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ABSTRACT

PROCESS VARIATION TOLERANT SELF
COMPENSATION SENSE AMPLIFIER DESIGN

SEPTEMBER 2008

AARTI CHOUDHARY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sandip Kundu

As we move under the aegis of the Moore’s law, we have to deal with its darker

side with problems like leakage and short channel effects. Once we go beyond 45nm

regime process variations have emerged as a significant design concern as well. Also

embedded memories are now very popular for both processor and ASIC designs. Em-

bedded memories uses sense amplifier for fast sensing and typically, sense amplifiers

uses pair of matched transistors in a positive feedback environment. A small differ-

ence in voltage level of applied input signals to these matched transistors is amplified

and the resulting logic signals are latched. Intra die variation causes mismatch be-

tween the sense transistors that should ideally be identical structures. Yield loss due

to device and process variations has never been so critical to cause failure in circuits.

Due to growth in size of embedded SRAMs as well as usage of sense amplifier based

signaling techniques, process variations in sense amplifiers leads to significant loss of

yield for that we need to come up with process variation tolerant circuit styles and

new devices. In this work impact of transistor mismatch due to process variations
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on sense amplifier is evaluated and this problem is stated. For the solution of the

problem a novel self compensation scheme on sense amplifiers is presented on differ-

ent technology nodes up to 32nm on conventional bulk MOSFET technology. Our

results show that the self compensation technique in the conventional bulk MOSFET

latch type sense amplifier not just gives improvement in the yield but also leads to

improvement in performance for latch type sense amplifiers. Lithography related CD

variations, fluctuations in dopant density, oxide thickness and parametric variations

of devices are identified as a major challenge to the classical bulk type MOSFET.

With the emerging nanoscale devices, SIA roadmap identifies FinFETs as a candi-

date for post-planar end-of-roadmap CMOS device. With current technology scaling

issues and with conventional bulk type MOSFET on 32nm node our technique can

easily be applied to Double Gate devices. In this work, we also develop the model

of Double Gate MOSFET through 3D Device Simulator Damocles and TCAD simu-

lator. We propose a FinFET based process variation tolerant sense amplifier design

that exploits the back gate of FinFET devices for dynamic compensation against pro-

cess variations. Results from statistical simulation show that the proposed dynamic

compensation is highly effective in restoring yield at a level comparable to that of

sense amplifiers without process variations. We created the 32nm double gate models

generated from Damocles 3-D device simulations [25] and Taurus Device Simulator

available commercially from Synopsys [47] and use them in the nominal latch type

sense amplifier design and on the Independent Gate Self Compensation Sense Ampli-

fier Design (IGSSA) to compare the yield and performance benefits of sense amplifier

design on FinFET technology over the conventional bulk type CMOS based sense

amplifier on 32nm technology node effective in restoring yield at a level comparable

to that of sense amplifiers without process variations. We created the 32nm double

gate models generated from Damocles 3-D device simulations [25] and Taurus Device

Simulator available commercially from Synopsys [47] and use them in the nominal
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latch type sense amplifier design and on the Independent Gate Self Compensation

Sense Amplifier Design (IGSSA) to compare the yield and performance benefits of

sense amplifier design on FinFET technology over the conventional bulk type CMOS

based sense amplifier on 32nm technology node.
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INTRODUCTION

Moore’s law has been the key foundation and the driving force for breakthrough

and evolution in the semiconductor industry. It has been serving the industry and

academia marvelously since its evolution but as we continue to move in sub nanometer

regime we have to deal with the darker side of the Moore’s law [27] which comes

from its fulfillment as by allowing nearly exponential increase in the device integration

density and performance, it faces some major road blocks due to intrinsic physical

limitation of the devices. One of the major barriers that the CMOS devices face at

nanometer scale is increasing process parameter variations. Due to limitations of the

fabrication process ( e.g. sub-wavelength lithography and etching) and variation in

the number of the dopants in the channel of short channel devices, device parameters

such as length (L), width (W), oxide thickness (Tox), threshold voltage (VT ) etc suffer

large variations.

A 50 GHz microprocessor with 2 billion logic transistors using 22 nm drawn chan-

nel length (7 nm of effective channel length) devices operating at 250mV supply

voltage by first half of the next decade - this is the expected roadmap should the

scaling trends continue. Can we achieve this - maybe, maybe not!. To be able to even

dream about such a processing system, it is important to be able to do predictive

design. The old and easy way of designing for worst-case will not be adequate. It

is important to accept that process variation is a reality and that one has to design

circuits, with variations in mind.

Variations in the device parameters both systematic and random lead to loss in the

parametric yield. The circuit yield loss due to process and device parameter variations

has never been so critical and is getting some serious attention now. Moore’s law
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enabled us to integrate large memory blocks with logic circuits on a single chip,but this

is also true that performance of the on-chip memory limits the speed and performance

of the overall system. The key limiting factor is the increasing bit line capacitance,

which results in increased time to develop bit line differential voltage.

For fast and power efficient memory design, both time and signal swing on the

bit lines needs to be minimized. A sense amplifier is used to generate full rail out-

put voltage using minimum bitline differential voltage or current making fast read

write possible in memories. Designing high performance and robust sense amplifier is

extremely important for designing SRAMS but with increasing parameter variations

developing a robust, reliable and fast sense amplifier is becoming a task in itself.

With each shrinking node it is important to accurately model the impact of device

parameter variations at the circuit level and develop process tolerant design for sense

amplifiers with improved performance and reduced impact of the leakage to reduce

the gap between the CPUs and memories.

Proceeding in this direction we came up with the novel process variation tolerant

Self Compensation Sense Amplifier (SSA) design on 32nm technology node on con-

ventional bulk type CMOS technology. It demands only few additional transistors

which compensates for the process variations since the single failing sense amplifier

implicates the whole memory, there is one sense amplifier across each the column of

the SRAM (128X8) so additional few transistors doesn’t hurt the area overhead that

much.

The trade off on added transistors in each sense amplifier in a column of SRAM

to an improvement in the yield is definitely a solution to a problem. The fact that

CMOS technology is at the cross-road today. Oxide scaling has halted due to gate

leakage problem [40]. Changing oxide material provides an alternative solution for

only 1-2 generations of technology [40]. Power density has become so high that power

supply voltage must be scaled down which will require scaling of VT which aggravates
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the sub-threshold leakage problem. The ITRS predicts that static power dissipation

per device will surpass the dynamic power dissipation by 2008.To reduce leakage

while improving performance, ITRS predicts using strained silicon channels,ultra-thin

single-gate FETs, and metallic gates. Two types of structure and materials changes

must be considered. First, there are structures that allow a shorter channel length to

be fabricated. Second, there are materials that enable higher performance for a given

channel length. For the past few decades, new materials like strained silicon is used by

IBM, Intel [17]. SOI based device structures incorporated by AMD, Honeywell, IBM

has resulted in exponential growth of performance and integration density of silicon

CMOS technology. One common condition for each innovation is that it was built

on the advantages of existing ideas, without compromising the previous. Historically,

the switch from metal gates to polysilicon gates, the switch from diffusion to ion

implantation,and the incorporation of silicides were major changes that were difficult

to implement, even though the transistor structure itself was little changed. Ultra

thin body SOI FETs employ very thin silicon body to achieve better control of the

channel by the gate and hence also gets advantage of reduced leakage and short

channel effects [36].

Use of intrinsic or lightly doped body reduces threshold voltage (VT ) variations

due to random dopant fluctuations and enhances the mobility of careers in the chan-

nel region and improvement in ON current. Researchers are exploring alternative

technologies and this is a known notion that better scalability can be achieved by in-

troduction of multiple gates at the other side of the body of each transistor resulting in

a Double Gate (DG) SOI structure. CMOS device with a second gate for each device

are referred to as 4-Terminal devices. In such technologies, one can choose to connect

the back and front gates together or to control them separately while designing a

circuit resulting in new circuit styles [36]. Connected back and front gates provides

a simple way of mapping circuits designed in single gate technologies to double gates
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technologies. 3 Terminal configurations provide more ON current for transistors as

well. On the other hand, independent gate control (4 Terminal configurations) can

be used for designing new circuit styles.Back gate bias can be used to dynamically

adjust the threshold voltage of the front gate to tune the power and performance

requirement of a circuit. It can also be used for merging parallel transistors, the na-

ture of these devices can be exploited to come up with new circuit styles. The three

alternatives that are most widely considered for conventional MOSFET replacement

are: planar device, vertical (pillar) device and the FinFETs .

The FinFET technology is the most promising among the alternatives to conven-

tional bulk CMOS [15]. FinFETs increase drive current through larger gate area

while they reduce sub-threshold leakage through reduced channel doping. FinFETs

have been successfully fabricated by multiple laboratories [20].A FinFET is a vertical

double gate device that is promising below 45nm technology [20, 34].A double-gate

FinFET structure offers additional configuration possibilities such as single channel

or double-channel, whereby two gates create their own independent channels or one

common channel. Similarly, the gates may be symmetric or asymmetric in terms of

gate capacitance and current drive [19, 22].FinFETs increase drive current through

larger gate area while they reduce sub-threshold leakage through reduced channel

doping.A FinFET is a vertical double gate device that is promising below 45nm tech-

nology [50] motivated by these considerations and feasibility for ease of manufacture

and implementation, we chose FinFET to solve the yield problem. We propose Inde-

pendent Gate Self Compensation Sense Amplifier Design (IGSSA), which is process

variation tolerant self compensating FinFET based sense amplifier design.
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CHAPTER 1

INTRODUCTION

This document is organized as follows, Chapter 1 presents the background and

builds up the motivation on the basis of road-maps and where the trend of semicon-

ductor industry is leading to. It point us to present known problems and possible

solutions to those. It builds up the motivation as to why we chose the sense amplifier

to solve the problem of process variations. Chapter 2 describes different types of

sense amplifiers. Chapter 3 describes the impact of process variations and mismatch

effects on the sense amplifier causing problems with yield and performance. Chapter-

4 we propose the new self compensation sense amplifier (SSA) technique on one of the

current mode latch type sense amplifier gives a comparison of this circuit with the ex-

isting current latch type sense amplifier. In Chapter 5 we describe the modeling of the

double gate cmos its promises and challenges. Chapter 6 describes the Independent

Gate Self Compensation Sense Amplifier design (IGSSA) on FinFET technology and

we compare it with the SSA and nominal latch type sense amplifier. We generated

our models through TCAD simulation from synopsys [47], and from DAMOCLES

[25] 3D device simulation and used those in our sense amplifier depicting significant

improvement in yield, performance and pvt variations.

1.1 Benefits of MOSFET Scaling

Significant advances in silicon integrated circuit(IC) technology led by the con-

tinued miniaturized of the MOS transistor has enabled us increase in the computing

power. The rapid progress in the semiconductor industry has been driven by im-
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proved circuit performance and functionality together with reduced manufacturing

costs. Since the 1960s MOS transistor have been shrinking 30% every three years, as

predicted by Moore’s law [27] shown in Figure 1.1.

Figure 1.1. Moore’s law of scaling the number of transistors on a chip has been
increasing exponentially.

While Moore’s law only describes the rate of increase in transistor density, re-

duction of the physical MOS device dimensions has improved both circuit speed and

density in the following ways:

a) Circuit operational frequency increases with a reduction in gate length, LG as

Fmax 1/LG; allowing faster circuits. b) Chip area decreases LG
2 enabling higher

density and cheaper ICs. c) Switching power density is constant allowing lower power

per function or more circuits at the same power.

Device scaling has been a relatively straightforward affair thus far, but physical

limits are fast being approached, and new materials and device structures are needed

to continue scaling trends.
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1.2 Issues in Planar Bulk-Si MOSFET Scaling

The planar bulk-silicon MOSFET has been the workhorse of the semiconductor

industry over the last 40 years. However the scaling of the bulk MOSFETs becomes

increasing difficult for the gate lengths below 20nm (sub-45nm half pitch technology

node). As the gate length is reduced, the capacitive coupling of the channel potential

to source and drain increase relative to the gate, leading to significantly degraded

short channel effects (SCE). This manifests itself as a) increased off-state leakage b)

threshold voltage ( VT ) roll-off,i.e. smaller VT shorter gate lengths, and c) reduction

of VT with increasing drain bias due to a modulation of the source-channel potential

barrier by the drain voltage, also called drain induced barrier lowering (DIBL).

In order to maintain the relatively strong gate control of the channel poten-

tial in bulk devices, various technological improvements such as ultra-thin gate di-

electrics,ultra shallow source/drain junctions, halo implant and advance channel dopant

profile engineering techniques such as super steep retrograde well have been necessary.

Each of these technologies is now approaching fundamental limitations which may in

turn, limit further scaling of device dimensions. Significant scaling difficulties have

been encountered already and are expected to worsen in the next few years as the

gate length (LG) is projected to scale to well below 32nm [40]

With transistor scaling Vdd is also scaled down, However the threshold voltage,

VT cannot be scaled down significantly since the source/drain sub threshold leakage

current Isdleak increase sharply with decreased VT and it is important to keep Isdleak

within tolerable limits because Idsat depends on (Vdd-VT ), the scaling of Vdd tends to

reduce Idsat and hence make it difficult to improve the transistor. Short-channel effects

(SCEs) such as drain induced barrier lowering [DIBL] are becoming very difficult to

control as transistors are continuously scaled. This tends to lead to increased leakage

current and reduces Idsat and hence reduced transistor speed. Channel doping is

becoming very large (both to set the threshold voltage correctly and to control SCEs),
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leading to degradation in the mobility and to increased leakage current due to band

to band tunneling.

Scaling of the gate dielectric equivalent thickness, Tox is limited by gate leakage

current. With scaling, random dopant fluctuations and line edge roughness can cause

significant statistical variation in VT and effective channel length Leff [32].

In MOS devices, the gate dielectric thickness is single most important device di-

mension to enable device scaling and has also been the most aggressively scaled one.

