
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses 1911 - February 2014

January 2008

MNoC : A Network on Chip for Monitors
Sailaja Madduri
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 -
February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Madduri, Sailaja, "MNoC : A Network on Chip for Monitors" (2008). Masters Theses 1911 - February 2014. 215.
Retrieved from https://scholarworks.umass.edu/theses/215

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Ftheses%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses/215?utm_source=scholarworks.umass.edu%2Ftheses%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

MNoC: A NETWORK ON CHIP FOR MONITORS

A Thesis Presented

by

SAILAJA MADDURI

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

September 2008

Electrical and Computer Engineering

© Copyright by Sailaja Madduri 2008

All Rights Reserved

MNoC: A NETWORK ON CHIP FOR MONITORS

A Thesis Presented

by

SAILAJA MADDURI

Approved as to style and content by:

 Russell G. Tessier, Chair

 Wayne P. Burleson, Member

 Sandip Kundu, Member

__

C.V. Hollot, Department Head

Electrical & Computer Engineering

 iv

ACKNOWLEDGMENTS

I would firstly like to thank my parents and my sister for being so immensely supportive

all through the years. Many many thanks to my advisor Prof Tessier for spending so

much time on giving my thesis a shape , taking the time out to meet with me every single

day and guiding me to completion. It was a pleasure to come into the lab to work. I am

also grateful to Prof Burleson and Prof Kundu for serving on my committee and

providing me with valuable feedback time and again.

Special thanks to Ramakrishna for all the insightful discussions, for reading over all my

documents and for helping me stay motivated. Thanks to all my friends back home and to

everyone at Amherst who made my stay here a smooth and pleasant one.

 .

 v

ABSTRACT

MNoC: A NETWORK ON CHIP FOR MONITORS

 SEPTEMBER 2008

SAILAJA MADDURI

 B.E (Hons) ., BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, INDIA

M.S.E.C.E, UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Russell G. Tessier

As silicon processes scale, system-on-chips (SoCs) will require numerous hardware

monitors that perform assessment of physical characteristics that change during the

operation of a device. To address the need for high-speed and coordinated transport of

monitor data in a SoC, we develop a new interconnection network for monitors - the

monitor network on chip (MNoC). Data collected from the monitors via MNoC is

collated by a monitor executive processor (MEP) that controls the operation of the SoC in

response to monitor data. In this thesis, we developed the architecture of MNoC and the

infrastructure to evaluate its performance and overhead for various network parameters.

A system level architectural simulation can then be performed to ensure that the latency

and bandwidth provided by MNoC are sufficient to allow the MEP to react in a timely

fashion. This typically translates to a system level benefit that can be assessed using

architectural simulation. We demonstrate in this thesis, the employment of MNoC for

two specific monitoring systems that involve thermal and delay monitors. Results show

that MNoC facilitates employment of a thermal-aware dynamic frequency scaling scheme

in a multicore processor resulting in improved performance. It also facilitates power and

performance savings in a delay -monitored multicore system by enabling a better than

worst case voltage and frequency settings for the processor.

 vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iv

ABSTRACT.. v

1. INTRODUCTION .. 1

2. BACKGROUND AND PREVIOUS WORK... 8

2.1 Existing On-Chip Monitoring Approaches... 8

2.1.1 Thermal Monitors .. 8

2.1.2 Soft Error Monitors.. 10

2.1.3 Critical Path Delay Monitor... 11

2.1.4 Collaborative Monitoring... 13

2.1.5 Monitoring Wrap-up .. 14

2.2 Previous Work on Monitoring Based Control .. 15

2.2.1 Temperature and Power Measurements to Optimize Performance 15

2.2.2 SoC Resource Manager Based on Temperature and Performance Feedback…

... 16

2.2.3 Hardware and Software Monitoring to Reconfigure Processor Resources...... 17

2.2.4 Circuit level Timing Error Detection for Low Power Operation..................... 17

2.2.5 Summary of Monitoring Based Control Techniques 18

2.3 Existing Approaches to On-Chip Communication ... 20

2.3.1 Bus Based Interconnections ... 21

2.3.2 Point to Point Connections... 22

2.3.3 Networks on Chip (NoC) ... 23

2.2.3.1 Statically Scheduled Network... 24

2.2.3.2 Dynamic Network... 24

3. MNoC ARCHITECTURE.. 30

3.1 MNoC Components and Features... 30

3.2 MNoC Topology and Connections ... 31

3.3 MNoC Packets .. 32

3.4 MNoC Routing Protocol... 34

3.5 The MNoC Router .. 35

3.6 MNoC Router – Monitor Interface ... 39

3.7 Monitor Executive Processor – Network Interface... 40

 vii

4. MNoC VALIDATION APPROACH ... 42

4.1 MNoC Performance Evaluation.. 42

4.2 MNoC Overhead Estimation .. 44

4.3 MNoC System Level Validation... 45

5. EXPERIMENTAL APPROACH AND RESULTS FOR VALIDATING MNOC...... 47

5.1 Thermal Management Using MNoC .. 47

5.1.1 Interconnect simulation results .. 49

5.1.2 Hardware estimation results... 51

5.1.3 Architectural simulation results ... 52

5.2 Voltage Droop Management Using MNoC .. 54

5.2.1 Modifying voltage in response to voltage droop ... 56

5.2.2 Modifying frequency in response to voltage droop ... 63

6. CONCLUSIONS AND FUTURE WORK ... 67

BIBLIOGRAPHY... 68

 viii

LIST OF TABLES

Table 1: Summary of monitoring based control techniques ... 20

Table 2 : MNoC area results ... 52

Table 3 : Runtimes for MNoC and non-MNoC cases... 54

Table 4 :Variation of initial supply voltage for the MNoC based system as the monitor

sampling rates vary ... 59

Table 5: MNoC area estimates for the 9 router configuration .. 63

Table 6 : Variation of initial frequency for the MNoC based system as the monitor

sampling rates vary ... 64

 ix

LIST OF FIGURES

Figure 1: Clock Skew Variation for a Dual Core .. ……….. 1

Figure 2: IBM POWER4 chip temperature against its functional units [46]...................... 1

Figure 3: Conceptual diagram of MNoC on a quad core processor 3

Figure 4 : Thermal Sensors on a bus [28]………………………………………………... 4

Figure 5 : Foxton Power Control loop [6] .. 4

Figure 6: Ring Oscillator based thermal sensor [33]……………………………………...9

Figure 7: Ring Oscillator Temp Vs Freq[5].. 9

Figure 8: Thermal System block diagram[6] .. 9

Figure 9: Critical Path Monitor, IBM Power 6 processor [20] ... 12

Figure 10: Collaborative monitoring with thermal and processing monitors [18] 14

Figure 11: High level overview of the Foxton control system [37].................................. 15

Figure 12: Pipeline stage augmented with Razor latches and control lines [32] 18

Figure 13: SoC resource manager controlling frequency based on thermal information

from sensors [27] .. 23

Figure 14: Generic NoC architecture [24] .. 25

Figure 15: Detailed view of MNoC for multiple cores... 31

Figure 16 : MNoC packet format.. 33

Figure 17 : Sample MNoC routing table... 34

Figure 18: MNoC router architecture ... 36

Figure 19 : MNoC monitor – network router interface... 39

Figure 20 : MEP -Network interface .. 41

Figure 21 : MNoC validation approach .. 45

 x

Figure 22 : Monitor network on chip layout for thermal monitors on a 8 core

processor……………………………………………………………………………48

Figure 23 : Regular channel latencies for different buffer sizes 50

Figure 24 : Priority channel latencies for different buffer sizes 50

Figure 25 : Regular channel latencies for different flit widths .. 51

Figure 26 : Single droop recovery using MNoC... 56

Figure 27 : Power savings with MNoC on a 4 core processor.. 60

Figure 28: Power savings with MNoC on a 8 core processor... 60

Figure 29 : Power savings with MNoC on a 16 core processor 60

Figure 30: Power savings with increasing MNoC bandwidth on a 16 core processor 61

Figure 31: Variation in power savings with variable MNoC buffer sizes 62

Figure 32 : Quantifying MNoC area overhead ... 63

Figure 33: Performance benefit in multi-cores using MNoC ... 65

Figure 34: Performance benefit with varying MNoC bandwidth 66

 1

CHAPTER 1

 INTRODUCTION

Systems on Chips (SoCs) are becoming increasingly complex as large numbers of cores

are integrated into single-chip platforms. These systems typically exhibit stringent

processing, communication, and power constraints that must be carefully addressed

during system design. As the size and diverse use of SoCs increase, the importance of

run-time monitoring of correct functionality and system performance increases. Real-time

system monitoring is crucial to determine if a system is operating as designed and is

executing within designed parameters. Figure 1 provides an example of the effect of

environmental factors on a computing device. The clock skew distribution for an Intel

Xeon Processor [14] clearly shows a wide skew variation across the die. Figure 2 [46]

illustrates the full-chip temperature variation profile. Such increasing variations in device

operating conditions motivate the need for a more “operating conditions aware” design.

Figure 1: Clock Skew Variation for a Dual Core Figure 2: IBM POWER4 chip temperature

profile against its functional units [46]

Recent high-end processors from Intel (Montecito), AMD (Opteron) and IBM (Cell) use

extensive on-chip monitors for run-time estimates of temperature, power, clock jitter,

 2

supply noise and performance behavior. The main benefits of these monitoring modules

are:

• They quickly evaluate system performance without interfering with the primary

operation of the SoC.

• They facilitate a better-than-worst-case design that enables better power and

performance

In order to maximize monitor effectiveness, monitor data often needs to be collated from

across the chip and evaluated in real time as a SoC operates. This data can then be used to

alter SoC operation in response to environmental conditions. Although on-chips monitors

are becoming increasingly common in current day SoCs and processors, a unified

approach to their interconnection, verification, test and debug has not been developed yet.

The main contribution of this work is the development and validation of a scalable,

flexible and light weight interconnection network for monitor interaction, the Monitor

Network on Chip (MNoC). The Monitor Network on Chip interfaces with various kinds

of monitors distributed across the chip, collects monitor data and routes it to the Monitor

Executive Processor (MEP). The MEP evaluates this data and interfaces back into the

system to take necessary actions which ensure correct operation, performance savings,

power savings or various other benefits. As seen in Figure 3 , the MNoC platform

involves the integration of numerous on-chip monitors to form a complete chip

subsystem devoted to monitoring.

 3

`

Proc 0 Proc 1

Proc 3Proc 2

L2
Cache

L2
Cache

Voltage droop
monitor
Cache-bank error
monitor
Thermal sensor
Delay monitor
MEP – Monitor
executive processor

MEPMEPMEPMEP

MNoC

Figure 3: Conceptual diagram of MNoC on a quad core processor

Recently, a number of research projects have examined the use of monitors in controlling

the behavior of SoCs. The Montecito processor [6] uses voltage and temperature sensors

to control processor power consumption. Temperature and voltage values are sampled

with A/D converters and transferred to a controller which modulates system clock

frequency and voltage. The Razor architecture [32] utilizes shadow latches to determine

if signal delay violations have occurred due to voltage reductions. Monitors evaluate the

number of errors that have occurred and update core voltage. Cache miss rates and

branch prediction monitors have been used in [31] to reconfigure processor resources in

real time. This information can include event counts and frequencies. System resources

are reconfigured by a centralized control circuit. The SoC resource manager described in

[27] allows for dynamic bandwidth allocation for the IP cores based on the required

bandwidth. This is done by monitoring the difference in between actual operation speed

and the target operation speed. The higher the difference, higher is the priority for

 4

bandwidth allocation. The IBM Power6 architecture [48] interconnects multiple sensors

and actuators via a high-speed serial bus. Addressable registers are used as the interfaces

to these components. The described interconnect primarily serves as an external interface

to voltage and thermal control via an I2C bus.

Most monitoring based control explored so far is restricted to a few localized monitors

which did not demand a highly scalable communication medium. Hence most of the

current monitor interconnection approaches are either direct point to point connections or

buses. For example, Figure 4 [28] shows an FPGA based thermal monitoring system

which involves a controller and an array of temperature sensors. The sensors are

connected to the Power PC processor on the Xilinx Virtex-2 Pro FPGA using the On-

Chip Peripheral bus (OPB). Figure 5 shows the embedded feedback control system of

Intel’s Montecito processor [6] which dynamically maximizes performance per Watt by

using readings from 4 on-chip thermal sensors and voltage sensors. As seen in the figure,

the sensors are directly connected to the micro-controller via analog-to-digital converters

using point-to-point connections.

