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CHAPTER 1

INTRODUCTION

Worms and malware pose an increasing risk to today’s networks. The growing

sophistication of today’s systems has greatly increased the speed and damage poten-

tial of such attacks. To stop worms and malware, first you must know about them.

In today’s rapidly evolving networks, where attackers are often one step ahead of the

products designed to thwart them, anomaly detection is an important innovation.

Many vendors rely on signature detection to find network-borne threats. Customers

often have to wait days to get a working signature for a new worm, leaving their

networks vulnerable in the most critical period during a worm’s release. Network

behavior analysis is one of the most robust and scalable security technologies. At

the core of network behavior analysis are anomaly-based algorithms used to identify

emerging threats.

Network anomalies can arise due to various causes, some of which are network

overload, malicious Denial of Service attacks, and network intrusions that somehow

disrupt the normal delivery of network services. Typically, each of these disrupt the

normal behavior of some network data. Normal network behavior is dependent on

several factors such as dynamics of the network in terms of volume of traffic, type

of data and the types of applications. Commercially available network management

systems monitor a set of data to detect anomalies. Typically, a human network

manager observes the alarm conditions to determine the status of the network. These

conditions represent deviation from normal network behavior and can possibly occur

during an anomalous event. This can result in degradation of performance in the
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network. Thus, an anomaly can be associated with abrupt changes in the measured

data, the duration of which varies with the nature of the anomaly. This is where

anomaly detection finds application.

Anomaly detection is basically described as an alarm for strange system behavior.

Dorothy Denning describes in her paper - An Intrusion Detection Model, a model for

building an ”activity profile” of normal usage over an interval of time. Once done,

the profile can be compared against the present state in real time. Anything that

deviates from the baseline, or the norm, is logged as anomalous. Anomaly Detection

Systems are quite different from Intrusion Detection Systems although essentially

both look for suspicious behavior. Finally, the result is the same - a suspicious event is

flagged and sent to the administrator. IDS systems are analogous to Misuse Detection

systems wherein there is a predefined set of rules or filters crafted to detect a specific,

malicious event. However, an ADS operates only from the baseline of benign activity.

The differences are there for all to see. An IDS is designed to catch events that are

on its list. Anything outside this list will not be recognized. In contrast, an ADS can

detect new, unknown and unlisted events. Figure 1.1 shows different types of IDS

depending on the different techniques and characteristics.

Network anomalies can be broadly classified into two types.

1. Network failures : E.g. A web server could fail if there is an increase in the

number of requests to the server.

2. Security Related: E.g. Denial of Service attacks and Network intrusions.

The main objective of the thesis is to show that multiple anomaly detection al-

gorithms can be implemented in parallel to effectively characterize the type of traffic

causing the abnormal behavior. The logs are obtained by running six anomaly de-

tection algorithms in parallel on the Network Processor. The six Anomaly Detection

Algorithms used to identify aberrant behavior in the network are:
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Figure 1.1. Intrusion Detection Systems

1. Holt Winter based Forecasting model proposed by Brutlag J.D. [4] which cap-

tures the history of the network traffic variations and predicts the future traffic

rate in the form of a confidence band.

2. Behavior-based anomaly detection method proposed by Yu Gu [20] et al. that

detects network anomalies by comparing the current network traffic against a

baseline distribution.

3. Adaptive Threshold Algorithm [17], a straightforward and simple algorithm

that detects anomalies based on violations of a threshold that is adaptively set

based on recent traffic measurements.

4. Cumulative Sum Algorithm, [11], a proven statistical algorithm that maintains

the cumulative sum of the deviations from a reference value, which is usually

the mean of the time process.
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5. Averaging Algorithm [16], another straightforward and simple algorithm that

mainly averages the past 60 values. This is taken to be the predicted value

which is compared to the present observed value.

6. Exponentially Weighted Moving Average, which applies weighting factors that

decrease exponentially. Thus the most recent observations are given a greater

weightage than the older observations.
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CHAPTER 2

RELATED WORK

A variety of tools have been developed for the purpose of network anomaly de-

tection. Some detect anomalies by matching the traffic pattern or the packets using

a set of predefined rules that describe characteristics of the anomalies. Examples of

this include many of the rules or policies used in Snort [1] and Bro [12]. The cost

of applying these approaches is proportional to the size of the rule set as well as the

complexity of the individual rules, which affects the scalability of these approaches.

Furthermore they are not sensitive to anomalies that have not been previously de-

fined. Our work is a behavior based approach and requires little computation. Deri

et al [9] show that in every network there are some global variables that can be

profitably used for detecting network anomalies, regardless of the type of users and

equipment. The main idea is the design of an IDS that uses both Signature based

and Anomaly based detection. Barford et al. [3] use wavelet analysis to remove from

the traffic the predictable ambient part and then study the variations in the network

traffic rate. Network anomalies are detected by applying a threshold to a deviation

score computed from the analysis. Thottan and Ji [18] take management information

base (MIB) data collected from routers as time series data and use an auto-regressive

process to model the process. Network anomalies are detected by inspecting abrupt

changes in the statistics of the data. Wang et al. [19] take the difference in the num-

ber of SYNs and FINs (RSTs) collected within one sampling period as time series

data and use a nonparametric Cumulative Sum (CUSUM) method to detect SYN

flooding by detecting the change point of the time series. [5] implements two of
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the algorithms -Entropy and Holt Winter in parallel and online to know more about

the types of anomalies generated and narrow down the traffic that is causing those

anomalies. Zhang et al [2], describe the use of Change Point monitoring to detect

Denial of Service Attacks. The objective of Change-Point Detection is to determine

if the observed time series is statistically homogeneous, and if not, to find the point

in time when the change happens. Non-parametric CUSUM is again used for the

detection of DoS attacks. Zou et al [6], introduce a methodology for fast detection

of internet worms called ”trend detection”. Its based on the fact that a worm, in an

early stage, propagates exponentially with a constant, positive exponential rate. The

system attempts to detect this trend.
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CHAPTER 3

SYSTEM DESIGN

3.1 Motivation for online passive measurement

Measurements are important for managing and understanding computer networks.

Measurements can provide insight into correct and faulty network behavior, and pro-

vide us with a basis for traffic and performance modeling. Measurement and mon-

itoring tools are widely deployed in the Internet infrastructure. There are various

approaches to monitor the network, two of the most common being passive and ac-

tive measurement.

3.2 Passive Measurement

The passive approach uses devices to watch the traffic as it passes by. These are

special purpose devices such as a Sniffer, or OCxMon, or they can be built into other

devices such as routers, switches or end node hosts. The passive measurement devices

are polled periodically and information is collected to assess network performance and

status. One thing to note here is that this approach does not increase the traffic on the

network for the measurements. It is also extremely useful in network troubleshooting,

but is rather limited when it comes to emulating error scenarios or isolating the exact

fault location. There are potentially two ways of deploying a passive measurement

node.

1. Offline. In this method all the packets seen on the link are archived and then

post-processed by running the application on the trace.
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2. Online. In this method the packets are processed on transit and required statis-

tics are collected/updated on a per packet basis.

