to

excitation errors.
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In the future, the work done in this thesis could be expanded upon in a variety of
ways. For simplicity, the elements in this thesis were integrated with only frequency
conversion ICs. In a practical array, it would be ideal to integrate a full RF front end
with the antennas. It would be desirable include oscillators at each element so that only
low frequency baseband and synchronization signals would need to be transferred from
the motherboard to the element packages. Planar and dual-pol arrays of castellated
elements would be more challenging to feed than the linear array presented in this
thesis. A multilayered motherboard could be used to accommodate the multiple feed
networks that would be required. A major source of cost in large phased arrays is the
phase control network. For a low cost array, row-column beam steering method could
be used. In such a scheme only one phase shifter is used at each row and each column
of the array. In one direction, a shift is applied to the IF signal, and in the other
direction the shift is applied to the LO (or synchronization) signal. The row-column
steering method results in a dramatic decrease in the number of phase shifters required.
However, the row-column technique would not be practical if there is significant phase
error between the ICs on each element, such as the +/- 20 error measured for the mixers
used in this project.

In general, the reduction of cost is an important design goal in all phased array
systems. Given the excellent performance of TSA arrays, the idea of producing low-
cost, active TSA elements is very attractive. If a low cost method for suppressing slot
resonances in arrays of modular elements can be achieved, then the elements designed

in this thesis may be a viable option for use in such an array.
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APPENDIX A

ISOLATED VIVALDI ANTENNA WITH CORRUGATED EDGES

There are a number of applications which may make use of an isolated Vivaldi
radiator. A Vivaldi element intended to operate as an isolated radiator was designed for
this thesis and described in Chapter 3. The radiation patterns for this antenna varied
significantly as a function of frequency, and exhibited fairly high sidelobes. One
method used to improve the radiation patterns of TSA is to etch corrugated slots along

the edges of the antenna’s metallization as shown in Figure A.1 [14].

Figure A.1: Vivaldi Antenna with Corrugated Edges

The antenna described in Chapter 3 was resimulated with slots that were 2 mm in width,

5 mm in depth, and spaced every 10 mm. Simulated gain patterns are shown in Figure

A.2 and Figure A.3.
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180 180

(©) (d)

Figure A.2: E-Plane Gain Patterns for Isolated Vivaldi Antenna with Corrugations at (a) 6GHz, (b) 7
GHz, (c) 8 GHz, (d) 9 GHz, (e) 10 GHz, (f) 11 GHz (Continued next page)
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Figure A.2, continued: E-Plane Gain Patterns for Isolated Vivaldi Antenna with Corrugations at (a)
6GHz, (b) 7 GHz, (¢) 8 GHz, (d) 9 GHz, (e) 10 GHz, (f) 11 GHz

(a) (b)

Figure A.3: E-Plane Gain Patterns for Isolated Vivaldi Antenna with Corrugations at (a) 6GHz, (b) 7
GHz, (c) 8 GHz, (d) 9 GHz, (e) 10 GHz, (f) 11 GHz (Continued next page)
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Figure A.3, continued: E-Plane Gain Patterns for Isolated Vivaldi Antenna with Corrugations at (a)
6GHz, (b) 7 GHz, (¢) 8 GHz, (d) 9 GHz, (e) 10 GHz, (f) 11 GHz

The simulated results indicate that introducing corrugations to the sides of the Vivaldi
element improves the antenna’s overall radiation characteristics. In general, the

sidelobe level is reduced when the corrugations are present. Additionally, the antenna’s

81



beamwidth and gain varies less with frequency for the corrugated Vivaldi element. The
E-plane and H-plane 3dB-beamwidths, gain, and sidelobe levels of the isolated Vivaldi

antenna with and without corrugations are shown in Table A.1 and Table A.2.

Table A.1: E-Plane Radiation Characteristics of Isolated Vivaldi Antenna with and

without Corrugations

Frequency 3dB BW | 3dB .BW Gain Ga'in SLL SLL
(without (with (without (with (without (with
slots) slots) slots) slots) slots) slots)
6 GHz 28.9° 45.7° 12.7dBi | 10.8dBi | -16.5dB | -18.3 dB
7 GHz 22.9° 40.5° 13.3dBi | 11.0dBi [ -13.8dB | -12.3dB
8 GHz 43.4° 25.9° 11.6dBi | 14.2dBi | -9.8dB | -14.8dB
9 GHz 51.5° 28.1° 10.3dBi | 13.9dBi | -10.4dB | -144dB
10 GHz 44.1° 34.4° 11.0dBi | 13.3dBi | -17.1dB | -19.1dB
11 GHz 33.2° 32.8° 12.3dBi | 13.5dBi [ -15.1dB | -17.3 dB

without Corrugations

Table A.2: H-Plane Radiation Characteristics of Isolated Vivaldi Antenna with and

