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ABSTRACT 

MIMO COMMUNICATION FOR AD HOC NETWORKS: A CROSS LAYER 

APPROACH 

May 2008 

SURAJ KUMAR JAISWAL 

 B.TECH, INIDIAN INSTITUTE OF TECHNOLOGY GUWAHATI 

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Aura Ganz 

New technologies such as pervasive computing, ambient environment, and 

communication avid applications such as multimedia streaming are expected to impact 

the way people live and communicate in the wireless networks of the future. The 

introduction of these new technologies and applications is, however, a challenging task 

in wireless networks because of their high bandwidth requirements and Quality of 

Service (QoS) demands.  

A significant recent advance in wireless communication technology, known as 

Multiple-Input Multiple-Output (MIMO) provides unprecedented increase in link 

capacity, link reliability and network capacity. The main features of MIMO 

communication are spatial multiplexing, point-to-multipoint and multipoint-to-point 

transmission as well as interference suppression in contrast to the conventional single 

antenna (Single-In Single-Output, SISO) networks.  

In this thesis, we investigate the problem of scheduling flows for fair stream 

allocation (or, stream scheduling) in ad hoc networks utilizing MIMO antenna 

technology. Our main contributions include: i) the concept of stream allocation to flows 
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based on their traffic demands or class, ii) stream allocation to flows in the network 

utilizing single user or multiuser MIMO communication, iii) achieving the proportional 

fairness of the stream allocation in the minimum possible schedule length, and iv) 

performance comparison of the stream scheduling in the network for single user and 

multiuser communication and the tradeoff involved therein. We first formulate demand-

based fair stream allocation as an integer linear programming (ILP) problem whose 

solution is a schedule that is guaranteed to be contention-free. We then solve this ILP in 

conjunction with binary search to find a minimum length contention-free schedule that 

achieves the fairness goals. Performance comparison results show the benefit of 

multiuser MIMO links over single user links which is predominant at higher traffic 

workloads in the network. We also implement a greedy heuristic for stream scheduling 

and compare its performance with the ILP-based algorithm in terms of the fairness 

goals achieved in a given schedule length. OPNET-based stochastic simulation 

confirms the benefits of MIMO-based stream scheduling over single antenna links, as 

shown by our theoretical analysis. 
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CHAPTER 1  

INTRODUCTION 

 

New technologies such as pervasive computing, ambient environment, and 

communication avid applications such as video conferencing and multimedia streaming 

are expected to impact the way people live and communicate in the wireless networks 

of the future. The delivery of multimedia information significantly increases the amount 

of traffic transmitted over the wireless channels as well as introduces the need to 

provide quality of service (QoS) support to the diverse media streams. 

The realization of a wireless network, with unprecedented transport capacity 

required to support such applications, requires innovation at all the layers of the 

network stack-jointly. The use of multiple antennas at transmitter and receiver, 

popularly known as Multiple-Input Multiple-Output (MIMO) wireless is an emerging 

physical layer technology that has the potential to make wireless links, with 1 Gbps 

capacity, a reality due to its unprecedented spectral efficiency [3,4,5,6]. The capability 

of MIMO links to operate in non-line-of-sight (NLOS) harsh fading and multipath 

environments and their ability to suppress interference is a paradigm shift from the 

existing wireless link technologies. These characteristics enable MIMO based wireless 

network the ability to offer QoS to multimedia traffic in wireless links, extended range 

for better connectivity and highly reliable wireless links in harsh environments. MIMO 

wireless link technology offers a rich scope for research in ad hoc networks owing to its 

various characteristics. Some of the unorthodox properties of MIMO links, arising due 

to the multiple antennas (also referred to as spatial degrees-of-freedom, DoF) at the 
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transmitter and receiver side, include interference suppression, high link reliability, 

capacity scaling, interference avoidance, co-operative transmission, multi-packet 

reception, and point-to-multipoint transmission. Proper management of the above 

mentioned MIMO induced resources will lead to efficient resource utilization which 

results in high network throughput and QoS support.  

In this thesis we propose demand-based fair MIMO stream allocation to the traffic 

flows in the network for medium access control (MAC). This approach is flexible and 

adaptive to varying traffic demands and network topology. To achieve this, we develop 

a theoretical framework for guiding the development of demand-based resource 

allocation and media access control algorithms that can exploit MIMO’s capabilities in 

multihop wireless networks that provide QoS support to multimedia applications.  To 

achieve this task we carry out the following tasks: 

1. Theoretical framework for algorithm development: We have defined an abstract 

network model for MIMO communication (both single user and multiuser). We develop 

a centralized algorithm in this framework for MIMO stream scheduling that make use 

of MIMO’s single user and multiuser spatial multiplexing and interference suppression 

capabilities in the contention-free setting. The proposed centralized algorithm 

efficiently and fairly schedules the required traffic demands. We study the interplay 

between schedule length and fairness, and identify the mutual tradeoffs. For contention 

free scheduling, we formulate the problem of stream scheduling in a MIMO ad hoc 

network as an integer linear programming (ILP) problem. For a given network 

topology, set of flow demands, and schedule length, the solution to the ILP formulation 

yields a schedule of a given length that satisfies the demands optimally. Furthermore, 
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we show that even we can identify the optimal schedule length, that is, the shortest 

schedule required to achieve strict fairness.  

2. Contention-free scheduling algorithms: While our formulation and approach 

guarantees a schedule that has optimal length and satisfies strict fairness, it is not 

necessarily a viable algorithm in practice, since we do not have efficient algorithms to 

find solutions to the ILP formulation. Therefore, we develop practical centralized 

algorithm that gives near-optimal performance in terms of fairness.  

3. OPNET Simulations: We developed simulation model in OPNET for MIMO links 

to evaluate the proposed algorithm under different conditions such as: varying traffic 

patterns, varying degree of freedom available at the network nodes, etc. 