The choice of going for an online or offline passive measurement node depends

on several factors. Offline measurements create large traces that need to be post

processed to get the required statistics.As link speeds increase, this only aggravates

the problem. Also it is very processing intensive and time consuming to go through

such big traces and extract the required statistics. Besides, Intrusion Detection ap-

plications like detecting DoS attack, anomaly detection etc., are online by nature and

cannot be implemented in offline mode.

3.3 Active Measurement

The active approach essentially injects test packets into the network or sends pack-

ets to servers and applications, and measures the service obtained from the network.

Thus, it creates extra traffic, the parameters being artificial. The volume and other

parameters of the traffic are fully adjustable, thus providing explicit control on the

generation of packets for measurement scenarios. Thus various parameters such as

sampling techniques, timing, frequency, scheduling, packet sizes and protocols, sta-

tistical quality etcetera are under user control. Thus, active monitoring allows one to

test what one wants, and when one needs it.

In this work, we consider measurement and monitoring to be passive and online.

i.e., results are obtained by passively observing user traffic rather than by actively

injecting probing traffic. The following statistics are monitored dynamically:

• Traffic Rate

• Number of TCP packets per second

• Number of UDP packets per second

8



• Number of TCP-Syn packets

• Number of TCP-Rst packets

• Number of Non-TCP and Non-UDP packets

• Targeted Ports divided into classes

3.4 Motivation for parallel implementation

Any DS, either based on signature detection or anomaly detection, is essentially

a burglar alarm system for the network. It enables us to monitor the network for

intrusive activities. When the intrusion occurs, the system generates an alarm to let

us know that the network is possibly under attack. However, the DS can generate

”false positives” or ”false alarms”.

A false positive occurs when the DS generates an alarm from normal user activ-

ity. If the system generates too many false positives, consequently there will be low

confidence in the capability of the DS to protect the network. This can result in

a ”the boy that cried wolf” syndrome: When an actual attack is afoot, no one will

respond because of all the previous false positives. Thus, it is important to minimize

the number of false positives that a DS generates. For instance, consider a DS system

that generates a large number of alerts (say 15000). Also, lets say the number of false

alarms is large as well, in thousands. Consequently, we find that this translates to

the manual filtering and analyzing of the generated alerts. Thus, the administrator:

loses confidence in the reliability of the DS, is overloaded with the task to manually

analyze each alert, and might lower the defence levels to reduce the number of false

positives. Tuning the DS can solve some of the False Positives problem, but tuning

is not the solution. We believe that FPs occur when the DS registers the legitimate

sampled traffic as an attack. Thus, there is a need to confirm that an attack is taking

place before an alert is raised.
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Earlier, we briefly explained the different parameters that will be monitored in

order to detect an anomaly. Thus, we will be looking at different parts of the traffic

and running each of the six anomaly detection algorithms on them. For example,

consider a DDoS attack on a Web Server through syn flooding. We have five anomaly

detection algorithms viz. Holt Winter[4], Adaptive Threshold[17], CUSUM[11], Av-

eraging and EWMA algorithms looking at syn packets among others. Concurrently,

we have the Entropy based [20] AD system looking at the various ports including port

80. Consequently, in case of the above attack, there will be an increase in the number

of syn packets targeting port 80, and all the algorithms monitoring the number of

syn packets and the target port will fire an alert on the type of traffic, tcp and syn in

this case, and the port, port 80 in this case. Thus, we can pinpoint the exact type of

traffic that is causing the anomaly and the target port on the system.

The main goal of a network IDS is to guide the analyst or administrator toward

network events that are malicious. The two major approaches as discussed above are

misuse detection - based on pattern matching, and anomaly detection. The short-

comings of the former are false positives, false negatives, variants and overload. Fur-

thermore, the signature based systems cannot detect new forms of attack. Anomaly

detection is the solution to the problem of detecting new attacks, as they rely on

traffic analysis rather than pattern matching to detect potential anomalies. Figure

3.1 illustrates our model of the ADS.
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Figure 3.1. Anomaly Detection Model. Entropy only monitors ports
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CHAPTER 4

THE ONLINE PASSIVE MEASUREMENT SYSTEM

4.1 Passive Measurement Node Architecture

For the experimentation and testing, the Network Processor-Based Network Mea-

surement Node [14, 15, 13, 5] is being used. It is a passive measurement system which

is capable of capturing packet traces and pre-processing them online on the measure-

ment node. It is designed such that the statistics are updated dynamically during

runtime. The system, shown in Figure 4.1, is currently installed on the Internet access

link at the University of Massachusetts, Amherst.

4.1.1 Description

The Network processor based Network Measurement Node performs the following

functions:

1. Packet capture and Header parsing Each of the packets is parsed to determine

the sequence of headers present allowing us to consider nested protocol headers

as well as different header sizes

2. Anonymization IP addresses are anonymized online during trace collection to

protect the privacy of users.

3. Online Queries and Statistics Collection Packet preprocessing is done on the

measurement node itself. Packets containing meta-data are prepared and pushed

onto the central collection system over UDP.
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Figure 4.1. IXP2400 Based Network Measurement Node Architecture.

4.2 Implementation

The implementation is based on the IXP2400 [7] network processor found in the

Radisys ENP2611 [8] card. The IXP2400 has eight microengines that are highly

optimized for packet processing in the data plane, each in turn having eight threads

with zero overhead context swap. The XScale processor performs all the control plane

related tasks. The implementation architecture is shown in Figure 4.2

The measurement path is separated from the fast path. The fast path is respon-

sible for any packet processing function done by the router. The system has three

ports - Port 0, Port 1 and Port 2. Ports 0 and 1 handle normal traffic along the

fast path. The fast path simply forwards packets from Port 0 to 1 and vice versa.

The packet is then enqueued in the measurement path. The packet is dropped if the

queue is full. The measurement path consists of three microengines. The first per-

forms a filtering operation based on the query. This microengine corresponds to the

IP address and anonymization stages where the packet headers are also parsed and

collected, and IP addresses are anonymized. The second microengine corresponds to

metrics and statistics collection stage and performs measurement related processing

and collects statistics. The statistics collected include packet counts for individual

protocols, namely IP, TCP, UDP, etc and distributions of layer 3 protocols, packet

13



Figure 4.2. Measurement Node on the IXP 2400 NP.

size and the TCP port numbers. A ”measurement packet” is generated for every

packet that enters the measurement path. This packet contains a trace of the packet

headers and some meta data. This is done by the third microengine. The meta data

and captured headers are stored as a payload of an UDP over IP over Ethernet packet

occupying 42 bytes in toto (14 bytes for Ethernet, 20 bytes for IP and 8 bytes for

UDP).The format of the measurement packet is shown in Figure 4.3.

The meta data consists of the following:

1. Node ID: An identifier for the capture node that generated this measurement

packet.

2. Measure Length: Stores the total length of the captured headers.

3. Flags: Stores the input interface number of the packet on the link that was

measured.

4. Sequence Number: A sequence number is necessary to detect any packet loss

in the network. This is because of the use of UDP to transmit the measurement

traffic.
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Figure 4.3. Measurement Packet.