Figure 4 : Thermal Sensors on a bus [28] Figure 5 : Foxton Power Control loop [6]

POWER PC

PROCESSOR

ON CHIP PERIPHERAL

BUS

TS

TS

TS

TS

TsS – THERMAL

SENSOR

 5

Intel’s Montecito processor uses four thermal sensors per chip, the more recent IBM

Power6 processor employs 24 thermal sensors per chip and these monitor numbers are

only expected to increase. As silicon processes scale, it is expected that future SoCs will

generally include numerous embedded monitors to take advantage of the power and

performance benefits that monitors can offer. We believe that the poor scalability of

buses [23] and the exponential increase in the number of required point-to-point

connections [24] will limit their usage for monitor interconnections in the future and that

a more scalable and segmented monitor interconnect will become essential.

Recently, Networks on chip (NoC) [23][28][29] have gained importance as

communication structures that provide enhanced performance in comparison with

previous communication architectures. NoCs are perceived as the scalable, global

alternatives to traditional buses. They however entail a high area overhead [24] and are

not, in entirety, appropriate for monitor interconnections. Due to the various limitations

discussed above, no existing interconnection approach is fully suitable to serve as a

monitor interconnection network.

We view the integration of monitors and the collection and processing of monitor

information as an important unaddressed SoC design issue. As an initial step in the

development of a complete monitor subsystem for SoCs, a low-overhead on-chip

interconnect, which is optimized for monitors, has been designed as a part of this thesis

project. MNoC was built on existing approaches like Networks on Chip, buses,

multiplexers and point to point connections with emphasis on scalability and low

resource overhead. Although simplified compared to other on-chip interconnect

 6

approaches, our new interconnect technique supports irregular routing topologies, priority

based data transfer and customized monitor interfacing. Collected monitor data values are

manipulated by a monitor executive processor and the results are used to control SoC

run-time operation.

The efficiency of our monitor interconnect is assessed for a multicore system employing

two different monitoring systems, a thermal and a delay monitoring system. A monitoring

system typically consists of a set of monitors, MNoC for data transfer, the Monitor

Executive Processor that evaluates monitor data, the actuator that performs actions in

response to monitor data and the corresponding network interfaces. Experimental results

were generated using both interconnect and a system-level simulators and results show

that the new low-overhead monitor interconnect facilitates employment of a thermal-

aware dynamic frequency scaling scheme in a multi-core processor. The new MNoC also

enables an approach that allows the countering of voltage drop problems dynamically

during run time without relying entirely on packaging techniques. The overhead and

performance of the monitor network-on-chip interconnect for an eight core

multiprocessor has been measured via hardware synthesis, interconnect simulation, and

multicore architectural simulation. For an eight core thermal monitoring system, the area

overhead of MNoC is found to be less than 1%. MNoC also enables around 15%

power/performance benefit in both the test systems.

The rest of the thesis is organized as follows. Chapter 2 discusses the previous work that

has been done in the area of monitors and monitoring based control. This chapter also

includes a discussion on existing on-chip interconnection approaches, focusing on

 7

Networks on Chip. Chapter 3 gives a description of the MNoC architecture, the various

MNoC components, the network interfaces, and protocols. Chapter 4 gives the approach

to MNoC validation and describes the simulation setup for the new interconnect. Chapter

5 describes the experimental approach for the two sample systems and presents the

results. The summary of the thesis work and some direction for future work are provided

in Chapter 6.

 8

CHAPTER 2

BACKGROUND AND PREVIOUS WORK

2.1 Existing On-Chip Monitoring Approaches

Increased SoC integration is increasing chip reliability and power concerns, making

monitors for temperature, power, clock jitter, supply noise and performance behavior an

integral part of current day SoCs. This section gives a detailed description of some

contemporary SoC monitors and their implementations. The thermal, delay and error

monitors which are parts of our prototype systems are emphasized in this section.

2.1.1 Thermal Monitors

As the sophistication of embedded systems and the power density of silicon devices

increase, temperature-related system effects become more important. For example, disk

drives in embedded systems are severely susceptible to erroneous operation at high

temperatures. If ambient temperature increases by 5 degrees Celsius over the design

specification, disk drives are 15% more likely to fail[4].Temperature can reduce

performance by lowering output-voltage swings, reducing switching speeds, lowering

noise margins, and reducing signal quality. In addition to performance loss, temperature

stresses also reduce system reliability [4].

Many temperature sensors are based on ring oscillators, similar to the type shown in

Figure 6. A ring oscillator’s delay dependence on temperature provides an effective way

to measure the temperature of a chip. In general, the oscillation frequency of the sensor

exhibits a linear dependence on junction temperature. Each rising edge of fout stimulates a

count cycle in a counter. The count achieved over a period of time indicates the

 9

temperature inside the device. An increase in temperature extends the period of the ring

oscillator, leading to smaller count values in the same time period. This effect is

illustrated in Figure 7.

Figure 6: Ring Oscillator based thermal sensor [33] Figure 7: Ring Oscillator Temp Vs Freq[5]

A thermal sensor implementation that exploits the temperature co-efficient of a forward

biased diode voltage (Vbe) is shown in Figure 8 . The thermal sensor consists of a pFET

current source, which drives a diode with a constant current.

Figure 8: Thermal System block diagram[6]

The sensor has been used as part of a thermal management system in [6]. Since voltage

Vbe fluctuates with temperature, voltage variations are created at the inputs to the A/D

converters. The measured voltage is converted into a temperature value by comparing the

 10

input voltage with a calibrated Vbe value and the characterized temperature coefficient.

The result of this comparison is provided to a microcontroller, which can take appropriate

action. In this case, system clock frequency can be decreased to reduce temperature, if

necessary.

2.1.2 Soft Error Monitors

As system operating frequencies increase and power supply voltages are reduced,

transient faults become a major source of problems as they increase device soft error

rates. Often, memory buses are extended to accommodate extra bits that detect and

correct errors. CRC (cyclic redundancy checking) codes are used to detect and sometimes

correct accidental alteration of data during transmission in communication systems.

Specifying a CRC involves modifying a bit stream based on a CRC polynomial.

Corrections can be performed via the retransmission of data [36] if the CRC codes do not

have an inherent error correcting capability.

The detection of soft errors in a processor core’s logic presents a more difficult challenge

than the detection on errors in memory [15] . Backward recovery through checkpointing

and rollback is a popular approach used in modern processors to recover from these kinds

of transient faults.

 A soft error detection scheme for processor core logic described in [15] uses a dual

modular redundancy technique. In this technique, two redundant processors execute

simultaneously and an error in execution in one processor manifests as a deviation in the

behavior of the two processors. The deviation in behavior is evaluated based on a

“fingerprint” comparison of the states of the two processors at regular checkpoint

 11

intervals. A checkpoint of a program state consists of a snapshot of the registers and

memory at a specific point of time. A checkpoint interval is the time between two

successive checkpoints. A fingerprint is a hash value that summarizes the states of the

processors after every instruction in the checkpoint interval. If the fingerprints for both

processors agree at the end of the checkpoint interval, all instructions executed during the

interval are known to be correct. If the fingerprints disagree, the processor must be rolled

back to the last correct state of execution, which is the checkpoint at the beginning of the

current interval. This scheme avoids the need to compare all architectural state updates,

but still captures a summary of all state changes in the fingerprint value.

2.1.3 Critical Path Delay Monitor

Process variation, supply noise effects, aging effects, clock instability and reliability

based failure mechanisms can be characterized by a change in delay of the critical path of

the circuit. A critical path monitor is used for identifying the effects of these variations on

the critical path and for taking necessary action. This corrective action could be

increasing voltage or decreasing the frequency so as to prevent the circuit from failing.

The IBM Power6 processor employs [20] 24 critical path monitors (CPMs) distributed

across the chip which guarantee correct circuit operation under different process, voltage

and temperature conditions. The critical path monitor, shown in Figure 9, consists of 5

delay paths – 4 NAND gates, Series 3 NOR Gates, Adder Path, Wire dominated path,

Series pass-gates, each with different delay sensitivities to process, voltage or

temperature.

 12

Figure 9: Critical Path Monitor, IBM Power 6 processor [20]

The critical path monitor also contains two edge path detectors which consist of a 12-

inverter delay line with capture latches at each inverter output. On each rising edge of the

system clock, an edge is launched into these paths and the same edge is also given to

edge detectors which use it as a reference (A in the figure). The edge B which passes

through the chosen path is latched in the edge detector at the rising edge of the system

clock and is compared with the reference value A.

 The output of the critical path monitor is thus a digital code indicating how far the edge

propagated through the edge detector. This is an indicator of the delay on the selected

path. The paths however do not exactly track the critical path of the circuit and should be

calibrated initially for accuracy. The digital code needs to be sampled every clock cycle

and hence this monitor has a large bandwidth, requiring a network like interconnection

approach for data collection.

 13

2.1.4 Collaborative Monitoring

In many cases it may be desirable to use information from multiple monitors to validate

information against each other. A monitoring system that allows collaboration between a

processing and thermal monitor is described in [18] . The thermal monitor used in [18] is

the ring oscillator based thermal monitor described in Section 2.1.1. The processing

monitor evaluates whether the processor is operating within expected parameters by

comparing the results of an off-line analysis of the system binary to run-time information

obtained from the processor core.

 A monitoring graph that represents the sequence of control flow, instruction addresses,

and opcodes is generated off-line by simulating the binary of the application. During run-

time, the embedded processor reports on the progress of the application, by sending a

stream of information to the monitoring system. The monitoring system then compares

the stream to the expected behavior of the program from the monitoring graph. Run-time

uncertainties and embedded system faults that cause deviations from intended behavior

can then be detected by the monitor. The size of the monitoring graph determines the

overhead of the monitor.

The block diagram of this monitoring system is shown in Figure 10. Temperature

information from the thermal monitor can be correlated with monitoring graphs in the

processing monitor to allow for more robust evaluation. The monitoring graphs identify

power-intensive program regions that dissipate substantial heat and it can be expected

that these regions will report high temperatures. If thermal information is used without

considering the processing context, the static thermal alarm threshold could either be too

 14

conservative (i.e., causing false alarms in regions of intense processing) or too optimistic

(i.e., opening avenues for run-time problems that cannot be detected) [18]. Collaborative

monitoring addresses these kinds of scenarios. MNoC allows for easy collaborative

monitoring by integrating different kinds of monitors to one monitoring sub system.

Figure 10: Collaborative monitoring with thermal and processing monitors [18]

2.1.5 Monitoring Wrap-up

The proposed Monitor Network on Chip is an effort to allow different kinds of monitors

to communicate with a central controller that evaluates monitor data and takes necessary

action in the case of unexpected system behavior. Typical responses could be frequency

throttling, voltage reduction or resource reconfiguration depending on the exact nature of

the deviation from expected system operation. This section described a series of

candidate monitors and their operation.

 15

2.2 Previous Work on Monitoring Based Control

This section discusses existing implementations of monitoring based control, where data

from the previously discussed monitors is used to impact system behavior.

2.2.1 Temperature and Power Measurements to Optimize Performance

An embedded feedback control system in [6] dynamically maximizes performance per

watt in a 90-nm Itanium family processor based on information from voltage, thermal and

power sensors. The control system, referred to as Foxton Technology (shown in Figure

11), utilizes on-chip sensors to measure power and temperature and modulates both

voltage and frequency using an embedded microcontroller to optimize performance while

meeting power and temperature constraints. As a result, the processor cores perform

computation at optimal power efficiency.

Figure 11: High level overview of the Foxton control system [37]

Core power that is measured at regular intervals during processor operation is calculated

from the core voltage that is sampled with on-die A/D converters. On-die diode-based

temperature sensors (Figure 8) enable temperature control. Thermal information is used

 16

in conjunction with the power measurements to vary the core voltage. These new voltage

values are communicated to the Montecito voltage regulator by the embedded controller.

The clock system responds to voltage changes and the clock frequency is tuned such that

the system is at an optimal power, temperature, voltage, frequency envelope. This

operating point maximizes performance per Watt at a specific point of time. The entire

measurement and control system is embedded within the die. The area overhead for this

system is about 0.5% of the die area and the power overhead is approximately 0.5% of

die power. This system can be visualized as a small MNOC, with temperature and

voltage monitors connected to a micro-controller that manages the system.

2.2.2 SoC Resource Manager Based on Temperature and Performance Feedback

As the number of intellectual property blocks in SoCs increases, effective distribution of

resources like power and data bandwidth becomes increasingly important. A SoC

resource manager which is responsible for supervising the allocation of resources to IPs

using information monitored from the SoC is described in [27] . The monitors include

thermal monitors for temperature information, and performance monitors for information

about the operating frequency of various IPs on the chip. The information from the

thermal monitors is used by the resource manager to reduce the chip operating frequency

taking into account the environmental temperature. The performance monitor gives

information about the operation speed of the IPs to the controller. This information is

used by the resource manager to calculate the priority of data-access requests by each IP

based on the difference between the actual operation speed and the target operation

speed. The larger the difference between the actual speed and the target speed, the higher

the priority. This approach allows dynamic IP bandwidth allocation.