The remainder of the thesis is organized as follows. In Chapter 2, we introduce the 

basics of MIMO wireless communication and in Chapter 3 we present the related work. 

Chapter 4 introduces the system model for MIMO stream scheduling. Chapter 5 

presents the theoretical framework for MIMO stream scheduling utilizing single user 

spatial multiplexing. Chapter 6 presents the theoretical framework for MIMO stream 

scheduling utilizing multiuser spatial multiplexing. Chapter 7 presents the theoretical 

framework for stream scheduling in networks using SISO links. Chapter 8 presents the 

greedy algorithm for MIMO stream scheduling. Chapter 9 and chapter 10 present the 

theoretical results and OPNET simulation results, respectively. Chapter 11 outlines the 

contributions and concludes the thesis. 
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CHAPTER 2 

MIMO BACKGROUND 

   

In recent years, considerable research has been done to exploit the benefits of 

directional antennas, switched-beam antennas, and smart antennas in ad hoc wireless 

networks. However, these antenna technologies provide good performance in line-of-

sight environments but results in degraded performance in non-line-of-sight (NLOS) 

environments (indoor environments, urban outdoor environments, forested terrain, etc.). 

MIMO [3,4,5,6,14,15,16] is one of the recently emerging smart antenna technology, 

where adverse wireless channel characteristics and conditions are exploited rather than 

mitigated. The MIMO physical link exploits multi-path propagation in scattering 

environments through the use of multiple-antennas and sophisticated signal processing 

techniques at both the transmitter/receiver side (see Figure 2.1, a MIMO link system 

with four transmit and four receive antennas). MIMO generally operates in two modes: 

diversity mode and spatial multiplexing mode.  

 
Figure 2.1: A 4X4 MIMO link 
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2.1 MIMO Single User Communication 

Single user MIMO communication pertains to the fact that a transmitter (receiver) is 

engaged into meaningful communication with only one receiver (transmitter) at a time. 

 
 

Figure 2.2: Spatial multiplexing over uncorrelated multipaths 
 

2.1.1 MIMO Single User Spatial Multiplexing 

The MIMO link (utilizing M transmit and N receive antennas) in spatial 

multiplexing mode, de-multiplexes an incoming data stream over M transmit antennas. 

This transmission results into M independent streams [5,6] transmitted over the same 

frequency, using the same modulation and the same signal constellation. The receiver 

side must have a minimum of M receive antennas so as to be able to successfully 

recover the transmitted data. Such MIMO systems increase communication data rates 

drastically above current systems and as they operate by creating parallel channels in 

the same frequency band, thereby increasing spectral efficiency. This mode relies on the 
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availability of rich scattering and multi-path environment so that the transmitted streams 

at the receiver are uncorrelated (see Figure 2.2). The average capacity (i.e. bandwidth 

normalized capacity) increases linearly with M: 

 

In general the capacity will grow proportional to the smallest number of antennas 

),min( NMk = where M is the number of transmitter side and N the receiver side 

antennas. This is a tremendous capacity increase, especially given the scarce spectral 

resources below 10 GHz frequency range and achieving this capacity is infeasible using 

traditional techniques with single antenna radios.  Therefore in theory and in the case of 

idealized random channels (rich scattering between the transmitter and the receiver), 

limitless capacities can be realized provided we can afford the cost and space of many 

antennas and RF chains. In reality the performance will be dictated by the practical 

transmission algorithms selected and by the physical channel characteristics (scattering 

in the propagation environment, etc). 

2.1.2 MIMO Spatial Diversity 

In spatial diversity [14,15,16] mode, MIMO systems use multiple antenna arrays to 

maximize range or reliability between the transmitter and receiver by choosing the best 

signal path between them. The diversity helps in achieving a very low BER (bit error 

ratio) and thus increases the reliability of the link thus enhancing the throughput. The 

basic principle of diversity is to use different “channels” (signal path) to convey the 

same information unit from the transmitter to the receiver (see Figure 2.3). This means 

that, at the end, only one information stream is exchanged, but with better signal 

quality. The application of diversity is especially useful when the different channels that 

)1log( SNRMCa +≈



7 

are used fade in a statistically independent fashion, or, in other words, when the 

probability that all channels are bad at the same time is low. In this way, the information 

can be recovered from the channel(s) where the signal-to-noise ratio is the best. Hence, 

spatial diversity is useful when the link budget must be improved in order to increase 

the communication range or in order to reduce the transmit power or boost link 

reliability. 

       
Figure 2.3: Receive-side diversity and diversity techniques like maximal ratio 

combining, switched diversity 

 

2.2 MIMO Multiuser Communication 

Multiuser MIMO can exploit multiple users as well as multiple antennas as spatial 

resources using suitable transmit or receive side signal processing techniques compared 

to single user MIMO which uses only multiple antennas as spatial resource. Multiuser 

MIMO addresses two communication problems: MIMO broadcast channels and MIMO 
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multiple access channels for downlink and uplink (in cellular network terminology), 

respectively [17].  In the uplink multiuser scenario, multiple users all transmit data to 

the same node and in the downlink scenario one node transmits to multiple nodes. 

While single user MIMO can be represented as point-to-point communication between 

a transmitter and receiver pair. 

2.2.1 MIMO Multiuser Spatial Multiplexing 

Downlink multiuser spatial multiplexing (MUSM) [15, 16] is an example of MIMO 

broadcast communication. The basic idea behind downlink MIMO multiuser spatial 

multiplexing is to multiplex data streams to multiple users at the same time and 

precancel inter-user interference at the transmitter itself. 

MUSM orthogonalizes the signal meant for different users (i.e. the data streams) 

and thus eliminates co-channel interference. One such technique is precoding. Using the 

precoder [18,19,20], the multiuser MIMO channel is decoupled into K parallel non-

interfering single-user MIMO links. Each user operates in its corresponding single-user 

link independently without affecting other links. The number of antennas at the receiver 

upper bounds the number of streams that can be detected (e.g. using a linear Zero 

Forcing receiver, ZF) while the number of antennas at the transmitter upper bounds the 

total number of independent data streams that can be transmitted.  