5. Timestamp (High and Low): Allows correlation of traffic between nodes.

The DOME runs NTP to achieve clock accuracy in the millisecond range. The

two fields store a 64-bit timestamp

In this architecture, four of the eight microengines are used to handle I/O and do

some pre-measurement tasks. This leaves us with four microengines to do the actual

application processing. Thus it is possible to build applications on top of it. The

anomaly detection algorithms are programmed in one of the remaining microengines.
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CHAPTER 5

ANOMALY DETECTION

Worms and malware pose an increasing risk toward today’s networks. The grow-

ing sophistication of today’s systems has greatly increased the speed and damage

potential of such attacks. In today’s rapidly evolving networks, where attackers are

often one step ahead of the products designed to thwart them, anomaly detection is

an important innovation. Many vendors rely on signature detection to find network-

borne threats. Customers often have to wait days to get a working signature for

a new worm, leaving their networks vulnerable in the most critical period during

a worm’s release.Network behavior analysis is one of the most robust and scalable

security technologies. At the core of network behavior analysis are anomaly-based al-

gorithms used to identify emerging threats. Basically there are three types of anomaly

detection algorithms:

• Protocol - packets that are too short or have ambiguous options or violate

specific application layer protocols.

• Rate-based - detects floods in traffic using a time-based model of normal traffic

volumes. Most useful for detecting denial-of-service attacks.

• Relational or behavioral - detects changes in how individual or groups of

hosts interact with one another on a network. For example, a normally quiet

host that starts connecting to hundreds of hosts per second on the SQL port

indicates a worm. Useful for a variety of threats, from worms and malware to

insider misuse.
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In addition, anomaly detection algorithms are also classified into:

• Statistical Anomaly Detection Algorithms - it determines ”normal” net-

work activity and then all traffic that falls outside the scope of normal is flagged

as anomalous (not normal). These systems attempt to learn network traffic pat-

terns on a particular network. This process of traffic analysis continues as long

as the system is active. Assuming network traffic patterns remain constant, the

longer the system is on the network, the more accurate it is.

• Specification Based Anomaly Detection Algorithms - this method uses

a logic-based description of expected behavior to construct a profile. Thus, an

administrator could construct a list similar to the rules and signatures. But

instead of looking for misuse, these rules would ignore normal usage. However,

anything outside of the specified behavior, would be marked as anomalous.

By applying these techniques, anomaly detection can identify zero-day worms, mal-

ware, and misuse.It also allows system administrators to separate the good from the

bad or suspicious traffic allowing them to take preemptive action. An anomaly detec-

tion system can potentially detect an attack the first time it is used. The intrusive

activity generates an alarm because it deviates from normal activity, not because

someone configured the system to look for a specific stream of traffic as is the case

with most intrusion detection systems.

However, the approach has three main drawbacks:

• It is too slow to detect fast spreading viruses and worms. The system is es-

pecially vulnerable during the training period where activity profiles are being

generated. Most networks are diverse and are constantly changing. Thus, there

is an added drawback. The ADS can be taught by intruders. For example,

an attacker can send numerous SYN scans targeted at the network by using a
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tool such as NMap.If continous, the system can flag this behavior as normal.

Similarly with flood pings.

• The system is susceptible to an enormous number of false positives. A false

positive occurs when the ADS generates an alarm from normal user activity.

Anomalies can occurs at any time. As the Anomaly detection systems are

looking for an anomalous event rather than an attack, it gives rise to the problem

of false positives.

• Mitigation techniques are marginally effective, if any. Action is usually through

zone segmentation to contain outbreaks.

One of the main motivations for this work is to resolve the problem of false pos-

itives and narrow down the traffic that is causing the anomaly. False positives are

mainly the reason why anomaly detection systems are not as prevalent when com-

pared to intrusion detection systems. In this thesis, we have tried to implement

six anomaly detection algorithms in parallel on the Passive Network Measurement

Node. This not only allows us to flag the possible anomalies in real time but then

also allows us to post process the data and classify and characterize the anomaly.

We have implemented the Holt Winter based forecasting model, Maximum Entropy

based Anomaly Detection Algorithm, Adaptive Threshold Algorithm, the Averaging

Algorithm, Cumulative Sum and the Exponentially Weighted Moving Average tech-

niques on the measurement node. Each of these implementations has been described

in the following sections.
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5.1 Holt Winter Based Forecasting

In this section the Holt Winter Forecasting Model for detecting aberrant behavior

detection given by Brutlag J.D [4] is explained. Many service network variable time

series exhibit the following regularities (characteristics) that should be accounted for

by a model:

• A trend over time (i.e., a gradual increase in application requests over a two

month period due to increased subscriber load).

• A seasonal trend or cycle (i.e., every day bytes per second increases in the

morning hours, peaks in the afternoon and declines late at night).

• Seasonal variability. (i.e., application requests fluctuate wildly minute by minute

during the peak hours of 4–8 p.m., but at 1 a.m. application requests hardly

vary at all).

• Gradual evolution of regularities (1) through (3) over time (i.e., the daily cycle

gradual shifts as the number of evening daylight hours increases from December

to June).

In addition to modeling time series regularities, model design must consider the

real-time monitoring context. Complicated statistical models are unlikely to be un-

derstood by network technicians and unlikely to be feasible computationally in a

real-time context.

Aberrant behavior detection is decomposed into three pieces, each building on its

predecessor:

• An algorithm for predicting the values of a time series one time step into the

future.

• A measure of deviation between the predicted values and the observed values.
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• A mechanism to decide if and when an observed value or sequence of observed

values is too deviant from the predicted value(s).

The proposed model is an extension of Holt-Winters Forecasting, which supports

incremental model updating via exponential smoothing. Let y1....yt−1, yt, yt+1.... de-

note the sequence of values for the time series observed at some fixed interval. Let

m denote the period of the seasonal trend (i.e., the number of observations per day).

Exponential smoothing is used to predict the next value. It is a simple algorithm

for predicting the next value in a time series given the current value and the current

prediction. Let yt+1 denote the predicted value for time t + 1, then:

ŷt+1 = αyt + (1− α)ŷt (5.1)

The prediction is actually a weighted average of all past observations in the time series.

The premise of exponential smoothing is that the current value is most informative

for prediction of the next value, and that the weight of an older observation decays

exponentially as the observation moves further into the past. It is an incremental

algorithm because the next prediction is obtained by updating the current prediction

with the current observed value. α is the model parameter and 0 < α < 1. It

determines the rate of decay (1−α) and the weight the current value is given during

the incremental update.

Holt-Winters Forecasting is a more sophisticated algorithm that builds upon expo-

nential smoothing. Holt-Winters Forecasting rests on the premise that the observed

time series can be decomposed into three components: a baseline, a linear trend, and

a seasonal effect. The algorithm presumes each of these components evolves over time

and this is accomplished by applying exponential smoothing to incrementally update

the components.