 17

2.2.3 Hardware and Software Monitoring to Reconfigure Processor Resources

Processor resource reconfiguration can be used to reduce power consumption with the

assistance of hardware monitoring and software profiling [31] .Hardware monitors

measure recent processor performance by establishing a pattern for a certain interval of

execution. Hardware monitoring can collect statistics such as instructions per cycle (IPC),

resource utilization, and instruction dependencies. Software profiling is performed by

collecting similar statistics, such as IPC and L2 cache miss rates. Software profiling can

identify behavior over a short program run and then annotate instructions to identify this

behavior for future code execution. A collaborative approach in [31] combines both

hardware and software profiling to reconfigure processor resources. This approach has

better power-performance trade-offs than individual hardware or software profiling based

resource reconfiguration.

Two power saving configuration techniques are considered for the processor. The

instruction issue width can be reduced as the IPC drops. Power savings are obtained by

disabling one of the functional units and reducing the issue width. The second kind of

power savings mechanism considered is fetch halting. In this case, fetching is limited

while the processor is stalled for an extended period of time due to a long latency cache

miss. This approach saves power by reducing occupancy rates in the fetch and issue

queues thereby allowing portions of these structures to be more effectively disabled.

2.2.4 Circuit level Timing Error Detection for Low Power Operation

To ensure correct operation of a processor under all possible variations, typically a

conservative supply voltage that uses worst case parameters is chosen. This choice

 18

supports a worst case combination of variations which is highly unlikely and makes the

approach overly conservative. Razor, a dynamic voltage scaling approach which uses

dynamic detection and correction of circuit timing errors to tune the processor supply

voltage is described in [32]. With a dynamic voltage scaling approach like this, an overly

conservative supply voltage can be avoided and consequently power can be saved. In

[32], the supply voltage is tuned based on the error rate in the circuit. A shadow latch

controlled by a delayed clock, as shown in Figure 12, is used to detect timing errors in the

circuit. A very low error rate indicates that the computation is finishing with slack, so the

supply voltage could be lower. Increased error rates indicate that the voltage supply

should be increased.

Figure 12: Pipeline stage augmented with Razor latches and control lines [32]

2.2.5 Summary of Monitoring Based Control Techniques

Table 1 summarizes the previous work regarding control of system operation based on

monitor data. In general, monitor/system interactions can yield good power savings

without sacrificing significant system performance. The examples described in this

 19

section re-emphasize the importance of on-chip monitoring and the need for low

overhead interconnect between monitors and a control resource (e.g. the MEP). System-

level modifications can be made by the MEP after monitor data is evaluated. To address

the need for high-speed and coordinated transport of monitor data in a system-on-chip,

we require an interconnection structure that helps assemble monitor data with the lowest

possible overhead. The next section is a summary of existing on-chip interconnection

approaches which can possibly serve as monitor interconnects

S.NO REFERENCE MONITORS

INVOLVED

RESPONSE TO

MONITOR DATA

1 Feedback control

system in Intel

Montecito Processor[6]

Voltage monitor,

Thermal monitor

A microcontroller modulates

frequency and voltage while

meeting temperature and

power constraints

2 SoC resource manager

to control performance

and data bandwidth

allocation [27]

Thermal monitor,

Performance monitor

The SoC resource manager

controls performance based

on temperature and also

handles data bandwidth

allocation to the IPs

3 Processor resource

reconfiguration [31]

Hardware processor

performance monitors

and software profiling

get information about

branch prediction,

cache misses etc

Processor resource

reconfiguration using

information from hardware

monitors and software

profiling

4 Razor shadow latches

for circuit level timing

error detection [32]

Shadow latches along

critical paths to detect

and correct timing

errors

The error rate is used to tune

the processor voltage. With

a low error rate, voltage can

be reduced

 20

5 Bulletproof mechanism

to protect

microprocessor pipeline

and memory system

from silicon defects

[19]

Distributed BIST

mechanisms to validate

the integrity of

underlying hardware

during specific epochs

In case of an error, program

state is rolled back and the

disabled component is

removed to let the processor

run in a sub-optimal

performance mode

Table 1: Summary of monitoring based control techniques

2.3 Existing Approaches to On-Chip Communication

Since the introduction of the SoC concept, the solutions for SoC communication

structures have generally been characterized by custom designed ad hoc mixes of buses

and point-to-point links. More recently, networks on chip (NoC) [23][38][39] have

gained importance as valuable alternatives to buses. This section describes various on-

chip interconnection techniques that are currently used in SoCs and examines the

pertinence of these techniques for MNoC. Specifically, the following characteristics of

monitor interactions need to be addressed by a medium that serves as a monitor network

on chip (MNoC).

1) The bandwidth requirements for MNoC monitors are very diverse and are generally

lower than the bandwidth requirements of typical SoC cores, such as microprocessors

and associated memory.

2) The monitors are laid out on the chip in a very irregular fashion and hence the

network could be irregular unlike typical SoC networks.

3) A generalized monitor interface is difficult to specify because of the diversity of

monitors.

4) The number and kind of on-chip monitors included per SoC are likely to increase in

the coming years. As a result, a MNoC needs to be scalable to support increased

monitor diversity and count.

 21

5) Architectural support for monitors and associated interconnect must be lightweight

and consume minimal system resources.

2.3.1 Bus Based Interconnections

Buses constitute the straightforward form of SoC communication that is widely used in

contemporary SoCs. In a bus based interconnection, several communicating modules are

connected to a set of shared wires and an arbiter controls data transfer on the bus. The

arbiter evaluates requests from various peripherals and grants one of the requesters access

to the bus, based on the arbitration mechanism that it employs. Buses are simple and easy

to build. However, they suffer from a variety of disadvantages like poor scalability .Their

limitations are causing a shift towards alternative, more scalable communication models.

An FPGA thermal monitoring system described in [5] involves the connection of

temperature sensors and a controller using the On-Chip Peripheral bus (OPB) in the

Xilinx Virtex-2 Pro FPGA. Sensor information that is read by the controller through the

OPB bus can be used to implement various dynamic thermal management schemes.

The number of monitors that can be connected to a bus is limited by its scalability. If

numerous SoC monitors need to communicate to a centralized destination like in MNOC,

a bus, by itself, is likely unsuitable. As the need for monitor integration increases, more

monitors need to be integrated using the bus and the performance of the bus begins to

degrade. Bus arbitration delays increase with the number of peripherals. Also, bandwidth

is shared among multiple monitors and the shared bandwidth might not suffice for some

higher data rate monitors like the critical path delay monitors explained in Section 2.1.3 .

The IBM Power6 architecture [48] interconnects multiple thermal, delay sensors and

 22

actuators via a high-speed serial bus. Addressable registers are used as the interfaces to

these components. Scalability is still an issue with such a type of interconnect. For

maximum flexibility and scalability, a move towards a shared, segmented communication

structure is required.

One other alternative available is to use the existing debug data channels for transporting

MNoC data. The JTAG boundary scan interface [49] provides a serial scan interconnect

which typically operates at 1 MHz. This low bandwidth chain consumes a minimal

amount of resources and provides scalability. A recent, enhanced debug system [50] uses

multiplexers to collate debug information to one or more debug control points. Unlike

MNoC, debug subsystems do not attempt to use collected information to influence SoC

run-time operation.

2.3.2 Point to Point Connections

Point–to-point links between a set of communicating modules allow for dedicated inter-

module communication. The full link bandwidth is always available and hence dedicated

point-to-point links provide the best possible bandwidth and latency. However, they

require a significant hardware overhead and the number of links increases exponentially

with the number of cores [24].

Point-to-point connections have been traditionally used for monitor data transport

because the limited number of monitor connections did not cause a significant overhead.

The thermal sensors on Intel’s Montecito processor [6], described in Section 2.2.1, are

directly connected to the micro-controller via analog-to-digital converters using point-to-

point connections. The resource manager in [27] controls system operating frequency and

 23

IP bandwidth allocation using readings from thermal and performance monitors, as

described in Section 2.2.2. The connection between the resource manager and the

monitors is a point-to-point connection as evident from Figure 13.

Figure 13: SoC resource manager controlling frequency based on thermal information from sensors

[27]

Point-to-point connections can be a good choice of interconnection for a small number of

closely located monitors. Since we anticipate that MNoC will cater to a number of

different kinds of monitors, it will not be realistic to assume a point-to-point connection

from every monitor to the MEP. Such point-to-point connections for MNoC would result

in a significant resource overhead.

2.3.3 Networks on Chip (NoC)

NoC is an approach for communications within large VLSI systems implemented on a

single silicon chip. In a NoC system, modules such as processor cores, memories and

specialized IP blocks exchange data using a network. A NoC is constructed from multiple

point-to-point data links interconnected by switches (or routers), such that messages can

be relayed from any source module to any destination module over several links, by

making routing decisions at the switches. Two important metrics that evaluate the quality

 24

of a network-on-chip are bandwidth
1

and latency. Bandwidth indicates the amount of data

that can be put on the network in a given amount of time and latency indicates delay

experienced by data in traveling from the source to the destination, along the network.

Generally, two kinds of NoC implementations are used in contemporary systems:

statically-scheduled networks and dynamic networks.

2.2.3.1 Statically Scheduled Network

 For a statically-scheduled network, a compiler schedules the allocation of buffers and

channel bandwidth prior to program execution. Statically-scheduled networks often

require the assignment of cycle-by-cycle communication by a compiler [40] . This kind

of communication infrastructure offers limited flexibility for dynamic bandwidth

allocation and data-dependent communication patterns which makes it unsuitable for

MNoC.

2.2.3.2 Dynamic Network

Unlike a statically-scheduled network, a dynamic network [2] allocates resources and

schedules communication at runtime. Ethereal NoC [29] developed at Philips is a

dynamic NoC. Network routers are the key elements of a dynamic network. Routers

handle communication by implementing routing protocols that forward data from the

source to the destination. The fundamental components of a dynamic network are shown

in Figure 14 and are summarized below

1
 Throughput, data rate and bandwidth will be used synonymously in this document. Bandwidth is the

maximum data rate which is only limited by physical factors. Throughput is the actual achievable data rate

which is a fraction of the bandwidth.

 25

 Figure 14: Generic NoC architecture [24]

1) The cores are the actual communicating modules which are monitors in case of

MNoC.

2) Network adapters implement the interface by which cores connect to the NoC.

Their function is to decouple computation (the cores) from communication (the

network). At the network interfaces, the actual data is broken down into smaller

units of data called flits(flow control digits) and is appended with information

like source, destination, flit id etc that help in routing and reassembly at the

destination. The first flit in the data is called a head flit; the last one –tail flit and

the remaining ones are called body flits. All the flits of one datum make up a

packet

3) Routing nodes or routers route the data according to chosen protocols. The routers

typically have one port that connects to the communicating core and a few other

ports that connect to adjacent routers. The router shown in figure 11 has one port

 26

connected to the core and four ports connected to the routers on its north, south,

east and west.

4) Links connect the routing nodes, providing the raw bandwidth. They may consist

of one or more logical or physical channels.

Various network issues need to be addressed while building NoCs are listed below.

1) Network Topology: The topology defines the layout and connectivity of network

nodes. A regular or an irregular topology can usually be chosen depending on the

type of traffic, area and delay requirements and more importantly based on the

physical placement of the communicating cores. The network topology shown in

Figure 2.9 is a regular mesh topology where every router is connected to every

other adjacent router.

2) NoC Routing Protocol: The NoC routing protocol determines how data is routed

through the network. An effective protocol allows routers to efficiently direct

packets from different sources to different destinations in the network fabric.

There are several factors that must be considered when developing a suitable

routing protocol [24]

a. The routing protocol can use shortest path or non-shortest path routing.

Shortest path routing in a pre-defined topology can sometimes lead to an

uneven load distribution across the NoC, but often yields reduced power

consumption [30]

b. The routing protocol can be a delay or a loss protocol, depending on

whether the network delays packets or drops them in the case of

congestion. Dropped packets must be resent.

 27

c. The routing protocol can be deterministic or adaptive depending on

whether the routing path is determined by the source and destination alone

or determined at each router based on the network congestion.

Deterministic routing is attractive for minimum energy and simple router

implementations. Adaptive routing implementations are more complex but

are more efficient in handling traffic

d. These choices need to be made based on the required area-power-

performance trade-offs and the type and amount of network traffic

requirements.