MIMO multiuser reception is an example of the MIMO multiple access 

communication. Multiple users equipped with multiple antennas can transmit to the 

same user with multiple antennas. Again, the number of antennas at the receiver side 

determines the upper bound on the number of streams detected. Some of the receivers 

used for detecting the multiple data streams of the multiple users are those based on a 
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decorrelator utilizing spreading codes [21], and those based on conventional linear and 

non-linear receivers used for decoding multiplexed data streams [20,22].  

Thus, multiuser spatial multiplexing allows a transmitting node to transmit multiple 

independent data streams to multiple users such that none of the users experiences 

interference due to other users’ streams. Also, a receiver utilizing multiuser detection 

can receive multiple independent data streams transmitted by multiple users. 

Henceforth, we will refer to multiuser spatial multiplexing as MUM.  

2.3 MIMO Interference Suppression 

Interference cancellation mitigates network interference, providing network with the 

ability to offer higher data rates, increased capacity and improved coverage. This 

ultimately leads to a superior user experience. 

From a receiver’s perspective, MIMO transmission results in the superposition of 

signals on each Rx antenna. Mathematically, this can be seen as an equation with a 

number of unknowns (the transmitted signals). If every equation represents a unique 

combination of the unknown variables (each transmitted signal experiences independent 

channel fading) and the number of equations is equal to the number of unknowns, then 

their exits a unique solution to the problem. If the number of equations is larger than the 

number of unknowns, a solution can be found by performing a projection using the least 

squares method ([6]), also known as the Zero Forcing (ZF) method. For the symmetric 

case, the ZF solution results in the unique solution. Thus, for the receiver equipped with 

N antennas to differentiate M data streams successfully, M ≤ N must be satisfied. 

However, if the number of streams at the receiver exceeds its DoF then it can still 

successfully decode the M data streams if the excess streams do not degrade the SNR of 
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the desired streams below the receive threshold. This can happen when the excess 

interfering stream’s transmitters are far from the receiver than its desired transmitters. 

In general, in a multiuser environment with K users and each user utilizing N 

antennas there will be NK × interfering signals arriving at the user. The classical 

interference suppression techniques with multiple antennas at the receiver will require 

1)1(* +−KN antennas at the receiver for suppressing co-channel interference from 

1−K users and receiving the desired signal with a diversity order of N [38]. 

In [23] an approach based on array signal processing combined with channel coding 

is presented. Multi-layered space-time architecture is proposed for group interference 

suppression using space-time coding.  This layered receiver detection architecture is a 

generic form of that proposed by the seminal BLAST (Bell Labs Space Time) work [5]. 

The set of transmitter side antennas are partitioned into a set and each of the set uses 

individual space-time codes to transmit information from each group of antennas. At the 

receiver, the individual codes are decoded by treating signals from other groups of 

transmitters as noise. This technique can be applied in a K-multiuser scenario with the 

condition that the number of receiver side antennas is M such that 

1)1(* +−≥ KNM utilizing product codes [39]. Also, receiver requires perfect channel 

state information.  

The seminal work in [24] presents a MMSE (Maximum Mean Square Error) 

interference suppression technique and maximum likelihood decoder for space-time 

block coded transmissions. In a multiuser environment with synchronous K-users the 

receiver using KM ≥ will perfectly suppress the interference from 1−K co-channel 

users by exploiting the temporal and spatial structures of the codes. In [25], it is proved 
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that the above result cannot be generalized for the case when each user has more than 

two transmit antennas. This work also shows that utilizing quasi-Orthogonal Space 

Time Block codes the interference from K user can be cancelled by using 

1−K antennas only. Note in these two works, the users are not exploiting spatial 

multiplexing (Both utilize full rate space-time codes i.e. effectively the transmission 

rate is one symbol/per symbol period across all the antennas). 

In [26], the authors propose receiver architecture, termed CDMA-BLAST, based on 

decorrelating detector for multiuser detection for the cellular multiple access 

interference (uplink) communication. The transmitters are assumed to have multiple 

antennas. Through the use of spreading codes the inter-user interference is separated at 

the receiver and then layered space-time detection is applied to separate data streams of 

the user. The authors show that high spectral efficiency can be achieved through the use 

of multi-code transmission in the multiuser scenario. 

In [21] authors investigate the use of layered space-time, also known as Vertical-

Bell Laboratories Layered Space-Time (V-BLAST) scheme, for multiuser detection in 

fading channels. The multiple transmit antennas in V-BLAST are treated as individual 

mobile station transmitters while the base station consists of multiple receive antennas. 

Users are organized in groups and allocated a unique spreading code within the same 

group. Using these orthogonal codes, the different groups are separated (a combined 

space code matched filtering), and layered space-time algorithm is then invoked to 

further remove the remaining interference between users. 
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2.4 Stream Control in Spatial Multiplexing 

In [28], the authors introduce the term stream control in MIMO’s spatial 

multiplexing mode and show the gains obtained by using stream control with 

interference suppression compared to TDMA-based approaches without interference 

suppression. It is shown that based on distance between interfering links a single DoF 

can counter more than one interfering streams and hence in a given collision region (all 

links in this region interfere with each other) more streams can be accommodated than 

the number of DoFs at the receiver. In general, if the distance between interfering links 

in a given collision region is below a certain threshold then each interfering stream 

requires the sacrifice of one DoF. Otherwise, if mutually interfering links are farther 

apart, then multiple interfering streams can be suppressed by fewer DoFs at the 

interfered receiver [28]. We note that stream control algorithms cannot exploit the full 

capacity of MIMO links due to conflicting demands on the spatial DoFs (or, number of 

antennas) for interference suppression.  
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CHAPTER 3 

RELATED WORK 

 

The problem of user scheduling has been well explored in the cellular MIMO 

broadcast (downlink) and multi-access channels (uplink) [27]. These studies focus on 

maximizing the sum rate capacity of the MIMO broadcast and multi-access channel 

based on bit error ratio constraints, transmit power constraints, etc.  

