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ABSTRACT 

MNoC: A NETWORK ON CHIP FOR MONITORS 

 SEPTEMBER 2008 

SAILAJA MADDURI 

 B.E (Hons) ., BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, INDIA 

M.S.E.C.E, UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Russell G. Tessier 

 

As silicon processes scale, system-on-chips (SoCs) will require numerous hardware 

monitors that perform assessment of physical characteristics that change during the 

operation of a device. To address the need for high-speed and coordinated transport of 

monitor data in a SoC, we develop a new interconnection network for monitors - the 

monitor network on chip (MNoC). Data collected from the monitors via MNoC is 

collated by a monitor executive processor (MEP) that controls the operation of the SoC in 

response to monitor data. In this thesis, we developed the architecture of MNoC and the 

infrastructure to evaluate its performance and overhead for various network parameters. 

A system level architectural simulation can then be performed to ensure that the latency 

and bandwidth provided by MNoC are sufficient to allow the MEP to react in a timely 

fashion. This typically translates to a system level benefit that can be assessed using 

architectural simulation.  We demonstrate in this thesis, the employment of MNoC for 

two specific monitoring systems that involve thermal and delay monitors. Results show 

that MNoC facilitates employment of a thermal-aware dynamic frequency scaling scheme 

in a multicore processor resulting in improved performance. It also facilitates power and 

performance savings in a delay -monitored multicore system by enabling a better than 

worst case voltage and frequency settings for the processor.  
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CHAPTER 1 

 INTRODUCTION 

Systems on Chips (SoCs) are becoming increasingly complex as large numbers of cores 

are integrated into single-chip platforms. These systems typically exhibit stringent 

processing, communication, and power constraints that must be carefully addressed 

during system design. As the size and diverse use of SoCs increase, the importance of 

run-time monitoring of correct functionality and system performance increases. Real-time 

system monitoring is crucial to determine if a system is operating as designed and is 

executing within designed parameters. Figure 1 provides an example of the effect of 

environmental factors on a computing device. The clock skew distribution for an Intel 

Xeon Processor [14] clearly shows a wide skew variation across the die. Figure 2 [46] 

illustrates the full-chip temperature variation profile. Such increasing variations in device 

operating conditions motivate the need for a more “operating conditions aware” design. 

 

Figure 1: Clock Skew Variation for a Dual Core            Figure 2: IBM POWER4 chip temperature 

profile          against its functional units [46] 

 

Recent high-end processors from Intel (Montecito), AMD (Opteron) and IBM (Cell) use 

extensive on-chip monitors for run-time estimates of temperature, power, clock jitter, 



 2 

supply noise and performance behavior. The main benefits of these monitoring modules 

are: 

• They quickly evaluate system performance without interfering with the primary 

operation of the SoC. 

• They facilitate a better-than-worst-case design that enables better power and 

performance 

In order to maximize monitor effectiveness, monitor data often needs to be collated from 

across the chip and evaluated in real time as a SoC operates. This data can then be used to 

alter SoC operation in response to environmental conditions. Although on-chips monitors 

are becoming increasingly common in current day SoCs and processors, a unified 

approach to their interconnection, verification, test and debug has not been developed yet.  

 

The main contribution of this work is the development and validation of a scalable, 

flexible and light weight interconnection network for monitor interaction, the Monitor 

Network on Chip (MNoC). The Monitor Network on Chip interfaces with various kinds 

of monitors distributed across the chip, collects monitor data and routes it to the Monitor 

Executive Processor (MEP). The MEP evaluates this data and interfaces back into the 

system to take necessary actions which ensure correct operation, performance savings, 

power savings or various other benefits. As seen in Figure 3 , the MNoC platform 

involves the integration of numerous on-chip monitors to form a complete chip 

subsystem devoted to monitoring. 
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Figure 3: Conceptual diagram of MNoC on a quad core processor 

 

Recently, a number of research projects have examined the use of monitors in controlling 

the behavior of SoCs. The Montecito processor [6] uses voltage and temperature sensors 

to control processor power consumption. Temperature and voltage values are sampled 

with A/D converters and transferred to a controller which modulates system clock 

frequency and voltage. The Razor architecture [32] utilizes shadow latches to determine 

if signal delay violations have occurred due to voltage reductions. Monitors evaluate the 

number of errors that have occurred and update core voltage. Cache miss rates and 

branch prediction monitors have been used in [31] to reconfigure processor resources in 

real time. This information can include event counts and frequencies. System resources 

are reconfigured by a centralized control circuit. The SoC resource manager described in 

[27] allows for dynamic bandwidth allocation for the IP cores based on the required 

bandwidth. This is done by monitoring the difference in between actual operation speed 

and the target operation speed. The higher the difference, higher is the priority for 
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bandwidth allocation. The IBM Power6 architecture [48] interconnects multiple sensors 

and actuators via a high-speed serial bus. Addressable registers are used as the interfaces 

to these components. The described interconnect primarily serves as an external interface 

to voltage and thermal control via an I2C bus.  

 

Most monitoring based control explored so far is restricted to a few localized monitors 

which did not demand a highly scalable communication medium. Hence most of the 

current monitor interconnection approaches are either direct point to point connections or 

buses. For example, Figure 4 [28] shows an FPGA based thermal monitoring system 

which involves a controller and an array of temperature sensors. The sensors are 

connected to the Power PC processor on the Xilinx Virtex-2 Pro FPGA using the On-

Chip Peripheral bus (OPB). Figure 5 shows the embedded feedback control system of 

Intel’s Montecito processor [6] which dynamically maximizes performance per Watt by 

using readings from 4 on-chip thermal sensors and voltage sensors. As seen in the figure, 

the sensors are directly connected to the micro-controller via analog-to-digital converters 

using point-to-point connections.  

  

Figure 4 : Thermal Sensors on a bus [28]                       Figure 5 : Foxton Power Control loop [6] 
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Intel’s Montecito processor uses four thermal sensors per chip, the more recent IBM 

Power6 processor employs 24 thermal sensors per chip and these monitor numbers are 

only expected to increase. As silicon processes scale, it is expected that future SoCs will 

generally include numerous embedded monitors to take advantage of the power and 

performance benefits that monitors can offer. We believe that the poor scalability of 

buses [23] and the exponential increase in the number of required point-to-point 

connections [24] will limit their usage for monitor interconnections in the future and that 

a more scalable and segmented monitor interconnect will become essential. 

 

Recently, Networks on chip (NoC) [23][28][29] have gained importance as 

communication structures that provide enhanced performance in comparison with 

previous communication architectures. NoCs are perceived as the scalable, global 

alternatives to traditional buses. They however entail a high area overhead [24] and are 

not, in entirety, appropriate for monitor interconnections. Due to the various limitations 

discussed above, no existing interconnection approach is fully suitable to serve as a 

monitor interconnection network. 

 

We view the integration of monitors and the collection and processing of monitor 

information as an important unaddressed SoC design issue. As an initial step in the 

development of a complete monitor subsystem for SoCs, a low-overhead on-chip 

interconnect, which is optimized for monitors, has been designed as a part of this thesis 

project. MNoC was built on existing approaches like Networks on Chip, buses, 

multiplexers and point to point connections with emphasis on scalability and low 

resource overhead. Although simplified compared to other on-chip interconnect 
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approaches, our new interconnect technique supports irregular routing topologies, priority 

based data transfer and customized monitor interfacing. Collected monitor data values are 

manipulated by a monitor executive processor and the results are used to control SoC 

run-time operation. 

 

The efficiency of our monitor interconnect is assessed for a multicore system employing 

two different monitoring systems, a thermal and a delay monitoring system. A monitoring 

system typically consists of a set of monitors, MNoC for data transfer, the Monitor 

Executive Processor that evaluates monitor data, the actuator that performs actions in 

response to monitor data and the corresponding network interfaces. Experimental results 

were generated using both interconnect and a system-level simulators and results show 

that the new low-overhead monitor interconnect facilitates employment of a thermal-

aware dynamic frequency scaling scheme in a multi-core processor. The new MNoC also 

enables an approach that allows the countering of voltage drop problems dynamically 

during run time without relying entirely on packaging techniques. The overhead and 

performance of the monitor network-on-chip interconnect for an eight core 

multiprocessor has been measured via hardware synthesis, interconnect simulation, and 

multicore architectural simulation. For an eight core thermal monitoring system, the area 

overhead of MNoC is found to be less than 1%. MNoC also enables around 15% 

power/performance benefit in both the test systems.  

 

The rest of the thesis is organized as follows. Chapter 2 discusses the previous work that 

has been done in the area of monitors and monitoring based control. This chapter also 

includes a discussion on existing on-chip interconnection approaches, focusing on 
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Networks on Chip. Chapter 3 gives a description of the MNoC architecture, the various 

MNoC components, the network interfaces, and protocols. Chapter 4 gives the approach 

to MNoC validation and describes the simulation setup for the new interconnect. Chapter 

5 describes the experimental approach for the two sample systems and presents the 

results. The summary of the thesis work and some direction for future work are provided 

in Chapter 6. 
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CHAPTER 2 

BACKGROUND AND PREVIOUS WORK 

2.1 Existing On-Chip Monitoring Approaches 

Increased SoC integration is increasing chip reliability and power concerns, making 

monitors for temperature, power, clock jitter, supply noise and performance behavior an 

integral part of current day SoCs. This section gives a detailed description of some 

contemporary SoC monitors and their implementations. The thermal, delay and error 

monitors which are parts of our prototype systems are emphasized in this section. 

2.1.1 Thermal Monitors 

As the sophistication of embedded systems and the power density of silicon devices 

increase, temperature-related system effects become more important. For example, disk 

drives in embedded systems are severely susceptible to erroneous operation at high 

temperatures. If ambient temperature increases by 5 degrees Celsius over the design 

specification, disk drives are 15% more likely to fail[4].Temperature can reduce 

performance by lowering output-voltage swings, reducing switching speeds, lowering 

noise margins, and reducing signal quality. In addition to performance loss, temperature 

stresses also reduce system reliability [4]. 