3) The Network Router: The network router itself is made of components like

input-output buffers, arbitration units and a crossbar switch that connects the

router input-output ports. The inclusion of logically separate virtual channels that

integrate into one physical channel can bring about router performance

improvement [25].This performance benefit comes at the cost of significant

resource overhead since multiple logical channels must be multiplexed on a single

physical channel. The choice of buffer sizes, arbitration unit design and switch

design directly influence the area, power and performance numbers of the router

and in turn those of the network. These effects are elaborated further in Chapter 3

4) Switching: Switching defines how packets move through the routers [26] . The

most important modes are store-and-forward, virtual cut-through and wormhole.

a. In store-and-forward mode, a router cannot forward a packet until it has

been completely received. This leads to high latencies because the header

 28

and the body flits have to wait until the last flit of the packet arrives. Only

then the packet can be forwarded to the next switch. The buffers sizes also

need to be large in such a mode

b. In virtual cut-through mode, a router can forward a packet as soon as the

next switch gives a guarantee that a packet will be accepted completely.

Thus, it is necessary for the buffer to store a complete packet, like in store-

and-forward, but in this case with lower latency communication.

c. The wormhole switching mode is a variant of the virtual cut-through mode

that avoids the need for large buffer spaces. A packet is transmitted

between routers on a flit by flit basis. Only the header flit has the routing

information. Thus, the rest of the flits that compose a packet must follow

the same path reserved for the header [26]. Wormhole routing is typical of

low latency, low overhead implementations and is the one to choose for a

low overhead MNoC.

5) Congestion control, reliability and deadlock
2
 and avoidance should be addressed

by the network and the implemented protocol [30].

The choice of each of these parameters directly influences the area and performance of

the network. The final design is a balanced trade-off based on the cost requirements of

the communicating cores. For MNoC, the communicating modules are monitors.

NoCs have not yet been used in the context of communication of monitor data because

most monitoring based control explored so far is restricted to a few local monitors, which

do not demand a highly scalable and high bandwidth medium like NoC. For MNoC

2
 Deadlock is a condition where network resources continuously wait for each other to be released.

 29

however, we perceive that a NoC like interconnect would be essential because our

monitor network enables communication for large numbers of different kinds of monitors

spread across the chip, some of them requiring high bandwidth transport media. For

scalable, low-latency data transfer, NoC would be most suitable. The NoC resource

overhead should be kept at a minimum to achieve a low overhead MNoC.

 30

CHAPTER 3

MNoC ARCHITECTURE

The various components that make up the network and our overall approach to

distributed on-chip monitoring are discussed in detail in this section.

3.1 MNoC Components and Features

Conventional system-on-a-chip hardware is augmented with additional components for

monitoring, verification, and response. Multiple monitors are added to each major

component of the SoC. The monitors are linked by a monitor network on-chip (MNoC), a

heterogeneous communication substrate containing low-overhead routers, buses, and

multiplexed connections. The MNoC is interfaced to a monitor executive processor

(MEP) which provides a software layer to implement new monitoring algorithms. MNoC

has been designed to incur minimal area and power overhead compared to a general

purpose on-chip interconnect by optimizing its width, access control, arbitration,

flexibility, and bandwidth to the monitor data collection task. Although the MNoC

components described in this thesis were designed, placed and connected manually,

components have been designed to allow for eventual automated construction, placement,

and routing. Specific challenges of the work include the development of monitor-network

and network-MEP interfaces to accommodate different monitor types and the

development of interconnection components for irregular topologies and mixed-priority

traffic.

In general, the spread among the required bandwidths of different monitors is large.

Thermal monitors typically require a low bandwidth on the order of Kbps [6], while

 31

delay monitors have bandwidth requirements that are often on the order of Mbps or

higher [48]. As a result, MNoC supports interconnected combinations of multiplexers,

buses, and low-overhead network routers, as shown in Figure 15. High bandwidth

monitors are directly connected to routers, while the lower bandwidth monitors are

connected via multiplexers or a bus that connects to the network as shown in the Figure

15. For small bandwidth, read-only monitors, a connection to the router using a

multiplexer, as seen in the lower, right of the figure, is suitable. The following sections

describe the architecture of MNoC in further detail.

MEP

R R

R

RR

M

M

M

X-Bar

Input Buffer
Port

Control

D

M

D

M

T

Interface

MEP – Monitor Executive
Processor

R – Router
M – Monitor

D – Data
T – Timer module

Figure 15: Detailed view of MNoC for multiple cores

3.2 MNoC Topology and Connections

On-chip monitors are typically distributed in an unorganized fashion, necessitating an

irregular interconnect topology. We assume an irregular mesh topology of routers for

 32

MNoC, whose placement is dictated by the distribution of monitors. Two types of

monitors are supported by MNoC: (1) data pull monitors that put data onto the network

at regular intervals and (2) data push monitors that report data to the MEP occasionally.

For example, thermal monitors that report temperature periodically can be classified as

data pull, while error monitors that report data only in the event of an error are data push.

For data pull monitors, data requests are forwarded to the monitors by the associated

router interfaces. Interrupts are used to support unexpected events detected at data push

monitors. Detailed description of the monitor-network interface is given in Section 3.6 .

MNoC traffic is entirely monitor data that is communicated to the MEP and no monitor-

monitor communication is required. Monitor data in the network is classified into two

different priority levels. Messages to the MEP from data push monitors are usually

critical in nature and are hence tagged with a higher priority. Messages from data pull

monitors are typically regular priority unless there is an emergency event at the monitor.

High priority data is routed through the network using dedicated resources in the routers.

Sections 3.6 and 3.7 elaborate on the hardware support available in the network routers

and interfaces that allow for low latency priority data transfer.

3.3 MNoC Packets

Monitor information is transported on the network as packets of data. The packetization

of data is performed at the network interfaces, described in Section 3.6. Packetization

involves appending the monitor information with additional routing information and

converting each packet into flits of data. The additional data comprises of destination

information required for routing, source information required by the MEP to identify the

monitor from which the data is originating and a time stamp to identify the time at which

 33

data was sampled .The packet format for MNoC is shown in Figure 16

Packet ID

(2 bits)

Flit Type

 (00 = Header)

Message

Destination

Packet ID

(2 bits)

Flit Type

 (01 = Body)
Monitor data

Packet ID

(2 bits)

Flit Type

 (10 = Tail)
Monitor data

Priority

(1 bit)

Figure 16 : MNoC packet format

The figure shows 3 flits that constitute a packet. The first flit of the packet, the header flit,

contains the destination router information that is required to implement the MNoC

routing protocol. MNoC supports variable packet sizes, so a packet can contain any

number of flits, the minimum being 2 flits – header and tail. The packet identifier is a 2

bit wide field which, along with the message destination, uniquely identifies a packet.

The width of the message destination field varies depending on the size of the network.

MNoC flit width is chosen to be the same as the width of the physical channel and is at a

minimum the sum of the sizes of the packet ID, flit type, priority field and message

destination. The packet ID and flit type fields are also present in the body and tail flits.

The remaining fields are substituted with a monitor data field which contains the actual

monitor data and the source monitor information. A time stamp from an embedded timer

is also appended to indicate the time at which data was sampled. This information is used

by the MEP to identify the time frame of data to initiate the appropriate response. For

example, if a monitor generated a temperature value of 20 degrees at time t = 1ms and the

data is received at the MEP at time t = 1.5ms, the MEP interprets the current temperature

value to be 20.03 degrees using an average temperature gradient of 0.06 deg/ms.

 34

3.4 MNoC Routing Protocol

The most commonly used adaptive routing protocols involve expensive router

implementations [24] and are suitable for very high and unpredictable traffic rates.

However, a low overhead MNoC does not warrant such complex routing protocols. For

MNoC, we use a static distributed routing protocol which involves the use of routing

tables at every individual router in the network. Each routing table is a lookup table that

can be indexed using the destination address. For every possible destination, the table

contains information about the output port that the packet needs to be routed through.

Figure 17 shows some sample entries in a routing table. The table indicates that a packet

entering the router and headed to Destination1 will have to leave the router through the

East port. Such tables at every router guide the packet towards its destination.

Figure 17 : Sample MNoC routing table

We use a fault tolerant mesh routing algorithm [52] to generate paths that are stored in

the routing tables. The irregular placement of monitors results in an irregular mesh

topology for MNoC. The algorithm [52] is originally constructed to deal with faulty NoC

nodes adaptively. In case a link or a router goes down, the packet works its way around

the fault. An irregular mesh network is equivalent to a faulty mesh in terms of missing

links and routers. So this fault tolerant algorithm can also be applied in the context of

irregular meshes. Irregular networks can lead to concerns regarding deadlock. The

routing algorithm [52] is deadlock free and hence the paths generated guarantee deadlock

 35

free routing in the network. Typically virtual channels in routers are used to avoid

deadlock in irregular networks [63]. The algorithm in [52] requires no virtual channels

and hence reduces the overhead due to implementation of the routing protocol.

The algorithm itself is based on the concept of isolating non-existent or faulty nodes

using the idea of forming faulty rings and chains [64]. Certain existent nodes are also

deactivated to form a rectangular region of un-routable nodes. The packets are then

routed along the circumference of the rectangular regions. Routing is performed in a way

that avoids the formation of the rightmost column segment of a circular waiting path thus

avoiding deadlock.

Since no monitor-to-monitor communication is assumed in MNoC, the overhead incurred

with routing tables is minimal. This non-adaptive routing protocol allows for a very

lightweight router implementation because the overhead for adaptive route evaluation is

eliminated. MNoC will also implement wormhole switching [51] which ensures the

lowest latency with the least amount of buffer space

3.5 The MNoC Router

The low bandwidth required by most monitors is exploited to minimize MNoC router

area. Unlike typical NoC routers, MNoC routers provide sufficient bandwidth and latency

with small eight bit data widths and minimal (e.g. 4) buffer sizes. Each router is further

optimized by removing unused data ports as a result of the irregular mesh topology. The

MNoC router is built to be highly parameterizable. The optimal buffer sizes and widths

can be determined based on the required latency and bandwidth for different monitoring

systems. The choice of these parameters is ultimately a trade-off between performance

 36

(in terms of bandwidth and latency) and overhead (in terms of area and power).

The main components that make up the MNoC router are: input buffers that store

incoming flits, the crossbar switch that connects every input to every possible output,

control logic and the routing table that determines the next hop of the incoming flit. The

width of the input buffers is the same as the flit width and the channel width. The buffer

depth, which we refer as buffer size, is customizable. Figure 18 shows the architecture of

one specific port in a MNoC router.

Figure 18: MNoC router architecture

For MNoC, we choose to use input buffering is used instead of output buffering because

of the low overhead that input buffering offers [53]. Head-of-line blocking, a possible

drawback of input buffering, is insignificant in the case of MNoC because most MNoC

traffic is directed towards the MEP. So it is most likely that a packet queued behind a

blocked packet in an input buffer is also heading to the same destination, the MEP. The

 37

packet can be considered queued because its output port is busy and not because it is

blocked by another packet at the head of the queue. MNoC avails the advantage of low

overhead input buffers without affecting performance. Every input channel in the router

is multiplexed into two separate virtual channels, a priority channel and the regular

channel. The priority channel is used to exclusively transfer critical monitor data.

A packet that is injected into a network with a high priority (priority field in the packet

header is set to 1) enters the priority channel and travels in the same channel until it

reaches the destination. This channel is reserved exclusively for critical data and is not

used for regular data transfer. Effectively, packets remain in the channel determined at

packet injection. MNoC employs a credit based flow control to regulate data traffic and

to avoid packet dropping. To facilitate this, every router has buffer slot counters that keep

track of the number of empty buffer slots in the regular and the priority channels on the

adjacent routers. Traffic departs to the adjacent routers only when there is buffer space

available. The counter is incremented when buffer slots become available and vice-versa.

The availability of a buffer space is communicated by adjacent routers using credit

messages. Flits that enter the MNoC router are buffered in the appropriate input channel

and subsequently go through three router pipeline stages before reaching the next hop:

routing table look up, switch arbitration, and switch traversal.

In the routing table look up stage, the packet destination is used with a routing table to

determine the destination output port. Only the header flit goes through this pipeline

stage. The routing table can be simultaneously accessed by header flits from any number

of input channels. Hence, no arbitration is required at this stage. Once the destination

 38

output port is known, the flit enters the switch arbitration stage. All types of flits go

through this pipeline stage, although the header flit is dealt with differently. Since MNoC

implements a wormhole routing approach, the header flit first gains access to the output

port and the port is then reserved until all flits in the packet reach the next hop. For the

header flit, the purpose of this stage is twofold. In the first phase, the flit sends a request

to the switch arbiter for access to the destination output port. If the output port is not

available, the header flit waits in the input buffer until it becomes available. If the port is

available, the header flit gains access to the port for the entire length of the packet. The

flit then enters the second phase where it sends a request for access to the crossbar switch

to enter the next router’s input port through the destination output port. The request is

sent, provided the buffer slot counter indicates the presence of a free buffer slot.