While there has been considerable focus on point-to-point MIMO physical links, 

cellular broadcast and multi-access channel, very little research effort has focused on 

the benefits of MIMO for interference-limited multi-hop ad hoc networks. In [7] the 

authors proposed a derivative of 802.11 medium access control protocol, MIMA-MAC, 

to exploit the interference suppression capability of the MIMO-OFDM transceiver. It 

employs multiple antennas to mitigate interference from neighboring nodes, and to 

increase the number of simultaneous traffic flows, resulting in an increase in the total 

network throughput. In MIMA-MAC, the transmitters use a single fixed antenna and the 

receiver uses multiple antennas allowing the receiver to suppress interference using 

space-time processing. In [29], a similar approach based on RTS/CTS mechanism is 

suggested to exploit MIMO’s interference suppression capability for accommodating 

multiple transmissions in the same collision region. The beamforming technique is used 

to transmit the same stream (same symbol across all antennas) weighted differently 

across the transmit antennas. It enables multiple interfering streams to co-exist through 

beam coordination. That is, effectively each node transmits one stream at a time. Also, 

one DoF sacrifice is assumed to null out an interfering node. 
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It has been shown that pure contention-based approaches agnostic of MIMO 

physical layer [9,13], are not suitable in ad hoc networks since they do not exploit 

MIMO’s interference suppression capability. Such approaches abstract MIMO links as 

a “fat pipe” and thus are only able to view it as a high capacity link. 

Demirkol and Ingram [28] introduced the concept of stream control-determining the 

number of transmit antennas for each link that maximizes the throughput of MIMO ad 

hoc network. They show that optimal stream control corresponds to (k/l) streams 

allocated to each of the l mutually interfering links equipped with k adaptive arrays. 

Appropriate power allocation is needed for each of these mutually interfering links to 

achieve optimal stream control.  

Sundaresan and Sivakumar [9,13] were the first to study the problem of stream 

allocation in MIMO ad hoc networks exploiting optimal stream control to achieve 

proportional fairness. In their proposed centralized and distributed scheduling 

algorithms, the bottleneck links (belonging to multiple contention regions) are allowed 

to transmit with all possible streams while other links use optimal stream control. That 

is stream allocation is determined by the number of mutually interfering links. The 

algorithms achieve proportional fairness by allocating at least k-streams (k is the 

number of antennas at each node) at the end of every l (size of the largest maximal 

clique in the flow contention graph) slots. Also, they do not explore the problem of 

optimizing the schedule length for achieving fairness goals.  

Zorzi et al. [12] proposed a frame synchronous distributed stream scheduling 

approach to exploit multiuser detection capability, based on LAST-MUD [21], of the 

MIMO receivers. The nodes probabilistically alternate roles between transmitter and 



15 

receivers to allow a fair share of the channel to other nodes as transmitter. In [10], 

random medium access algorithm is proposed to exploit the multi-user detection 

capability of the receivers based on LAST-MUD. The media access arbitrates the 

admission of different number of streams in a collision region based on different 

policies (e.g. policy of disregarding the interfering streams and allowing transmission of 

all requested streams; policy of considering DoF sacrifice to suppress interfering 

streams).  

The use of LAST-MUD based receivers in ad hoc networks will require the 

allocation of spreading codes to the nodes in a coordinated manner. In ad hoc networks, 

new nodes may not have this prior knowledge of the spreading code matrix (codes in 

use in the network) and each node must keep track of the spreading codes in use in its 

neighborhood [2]. 

In [30] the problem of user-QoS enhancement is explored via rate adaptation in 

MIMO ad hoc networks. QoS is defined in terms of goodput (number of intact bits 

delivered to the destination) which in turn is quantified by the diversity gain of the flow 

on a link. The goal is to find paths which maximize the minimum QoS-requirement 

given a set of fixed input data traffic rates. In terms of MIMO terminology, it tries to 

maximize the minimum spatial diversity gain in the network for a set of given 

multiplexing gain (link transmission rate) associated with each user traffic. The solution 

assigns minimum values of multiplexing gains to satisfy the input rates and utilizes the 

left degree of freedom to enhance diversity gain. This work assumes channel capture by 

the nodes i.e. only one link is active in a collision region at any given time. 
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Multiplexing gain is traded-off for diversity gain rather than interference suppression. 

Also, it assumes that the network operates at a high signal-to-noise ratio. 

In [31], 802.11 RTS/CTS mechanism is modified to exploit the benefits of Multiuser 

MIMO in wireless LAN settings. The access point transmits MU-RTS (multiuser RTS) 

to poll multiple receivers for reception. The central access point uses a priority 

assignment scheme for the different traffic classes and a delay-sensitive scheduler to 

schedule transmission of multiple data frames (from different traffic classes based on 

the priority) to multiple destinations at the same time. The scheme doesn’t provide any 

fairness guarantees to the traffic flows. 
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CHAPTER 4 

SYSTEM MODEL 

 

The increasing demand of wireless services associated with the scarcity of the radio 

spectrum and the trend to provide end-to-end QoS in emerging and future 

communication avid applications calls for the design of spectrally efficient systems with 

QoS support. To fulfill these two requirements of spectral efficiency and QoS provision 

in the highly dynamic environment of wireless network requires the collaboration of 

several layers in the system as well as the use of multiple transmit and receive antennas. 

In an interference-limited ad hoc network, one important component to achieve the 

aforementioned efficiency goals is a properly designed scheduling algorithm. Using a 

theoretical framework, we capture the issues associated with the design of scheduling 

algorithms for MIMO ad hoc network and present a centralized algorithm which 

achieves fair resource allocation in optimal schedule length. The thesis proposal focuses 

on cross-layer architecture to the MIMO resource allocation problem and will identify 

the trade-offs associated with the contention-free and contention-based scheduling 

approaches.  