Freuenc 3dB BW | 3dB BW Gain Gain SLL SLL
quency (without (with (without (with (without (with
slots) slots) slots) slots) slots) slots)

6 GHz 43.4° 67.0° 12.7dBi | 11.0dBi [ -10.8dB | -11.1 dB

7 GHz 33.1° 62.0° 13.3dBi | 11.3dBi | -10.8dB | -9.6dB

8 GHz 28.6° 49.0° 11.6dBi | 14.2dBi | -7.8dB | -12.2dB

9 GHz 52.8° 44.0° 9.0dBi | 13.9dBi | -5.2dB | -10.0dB

10 GHz 44.9° 40.8° 10.8dBi | 13.3dBi | -6.8dB | -9.7dB

11 GHz 37.0° 28.9° 12.4dBi | 13.7dBi | -8.0dB | -11.8dB
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APPENDIX B

DIMENSIONED DRAWINGS

Dimensioned drawings of the antenna elements fabricated in this thesis are presented in
the following figures. Note that all lengths are in millimeters, and that all angular

values are in degrees.
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Figure B.1: Isolated Active Vivaldi Element (Continued next page)
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Figure B.1, continued: Isolated Active Vivaldi Element
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Figure B.2: Active Vivaldi Array Element (Continued next page)
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DETAIL A

DETAIL B

Figure B.2, continued: Active Vivaldi Array Element
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APPENDIX C

COMPONENT

LiHittite

DATASHEETS

HMC130

MICROWAVE CORPORATION  wn4.1007

Typical Applications
The HMCA30 is ideal for:

» Microwave & \V'SAT Radios
+ Test Equipment

» Military EW, ECM, C*

+ Space Telecom

Functional Diagram

GaAs MMIC DOUBLE-BALANCED
MIXER, 6 - 11 GHz

Features

Conversion Loss: 7 dB

LO to RF and IF Isolation: =32 dB
Input IP3: +17dBm

Mo DC Bias Required

Die Size: 1.45x 1.3 x 01 mm

General Description

The HMC130 chip is a miniature double-balanced
mixer which can be used as an upconverter or down-
converter in the € to 11 GHz band. The chip can be
integrated dirgctly into hybrid MMIC's without DC bias
or external baluns to provide an extremely compact
mixer. It is ideally suited for applications where small
size, no DC Bias, and consistent IC performance are
reguired. This mixer can operate over a wide LO drive
input of +9 to +15 dBm. It performs equally well as a
Bi-Phase modulator or demodulator.  See HMCA37
data sheet.

Electrical Specifications, T, = +25° C, LO Drive = +15 dBm
Paramster Min. | Typ. Mao LInitzs
Frequency Range, RF & LO B.0-11.0 GHz
Frequency Rangs, IF OC-20 GHz
Gorversion Loss T ] dB
Moiz= Figurs (SSE) T '] dB
Lt RF Isolation a2 A0 dB
Lo IF lsolation 35 40 ;=3
IP2 {Input) 12 17 dBm
IP2 {Input) 45 = dBm
1 dB Gain Compression (Input) 8 9 dBm
* Unlass otherwize noted, all measurements performead as downconverter, IF = 100 MHz

For price, delivery, and to place orders, please contact Hittite Microwave Corporation:
20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373
Order On-line at www.hittite.com

Figure C.1: Datasheet for HMC130 Mixer IC (Continued next page)

88



HMC130
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Figure C.1, continued: Datasheet for HMC130 Mixer IC

For price, delivery, and to place orders, please contact Hittite Microwawve Corporation:
20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373
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Far price, delivery, and to place orders, please contact Hittite Microwave Corporation:
20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3243 Fax: 978-250-3373

Order On-line at www.hittite.com

Figure C.1, continued: Datasheet for HMC130 Mixer IC
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tiHittite HMC130

WICROWAVIE CORPORATION voto GaAs MMIC DOUBLE-BALANCED
MIXER, 6 - 11 GHz

MxN Spurious @ IF Port Absolute Maximum Ratings
nL L Drrive +27 dBrm
mRF o 1 2 a3 4 Stomage Temperature -B5 to H50 *C