Otherwise, the flit waits in the queue until a buffer slot becomes available. Once switch

access is granted, the flit goes through the final pipeline stage where it traverses the

crossbar and enters the same channel (regular or priority) in the next router. The

corresponding buffer slot counter in the router is then decremented. Also, a credit

message is sent back to the previous router indicating that the flit has now moved out of

the input buffer. Since the output port is already reserved by the header flit, the body and

the tail flits only go through the second phase of the switch arbitration stage. The access

to the output port is released when the last flit (tail flit) leaves the port. The port can now

be claimed by a header flit from another packet. The priority channel is given preference

in the entire switch arbitration stage to ensure lowest possible latency on that channel.

Among requests from the regular channel, the arbiter grants access in a random fashion.

 39

3.6 MNoC Router – Monitor Interface

Monitors in a system can either have dedicated interfaces to network routers or can

interface to the routers through shared buses or multiplexers. The interfaces need to be

generic and should allow for the interfacing of any kind of monitor to the network. The

control logic should be able to support both data push and data pull monitors. Also

synchronization issues that result out of different monitor and network frequencies need

to be addressed. In our architecture, the monitors and the network router connect through

a master-slave interface, the router end being the master and the monitor, a slave. The

architecture of the monitor-network interface is shown in Figure 19.

Figure 19 : MNoC monitor – network router interface

The interface control logic is built to read data at a pre-determined rate from the

connected monitors i.e. there is a control state machine at the router interface that

generates read addresses for each of the connected data pull monitors according to a pre-

set schedule. Also, any data pull type of monitor connected at the interface has a

dedicated interrupt line connected to the router interface and has a capability to generate a

interrupt indicating that it needs to be read. On the event of an interrupt, the controller

breaks away from the original sequence to generate a read address for the interrupting

 40

monitor. It then returns back to the original schedule. Any data read from an interrupting

monitor is tagged as high priority data. Once the monitor data is read, the controller

appends it with information about the originating monitor and priority value. The data is

then written into the synchronizing FIFO which is read by the packetization module. The

synchronizing buffers act as frequency translators and the size of FIFO depends on the

difference between rate of production of the monitor data and consumption of data by the

network [22].

The packetization module converts the data to a format specified in 3.1.2 and forwards

the flits to the appropriate channel in the network (regular or priority), provided there is

space available in the buffers. In case the network is congested and the synchronizing fifo

is full the packetization module doesn’t accept any more data from the network interface.

The interface drops data from the monitors until the data is de-congested because only the

most recent data is relevant in a sensor network like MNoC.

3.7 Monitor Executive Processor – Network Interface

The MEP and the network router connect through a master-slave interface, the MEP

being the master and the router, a slave. A detailed view of the interface is shown in

Figure 20.

 41

Figure 20 : MEP -Network interface

Monitor data received from either of the channels in the router is read by a de-

packetization module at the network router-MEP interface. Data is read from the regular

channel only if there is no data to service in the priority channel. The de-packetization

module has storage to hold flits until the entire packet arrives. It then reassembles the

packet, removes the routing information and forwards the monitor data along with the

source information into the synchronizing FIFO. The source information is required by

the MEP to identify the monitor from which the data originates. The synchronizing FIFO

also contains separate queues for regular and priority data. The MEP software should be

programmed to read information from the FIFOs at regular intervals by generating the

Read_req signal. Again, priority queue data is forwarded to the MEP by the interface

control module before data in the regular queue. The FIFO addresses synchronization

issues and is sufficiently sized to ensure that no data is dropped.

Once data is received, the MEP uses the source information to determine the type and

location of the monitor that sent out the data and takes necessary action by affecting

system parameters.

 42

CHAPTER 4

 MNoC VALIDATION APPROACH

In order to validate the MNoC approach and evaluate trade-offs for various design

constraints, such as area, bandwidth and latency, a series of synthesis and simulation

experiments have been performed. The efficiency of our monitor interconnect is assessed

for a multicore system using both an interconnect and a system-level architectural

simulator. The Popnet interconnect simulator [10] has been significantly modified to

estimate bandwidth and latency values for the heterogeneous MNoC interconnect. The

overhead of the monitor network-on-chip interconnect has been measured via hardware

synthesis. Finally, architectural simulations were performed using the SESC architectural

simulator [54] to quantify the benefits of employing MNoC at a system level. SESC is an

architectural multiprocessor simulator that models the power and performance of various

multi processor architectures. The power model that is integrated in the SESC is based on

Wattch [56] for processor architecture and CACTI [57] for caches. The temperature

model is based on Hotspot [58] that is called SESCSpot. SESCSpot, similar to Hotspot,

calculates temperature of the sub blocks based on the power trace of the architecture in a

post processing fashion.

4.1 MNoC Performance Evaluation

The bandwidth and latency evaluation of chosen MNoC configurations was performed

using a modified version of the Popnet simulator [10]. Popnet simulates traffic on a cycle

by cycle basis and gives an estimate of the average time (in terms of network clock

cycles) a packet takes to reach the destination. It simulates a mesh network with pipelined

virtual channel dynamic routers. Network parameters like network size, injection rate,

 43

input buffer size, flit width and packet size are customizable. To rightly estimate the

performance of MNoC, popnet was modified to implement the MNoC protocols and

interfaces. Specific modifications and additions that were performed on the simulator are

listed below.

Popnet simulator originally implements a five stage router pipeline which we modified to

implement the MNoC three-stage router with priority channel support. The reduction in

the number of pipeline stages in the router leads to a reduction in the latency incurred by

a packet at a single hop and leads to an overall reduction in latency. The buffering

strategy at the router was modified to just input buffering instead of both input and output

buffering. This is because input buffering is more advantageous in the context on MNoC

as described in Section 3.5. The virtual channel arbitration stage originally present in the

popnet simulator was modified because MNoC packets are not required to go through

virtual channel arbitration as packets remain in the same virtual channel that they enter at

the time of injection. The simulator has also been extended to support expanded

interfaces for buses and multiplexers.

Popnet originally simulates a regular mesh network while monitors are distributed on the

chip in an irregular fashion. To enable the evaluation of realistic MNoC topologies, the

simulator was modified to support irregular topologies. This involves modifying the

address space of the routers and monitors, the number of input/output ports in the router

and the connections between routers. Also, Popnet implements an XY routing protocol

which is a preferred protocol for mesh networks due to its dead-lock free operation. XY

routing cannot be used for an irregular topology. Popnet was modified to support the

 44

static distributed routing protocol described in Section 3.4. This involves changes in the

routing logic and addition of routing tables at every individual router in the network. The

paths from every router in the network to the MEP were generated using the deadlock

free routing algorithm [52] and the routing tables were populated with the generated

routes. The simulator, in modified form, allows for a complete evaluation of various

MNoC topologies and components.

4.2 MNoC Overhead Estimation

To estimate the overhead of our MNoC approach, we developed a synthesizable

hardware model of the MNoC router. The hardware model is parameterizable and allows

for evaluation of area for different router parameters. The hardware model was

synthesized using Synopsys Design Compiler using a 90nm standard cell library [55].

The input, output buffers at all the ports of the router are of customizable widths and

depths. The buffer width is same as the flit width and the physical link width. Reducing

this negatively impacts the performance of the network but offers an area saving. Similar

is the impact while reducing the buffer depth. The control logic in the router, the routing

table and the crossbar switch also add a fixed amount of area overhead. The routing logic

that determines the next hop of a flit by looking up the routing table, the switch arbiter

that controls access to the crossbar, and the output control logic that reads credit

messages and controls traffic on the physical channel are components of the control logic.

The synchronizing buffers, packetization modules and the control logic at the interfaces

also contribute to the overhead of MNoC. A hardware model of the interfaces was

created to estimate the overhead. Results from hardware synthesis of MNoC for specific

systems are presented in Section 5.

 45

Assuming that the physical links between routers can be traversed in one clock cycle, the

frequency at which the routers operate dictates the frequency of the entire network. The

maximum bandwidth of the router is a product of the router frequency and router width

(same as the flit width). The router hardware is pipelined, as described in Section 3.5 , to

allow for high frequency operation. The hardware model created for the area estimation

was used to assess the maximum frequency of the router.

4.3 MNoC System Level Validation

Our generic approach to system level MNoC validation is shown in Figure 21.

Identify and build
parameterizable MNoC

components

Building
MNOC

Infrastructure

Validate

MNOC for
sample

monitoring
systems

Simulate , using Popnet simulator, a suitable
topology with monitor layout information

Parameter tuning
for different area
and performance

values

Assess system level
design constraints

using SESC and area

constraints using the
hardware model

Monitoring
Requirements

(latency, BW,
area, power)

Figure 21 : MNoC validation approach

In general, for any specific monitoring system, the network components for MNoC

should be chosen and sized in a way that satisfies system bandwidth and latency

requirements with a minimal resource overhead. The latency and bandwidth requirements

depend largely on the type of monitor and the reaction that the MEP takes in response to

monitor data. As described in Section 4.1, the network performance of the chosen MNoC

topology can be estimated using the modified Popnet simulator. The overhead can be

 46

estimated using our hardware model. A system level architectural simulation can then be

performed to ensure that the latency and bandwidth provided by MNoC are sufficient and

allow the MEP to react to monitor data in a timely fashion. Mismatches can be corrected

by tuning the network parameters and re-evaluating the network performance and

overhead. Timely MEP reaction translates to a quantifiable system level benefit that can

be measured using the architectural simulation.

 47

CHAPTER 5

EXPERIMENTAL APPROACH AND RESULTS FOR VALIDATING MNOC

To test our Network on Chip approach for monitors, we have identified some sample

systems which will benefit from such an approach. These systems are representative of a

larger set of monitoring systems that MNOC can cater to. This section describes two

sample systems and MNoC’s application for these systems.

5.1 Thermal Management Using MNoC

Contemporary processors use around 10-25 thermal sensors per core [9] and as the

number of cores on a die increase we can foresee the need of collating data from a large

number of thermal monitors from across the chip. Using point to point connections for

such a large number of monitors to a centralized controller with a low resource overhead

is not a feasible task. Also, connecting such a large number of monitors to a bus

significantly degrades the performance of the bus. So from a scalability standpoint, a

MNoC like network becomes essential although the actual bandwidth required by thermal

monitors is considerably less. For a chip temperature gradient of 60degC/sec and a

precision of 1.2 degC , it suffices to sample the thermal monitor once every 20ms [6].

Assuming a 12 bit data to be transported at this sampling rate, the monitor bandwidth is

around 0.6 Kbps.

To evaluate the benefits of MNoC in a system that processes thermal information, we

perform an interconnect and system-level simulation of a thermal monitoring system on

an 8 core processor. The goal of the experiment is to use MNoC for collating temperature

data from a group of thermal monitors spread across cores and to perform dynamic

 48

frequency scaling (DFS)[59] if preset thermal thresholds are exceeded. The delays

associated with MNoC were simulated using the modified Popnet simulator. SESC was

used for the system level simulation which involves generating thermal data and

simulation of the MEP that performs dynamic frequency scaling.

In this experiment, 24 thermal monitors on each of the 8 processor cores report

temperature values from various locations on the chip. The processor cores used here are

based on the AMD Athlon 64 processor [60]. The layout of the eight core system is

shown in Figure 22. There are two MNoC routers per core, each of which collects

thermal data from 12 thermal monitors using a multiplexer. Thus 192 thermal monitors

from eight cores connect to 16 routers through 16 multiplexers. Since thermal monitors

can be classified as low bandwidth data pull monitors, low bandwidth multiplexer

connections were used. The MEP is attached to a dedicated router as seen in Figure 22.

Figure 22 : Monitor network on chip layout for thermal monitors on an 8 core processor

 49

The MEP was placed at a central location to the routers. The resultant network topology

is an irregular mesh which is effectively a regular 5x5 mesh with missing routers and

links. A dummy router adjacent to the MEP was added to facilitate routing. Without this

router, some of the routers must be marked as deactivated nodes which are not reachable

[52]. With this 18 router setup, the deadlock-free routing algorithm [52] was used to

generate paths from every router to the MEP. Each of the 18 routers can be addressed

using 5 bits, so the message destination field is 5 bits wide. The actual temperature values

are 12 bit wide. An additional 8 bits are required to identify the origin of the data from

among the 192 monitors.

5.1.1 Interconnect simulation results

Our modified interconnect simulator was used to evaluate the behavior of the above

described network for different network parameters. Figure 23 shows a plot of network

latency versus injection rates for various router buffer sizes. The value on the X axis,

cycles between injections, indicates the number of clock cycles between two sampling

points for the thermal monitors Network latency (the Y axis) indicates the time required

(in clock cycles) for data to travel from a monitor to the MEP. Figure 24 shows the same

plot for the priority channel. We simulated 5% of the total traffic to be priority traffic to

assess the latency on the priority channel. It is clear from the plot that the latency on this

channel is more or less constant and is ideally suited for low latency critical data transfer.