A thin gate dielectric increase capacitive coupling from gate to the channel, thereby

reducing the source/drain influence on the channel. A larger gate capacitance also

leads to a larger inversion charge density, or increased ON-state drive current. How-

ever gate dielectrics are already so thin that quantum mechanical direct tunneling

through them results in significant gate leakage current below 20Å, The use of al-

ternative high - K dielectric material can provide a small effective oxide thickness to

maintain adequate gate control needed for LG scaling while proving a large physical

barrier to gate-oxide tunneling reducing gate leakage. Reduction of the source/drain

extension junction depth directly decreases capacitive coupling of the drain to the

channel, thus also reduces drain-induced short channel effect. Shallow source/drain

to the channel formation required that low-energy ion implantation together with

low thermal budget dopant activation to minimize dopant diffusion. The downside to

this is the increase in the parasitic series resistance of the source and drain extension

regions.

Raised source and drain technologies can alleviate the extrinsic resistance prob-

lem while maintaining shallow junctions. The contact resistance associated with the

metallic contact to the source and drain regions is another source for parasitic series

resistance and is expected to dominate total parasitic resistance of the device. In order

to scale bulk-Si transistors, heavy body doping is also necessary to eliminate leak-

age path far from the gate dielectric interface and to increase back-gate (substrate)
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control of the body. For sub-100 nm gate length devices, a strong halo implant is

generally used to suppress sub-surface leakage but this tends to increase the average

channel doping in small LG devices. However high channel doping concentration, re-

duce carrier mobility due to impurity scattering and increase transverse electric field,

increase sub threshold slope, enhances band-to-band tunneling leakage and increase

depletion and junction capacitances. These factors combine to significantly degrade

devices performance.

In summary from device design point of view, in order to achieve good electrostatic

integrity or good control of short channel effects (SCE), the gate dielectric thickness,

Tox, the source,drain junction depth, Xj and the channel depletion depth XDEP , needs

to be scaled down. The scale length for a bulk device λBULK , is an indication of how

short LG can be made before the SCE are excessive and is expressed in equation 1.1.

λBULK = 0.1(TOXXJX2
DEP )1/3 (1.1)

1.3 Process Induced Variations

As the scale gets smaller, consistency of process control also decreases [39]. The

semiconductor process cannot be perfectly controlled, which leads to statistical vari-

ation of many process variables. Several types of process variations can occur: line

to line, batch to batch, wafer-to-wafer, die-to-die and intra die (within chip) [8, 30].

As per Sani Nassif [30] as shown in 1.2, there is 10% is VT and 40% mismatch

in the Leff.

If we extrapolate this graph as shown in 1.3for another 10 yrs,we see mismatch

effect get even worse within a next decade.

Control of critical dimensions (CDs) in device and interconnects such as LG in

devices continues to be a difficult challenge, as the physical gate length is consider-

ably smaller than the lithography printed line width [18, 8, 30]. In order to limit
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Figure 1.2. Device and interconnect (intra-die) variation trends.

Figure 1.3. Technology Parameter Variations for next 12 yrs.
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the impact of variations, the semiconductor industry is actually using slightly larger

physical gate lengths than those specified in the ITRS, especially for memory appli-

cations .The slowing down on LG scaling is now unavoidable in the future since the

control of process variable does not track the scaling of minimum feature sizes. This is

particular important for memory arrays, because if the desired degree of dimensional

control were not achievable, design margins would need to be relaxed to achieve large

functional memory arrays. While advanced process control can minimize systematic

shifts in the CD the role of random variation arising from statistical dopant fluctu-

ations and line edge roughness is expected to increase, so that variation will impact

the overall power dissipation and performance [3]. Therefore, statistical treatment of

random variation of circuits (statistical design) is becoming increasingly important.

New transistor structures should have better immunity to process variations, and

devices with tunable VT are beneficial to counter any systematic shifts in transistor

characteristics.

1.4 Thin-body MOSFETs

Figure 1.4 shows the transistor structures such as Ultra Thin Body (UTB) and

the Double Gate MOSFET. They eliminate sub-surface leakage paths and extend

scalability of Si CMOS technology. As the bulk MOSFET is scaled down, the control

of short channel effects become increasingly difficult leading to increased sub threshold

leakage current.This is because the source/drain influence over the channel potential

becomes significant relative to the gate control. From equation 1.1, it is clear that if

Xj and XDEP can be reduced aggressively, it is possible to scale the MOSFET down

to every small LG. This is precisely what is done in the case of ultra-thin body (UTB)

silicon on insulator (SOI) devices [5, 4]. Where Xj and XDEP are physically limited

to the thickness of an ultra-thin silicon film equation 1.1 qualitatively described the

scaling behavior of UTB thus the scalability of MOS devices can be improved by using
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(a) Bulk-Si MOSFET (b) UTB-MOSFET

(c) DG MOSFET

Figure 1.4. Advanced transistor structures such as the UTB and the DG-MOSFET
eliminate sub-surface leakage paths

an ultra thin silicon body such that all point in the silicon channel are close enough

to the gate and well controlled by it, thereby eliminating sub-surface leakage currents

[21]. The conventional fully depleted SOI MOSFET (with a thick body) is known

to have worse short channel effects than bulk MOSFETs and partially depleted SOI

MOSFETs [43]. Also partially depleted SOI (PDSOI) have the floating body effects

[26].

Double Gate MOSFET has the best scalability, down to sub-10nm LG devices

[44, 16, 11]. The improved scalability of thin body devices makes them attractive

for future generations of CMOS technology and so they have been included in the

international technology road map for semiconductors (ITRS) [40] .
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UTB devices can be implemented in a straightforward manner as planar single

gate fully depleted silicon on insulator (FDSOI) devices. While the planar double-

gate device has been demonstrated [53], the fabrication of a planar double gate FET

with a bottom gate that is aligned to the top gate and source/drain regions imposes

numerous process challenges. Among all DG structures proposed so far, the FinFET

is the most manufacturable because it eliminates the need for the bottom gate by

rotating the channel by 90 and placing the gate electrodes on the two sidewall of the

silicon fin [1, 34, 20, 15] Independent gate FinFETs in which the front and back-gate

electrodes can be independently biased have been demonstrated as well [22, 37]. The

front gate can be used to switch the device, whereas the back gate can be used to set

the correct VT . The back gate is as strong as front gate, and therefore the devices

have degraded sub-threshold slope and transconductance due to capacitive division

of the channel potential between the two gates [37].

Figure 1.5 shows the top view of the FinFET devices. In this figure,Leff =

physical gate length, Lgate = drawn gate length, Tsi = silcon thickness, Toxf and Toxb

are the front gate and back gate oxide thickness

Figure 1.5. Structure of the FinFET. Leff = physical gate length, Lgate = drawn
gate length, Tsi = silcon thickness, Toxf and Toxb are the front gate and back gate
oxide thickness.
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In this research work we have modeled the FinFET devices, it is explained elab-

orately in chapter-3. The planar FDSOI MOEFET can be extended to include a

conducting electrode underneath the buried oxide (BOX) layer to form a second gate

to control the channel from below. This ground plane or the back gate act as a sec-

ond gate to shield the field penetration from the drain into the channel, and improves

SCE. In a way it serve the role of the retrograde doping in a bulk MOSFET, by

raising the body backside potential and by terminating drain electric fields shown in

Figure 1.6

Figure 1.6. Double Gate FinFET.

In addition the, BOX eliminates source/drain-to-substrate depletion capacitance.

In order to prevent electric field penetration through the BOX, the BOX layer should

be thin. Another benefit of a thin BOX is the ”back gate effect’ similar to the

”body effect’ in bulk SI devices wherein the VT can be tuned by the back-gate volt-

age . However the sub threshold slope and the transconductance are degraded due

to capacitive division of the channel potential between the front and the back-gate

potentials. While the early FinFET devices were fabricated on SOI wafer, FinFETs

on bulk-Si wafers have been demonstrated as well [1, 34, 20, 15] .
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Bulk FinFETs have the advantages of being potentially cheaper and can be easily

integrated with conventional bulk-Si CMOS technology. Bulk FinFETs combine the

benefits of good leakage and short channel effects controlled together with a cheaper

manufacturing process, making them attractive for high density memory applications.

1.5 Motivation and Road Maps

1.5.1 Motivation

As CMOS technology progresses rapidly towards the nanometer regime,the in-

tegration level, performance and fabrication cost increase tremendously. Thus only

high performance system chips design that integrate CPU (Central Processing Unit),

DSP (Digital Signal Processing) processors or multimedia processors,memories,logic

circuits analog circuits etc can afford the sub nanometer technology. Embedded mem-

ory has become a key component of any system and more practical than ever for at

least two reasons. 1. Data processing and storage are the most primitive and basic

components of the digital circuits. 2. Memory bandwidth is now one of the most

serious bottlenecks to system performance.

The speed gap between the MPUs and memory devices has been increased in

the past decade and we have already hit the ’memory wall’ [54]. The MPU speed

has improved by a factor of 4 to 20 in the past decade. On the other hand, in

spite of the exponential progress in storage capacity, minimum access time for each

quadrupled storage capacity has improved only by a factor of two. Memory cell is

the fundamental component of a memory system. The most important objective in

the design of the memory cell is to minimize the size of the cell, which decreases the

cost per bit, access time and power dissipation of the memory systems. Caches and

other on chip memories requires very fast access time and also at the same time easy

implementation. Both of these objectives are satisfied by SRAM Figure 1.7 shows

the basic 6T SRAM cell.
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Figure 1.7. Basic 6T SRAM Cell.

Since the size of the memory cell needs to be small most of the transistors are

maintained close to minimum feature size of the process technology.One of the most

critical circuits in the periphery of a memory is the sense amplifiers (SA). These

circuits are strongly related to read access time of a memory, as they are used to

retrieve the stored data in the memory array by amplifying small signal variations

on the bit-line. The design of fast low-power and robust sense amplifier circuits is a

challenge, due to the fact that in modern memory designs bit-lines exhibit significant

capacitance,since there is higher number of cells per bit line, which sets limits in the

sensing speed and introduces extra signal delays. Smaller the sense voltage, the faster

the memory will be. The sense voltage also reduces power dissipation as the bit line

can be restored to their default state as soon as a value has been sense and latched.

If the sense transistors are perfectly matched, the lower limit on the sense voltage

is set by the various noise margins and can be as low as 60-70 mV [38]. However
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if the transistor mismatch the sense voltage must be increased to account for such

mismatches, otherwise yield will suffer as the sense amplifier may show incorrect

values [41]

Predicting and improving the design quality in terms of performance, yield and

robustness are a central concern in designing sense amplifiers for use in SRAM cells.

In a large embedded SRAM there may be many thousands of sense amplifiers and

each one of them will have a very high yield requirement for the product to have a

good overall yield in simple words ”All units of one chip have to work in order to

make the whole chip work”.

A single failing sense amplifier implicates the whole memory but as CMOS IC

technology becomes more and more advanced and Moore’s law still governing the

semiconductor industry, the control of process variations and manufacturing uncer-

tainty becomes more and more critical. The sense amplifier performance degradation

due to process variation and resulting yield loss is more pronounced than before [38].

It is important for the designer to be able to understand mismatch effects, since sens-

ing should be done as fast as possible, subject to sensitivity constraints imposed by

the parameter variations inherent in fabrication processes.

For low power application it is always desired to have low bit line differential

voltage. The differential sense amplifiers are in general designed to be electrically and

topologically symmetrical. Despite careful designing, small variations in parameters

like threshold voltage and effective channel length due to process operating conditions

[41, 41], lead to an input offset which affects the performance of the sense amplifier.

The analysis of these variations provides a good understanding of the impact of device

mismatches in differential sense amplifier. [42]. To guarantee reliability of the sense

amplifiers either we have to come up with new process variation tolerant circuit styles,

techniques or the replacement of conventional bulk type MOSFET and this is specially

required for those circuits which rely on symmetry or matched transistors like sense
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amplifier, srams, latches [7, 10, 29, 48] There has been lot of work done on similar

lines which we will be discussing more in detail in chapter -2.

1.5.2 Road Maps

To understand how Moore’s law has run into trouble at 45 nm, we need to un-

derstand something about how CMOS transistors got evolved fulfilling Moore’s law

at every technology node. In an ironic twist of fate, the new CMOS transistor tech-

nology actually hearkens back to the earliest transistor implementations. When we

make a layout through any VLSI design tools, we use the Mead-Conway design Rule:

”Poly over silicon” produces a transistor The Mead-Conway rule was actually short-

hand for a layer of poly-Si over an implied silicon dioxide insulator over a doped,

over a Si substrate with implied source and drain, leads to a transistor being pro-

duced from photolithographic masks generated by VLSI CAD tool. Gorden Moore

was trotted out to publicly proclaim: ”The implementation of high-k and metal gate

materials marks the biggest changes in transistor technology since the introduction of

polysilicon gate transistors in the late 1960s”

Here Hafnium metal is used in the so-called high-k gate oxide layer, not the metal

gate itself. The key issues at each technology node defined are usually the same.Each

of these issues comes into play with different level of significance at each SIA node. In

fact, it turn out that Moore’s law has died many little deaths. The 2007 International

Technology Roadmap for Semiconductors (ITRS) makes projections covering the next

15 years, through 2022 [40]. For the transistors these projections include the scaling

of key parameters such as gate length, gate dielectric thickness, transistor leakage

and drain saturation current, transistor speed performance, etc. In addition the

ITRS assesses the main challenges to scaling MOSFETs, as well as the key technology

innovations needed to overcome these challenges. The key target of ITRS scaling is to

continue the historic 17 percent per year improvement in transistor performance, i.e.
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in CV/I. This is important because the transistor performance improvement is critical

components of the overall chip speed increase the scaling. The current mainstream

transistor is planar bulk (or partially depleted silicon on insulator [PDSOI] which

scales similarly to planar bulk).In order to help deal with scaling issues and to enable

the targeted 17 percent per year transistor performance improvement while holding

the leakage current to reasonable levels, a number of key technological innovations

are necessary. The first of these is enhanced mobility due to applied strain, which was

implemented in production in 2004, and has been continuously improved since then.