 

Many temperature sensors are based on ring oscillators, similar to the type shown in 

Figure 6. A ring oscillator’s delay dependence on temperature provides an effective way 

to measure the temperature of a chip. In general, the oscillation frequency of the sensor 

exhibits a linear dependence on junction temperature. Each rising edge of fout stimulates a 

count cycle in a counter. The count achieved over a period of time indicates the 
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temperature inside the device. An increase in temperature extends the period of the ring 

oscillator, leading to smaller count values in the same time period. This effect is 

illustrated in Figure 7. 

 

Figure 6: Ring Oscillator based thermal sensor [33]   Figure 7: Ring Oscillator Temp Vs Freq[5] 

A thermal sensor implementation that exploits the temperature co-efficient of a forward 

biased diode voltage (Vbe) is shown in Figure 8 . The thermal sensor consists of a pFET 

current source, which drives a diode with a constant current. 

 

Figure 8: Thermal System block diagram[6] 

The sensor has been used as part of a thermal management system in [6]. Since voltage 

Vbe fluctuates with temperature, voltage variations are created at the inputs to the A/D 

converters. The measured voltage is converted into a temperature value by comparing the 
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input voltage with a calibrated Vbe value and the characterized temperature coefficient. 

The result of this comparison is provided to a microcontroller, which can take appropriate 

action. In this case, system clock frequency can be decreased to reduce temperature, if 

necessary. 

2.1.2 Soft Error Monitors 

As system operating frequencies increase and power supply voltages are reduced, 

transient faults become a major source of problems as they increase device soft error 

rates. Often, memory buses are extended to accommodate extra bits that detect and 

correct errors. CRC (cyclic redundancy checking) codes are used to detect and sometimes 

correct accidental alteration of data during transmission in communication systems. 

Specifying a CRC involves modifying a bit stream based on a CRC polynomial.  

Corrections can be performed via the retransmission of data [36]  if the CRC codes do not 

have an inherent error correcting capability.  

 

The detection of soft errors in a processor core’s logic presents a more difficult challenge 

than the detection on errors in memory [15] . Backward recovery through checkpointing 

and rollback is a popular approach used in modern processors to recover from these kinds 

of transient faults.  

 

 A soft error detection scheme for processor core logic described in [15] uses a dual 

modular redundancy technique. In this technique, two redundant processors execute 

simultaneously and an error in execution in one processor manifests as a deviation in the 

behavior of the two processors. The deviation in behavior is evaluated based on a 

“fingerprint” comparison of the states of the two processors at regular checkpoint 
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intervals. A checkpoint of a program state consists of a snapshot of the registers and 

memory at a specific point of time. A checkpoint interval is the time between two 

successive checkpoints. A fingerprint is a hash value that summarizes the states of the 

processors after every instruction in the checkpoint interval. If the fingerprints for both 

processors agree at the end of the checkpoint interval, all instructions executed during the 

interval are known to be correct. If the fingerprints disagree, the processor must be rolled 

back to the last correct state of execution, which is the checkpoint at the beginning of the 

current interval. This scheme avoids the need to compare all architectural state updates, 

but still captures a summary of all state changes in the fingerprint value.   

2.1.3 Critical Path Delay Monitor 

Process variation, supply noise effects, aging effects, clock instability and reliability 

based failure mechanisms can be characterized by a change in delay of the critical path of 

the circuit. A critical path monitor is used for identifying the effects of these variations on 

the critical path and for taking necessary action. This corrective action could be 

increasing voltage or decreasing the frequency so as to prevent the circuit from failing. 

 

The IBM Power6 processor employs [20] 24 critical path monitors (CPMs) distributed 

across the chip which guarantee correct circuit operation under different process, voltage 

and temperature conditions. The critical path monitor, shown in Figure 9, consists of 5 

delay paths – 4 NAND gates, Series 3 NOR Gates, Adder Path, Wire dominated path, 

Series pass-gates, each with different delay sensitivities to process, voltage or 

temperature. 
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Figure 9: Critical Path Monitor, IBM Power 6 processor [20] 

The critical path monitor also contains two edge path detectors which consist of a 12-

inverter delay line with capture latches at each inverter output. On each rising edge of the 

system clock, an edge is launched into these paths and the same edge is also given to 

edge detectors which use it as a reference (A in the figure). The edge B which passes 

through the chosen path is latched in the edge detector at the rising edge of the system 

clock and is compared with the reference value A.  

 

 The output of the critical path monitor is thus a digital code indicating how far the edge 

propagated through the edge detector. This is an indicator of the delay on the selected 

path. The paths however do not exactly track the critical path of the circuit and should be 

calibrated initially for accuracy. The digital code needs to be sampled every clock cycle 

and hence this monitor has a large bandwidth, requiring a network like interconnection 

approach for data collection. 



 13 

2.1.4 Collaborative Monitoring  

In many cases it may be desirable to use information from multiple monitors to validate 

information against each other. A monitoring system that allows collaboration between a 

processing and thermal monitor is described in [18] . The thermal monitor used in [18] is 

the ring oscillator based thermal monitor described in Section 2.1.1. The processing 

monitor evaluates whether the processor is operating within expected parameters by 

comparing the results of an off-line analysis of the system binary to run-time information 

obtained from the processor core. 

 

 A monitoring graph that represents the sequence of control flow, instruction addresses, 

and opcodes is generated off-line by simulating the binary of the application. During run-

time, the embedded processor reports on the progress of the application, by sending a 

stream of information to the monitoring system. The monitoring system then compares 

the stream to the expected behavior of the program from the monitoring graph. Run-time 

uncertainties and embedded system faults that cause deviations from intended behavior 

can then be detected by the monitor. The size of the monitoring graph determines the 

overhead of the monitor.  

 

The block diagram of this monitoring system is shown in Figure 10. Temperature 

information from the thermal monitor can be correlated with monitoring graphs in the 

processing monitor to allow for more robust evaluation. The monitoring graphs identify 

power-intensive program regions that dissipate substantial heat and it can be expected 

that these regions will report high temperatures. If thermal information is used without 

considering the processing context, the static thermal alarm threshold could either be too 
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conservative (i.e., causing false alarms in regions of intense processing) or too optimistic 

(i.e., opening avenues for run-time problems that cannot be detected) [18]. Collaborative 

monitoring addresses these kinds of scenarios. MNoC allows for easy collaborative 

monitoring by integrating different kinds of monitors to one monitoring sub system.  

 

 

 

 

 

 

 

 

Figure 10: Collaborative monitoring with thermal and processing monitors [18] 

2.1.5 Monitoring Wrap-up 

The proposed Monitor Network on Chip is an effort to allow different kinds of monitors 

to communicate with a central controller that evaluates monitor data and takes necessary 

action in the case of unexpected system behavior. Typical responses could be frequency 

throttling, voltage reduction or resource reconfiguration depending on the exact nature of 

the deviation from expected system operation. This section described a series of 

candidate monitors and their operation. 
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2.2 Previous Work on Monitoring Based Control  

This section discusses existing implementations of monitoring based control, where data 

from the previously discussed monitors is used to impact system behavior. 

2.2.1 Temperature and Power Measurements to Optimize Performance 

An embedded feedback control system in [6] dynamically maximizes performance per 

watt in a 90-nm Itanium family processor based on information from voltage, thermal and 

power sensors. The control system, referred to as Foxton Technology (shown in Figure 

11), utilizes on-chip sensors to measure power and temperature and modulates both 

voltage and frequency using an embedded microcontroller to optimize performance while 

meeting power and temperature constraints. As a result, the processor cores perform 

computation at optimal power efficiency. 

 

Figure 11: High level overview of the Foxton control system [37] 

Core power that is measured at regular intervals during processor operation is calculated 

from the core voltage that is sampled with on-die A/D converters. On-die diode-based 

temperature sensors (Figure 8) enable temperature control. Thermal information is used 
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in conjunction with the power measurements to vary the core voltage. These new voltage 

values are communicated to the Montecito voltage regulator by the embedded controller. 

The clock system responds to voltage changes and the clock frequency is tuned such that 

the system is at an optimal power, temperature, voltage, frequency envelope. This 

operating point maximizes performance per Watt at a specific point of time. The entire 

measurement and control system is embedded within the die. The area overhead for this 

system is about 0.5% of the die area and the power overhead is approximately 0.5% of 

die power. This system can be visualized as a small MNOC, with temperature and 

voltage monitors connected to a micro-controller that manages the system.  

2.2.2 SoC Resource Manager Based on Temperature and Performance Feedback 

As the number of intellectual property blocks in SoCs increases, effective distribution of 

resources like power and data bandwidth becomes increasingly important. A SoC 

resource manager which is responsible for supervising the allocation of resources to IPs 

using information monitored from the SoC is described in [27] .  The monitors include 

thermal monitors for temperature information, and performance monitors for information 

about the operating frequency of various IPs on the chip.  The information from the 

thermal monitors is used by the resource manager to reduce the chip operating frequency 

taking into account the environmental temperature. The performance monitor gives 

information about the operation speed of the IPs to the controller. This information is 

used by the resource manager to calculate the priority of data-access requests by each IP 

based on the difference between the actual operation speed and the target operation 

speed. The larger the difference between the actual speed and the target speed, the higher 

the priority. This approach allows dynamic IP bandwidth allocation. 
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2.2.3 Hardware and Software Monitoring to Reconfigure Processor Resources 

Processor resource reconfiguration can be used to reduce power consumption with the 

assistance of hardware monitoring and software profiling [31] .Hardware monitors 

measure recent processor performance by establishing a pattern for a certain interval of 

execution. Hardware monitoring can collect statistics such as instructions per cycle (IPC), 

resource utilization, and instruction dependencies. Software profiling is performed by 

collecting similar statistics, such as IPC and L2 cache miss rates. Software profiling can 

identify behavior over a short program run and then annotate instructions to identify this 

behavior for future code execution. A collaborative approach in [31] combines both 

hardware and software profiling to reconfigure processor resources. This approach has 

better power-performance trade-offs than individual hardware or software profiling based 

resource reconfiguration.  