We assume users (nodes equipped with MIMO radio) employ single user detection 

in presence of multiple interfering users. This means users treat transmissions from 

undesired users as interference and cancels out their contribution even though it can 

successfully decode the transmitted packets of the interfering users. 
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In our system model, each node is equipped with a k-antenna array. The 

environment in which the network is operating is assumed to be rich-scattering (e.g. 

home networks) where the signal at the receiver’s antenna elements are not correlated.  

4.1 Network Model 

Node Graph: The node graph is the communication graph on which the traffic flows 

are routed. Given the physical network topology, we define a node 

graph ),( NNN EVG = , where VN represents the set of nodes in the network, and EN 

represents the set of edges between all those pairs of nodes that are within 

transmission/reception range of each other. Let the node distance dN (a,b)  between 

nodes a and b in the network to be the Euclidean distance between the physical 

locations of a and b. We denote the transmission, reception, and interference range 

byDTx ,DRxandDI  respectively. We assume in our work that these ranges are all equal, 

that is, DTx = DRx = DI . The topology of the node graph is then defined as follows: 

}),(;,|),{( RxNNN DyxdVyxyxE ≤∈=  

 The edge set EN  captures two unidirectional links between every pair of two nodes, 

since each node can be a transmitter or receiver respectively depending on the direction 

of the traffic flow.  

Definition of a Flow: A flow u = (a,b)  is defined as the directional flow of the traffic in 

the network between a pair of nodes a and b inVN . In our model, we only consider 

traffic on per-hop flows. More formally, a flow ),( bau =  is a per-hop flows 

if{a,b}∈ EN . Note that for each edge{a,b}∈ EN , there are exactly two flows (a,b)  

and (b,a) , representing communication from a to b, and from b to a. Furthermore, for 
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each flow ),,( bau =  we let auTx =)(  represent the transmitter of flow u, and buRx =)(  

represent the receiver of flow u. 

Flow Contention Graph: Two flows are within contention region of each other if 

either of their transmissions can cause interference to the other due to actual physical 

proximity, or the flows require a node to be a common transmitter/receiver, or a node is 

required to be a transmitter and receiver at the same time. The contention between two 

flows depends on the capability of the physical layer of the links. For example, two 

flows sharing a common receiver may perform simultaneous reception if the links 

utilize MUM capability. Thus, the definition of flow contention is different for networks 

utilizing SISO, SUM and MUM. To capture the contention between two traffic flows, 

we define the distance between two flows u and v as ( )vudF , . If the flow distance is less 

than the interference distance then we say that the flows interfere. 

We now define the flow contention graph ( )FFF EVG ,= . Let FV be the set of all 

traffic flows between nodes in NV  (i.e., there are two vertices for each edge },{ yx in NE , 

indicating the possibility of communication from x to y and from y to x), and 

let ( ) ( ){ }IFF DvudvuE ≤= ,|, ( FE  represents the set of edges between those pairs of 

nodes in FG  that are within the contention region of each other, see Figure. 4.1.). 

Demands in the Flow Contention Graph: The traffic demand or class of a flow can be 

represented by a weight on the associated vertex in the flow contention graph; for 

convenience we will write the demands as a function +Ζ→FF VW : . We will assume 

that these demands are given as input, along with the node graph GN  (we note that the 

flow contention graphGF  can easily be computed fromGN ).  
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We assume per hop traffic flow demands and not the traffic demand for flows  

between any arbitrary source- destination pairs in the network (e.g. it is common in 

traffic engineered networks to route traffic along predetermined paths when the traffic 

demand for flows between source-destination pairs are known). Also, considering per 

hop traffic allow paths to be selected by the routing algorithm and thus allows 

intermediate links on a given path to change. 

 
Figure 4.1: A flow contention graph, in which the nodes represent flows and edges 

represent mutual interference between flows 

 

Resource Contention Regions in the Flow Contention Graphs: We refer to the set of 

all maximal cliques in the flow contention graph GF  as the resource contention regions 

ofGF . Let R1(GF )∪ R2(GF )∪ ...∪ Rl (GF ) =VF  be the set of all maximal cliques ofGF  

(see Fig. 4.2). For notational convenience, since we will consider a single node graph 

and a single flow contention graph in this paper, we will write the maximal cliques as 

R1,R2, ... ,Rl . The flows in each resource contention region are those flows that mutually 

interfere with one other. For an arbitrary flow graph, the problem of even identifying 

these contention regions is NP-hard; however, we follow the standard assumption that 

contention regions can be identified efficiently, since ad hoc network topologies 
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generally tend to be chordal graphs, for which the problem of finding maximal cliques 

can be solved in polynomial time [28,40,41]. Each contention region can accommodate 

only a fixed number of independent streams based on our assumptions. That is, the 

capacity of the contention region is fixed and determined by the number of antennas at 

the receiver. 

 
Figure 4.2: Resource contention regions corresponding to the flow contention graph of 

Figure 4.1 
 

Mutually Exclusive Flows in MIMO Ad Hoc Networks: In conventional wireless 

networks, all the flows in the same contention region are mutually exclusive. Only one 

of them can transmit at a given time without causing contention. In traditional ad hoc 

networks, multiple flows in the same contention region can be accommodated by using 

multiple non-overlapping frequency channels and multiple radios. In the case of MIMO, 

all the flows in a given contention region may not be mutually exclusive because of the 

interference suppression, or multiuser reception or point-to-multipoint transmission 

capabilities of the MIMO nodes. 