This mobility enhancement allows increased Idsat and is critical enabler for the desired

transistor performance improvement. To continue to meet the targeted performance

improvement, it is essential that the enhanced mobility be maintained as transistors

are scaled. High K metal gate has already been incorporated, with AMD moved

to Ultra thin body on 65nm technology. SIA road-map puts FinFETs as the prime

candidate for post-planar CMOS device. FinFETs typically have un-doped, fully

depleted channels because of the structure the electrostatic integrity and hence the

ability to control SCEs are generally superior to planar bulk transistors. Furthermore

the mobility should be superior because of the lack of doping. Finally because VT

is set by the work function of metal gate electrode random dopant fluctuations do

not impact the statistical variability of VT for these transistor types. Because of

all these advantages the multiple-gate transistor will significantly improve scaling.

Because SCEs increase notably, clearly the multiple gate transistor scales the best,

while the Ultra thin Body Fully Depleted SOI scales in between the planar bulk and

the multiple gates, which improve the electrostatic integrity and hence the control of

SCEs with scaling. ITRS projects the ultimate MOSFET (for sub-15nm gate length

transistors in the Road-map) is the multiple-gate transistors. Multiple parallel paths

are envisioned, where for several years two or even all the three transistors types

coexist.
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CHAPTER 2

SENSE AMPLIFIERS

Sense Amplifier is the most critical circuits in the periphery of CMOS memory

[23]. The performance of SA’s strongly affects both memory access time, and overall

memory power dissipation. As with other ICs today, CMOS memories are required

to increase speed, improve capacity and maintain low power dissipation. These ob-

jectives are somewhat conflicting when it comes to sense amplifier in memories. With

increased memory capacity usually comes increased bit line parasitic capacitance.

This increased bit-line capacitance in turn slows down voltage sensing and makes

bit-line capacitance swings energy expensive resulting in slower more energy hungry

memories. Due to their great importance in memory performance sense amplifiers

have become a very large class of circuits. Their main function is to sense or detect

stored data from a read-selected memory cell. Figure 2.1 shows a typical position of

sense amplifier in a column of memory cells.

Sense amplifiers are used to translate small differential voltage to a full logic signal

that can be further used by digital logic. The need for increased memory capacity,

higher speed, and lower power consumption has defined a new operating environment

for future sense amplifiers. Below are the some of the effects of increased memory

capacity and decreased supply voltage.

1) Increase in the number of memory cells per bit-line increases while as increase in

the length of the bit-line increases

2) Decreasing memory-cell area to integrate more memory on a single chip reduces the

current that is driving the now heavily loaded bit-line. This coupled with increased
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Figure 2.1. Sense Amplifier across a rows of SRAM cells.
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causes an even smaller voltage swing on the bit-line.

3) Decreased supply voltage results in smaller noise margins which in turn affect sense

amplifier reliability. Shekhar Borkar from Intel suggests

”Sense amplifier are not tractable in future and will go away but not in memories”

Projections from the National Technology Roadmap for Semiconductors call for

operating voltage of CMOS logic to drop by about a factor of 0.7 to 0.8 per generation

to keep power dissipation in check. For the sense amplifier and other support circuit

to work properly at reduced voltage requires scaling of the VT of those devices. For

a differential amplifier to sense correctly has a current mirror type of configurations

as shown in Figure 2.2.

Figure 2.2. Differential Senseamplifier

For Sense amplifier to work in differential mode, M0, M1 and M2 should operate

in Saturation Mode. The tail current should be Iref=IDS = k
2

W
L

(VGS-VT )2 For M0,

M1 and M2 to remain in Saturation Vdd > VTn (in 0.18 um, a 0.25 V margin is

typical)

At VDD < 1V scaling VT leads to off current problems, such low VT devices are

not feasible in order to meet power requirements and reduce standby power post 45
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nm technologies alternatively different sensing circuits may be developed for lower

voltage operation.

Since SRAM requires balancing act between delay, area and power consumption.

The circuit styles for the decoders and the sense amps,transistor sizing of these cir-

cuits,interconnect sizing and partitioning of the SRAM array can all be used as a

tradeoff. With technology scaling the transistor mismatch doesn’t scale, thus the

delay of the output mux doesn’t scale. The nonscaling of threshold mismatches with

process scaling causes the signal swings in the bit line and data lines also not to

scale, leading to an increase in the gate delay of the SRAM across technology gen-

erations. This delay increase for most of the SRAM organization can be mitigated

by using more hierarchical designs for the bitline and data line path and using offset

compensations scheme in sense amplifiers.

The sense amplifiers that are used in SRAM are mainly differential in nature. The

differential sense amplifiers can distinguish smaller signals from noise due to their high

common mode rejection ratio providing good reliability.

The differential sense amplifier is designed to be electrically balanced symmetric

circuits. However due to process variations all the devices in the circuit does not

have the same characteristics and this leads to variation in the design parameters

if the circuit. The results of such variation in the device parameters are an offset

voltage or current. An offset is a voltage or current difference which appears between

the two output nodes, when an identical input voltage or bias circuit is applied at

the inputs. This offset might affect the sensing delay or even the functionality of

the circuit depending on the extent of process variation on each device. Therefore

determining the worst case possibility of variation in each circuit is highly significant

in the design of a sense amplifier.The offset voltage can be calculated as a function

of the threshold voltages and dimensions of the transistors in the sense amplifier as

shown in equation 2.1.
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VOS = f(VT , ID,Wi, Li) (2.1)

The following section discusses and analyzes different type of differential sense

amplifier circuits. Especially latch type implementation due to their capability of

positive feedback they are extensively used in memories [23, 52] This configuration

makes possible to restore data in DRAM cells simply with increase in differential gain

of the sense amplifier and reduces switching times and delays in the sense circuits

thus has the benefit of fast speed and low power consumption, which makes them hot

favorite for caches and low power embedded SRAMs [52, 23].

Figure 2.3. Sense Amplifier Operation.

To act as a sense amplifier, the cross coupled latch is initialized in its metastable

point by equalizing bit-line and bit-linebar. Once a voltage difference is built over the

two.The sense amplifier is enabled by raising ’SEN’ [52]. Depending on the value of

bit-line and bit-linebar the cross coupled pair traverses to one of its stable operation

point as shown in the Figure 2.3.

Offset is particular and inherent to differential sense amplifiers,and it is the voltage

or current difference which appears between the two output node potentials or be-

tween the two output currents,when an identical voltage or bias current is applied to

the two inputs. The offset voltage or current has to be counteracted by the memory-

cell generated signal for correct sense operations. Theoretically, differential sense

amplifiers are electrically balanced symmetrical circuits. In practical implementa-
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tions both the transistors and the passive elements have slight parameters differences

inspite of the utmost design efforts to assure their symmetrization. These parameter

difference and the resulting sense amplifier offsets are distributed spatially through-

out the chips,wafer and lots and the signal generated by a memory cell has to act

against and neutralize the appearing maximum offset before the sensing of the data

signal could start. Thus, the offset limits the sensitivity i.e. the minimum data signal

amplitude that the circuit can detect and it delays the effective start of data sensing.

To improve both sensitivity and sensing speed the offsets should be kept small by

minimizing the imbalances between the halves of differential sense circuit. Imbal-

ances may results from the effects of process variations and can be mapped to non

uniform variations in threshold voltage VT gain factors, gain factors, load resistances,

load capacitance which can be mapped to gate length variations.

2.1 Voltage Mode Sense Amplifier
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Figure 2.4. Voltage Latch Type Sense Amplifier.

In conventional memories, voltage-mode sense amplifier is used that present a high

input impedance to the bit-lines. This allows the sense amplifier to provide a high
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voltage gain with the use of simple circuits .The sense amplifier are designed with op-

erating margins that constrain the minimum and maximum input signal amplitudes.

The minimum input signal amplitude is necessary to provide reliable operation of

the sense amplifier. To meet this constraint, a sufficient differential voltage in the

bit-lines is allowed to develop before enabling the sense amplifier. The Voltage mode

sense-amplifier also operates in two phases, in the pre-charge phase, the bit-lines and

the sense-amp output are pre-charged high. SEN is pulled high for sensing the bit-

lines. The voltage mode sense amplifier requires differential discharging of the bit-line

capacitance for sensing the voltage difference. It reacts after a certain amount of dif-

ferential voltage is developed on the bit-line capacitance. Hence the time to develop

a certain differential voltage to appear depends on the bit-line capacitance. Hence

the time to develop a certain differential voltage will increase with the increase in

the capacitance (i.e. number of cells in the column). The time to develop a certain

differential voltage (for proper operation of sense-amplifier) will increase because of

the increased leakage current and this problem will worsen with the coming tech-

nology generation. This section describes two differential voltage sense amplifiers

cross-coupled inverter latch Figure 2.4 and 2.5 shows the typical Voltage Latch

Type Sense Amplifier. Figure 2.6 shows the timing scheme of VLSA

2.2 Current Mode Sense Amplifier

In advanced memories the capacitances of the bitline is increasing due to tech-

nology scaling and the increasing number of cells attached to the column as shown

in Figure 2.1. In such memories voltage mode cannot keep up to their performance

thereby leading to the need for faster sensing techniques that are not affected by the

bitline capacitance. Current mode sense amplifier are applied to reduce the sense cir-

cuit delays as they provide low common input/output impedences. The small input

impendence presented to the bit-lines result in reduced voltage swings,cross-talk and

22



�
�
�
�

�
�
�
�

����

����

������

����

��������������

������������������

WLEN

M2 M4

ColSel
BL

SAEN

SOB
SO

BLB

SAEN

M1 M3

M6M5

M7 M8

Figure 2.5. Voltage Mode Latch Type Sense Amplifier

Precharge

SAEN

PRE

BL

BLB

ColSel

Time

Figure 2.6. Timing Scheme of VLSA.
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substrate currents. The current mode sense amplifier converts and amplifies a small

current difference into CMOS voltage levels. This section describe different type

of current mode sense amplifier and due to its inherent advantage of performance

over voltage mode sense amplifier, we will demonstrate the compensation technique

on the current mode sense amplifier both on Bulk CMOS technology and FinFET

technology.

2.2.1 Current-Mirror Sense Amplifier (Conventional)

The traditional form of the primitive current amplifier is the current mirror sense

amplifier. In the current-mirror amplifier if the devices M1 and M2 are identical,

then the bitline or input current I1 is the same as the readline or output current Io,

because the gate-source voltage VGS is common for both devices M1 and M2. If M1

and M2 differ only in their aspect ratios W/L otherwise they are identical. As shown

in the Figure 2.7 [24] In this circuit, the gates of the two nMOS transistor M2 and

�
�
�
�

����

SAEN

BL

M2 M4

M1 M3 M8 M6

M7

BLB

M9

M5

Figure 2.7. Conventional Mode Current Sense Amplifier

M9 are connected to the bit-lines. The substrate terminals are tied to their respective

source terminals in order to remove substrate-bias effect. Notice that each bit-line

is represented by a large parasitic capacitance. The nMOS transistor M5 is a long
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channel device which acts as a current source for both branches, and is controlled by

a SAEN signal. Before beginning of a ”read” operation, the two bit lines (columns)

are pulled up for equalization. The SAEN signal is low during this phase, so that

the nMOS transistor M5 remains off. Since both M2 and M9 conduct source node is

pulled up, and the output node of the amplifier also goes high. Therefore the output

of the inverter is at a logic low level initially. Once a memory cell is selected for the

”read” operation, the voltage on one of the complementary bit line will start to drop

slightly. At the same time as the row selection signal, the SAEN signal driving M5

is also turned on.if the stored data on the selected SRAM cell forces the bit line to

decrease slightly, transistor M5 turns off, and the output voltage of the differential

amplifier drop immediately.

2.2.2 Current Controlled Latch Sense Amplifier

Many sense amplifiers are activated simultaneously to achieve wide bandwidth,

the current of sense amplifiers increases. Therefore power reduction in sense amplifiers

is important to reduce the total power consumed in the memory. A current mirror

sense amplifier is shown in Figure 2.7. It is easy to control and the speed of a current-

mirror sense amplifier can be easily accelerated by increasing the operating current.

Therefore memories frequently use this type of sense amplifier However, the static

current flows through the pull down MOSFET connected to ground as long as SAEN

is activated. To realize low-power and automatic power-saving scheme Kobayashi et

all [23] came up with current controlled latch sense-amplifier shown in Figure 2.8.

In the read cycle , the data of memory cell appear as a small difference on the

bit lines (BL and BLBAR) The gate of two NMOS’s (M5 and M6) are connected to

bit-line and bit-line bar. The current flow through M1 and M3 controls the serially

connected latch circuit. A small difference between the current through M5 and M6

converts to a large output voltage, shown in Figure refLatch3.
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Figure 2.8. Voltage Mode Current Latch Type Sense Amplifier.

Operation Latch Type Sense Amplifier (LSA) starts by turning on M9. After

LSA is activated, the operation current (Isa) flows during the transition of output

nodes. The current flow only during switching of inverters that compose the latch

sense amplifier. The operating of LSA is shown in figures. It is difficult to control

the latch timing, because of early latching often causes errors. A latch sense amplifier

must start the sensing operation after the bit line are separated enough to sense, can

be understood more clearly with the Figure 2.9 [52].
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Figure 2.9. Working of Voltage Mode Current Latch Type Sense Amplifier.
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2.2.3 Clamped Bitline Sense Amplifier

Another type of current mode sense amplifier is Clamped Bitline Sense Ampli-

fier(CBLSA),It is another current mode type of sense amplifier, which amplifies a

small differential current between the bit-lines into a full rail-to-rail voltage. It re-

quires an extra timing signal (equalize signal) for its operation. This presents a two

fold problem: one is the routing overhead required for the equalize signal and the

other is the generation of timing pulse for sensing every data bit. The CBLSA circuit

has no provision for stopping the flow of static current, and hence dissipates power,

even when there is no data activity on the interconnect. The CBLSA has an equalize

transistor that keeps the voltage at outputs of the cross-coupled inverter at half-Vdd.