The prediction is the sum of the three components: The update formulas for the

three components, or coefficients a, b, c are:
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• Baseline (“intercept”): at = α(yt − ct−m) + (1− α))(at−1 + bt−1)

• Linear Trend (“slope”): bt = β(at − at−1) + (1− β)bt−1

• Seasonal Trend: ct = γ(yt − at) + (1− γ)ct−m

As in exponential smoothing, the updated coefficient is an average of the prediction

and an estimate obtained solely from the observed value yt, with fractions determined

by a model parameter (α, β, γ). Suppose that m is the period of the seasonal cycle; so

the seasonal coefficient at time t references the last computed coefficient for the same

time point in the seasonal cycle. The new estimate of the baseline is the observed

value adjusted by the best available estimate of the seasonal coefficient (ct−m). As the

updated baseline needs to account for change due to the linear trend, the predicted

slope is added to the baseline coefficient. The new estimate of the slope is simply the

difference between the new and old baseline (as the time interval between observations

is fixed, it is not relevant). The new estimate of the seasonal component is the

difference between the observed value and the corresponding baseline.

The parameters α, β and γ are the adaptation parameters of the algorithm and

0 < α, β, γ < 1. Larger values mean the algorithm adapts faster and predictions re-

flect recent observations in the time series; smaller values means the algorithm adapts

slower, placing more weight on the past history of the time series. Note that the up-

date formulas imply that an implementation need only store the current values of

the slope and intercept, and a single period of seasonal coefficients, as these stored

values are replaced at each iteration. Holt-Winters Forecasting can also predict a

time series further than a single time step in the future. This multi-step prediction

provides a mechanism to handle missing data. Confidence bands measure deviation

for each time point in the seasonal cycle; this mechanism models seasonal variabil-

ity. The measure of deviation is a weighted average absolute deviation, updated via

exponential smoothing.
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dt = γ(yt − ŷt) + (1− γ)dt−m (5.2)

Here dt is the predicted deviation at time step t. The update formula for dt is

similar to that of ct. They even share the same adaption parameter, γ. The confidence

band is simply the collection of intervals (ŷt − δ− · dt−m, ŷt + δ+ · dt−m) for each time

point yt in the series.

Parameters δ+ and δ− are scaling factors for the width of the confidence band.

Often, a symmetric confidence band is desired and δ+ = δ−. In this case, denote the

common parameter δ. Given some assumptions and statistical distribution theory,

sensible values of are between 2 and 3.

A simple mechanism to detect an anomaly is to check if an observed value of the

time series falls outside the confidence band. However, this mechanism often yields a

high number of false positives. A more robust mechanism is to use a moving window

of a fixed number of observations. If the number of violations (observations that fall

outside the confidence band) exceeds a specified threshold, then trigger an alert for

aberrant behavior. Formally, define a violation as an observation yt that falls outside

the interval:

(ŷt − δ− · dt−m, ŷt + δ+ · dt−m) (5.3)

Finally, define a failure as exceeding a specified number of threshold violations

within a window of a specified number of observations (the window length).

At a cost of adding some additional overhead to the implementation, the model

performs temporal smoothing within a cycle for the seasonal coefficients and devia-

tions. The smoother used is an equal-weight moving average, with a window of 0.05m.

The model parameters need to be set and tuned for the model to work well. There is

no single optimal set of values, even restricted to data for a single variable. This is

due to the interplay between multiple parameters in the model.
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For example, consider two observations in sequence, yt and yt+1. The intercept (a),

slope (b), and seasonal (c) coefficients all ‘absorb’ some part of the difference between

yt and y(t + 1) during the exponential smoothing update. It is safe to assume some

of the difference is noise, so updates to the coefficients need not account for all of

the difference between yt and yt+1. The values of α, β and γ determine the relative

share of the difference assigned to a changing baseline, a changing linear trend, and

a changing seasonal coefficient.

Here are some guidelines for setting parameters:

1. Parameter α: At least one of α, β and γ should allow adaptation in a short time

frame. As seasonal updates occur infrequently for each coefficient (once per

cycle), and the goal of β is to capture a slowly changing linear trend, the most

logical choice is α. Use exponential smoothing weights to make an educated

choice for α. The sum of the most recent n weights is 1 − (1 − α)n and of

course the sum of all weights is 1 (ignoring initialization). These facts can be

manipulated to choose α using the formula:

α = 1− exp(
ln(1− total weights as percentage)

number of points
) (5.4)

For example, if one wants observations in the last 15 seconds to account for 95

percent of the weights, and observations occur at one second intervals (fifteen

timepoints), then the formula yields α = 0.181.

2. Parameter β: As the purpose of β is to capture a linear trend longer than

one seasonal cycle, it is logical to choose β such that one seasonal cycle does

not account for a majority of the exponential smoothing weights. The formula

discussed previously applies with β replacing α. For example, if the period of

the cycle is twenty seconds, at one observation every second (20 time points),
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then setting β = 0.00346 will guarantee that observations within the last day

account for less than 50 percentage of the smoothing weights.

3. Parameter γ: The seasonal adaptation parameter can also be selected using

exponential smoothing weights using a variation of the previous formula. Note

this single parameter controls both seasonal coefficient and deviation adapta-

tion, on the assumption that seasonal trend and variability evolve together over

time at roughly the same rate.

4. Parameter δ: As noted in confidence bands section, the scaling factor of the

confidence bands can be chosen by appealing to statistical distribution theory.

Reasonable values fall in the interval [2, 3]. Choosing 2 detects more failures

(which may just mean a higher rate of false positives).

5. Window length and threshold: Given the goal of real-time monitoring, the

window length should be at most on the order of 20 seconds (i.e., for one second

intervals, choose a window length between 15 and 20). A higher threshold will

make the model robust to false positives, but perhaps at the cost of missing

true failures. These parameters are probably the most difficult to set a priori.

5.1.1 Implementation of Holt Winter Forecasting Model

The algorithm outlined above was implemented on the network processor setup

and run for an eight hour long interval. The microengine of the Network Processor

maintains various statistics of the packets seen in the link. The observed value for that

particular statistic is calculated every second. The next expected value is calculated

based on the Holt Winter Forecasting model. Confidence intervals are calculated as

described in the previous section, and a violation is indicated when the observed value

falls outside the confidence band. The results are shown in the Figures 5.1, 5.2, 5.3,
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Figure 5.1. Per second Observed and Predicted Rates for Holt Winter model
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Figure 5.2. Per second interval Anomalies for Holt Winter model

5.4, 5.5 for the Holt Winter model monitoring the traffic rate in Mbps. On the x-axis,

we have time in seconds.

• Per second observed and predicted rates according to the Holt Winter Forecast-

ing model is shown in Figure 5.1. On the y-axis, we have the rate in Mbps.

• Per second violations as shown in Figure 5.2. As is evident, there are a large

number of false positives.
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Figure 5.3. 20 second interval Observed and Predicted Rates for Holt Winter model
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Figure 5.4. 20 second interval Anomalies for Holt Winter model
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Figure 5.5. Total number of threshold violations in the 20 second interval

• Figure 5.3 shows the 20 second averaged values of the observed and predicted

rates. On the y-axis we have the rate in Mbps.

• Figure 5.4 shows anomalies at instances where the number of violations in the

twenty second interval, as in Figure 5.5 exceeds the threshold value.

5.2 Maximum Entropy based Anomaly Detection

5.2.1 Description

The Maximum Entropy based Anomaly Detection scheme was proposed by Yu Gu

et al [20]. In this approach all the packets in the network traffic into a set of packet

classes. In order to study the distribution of these packets, they divide them into a set

of two-dimensional classes according to the protocol information and the destination

port number in the packet header. This set of packet classes is the common domain

of the probability spaces. In the first dimension, packets are divided into four classes

according to the protocol related information. First, packets are divided into the
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classes of TCP and UDP packets. Two other classes are further split from the TCP

packet class according to whether or not the packets are SYN and RST packets.