Fairness Model: To provide consistent proportional sharing of the MAC layer 

resources, we use the number of MIMO streams communicated by a flow for data 
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transmission, over the course of a given schedule, as the quantitative metric for each 

flow in the network. We make the distinction between streams that are allocated versus 

streams that are communicated, because if the given schedule forces flows to contend 

for resources in a given time slot, the actual amount of data transmitted may be less than 

what is possible. While it may be possible to consider contention in the schedule, the 

resulting throughput is a complex function of the flow contention graph FG . Thus, we 

focus on contention-free stream scheduling. For a given schedule, let uS  be the total 

number of streams communicated on flow u. Then proportional fairness is achieved if, 

for all flows FEvu ∈, :  

( )
( )vW

uW

S

S

F

F

v

u =  

holds. Strict fairness is achieved when, in addition to proportional fairness, for all flows 

FEu∈ we have ( )uWS Fu =  i.e. the flow communicates the number of streams as 

allocated to it based on its demand/class.  

We call a schedule optimal for a set of demands if it is a minimum length schedule 

that achieves contention-free strict fairness. Henceforth, we will refer to this minimum 

schedule length as the optimal schedule length. 
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CHAPTER 5 

PROBLEM FORMULATION FOR SINGLE USER MIMO SPATIAL 

MULTIPLEXING 

 

The increasing demand of wireless services associated with the scarcity of the radio 

spectrum and the trend to provide end-to-end QoS in emerging and future 

communication avid applications calls for the design of spectrally efficient systems with 

QoS support. To fulfill these two requirements of spectral efficiency and QoS provision 

in the highly dynamic environment of wireless network requires the collaboration of 

several layers in the system as well as the use of multiple transmit and receive antennas. 

In an interference-limited ad hoc network, one important component to achieve the 

aforementioned efficiency goals is a properly designed scheduling algorithm. Using a 

theoretical framework, we capture the issues associated with the design of scheduling 

algorithms for MIMO ad hoc network and present a centralized algorithm which 

achieves fair resource allocation in optimal schedule length. This thesis focuses on 

cross-layer architecture to the MIMO resource allocation problem and will identify the 

trade-offs associated with the contention-free scheduling approaches for single user and 

multiuser communication.  

In this chapter, we present the stream scheduling framework for a network where 

the MIMO links utilize SUM capability. We first present the MIMO physical layer 

model and the network model used and then the proposed framework for the stream 

scheduling. 
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5.1 Physical Layer Model 

The fading between each transmit and receive antenna pair is assumed to be 

independent (because of rich scattering.) We assume a quasi-static flat Rayleigh fading 

wireless channel (so that channel is invariant during one slot of a stream transmission 

and changes independently between slots). Uniform power allocation is assumed across 

the transmit antenna array (each active antenna gets P/k of the total available power P 

for the transmission of an independent data stream [5,6]). 

The single-user detection at the receiver treats all unintended transmissions as pure 

interference. The number of streams falling on a receiver is no more than the number of 

antennas (or, DoF) k at the receiver. This allows the streams falling on a receiver to be 

decoded successfully with high probability as the excessive interfering streams would 

have to be treated as enhanced noise at the receiver thereby affecting the successful 

decoding probability. 

Channel state information (CSI) is critical to minimize inter-user interference under 

all channel conditions in a single user MIMO link. We assume the channel transfer 

matrix is known to a receiver of its own channel (desired streams) and the interfering 

streams. The CSI can be obtained at the start of the transmission slot through training 

symbols and feedback packets [34]. CSI varies independently over slots as the channel 

experiences flat fading during each time slot. 

5.2 Network Model 

The network model for stream scheduling in networks utilizing SUM has the same 

definitions for the node graph, flows, flow demands and fairness as described in chapter 
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4. We, now, define the flow contention graph and mutual exclusivities of the flows due 

to the use of the single user detection. 

5.2.1 Flow Contention Graph 

To capture the contention between two traffic flows (on links utilizing SUM), we 

define the distance between two flows u and v as: 

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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Note that two interfering flows u and v (with ( ) 0, >vudF ) can be scheduled in the 

same time slot because MIMO receivers can perform interference suppression.  

5.2.2 Mutually Exclusive Flows 

When the nodes in the network utilize single user detection, two flows u and v are 

mutually exclusive only when 0),( =vudF . This means that two flows are mutually 

exclusive if the common node is required to be a transmitter and receiver at the same 

time or, the common node is required to be the transmitter (receiver) for multiple flows 

for point-to-multipoint transmission (for multipoint-to-point reception).  

5.3 MIMO Stream Scheduling Algorithm for Single User Spatial Multiplexing 

In our proposed network model, MIMO ad hoc networks employing SUM can 

accommodate k streams in a single contention region compared to a single stream in 

conventional SISO wireless ad hoc networks. In addition, MIMO receivers are capable 

of suppressing interference thereby allowing multiple streams of multiple flows to 

coexist in a contention region. The number of interfering streams they can suppress is 
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limited to the DoF the receiver has to spare from the reception of desired streams. For 

example, if a receiver has DoF as five and it is engaged in receiving two streams from a 

transmitter then it can successfully counter three interfering streams.  

When a link is scheduled for transmission in conventional wireless networks, 

transmit and receive side antennas are allocated for one particular flow transmission and 

reception. In contrast, in a MIMO link a subset of the antennas can be allocated to flows 

(e.g., when stream control is used). The stream scheduling algorithm determines the 

number of antennas allocated at the transmitter for transmission, number of antennas 

allocated at the receiver side for reception and number of antennas dedicated for 

interference suppression. Stream scheduling can lead to resource sharing between nodes 

in the wireless network, leading to a better utilization of the available resources (DoF 

and the channel). 

5.3.1 Contention-free MIMO Stream Scheduling 

Our aim is to provide proportional service differentiation to the different traffic 

classes in the given MIMO multi-hop ad hoc network. To enable service differentiation, 

we adopt a contention free TDMA-based approach for stream scheduling.  In each slot, 

traffic flows are scheduled to be transmitted with a specific number of streams which is 

determined a) to maximize the total number of streams schedulable, b) based on the 

traffic flow demands/class. We consider this problem for MIMO communication, and 

capture SUM and interference suppression capabilities by formulating the problem of 

stream scheduling in a MIMO multi-hop ad hoc network as an ILP problem. For a given 

network topology, set of flow demands, and schedule length, the solution to the ILP 

formulation yields a schedule of the given length that satisfies the demands optimally. 
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Furthermore, we show that even we can identify the optimal schedule length required to 

achieve contention-free strict fairness.  