This presents a problem to the succeeding buffer, as the input voltage at half-Vdd

will lead to continuous static power dissipation during the equalize period. Shown in

Figure 2.10
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Figure 2.10. Schematic of Clamped Bitline Latch Type Sense Amplifier.

The bit-lines in CBLSA are connected to a low impedance node, which is away

from the sense amplifier output. The transistors M1, M2 and M3, M4 form the cross-
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coupled inverters. Transistors M5 and M6 provide the low impedance termination.

During the precharge phase transistor M8 equalizes the output node of the sense

amplifier and the output nodes are precharged to Vdd. Transistors M5 and M6

are off during that time thereby preventing any static currents . During the read

operation, transistors M5 and M6 are on and once a sufficient differential current is

developed the SAEN signal is pulled low to enable the sense amplifier. The cross

coupled inverter pair is enabled which converting and amplifying the difference in the

currents in the two legs of the sense amplifier circuits.

The working on CBLSA is shown in Figure 2.11
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CHAPTER 3

PROCESS VARIATIONS

Parameter variations have become increasingly important for microprocessor de-

sign.It occur for multiple reasons, including non-uniform ion implantation or photo

resist exposure, or lack of uniformity in oxidation, diffusion or polishing. Variation

between the production lines can occur because of different mask, stepper and the

optics at each line. There can be variation between each exposed field on a wafer be-

cause of slight changes in the distance between wafers and the optics due to steppers

or the wafer not being perfectly flat. Varying illumination and lens aberrations can

lead to a large intra-field variation of effective channel length and speed. The process

variation can cause the delays of wires and gates within a chip to vary.As a result,

some chip may also operate correctly at slower speeds. In order to understand that

we need to classify the type of variation and components of variations. The process

variations in semiconductor devices can be classified into environmental variations

and physical variations.

Environmental variation includes variation in power supply voltage,noise coupling

among nets and temperature.Changes in supply voltage accounts for IR drop and

Package Noise.Physical Variation are caused by processing and mask imperfections

and reliability-related degradation.

As geometries shrink, the impact of process variations on interconnect reliability

is expected to increase. Varying etch rates can modify the profile of wire cross-

section. At the same time, the thickness of the metallic and dielectric layers can

change over the die surface. As the degree of control of processing methods and
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techniques are not able to keep up with the degree of scaling in feature size, the

manufacturing methods introduce variations. These variations are permanent and

result from limitation in the fabrication process. As technology scales, the features size

reduces thereby requiring a sophisticated fabrication process. All of these variations

effects speed, power (primarily leakage) and yield.

3.1 Trends in Variability

The semiconductor process cannot be perfectly controlled, which leads to statisti-

cal variation of many process variables. Several types of process variations can occur:

line to line, batch to batch, wafer-to-wafer, die-to-die and intra die. There can be

variation between each exposed field on a wafer, because of slight changes in the dis-

tance between wafers and the optics, due to steppers or the wafer not being perfectly

flat. Varying illumination and lens aberrations can lead to a large intra-field variation

of effective channel length and speed.

Inter die variation is the difference in the value of a parameter across nominally

identical die (whether those die are fabricated on same wafer, on different wafers or

in different lots) and is typically accounted for in circuit design as a shift in the mean

of some parameter values (e.g. VT or wire width) equally across all devices or struc-

tures on any one chip. For purposes of circuit design it is usually assumed that each

contribution or component in the inter die variation is due to different physical and

independent sources, and it is usually sufficient to lump these contribution together

into single effective die-to-die variation component with a single mean and variance

and are modeled using worst case corners, substantially all of existing practical and

theoretical work on yield analysis and maximization techniques are focused on intra-

die variation. Intra die variation or within die variation occurs spatially within a die,

which are random and due to the semiconductor manufacturing process. These varia-

tions are classified into three categories which include devices variation, interconnect
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variation and dynamic variations. Device variations are fluctuation in MOS parame-

ters and include effective gate length (Leff ), Threshold voltage (VT ) Thickness of the

gate oxide (TOX) , and the drain/source region parasitic resistance (Rdsw), effective

gate length variation could arise due to masking difference and threshold variations

occur due to dopant variations.

3.2 Source of Local Variation

The source affecting device and interconnect variation on a die are: Random

Dopant fluctuations, Sub-Wavelength Lithography, Increased use of Chemical Me-

chanical Polishing Gate oxide thickness is critical but generally well controlled pa-

rameter variation tends to occur from one wafer to another.

As we scale the transistor further,physics based random variation in the threshold

voltage due to random dopant fluctuations, and in the channel length due to line edge

roughness, add random components of variability to the systematic layout silicon just

mentioned. These variations play a significant part in sub threshold leakage and other

important device performance metrics. This uncertainty is expected to continue as

we scale our silicon devices to the level of atomic scaling, with oxides a few atoms

thick and channels with countable numbers of dopant atoms. The rise in the inherent

systematic and random non uniformity will have effects that are far-reaching in every

aspect of design, manufacturing, test and overall reliability ”The law of large number

no longer applies” . It’s obvious that no single solution or advancement can solve

this problem of process variation. We have to come up with ways with new devices

and process variation tolerant technique both at the circuit level and architecture to

solve our problem of process variations VT is adjusted to desired level by implanting

dopants (threshold implant) in the channel.

Every technology generated, transistor area reduces by half and number of dopant

atoms in channel decreases exponentially.

31



Dopant fluctuation results in: two transistors next to each other will have different

VT from one another due to random placement and concentration fluctuation of the

dopant atoms.

Sub wavelength photolithography is the primary reason for line edge roughness

and causes of variation in length and width. Lithography variation is one reason why

poly is oriented in one direction and dummy cells are used in SRAM arrays.

For short channel MOSFET, variation in Leff can cause further variation in VT

due to drain source charge sharing, halo implants are used these days to minimize

this effect. As circuit designers we do not want parametric yield to have large impact

on the final yield. The dilemma which we face today: Process and device variation

data/model is not available until sufficient silicon has been processed most of the

circuit blocks are designed before this data is available, so we need to come up with

process variation tolerant techniques both at the architecture level and circuit level,

there has been lot of efforts in the past [7, 48]. For dealing with these variations,

numerous process technology, circuit and architectural solution have been proposed

to combat variation. Designer verifies the circuit functionality and performance under

the extreme conditions.

3.3 Traditional Approach: Worst Case Design

Traditionally, 5 different bins are defined by two letter acronyms describing the

relative performance characteristics (T=typical, F= fast, S= slow) of nmos and pmos

devices. There are differential spice models for fast, slow and typical nmos and pmos

devices and they are generated in accordance with the maximum and minimum values

of the saturation currents and threshold voltage of the transistors found on a sample

chip. Using these models, the circuit/chip is simulated on spice.

MOS transistor dimensions and the threshold voltage are among the key param-

eters that control CMOS transistor’s drive current. MOS circuits become extremely
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sensitive to length and threshold voltage as we tend to see minimum length transistors

and reduced supply voltage. The variation in substrate doping concentration and gate

oxide thickness can be accounted for variation in the threshold voltage. Charge cen-

ters near the oxide-substrate interface, fixed oxide charge and surface state densities

- are likely to be dominant mismatch source for carrier mobility. Random variations

in deposition, etching, annealing temperature and chemical mechanical planarization

etc contribute to channel length variation. Dependence of transistor current is in-

creasingly non-linear to channel length. A 10 % transistor gate length variation can

translate to as much as variation of -15 % to + 25% in gate delay [30, 8]. There-

fore parameter variations introduce asymmetry in the sense amplifiers which in turn

reduces yield and performance.

3.4 Previous Work to Combat Process Variations

There has been commendable and different techniques proposed in the past to

compensate for process variations.

Some of the work is even now implemented on sub nanometer technology node.

Variation Tolerant Design can come under two category, first would be reducing

SOURCE of variation and second should be reducing EFFECTS of variation at the

time of design and reducing effects of variation in post silicon DRAM designers have

proposed several offset compensation schemes [2]. Circuits which rely heavily of

symmetry of the devices like latches,flipflops, SRAMs, Ring oscillators requires special

attention and there has some recent proposed technique ”A process variation tolerant

technique for sub-70nm latches and flip-flops” [14].

3.4.1 Supply Voltage

Changes in supply voltage cause transistor subthreshold leakage variation across

the die, which results in uneven voltage distribution and temperature hotspots. Adap-
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tive Vdd has been shown to be useful to reduce impact of parameter variations. Even

though it helps increasing yield in high frequency bins, adaptive Vdd does not solve

the problem of having voltage droops ∆Vdd. One well-known technique is using

on-die decoupling capacitors. If an appropriate number of decoupling capacitors are

placed on die,∆Vdd can be reduced by 50However, decoupling capacitors have a cost

in silicon area. Moreover, gate oxide leakage is a problem in sub-90nm technologies,

and the layout of decoupling capacitors tends to increase the gate oxide area.

3.4.2 Temperature

Increasing temperatures affect processor design in many different ways. For in-

stance, the cooling system of a processor is targeted to support a peak temperature,

even though the processor spends most of the time running at much lower temper-

atures. In order to reduce dynamic power dissipation, chip designers have relied on

scaling down the supply voltage. To counteract the negative effect of a lower supply

voltage on gate delay, the threshold voltage is also scaled down along with the sup-

ply voltage. However, lowering threshold voltage has a significant impact on leakage

current. Moreover, it also impacts temperature, due to the exponential relationship

between leakage current and temperature. The most common technique to control

temperature, already implemented in several commercial processors, is throttling.

When the temperature goes beyond the maximum limit, the operating frequency is

decreased. This is followed by a decrease in Vcc, which helps reducing power con-

sumption and temperature. Once the processor cools down, the process is reversed.

However, chip temperature has a very high timing constant and thus, these thermal

emergencies have a significant impact on performance.

In case of sense amplifier there has been some work done and proposed in the

recent past. These techniques try to compensate the mismatch by either precharging

the bit-lines or the two output to different initial values. However in Voltage Mode
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Sense Amplifiers for SRAM, bit-line and the outputs are pre charged and equalized

to VDD [31, 52].These techniques can not be directly applied to voltage mode sense

Amplifier in SRAM,

Kaushik Roy and Hamid Mahmoodi [28], proposed ”Leakage current based stabi-

lization scheme for Robust Sense amplifier design for yield enhancement in Nano-Scale

SRAM”. In this work they developed a method to analyze the probability of access

failure in SRAM array (due to random VT variation in transistors) by jointly consid-

ering variations in cell and sense amplifiers. By introducing two PMOS transistors,

PL-R and PR-L (collectively called the PMOS stabilizers), between the inputs ) i.e.

the bit-lines BL and BLB) and the drain of the driver transistors N1 and N2.

Kaushik Roy et all [29], have also proposed robust sense amplifier using indepen-

dent gate in symmetric and asymmetric double gate devices for sub-50-nm technolo-

gies. The double gate devices can be design in different structures, namely

1) symmetric devices with same gate material ( e.g near-midgap metals) and oxide

thickness for the front and back gate (SymDG) [19] asymmetric device with different

front and back oxide thickness (AsymOxDG) [51] and 3) asymmetric devices with

material of different work function ( e.g, n+ poly and p+ poly) in the front and the

back gate (AsymWfDG) [22].

In this work they have design symmetric and asymmetric devices (both Asy-

mOxDG and AsymWfDG) with 50-nm gate length in the 2D device simulator MEDICI

[46].

Here they have shown directly translated current latch type sense amplifier and

directly translated voltage latch sense amplifier with the independent gate technique

they are proposing robust sense amplifier but this does not prove helpful incase the

double gate MOSFET has process variations the threshold voltage is insensitive to

random Dopant fluctuations incase of FinFETs since the FinFETs have undoped

channel but the absolute value of VT increases significantly with variations body
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thickness and this is a consequence of two effects. First as the silicon body gets

thinner, the two gates get closer and have better control over the short channel,

reducing short channel effect and VT roll-off. So simply translating sense amplifier

from symmetric and asymmetric double gate devices would definitely an advantage

in terms of performance, short channel effects and process variation, but still it will

require some added circuit styles or logic to compensate further on process variations

due to parameter variations. As FinFET do have process variation due to parameteric

variations.

Joyce Yeung and Hamid Mahmoodi proposed ”Robust Sense Amplifier under Ran-

dom Dopant Fluctuation in CMOS Technologies” they have considered three design

options They are (A) Transistor sizing, (B) Double VT assignment and (C) Multiple

finger layout structure.

As transistor sizing can directly determine the threshold variation due to random

dopant effect. It also affects the trip point mismatch and current mismatch because

both of them as functions of VT variation. Upsizing the NMOS of the inverter lower

its trip voltage, which makes the cross-coupled inverters flip at a lower output voltage

when there is more output differential developed. This improves the probability of

correct operation.

Double VT assignment is a technology that provides optionally low or high thresh-

old voltage for each transistor. It was originally developed for leakage power reduction.

The impact of high or low VT on VT variation is negligible, however similar to sizing,

VT affects the amount of current that flows through a transistor.

Multiple finger structure is also commonly used technique in layout design to

implement large transistors because it provides better aspect ratio and less area for

layout of large transistors. Since VT variation is inversely proportional to the size of a

transistor, overall effect of variability of multiple-fingered transistor was found to be

canceled out due to the parallel structure in multiple finger layouts (the finger that
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shifts to high VT cancels the effect of the finger that shifts to low VT and vice-versa)

due to the property of randomness in dopant fluctuation.

It is expected that multiple finger structure does not impact the robustness of the

sense amplifiers. But, all of the above techniques are not a solution to a problem. We

need to come up with ways that improves the robustness i.e. yield of sense amplifiers

and for the fixed yield the scheme should result in faster sensing.