 

Two power saving configuration techniques are considered for the processor. The 

instruction issue width can be reduced as the IPC drops. Power savings are obtained by 

disabling one of the functional units and reducing the issue width. The second kind of 

power savings mechanism considered is fetch halting. In this case, fetching is limited 

while the processor is stalled for an extended period of time due to a long latency cache 

miss. This approach saves power by reducing occupancy rates in the fetch and issue 

queues thereby allowing portions of these structures to be more effectively disabled. 

2.2.4 Circuit level Timing Error Detection for Low Power Operation  

To ensure correct operation of a processor under all possible variations, typically a 

conservative supply voltage that uses worst case parameters is chosen. This choice 
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supports a worst case combination of variations which is highly unlikely and makes the 

approach overly conservative. Razor, a dynamic voltage scaling approach which uses 

dynamic detection and correction of circuit timing errors to tune the processor supply 

voltage is described in [32]. With a dynamic voltage scaling approach like this, an overly 

conservative supply voltage can be avoided and consequently power can be saved. In 

[32], the supply voltage is tuned based on the error rate in the circuit. A shadow latch 

controlled by a delayed clock, as shown in Figure 12, is used to detect timing errors in the 

circuit. A very low error rate indicates that the computation is finishing with slack, so the 

supply voltage could be lower. Increased error rates indicate that the voltage supply 

should be increased.  

 

Figure 12: Pipeline stage augmented with Razor latches and control lines [32] 

2.2.5 Summary of Monitoring Based Control Techniques  

Table 1 summarizes the previous work regarding control of system operation based on 

monitor data. In general, monitor/system interactions can yield good power savings 

without sacrificing significant system performance. The examples described in this 
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section re-emphasize the importance of on-chip monitoring and the need for low 

overhead interconnect between monitors and a control resource (e.g. the MEP). System-

level modifications can be made by the MEP after monitor data is evaluated. To address 

the need for high-speed and coordinated transport of monitor data in a system-on-chip, 

we require an interconnection structure that helps assemble monitor data with the lowest 

possible overhead.  The next section is a summary of existing on-chip interconnection 

approaches which can possibly serve as monitor interconnects 

 

S.NO REFERENCE MONITORS 

INVOLVED 

RESPONSE TO 

MONITOR DATA  

1 Feedback control 

system in Intel 

Montecito Processor[6] 

Voltage monitor, 

Thermal monitor 

A microcontroller modulates 

frequency and voltage while 

meeting temperature and 

power constraints 

2 SoC resource manager 

to control performance  

and data bandwidth 

allocation [27]  

Thermal monitor, 

Performance monitor 

The SoC resource manager 

controls performance based 

on temperature and also 

handles data bandwidth 

allocation to the IPs 

3 Processor resource 

reconfiguration [31]  

Hardware processor 

performance monitors 

and software profiling 

get information about 

branch prediction, 

cache misses etc 

Processor resource 

reconfiguration using 

information from hardware 

monitors and software 

profiling 

4 Razor shadow latches 

for circuit level timing 

error detection  [32] 

Shadow latches along 

critical paths to detect 

and correct timing 

errors 

The error rate is used to tune 

the processor voltage. With 

a low error rate, voltage can 

be reduced 
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5 Bulletproof mechanism 

to protect 

microprocessor pipeline 

and memory system 

from silicon defects 

[19] 

Distributed BIST 

mechanisms to validate 

the integrity of 

underlying hardware 

during specific epochs 

In case of an error, program 

state is rolled back and the 

disabled component is 

removed to let the processor 

run in a sub-optimal 

performance mode 

Table 1: Summary of monitoring based control techniques 

2.3 Existing Approaches to On-Chip Communication   

Since the introduction of the SoC concept, the solutions for SoC communication 

structures have generally been characterized by custom designed ad hoc mixes of buses 

and point-to-point links. More recently, networks on chip (NoC) [23][38][39] have 

gained importance as valuable alternatives to buses. This section describes various on-

chip interconnection techniques that are currently used in SoCs and examines the 

pertinence of these techniques for MNoC.  Specifically, the following characteristics of 

monitor interactions need to be addressed by a medium that serves as a monitor network 

on chip (MNoC). 

1) The bandwidth requirements for MNoC monitors are very diverse and are generally 

lower than the bandwidth requirements of typical SoC cores, such as microprocessors 

and associated memory.   

2) The monitors are laid out on the chip in a very irregular fashion and hence the 

network could be irregular unlike typical SoC networks. 

3) A generalized monitor interface is difficult to specify because of the diversity of 

monitors.  

4) The number and kind of on-chip monitors included per SoC are likely to increase in 

the coming years. As a result, a MNoC needs to be scalable to support increased 

monitor diversity and count. 



 21 

5) Architectural support for monitors and associated interconnect must be lightweight 

and consume minimal system resources. 

2.3.1 Bus Based Interconnections  

Buses constitute the straightforward form of SoC communication that is widely used in 

contemporary SoCs. In a bus based interconnection, several communicating modules are 

connected to a set of shared wires and an arbiter controls data transfer on the bus. The 

arbiter evaluates requests from various peripherals and grants one of the requesters access 

to the bus, based on the arbitration mechanism that it employs. Buses are simple and easy 

to build. However, they suffer from a variety of disadvantages like poor scalability .Their 

limitations are causing a shift towards alternative, more scalable communication models. 

 

An FPGA thermal monitoring system described in [5] involves the connection of 

temperature sensors and a controller using the On-Chip Peripheral bus (OPB) in the 

Xilinx Virtex-2 Pro FPGA. Sensor information that is read by the controller through the 

OPB bus can be used to implement various dynamic thermal management schemes.  

 

The number of monitors that can be connected to a bus is limited by its scalability. If 

numerous SoC monitors need to communicate to a centralized destination like in MNOC, 

a bus, by itself, is likely unsuitable. As the need for monitor integration increases, more 

monitors need to be integrated using the bus and the performance of the bus begins to 

degrade. Bus arbitration delays increase with the number of peripherals. Also, bandwidth 

is shared among multiple monitors and the shared bandwidth might not suffice for some 

higher data rate monitors like the critical path delay monitors explained in Section 2.1.3 . 

The IBM Power6 architecture [48] interconnects multiple thermal, delay sensors and 
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actuators via a high-speed serial bus. Addressable registers are used as the interfaces to 

these components. Scalability is still an issue with such a type of interconnect. For 

maximum flexibility and scalability, a move towards a shared, segmented communication 

structure is required. 

 

One other alternative available is to use the existing debug data channels for transporting 

MNoC data.  The JTAG boundary scan interface [49] provides a serial scan interconnect 

which typically operates at 1 MHz. This low bandwidth chain consumes a minimal 

amount of resources and provides scalability. A recent, enhanced debug system [50] uses 

multiplexers to collate debug information to one or more debug control points. Unlike 

MNoC, debug subsystems do not attempt to use collected information to influence SoC 

run-time operation. 

2.3.2 Point to Point Connections   

Point–to-point links between a set of communicating modules allow for dedicated inter-

module communication. The full link bandwidth is always available and hence dedicated 

point-to-point links provide the best possible bandwidth and latency. However, they 

require a significant hardware overhead and the number of links increases exponentially 

with the number of cores [24]. 

 

Point-to-point connections have been traditionally used for monitor data transport 

because the limited number of monitor connections did not cause a significant overhead. 

The thermal sensors on Intel’s Montecito processor [6], described in Section 2.2.1, are 

directly connected to the micro-controller via analog-to-digital converters using point-to-

point connections. The resource manager in [27] controls system operating frequency and 
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IP bandwidth allocation using readings from thermal and performance monitors, as 

described in Section 2.2.2. The connection between the resource manager and the 

monitors is a point-to-point connection as evident from Figure 13. 

 

Figure 13: SoC resource manager controlling frequency based on thermal information from sensors 

[27] 

 

Point-to-point connections can be a good choice of interconnection for a small number of 

closely located monitors. Since we anticipate that MNoC will cater to a number of 

different kinds of monitors, it will not be realistic to assume a point-to-point connection 

from every monitor to the MEP. Such point-to-point connections for MNoC would result 

in a significant resource overhead.  

2.3.3 Networks on Chip (NoC)  

NoC is an approach for communications within large VLSI systems implemented on a 

single silicon chip. In a NoC system, modules such as processor cores, memories and 

specialized IP blocks exchange data using a network. A NoC is constructed from multiple 

point-to-point data links interconnected by switches (or routers), such that messages can 

be relayed from any source module to any destination module over several links, by 

making routing decisions at the switches. Two important metrics that evaluate the quality 
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of a network-on-chip are bandwidth
1 

and latency. Bandwidth indicates the amount of data 

that can be put on the network in a given amount of time and latency indicates delay 

experienced by data in traveling from the source to the destination, along the network. 

Generally, two kinds of NoC implementations are used in contemporary systems: 

statically-scheduled networks and dynamic networks. 

2.2.3.1 Statically Scheduled Network   

 For a statically-scheduled network, a compiler schedules the allocation of buffers and 

channel bandwidth prior to program execution. Statically-scheduled networks often 

require the assignment of cycle-by-cycle communication by a compiler [40] . This kind 

of communication infrastructure offers limited flexibility for dynamic bandwidth 

allocation and data-dependent communication patterns which makes it unsuitable for 

MNoC.  