At the high level, our aim is to maximize the number of flows at any given time in 

the network under certain constraints. First, we cannot schedule more streams in a given 

contention region than the number of antennas on a node in that region and the number 

of streams communicated by the flow should not exceed its demand. Second, we must 

ensure the mutual exclusivity of certain flows; that is, we cannot schedule two mutually 

exclusive flows in the same slot in a schedule. Finally, a flow node’s receiver must not 

be overloaded with more than k streams when it is active and can be overloaded with 

arbitrary number of streams when the flow is inactive. 

Recall that lRRR ,....,, 21 was the set of all maximal cliques in the flow contention 

graph, as discussed above. Also, recall that we assumed that each node in our MIMO 

network have k DoF, thus each flow has a maximum of k communication streams at any 

given time. For interference suppression, we assume that each flow has to use as many 

antennas for interference suppression as interfering streams falling on it, so the capacity 

of each resource contention region is simply k. For each of the flows in the set FE , let 

utS  denote the number of streams allocated to flow u in time slot t and let { }1,0∈utx  be 

an indicator variable that denotes whether a flow is active during time slot t; utx will 

allow us to enforce the mutual exclusivity among the flows. 

We now present our ILP formulation for contention-free MIMO stream scheduling. 
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Input: The node graph NG , the contention graph FG , the contention 

regions lRRR ,....,, 21 , the demands to be satisfied FW , the DoF k at each node and the 

desired schedule length L . 

ILP Formulation 

Minimize ( )∑ ∑
∈ =






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Subject to: 

a. Capacity constraints and flow demands: 
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b. Receiver overloading: 
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c. Mutual exclusivity: 

  
( ) ( )

1:,
:
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=∨=∈ auRxauTxFVu

utN xVat                          (5) 

          

                               ( )uWxStu Futut ≤≤∀ 0:,         (6) 

It is evident that capacity and receiver overloading constraints, (2) and (4) captures 

the MIMO interference suppression capability. At any given time an active receiver will 

not be overloaded beyond k streams. Henceforth, it can successfully decode the desired 

streams and reject the interfering streams. An inactive receiver can be overloaded, in the 
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worst case, by as many streams as k times the number of flows (minus one for the 

inactive flow with this node as a receiver) in the contention graph. Equation (5) captures 

the mutual exclusivity constraint of the flows for at any given time a single flow is 

active when multiple flows share a transmitter or/and receiver. In a given contention 

region multiple flows can transmit streams, but the total number of streams is limited by 

the number of antennas. There is no net gain in the number of total streams that can be 

scheduled for a single slot for a given contention region. However, it should be clear 

that the ability to schedule multiple flows per slot, rather than a single flow, provides 

flexibility in our ability to provide proportional fairness. 

An integral solution to the variables of this ILP problem gives a contention-free 

schedule of length L. Furthermore this schedule minimizes the amount of demand that 

is not satisfied. We will now show that a simple binary search can be used to find the 

optimal schedule length. For convenience, in the remainder of the paper, we will refer 

to the optimization criterion for the ILP above as the contention-free fairness measure. 

5.3.2 Computing Optimal Schedule Length 

In this section, we will present a simple algorithm for finding the optimal schedule 

length, given a method for solving the ILP formulation for SUM above.  First, we note 

that any contention-free schedule that achieves strict fairness satisfies the following 

bounds for its length: 

Lemma 1. The length of any contention-free schedule for SUM satisfies: 
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Proof. First, observe that flows in different contention regions can be scheduled in 

the same slot, and thus we need only to identify a lower bound on the number of slots 

needed to schedule demands for any contention region. We can assume that there are no 

mutual exclusivity constraints (see Fig. 5.1), since such constraints would only require a 

longer schedule. Then, we observe that for any region Ri, a given slot can accommodate 

number of streams equal to the capacity of the region. The lemma follows since the 

number of slots required to fulfill the demand in a region is at least the total demand in 

the region divided by its capacity. 

 

Figure 5.1: The best case scenario for stream scheduling for SUM links. None of the 

flows in the dominant contention region are mutually exclusive with any other flow. 

 

Lemma 2. The length of any contention-free schedule for SUM satisfies: 
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Proof. Although each contention region can be scheduled concurrently, in the worst 

case all the flows in each contention region can be mutually exclusive with each other 

(e.g. all the flows share a common transmitter, see Fig. 5.2). In this worst case, each 

flow must be scheduled independently, since, for example, every flow can be made to 
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share a transmitter. Thus, the lemma follows since in any other scenario more than one 

flow can be scheduled simultaneously
1
. 

 

Figure 5.2: Worst case scenario for stream scheduling for SUM links. All the flows in 

the dominant contention region are mutually exclusive because they share a common 

transmitter. 

 

Informally, Lemma 1 states that the set of mutually contending flows with largest 

total traffic demand essentially dominates the schedule length. However, the schedule 

length is also affected by the mutual exclusivity of flows, which we must ensure in 

order to have a valid schedule. 

In order to compute the optimal schedule length, we can solve the ILP formulation 

repeatedly, using a binary-search algorithm to determine the best schedule length. In the 

algorithm (see Fig. 5.3 for the pseudo code), the lower bound on L serves as the lower 

index and the upper bound on L as the upper index for the binary search algorithm. If 

                                                      

1
 When all the flows in the network are mutually contending and∀ u∈VF, k is a factor of ( )uWF then the 

lower bound holds even when none of the flow is mutually exclusive with any other flow. In this case, 

exactly k streams will be scheduled in any contention region at a given time slot. 
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we ever obtain a schedule with an objective function value of 0, we halve the schedule 

length. This process is repeated until we find the minimum value of L for which we 

have an objective function value of 0. The solution to the ILP is then a contention-free 

schedule that achieves strict fairness with a minimum schedule length. Note that the 

number of times we must solve the ILP is logarithmic in the length of the optimal 

schedule. 