3.5 Impact of Mismatch on Sense Amplifiers

MOS transistor dimensions and threshold voltage are among the key parameters

that control CMOS transistor’s drive current. MOS circuits become extremely sen-

sitive to length and threshold voltage as we tend to use minimum length transistors

and reduced supply voltage. The variation in substrate doping concentration and gate

oxide thickness can be accounted for variation in threshold voltage. Charge centers

near the oxide-substrate, fixed oxide charge and surface state densities - are likely to

be the dominant mismatch sources for carrier mobility. Mentioned above parameter

variations introduce asymmetry in the sense amplifiers, which in turn reduces yield

and performance. In case of process variation VOS can be computed by partial sum

of derivatives of mismatches in VT , Width and Length as in equation 3.1

VOS =
∑

(
δf

δVt,i

∆Vt,i +
δf

δWi

δWi∆Wi +
δf

δLi

∆Li) (3.1)

Transistor mismatch effect vary considerably between different regions(weak in-

version, linear, saturation etc.) of operation. Various mismatch models are studied in

the past and the drain current model is found to be less complex and fairly accurate

for mismatch analysis. The current mismatch model for linear and saturation regions

of operation are given by equations 3.2 and 3.3 below [6].
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Linear Region:

∆ID

ID

∼= ∆β

β
− ∆VT (VSB)

VGS − VT (VSB)− (1/2)VDS

− ∆θeff (VGS − VT (VSB))

1 + θeff(VGS − VT (VSB))

+
∆VDS

VDS

+
∆VGS

VGS − VT (VSB)− (1/2)VDS

(3.2)

Saturation Region :

∆ID

ID

∼= ∆β

β
− 2∆VT (VSB)

VGS − VT (VSB)

− ∆θeff (VGS − VT (VSB))

1 + θeff (VGS − VT (VSB))

+
2∆VGS

VGS − VT (VSB)
+

λ∆VDS

1 + λVDS

(3.3)

Where θeff is empirical effective mobility reduction factor and is function of β

and source and drain resistances. Other parameters in equation 3.2 and 3.3 have

usual meanings. From the above equations it can be seen that the variation in drain

current is strong function of variations of β, VT , θeff and drain to source voltages.

In the present work we have considered the effect of variation in VT and Leff on

the performance of the different latch type of sense amplifier due to their extensive

use in memory applications. Figure 2.4 and Figure 2.8 shows latch type voltage

sense amplifier and latch type current sense amplifier. As mentioned earlier latch

type implementation has benefit of positive feedback which results in faster and sta-

ble sensing, thus used extensively in memories. There is also a low point of that

due to positive feedback and high gain these sense amplifiers quickly produce the

output, however that also makes them very sensitive to parameter variations. Figure

2.10 shows the schematic Clamped Bitline Sense Amplifier (CBLSA).Its low input

impedance makes it suitable for large memories, we will comparing all the three in

terms of performance, yield and transistor mismatch effect on yield and performance.
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All simulations were run on 90 nm cadence generic pdf design kit available to us

as a part of university program. [9]

All the Sense amplifier delay variation comparison with bit-line differential voltage

is shown in Figure 3.1 for the four types of sense amplifiers As bit-line differential

voltage plays a crucial role in terms of sensing delay. Ideally all the sense amplifier

should start sensing or should have minimum sense delay with bit-line differential

voltage. From the Figure 3.1 we see that the sensing delay decreases with increase in
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Figure 3.1. Sense Delay versus Differential Voltage for different type of Sense Am-
plifier

differential voltage. CBLSA is found to be fastest among the fours type of sense am-

plifier. However rate of decrease of delay and increase in differential voltage is highest

in voltage sense amplifier and lowest in current mode latch type sense amplifier.

3.5.1 Experimental Setup

The sense amplifier is said to be perfectly balanced or symmetric when all the

transistor parameters on the left-hand side are equal to parameters on the right-hand

side. It is said to be vertically matched when the W/L’s of NMOS and PMOS have

been ratioed so that the sense amplifier has equal pull-up and pull-down capabil-
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ity. For mismatch analysis we consider only the variation in the channel length and

threshold voltage of the transistors. Our analysis assumes that a particular parameter

x( where x is either L,W or VT of the device) is varied by decreasing the values of

that parameters for the NMOS transistors in the left hand side of the sense ampli-

fiers by ∆x and increasing it by the same amount for corresponding right hand side

transistors.

We assume perfect matching in PMOS transistors and vice-versa. In all sense

amplifiers total width of all the transistors is kept nearly same for fair comparison.

Simulations are carried out for 90nm CMOS technology from cadence generic pdk

available to us [9]and 32nm using CMOS technology, using Predictive Technology

Model [49] and considering nominal values of NMOS and PMOS transistor threshold

voltages at 0.26B (VTn) and -0.303V (VTp) respectively. A nominal output load ca-

pacitance of 5fF is assumed at sense amplifier output nodes. The circuits are tested

to read both logic low and logic high from consecutive memory locations. 200fF bit

line capacitance is assumed for all the simulations. Power supply voltage is assumed

to be at 1.1 V. The timing scheme used in all of the sense amplifier is shown in Figure

3.2.

The wordline enable (WLEN) and column select (ColSel) are activated for a short

duration the sensing operation. Both the signals are deactivated after sufficient dif-

ferential voltage/current is developed between the bit-lines. This has the effect of

isolating bitline capacitances from the sense amplifier. This kind of timing scheme

helps in reducing signal swing on bitlines, thereby reducing power dissipation.

3.5.2 Results

Extensive simulations are carried out to check the effect of mismatch in VTn and

channel length. For all mismatch analysis time interval between WLEN and sense

amplifier enable (SAEN) is kept constant at 110ps in all the four circuits under
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Figure 3.2. Sense Amplifier timing scheme

consideration. The sense amplifier delay was measured as the time taken for the

sense amplifier’s output to reach 90% of the full-rail voltage after the SAEN signal

goes high.

a) Mismatch in NMOS Parameters:

For the circuit shown in Figure 2.4, VTn of M1 is decreased and that of M3 is increased

by same amount. For circuits shown in Figure 2.5, 2.8 and 2.10, the VTn of M1

and M5 is decreased while that of M3 and M6 is increased. Similar analysis is carried

out to study channel length mismatch in NMOS transistors. For all the simulations

we assume that the SRAM cell content logic is high, since this gives the worst case

results for the above setup.

The results of delay versus NMOS threshold voltage mismatch are shown in Figure

3.3

It is found that, Current Latch-Type Voltage Mode Sense Amplifier is extremely

sensitive to VT mismatch.

From Figure 3.4 we find that sensing delay increase with the mismatch.
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Figure 3.3. Sense Amplifier delay vs NMOS VT mismatch
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Figure 3.4. Sense Amplifier delay vs NMOS channel length mismatch
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b) Mismatch in PMOS Parameters:

Parameter mismatch of PMOS transistors does not drastically affect performance of

the sense amplifier. The reason being, when the sense amplifier is activated NMOS

transistors immediately start operating in saturation region, however incase of PMOS

transistors operate either in cut-off or conduct in deep triode region. Mismatch anal-

ysis is carried out by decreasing VTp of M2 and increasing VTp of M4 by the same

amount. Similar variations in channel length are imposed to understand the effect of

length mismatch. simulation results for threshold voltage and length mismatch are

shown in Figure 3.5 and 3.6
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Figure 3.5. Sense Amplifier delay vs PMOS VT mismatch

Simulation results shows that except CBLSA, all latch sense amplifier are less

sensitive to PMOS parameters.

c) Yield Analysis

For successful read operation, the sense amplifier should be activated only after

development of sufficiently large bit-line differential voltage or current. However to

decrease the overall sensing delay, it is desirable to activate the sense amplifier as early

as possible. Sense amplifier may fail to read correctly due to its asymmetry, which
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Figure 3.6. Sense Amplifier delay vs PMOS channel length mismatch

is a result of manufacturing process variations. Yield analysis is carried out using

Monte-Carlo simulations on HSPICE [45]. Threshold voltage and channel length of

all the NMOS transistors (M1 and M3 in Latch Type1, M1, M3,M5 and M6 in the

remaining circuits) is randomly varied simultaneously. All Monte-Carlo simulations

incorporate 3σ variation where σ is standard deviation of the parameter. The yield

analysis results are shown in Figure 3.7
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Figure 3.7. Yield vs bit-line differential voltage
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Yield measurement for a sample size of 10000.Yield is calculated using the follow-

ing simple equation 3.4

Y ield =
numberofcorrectdecisions

numberofsamples = 10000
.100% (3.4)

Hence, Impact of process variations induced transistor mismatch on different sense

amplifiers configurations is presented. It was found that as the mismatch increases

sensing delay also increases, eventually leading to failure of the sense amplifier. Per-

formance of the sense amplifier is worst affected by mismatch in NMOS transistor

threshold voltage and channel length whereas performance degradation due to PMOS

parameter variations is found to be marginal.

3.5.3 Characterization of mismatch in MOS transistor

The characterization of mismatch in MOS transistor is complex and require further

understandng.The drain current matching not only depends on the device dimensions

but also on the operating point. So in the section the focus is on developing a

characterization methodology which determines the mismatch in drain current over

operating region. The simulation of the effects of mismatch on an arbitrary analog

circuit requires a statistical model which can predict drain current mismatch at a

wide range of gate,drain and bulk bias points. It is the goal of this work to determine

if the current mismatch of a pair of transistors at any bias can be represented solely

by mismatches in four standard MOS parameters : VT0, γ,β and θ.

For a MOSFET the current voltage relation in linear or triode region is given by

3.5

ID =
β

1 + θ(VGS − VT )
(VGS − VT )VDS − 1

2
V 2

DS (3.5)
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where ID is the drain current, β is the conductance constant, VT is threshold

voltage and VDS is the drain to source voltage. The statistically significant parameters

of this model are VT and β conductance. The mismatch in VT accounts for the

variations in the different charge quantities and on the gate oxide capacitance per

unit area are measured as mismatch in β. As both VT and β are dependent on the

gate oxide capacitance per unit area and we need to measure the correlation between

the mismatches in VT and β.

If the MOS transistors are operating in the saturation region in the analog circuits.

The measured mismatch in VT and β to the saturation region, where the drain current

is given by ??

ID =
1

2

β

1 + θ(VGS − VT )
(VGS − VT )2eqn : sat) (3.6)

With

VT = VT0 + γ(

√
VSB + 2φF −

√
2φF ) (3.7)

and 2φF is the surface potential.

Assuming the mismatch between the transistors in VT , γ , β and θ are ∆VT0,∆

γ,∆β and ∆θ respectively and that gate and drain are mismatched by ∆VGS and

∆VDS respectively.

Expanding 3.5 and 3.9 in taylor series around the nominal bias point and neglect-

ing higher order difference term, the percent drain current mismatch, in the linear

region is given by 3.8

∆ID

ID

=
−∆VT

VGS − VT

+
∆VGS

VGS − VT

+
∆β

β
+

∆VDS

VDS

− (VGS − VT )∆θ

1 + θ(VGS − VT )
(3.8)
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and in the saturation region

∆ID

ID

=
−2∆VT

VGS − VT

+
2∆VGS

VGS − VT

+
∆β

β
+

∆VDS

VDS

− (VGS − VT )∆θ

1 + θ(VGS − VT )
(3.9)

If a comparison of drain current mismatch of 3.8 from 3.9. The device in

saturation has almost twice the drain mismatches due to VT mismatch.

If we consider both device n-channel and p-channel both operating in same opera-

tion modes then ideally due to difference in fabrication incase of p-channel mosfet, as

the threshold adjust implant is very shallow, a considerable portion of the implanted

ions in retained in the gate oxide. The presence of these impurity atoms in the ox-

ide may cause a degradation in the capacitance matching of the p-channel devices

as compared to n-channel ones. Thus devices which use a compensating threshold

adjust implant have a higher mismatch in threshold voltage due to differential doping

occurring at the surface. This is the major reason for significantly larger mismatch

noticed in the p-channel devices as compared to n-channel transistor operating in

same operating mode [35]

Now, incase of sense amplifier the parameter mismatch of PMOS transistor does

not drastically affect performance of the sense amplifier. The reason being, when the

sense amplifier is activated NMOS transistor immediately start operating in satura-

tion region, however the PMOS transistor either in cut-off or conduct in deep triode

region. As shown by equations above he mismatch effect are practically doubled when

the device is in saturation mode.
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CHAPTER 4

SELF COMPENSATION SENSE AMPLIFIER DESIGN
ON BULK CMOS TECHNOLOGY

As concluded in chapter-3 performance of the sense amplifier is worst affected

by mismatch in the NMOS transistor threshold voltage and channel length whereas

performance degradation due to PMOS parameter variation is found to be marginal.

In this work, our objective is to address the problem of yield loss due to process

variation by redesigning the latch type sense amplifier with compensation circuit to

compensate for process variations. To illustrate our technique we will use simple

current mode latch type sense amplifier shown in Figure 4.1 (simplified for illus-

tration purpose) though this technique is applicable to any of the sense amplifier.

4.1 Operation

Suppose, we apply a small voltage offset at the bit line inputs such that VBLBAR

< VBL and then turn on SEN. During the pre-charge phase, the output nodes O1

and O2 are set to VDD by the precharge transistors. The sense enable signal SEN

starts the sensing operation by turning on M4, The nodes O1 and O2 are discharged

by current I1 and I2 respectively. However, since VBLBAR < VBL, I2 > I1 hence O2

discharges faster than O1.