2.2.3.2 Dynamic Network   

Unlike a statically-scheduled network, a dynamic network [2] allocates resources and 

schedules communication at runtime. Ethereal NoC [29] developed at Philips is a 

dynamic NoC. Network routers are the key elements of a dynamic network. Routers 

handle communication by implementing routing protocols that forward data from the 

source to the destination.  The fundamental components of a dynamic network are shown 

in Figure 14 and are summarized below 

                                                 
1
 Throughput, data rate and bandwidth will be used synonymously in this document. Bandwidth is the 

maximum data rate which is only limited by physical factors. Throughput is the actual achievable data rate 

which is a fraction of the bandwidth. 
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                                     Figure 14: Generic NoC architecture [24] 

1) The cores are the actual communicating modules which are monitors in case of 

MNoC. 

2) Network adapters implement the interface by which cores connect to the NoC. 

Their function is to decouple computation (the cores) from communication (the 

network). At the network interfaces, the actual data is broken down into smaller 

units of data called flits( flow control digits) and is appended with information 

like source, destination, flit id etc that help in routing and reassembly at the 

destination. The first flit in the data is called a head flit; the last one –tail flit and 

the remaining ones are called body flits. All the flits of one datum make up a 

packet 

3) Routing nodes or routers route the data according to chosen protocols. The routers 

typically have one port that connects to the communicating core and a few other 

ports that connect to adjacent routers. The router shown in figure 11 has one port 
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connected to the core and four ports connected to the routers on its north, south, 

east and west. 

4) Links connect the routing nodes, providing the raw bandwidth. They may consist 

of one or more logical or physical channels. 

 

Various network issues need to be addressed while building NoCs are listed below. 

1) Network Topology: The topology defines the layout and connectivity of network 

nodes. A regular or an irregular topology can usually be chosen depending on the 

type of traffic, area and delay requirements and more importantly based on the 

physical placement of the communicating cores. The network topology shown in 

Figure 2.9 is a regular mesh topology where every router is connected to every 

other adjacent router. 

2) NoC Routing Protocol: The NoC routing protocol determines how data is routed 

through the network. An effective protocol allows routers to efficiently direct 

packets from different sources to different destinations in the network fabric. 

There are several factors that must be considered when developing a suitable 

routing protocol [24] 

a. The routing protocol can use shortest path or non-shortest path routing. 

Shortest path routing in a pre-defined topology can sometimes lead to an 

uneven load distribution across the NoC, but often yields reduced power 

consumption [30] 

b. The routing protocol can be a delay or a loss protocol, depending on 

whether the network delays packets or drops them in the case of 

congestion. Dropped packets must be resent.  
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c. The routing protocol can be deterministic or adaptive depending on 

whether the routing path is determined by the source and destination alone 

or determined at each router based on the network congestion. 

Deterministic routing is attractive for minimum energy and simple router 

implementations. Adaptive routing implementations are more complex but 

are more efficient in handling traffic 

d. These choices need to be made based on the required area-power-

performance trade-offs and the type and amount of network traffic 

requirements. 

 

3) The Network Router: The network router itself is made of components like 

input-output buffers, arbitration units and a crossbar switch that connects the 

router input-output ports. The inclusion of logically separate virtual channels that 

integrate into one physical channel can bring about router performance 

improvement [25].This performance benefit comes at the cost of significant 

resource overhead since multiple logical channels must be multiplexed on a single 

physical channel. The choice of buffer sizes, arbitration unit design and switch 

design directly influence the area, power and performance numbers of the router 

and in turn those of  the network. These effects are elaborated further in Chapter 3 

 

4) Switching: Switching defines how packets move through the routers [26] . The 

most important modes are store-and-forward, virtual cut-through and wormhole. 

a. In store-and-forward mode, a router cannot forward a packet until it has 

been completely received. This leads to high latencies because the header 
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and the body flits have to wait until the last flit of the packet arrives. Only 

then the packet can be forwarded to the next switch. The buffers sizes also 

need to be large in such a mode 

b. In virtual cut-through mode, a router can forward a packet as soon as the 

next switch gives a guarantee that a packet will be accepted completely. 

Thus, it is necessary for the buffer to store a complete packet, like in store-

and-forward, but in this case with lower latency communication.  

c. The wormhole switching mode is a variant of the virtual cut-through mode 

that avoids the need for large buffer spaces. A packet is transmitted 

between routers on a flit by flit basis. Only the header flit has the routing 

information. Thus, the rest of the flits that compose a packet must follow 

the same path reserved for the header [26]. Wormhole routing is typical of 

low latency, low overhead implementations and is the one to choose for a 

low overhead MNoC. 

5) Congestion control, reliability and deadlock
2
 and avoidance should be addressed 

by the network and the implemented protocol [30]. 

 

The choice of each of these parameters directly influences the area and performance of 

the network. The final design is a balanced trade-off based on the cost requirements of 

the communicating cores. For MNoC, the communicating modules are monitors. 

 

NoCs have not yet been used in the context of communication of monitor data because 

most monitoring based control explored so far is restricted to a few local monitors, which 

do not demand a highly scalable and high bandwidth medium like NoC. For MNoC 

                                                 
2
 Deadlock is a condition where network resources continuously wait for each other to be released. 
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however, we perceive that a NoC like interconnect would be essential because our 

monitor network enables communication for large numbers of different kinds of monitors 

spread across the chip, some of them requiring high bandwidth transport media. For 

scalable, low-latency data transfer, NoC would be most suitable. The NoC resource 

overhead should be kept at a minimum to achieve a low overhead MNoC. 
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CHAPTER 3 

MNoC ARCHITECTURE 

The various components that make up the network and our overall approach to 

distributed on-chip monitoring are discussed in detail in this section. 

3.1 MNoC Components and Features 

Conventional system-on-a-chip hardware is augmented with additional components for 

monitoring, verification, and response. Multiple monitors are added to each major 

component of the SoC. The monitors are linked by a monitor network on-chip (MNoC), a 

heterogeneous communication substrate containing low-overhead routers, buses, and 

multiplexed connections. The MNoC is interfaced to a monitor executive processor 

(MEP) which provides a software layer to implement new monitoring algorithms. MNoC 

has been designed to incur minimal area and power overhead compared to a general 

purpose on-chip interconnect by optimizing its width, access control, arbitration, 

flexibility, and bandwidth to the monitor data collection task. Although the MNoC 

components described in this thesis were designed, placed and connected manually, 

components have been designed to allow for eventual automated construction, placement, 

and routing. Specific challenges of the work include the development of monitor-network 

and network-MEP interfaces to accommodate different monitor types and the 

development of interconnection components for irregular topologies and mixed-priority 

traffic.  

 

In general, the spread among the required bandwidths of different monitors is large. 

Thermal monitors typically require a low bandwidth on the order of Kbps [6], while 
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delay monitors have bandwidth requirements that are often on the order of Mbps or 

higher [48]. As a result, MNoC supports interconnected combinations of multiplexers, 

buses, and low-overhead network routers, as shown in Figure 15. High bandwidth 

monitors are directly connected to routers, while the lower bandwidth monitors are 

connected via multiplexers or a bus that connects to the network as shown in the Figure 

15. For small bandwidth, read-only monitors, a connection to the router using a 

multiplexer, as seen in the lower, right of the figure, is suitable. The following sections 

describe the architecture of MNoC in further detail. 
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Figure 15: Detailed view of MNoC for multiple cores 

 

3.2 MNoC Topology and Connections 

On-chip monitors are typically distributed in an unorganized fashion, necessitating an 

irregular interconnect topology. We assume an irregular mesh topology of routers for 
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MNoC, whose placement is dictated by the distribution of monitors. Two types of 

monitors are supported by MNoC: (1) data pull monitors that put data onto the network 

at regular intervals and (2) data push monitors that report data to the MEP occasionally. 

For example, thermal monitors that report temperature periodically can be classified as 

data pull, while error monitors that report data only in the event of an error are data push. 

For data pull monitors, data requests are forwarded to the monitors by the associated 

router interfaces.  Interrupts are used to support unexpected events detected at data push 

monitors. Detailed description of the monitor-network interface is given in Section 3.6 . 

MNoC traffic is entirely monitor data that is communicated to the MEP and no monitor-

monitor communication is required. Monitor data in the network is classified into two 

different priority levels. Messages to the MEP from data push monitors are usually 

critical in nature and are hence tagged with a higher priority.  Messages from data pull 

monitors are typically regular priority unless there is an emergency event at the monitor. 

High priority data is routed through the network using dedicated resources in the routers. 

Sections 3.6 and 3.7 elaborate on the hardware support available in the network routers 

and interfaces that allow for low latency priority data transfer. 

3.3 MNoC Packets 

Monitor information is transported on the network as packets of data. The packetization 

of data is performed at the network interfaces, described in Section 3.6. Packetization 

involves appending the monitor information with additional routing information and 

converting each packet into flits of data. The additional data comprises of destination 

information required for routing, source information required by the MEP to identify the 

monitor from which the data is originating and a time stamp to identify the time at which 



 33 

data was sampled .The packet format for MNoC is shown in Figure 16 

Packet ID

(2 bits)

Flit Type

 ( 00 = Header)

Message

Destination

Packet ID

(2 bits)

Flit Type

 (  01 = Body)
Monitor data

Packet ID

(2 bits)

Flit Type

 ( 10 = Tail)
Monitor data

Priority

(1 bit)

 

Figure 16 : MNoC packet format 

 

The figure shows 3 flits that constitute a packet. The first flit of the packet, the header flit, 

contains the destination router information that is required to implement the MNoC 

routing protocol. MNoC supports variable packet sizes, so a packet can contain any 

number of flits, the minimum being 2 flits – header and tail. The packet identifier is a 2 

bit wide field which, along with the message destination, uniquely identifies a packet. 

The width of the message destination field varies depending on the size of the network.  

MNoC flit width is chosen to be the same as the width of the physical channel and is at a 

minimum the sum of the sizes of the packet ID, flit type, priority field and message 

destination. The packet ID and flit type fields are also present in the body and tail flits. 