In the second dimension, packets are divided into 506 classes according to their

destination port numbers. Port numbers often determine the services related to the

packet exchange. According to the Internet Assigned Numbers Authority, port num-

bers are divided into three categories: Well Known Ports (0 – 1023), Registered Ports

(1024 – 49151), and Dynamic and/or Private Ports (49152 – 65535). Packets with a

destination port in the first category are divided into classes of 8 port numbers each.

Since packets with port number 80 comprise the majority of the network traffic, they

are separated into a single class. This produces 129 packet classes. Packets with des-

tination port in the second category are divided into 376 additional classes, with each

class covering 128 port numbers. Packets with destination port numbers larger than

49151 are grouped into a single class. Thus, in this dimension, packets are divided

into a total of 129 + 376 + 1 = 506 classes.

Altogether, the set of two-dimensional classes consists of 4 · 506 = 2024 packet

classes. These packet classes comprises the probability space. The distribution of

different packets in the benign traffic according to this classification, and use it as the

baseline distribution to detect network traffic anomalies.

Empirical distribution of the packets is obtained once every time slot based on

the percentage of packets seen in that class to the total packets seen. The relative

entropy shows the difference between the distribution of the packet classes in the

current network traffic and the baseline distribution. If this difference is too large,

it indicates that a portion of some packet classes that rarely appear in the training

data increases significantly, or that appear regularly decreases significantly, which

corresponds to an anomaly.
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5.2.2 Implementation

The packet counts in each class are obtained once every second. The packet count

in each class divided by the total packets seen in that time interval gives the empirical

distribution of that packet class. The relative entropy shows the difference between

the distribution of the packet classes in the current network traffic and the baseline

distribution. If this difference is too large, it indicates that a portion of some packet

classes that rarely appear in the training data increases significantly, or that appear

regularly decreases significantly. In other words, this serves as an indication of the

presence of an anomaly in the network traffic..

5.3 Adaptive Threshold Algorithm

5.3.1 Description

The Adaptive Thresholding Algorithm [17] is a straightforward and simple algo-

rithm. It detects anomalies based on violations of a threshold that is adaptively set

based on recent traffic measurements. Seasonal variations and trends are taken care

of by using an adaptive threshold whose value is set based on an estimate of the mean

number of the packets under consideration or the rate, either of which are computed

from recent traffic measurements. If xn is the observed value in the n-th time inter-

val, and µ̄n−1 is the mean estimated from measurements prior to n, then the alarm

condition is

If xn ≥ (α + 1)µ̄n−1, then Alarm signalled at time n. (5.5)

where α > 0 is a parameter that indicates the percentage above the mean value that

we consider to be an indication of anomalous behavior. The mean µ̄n can also be

computed over some past time window or using an Exponentially Weighted Moving

Average of the previous measurements as given below.
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Figure 5.6. Per second Observed and Predicted Rates for Adaptive Threshold

µ̄n = βµ̄n − 1 + (1− β)xn (5.6)

where β is the EWMA factor.

If we apply the above algorithm directly, then it is obvious that it will yield a

high number of false positives. To counter this, we can trigger an alarm only after

a minimum number of consecutive violations of the threshold. Thus, the new alarm

condition is given by

If
n∑

i=n−k+1

1xn≥(α+1)µ̄n−1 ≥ k, then Alarm at time n. (5.7)

where k > 1 indicates the number of consecutive intervals the threshold must be

violated for an alarm to be raised.

The tuning parameters of the adaptive threshold algorithm are the amplitude

factor α for computing the alarm threshold, the number of successive threshold vio-

lations k before signalling an alarm, the EWMA factor β, and the length of the time

interval over which traffic measurements (number of individual packets and the rate)

are taken. The following values were considered for the parameters α = 0.5, k = 5,

and β = 0.98. The results are shown in the Figures 5.6, 5.7, 5.8, 5.9. On the x-axis,

we have time in seconds.

• Per second observed and predicted rates according to the Adaptive Threshold

algorithm is shown in Figure 5.6. On the y-axis, we have the rate in Mbps.

29



0

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

A
no

m
al

y

Time

Anomalies
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Figure 5.8. 20 second interval Anomalies for Adaptive Threshold
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Figure 5.9. Total number of threshold violations in the 20 second interval
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• Per second violations as shown in Figure 5.7. As is evident, there are a large

number of false positives.

• Figure 5.8 shows anomalies at instances where the number of violations in the

twenty second interval, as in Figure 5.9 exceeds the threshold value.

5.4 Cumulative Sum Algorithm

5.4.1 Description

The CUSUM technique is a sequential technique for detecting change points. Data

is input to the algorithm one point at a time decision on whether a change point has

occurred is made as each new piece of data is received. As its name suggests, CUSUM

maintains a cumulative sum of deviations from a reference, µ , which is the mean of the

process estimated in real time and periodically updated. If xn is the n-th observation,

and Si is the i-th cumulative sum, the cumulative sum, Si can be calculated as follows:

Sk =
k∑

i=1

(x1 − µ) = (xk − µ) + Sk−1 (5.8)

If the observations xn are close to the mean, then the cumulative sums Si will

be around zero. However, once a shift around the mean occurs, the Si values will

increase or decrease quickly. In the above equations, we have mentioned µ to be the

mean value. µ can be calculated as an Exponentially Weighted Moving Average of

the previous observations as given below

µn = βµn − 1 + (1− β)xn (5.9)

where β is the EWMA factor. Choose a parameter δ that is the upper bound of µ.

Also, define

S̃n = Sn − δ (5.10)
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S̃n has a negative mean during normal operation. However, when an attack occurs,

S̃n will suddenly become a large positive. Also, let the increase in the mean of S̃n be

lower bounded by a value h.

Let yn = (yn−1 + S̃n)+ (5.11)

where

x+ =





x if x > 0

0 else

and yn is defined as:

yn = Un − min
1≤k≤n

Uk (5.12)

and where

Uk =
k∑

i=1

S̃k and U0 = 0 (5.13)

Thus, yn is nothing but the maximum continuous increment until time n. A large yn

is a strong indication of an attack. Now, let dN(·) be the decision at time n: 0 for

normal operation and 1 for an attack. Let N be the flooding threshold. Then, we have

dN(yn) =





0 if yn ≤ N

1 if yn > N

The effect of introducing δ is to offset the possible positive mean in Xn, so that yn

will be reset to zero frequently and will not accumulate in time.

5.5 Average over past n prediction

The average over past n algorithm is a simplified version of the Adaptive threshold

algorithm. Here, the seasonal variations are accounted for by taking the average of
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Figure 5.10. Per second Observed and Predicted Rates for Averaging Algorithm

the past n values. Thus, if xn is the observed value in the n-th time interval, and µ̄n

is the mean estimated from measurements prior to n, then the alarm condition is:

If xn ≥ µ̄n, Alarm at time n. (5.14)

Again, it can be seen that this technique is susceptible to a high number of false

positives if directly applied. Thus, we choose a window period over which we keep

a count of the number of violations. An alarm is raised only when the number of

violations over this window exceeds the threshold value set for that window. Thus,

the new condition is

If
t∑

i=0

1xn≥µ̄n ≥ k, then Alarm at time n. (5.15)

where t is the window period in seconds, and k > 0 is the minimum number of

threshold violations that should be registered within the window period for the alarm

to signal. The results are shown in the Figures 5.10, 5.11, 5.12, 5.13. On the x-axis,

we have time in seconds.