There is practically no impact of buffer sizes on the latency. Figure 23 indicates a

significant dependence for the regular channel on the input buffer size for sizes less than

4. For buffer sizes greater than and equal to 4, limited latency reduction is achieved by

 50

increasing buffer size. For longer cycles between injections, the regular channel latency

becomes insensitive to buffer sizes.

Regular channel latencies for different buffer sizes and

data width = 12

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000 1200

Cycles between injection

N
e
tw

o
rk

 l
a
te

n
c
y

(C
lk

 c
y
c
le

s
)

100

16

12

8

6

4

3

2

Buffer

Buffer size

Figure 23 : Regular channel latencies for different buffer sizes

Figure 25 shows a plot of network latency versus injection rate, for different flit widths.

As we can see from the plot, for very low sampling rates (cycles between injection >

800), the latency becomes independent of the flit width. For higher sampling rates, the flit

width that gives ideal latency increases with increasing cycles between injections.

Priority channel latencies for different buffer sizes and

data width = 12

0

5

10

15

20

25

0 200 400 600 800 1000 1200

Cycles between injection

N
e
tw

o
rk

 l
a
te

n
c
y

(C
lk

 c
y
c
le

s
)

100

16

12

8

6

4

3

2

 Buffer size

Figure 24 : Priority channel latencies for different buffer sizes

 51

Regular channel latencies for different data widths for buffer

size = 4

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500 600 700 800 900 1000 1100

Cycles between injection

N
e
tw

o
rk

 l
a
te

n
c
y

 (
C

lk
 c

y
c
le

s
)

11

12

14

16

18

20

Data width

Figure 25 : Regular channel latencies for different flit widths

Overall, it can be inferred from the results that for higher cycles between injection (lower

sampling rates and hence lower required bandwidths), the latency values are mostly

insensitive to network parameters like buffer size and flit widths. Adding more resources

adds overhead but yields little benefit. At such low sampling rates, like in the case of

thermal monitors, close to ideal network latency can be achieved with minimal network

resources. Monitors with higher sampling rates have latencies that are highly network

dependent. These monitors usually dictate the choice of network parameters.

5.1.2 Hardware estimation results

While the interconnect simulation provides an insight into the network performance with

varying parameters, the hardware estimates from Table 2 are essential to evaluate to

ensure that the network overhead is within system design constraints. 17% of the total

resources are consumed by the network interfaces and the remaining 83% is consumed by

the network itself. Of the total network resources, 35% is consumed by control logic,

 52

49% by input buffers in the routers and the remaining 16% is consumed by switches,

routing tables etc.

Flit width Buffer size

Total MNoC area at

90 nm in mm
2

12 2 0.700

14 2 0.765

16 2 0.825

18 2 0.890

20 2 0.950

12 4 0.819

14 4 0.894

16 4 0.970

18 4 1.043

20 4 1.116

12 8 1.084

14 8 1.201

16 8 1.314

18 8 1.420

20 8 1.530

12 16 1.571

14 16 1.751

16 16 1.919

18 16 2.094

20 16 2.262

Table 2 : MNoC area results

5.1.3 Architectural simulation results

In this section we demonstrate how an MNoC configuration that satisfies system design

constraints while providing a performance benefit can be constructed using results from

the interconnect simulation and hardware estimations. We use SESC to simulate eight

processors and one central MEP, as seen in Figure 22.

In this experiment, the 192 thermal monitors on the 8 core chip were sampled every 2ms

to provide a resolution of 0.1 degC. This number was determined assuming a maximum

 53

temporal temperature gradient of 60degC/sec [6]. To meet this bandwidth requirement,

an MNoC configuration with flit size of 12 bits and an input buffer size of 4 was used.

The resulting MNoC area from Table2 is 0.819 mm
2
. The temperature reported by the

monitors is collected by MNoC and transported to the MEP which uses the data for

dynamic frequency scaling.

Dynamic frequency scaling of a processor system improves system performance by

operating cores within power dissipation and temperature limits. Two experiments were

performed on the 8 core system to demonstrate the benefits of DFS on a benchmark

application. A floating point benchmark called Whetstone [61] is used to conduct the

experiments for a total of 450M instructions per processor. In one scenario, the system

was operated at a constant frequency of 500MHz to meet pre-defined power and

temperature limits and the run time consumed was noted. In this case since the predefined

temperature threshold is not exceeded, it was not necessary to employ MNoC. This is a

non-MNoC system. In a second scenario, MNoC is employed to transport thermal

monitor data which is used by a MEP to perform DFS. In this case, the operating

frequency of the system is toggled between 1 GHz and a lower frequency to ensure that

the specified power and temperature limits are not violated. The run time was again noted

and the resulting performance improvement was calculated. It was noted that MNoC

gives a 33% performance benefit for the 8 core system. To evaluate how the

performance benefit using MNoC scales with the number of cores, we also performed

experiments for 2 core, 4 core, and 12 core systems. The results obtained for various

system configurations are shown in Table 3. The advantage of employing MNoC

becomes is visible for all core configurations

 54

Freq = 500MHz

(90nm)

Freq = 1000

MHz + DFS

(90nm)

Cores

Run Time

Run Time

Performance

benefit

due to

MNoC

2 3.36 sec

2.42 sec

28 %

4 2.75 sec

2.25 sec

18 %

8 2.27 sec

1.52 sec

33 %

12 1.75sec

1.35 sec

23 %

Table 3 : Runtimes for MNoC and non-MNoC cases

Also, assuming an area of 378mm
2
 for a 90nm 8 core processor [45], we obtain the area

overhead of MNoC to be 0.819/378 = 0.21%. The SESC simulation results illustrate that

the chosen MNoC configuration allowed an implementation of the DFS scheme which

resulted in a performance benefit versus the non-MNoC case. The network overhead is

also a meager 0.21%.

5.2 Voltage Droop Management Using MNoC

As power supply voltages and associated noise margins continue to decrease, the control

of power supply voltage is becoming increasingly important for system performance and

reliability. Recently, voltage droop or dI/dt events are becoming serious concerns in high

performance processor designs. They are usually addressed by expensive packaging

techniques [47]. This experiment involves the use of real time monitoring and control

techniques that use MNoC to offset voltage drops at system run time. This approach to

dynamically handling voltage droops effectively reduces the complexity and cost of

building expensive packaging solutions.

 55

Critical path delay monitors are used to identify failing paths in the circuit which are

indicative of increasing temperature, wear-out or voltage droop. The critical path monitor

described in Section 2.1.3 will be used for experiments pertaining to this section. We

however assume that the most significant impact on the critical path delay is caused by a

voltage droop event. We particularly target the second and third kind of droops as

defined in [3]. The high bandwidth and low latency offered by MNoC enables such a real

time droop monitoring design.

The monitoring setup involves 8 delay monitors per core [7] which report digitized delay

values in 12 bits of data. This data will be transported to the MEP through MNoC. Since

delay values can potentially change every clock cycle, the monitors ideally need to be

sampled every clock cycle. Hence unlike the thermal monitors, the delay monitors require

very high bandwidth on the network. In response to a voltage drop event, we can either

increase the voltage or reduce the frequency of the core to enable correct operation of the

system. We simulated two different MNoC systems, one in which the MEP responds by

reducing the frequency of the core and another in which the MEP increases the voltage of

the core to avoid a serious voltage droop. Results provided in this section indicate that the

MNoC based systems provide a power or performance benefit compared to a system that

doesn’t employ MNoC. In a non MNoC system, the voltage or frequency needs to be set

to a highly conservative value that accounts for the worst case voltage droop. In contrast,

MNoC enables a better than worst case design rather than building systems that handle

worst case possibilities which are very rare in real workloads.

 56

5.2.1 Modifying voltage in response to voltage droop

Figure 26 details out our approach to countering a single voltage droop using MNoC. The

system requires cores to be operating at a voltage of 1.2Volts. Assuming a maximum

voltage droop of 20% , a supply voltage of 1.2V can reduce to 0.96V in the worst case.

This voltage is not sufficient to keep the core running at its original frequency. This is

due to the exponential dependence of circuit frequency on supply voltage as obtained

from [16]. In the event of a voltage droop, the delay monitors indicate an increase in

critical path delay. This information is transported to the MEP in a timely fashion using

MNoC, which then increases the supply voltage. This is in contrast to a non-MNoC case

where the voltage needs to be set to 1.4V (1.16 V + 20% of 1.2V, since the timing delays

between 1.16V and 1.2 V are almost insignificant) to account for the worst case droop in

the system. This less conservative approach to dealing with voltage droop leads to a

power savings when compared to the non MNoC case.

Voltage vs Time

1.1

1.15

1.2

1.25

1.3

1.35

0 50 100 150 200 250 300 350 400 450 500 550

Time in ns

V
o

lt
a
g

e
 i
n

 V
o

lt
s

Core voltage

Supply voltage

1) Voltage begins to drop

at 150ns

2) Voltage monitor sampled

 at 200ns 3) Sampled value reaches MEP

through MNoC after 50ns @ 250ns

4) MEP initiates an increase in supply voltage

and this is visible after a small VRM delay

5)Voltage continues to drop and is

 resampled at 300ns

6) Supply voltage is increased again to

 counter the drop sampled at 300ns

7) Drop effect is not visible from

 the sample at 400ns. So supply

voltage is changed back to normal

Figure 26 : Single droop recovery using MNoC

 57

It should however be noted that it takes a finite amount of time to detect, communicate

and react to a change in the critical path delay. The initial supply voltage should account

for the amount of voltage droop that can occur before any action can be taken. So the

initial supply voltage in the MNoC case is dictated by the delay in sampling the monitor,

MNoC delay and the voltage regulator settling time. With larger sampling times or

communication delays, the initial voltage to be set could be close to the worst case

voltage of 1.4 V. Table 4 gives an insight into how the initial supply voltage can vary

with increasing sampling intervals and MNoC delays on an 8 core processor. For small

sampling intervals
3
, the MNoC delay is very high due to congestion. For higher sampling

intervals, the MNoC delay is very low but the fact that we are sampling less often

compensates for the lower MNoC delay. Specific combinations of sampling intervals and

MNoC delays that yield a power benefit were determined experimentally and the results

are reported in the following sections. Assuming any voltage less than 1.16 V is

catastrophic, we arrive at the generic equation used to calculate the initial voltage as

shown below;

New voltage = Voltage droop rate *(Sampling interval + MNoC delay + voltage regulator

delay) * Network clock period + 1.16V

A network clock frequency of 510 MHz is used as determined from synthesis of the

network router. The voltage regulator delay also plays a significant role in determining

the initial voltage. The following section summarizes the assumptions made in this

experiment regarding the voltage regulator settling time.

3
 Sampling interval is the time between two samples of the delay monitor

 58

Assumptions regarding voltage regulator settling time

Traditional off chip voltage regulators use bulky inductors and capacitors which require

that the voltage regulator modules be separate off-chip components. These off-chip

voltage regulators typically have very slow transition rates of the order of micro seconds

[12]. Dynamic voltage and frequency scaling techniques [35] benefit systems by

modifying voltage and frequency at run time so as to maximize performance while

operating within specific power limits. The slow transition rates of off-chip voltage

regulators have limited the benefits of dynamic voltage and frequency scaling techniques

[13]. To take most advantage of the benefits of DVFS, there has been interest in building

on chip voltage regulators that avoid the need for bulky capacitors and inductors and

enable voltage regulator transition times of the order of nanoseconds [13, 65].

For this experiment we consider an on-chip voltage regulator [13] that has transition rates

of the order of nanoseconds and can vary voltage on a per core basis. The voltage

regulator described in [13] is designed to operate at higher switching frequencies that

enable it to switch voltages rapidly. The higher switching speeds however entail higher

voltage regulator power than regular off chip voltage regulators. On chip voltage

regulators need to be designed with minimal overhead in a way that these contrasting

requirements are traded off.

 59

Monitor sampling

interval (Clock
cycles)

MNoC Delay
(Clock
cycles) Voltage (V)

130 254.22 1.463

140 10.49 1.276

150 9.50 1.283

160 11.20 1.292

170 12.40 1.301

180 11.45 1.309

190 10.00 1.316

200 9.49 1.323

210 9.49 1.331

220 10.36 1.340

230 12.00 1.349

Table 4 : Variation of initial supply voltage for the MNoC based system as the monitor sampling

rates vary

Experiments to determine power savings were conducted on 4, 8 and 16 core processors

with a 9 router MNoC setup. One of the routers has a dedicated connection to the MEP

while the rest of the 8 routers connect to delay monitors through a multiplexer interface.