The delay up to this point is relatively small. As the nodes O1 and O2 begin to

discharge, O2 will reach (VDD-VT ) sooner than O1. This in turn will turn on PMOS

M5 earlier than PMOS M6. Turning on of M5 charges O1 and counters the effect
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Figure 4.1. Current Latch Voltage Mode Sense Amplifier scheme

of I1. This further increases the voltage difference between O1 and O2. The cross

coupled inverter action amplifies the voltage difference. The strong positive feedback

enhances the output voltage difference starting from the initial voltage difference VBL

- VBLBAR. The total time until the sense amplifier latches the data is termed as

sensing delay. Correct operation of sense amplifier is shown in Figure 4.2

Figure 4.2. Sense Amplifier Correct Operation

4.2 Impact of Process Variations

It can be seen that the offset voltage depends on the mismatch of device parame-

ters, and only for Vin larger than this offset the sensing circuit flips in right direction.

Applied to certain number of samples this effect is referred to as parametric yield.
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As already mentioned initially yield is an important characteristic of sense amplifiers

as single failing amplifier implicates whole of memory. We performed statistical in-

vestigation by monte carlo simulations on variations of sense transistor parameters

like VT mismatch and Leff variations between the two differential transistors of a

nominal LSA. Figure shows the effect on Yield on nominal sense amplifier without

mismatch, comparing it with nominal LSA with VT variation in the transistor. Plot

shows three is considerable yield loss with VT variation on the nominal type sense

amplifier. We wish to fix this problem of yield loss due to process variation in present

sense amplifier design by our Self Compensation Sense Amplifier design (SSA)

4.3 The Self Compensation Sense Amplifier (SSA) Technique

The proposed sense amplifier design is shown in Figure 4.3. Wrapper script is

written for the sense amplifier with minimum transistor size for minimum sense delay

and minimum capacitance size and maximum Yield. In the SSA design, M1 and M2

are the primary sense transistors. Like in the previous scenario, let us assume that

M1 suffers from a lower VT than M2. We have added shadow transistors M6 and M5

for M1 and M2. When SEN is turned on, M5 is driven by node voltage at capacitance

C2 while M6 is driven voltage at capacitance C1 through transistors M13 and M14

Ordinarily, M5 and M6 are identical transistors. Let us for a moment assume that is

the case even under process variation . If the voltage at C2 can be set higher than

C1 appropriately, then the effect of VT mismatch at M1 and M2 can be offset by

pumping more current through M6 and less through M5. Include Current I5 and I6

for compensation transistor equation along with I1 and I2.

4.3.1 The Operation of SSA

The proposed sense amplifier has two added phases for training the capacitances.

In the first training phase, the capacitors are fully discharged by asserting CAP DIS.
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Figure 4.3. Self Compensation Sense Amplifier Technique

Next, CAP DIS is turned off,and FET TRAIN is turned on after a pre-charge while

VBLBAR = VBL. Since M1 conducts more current that charges C2, while M2 has less

current that charges C1, C2 will develop a higher voltage than C1. The capacitors C1

and C2 along with FET TRAIN pulse width is chosen such that voltage across the

capacitance ¿ VT of the shadow transistors M5 and M6. We have a wrapper script

in which transistors are sized with minimum sense delay and maximum yield. The

capacitances are sized of the value for minimum sense delay and maximum yield. The

operation of SSA amplifier is shown in Figure 4.4 with 4V of 50 mV.

FET training transistor plays a crucial role, in mitigating the mismatch due to

process variation between the sense transistors. The training transistor M10 and

M11 are responsible for charging the capacitor C2 and C1 according to VT , W and L

variation in M1 and M2. To demonstrate this we ran Self Compensation Amplifier

(SSA) with no FET training phase which again causes the incorrect sensing of the

sense amplifier due to VT mismatch in transistor M1 and M2 as shown in Figure 4.5

.
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Figure 4.4. Self Compensation Sense Amplifier Correct Operation

Figure 4.5. Self Compensation Sense Amplifier Without FET TRAIN Phase

Once we introduce VT variation between the two differential transistors M1 and

M2 and introduce M2 with an high VT , so as in nominal case due to VT mismatch

variation I2 should be lower than the I1 and result in incorrect sensing but once

FET TRAIN is turned on, C2 enables the compensation due to mismatch through

the shadow transistor M5 as shown in Figure above even with VT variation of 50mV.

The sense amplifier performs correct sensing.

It is understood that all the added devices will have normal process variation.

Therefore, the results can only be verified by statistical simulation. We ran Monte

Carlo simulations and for each of 10000 samples for each voltage difference. The

results shows on SSA that number of working sense amplifier without any VT variation

is almost the same with VT variations on the sense amplifier with the compensation

scheme shown for 180nm to 32nn in Figure 4.6 and 4.7
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Figure 4.6. Yield vs Bitline Differential Voltage on 180nm

4.3.2 Impact of PVT Variation

As per Sani Nassif [30] in the present technologies it is expected to have 40%

variation in the effective channel length From the road map there is prediction of 12%

variations in the supply voltage which cause transistor subthreshold leakage variation

across the die and results in uneven voltage distribution also causing temperature

hotspots. There is a need to understand change in supply voltage and statistical

simulation across 10000 samples of sense amplifier. With 12% variation in supply

voltage there is considerable yield loss as significant difference in yield in nominal

latch type sense amplifier compared to self compensation type sense amplifier shown

in Figure 4.8

Increasing temperature affect processor design in many different ways.In order

to reduce dynamic power dissipation chip designers have relied on scaling down the

supply voltage.To counteract the negative effect of a lower supply voltage on gate

delay, the threshold voltage is also scaled down along with the supply voltage. Lower

threshold voltage impacts temperature. On normal instances temperature varies 25oC

to 125oC, though in nominal latch type sense amplifier and self compensation sense

amplifier. It doesn’t impacts the yield significantly as shown in Figure 4.9
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Figure 4.7. Yield vs Bitline Differential Voltage on 32nm

Figure 4.8. Yield vs Bitline Differential Voltage on 32nm with Vdd variation

4.3.3 Quantifying Area increase with Power and Delay

Self compensation technique come with the area overhead of eight more transistor

from nominal latch type sense amplifier. The area of nominal self compensation sense

amplifier on TSMC18rf at 47um2 has an average power as 6.35mW and Sense delay

from SEN is 20ps.

Self Compensation Sense Amplifier, has an area increase of 78.4um2, average

power with almost double area overhead, power is 16.9mW and sense delay from

cap dis signal is 112ps.
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Figure 4.9. Yield vs Bitline Differential Voltage on 32nm with Temp variation of
125oC

SRAM of the size 128X8 with Area 51345um2 would have one sense amplifier

for each sram column, so ideally area increase shouldn’t be that much. SRAM with

nominal LSA has area of 51721um2 and SRAM with SSA has area of 51972um2.

% increase in area is only 0.48%. So to deal with process variation which ensures

robustness and reliability in case of sram and sense amplifiers increase in area with

this much percentage should be tolerable.
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Figure 4.10. Layout of nominal latch type sense amplifier

Figure 4.11. Layout of self compensation latch type sense amplifier
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CHAPTER 5

MODELING OF DOUBLE GATE CMOS-DGFET

5.1 Device Scaling

Significant work has been done in deriving optimal transistor scaling methodolo-

gies. In order to maintain predictable circuit behavior, much more must be considered

beyond the actual resizing of the devices. The following list summarizes one approach

to the scaling of MOSFETs and the corresponding circuit parameters. Each param-

eter change presented here is related to the scaling of channel length.

1. The channel width should scale proportional to length in order to allow for overall

circuit design scaling to occur without drastic changes in circuit performance. Much

of circuit design focuses on the width-to-length ratio and if certain ratios are made

unavailable due to scaling, then the approach to circuit design itself may need to be

reconsidered.

2. The electric field from drain to source should remain constant (not scale) in order

to maintain a channel behavior consistent with existing device models. Increasing the

drain-to-source field will likely result in velocity saturation and eventually ballistic

carrier transport across the channel. Increasing fields may also lead to drain induced

barrier lowering (DIBL)

3. To maintain the constant electric field just mentioned, the drain-to-source voltage

(VDS) must also scale down with length.

4. The gate oxide thickness (TOX) should scale down with length to ensure sufficient

control over the energy barrier within the channel. Losing control of the energy bar-

rier would most likely result in high subthreshold currents which lead to excess power
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dissipation.

5. The doping density of the channel must increase inversely with length to maintain

a reasonable number of dopants in the decreasing channel area. Each of the items just

presented can be controlled in the design and fabrication steps of circuit production.

Unfortunately, there is one critical component that is somewhat beyond design con-

trol and which limits our ability to scale many of the other parameters just discussed

which is ”threshold voltage” (VT ). The value of VT may be expressed as in equation

5.1.

VT≈Vfb + 2ψB +

√
2εsiqNa(2ψB + Vbs)

COX

(5.1)

where Vfb is the flat-band voltage, ψB is the difference between the fermi level and

the intrinsic level within the channel, εsi is the silicon permittivity, q is the electron

charge, Na is the acceptor density, VBS is the substrate reverse-bias voltage and

COX is the oxide capacitance per area . The expression is approximate because the

threshold value differs somewhat in the various regions of device operation. While

equation shows that some manipulation of the threshold voltage is possible, when

the device performance trade-offs are considered (i.e. transconductance, etc.), some

control of the threshold is forfeited voluntarily. It is possible to scale VDS and TOX

with considerable consistency, VT tends to deviate from the desired value as length

scales down beyond 100 nm.

5.2 Scaling Issues

5.2.1 Short-Channel Effects

It has been shown that optimal circuit performance (i.e. speed, noise immunity,

etc.) is achieved when the ratio VT /VDS < 0.3. As a result, the supply voltage, VDS,

may not be scaled exactly with length. The inability to scale VDS as needed results
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in an increased electric field from drain to source leading to short-channel effects like

velocity saturation and DIBL. DIBL occurs in short-channel MOSFETs when the

depletion region around the drain expands due to an increased drain bias voltage. As

the size of the depletion region becomes comparable in size to the channel length, the

field lines extending from the drain effectively begin to compete with the gate field

lines for channel control resulting in additional lowering of the energy barrier. This

barrier lowering is typically modeled as a down-shift in VT .

While a lower VT is what was wanted in the first place, now it is a side-effect (not

controlled), accompanied by increased sub threshold current and undesired power

dissipation. Much work has been done to reverse the short-channel effects. Most of

this work revolves around varying the doping profile of the channel.

One doping profile known to suppress DIBL is the”superhalo”, shown in Figure

5.1 . In this configuration, the field lines from the drain terminate on an increased

number of dopants local to the drain area. This has the effect of decreasing the drain’s

depletion region extension into the channel, restoring a more symmetric electric po-

tential throughout the channel area.

5.2.2 Mobility Degradation

A second problem associated with device scaling is the effect that decreasing TOX

has on carrier mobility within the channel.

TOX is decreased in order to increase the electric field from the gate to the chan-

nel, which is a critical part of MOSFET operation as this field controls the energy

barrier allowing finite currents to flow through the device. As the gate-to-channel

field strength is increased, the channel carriers are attracted closer to the channel

surface. Imperfections at the Si - SiO2 interface result in a new scattering mechanism

(surface scattering), which lowers the effective mobility of carriers in the channel.

In addition to mobility degradation, thinner oxides result in electron tunneling from
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Figure 5.1. The Superhalo doping profile has been shown to suppress DIBL through
restoring some of the symmetry in electric potential that is lost as increased drain volt-
age tends to increase the drain depletion region and field lines. (Y. Taur - March/May
2002)

the gate to the channel, manifested as increased gate leakage current at lower gate

voltages. An alternative to scaling the thickness of the oxide layer is to generate

the gate-to-channel insulation from a material with a dielectric constant greater than

that of SiO2. While this is possible, it has been difficult to find another insulating

material that interfaces as well with the silicon channel. In addition to increased sur-

face scattering, interface imperfections can result in interface charge trapping, which

may permanently alter the characteristics of the device. This is why SiO2 has been

an integral part of MOSFET design for so long.

While increasing the dielectric constant increases the electric field from the gate to

the channel without the increased gate leakage of a thinner oxide, it does not remedy

the degradation of mobility in the channel.

One solution to the decreasing carrier mobility is the”strained-silicon” approach

shown in Figure 5.2. in which germanium atoms are scattered throughout the silicon

lattice in the channel area. As the silicon atoms attach to the larger germanium

atoms, the distance between atoms, and consequently between potential collisions,
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are increased. By increasing the spacing between collisions, the average velocity, and

hence the mobility, of the carriers is also increased.

Figure 5.2. Increasing mobility through straining the silicon lattice. As the silicon
attaches to the larger germanium atoms, the spacing between atoms and therefore
between potential collisions is increased.L. Geppert - Oct 2002

5.2.3 Dopant-Density Fluctuations

A third problem, resulting from the necessary increase in channel doping is in-

creased fluctuation in the actual doping density of the channel. Even with densities

greater than 1020/cm3, submicron channel dimensions only allow for tens of dopants

in a given channel volume. As dopant numbers are so few in smaller devices, any dif-

ference in the existing number of dopants may result in significantly different device

behavior. Additionally, while dopants have traditionally been an important part of

the MOSFET process, they tend to add to any mobility degradation by creating im-

perfections within the lattice structure. Channels void of dopants provide a smoother

path for charge carriers.

5.3 Proposed Structures

While much has been done to counteract the major side-effects of device scaling,

there is still a limit to how far the conventional MOSFET structure can go. As a

result, much new architecture has been proposed [53, 12, 15], with the most widely

accepted solution being a double-gated structure. shown in Figure 5.3
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Figure 5.3. Planar, Vertical and FinFET Architectures (M.Chan et all 2003).
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The double-gate approach provides increased control over the channel energy bar-

rier, even in the case of thicker gate oxides. Double gates also allow for improved

threshold control through engineering the gate material work functions. For exam-

ple, manipulating the ratio of Si to Ge in a SiGe gate allows for continuous control

of the gate work function and hence VT .Finally, the fact that most double-gate ar-

chitectures are built upon an SOI (silicon on insulator) foundation removes the body

(substrate) terminal and as a result, the body effect.