0 e 1718 28.0 8.0 3733 Oiperating Temperature -BE 1o +85 °C
1 12.83 1] 30,83 520 2366
2 60.0 765 5783 T6.83 70 A
e e Tn Ths Ti] G SEcTosmncsouamve obuee
4 BE.B3 T4.83 7133 Tad8 T0.68

RF Freq. =91 GHz @ <0 dBm

LO Freq. = 2.0 GHz & +13 dBm

Meazured as dowrconverter

Qutline Drawing

— @: 028"

® [0.71]

P —

i 87"
F L3 [1.45]
s t
@
) —
©)
Di5"
[0.38]
RF Q‘ Hits
]
| el
[o.18]
035" 005" | _ !
[o.88] [o.13]
082"
[1.32]
H H H [1 HCTES:
Die Pa Ck&glﬂg’ Information . ALL DIMENSIONS ARE IN INCHES [MM]
. BOND PADS ARE 004" SOLUARE
ERsnctnd L . TYPICAL BOND PAD SPACING CENTER TO CENTER
WP-3 2] 1S 006" EXCEPT AS SHOWN

. DIE THICENESS = 0047 [ 100 MM]
. BACKSIDE METALIZATION: GOLD
. BACKSIDE METAL IS GROLUND

. BOND PAD METALIZATION: GOLD

[1] Refar to the *Packaging Information” section for die
packaging dimensions.

[2] For altamate packaging information contact Hittite
Microwave Corporation.

S O B L 8D RS =

For price, delivery, and to place orders, please contact Hittite Microwave Corporation:
20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373
Order On-line at www.hittite.com

Figure C.1, continued: Datasheet for HMC130 Mixer IC
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tiHittite

HMC130

MICRBOWAVE CORPORATION 44007

Pad Descriptions

GaAs MMIC DOUBLE-BALANCED

MIXER, 6 - 11 GHz

Fad Murmbsr

Fureztion

Deacription

Interfass Schematic

RF

Thiz pin is DG coupled
and matched to 50 Ohrnz,

RF

LO

Thiz pin iz DG couplad
and matched to 50 Ohms.

|||_rr'n_T I

This pin is DG coupled. For applications not requiring oper-
ation to DG, this port should be DC blocked exdtemally using
a series capacitor whose value has bsen chosen to pass
the necasaary IF frequency range. For opsration to DG this
pin must not source o sink more than 2mA of current or dis
rin-furction and possible dis failure will resul,

%7\:
:J:_

GND

The backside of the dis must connect to RF ground,

—T_GHD

For price, delivery, and to place orders, please contact Hittite Microwave Corporation:
20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3243 Fax: 978-250-3373

Order On-line at www.hittite.com

Figure C.1, continued: Datasheet for HMC130 Mixer IC
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LiHittite HMC130

MICROWAVE CORPORATION 410w GaAs MMIC DOUBLE-BALANCED
MIXER, 6 - 11 GHz

Assembly Diagram

50 Ohm T
TRANSMISSION
WE _
F q
1}

[TTé] K.

imil GOLD WIRE RF BONDS I i

\7 |

Handling Precautions
Follow these precautions to avoid pemanent damage.

Storage: All bare die are placed in either Waffle or Gelbasad ESD protective containers, and then sealad inan ESD protactive bag
for shipment. Once the sealed ESD protective bag has been opened, all die should be stored in a dry nitrogen environment.
Cleanliness: Handle the chips in a clean environment. DO NOT attemnpt to clean the chip using liquid cleaning systems.

Static Sensitivity: Follow ESD precautions to protect against ESD strikes.

Tramsients: Suppress instrurment and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize
inductive pick-up.

General Handling: Handle the chip along the edges with a vacuum collet or with a sharp pairof bent tweezers. The surface of the
chip has fragile air bridges and should not be touched with vacuurn collat, tweezers, or fingers.

Mounting

The chip is back-metallized and can be die mounted with AuSn eutectic preforms orwith electrically conductive epoxy. The mounting
surface should be clean and flat.

Eutectic Die Attach: A 20/20 gold tin preform is recommended with a work surface temperature of 255 “C and a tool temperature
of 265 "C. When hot 8010 nitrogen/hydrogen gas is applied, tool tip temperature should be 290 *C. DO NOT expose the chip
to a temperature greater than 220 °C for more than 20 seconds. No more than 3 seconds of scrubbing should be required for
attachrmeant.

Epeoxy Die Attach: Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the
perimater of the chip once itis placed into position. Cure epoxy perthe manufacturer's scheduls.