The network size remains the same as the number of cores increase. Effectively, the

number of monitors attached to each router increases as the number of cores increase.

The floating point benchmark Whetstone [61] was used to conduct the voltage droop

experiments. The interconnect simulator was used to estimate MNoC delays and SESC

was used to obtain the power trace of the application. A flit width of 16 and a buffer size

of 4 were chosen for the experiments. In an offline process, the voltage modifications

were applied on the power trace and the total power savings were calculated against the

non MNoC case. In the non MNoC case, the voltage for the entire run of the benchmark

was set to the worst case voltage of 1.4 volts. The percentage power savings recorded for

the 4 core, 8 core and the 16 core versions are shown in Figure 27, Figure 28, and Figure

29 respectively.

 60

Power savings with MNoC on a 4 core processor

-15

-10

-5

0

5

10

15

20

30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

Cycles between sampling of monitor

P
e
rc

e
n

ta
g

e
 p

o
w

e
r

s
a
v
in

g
s

Figure 27 : Power savings with MNoC on a 4 core processor

Power savings with MNoC on a 8 core processor

-15

-10

-5

0

5

10

15

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

Cycles between sampling of monitor

P
e

rc
e

n
ta

g
e

 p
o

w
e

r
s

a
v

in
g

s

Figure 28: Power savings with MNoC on a 8 core processor

Power savings with MNoC on a 16 core processor

-15

-10

-5

0

5

10

140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 300 320

Cycles between monitor samples

P
e

rc
e

n
ta

g
e

 p
o

w
e

r
s

a
v

in
g

s

Figure 29 : Power savings with MNoC on a 16 core processor

 61

As seen from the results, all three configurations result in power savings against the non

MNoC case for specific combinations of sampling rates and MNoC delays. But for a

given size of the network and a given bandwidth, the four core version has the best

savings. As number of cores increase the number of monitors increases, requiring more

bandwidth from the network. This type of trend clearly motivates the need for a scalable

medium like MNoC as against buses or serial links. The increase in power savings on a

16 core processor as the bandwidth of the network increases is shown in Figure 30. The

bandwidth of the network was increased by increasing the width of the router (same as

increasing the flit width). As expected, the highest bandwidth network yields maximum

power savings.

It can also be noticed from the results that certain values of sampling intervals yield a

negative benefit in terms of power. This is because the sampling or the network delays

are so high that the system gains no benefit from run time monitoring. Clearly, these

combinations of sampling intervals and MNoC delays will have to be avoided.

Power savings with increasing MNoC bandwidth on a 16 core processor

-15

-10

-5

0

5

10

15

130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

Cycles between sampling of delay monitors

P
e

rc
e
n

ta
g

e

 p
o

w
e
r

s
a
v

in
g

s

BW

2*BW

4*BW

Figure 30: Power savings with increasing MNoC bandwidth on a 16 core processor

 62

The percentage of power savings is also dependent on router components like buffer sizes

which can significantly influence MNoC delays. Figure 31 shows the power savings as

the buffer sizes in the individual routers are modified. The trend indicates that increasing

the buffer sizes beyond a buffer size of 8 doesn’t cause any significant improvement in

the power savings encouraging the use of smaller buffer sizes.

Variation in power savings in a 8 core processor with varying buffer sizes

-20

-15

-10

-5

0

5

10

15

120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Cycles between sampling of the delay monitor

P
e

rc
e

n
ta

g
e

 p
o

w
e

r
s

a
v

in
g

s

4

8

12

16

Buff

size

Figure 31: Variation in power savings with variable MNoC buffer sizes

Increasing the bandwidth of the network and using larger input buffers leads to an

increase in the MNoC overhead. It is necessary to quantify the area of MNoC to

effectively tradeoff system level MNoC benefits with the overhead incurred. Table 5 and

Figure 32 give an estimate of the overhead of MNoC for the 9 router configuration.

 63

 Flit width Buffer size Total MNoC area (mm2)

BW = B 16 4 0.484

 16 8 0.657

 16 12 0.805

 16 16 0.959

BW = 2B
 32 4 0.663

 32 8 1.098

 32 12 1.351

 32 16 1.650

BW = 4B 64 4 1.375

 64 8 1.983

 64 12 2.493

 64 16 3.028

Table 5: MNoC area estimates for the 9 router configuration

MNoC area with increasing network bandwidth

0

0.5

1

1.5

2

2.5

3

3.5

4 8 12 16

Input buffer sizes

A
re

a
 o

f
M

N
o

C
 i

n
 m

m
2

BW

2*BW

4*BW

Figure 32 : Quantifying MNoC area overhead

5.2.2 Modifying frequency in response to voltage droop

Another alternative to countering voltage droop is to reduce the frequency of the core in

the event of a droop. This experiment was conducted on similar lines as the voltage

modification experiment. It was assumed that the cores could operate at a frequency of

1GHz at a voltage of 1.2 V. In case of a worst case drop, the voltage can reduce to 0.96V

 64

in which case the core cannot operate at a frequency higher than 0.66 GHz. This value

was again obtained using the dependence of circuit frequency on supply voltage as

obtained from [16]. The initial frequency depends on the sampling interval, MNoC delay

and the time its takes for the frequency change to take effect

Assumptions regarding frequency transition rates

Frequency transition rates are quicker than voltage transition rates and can be of the order

of a few nanoseconds [67]. Also, a clock system that enables fast frequency

modifications without PLL re-lock penalties is described in [66]. Enabling rapid, per core

frequency scaling benefits the MNoC assisted system in terms of performance. Table 6

indicates how the initial frequency of the cores can vary with increasing sampling

intervals and MNoC delays. Higher frequency transition rates require that the initial

frequency shown in Table 6 be set more conservatively.

Sampling
interval (

Clock
cycles)

MNoC Delay
(Clock cycles) Frequency(Ghz)

90 104.17 0.769

110 10.49 0.885

120 12.00 0.868

130 9.49 0.852

140 9.49 0.836

150 13.22 0.820

160 11.54 0.805

170 9.49 0.790

180 9.49 0.775

190 9.49 0.761

Table 6 : Variation of initial frequency for the MNoC based system as the monitor sampling rates

vary

 65

Experiments to estimate the performance benefit of using MNoC were conducted on 4, 8

and 16 core processors with a setup of 9 routers. The floating point benchmark

Whetstone [61] was again used to conduct the voltage droop experiments. The

interconnect simulator was used to estimate MNoC delays and SESC was used to obtain

the run-time trace of the application. In an offline process, the frequency modifications

were applied on the power trace and the total run-time savings were calculated against the

non MNoC case. In the non MNoC case, the frequency for the entire run of the

benchmark was set to the worst case frequency of 0.66 GHz. The percentage performance

savings recorded for the 4 core, 8 core and the 16 core versions are shown in Figure 33.

Performance benefit with varying MNoC bandwidth is indicated in Figure 34. The trends

are similar to those noticed in Section 5.2.1

Performance benefit in multicores using MNoC

-15

-10

-5

0

5

10

15

20

25

30

30 50 70 90
11

0
13

0
15

0
17

0
19

0
21

0
230 250 27

0
30

0

Cycles between sampling of the delay monitors

P
e

rc
e

n
ta

g
e

 p
e

rf
o

rm
a

n
c

e
 b

e
n

e
fi

t

4 cores

8 cores

16 cores

Figure 33: Performance benefit in multi-cores using MNoC

 66

Performance benefit with varying bandwidth on a 16 core processor that uses

MNoC

-15

-10

-5

0

5

10

15

130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

Cycles between injection of delay monitor

P
e

rc
e

n
ta

g
e

 p
e

rf
o

rm
a

n
c

e

b
e

n
e

fi
t

BW

2*BW

4*BW

Figure 34: Performance benefit with varying MNoC bandwidth

Overall, the experimental results from this section indicate that the high bandwidth and

low latency offered by MNoC enable a run time adaptation of voltage/frequency that

yields close to 20% improvement in power/performance compared to a non MNoC

system.

 67

CHAPTER 6

 CONCLUSIONS AND FUTURE WORK

This thesis presents a scalable and lightweight interconnect approach for monitor

connections. We developed the necessary infrastructure to test the performance and

evaluate the overhead of various network configurations and topologies. Our

parameterizable network solution allows for the development and assessment of various

design trade-offs for on-chip monitoring systems. The approach is validated by

demonstrating the performance benefits obtained on a multicore processor system that

uses a MNoC based thermal monitoring system. Also, when employed to transport

information on a delay monitoring system, MNoC provides enough bandwidth and

latency to allow the MEP to adjust voltage/frequency in response to voltage droops at run

time. This is in contrast to statically setting conservative voltage and frequency values.

This leads to an overall power/performance benefit in the system compared to a non-

MNoC design.

In the future, automation of MNoC design for a given set of monitors and design

constraints is a promising area that needs to be addressed. We can examine the possibility

of using the regular network on chip used for data communication to also transport

monitor traffic. We can also look at using MNoC to locally collaborate or aggregate

monitor data. This can reduce the overall traffic on the network and could require lesser

network resources. Another interesting area of work is the software associated with the

MEP. Innovative circuit level techniques for MNoC wire fabric can also help scalability

and low latency.

 68

BIBLIOGRAPHY

[1] L. Benini and G. De Micheli, “Networks on Chips: a New SoC Paradigm,” IEEE

Computer , vol. 35, no. 1, January 2002, pp. 70 -78

[2] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Interconnection

Networks,”, In Proceedings of the 38
th

 Design Automation Conference, June 2001,

Las Vegas, NV

[3] K.L Wong, T. R. Arabi, M. Ma, G. Taylor , “Enhancing microprocessor immunity to

power supply noise with clock-data compensation”, IEEE Journal on Solid State

circuits , vol. 41, no 4, Apr 2006 , pp. 749 - 758

[4] W. Webb. Take the heat: Cool that hot embedded design. Technical Report, EDN,

May 2004. http://www.edn.com/article/CA415105.html

[5] S. Velusamy, W. Huang, J. Lach, M. Stan, and K. Skadron, “Monitoring Temperature

in FPGA based SOCs” , In Proceedings of the International Conference on Computer

Design, Oct 2005, San Jose, CA

[6] R. McGowen, C. A. Poirier, C. Bostak, J. Ignowski, M. Millican, W.H. Parks, S.

Naffziger, “Power and Temperature Control on a 90nm Itanium Family Processor”,

IEEE Journal on Solid State circuits , vol. 41, no 1, Jan 2006 , pp. 229-237

[7] M.S. Floyd, S. Ghiasi, T.W Keller, K. Rajamani, F.L. Rawson, J. C. Rubio, M. S.

Ware, “ System Power Management Support in the IBM Power6 Microprocessor” ,

IBM Journal of Research and Development, vol. 51, no 6, Nov 2007

[8] D. Brooks and M. Martonisi, “Dynamic Thermal Management for High-Performance

Microprocessors”, In Proceedings of the 7
th

 International Symposium on High

Performance Computer Architecture, Jan 2001, Nuevo Leone, Mexico

[9] R. Mukherjee, S. O. Memik, “Systematic temperature sensor allocation and

placement for microprocessors”, In Proceedings of the 43
rd

 ACM IEEE Design

Automation Conference, July 2006, San Francisco, USA

[10] L. Shang, L.S. Peh, N. K. Jha, “Dynamic voltage scaling with links for power

optimization of interconnection networks”, In Proceedings Of the International

Symposium on High-Performance Computer Architecture, Anaheim, CA, Feb 2003

[11] W.J. Dally, C.L. Seitz, “Deadlock-free adaptive routing in multiprocessor

interconnection networks”, In IEEE Transactions of Parallel and Distributed Systems,

Vol 4, no 4, pp 466-475

[12] L. T. Clark, E. J. Hoffman, J. Miller, M. Biyani , L. Luyun , S. Strazdus , M. Morrow

, K. E. Velarde ,M. A. Yarch ,"An Embedded 32-b Microprocessor Core for Low-

 69

power and High-performance applications ", In IEEE Journal of Solid State

Circuits,Vol 36, no.11, pp 1599-1608

[13] W. Kim, M. Gupta, G. Y. Wei, D. Brooks, “System Level Analysis of Fast, Per-Core

DVFS using On-Chip Switching Regulators,” In Proceedings of the 14th International

Symposium on High-Performance Computer Architecture, February 2008, Salt Lake

City, UT

[14] S. Tam, J. Leung, R. Limaye, S. Choy, S. Vora, M. Adachi, “Clock Generation and

Distribution of a Dual-Core Xeon Processor with 16MB L3 Cache”, IEEE ISSCC

Tech. Digest, 2006

[15] J. Smolens, B. Gold, J. Kim, B. Falsafi, J. Hoe, and A. Nowatzyk, “Fingerprinting:

Bounding Soft Error Detection Latency and Bandwidth,“ In Proceedings of the

International Symposium on Architectural Support for Programming Languages and

Operating Systems, Oct 2004, Boston, MA

[16] A. Laffely, J. Liang, R. Tessier, and W. Burleson, “ Adaptive System on a Chip: A

Backbone for Power-Aware Signal Processing Cores,” In Proceedings of the IEEE

Conference on Image Processing, September 2003, Barcelona, Spain,

[17] B. R. Quinton, S. J. E. Wilton, “Post-Silicon Debug using Programmable Logic

Cores”, In Proceedings of the IEEE Conference on Field Programmable Technlogy,

Dec 2005, Singapore.