• Per second observed and predicted rates according to the Averaging model is

shown in Figure 5.10. On the y-axis, we have the rate in Mbps.

• Per second violations as shown in Figure 5.11. As is evident, there are a large

number of false positives.
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Figure 5.11. Per second interval violations for Averaging Algorithm
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Figure 5.12. 20 second interval Anomalies for Averaging Algorithm
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Figure 5.13. Total number of threshold violations in the 20 second interval
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• Figure 5.12 shows anomalies at instances where the number of violations in the

twenty second interval, as in Figure 5.13 exceeds the threshold value.

5.6 Exponentially Weighted Moving Average

An exponentially weighted moving average (EWMA) applies weighting factors

which decrease exponentially. The weighting for each older data point decreases

exponentially, giving much more importance to recent observations while still not

discarding older observations entirely. The graph at right shows an example of the

weight decrease. The degree of weighing decrease is expressed as a constant smoothing

factor β, a number between 0 and 1. β may be expressed as a percentage, so a

smoothing factor of 10% is equivalent to β = 0.1. The equation that defines the

EWMA is

µ̄n = βµ̄n − 1 + (1− β)xn (5.16)

where µ̄n is the exponentially weighted moving average of the past measurements.

5.7 Parallel implementation of Anomaly detection schemes

on the IXP2400

Earlier, I briefly explained the different parameters that will be monitored in

order to detect an anomaly. Thus, we will be looking at different parts of the traffic

and running each of the six anomaly detection algorithms on them. For example,

consider a DDoS attack on a Web Server through syn flooding. We have four anomaly

detection algorithms viz. Holt Winter, Adaptive Threshold, CUSUM, Averaging and

Next=Current prediction looking at syn packets among others. Concurrently, we

have the Entropy based AD system looking at the various ports including port 80.

Consequently, in case of the above attack, there will be an increase in the number

of syn packets targeting port 80, and all the algorithms monitoring the number of
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syn packets and the target port will fire an alert on the type of traffic, tcp and syn

in this case, and the port, port 80 in this case. Thus, we can pinpoint the exact

type of traffic that is causing the anomaly and the target port on the system. Thus,

we can see that there is a need of a correlation engine. Essentially, a single data

point often results in an alarm. However, a correlation engine looks at multiple data

points. A network anomaly, is not enough evidence to initiate an immediate response.

Once it correlates with an alert from the other algorithms over the sampling period,

can the alarm be issued with a high degree of accuracy. This results in fast and

accurate detection which can also initiate stoppage of attack traffic, as is typically

done, without negatively impacting critical operations.

5.7.1 Implementation details

To have a better understanding of the algorithms and for experimentation we

needed to recreate the traffic. Consequently, the six anomaly detection algorithms

were run on a Lab setup on publicly available traces the details of which are given in

detail in the following section. The lab setup consisted of a host machine with the

ENP2611 card installed in it, and a replay machine which replayed the stored pcap

traces. Tcpreplay was used to replay the traces over the network. Tcpreplay is aimed

at testing the performance of a Network Intrusion Detection System by replaying

real background network traffic in which to hide attacks. Tcpreplay allows you to

control the speed at which the traffic is replayed, and can replay arbitrary libpcap

traces. Unlike programmatically-generated artificial traffic which doesn’t exercise

the application/protocol inspection that a NIDS performs, and doesn’t reproduce

the real-world anomalies that appear on production networks (asymmetric routes,

traffic bursts/lulls, fragmentation, retransmissions, etc.), tcpreplay allows for exact

replication of real traffic seen on real networks.
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5.7.2 Anomaly Trees

The basic premise of all the algorithms explained in the previous section is that a

violation or an anomaly is registered when the observed value is too deviant from the

calculated or predicted value for that time instant. Our technique uses this fact thus

only concentrating on the degree by which an the observed value deviates from the

prediction as calculated by an algorithm. All six algorithms monitor each subset of

traffic. This not only enables us to pinpoint the exact subset of traffic that is causing

the anomaly but also to come up with a simple score that characterizes the degree of

the anomaly. For this purpose, we create what we call the Anomaly Tree for every

time instance.

The Anomaly tree (Fig. 5.14) represents a hierarchical relationship between the

various subsets of traffic as observed in the network. At the highest level is the traffic

as seen in the network. A level below are the TCP, UDP and Other (Non-TCP and

Non-UDP) traffic. TCP is further divided into TCP-Syn, TCP-Rst and TCP(Rest)1.

UDP, TCP-Syn, TCP-Rst and TCP(Rest) are further divided into 506 classes each

according to the Entropy algorithm [20] explained earlier.

The Anomaly tree is updated every time instance, and maintains the score for

every subset of traffic calculated from the algorithm outputs. Every algorithm outputs

values depicting the degree of deviation on a different scale. This necessitates the use

of normalization techinques so as to enable us to compare all algorithm outputs on

a similar scale. Of various normalization techniques available, we chose Min-max

normalization. Min-max normalization subtracts the minimum value of an attribute

from each value of the attribute and then divides the difference by the range of the

attribute. These new values are multiplied by the new range of the attribute and

1TCP(Rest) is the Non-Syn and Non-Rst TCP traffic
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Figure 5.14. Anomaly Tree

finally added to the new minimum value of the attribute. These operations transform

the data into a new range, generally [0,1].

Every node maintains the current normalized degree as output by the various

algorithms. To ensure that we do not end up with six trees for every time instance

for the six algorithms in parallel, but instead we only have one tree per time instance,

the nodes maintain either the Average or the Median of the six outputs at every node.

The observed statistics and the differences between maintaining the Average and the

Median are explained in the following section.
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CHAPTER 6

OBSERVATIONS

The algorithms were run on four different traces with different characeristics and

varied attack traffic. This section explains in detail the observations for each of those

traces along with the status of the Anomaly tree nodes at selected time instances

during the experiment. The experiments are repeated for the Median and the Average

case.

6.1 Trace 1

The trace was taken from the peering link at the Los Nettos network of the

University of Southern California, LA, USA. The trace contains Syn portscan and

portsweep traffic of varying magnitudes between 50 and 250 seconds into the trace.

The entire trace lasts for about 441 seconds. The trace was repetitively replayed a

number of times using tcpreplay.

6.1.1 Average of the Normalized Algorithm outputs

The experiment was carried out with the nodes updating the average of the nor-

malized algorithm outputs at every time instance. The graphs of the node values ver-

sus time are shown in the Figure. 6.2. The experiment shows a correlation between

the algorithm outputs and the behavior of the traffic in the trace. The aggregation

model is successful in detecting the syn traffic in the trace between time instants 50

and 250 seconds and also outputs a rough metric of how deviant the observations are.