The remaining fields are substituted with a monitor data field which contains the actual 

monitor data and the source monitor information. A time stamp from an embedded timer 

is also appended to indicate the time at which data was sampled. This information is used 

by the MEP to identify the time frame of data to initiate the appropriate response. For 

example, if a monitor generated a temperature value of 20 degrees at time t = 1ms and the 

data is received at the MEP at time t = 1.5ms, the MEP interprets the current temperature 

value to be 20.03 degrees using an average temperature gradient of 0.06 deg/ms. 
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3.4 MNoC Routing Protocol 

The most commonly used adaptive routing protocols involve expensive router 

implementations [24] and are suitable for very high and unpredictable traffic rates. 

However, a low overhead MNoC does not warrant such complex routing protocols. For 

MNoC, we use a static distributed routing protocol which involves the use of routing 

tables at every individual router in the network. Each routing table is a lookup table that 

can be indexed using the destination address. For every possible destination, the table 

contains information about the output port that the packet needs to be routed through.  

Figure 17 shows some sample entries in a routing table. The table indicates that a packet 

entering the router and headed to Destination1 will have to leave the router through the 

East port. Such tables at every router guide the packet towards its destination.  

 

Figure 17 : Sample MNoC routing table 

 

We use a fault tolerant mesh routing algorithm [52] to generate paths that are stored in 

the routing tables. The irregular placement of monitors results in an irregular mesh 

topology for MNoC. The algorithm [52] is originally constructed to deal with faulty NoC 

nodes adaptively. In case a link or a router goes down, the packet works its way around 

the fault. An irregular mesh network is equivalent to a faulty mesh in terms of missing 

links and routers.  So this fault tolerant algorithm can also be applied in the context of 

irregular meshes. Irregular networks can lead to concerns regarding deadlock. The 

routing algorithm [52] is deadlock free and hence the paths generated guarantee deadlock 
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free routing in the network. Typically virtual channels in routers are used to avoid 

deadlock in irregular networks [63]. The algorithm in [52] requires no virtual channels 

and hence reduces the overhead due to implementation of the routing protocol.  

 

The algorithm itself is based on the concept of isolating non-existent or faulty nodes 

using the idea of forming faulty rings and chains [64].  Certain existent nodes are also 

deactivated to form a rectangular region of un-routable nodes. The packets are then 

routed along the circumference of the rectangular regions. Routing is performed in a way 

that avoids the formation of the rightmost column segment of a circular waiting path thus 

avoiding deadlock.  

 

Since no monitor-to-monitor communication is assumed in MNoC, the overhead incurred 

with routing tables is minimal. This non-adaptive routing protocol allows for a very 

lightweight router implementation because the overhead for adaptive route evaluation is 

eliminated.  MNoC will also implement wormhole switching [51]  which ensures the 

lowest latency with the least amount of buffer space 

3.5 The MNoC Router 

The low bandwidth required by most monitors is exploited to minimize MNoC router 

area. Unlike typical NoC routers, MNoC routers provide sufficient bandwidth and latency 

with small eight bit data widths and minimal (e.g. 4) buffer sizes. Each router is further 

optimized by removing unused data ports as a result of the irregular mesh topology. The 

MNoC router is built to be highly parameterizable. The optimal buffer sizes and widths 

can be determined based on the required latency and bandwidth for different monitoring 

systems. The choice of these parameters is ultimately a trade-off between performance 
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(in terms of bandwidth and latency) and overhead (in terms of area and power). 

 

The main components that make up the MNoC router are: input buffers that store 

incoming flits, the crossbar switch that connects every input to every possible output, 

control logic and the routing table that determines the next hop of the incoming flit. The 

width of the input buffers is the same as the flit width and the channel width. The buffer 

depth, which we refer as buffer size, is customizable. Figure 18 shows the architecture of 

one specific port in a MNoC router. 

 

 

Figure 18: MNoC router architecture 

 

For MNoC, we choose to use input buffering is used instead of output buffering because 

of the low overhead that input buffering offers [53]. Head-of-line blocking, a possible 

drawback of input buffering, is insignificant in the case of MNoC because most MNoC 

traffic is directed towards the MEP. So it is most likely that a packet queued behind a 

blocked packet in an input buffer is also heading to the same destination, the MEP. The 
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packet can be considered queued because its output port is busy and not because it is 

blocked by another packet at the head of the queue. MNoC avails the advantage of low 

overhead input buffers without affecting performance. Every input channel in the router 

is multiplexed into two separate virtual channels, a priority channel and the regular 

channel. The priority channel is used to exclusively transfer critical monitor data.  

 

A packet that is injected into a network with a high priority (priority field in the packet 

header is set to 1) enters the priority channel and travels in the same channel until it 

reaches the destination. This channel is reserved exclusively for critical data and is not 

used for regular data transfer. Effectively, packets remain in the channel determined at 

packet injection. MNoC employs a credit based flow control to regulate data traffic and 

to avoid packet dropping. To facilitate this, every router has buffer slot counters that keep 

track of the number of empty buffer slots in the regular and the priority channels on the 

adjacent routers. Traffic departs to the adjacent routers only when there is buffer space 

available. The counter is incremented when buffer slots become available and vice-versa. 

The availability of a buffer space is communicated by adjacent routers using credit 

messages. Flits that enter the MNoC router are buffered in the appropriate input channel 

and subsequently go through three router pipeline stages before reaching the next hop: 

routing table look up, switch arbitration, and switch traversal.  

 

In the routing table look up stage, the packet destination is used with a routing table to 

determine the destination output port. Only the header flit goes through this pipeline 

stage. The routing table can be simultaneously accessed by header flits from any number 

of input channels. Hence, no arbitration is required at this stage. Once the destination 
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output port is known, the flit enters the switch arbitration stage. All types of flits go 

through this pipeline stage, although the header flit is dealt with differently. Since MNoC 

implements a wormhole routing approach, the header flit first gains access to the output 

port and the port is then reserved until all flits in the packet reach the next hop. For the 

header flit, the purpose of this stage is twofold. In the first phase, the flit sends a request 

to the switch arbiter for access to the destination output port. If the output port is not 

available, the header flit waits in the input buffer until it becomes available. If the port is 

available, the header flit gains access to the port for the entire length of the packet. The 

flit then enters the second phase where it sends a request for access to the crossbar switch 

to enter the next router’s input port through the destination output port. The request is 

sent, provided the buffer slot counter indicates the presence of a free buffer slot. 

Otherwise, the flit waits in the queue until a buffer slot becomes available. Once switch 

access is granted, the flit goes through the final pipeline stage where it traverses the 

crossbar and enters the same channel (regular or priority) in the next router. The 

corresponding buffer slot counter in the router is then decremented. Also, a credit 

message is sent back to the previous router indicating that the flit has now moved out of 

the input buffer. Since the output port is already reserved by the header flit, the body and 

the tail flits only go through the second phase of the switch arbitration stage. The access 

to the output port is released when the last flit (tail flit) leaves the port. The port can now 

be claimed by a header flit from another packet. The priority channel is given preference 

in the entire switch arbitration stage to ensure lowest possible latency on that channel. 

Among requests from the regular channel, the arbiter grants access in a random fashion. 



 39 

3.6 MNoC Router – Monitor Interface 

Monitors in a system can either have dedicated interfaces to network routers or can 

interface to the routers through shared buses or multiplexers. The interfaces need to be 

generic and should allow for the interfacing of any kind of monitor to the network. The 

control logic should be able to support both data push and data pull monitors. Also 

synchronization issues that result out of different monitor and network frequencies need 

to be addressed.  In our architecture, the monitors and the network router connect through 

a master-slave interface, the router end being the master and the monitor, a slave. The 

architecture of the monitor-network interface is shown in Figure 19. 

 

Figure 19 : MNoC monitor – network router interface 

 

The interface control logic is built to read data at a pre-determined rate from the 

connected monitors i.e. there is a control state machine at the router interface that 

generates read addresses for each of the connected data pull monitors according to a pre-

set schedule. Also, any data pull type of monitor connected at the interface has a 

dedicated interrupt line connected to the router interface and has a capability to generate a 

interrupt indicating that it needs to be read. On the event of an interrupt, the controller 

breaks away from the original sequence to generate a read address for the interrupting 
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monitor. It then returns back to the original schedule. Any data read from an interrupting 

monitor is tagged as high priority data.  Once the monitor data is read, the controller   

appends it with information about the originating monitor and priority value. The data is 

then written into the synchronizing FIFO which is read by the packetization module. The 

synchronizing buffers act as frequency translators and the size of FIFO depends on the 

difference between rate of production of the monitor data and consumption of data by the 

network [22].  

 

The packetization module converts the data to a format specified in 3.1.2 and forwards 

the flits to the appropriate channel in the network (regular or priority), provided there is 

space available in the buffers. In case the network is congested and the synchronizing fifo 

is full the packetization module doesn’t accept any more data from the network interface. 

The interface drops data from the monitors until the data is de-congested because only the 

most recent data is relevant in a sensor network like MNoC.  

 

3.7 Monitor Executive Processor – Network Interface 

The MEP and the network router connect through a master-slave interface, the MEP 

being the master and the router, a slave. A detailed view of the interface is shown in 

Figure 20.  
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Figure 20 : MEP -Network interface 

Monitor data received from either of the channels in the router is read by a de-

packetization module at the network router-MEP interface. Data is read from the regular 

channel only if there is no data to service in the priority channel. The de-packetization 

module has storage to hold flits until the entire packet arrives. It then reassembles the 

packet, removes the routing information and forwards the monitor data along with the 

source information into the synchronizing FIFO. The source information is required by 

the MEP to identify the monitor from which the data originates. The synchronizing FIFO 

also contains separate queues for regular and priority data. The MEP software should be 

programmed to read information from the FIFOs at regular intervals by generating the 

Read_req signal. Again, priority queue data is forwarded to the MEP by the interface 

control module before data in the regular queue. The FIFO addresses synchronization 

issues and is sufficiently sized to ensure that no data is dropped. 