Wire Bonding

Ball or wedge bond with 0.025 mm {1 milj diameter pure gold wire. Thermosonic wirebonding with a nominal stage temperature of
150 °C and a ball bonding force of 40 to 50 grams or wedge bonding force of 18 to 22 grams is recommended. Use the minimum
lewel of ultrasonic enargy to achieve reliable wirebonds. Wirebonds should be started on the chip and terminated on the package or
substrate. All bonds should be as short as possible <0.31 mm (12 mils).

Far price, delivery, and to place orders, please contact Hittite Microwave Corporation:
20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373
Order On-line at www.hittite.com

Figure C.1, continued: Datasheet for HMC130 Mixer IC
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Narrow Band

Phase Shifter

500

Maximum Ratings
Operating Temperature
Storage Temperature

-40°Cto 85°C
-55°C to 100°C

180° Voltage Variable

700 to 1000 MHz

Features

+ low insertion loss, 1.4 dB typ.

+ good VSWR, 1.3:1 typ

+ solder-plated J-leads for excellent solderability

JSPHS-1000+
JSPHS-1000

CASE STYLE: BK276
PRICE: $32.95 ea. QTY (1-9)

RF Input Power 20 dBm max. and strain relief + RoHS compliant in accordance
Control Voltage 28V + agueous washable with EU Directive (2002/95/EC)
App”cations The +Suffix identifies RoHS Compliance. Ses our web site
Pin Connections - cellular for ReHS methodologies and
IN 1
ouT 7
BIAS 4,61
GROUND 2,35,89,10,11,12,13,14 Phase Shifter Electrical Specifications
A t b ted togath iy
pins st b connected together extemally FREQUENCY PHASE INSERTION LOSS | CONTROL CONTROL VSWR
(MHz) RANGE (dB) VOLTAGE | BANDWIDTH (:1)
. . (Degrees) V) (kHz)
QOutline Drawmg
Min. Typ. Max Typ. Typ. Max.
¢ 700-850 180 12 23 015 Dc-50 12 28
e 7 wax 501000 180 12 20 015 DC50 12 20
Maximum operating power, 0 dBm
At.015
. .
ST Typical Performance Data
pE: 6B VIEW SIDE VIEW
Control Phase Shift* VSWR Insertion Loss
"__r-r LS, FCB Land Patiern Voltage (Degrees) (&)} (dB)
 ELERAR] o v
700 850 1000 700 850 1000 700 850 1000
BaE [ MHz MHz MHz MHz MHz MHz MHz MHz MHz
K TYP
aararand 0.00 0.00 0.00 0.00 142 113 152 148 183 154
W oTYPo AEEABAE D 2.00 25.08 1678 1121 155 113 143 1.63 1.63 1.52
Borrow vie 400 B466 4454 3016 169 121 129 1.74 163 146
. Suggested Layout, 6.00 14120 11949 89.61 153 1.40 1.21 137 1.54 1.40
Tolerance to bewithin +002 8.00 17107 16075 134.12 137 1.30 137 1.15 146 1.36
10.00 18216 177.41 15554 131 1.23 134 1.09 144 1.29
12.00 18808 13653  163.05 128 119 1.29 1.08 1.42 123
: ; : inch 13.00 19018 18972 17258 127 118 1.27 1.05 1.42 1.20
Outline Dimensions (gt 14.00 19191 19237 17643 127 117 1.25 1.04 142 1.19
A 6 c o e F G 15.00 19341 13457 179.67 126 116 1.23 1.03 1.42 147
450 803 100 250 102 100 N o
1143 2040 254 6.5 250 254 Normalized at control voltage = OV
JSPHS-1000 JSPHS-1000
H J K L wt PHASE SHIFT VEWR
047 065 065 470 grams 250 z0 . T T T
119 165 165 11.94 3.0 = TTOOMHZ — BSOMHZ - - 1000MHZ | —FOOMHZ — ‘BSOMHZ - - 1000MHZ
@ 20 18
=] -
£ 150 g 16
Demo Board MCL P/N: TB-122 w 100 =14
Suggested PCB Layout (PL-030) % 50 12 I
28X £.070 PTH & P | —
[ FOR GROUND 0 = 1.0
- - 0 3 6 9 12 15 0 3 12 15
h \ﬂ_ﬁf}f ﬁ{} fﬁ' am CONTROL VOLTAGE (V) CONTROL VOLTAGE (V)
1 i
i 1
s J 1 ! JSPHS-1000 i i
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spL] ! == ! 20 T T T T
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Figure C.2: Datasheet for JSPHS-1000 Phase Shifter
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