The behavior of various algorithms as seen at the Syn node in the anomaly tree is

shows in Figure. 6.1.
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Figure 6.1. Output behavior of Algorithms as seen at the Syn node in the Anomaly
Tree.

6.1.2 Median of the Normalized Algorithm outputs

The experiment was carried out with the nodes updating the median of the nor-

malized algorithm outputs at every time instance. The graphs of the node values

versus time are shown in the Figure. 6.3

6.1.3 Anomaly Tree

Figure 6.4 shows the status of the anomaly tree nodes before and after the change

at three sets of instances. An increase in the normalized output of the algorithms as

seen at a particular indicates that the node is anomalous. The anomalous nodes are

shaded in with a darker shade representing a higher level of anomaly. For instance,

at times 898s(before) and 903s(after the change), the Syn node value increases by 0.4

units whereas UDP node value increases by 0.1 unit. Thus, Syn node is shown in a

darker shade as compared to the UDP node.
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Figure 6.2. Trace 1: Average of the Algorithm outputs at various Anomaly tree
nodes.
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Figure 6.3. Trace 1: Median of the Algorithm outputs at various Anomaly tree
nodes.
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Before Change After Change

Figure 6.4. Trace 1: Anomaly Tree nodes at various instants of time
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6.2 Trace 2

Trace 2 is actually a series of Code Red worm traces scripted to replay one after

the other using tcpreplay. The total duration of the traces is 816.64 seconds including

the background trace which does not contain the worm traffic.

6.2.1 Average of the Normalized Algorithm outputs

The experiment was carried out with the nodes updating the average of the nor-

malized algorithm outputs at every time instance. The graphs of the node values

versus time are shown in the Figure. 6.6. The CodeRed trace shows a large change in

TCP, TCP-Syn and TCP-Rst traffic as seen in the Fig. 6.6. This was also observed

in the manual reading of the trace where at instances after 220s into the trace a

large amount of TCP traffic is seen. The behavior of the various algorithms at the

anomalous nodes as seen in the Average Anomaly Tree is shown in Fig. 6.5.

6.2.2 Median of the Normalized Algorithm outputs

The experiment was carried out with the nodes updating the median of the nor-

malized algorithm outputs at every time instance. The graphs of the node values

versus time are shown in the Figure. 6.7
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Figure 6.5. Trace 2: Output behavior of Algorithms as seen at the Syn, Rst, TCP
and UDP nodes in the Anomaly Tree respectively.
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Figure 6.6. Trace 2: Average of the Algorithm outputs at various Anomaly tree
nodes.
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Figure 6.7. Trace 2 :Median of the Algorithm outputs at various Anomaly tree
nodes.
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Before Change After Change

Figure 6.8. Trace 2: Anomaly Tree nodes at various instants of time
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6.3 Trace 3

Trace 3 is a Distributed DoS attack trace from the DARPA 2000 Intrusion De-

tection evaluation carried out at MIT Lincoln labs. It includes a distributed denial

of service attack run by an stealthy attacker. This attack scenario is carried out

over multiple network and audit sessions. These sessions have been grouped into 5

attack phases, over the course of which the attacker probes the network, breaks in to

a host by exploiting the Solaris sadmind vulnerability, installs trojan mstream DDoS

software, and launches a DDoS attack at an off-site server from the compromised

host.

6.3.1 Average of the Normalized Algorithm outputs

The experiment was carried out with the nodes updating the average of the nor-

malized algorithm outputs at every time instance. The graphs of the node values

versus time are shown in the Figure. 6.10. We observe large deviations in the Syn,

TCP(rest), Rst and UDP plots. The algorithm behaviors for the affected nodes are

shown in Figure. 6.9.

6.3.2 Median of the Normalized Algorithm outputs

The experiment was carried out with the nodes updating the median of the nor-

malized algorithm outputs at every time instance. The graphs of the node values

versus time are shown in the Figure. 6.11
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Figure 6.9. Trace 3: Output behavior of Algorithms as seen at the Syn, Rst, TCP
and UDP nodes in the Anomaly Tree respectively.
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Figure 6.10. Trace 3: Average of the Algorithm outputs at various Anomaly tree
nodes.
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Figure 6.11. Trace 3: Median of the Algorithm outputs at various Anomaly tree
nodes.
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Before Change After Change

Figure 6.12. Trace 3: Anomaly Tree nodes at various instants of time
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6.4 Trace 4

The trace was taken from the peering link at the Los Nettos network of the

University of Southern California, LA, USA. The trace contains Syn portscan and

portsweep traffic over a period of 900 seconds. A lot of zero-byte UDP packets are

also observed in the trace. The trace was repetitively replayed a number of times

using tcpreplay.

6.4.1 Average of the Normalized Algorithm outputs

The experiment was carried out with the nodes updating the average of the nor-

malized algorithm outputs at every time instance. The graphs of the node values

versus time are shown in the Figure. 6.14. The output behavior of the algorithms is

shown in the Figures 6.13.

6.4.2 Median of the Normalized Algorithm outputs

The experiment was carried out with the nodes updating the median of the nor-

malized algorithm outputs at every time instance. The graphs of the node values

versus time are shown in the Figure. 6.15
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Figure 6.13. Trace 4: Output behavior of Algorithms as seen at the Syn, Rst, TCP
and UDP nodes in the Anomaly Tree respectively.
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Figure 6.14. Trace 4: Average of the Algorithm outputs at various Anomaly tree
nodes.
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Figure 6.15. Trace 4: Median of the Algorithm outputs at various Anomaly tree
nodes.
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Before Change After Change

Figure 6.16. Trace 4: Anomaly Tree nodes at various instants of time
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6.5 Anomaly Tree - Relationship between Anomalous and

Non-Anomalous Nodes

The Anomaly tree represents a hierarchical relationship between the various sub-

sets of traffic as observed in the network. At the highest level is the traffic as seen in

the network. A level below are the TCP, UDP and Other (Non-TCP and Non-UDP)

traffic. TCP is further divided into TCP-Syn, TCP-Rst and TCP(Rest)1. UDP, TCP-

Syn, TCP-Rst and TCP(Rest) are further divided into 506 classes each according to

the Entropy algorithm [20] explained earlier.

6.5.0.1 Detecting Anomalies

This hierarchical structure enables us to pinpoint the exact type of traffic causing

the anomaly. At every time instance, the Anomaly tree updates the scores of the

nodes as output by the alogithms. These scores are nothing but the Average or the

Median of the normalized deviations as output by the algorithms. Normalization is

used so as to enable us to compare and operate on the outputs of the algorithms on a

similar timescale For example, in the case where there is a TCP-Syn portscan on port

80 occurring in the network, the Anomaly tree will register a high value at the TCP-

Syn node. Further, Class 128 under Syn will also register a high value. However,

one thing to note is that the parent node of TCP-Syn, TCP, might or might not

register a high value depending on whether the total volume of traffic as seen among

all its children increases or not. Thus, if there is an increase in the number of Syn

packets but there is a proportionate decrease in the number of Rst packets, the TCP

parent node will not register an anomaly. Thus, it becomes important to consider the

parent-child relationship between nodes when characterizing the anomaly.