 

Once data is received, the MEP uses the source information to determine the type and 

location of the monitor that sent out the data and takes necessary action by affecting 

system parameters. 
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CHAPTER 4 

 MNoC VALIDATION APPROACH 

In order to validate the MNoC approach and evaluate trade-offs for various design 

constraints, such as area, bandwidth and latency, a series of synthesis and simulation 

experiments have been performed. The efficiency of our monitor interconnect is assessed 

for a multicore system using both an interconnect and a system-level architectural 

simulator. The Popnet interconnect simulator [10] has been significantly modified to 

estimate bandwidth and latency values for the heterogeneous MNoC interconnect. The 

overhead of the monitor network-on-chip interconnect has been measured via hardware 

synthesis. Finally, architectural simulations were performed using the SESC architectural 

simulator [54] to quantify the benefits of employing MNoC at a system level. SESC is an 

architectural multiprocessor simulator that models the power and performance of various 

multi processor architectures. The power model that is integrated in the SESC is based on 

Wattch [56] for processor architecture and CACTI [57] for caches. The temperature 

model is based on Hotspot [58] that is called SESCSpot. SESCSpot, similar to Hotspot, 

calculates temperature of the sub blocks based on the power trace of the architecture in a 

post processing fashion. 

4.1 MNoC Performance Evaluation  

The bandwidth and latency evaluation of chosen MNoC configurations was performed 

using a modified version of the Popnet simulator [10]. Popnet simulates traffic on a cycle 

by cycle basis and gives an estimate of the average time (in terms of network clock 

cycles) a packet takes to reach the destination. It simulates a mesh network with pipelined 

virtual channel dynamic routers. Network parameters like network size, injection rate, 
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input buffer size, flit width and packet size are customizable. To rightly estimate the 

performance of MNoC, popnet was modified to implement the MNoC protocols and 

interfaces. Specific modifications and additions that were performed on the simulator are 

listed below. 

 

Popnet simulator originally implements a five stage router pipeline which we modified to 

implement the MNoC three-stage router with priority channel support. The reduction in 

the number of pipeline stages in the router leads to a reduction in the latency incurred by 

a packet at a single hop and leads to an overall reduction in latency.  The buffering 

strategy at the router was modified to just input buffering instead of both input and output 

buffering. This is because input buffering is more advantageous in the context on MNoC 

as described in Section 3.5. The virtual channel arbitration stage originally present in the 

popnet simulator was modified because MNoC packets are not required to go through 

virtual channel arbitration as packets remain in the same virtual channel that they enter at 

the time of injection. The simulator has also been extended to support expanded 

interfaces for buses and multiplexers.  

 

Popnet originally simulates a regular mesh network while monitors are distributed on the 

chip in an irregular fashion. To enable the evaluation of realistic MNoC topologies, the 

simulator was modified to support irregular topologies. This involves modifying the 

address space of the routers and monitors, the number of input/output ports in the router  

and the connections between routers. Also, Popnet implements an XY routing protocol 

which is a preferred protocol for mesh networks due to its dead-lock free operation. XY 

routing cannot be used for an irregular topology. Popnet was modified to support the 
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static distributed routing protocol described in Section 3.4. This involves changes in the 

routing logic and addition of routing tables at every individual router in the network. The 

paths from every router in the network to the MEP were generated using the deadlock 

free routing algorithm [52] and the routing tables were populated with the generated 

routes. The simulator, in modified form, allows for a complete evaluation of various 

MNoC topologies and components.  

4.2 MNoC Overhead Estimation  

To estimate the overhead of our MNoC approach, we developed a synthesizable 

hardware model of the MNoC router. The hardware model is parameterizable and allows 

for evaluation of area for different router parameters. The hardware model was 

synthesized using Synopsys Design Compiler using a 90nm standard cell library [55].  

The input, output buffers at all the ports of the router are of customizable widths and 

depths. The buffer width is same as the flit width and the physical link width. Reducing 

this negatively impacts the performance of the network but offers an area saving. Similar 

is the impact while reducing the buffer depth. The control logic in the router, the routing 

table and the crossbar switch also add a fixed amount of area overhead. The routing logic 

that determines the next hop of a flit by looking up the routing table, the switch arbiter 

that controls access to the crossbar, and the output control logic that reads credit 

messages and controls traffic on the physical channel are components of the control logic. 

The synchronizing buffers, packetization modules and the control logic at the interfaces 

also contribute to the overhead of MNoC. A hardware model of the interfaces was 

created to estimate the overhead. Results from hardware synthesis of MNoC for specific 

systems are presented in Section 5.  
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Assuming that the physical links between routers can be traversed in one clock cycle, the 

frequency at which the routers operate dictates the frequency of the entire network. The 

maximum bandwidth of the router is a product of the router frequency and router width 

(same as the flit width). The router hardware is pipelined, as described in Section 3.5 , to 

allow for high frequency operation. The hardware model created for the area estimation 

was used to assess the maximum frequency of the router. 

4.3 MNoC System Level Validation 

Our generic approach to system level MNoC validation is shown in Figure 21. 

Identify and build 
parameterizable  MNoC 

components

Building 
MNOC 

Infrastructure

Validate 

MNOC for 
sample 

monitoring 
systems

Simulate , using Popnet simulator,  a suitable 
topology with monitor layout information 

Parameter tuning 
for different area 
and performance 

values

Assess system level  
design constraints 

using SESC and area 

constraints using the 
hardware model

Monitoring
Requirements

(latency, BW, 
area, power)

 

Figure 21 : MNoC validation approach 

 

In general, for any specific monitoring system, the network components for MNoC 

should be chosen and sized in a way that satisfies system bandwidth and latency 

requirements with a minimal resource overhead. The latency and bandwidth requirements 

depend largely on the type of monitor and the reaction that the MEP takes in response to 

monitor data.  As described in Section 4.1, the network performance of the chosen MNoC 

topology can be estimated using the modified Popnet simulator. The overhead can be 
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estimated using our hardware model. A system level architectural simulation can then be 

performed to ensure that the latency and bandwidth provided by MNoC are sufficient and 

allow the MEP to react to monitor data in a timely fashion. Mismatches can be corrected 

by tuning the network parameters and re-evaluating the network performance and 

overhead. Timely MEP reaction translates to a quantifiable system level benefit that can 

be measured using the architectural simulation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 47 

CHAPTER 5 

EXPERIMENTAL APPROACH AND RESULTS FOR VALIDATING MNOC 

To test our Network on Chip approach for monitors, we have identified some sample 

systems which will benefit from such an approach. These systems are representative of a 

larger set of monitoring systems that MNOC can cater to. This section describes two 

sample systems and MNoC’s application for these systems. 

5.1 Thermal Management Using MNoC 

Contemporary processors use around 10-25 thermal sensors per core [9] and as the 

number of cores on a die increase we can foresee the need of collating data from a large 

number of thermal monitors from across the chip. Using point to point connections for 

such a large number of monitors to a centralized controller with a low resource overhead 

is not a feasible task. Also, connecting such a large number of monitors to a bus 

significantly degrades the performance of the bus. So from a scalability standpoint, a   

MNoC like network becomes essential although the actual bandwidth required by thermal 

monitors is considerably less. For a chip temperature gradient of 60degC/sec and a 

precision of 1.2 degC , it suffices to sample the thermal monitor once every 20ms [6]. 

Assuming a 12 bit data to be transported at this sampling rate, the monitor bandwidth is 

around 0.6 Kbps.  

 

To evaluate the benefits of MNoC in a system that processes thermal information, we 

perform an interconnect and system-level simulation of a thermal monitoring system on 

an 8 core processor. The goal of the experiment is to use MNoC for collating temperature 

data from a group of thermal monitors spread across cores and to perform dynamic 
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frequency scaling (DFS)[59] if preset thermal thresholds are exceeded. The delays 

associated with MNoC were simulated using the modified Popnet simulator. SESC was 

used for the system level simulation which involves generating thermal data and 

simulation of the MEP that performs dynamic frequency scaling.   

 

In this experiment, 24 thermal monitors on each of the 8 processor cores report 

temperature values from various locations on the chip. The processor cores used here are 

based on the AMD Athlon 64 processor [60]. The layout of the eight core system is 

shown in Figure 22. There are two MNoC routers per core, each of which collects 

thermal data from 12 thermal monitors using a multiplexer. Thus 192 thermal monitors 

from eight cores connect to 16 routers through 16 multiplexers. Since thermal monitors 

can be classified as low bandwidth data pull monitors, low bandwidth multiplexer 

connections were used. The MEP is attached to a dedicated router as seen in Figure 22.  

 

Figure 22 : Monitor network on chip layout for thermal monitors on an 8 core processor 

 



 49 

The MEP was placed at a central location to the routers. The resultant network topology 

is an irregular mesh which is effectively a regular 5x5 mesh with missing routers and 

links.  A dummy router adjacent to the MEP was added to facilitate routing. Without this 

router, some of the routers must be marked as deactivated nodes which are not reachable 

[52]. With this 18 router setup, the deadlock-free routing algorithm [52] was used to 

generate paths from every router to the MEP. Each of the 18 routers can be addressed 

using 5 bits, so the message destination field is 5 bits wide. The actual temperature values 

are 12 bit wide. An additional 8 bits are required to identify the origin of the data from 

among the 192 monitors.  

5.1.1 Interconnect simulation results 

Our modified interconnect simulator was used to evaluate the behavior of the above 

described network for different network parameters. Figure 23 shows a plot of network 

latency versus injection rates for various router buffer sizes. The value on the X axis, 

cycles between injections, indicates the number of clock cycles between two sampling 

points for the thermal monitors Network latency (the Y axis) indicates the time required 

(in clock cycles) for data to travel from a monitor to the MEP. Figure 24 shows the same 

plot for the priority channel. We simulated 5% of the total traffic to be priority traffic to 

assess the latency on the priority channel. It is clear from the plot that the latency on this 

channel is more or less constant and is ideally suited for low latency critical data transfer. 