[18] T. Wolf, S. Mao, D. Kumar, B. Datta, W. Burleson, and G. Gogniat. “Collaborative

Monitors for Embedded System Security”. In Proceedings of the First International

Workshop on Embedded Systems Security, October 2006, Seoul, South Korea

[19] S. Shyam , K. Constantinides , S. Phadke , V. Bertacco , T. Austin, “Ultra Low-Cost

Defect Protection for Microprocessor Pipelines”, In Proceedings of the 12th

International Conference on Architectural Support for Programming Languages and

Operating Systems, Oct 2006, San Jose , CA

[20] A. Drake, R. Senger, H. Deogun, G. Carpenter, S. Ghiasi, T. Nguyen, N. James, M.

Floyd, V. Pokala, “ A Distributed Critical-Path Timing Monitor for a 65nm High-

Performance Microprocessor “, In Proceedings of the IEEE International Solid-State

Circuits Conference , Feb 2007

[21] R. Maro, Y. Bai, R.I. Bahar , “Dynamically Reconfiguring Processor Resources to

Reduce Power Consumption in High-Performance Processors,” In Proceedings of the

First International Workshop on Power-aware Computer Systems – Revised Papers,

2000

[22] T. Chelcea, S.M. Nowick, “Robust Interfaces for Mixed-Timing Systems “, IEEE

Transactions On VLSI Systems, vol. 12, no. 8, Aug 2004

 70

[23] P. Gurrier and A. Greiner , “A Generic Architecture For On-chip Packet-Switched

Interconnections”, In Proceedings of the Design Automation and Test in

Europe(DATE) Conference, March 2000, Paris, France

[24] T. Bjerregaard and S. Mahadevan, “A Survey of Research and Practices of Network-

on-Chip”, ACM Computing Surveys, vol. 38, no.1, March 2006

[25] W. J. Dally, “Virtual-Channel Flow Control.” IEEE Transactions on Parallel and

Distributed Systems, vol. 3, no. 2, 1992, pp. 194–205.

[26] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat , B. Greenwald , H.

Hoffman, P. Johnson , J.W. Lee, W. Lee, A. Ma , A. Saraf , M. Seneski, N.

Shnidman, V. Strumpen , M. Frank , S. Amarasinghe ,and A. Agarwal, “The RAW

microprocessor: A computational fabric for software circuits and general-purpose

programs”, IEEE Micro, vol. 12, no. 2, 2002, pp. 25–35.

[27] M. Saen, K. Osada, S. Misaka, T. Yamada, Y. Tsujimoto, Y. Kondoh, T. Kamei,

Y. Yoshida, E. Nagahama, Y. Nitta, T. Ito, T. Kameyama, N. Irie, “ Embedded SoC

Resource Manager to Control Temperature and Data Bandwidth ”, In Proceedings of

the Solid-State Circuits Conference, Feb 2007, San Francisco, CA

[28] S. Velusamy, W. Huang, J. Lach, K. Skadron , “Monitoring Temperature in FPGA

based SoCs” , University of Virginia , CS Technical Report , CS-2004-39

[29] K. Goossens , J. Dielissen , AND A. Radulescu, “ Æthereal network on chip:

Concepts, Architectures and Implementations”, IEEE Design and Test of Computers ,

Vol. 22,no. 5, Sep-Oct 2005, pp. 414–421

[30] I. Cidon and I. Keidar, “Zooming in on Network-on-Chip Architectures”, CCIT

research report, Technion University, Haifa, Israel, December 2005.

[31] E. Chi , A. M. Salem, R.I. Bahar, R. Weiss, “Combining Hardware and Software

Monitoring for Improved Power and Performance Tuning”, In Proceedings of the

Seventh Workshop on Interaction between Compilers and Computer Architectures ,

Anaheim, CA, Feb 2003

[32] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, K. Flautner,

"Razor: Circuit-Level Correction of Timing Errors for Low-Power Operation", IEEE

Micro, vol. 24, no. 6, Nov/Dec, 2004, pp. 10-20

[33] E. Boemo and S. Lopez-Buedo, “Thermal Monitoring on FPGAs using Ring-

Oscillators”, In Proceedings of the Seventh International Workshop on Field

Programmable Logic and Applications , Sep 1997, London, UK

 71

[34] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D.

Tarjan, “Temperature-Aware Microarchitecture”, In Proceedings of the Thirtieth

International Symposium on Computer Architecture, June 2003, San Diego, CA

[35] P. Macken, M. Degrauwe, M. Van Paemel, H. Oguey , "A voltage reduction

technique for digital systems," Digest of Technical Papers Solid-State Circuits

Conference , Feb 1990, pp.238-239

[36] P. P. Shirvani, N. R. Saxena, E. J. McCluskey, “Software-Implemented EDAC

Protection Against SEUs” , IEEE Transactions on Relability, Vol. 49, no. 3, 2000, pp.

273-284

[37] S. Naffziger, “Dynamically Optimized Power Efficiency with Foxton Technology”,

Hot Chips 2005, Stanford University, Palo Alto, CA

[38] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and

D.Lindqvist, “Network –on-Chip : An Architecture for Billion Transistor Era”, In

Proceedings of the IEEE NorChip Conference, Nov 2000, Turku, Finland

[39] S. Kumar, A. Jantsch, J.P. Soininen , M. Forsell, M. Millberg , J.Oberg, K. Tiensyrja,

and A. Hemani, “ A Network on Chip Architecture and Design Methodology”, In

Proceedings of the IEEE Computer Society Annual Symposium on VLSI, April 2002,

Pittsburgh, PA

[40] J. Liang, A. Laffely, S. Srinivasan, and R. Tessier, “An Architecture and Compiler for

Scalable On-Chip Communication”, In IEEE Transactions on VLSI Systems, Vol. 12,

no. 7, July 2004, pp. 711-726

[41] D. Brooks, V. Tiwari, and M. Martonosi., “Wattch: A Framework for Architectural-

level Power Analysis and Optimizations.”, In Proceedings of the 27th Annual

International Symposium on Computer Architecture, June 2000, Vancouver, Canada

[42] C. Isci and M. Martonosi, “Runtime Power Monitoring in High-End Processors:

Methodology and Empirical Data.” In Proceedings of the 36
th

 Annual IEEE/ACM

International Symposium on Microarchitecture, Dec 2003, San Diego, CA

[43] C. L .Chen and M.Y. Hsiao, “Error-Correcting Codes for Semiconductor Memory

Applications: A State of the Art Review”, IBM Journal of Research and

Development, 1984, vol. 28 , no.2, pp. 124

[44] A. Waizman, “A Delay Line Loop for Frequency Synthesis of Deskewed Clock”,

ISSCC Digest of Technical Papers, Feb. 1998.

[45] A.S. Leon, K. W. Tam, J.L. Shin, D, Weisner, F. Schumacher, "A Power-Efficient

High-Throughput 32-Thread SPARC Processor,", IEEE Journal of Solid-State

Circuits , vol.42, no.1, pp.7-16, Jan. 2007

 72

[46] J. D. Warnock, J. M. Keaty, J. Petrovick, J. G. Clabes, C. J. Kircher, B. L. Krauter, P.

J. Restle, B. A. Zoric, and C. J. Anderson, "The Circuit and Physical Design of the

POWER4 Microprocessor." IBM J. Res. & Dev.46, no. 1, pp 27-51 ,January 2002

[47] R. Joseph, D. Brooks, M. Martonosi, “ Control Techniques to Eliminate Voltage

Emergencies in High Performance Processors”, In Proceedings of the 9th

International Symposium on High-Performance Computer Architecture, 2003, pp. 79-

90

[48] M. S. Floyd, S. Ghiasi, T.W Keller, K. Rajamani, F.L. Rawson, J. C. Rubio, M. S.

Ware, “System Power Management Support in the IBM Power6 Microprocessor,”

IBM Journal of Research and Development, vol. 51, pp. 733-746, Nov 2007

[49] N. Patavalis. (2001, Nov 08). Brief Introduction to the JTAG Boundary Scan

Interface. Available : http://www.inaccessnetworks.com/ian/projects/ianjtag/jtag-

intro/jtag-intro.html

[50] M. Abamovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and D. Miller, “A

reconfigurable design-for-debug infrastructure for SoCs,” In Proceedings of.

IEEE/ACM Design Automation Conference, Jun. 2006, pp. 7-12

[51] W. J. Dally and B. Towles, Principles and Practices of Interconnection Networks,

Morgan Kaufmann, 2004

[52] K. H. Chen and G. M. Chiu, “Fault-tolerant routing algorithm for meshes without

using virtual channels,” Journal of Information Science and Engineering, vol. 14, pp.

765-783, 1998

[53] Y. Tamir and G.L. Frazier , “ High-performance multiqueue buffers for VLSI

communication switches,” In Proceedings of the 15th Annual International

Symposium on Computer Architecture,1988,pp. 343-354

[54] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,

K. Strauss, S. Sarangi, P. Sack, and P. Montesinos, “SESC Simulator,”January 2005,

http://sesc.sourceforge.net

[55] UMC’s 90nm 1P9M Logic/Mixed Mode Low-K SP-HVT process library,

http://www.faraday-tech.com

[56] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for

architectural-level power analysis and optimizations,” In Proceedings of the

 International Symposium on Computer Architecture, 2000, pp. 83–94

[57] P. Shivakumar, N. P. Jouppi, “CACTI 3.0: An integrated cache

timing, power, and area model,” Western Research Laboratory, Compaq,Tech. Rep.

2001/2, 2001

 73

[58] W. Huang, K. Sankaranarayanan, R. J. Ribando, M. R. Stan, and K. Skadron, “An

Improved Block-Based Thermal Model in HotSpot-4.0 with Granularity

Considerations,” In Proceedings of the Workshop on Duplicating, Deconstructing,

and Debunking, in conjunction with the 34th International Symposium on Computer

Architecture (ISCA), June 2007

[59] K. Skadron , M. R. Stan , K. Sankaranarayanan , W. Huang , S. Velusamy , D.

Tarjan, "Temperature-aware microarchitecture: Modeling and implementation," ACM

Transactions on Architecture and Code Optimization (TACO), vol 1, pp. 94-125,

March 2004

[60] G. M. Link, N. Vijaykrishnan, "Thermal trends in emerging technologies," In Proc. of

the Seventh International Symposium on Quality Electronic Design, 2006, pp.625-

632.

[61] H. J. Curnow, B. A. Wichman, "A Synthetic Benchmark," Computer Journal, vol 19,

pp. 43-49, February 1976.

[62] F. J. Mesa-Martinez , J. Nayfach-Battilana , J. Renau , "Power model validation

through thermal measurements," In Proceedings of the 34th Annual International

Symposium on Computer Architecture, 2007, pp. 302-311

[63] W.J. Dally and C.L. Seitz , “ Deadlock-free message routing in multiprocessor

interconnection networks,” IEEE Transactions on Computer, vol. 36, no. 5, 1987, pp.

547-553

[64] R.V. Bopanna and S. Chalasani , “Fault-tolerant wormhole routing algorithms for

mesh networks,” IEEE Transactions on Computer, vol 44, 1995, pp. 848-864

[65] J. Wibben and R. Harjani, “ A high efficiency DC-DC converter using 2nH on-chip

inductors, “, In Proceedings of the IEEE Symposium on VLSI Circuits, 2007

[66] T. Fischer, J. Desai, B. Doyle, S. Naffziger, B. Patella, "A 90-nm variable frequency

clock system for a power-managed itanium architecture processor," IEEE Journal of

Solid-State Circuits, vol.41, no.1, pp. 218-228, Jan. 2006

[67] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas, and

M. L. Scott, "Dynamic frequency and voltage control for a multiple clock domain

microarchitecture," In Proceedings of the International Symposium on

Microarchitecture (MICRO), 2002,pp. 356-367

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	January 2008

	MNoC : A Network on Chip for Monitors
	Sailaja Madduri

	MNoC : A Network on Chip for Monitors