These three characteristics alone remedy,to some degree, the increased subthresh-

old current and gate leakage currents of the short-channeled conventional device, the

difficulties in scaling VT and VDS and the body effect, which aggravates timing is-

sues in multi-input digital gate circuits. The use of double-gates to control a silicon

channel is not new. Junction Field Effect Transistors (JFETs) have used double

gates for decades to control the conduction of a source-drain channel by depleting the

channel area of carriers. The difference here is that now the Double gates must be

integrate-able into standard VLSI designs.

5.3.1 Doublegate Alternatives

The three double-gate alternatives most widely considered for conventional MOS-

FET replacement are the planar device, the vertical (pillar) device and the FinFET

as shown in Figure 5.3

While the FinFET is the most promising of the three, it is helpful to have an

overview of each, in order to better understand the tradeoffs and the reason why

FinFETs have been incorporated in my research work for designing Process Variation

tolerant Sense Amplifier on FinFET technology.

For our technique we are considering a double-gate FinFET structure with inde-

pendent gate controls. A double-gate FinFET structure offers additional configura-

tion possibilities such as single channel or double-channel, whereby two gates create
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their own independent channels or one common channel. Similarly, the gates may

be symmetric or asymmetric in terms of gate capacitance and current drive. The

proposed sense amplifier design works for all of the above configurations, while we

prefer Double-channel FinFETs due to reduced capacitive coupling between gates.

5.3.2 The Planar Device

The planar device is perhaps the closest alternative to the traditional MOSFET.

The critical difference is that there is a second gate located below the channel. As

in typical FETs, electrons flow through a channel parallel to the surface of the wafer

from source to drain, with additional control provided by the second gate, in this

case. While this device structure is only a short step from the conventional MOS-

FET, its fabrication is significantly more complicated. Alignment of the two gates

requires that the gates be developed simultaneously, which is nearly impossible using

current fabrication techniques. Creating the gates separately is a simpler process,

but often results in gate misalignment, leading to increased gate-to-source (drain)

overlap capacitance and mismatch in channel length. To resolve this, some have sug-

gested creating the gates together with some sort of sacrificial layer in between. This

layer can then be removed, leaving a tunnel through which the silicon channel can be

grown. While this has been shown to work, it requires many additional steps, as well

as some complicated processes. Another issue with the planar device is the potential

for asymmetry in the two gates. This asymmetry may result from differences in the

doping of the poly-Si gates or the oxide thicknesses, offset in the gate voltages or

differences in the metal work-functions, where metal gates are used. Early on, it was

believed that asymmetry might actually lead to improvements in the suppression of

the short-channel effects. By purposely creating asymmetry, likely with the use of

n+ and p+ gates, it was believed that the carriers could be forced to one side of

the channel allowing for a high level of control with the nearest gate. It was shown,
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however, that this line of reasoning was incorrect. Rather, the asymmetry resulted

in increased short-channel effects and larger off-state leakage currents. While more

recently proposed fabrication techniques for the planar device have been shown to

improve the alignment of the gates, the fact remains, that they are still two separate

pieces and are therefore very difficult to match precisely.

5.3.3 The Vertical (Pillar) Device

The vertical device is arranged with the two gates running vertically on either side

of a vertical channel with source and drain regions at either end. In this configuration,

current travels perpendicular to the surface of the wafer. One of the advantages of

this configuration over the planar device is that the two gates are more easily created

during the same fabrication step as neither is masked by some other layer. But again,

asymmetry is an issue as the gates are separate pieces of the same material and may

be slightly mismatched.

5.3.4 The FinFET

The FinFET is by far the option being investigated most widely. It resolves many

of the concerns mentioned previously. In fact, it improves some of the scaling problems

so well, that practically industry has started looking at implementing it even while

there is still considerable lifetime in the conventional MOSFET.

5.4 FinFET Fabrication

While a variety of FinFETs have been developed, generally they resemble the

device as it was originally proposed.

The reported fabrication process for this structure is as follows : 1. The process

begins with a SOI wafer with a 400 nm oxide layer serving as the insulator below 50

nm of silicon.
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2. After covering the silicon with a Si3N4 and SiO2 stack layer, a silicon fin is pat-

terned by electron beam lithography.

3.The SOI layer is then etched away exposing the sides of the fin.

4. The source and drain materials (phosphorus-doped-amorphous silicon) and subse-

quently SiO2 are deposited, covering the entire fin.

5. A narrow gap between the source and drain are formed through electron beam

lithography and etching.

6. With the protective layer above the fin, the amorphous silicon along the sides of

the fin is removed.

7. SiO2 is deposited between the source and drain as spacers. The distance between

the SiO2 spacers is the gate length.

8. The silicon between the spacers is exposed, cleaned and oxidized to create a gate

oxide around 2.5 nm.

9. The gate, a boron-doped Si0.4Ge0.6 material is deposited as the gate. It is also

interesting to note that the thick protective layers of SiO2 above the source and drain

regions allow for lower temperature processes through the later part of fabrication

making the FinFET compatible with high k dielectric oxides as well as metal gates.

5.5 FinFET Modeling

The FinFET Modeling is done though 3D device simulator and we are using

DAMOCLES [25], to run our the device simulation. Transport occurs under the

action of collisions and of the external field, which is usually obtained self-consistently

with the evolution of the charge density of the particles. Its main (but far from

unique) goal is to predict the response of a single device to external voltage and/or

current waveforms applied at its contacts. The term device simulation also hints

to the existence of a more-or-less complicated and realistic geometrical description

of the device, such as the inclusion of ohmic and Schottky contacts, of spatially-
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varying doping profiles, of a nonhomogeneous atomic composition due to the presence

of various materials (semiconductors, insulators, metals) or various semiconductors

(such as in heterostructures).

It is very common to invoke the beneficial feedback between device fabrication

and device physics as a justification for further studies. Given this situation, any

attempt to distinguish between ’theory’ and ’simulation’ becomes meaningless. This

is particularly true for Monte Carlo simulations which aim at the investigation of

often sophisticated physical models included in the collision operator. The basic set

of approximations which device simulation (or device ’physics’) has embraced since

its birth can be implicitly defined by stating the equations usually employed

While precise FinFET modeling equations were not found during this work, it is

still very useful to study the more general equations derived for the generic double-

gated device This derivation begins with the relative Fermi levels of the gates and

channel as shown in figure . From this diagram, one can generate the following

equation 5.2

EFG + qφG + qVOX = EC + (ES − EC) + qχ (5.2)

where EFG is the Fermi level of the gates, φG is the work function of the gate material,

EC is the energy level of the conduction band in the center of the channel, ES is the

energy level of the conduction band at the Si - SiO2 interface and χ is the electron

affinity of the silicon channel Dividing each term by the electron charge (q) and

defining VG = EF G/q, φs = -ES/q and C = -EC/q results in 5.3:

VG − φG − VOX = φC + (φS − φC) + χ (5.3)

After rearranging the last equation thus:

VG − (φG − χ)− φC = VOX + (φS − φC) (5.4)
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Each of the terms on the right hand side can be expressed in terms of a ratio of charge

density per unit area to capacitance.

VOX =
q(Ne + NA −ND)

2COX

(5.5)

Where Ne,NA and ND are the electron, acceptor and donor densities respectively and

2COX is the combined capacitance of the two gate oxides. The difference between the

electric potential at the center and edges of the channel (the bandbending) can be

approximated by a similar term:

φS − φC ≈ q(Ne + NA −ND)

2Cd

(5.6)

Where Cd is the depletion capacitance. To work towards an expression for the channel

current, the carrier density in the channel can be solved by substituting equations

5.5 and 5.6 into 5.4:

qNe = 2
COXCd

COX + Cd

[VG − (φM − χ)− φC − q(NA −ND)] (5.7)

The complete gate capacitance (CG) may now be defined as the oxide capacitance

(COX) in series with the depletion capacitance (Cd).

CG =
COXCD

COX + CD

(5.8)

As this is a general double-gate derivation, it must account for channel doping. In

the case of the FinFET, the channel is likely undoped and therefore the NA and ND

terms can be dropped. Similarly, if the gates are made of polycrystalline-siliicon with

Fermi levels of EFG, then the φG and χ terms could be dropped as well. At this point,

a more detailed derivation would account for the existence of sub-bands within the

channel by splitting the EC term into the summation of various band energies En,k.
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Under this assumption, the channel charge per unit area (QC) may be expressed

as

QC = −qNe = −qNCe
q(φC−φFchan)

KBT (5.9)

where NC is the effective density of states, φFchan is the electron quasi-Fermi potential,

kB is Boltzmans constant and T is the temperature in Kelvin. Two final terms are

needed before the current-voltage equations can be completed: The semiconductor

capacitance and the threshold voltage.

Cs = −dQC

dφC

=
q2NC

KBT
e

q(φC−φFchan)

KBT (5.10)

As the double-gated structure is typically undoped, the lack of inversion charge

makes the conventional MOSFET threshold definition, relating silicon charge to bulk

depletion charge, irrelavent. It is proposed that the threshold voltage of the double-

gate structure be defined as the gate-source voltage (VGS) for which CS = 2CG. This

is a reasonable suggestion in that below the threshold CS will be the smaller, and

hence, dominating factor, whereas above the threshold, CG will be smaller resulting

in device behavior dominated by the gate capacitance. Thus, setting CS = 2CG and

solving for (φC - φFchan) leads to

VT = φG − χ +
kBT

q
log(

2CGkBT

q2NC

) (5.11)

Assuming an undoped channel and some contribution to the gate voltage due to the

difference in work functions (φG - χ).

5.5.1 Subthreshold Current

The subthreshold current is simply the product of the channel conductivity and

the applied voltage. This can be further broken down as the product of channel
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charge density, the cross-sectional area of the channel and the electric field along the

channel. In the subthreshold regime, it is possible to replace the φc - φFchan terms of

the channel charge with V ′
G - V for the following reasons. If the channel charge qNe

<< 2CG(KBT/q), then φC may be approximated by V ′
G , where V ′

G includes the φG

- χ terms. By defining V ′
GS = V ′

G - VS and assuming φFchan equivalent to the source

terminal voltage (VS) plus some variable V , then φc - φF chan = V ′
G - (VS + V ) =

V ′
GS - V. With this substitution the subthreshold current can be written as

ID = Wqµ0NCe
q(V ′GS−V

kBT
dV

dx
(5.12)

where µ0 is long channel mobility of the channel. After a separation of variables

and integration across the channel length and drain-to-source voltage (VDS) the final

expression emerges

ID = 2
W

L
µ0CG(

kBT

q
)2e

q(VGS−VT )

kBT [1− e
−qVDS

kBT ] (5.13)

Comparison of this expression with the equivalent long channel expression

ID =
W

L
µ0CG(

kBT

q
)2e

q(VGS−VT )

nkBT [1− e
−qVDS

kBT ] (5.14)

Where n is the subthreshold slope-factor, reveals that the FinFET provides approxi-

mately twice the current of the long-channel device.

5.5.2 Above-Threshold Current

The current above threshold is found in a similar way As before, φFchan = VS +

V , so V = φFchan - VS, which can be further simplified by considering that φC will

be pinned at the threshold value when operating in strong inversion.

ID = 2
W

L

µ0CG

1 + αVDS

[(VGS − VT )VDS − 1

2
V 2

DS] (5.15)
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and again, comparing the FinFET current to the long channel current, shows the

FinFET producing approximately twice the current of the long-channel device.

ID =
W

L

µ0CG

1 + αVDS

[(VGS − VT )VDS − 1

2
V 2

DS] (5.16)

Where α = µ0

υsatL

5.6 Conclusion

Careful study of the model equations as well as consideration of the improvements

inherent in the novel structure of the device, validates the use of the FinFET as a good

alternative to indefinite scaling the conventional MOSFET. Comparing equations and

reveals that the threshold voltage of the FinFET is not a function of the body voltage

(Vbs). This is advantages in digital design where transistors are often stacked in series

between the supply voltages. With conventional MOSFETs, the bottom device has

a body-to-source voltage (Vbs) = 0, while this is not the case for the devices higher

up in the chain. As a result, the bottom device has a lower VT and therefore turns

on faster than the remaining devices. With the body effect removed, as is the case

with the FinFET, each device in the series chain can theoretically transition at the

same time. Equation also clearly shows the correlation between VT and the work

functions of the gate and channel. As mentioned previously, by creating the gate from

a combination of silicon and germanium, the difference between gate and channel

Fermi levels can be manipulated thereby shifting the threshold voltage as desired.

3.The current equations and show that the current of the FinFET is approximately

twice that of the conventional MOSFET, all other parameters being equal. This

larger current translates to a larger transconductance, an important characteristic of

FET amplifiers. Higher transconductance will result in the speed of shorter channel

lengths without less sacrifice in device gain.
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4.The similarity of the FinFET ”I - V” equations with those of the conventional

MOSFET means that it should be easily integrated into existing circuit design theory.

5.Increased control provided by the second gate decreases the need to scale the

gate oxides, thereby lowering the potential gate leakage current. 6.The fact that

the channel is left undoped improves the mobility of the charge carriers within the

channel.

6.While velocity saturation cannot be avoided, DIBL can by suppressed by start-

ing with a fin width ”just smaller” than the gate length. The thin fin width allows

the gates to effectively control the energy barrier within the channel with little com-

petition from the drain field.

7.The self-aligning nature of the fabrication process means that assymetry, with

its associated problems, will be minimized.

8.To increase the effective width of a gate, multiple FinFETs must be placed in

parallel. While this does limit the selection of channel width to discrete values, from

a layout perspective, this helps to minimize device mismatches throughout a given

circuit. In general, large channel widths are traditionally laid out as a set of thinner

transistors wired in parallel to avoid thermal (and other) gradients across the wafer.