There is practically no impact of buffer sizes on the latency. Figure 23 indicates a 

significant dependence for the regular channel on the input buffer size for sizes less than 

4. For buffer sizes greater than and equal to 4, limited latency reduction is achieved by 
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increasing buffer size. For longer cycles between injections, the regular channel latency 

becomes insensitive to buffer sizes.  
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Figure 23 : Regular channel latencies for different buffer sizes 

 

Figure 25 shows a plot of network latency versus injection rate, for different flit widths. 

As we can see from the plot, for very low sampling rates (cycles between injection > 

800), the latency becomes independent of the flit width. For higher sampling rates, the flit 

width that gives ideal latency increases with increasing cycles between injections. 
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Figure 24 : Priority channel latencies for different buffer sizes 
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Regular channel latencies for different data widths for buffer 
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Figure 25 :  Regular channel latencies for different flit widths 

 

Overall, it can be inferred from the results that for higher cycles between injection (lower 

sampling rates and hence lower required bandwidths), the latency values are mostly 

insensitive to network parameters like buffer size and flit widths. Adding more resources 

adds overhead but yields little benefit. At such low sampling rates, like in the case of 

thermal monitors, close to ideal network latency can be achieved with minimal network 

resources. Monitors with higher sampling rates have latencies that are highly network 

dependent. These monitors usually dictate the choice of network parameters.   

5.1.2 Hardware estimation results 

While the interconnect simulation provides an insight into the network performance with 

varying parameters, the hardware estimates from Table 2 are essential to evaluate to 

ensure that the network overhead is within system design constraints. 17% of the total 

resources are consumed by the network interfaces and the remaining 83% is consumed by 

the network itself. Of the total network resources, 35% is consumed by control logic, 
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49% by input buffers in the routers and the remaining 16% is consumed by switches, 

routing tables etc. 

 

Flit width Buffer size 

Total MNoC area at 

90 nm in mm
2
 

12 2 0.700 

14 2 0.765 

16 2 0.825 

18 2 0.890 

20 2 0.950 

12 4 0.819 

14 4 0.894 

16 4 0.970 

18 4 1.043 

20 4 1.116 

12 8 1.084 

14 8 1.201 

16 8 1.314 

18 8 1.420 

20 8 1.530 

12 16 1.571 

14 16 1.751 

16 16 1.919 

18 16 2.094 

20 16 2.262 

Table 2 : MNoC area results 

 

5.1.3 Architectural simulation results 

In this section we demonstrate how an MNoC configuration that satisfies system design 

constraints while providing a performance benefit can be constructed using results from 

the interconnect simulation and hardware estimations. We use SESC to simulate eight 

processors and one central MEP, as seen in Figure 22. 

 

In this experiment, the 192 thermal monitors on the 8 core chip were sampled every 2ms 

to provide a resolution of 0.1 degC. This number was determined assuming a maximum 
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temporal temperature gradient of 60degC/sec [6]. To meet this bandwidth requirement, 

an MNoC configuration with flit size of 12 bits and an input buffer size of 4 was used. 

The resulting MNoC area from Table2 is 0.819 mm
2
. The temperature reported by the 

monitors is collected by MNoC and transported to the MEP which uses the data for 

dynamic frequency scaling. 

 

Dynamic frequency scaling of a processor system improves system performance by 

operating cores within power dissipation and temperature limits. Two experiments were 

performed on the 8 core system to demonstrate the benefits of DFS on a benchmark 

application. A floating point benchmark called Whetstone [61] is used to conduct the 

experiments for a total of 450M instructions per processor. In one scenario, the system 

was operated at a constant frequency of 500MHz to meet pre-defined power and 

temperature limits and the run time consumed was noted. In this case since the predefined 

temperature threshold is not exceeded, it was not necessary to employ MNoC. This is a 

non-MNoC system. In a second scenario, MNoC is employed to transport thermal 

monitor data which is used by a MEP to perform DFS. In this case, the operating 

frequency of the system is toggled between 1 GHz and a lower frequency to ensure that 

the specified power and temperature limits are not violated. The run time was again noted 

and the resulting performance improvement was calculated. It was noted that MNoC 

gives a 33% performance benefit for the 8 core system.  To evaluate how the 

performance benefit using MNoC scales with the number of cores, we also performed 

experiments for 2 core, 4 core, and 12 core systems. The results obtained for various 

system configurations are shown in Table 3. The advantage of employing MNoC 

becomes is visible for all core configurations 
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Freq = 500MHz 

(90nm) 

Freq = 1000 

MHz + DFS 

(90nm) 

Cores 

Run Time  

 

Run Time  

 

Performance 

benefit 

due to 

MNoC 

2 3.36 sec 

 

2.42  sec 

 

28 % 

4 2.75 sec 

 

2.25 sec 

 

18 % 

8 2.27 sec 

 

1.52 sec 

 

33 % 

12 1.75sec 

 

1.35 sec 

 

23 % 

Table 3 : Runtimes for MNoC and non-MNoC cases 

 

Also, assuming an area of 378mm
2
 for a 90nm 8 core processor [45], we obtain the area 

overhead of MNoC to be 0.819/378 = 0.21%. The SESC simulation results illustrate that 

the chosen MNoC configuration allowed an implementation of the DFS scheme which 

resulted in a performance benefit versus the non-MNoC case. The network overhead is 

also a meager 0.21%.  

5.2 Voltage Droop Management Using MNoC 

 

As power supply voltages and associated noise margins continue to decrease, the control 

of power supply voltage is becoming increasingly important for system performance and 

reliability. Recently, voltage droop or dI/dt events are becoming serious concerns in high 

performance processor designs. They are usually addressed by expensive packaging 

techniques [47].  This experiment involves the use of real time monitoring and control 

techniques that use MNoC to offset voltage drops at system run time. This approach to 

dynamically handling voltage droops effectively reduces the complexity and cost of 

building expensive packaging solutions.   
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Critical path delay monitors are used to identify failing paths in the circuit which are 

indicative of increasing temperature, wear-out or voltage droop. The critical path monitor 

described in Section 2.1.3 will be used for experiments pertaining to this section. We 

however assume that the most significant impact on the critical path delay is caused by a 

voltage droop event.  We particularly target the second and third kind of droops as 

defined in [3]. The high bandwidth and low latency offered by MNoC enables such a real 

time droop monitoring design. 

 

The monitoring setup involves 8 delay monitors per core [7]  which report digitized delay 

values in 12 bits of data. This data will be transported to the MEP through MNoC. Since 

delay values can potentially change every clock cycle, the monitors ideally need to be 

sampled every clock cycle. Hence unlike the thermal monitors, the delay monitors require 

very high bandwidth on the network. In response to a voltage drop event, we can either 

increase the voltage or reduce the frequency of the core to enable correct operation of the 

system. We simulated two different MNoC systems, one in which the MEP responds by 

reducing the frequency of the core and another in which the MEP increases the voltage of 

the core to avoid a serious voltage droop. Results provided in this section indicate that the 

MNoC based systems provide a power or performance benefit compared to a system that 

doesn’t employ MNoC. In a non MNoC system, the voltage or frequency needs to be set 

to a highly conservative value that accounts for the worst case voltage droop. In contrast, 

MNoC enables a better than worst case design rather than building systems that handle 

worst case possibilities which are very rare in real workloads. 
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5.2.1 Modifying voltage in response to voltage droop 

Figure 26 details out our approach to countering a single voltage droop using MNoC. The 

system requires cores to be operating at a voltage of 1.2Volts. Assuming a maximum 

voltage droop of 20% , a supply voltage of 1.2V can reduce to 0.96V in the worst case. 

This voltage is not sufficient to keep the core running at its original frequency. This is 

due to the exponential dependence of circuit frequency on supply voltage as obtained 

from [16]. In the event of a voltage droop, the delay monitors indicate an increase in 

critical path delay. This information is transported to the MEP in a timely fashion using 

MNoC, which then increases the supply voltage. This is in contrast to a non-MNoC case 

where the voltage needs to be set to 1.4V (1.16 V + 20% of 1.2V, since the timing delays 

between 1.16V and 1.2 V are almost insignificant) to account for the worst case droop in 

the system. This less conservative approach to dealing with voltage droop leads to a 

power savings when compared to the non MNoC case. 
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Figure 26 : Single droop recovery using MNoC 
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It should however be noted that it takes a finite amount of time to detect, communicate 

and react to a change in the critical path delay. The initial supply voltage should account 

for the amount of voltage droop that can occur before any action can be taken. So the 

initial supply voltage in the MNoC case is dictated by the delay in sampling the monitor, 

MNoC delay and the voltage regulator settling time. With larger sampling times or 

communication delays, the initial voltage to be set could be close to the worst case 

voltage of 1.4 V.  Table 4 gives an insight into how the initial supply voltage can vary 

with increasing sampling intervals and MNoC delays on an 8 core processor. For small 

sampling intervals
3
, the MNoC delay is very high due to congestion. For higher sampling 

intervals, the MNoC delay is very low but the fact that we are sampling less often 

compensates for the lower MNoC delay. Specific combinations of sampling intervals and 

MNoC delays that yield a power benefit were determined experimentally and the results 

are reported in the following sections. Assuming any voltage less than 1.16 V is 

catastrophic, we arrive at the generic equation used to calculate the initial voltage as 

shown below;  

New voltage = Voltage droop rate *(Sampling interval + MNoC delay + voltage regulator 

delay ) * Network clock period + 1.16V  

 

A network clock frequency of 510 MHz is used as determined from synthesis of the 

network router. The voltage regulator delay also plays a significant role in determining 

the initial voltage. The following section summarizes the assumptions made in this 

experiment regarding the voltage regulator settling time. 