The Anomaly tree is also successful in registering multiple anomalies occurring

in the system .For example, in Figure 6.16 , for the instances of 793s and 794s, the

1TCP(Rest) is the Non-Syn and Non-Rst TCP traffic
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Anomaly tree is able to successfully register a TCP-Syn Portscan on Class 128 2 and

a UDP Flood attack occurring on various ports 3.

2Port 80 [20]

3The TCP-Syn and UDP children are not shown because of the large number of children, 506 in
each case
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CHAPTER 7

CONCLUSIONS

!

In this work, I have implemented six Anomaly Detection algorithms in parallerl

on a Network Processor based passive measurement node. The algorithms are:

1. Holt Winter based Forecasting model proposed by Brutlag J.D. [4] which cap-

tures the history of the network traffic variations and predicts the future traffic

rate in the form of a confidence band.

2. Behavior-based anomaly detection method proposed by Yu Gu [20] et al. that

detects network anomalies by comparing the current network traffic against a

baseline distribution.

3. Adaptive Threshold Algorithm [17], a straightforward and simple algorithm

that detects anomalies based on violations of a threshold that is adaptively set

based on recent traffic measurements.

4. Cumulative Sum Algorithm, [11], a proven statistical algorithm that maintains

the cumulative sum of the deviations from a reference value, which is usually

the mean of the time process.

5. Averaging Algorithm [16], another straightforward and simple algorithm that

mainly averages the past 60 values. This is taken to be the predicted value

which is compared to the present observed value.
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6. Exponentially Weighted Moving Average, which applies weighting factors that

decrease exponentially. Thus the most recent observations are given a greater

weightage than the older observations.

The outputs of these algorithms were normalized and used to derive a common

score of the state of the traffic each of those algorithms were monitoring. The state

was constantly updated using an Anomaly tree, which maintains and updates the

scores at various nodes which represent differenct subsets of traffic. Experiments

were carried out on four different publicly available traces containing attack as well

as background traffic. The Anomaly trees successfully registered an anomaly for the

differnet cases at particular time instances. This was verified by physically inspecting

the trace.
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CHAPTER 8

FUTURE WORK

8.1 Collaborative Decisions and Feedback

The objective of parallel implementation is to successfully characterize anomalies

and possibly reduce number of false positives that Anomaly Detection Systems are so

susceptible to. We have six algorithms looking at different parts of the traffic. A more

sophisticated method would be to design a correlation engine that takes into account

the characteristics of not only the traffic, but also of each of these algorithms. The

correlation engine can be designed to take into account the Total volume of traffic that

is causing the anomaly, the Specific type of traffic, and the Intensity of the attack.

Thus, we can use three new parameters:

1. Intensity : Defined by the number of packets involved in the attack during the

monitoring cycle. E.g. Increasing number of Syn packets as found in Syn

flooding attacks.

2. Volume: The parameter that is concerned with the total traffic viz. rate, total

number of packets etcetera.

3. Specificity : Defined by the target of attack viz. port, protocol used, type of

packets etcetera

Once we have the necessary information on the offending traffic, it can be selectively

blocked and/or traces can be collected for later inspection, without affecting the

performance as perceived by legitimate users. This constitutes the feedback to the
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Anomaly Detection System, wherein the system is made autonomous by including a

feedback to the passive measurement/capture node, thus enabling it to make intelli-

gent decisions about whether to block the offending traffic and/or capture traces for

further inspection.

Another problem is of a distributed measurement system which incorporate inde-

pendent anomaly detection systems. These systems can have an ability to collaborate

amongst each other to make intelligent decisions dynamically about the network traf-

fic policies. Besides, the different systems can be divided in an independent manner

thus enabling us to selectively block zombies (infected machines as in DoS attacks)

which are a part of that particular subnet being monitored.

60



BIBLIOGRAPHY

[1] Snort: The open source network intrusion detection system.

[2] Change-point monitoring for the detection of dos attacks. IEEE Trans. Depend-

able Secur. Comput. 1, 4 (2004), 193–208. Member-Haining Wang and Member-

Danlu Zhang and Fellow-Kang G. Shin.

[3] Barford, P, Kline J Plonka D, and A, Ron. A signal analysis of network traffc

anomalies. In In Proceedings of ACM SIGCOMM Internet Measurement Work-

shop (Marseilles, France, Nov. 2002).

[4] Brutlag, J. D. Aberrant behavior detection in time series for network service

monitoring. In Proceeding of the 14th Systems Administration Conference (2000),

p. 139146.

[5] Bunga, Siddhartha. Online passive network measurement. Master’s thesis, Uni-

versity of Massachusetts, Amherst, 2006.

[6] Cliff C. Zou, Member, IEEE Weibo Gong Fellow IEEE Don Towsley Fellow IEEE,

and Lixin Gao, Member, IEEE. The monitoring and early detection of internet

worms. IEEE/ACM Transactions on Networking 13, 5 (Oct. 2005).

[7] Corporation, Intel. Intel second generation network processor, 2005.

[8] Corporation, Radisys. Enp-2611 product data sheet, 2004.

[9] Deri, L., Suin, S., and Maselli, G. Design and implementation of an anomaly

detection system: An empirical approach. In In Proceedings of Terena TNC,

2003 (2003).

61



[10] Girardin, Luc. An eye on network intruder-administrator shootouts.

[11] Moore. A, Wagner. M, Ron M. Aryel. Handbook of Biosurveillance.

[12] Paxson, V.Bro. A system for detecting network intruders in real-time. In In

Proceedings of the 7th USENIX Security Symposium (Jan. 1998).

[13] Ramaswamy, Ramaswamy. An Embedded High Performance Network Measure-

ment Architecture. PhD thesis, University of Massachusetts, Amherst, 2006.

[14] Ramaswamy, Ramaswamy, Weng, Ning, and Wolf, Tilman. An IXA-based net-

work measurement node. In Proc. of Intel IXA University Summit (Hudson,

MA, Sept. 2004).

[15] Ramaswamy Ramaswamy, Weng Ning, and Wolf, Tilman. A network processor

based passive measurement node. In Passive and Active Measurement Workshop

(PAM) ((Boston, MA), Mar. 2005), pp. 337 – 340.

[16] Schwarzer, Christian. Prediction and adaptation in a traffc-aware packet filtering

method. Master’s thesis, Ecole Polytechnique Federale de Lausanne, 2006.

[17] Siris, V.A. Papagalou, F. Application of anomaly detection algorithms for de-

tecting syn flooding attacks. In Global Telecommunications Conference, 2004.

GLOBECOM ’04. IEEE (2004), vol. 4, pp. 2050– 2054.

[18] Thottan, M, and Ji, C. Anomaly detection in ip networks. In In IEEE Trans.

Signal Processing (Aug. 2003), pp. 2191 – 2204.

[19] Wang. H., Zhang.D., and Shin.K.G. Detecting syn flooding attacks. In Proceed-

ings of IEEE INFOCOM (2002).

[20] Y.Gu, McCallum, A., and Towsley, D. Detecting anomalies in network traffic

using maximum entropy, 2005.

62


	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	January 2007

	Design and Implementation of Parallel Anomaly Detection
	Shashank Shanbhag

	Design and Implementation of Parallel Anomaly Detection