These points argue the value of the FinFET in future circuit design. Not only

does the proposed architecture help to suppress short-channel effects and undesired

power dissipation, it also improves the transconductance of the given device even at

fin-widths of tens of nanometers. This implies that circuits with higher transistors

densities might be created to function at higher speeds for less power. While the

economics of overhauling the conventional fab will most likely push the integration of

the FinFET out as long as possible, even at current device sizes (near 45 nm) some

organizations may decide that the superior performance of the FinFET merits its

more immediate use.
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CHAPTER 6

SENSE AMPLIFIER DESIGN ON FINFET
TECHNOLOGY

Several double gate structures have been proposed and modeled explained in chap-

ter 5 above. For our technique we are considering double-gate FinFET structure with

independent gate controls and can be used with tied gates as well as shown in Figure

6.1 and for its advantages mentioned in chapter-5 and above.

Figure 6.1. FinFET with Tied or Independent Gates.

A double-gate FinFET structure offers additional configuration possibilities such

as single channel or Double-channel, whereby two gates create their own independent

channels or one common channel. Similarly, the gates may be symmetric or asym-

metric in terms of gate capacitance and current drive. The proposed sense amplifier

design works for all of the above configurations, while we prefer double-channel Fin-

FETs due to reduced capacitive coupling between gates.In a Double-gate FinFET,

the second gate may be biased in a way that changes the threshold voltage for the

first gate, similar to the effect of body in bulk CMOS [33, 19]. We take advantage

of this property for compensating against process variations.

Previous work has demonstrated performance, power and reliability advantages

of FinFETs circuits over the bulk CMOS [33, 1]. Both logic and SRAM FinFET
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technologies using independent gate control have been previously demonstrated [13].

In Bulk type conventional MOSFET random dopant fluctuations and oxide thickness

variations accounts for variation in threshold voltage and this introduces asymmetry

in circuits like sense amplifiers in SRAMs, which in turn reduces SRAM yield and

performance. FinFET variations are due to parameter variations. In this study,as

of now Predictive Technology Models (PTM) for 32nm FinFET devices is used to

demonstrate the effectiveness of the proposed approach [49].

6.1 FinFET based Latch Sense Amplifier

Figure 6.2 shows a basic implementation of latch type voltage sense amplifier

design (LSA) on FinFET technology. The technique proposed here can be applied

to other types of sense amplifier designs as well. In Figure 6.2 both the gates of

the FinFET transistor are tied together so that the threshold voltage of the device

is naturally controlled by the input signal. Figure 6.3 are used as the symbols for

Figure 6.2. Nominal Latch Type Sense Amplifier on FinFET Technology.
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n-channel and p-channel FinFET devices in the sense amplifier circuits. Technology

specifications are from PTM [49] model for our HSPICE simulation [45].

Figure 6.3. FinFET Transistor.

6.2 Working of FinFET based Latch Type Sense Amplifier

The LSA operates in two phases: pre-charge phase and the evaluation phase.

The SEN signal decides the phase of the sense amplifier. When SEN is low, sense

amplifier is in precharge phase and the outputs are precharged high in this phase.

In the evaluation phase, SEN is turned ON for sensing the bit lines. The voltage

mode or current mode sense amplifier requires differential discharging of the bit line

capacitances and for sensing the input voltage difference. However due to process

variations discussed previously and due to feature size scaling the devices mismatch,

a wrong output signal may develop for a small input voltage difference which causes

access failure in SRAMs. To demonstrate the operation of LSA of Figure 6.2, small

offset voltage at the bit line inputs (VBLBAR ¡ VBL) is applied. During the precharge

phase, the output node O1 and O2 are initialized to VDD. Sense Enable signal SEN

starts sensing the operation by turning on M4. The nodes O1 and O2 are discharged

by current I1 and I2 respectively through transistor M1 and M2. As the current

directly depends on the voltages applied at the gates of the M1 and M2, I2 ¿ I1 (since

VBL¿ VBLBAR). Nodes O1 and O2 begins to discharge at unequal rates. O2 will reach

VDD - VTp sooner than O1. This in turn will switch on FinFET M5 earlier than

FinFET M6. Turning on M5 charges O1 and counters the effect of I1, this further
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increases the voltage difference between the O1 and O2. The regenerative feedback

increases the voltage difference between O1 and O2.

6.3 Impact of Process Variations in LSA

The latch based sense amplifier is designed to be symmetric but with variations

due to parameter variations it becomes asymmetric. The effect of the above param-

eters can be translated into the effective variation in threshold voltage of the sense

transistors. Thus we are modeling these variations as VT variation. This is strictly

for an intuitive explanation of the proposed design. To demonstrate the effect of

mismatch between the devices let us assume under threshold voltage variations, tran-

sistor M2 developed a higher VT than M1 and that the current I2 becomes lower than

I1. Although VBLBAR ¡ VBL this is possible because, I1 is a function of VBLBAR -VTM1

while I2 is a function of VBL - VTM2. Since VTM2 ¿ VTM1, during bit line discharge it is

possible for VBLBAR - VTM1 to be greater than VBL - VTM2. Under this condition the

stronger current (I1) develops in M1 rather than M2. This results in O1 discharging

at a faster rate than O2 causing the sensing to be incorrect. A mismatch of any of

the parameters W, L or VT between the inputs M1 and M2 can result in incorrect

operation. Here incorrect sensing happens when VTM1 = VTM2 + 50mV. All para-

metric failures of memory access can be mapped into offset voltage VOS which is the

minimum bit differential voltage required by the sense amplifier for correct operation

(DeltaV). This bitline differential voltage has to be applied to force the inverters in

metastable state i.e. V (O1) = V (O2). Only when voltage difference is larger than

this offset (VOS), sense amplifier senses the data correctly. It can be seen that the

offset voltage of the sense amplifier plays an important role in the access failure prob-

ability. The offset voltage can be calculated as a function of the threshold voltages

and dimensions of the transistors in the sense amplifier.
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In case of process variation VOS can be computed by partial sum of derivatives.

The offset voltage depends on the mismatch of device parameters; larger the mismatch

greater is the VOS, Seen another way, since Vin must be greater than VOS before

sensing it impacts the sensing directly.

As described earlier, the robustness of the sense amplifier is determined by the

sense amplifier sensing correctly the inputs at the bit lines even in presence of process

variations. Parametric yield describes an important characteristic of sense amplifiers

as process variation may affect the ability of the sense amplifier to operate correctly.

A single failing sense amplifier may impact the integrity of the entire memory. We

performed Monte Carlo simulations for yield analysis varying (W,L, VT ) with 3σ

variations to determine the effect on yield with variations in FinFET parameters like

VT , Channel length and width for all the FinFETs versus bit-line differential voltage

(DeltaV) in LSA.

A million sense amplifiers were chosen as sample size to illustrate the point. Figure

8 shows the predicted yield of LSA vs bitline differential voltage here DeltaV =

VBLBAR -VBL with a 50mV VT mismatch between the FinFETs M1 and M2. Plot in

Figure 8 shows considerable yield loss with VT mismatch between critical FinFETs

of LSA. Please note that all FinFETs are not equally critical. For example, the sense

amplifier performance is more sensitive to n-type devices than p-type devices already

shown with simulation results in chapter-3.

The proposed sense amplifier is still a latch type sense amplifier with FinFET

devices but it has added compensation circuitry as shown in the Figure 6.4.

6.4 Independent Gate Self Compensation Sense Amplifier

(IGSSA)

In the modified circuit two critical transistors M1 and M2 (circled) which are

most crucial in terms of process variations are now independently biased Rest of the
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FinFET transistors has both of their gates tied together. In that case, threshold

voltage is controlled by the input signal. The front gate of the M1 and M2 transistor

still acts as inputs to BL and BLBAR. The back gate of the critical transistor has the

compensation circuit, which includes capacitance C1 and C2 for storing the reference

voltage for compensation. C1 and C2 are trained by discharging them first via the

CAP DIS signal. Then M3 and M4 transistors are turned on while VBL and VBLBAR

are both at VDD. FET TRAIN is a controlled pulse signal that initializes C1 and C2.

When SAEN is turned ON, back gate of M1 is driven by node voltage at C1 and the

back gate of M2 is driven by node voltage of C2 through transistors M10 and M11

respectively.

Figure 6.4. Independent Gate Self Compensation Sense Amplifier Design (IGSSA).

Let us assume under process variations in the FinFET VT increases significantly

with decreasing body thickness. As silicon body get thinner, the two gets closer
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and have better control over the channel, reducing the short channel effect and VT

roll off. A significant part of the VT changes with body thickness due to quantum

confinement. This is another advantage of using FinFET devices over bulk CMOS.

If the voltage at the C2 can be set higher than C1 appropriately, then the effect of

VT mismatch at M1 and M2 can be offset by pumping more current through back

gate of the FinFET M2. We understand that the same technique can be applied to

conventional bulk type CMOS but in that case we are constrained by short channel

effects and optimal performance for the sense amplifier is not achieved. Figure 10

shows that despite VT mismatch between the two critical FinFETs M1 and M2, the

compensation circuitry of IGSSA is tolerant to process variations and senses correctly

with the reduced sensing delay. In current bulk CMOS technology, typically a single

sense amplifier is deployed for 64 SRAM cells, thus even if IGSSA has some area

overhead, it amortizes over the size of the SRAM and final area impact is negligible.

Figure 6.5. IGSSA Waveforms for VT mismatch of 50 mV.

6.5 IGSSA Operation

The proposed sense amplifier has two added phases of operation, the (i) Capaci-

tance discharge phase and the (ii) Training phase. First phase is for discharging the
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capacitances, where the capacitors are fully discharged by asserting CAP DIS. In the

next training phase CAP DIS is turned off, and FET TRAIN is turned on, SAEN is

off while VBLBAR = VBL. Since M1 conducts greater current that charges C2, while

M2 has smaller current that charges C1, C2 will develop a higher voltage than C1.

The value of capacitances C1 and C2 along with FET TRAIN pulse width is chosen

such that the voltage across the capacitances is greater to overcome the effect of VT

mismatch through the back gate of the FinFET. Observe that the sense delay has also

reduced considerably when compared to nominal LSA on FinFET, the technique we

are proposing also reduces the delay and this improves the performance. The robust-

ness of the sense amplifier is determined by its yield i.e. by number of failing sense

amplifier on account of process variations which we are modeling as VT mismatch in

IGSSA as we did on nominal LSA and in the nominal LSA with no compensation

circuitry we experienced incorrect sensing and considerable loss in yield.

6.6 Impact of Process Variations in IGSSA

It is understood that all devices will have normal process variations. Therefore the

result can only be verified by statistical simulation. In Monte Carlo simulations, all

transistors are subjected to process variations, not just M1 and M2. However, since,

M1 and M2 are most sensitive transistors for sense operation, compensation for M1

and M2 provides the greatest benefit. This is also borne out by the results of Monte

Carlo simulation in Figure 6.6. To demonstrate the effect of FET TRAIN phase,

IGSSA was run with no FET training phase which caused incorrect sensing of the

sense amplifier due to VT mismatch between transistors M1 and M2 shown in 0. Once

the FET TRAIN phase is turned on, C2 and C1 enables the compensation due to

mismatch through the back gate biasing of the FinFET. Even when the VT mismatch

between M1 and M2 is 50 mV, the sense amplifier performs correct sensing. To study

the impact of VT mismatch between M1 and M2 we ran Monte Carlo simulations
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with HSPICE [45] with different samples starting with thousand samples to million

samples of sense amplifiers with 3s variation of (W,L,VT ). The results in Figure 6.6

show that with the proposed IGSSA, the number of working sense amplifiers (Yield) is

nearly identical to that of the design without VT mismatch or increases with increase

in the offset voltage.

Figure 6.6. Yield versus Bitline Differential Voltage IGSSA technique

The comparison with the yield of IGSSA technique with the normal LSA is shown

in Figure 6.7. To study the impact of sample size on yield of the proposed sense am-

plifier we varied the sample count from thousand to million samples of sense amplifier

design. With these sample counts, Monte Carlo simulations were run on the proposed

IGSSA. The results are shown in Figure ??. The yield reaches asymptote within this

sample count and further simulations do not impact the result on yield. The effect

of increase in sample count of IGSSA on the yield is minimal which can be observed

in Figure 6.8 The compensation Circuit introduced is ensuring the robustness and

maintains the yield of sense amplifier without affecting its sense delay. IGSSA incurs

area overhead due to added compensation circuit. This leads to the question whether

the added area could be used in some other way to make the sense amplifier robust.
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Figure 6.7. Yield Comparison for two techniques nominal LSA and IGSSA

Figure 6.8. Yield Comparison with increased Monte Carlo samples on IGSSA
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For example, it is well known that if M1 and M2, the primary sense transistors are in-

creased in size, parameter mismatch between them will decrease. This however is not

a viable solution as the bitlines will see a greater load, requiring all cells to be upsized

as well, resulting in a bigger area and power penalty. IGSSA incurs a small power

overhead. However, it reduces the overall power consumption in SRAM because it

senses smaller difference between bitline and bitlinebar that allows the read to be

terminated before a larger voltage difference develops between bitline and bitline bar.

The actual savings depends on the number of SRAM cells per column.

6.7 Conclusions

Process variation in conventional bulk CMOS is a significant yield detractor for

SRAM designs. We presented a process variation tolerant self-compensating sense

amplifier design on conventional bulk type CMOS sense amplifier design. The same

technique we extended to next generation double gate CMOS devices FinFET cater-

ing to the road map of semiconductor devices.We generated our own model from

damocles [25] and taurus device simulator [47] for generating our simulation results.

Experimental results show that that the proposed design withstands large mismatches

in the primary sense transistors and produce yield comparable to designs without any

process variation. Statistical simulations show robustness of the design for variations

in all transistors and not just the primary transistors. The simulation results further

show that for a given performance, our scheme improves yield while for a fixed yield

our design scheme results in faster sensing.It does increase the area of a sense amplifier

almost twice, but since there is only one sense amplifier required across the column

of the SRAM. The layout of sense amplifier with 128X8 SRAM on nominal type and

SSA technique to determine area and powers tradeoff was drawn. The area increase

for the amount of compensation towards yield and performance is not alarming and

is only .48% increase from SRAM with nominal type of sense amplifier.
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