 

 

                                                 
3
  Sampling interval is the time between two samples of the delay monitor 
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Assumptions regarding voltage regulator settling time 

 
Traditional off chip voltage regulators use bulky inductors and capacitors which require 

that the voltage regulator modules be separate off-chip components. These off-chip 

voltage regulators typically have very slow transition rates of the order of micro seconds 

[12]. Dynamic voltage and frequency scaling techniques [35] benefit systems by 

modifying voltage and frequency at run time so as to maximize performance while 

operating within specific power limits. The slow transition rates of off-chip voltage 

regulators have limited the benefits of dynamic voltage and frequency scaling techniques 

[13].  To take most advantage of the benefits of DVFS, there has been interest in building 

on chip voltage regulators that avoid the need for bulky capacitors and inductors and 

enable voltage regulator transition times of the order of nanoseconds [13, 65].  

 

For this experiment we consider an on-chip voltage regulator [13] that has transition rates 

of the order of nanoseconds and can vary voltage on a per core basis. The voltage 

regulator described in [13] is designed to operate at higher switching frequencies that 

enable it to switch voltages rapidly. The higher switching speeds however entail higher 

voltage regulator power than regular off chip voltage regulators. On chip voltage 

regulators need to be designed with minimal overhead in a way that these contrasting 

requirements are traded off.  

 

 

 

 



 59 

 
Monitor sampling 

interval ( Clock 
cycles) 

MNoC Delay        
( Clock 
cycles) Voltage (V) 

130 254.22 1.463 

140 10.49 1.276 

150 9.50 1.283 

160 11.20 1.292 

170 12.40 1.301 

180 11.45 1.309 

190 10.00 1.316 

200 9.49 1.323 

210 9.49 1.331 

220 10.36 1.340 

230 12.00 1.349 

Table 4  : Variation of initial supply voltage for the MNoC based system as the monitor sampling 

rates vary 

 

Experiments to determine power savings were conducted on 4, 8 and 16 core processors 

with a 9 router MNoC setup. One of the routers has a dedicated connection to the MEP 

while the rest of the 8 routers connect to delay monitors through a multiplexer interface. 

The network size remains the same as the number of cores increase. Effectively, the 

number of monitors attached to each router increases as the number of cores increase. 

The floating point benchmark Whetstone [61] was used to conduct the voltage droop 

experiments. The interconnect simulator was used to estimate MNoC delays and SESC 

was used to obtain the power trace of the application. A flit width of 16 and a buffer size 

of 4 were chosen for the experiments. In an offline process, the voltage modifications 

were applied on the power trace and the total power savings were calculated against the 

non MNoC case. In the non MNoC case, the voltage for the entire run of the benchmark 

was set to the worst case voltage of 1.4 volts. The percentage power savings recorded for 

the 4 core, 8 core and the 16 core versions are shown in Figure 27, Figure 28, and Figure 

29 respectively. 
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Power savings with MNoC on a 4 core processor 
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Figure 27 : Power savings with MNoC on a 4 core processor 

Power savings with MNoC on a 8 core processor 
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Figure 28: Power savings with MNoC on a 8 core processor 

Power savings with MNoC on a 16 core processor  
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Figure 29 : Power savings with MNoC on a 16 core processor 
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As seen from the results, all three configurations result in power savings against the non 

MNoC case for specific combinations of sampling rates and MNoC delays. But for a 

given size of the network and a given bandwidth, the four core version has the best 

savings. As number of cores increase the number of monitors increases, requiring more 

bandwidth from the network. This type of trend clearly motivates the need for a scalable 

medium like MNoC as against buses or serial links. The increase in power savings on a 

16 core processor as the bandwidth of the network increases is shown in Figure 30. The 

bandwidth of the network was increased by increasing the width of the router (same as 

increasing the flit width). As expected, the highest bandwidth network yields maximum 

power savings. 

 

It can also be noticed from the results that certain values of sampling intervals yield a 

negative benefit in terms of power. This is because the sampling or the network delays 

are so high that the system gains no benefit from run time monitoring. Clearly, these 

combinations of sampling intervals and MNoC delays will have to be avoided.  

Power savings with increasing MNoC bandwidth on a 16 core processor
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Figure 30: Power savings with increasing MNoC bandwidth on a 16 core processor 
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The percentage of power savings is also dependent on router components like buffer sizes 

which can significantly influence MNoC delays. Figure 31 shows the power savings as 

the buffer sizes in the individual routers are modified. The trend indicates that increasing 

the buffer sizes beyond a buffer size of 8 doesn’t cause any significant improvement in 

the power savings encouraging the use of smaller buffer sizes. 

Variation in power savings in a 8 core processor with varying buffer sizes
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Figure 31: Variation in power savings with variable MNoC buffer sizes 

 

 

Increasing the bandwidth of the network and using larger input buffers leads to an 

increase in the MNoC overhead. It is necessary to quantify the area of MNoC to 

effectively tradeoff system level MNoC benefits with the overhead incurred. Table 5 and 

Figure 32 give an estimate of the overhead of MNoC for the 9 router configuration.  
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 Flit width  Buffer size Total MNoC area (mm2) 

BW = B 16 4 0.484 

 16 8 0.657 

 16 12 0.805 

 16 16 0.959 

BW = 2B 
 32 4 0.663 

 32 8 1.098 

 32 12 1.351 

 32 16 1.650 

BW = 4B 64 4 1.375 

 64 8 1.983 

 64 12 2.493 

 64 16 3.028 

Table 5: MNoC area estimates for the 9 router configuration 
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Figure 32 : Quantifying MNoC area overhead 

 

5.2.2 Modifying frequency in response to voltage droop 

Another alternative to countering voltage droop is to reduce the frequency of the core in 

the event of a droop. This experiment was conducted on similar lines as the voltage 

modification experiment.  It was assumed that the cores could operate at a frequency of 

1GHz at a voltage of 1.2 V. In case of a worst case drop, the voltage can reduce to 0.96V 
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in which case the core cannot operate at a frequency higher than 0.66 GHz. This value 

was again obtained using the dependence of circuit frequency on supply voltage as 

obtained from [16].  The initial frequency depends on the sampling interval, MNoC delay 

and the time its takes for the frequency change to take effect 

 

Assumptions regarding frequency transition rates 

 
Frequency transition rates are quicker than voltage transition rates and can be of the order 

of a few nanoseconds [67].  Also, a clock system that enables fast frequency 

modifications without PLL re-lock penalties is described in [66]. Enabling rapid, per core 

frequency scaling benefits the MNoC assisted system in terms of performance. Table 6 

indicates how the initial frequency of the cores can vary with increasing sampling 

intervals and MNoC delays. Higher frequency transition rates require that the initial 

frequency shown in Table 6 be set more conservatively. 

 
Sampling 
interval ( 

Clock 
cycles) 

MNoC Delay         
( Clock cycles) Frequency(Ghz) 

90 104.17 0.769 

110 10.49 0.885 

120 12.00 0.868 

130 9.49 0.852 

140 9.49 0.836 

150 13.22 0.820 

160 11.54 0.805 

170 9.49 0.790 

180 9.49 0.775 

190 9.49 0.761 

Table 6 : Variation of initial frequency for the MNoC based system as the monitor sampling rates 

vary 
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Experiments to estimate the performance benefit of using MNoC were conducted on 4, 8 

and 16 core processors with a setup of 9 routers. The floating point benchmark 

Whetstone [61] was again used to conduct the voltage droop experiments. The 

interconnect simulator was used to estimate MNoC delays and SESC was used to obtain 

the run-time trace of the application. In an offline process, the frequency modifications 

were applied on the power trace and the total run-time savings were calculated against the 

non MNoC case. In the non MNoC case, the frequency for the entire run of the 

benchmark was set to the worst case frequency of 0.66 GHz. The percentage performance 

savings recorded for the 4 core, 8 core and the 16 core versions are shown in Figure 33. 

Performance benefit with varying MNoC bandwidth is indicated in Figure 34. The trends 

are similar to those noticed in Section 5.2.1  
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Figure 33: Performance benefit in multi-cores using MNoC   
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Performance benefit with varying bandwidth on a 16 core processor that uses 

MNoC
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Figure 34: Performance benefit with varying MNoC bandwidth 

 

Overall, the experimental results from this section indicate that the high bandwidth and 

low latency offered by MNoC enable a run time adaptation of voltage/frequency that 

yields close to 20% improvement in power/performance compared to a non MNoC 

system. 
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CHAPTER 6 

 CONCLUSIONS AND FUTURE WORK 

This thesis presents a scalable and lightweight interconnect approach for monitor 

connections. We developed the necessary infrastructure to test the performance and 

evaluate the overhead of various network configurations and topologies. Our 

parameterizable network solution allows for the development and assessment of various 

design trade-offs for on-chip monitoring systems. The approach is validated by 

demonstrating the performance benefits obtained on a multicore processor system that 

uses a MNoC based thermal monitoring system. Also, when employed to transport 

information on a delay monitoring system, MNoC provides enough bandwidth and 

latency to allow the MEP to adjust voltage/frequency in response to voltage droops at run 

time. This is in contrast to statically setting conservative voltage and frequency values. 

This leads to an overall power/performance benefit in the system compared to a non-

MNoC design. 

 

In the future, automation of MNoC design for a given set of monitors and design 

constraints is a promising area that needs to be addressed. We can examine the possibility 

of using the regular network on chip used for data communication to also transport 

monitor traffic. We can also look at using MNoC to locally collaborate or aggregate 

monitor data. This can reduce the overall traffic on the network and could require lesser 

network resources. Another interesting area of work is the software associated with the 

MEP. Innovative circuit level techniques for MNoC wire fabric can also help scalability 

and low latency.  
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