 
Figure 5.3: Pseudo code for the centralized algorithm to determine the schedule and 

optimal schedule length for contention-free strict fairness (floor refers to the greatest 

integer function) 
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CHAPTER 6 

PROBLEM FORMULATION FOR MULTIUSER MIMO SPATIAL 

MULTIPLEXING 

 

In this chapter, we present the stream scheduling framework for a network where 

the MIMO links utilize multiuser MIMO communication i.e. MUM for point-to-

multipoint transmission and multipoint-to-point reception. We first present the MIMO 

physical layer model and the network model used and then the proposed framework for 

the stream scheduling. 

6.1 Physical Layer Model 

As in the SUM case, the fading between each transmit and receive antenna pair is 

assumed to be independent. We assume a quasi-static flat Rayleigh fading wireless 

channel. Uniform power allocation is assumed across independent data streams.  We 

assume closed-loop systems for the multiuser communication where the CSI is 

available at the transmitter of the receiver side of the link as well.  

The transmitter-side CSI is used to design precoders for pre-canceling inter-user 

interference at the receiver. We assume the linear precoders which require accurate 

downlink CSI at the transmitter. Other precoders such as those using unitary precoding 

require pairing of orthogonal users through SDMA. When the transmitter isn’t 

transmitting data streams to multiple users than the signals are not precoded. Note, that 

the precoder only cancels interference at the receivers of the users to whom data streams 

are transmitted. Other receivers would experience interference from these transmitted 

streams. Effectively, the receivers which are not the destinations for the transmited 
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streams need to have CSI from the transmitter to cancel out these interfering streams. (A 

simple linear receiver such as the zero-forcing can cancel out interference from other 

users.) 

The assumption of perfect CSI has been widely used in many existing literature in 

MIMO precoding and multiuser MIMO system. It can be fulfilled by channel estimation 

in time-division-duplex systems or feedback in frequency division-duplex systems. 

6.2 Network Model 

The network model for stream scheduling in networks utilizing MUM has the same 

definitions for the node graph, flows, flow demands and fairness as described in the 

previous chapter 4. We, now, define the flow contention graph and mutual exclusivities 

of the flows. 

6.2.1 Flow Contention Graph 

To capture the contention between two traffic flows (on links utilizing MUM), we 

define the distance between two flows u and v as: 
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Recall that, in the case of multiuser communication utilizing precoding at the 

transmitter the resulting flows are independent non-interfering links. 
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6.2.2 Mutually Exclusive Flows 

When the nodes in the network utilize MUM, two flows u and v are mutually 

exclusive only when 0),( =vud F . This means that two flows are mutually exclusive if 

the common node is required to be a transmitter and receiver at the same time. 

6.3 MIMO Stream Scheduling Algorithm for Multiuser Spatial Multiplexing 

We now present our ILP formulation for contention-free MIMO stream scheduling. 

Input: The node graph NG , the contention graph FG , the contention 

regions lRRR ,....,, 21 , the demands to be satisfied FW , the DoF k at each node and the 

desired schedule length L . 

ILP Formulation 

Minimize ( )∑ ∑
∈ =









−

FVu

L

t

utF SuW
1

 

Subject to: 

a. Capacity constraints and flow demands: 

                                            0≥utS                                 (7)

 kStR
iRu

uti ≤∀ ∑
∈

:,          (8) 

 ( )uWSu F

L

t

ut ≤∀ ∑
=1

:          (9) 

b. Receiver overloading: 

( ) ( )( )

( )( )11:
,:

−−+≤









+∀ ∑

≠∧∈∈
Futut

Vv

vtut ExkkxSSu
vuNEuRxvTxF

       (10)  

c. Mutual exclusivity: 

       ( )( ) 1)()(:,, ≤+=∈∀∀ utvtF xxvRxuTxVvut                (11) 
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( )

kxVat
auTxFVu

utN ≤∈∀∀ ∑
=∈ :

:,     (12) 

                         
( )

kxVat
auRxFVu

utN ≤∈∀∀ ∑
=∈ :

:,                          (13) 

                     ( )uWxStu Futut ≤≤∀ 0:,      (14) 

Equation (8), (9) and (10) captures the capacity, traffic demand and interference 

suppression constraints similar to the case for SUM. For multiuser communication, (12) 

and (13) captures the point-to-multipoint transmission and multipoint-to-point 

reception, respectively. Now, a transmitter can communicate upto k streams across 

multiple flows and a receiver can receive upto k streams from multiple flows.  

An integral solution to the variables of this ILP problem gives a contention-free 

schedule of length L. 

6.4 Computing Optimal Schedule Length  

In this section, we will use the binary search algorithm (as defined for the SUM case 

except that it will invoke the ILP for MUM) for finding the optimal schedule length, 

given a method for solving the ILP formulation above.  First, we note that any 

contention-free schedule that achieves strict fairness satisfies the following bounds for 

its length: 

Lemma 3. The length of any contention-free schedule for MUM satisfies: 

( )

















≥
∑
∈

k

uW

L i

i

Ru

F

R
max  
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Proof. First, observe that flows in different contention regions can be scheduled in 

the same slot, and thus we need only to identify a lower bound on the number of slots 

needed to schedule demands for any contention region. The best case corresponds to the 

scenario when flows have any configuration except that two flows share a node as a 

source and sink (node is a transmitter for one flow and receiver for the other flow). This 

is equivalent to the single user detection case when none of the flows are mutually 

exclusive because flows which are sharing the receiver or transmitter can be 

decomposed into non-interfering flows. These flows can be scheduled simultaneously 

due to multiuser precoding/detection. 

Then, we observe that for any contention region iR , a given slot can accommodate a 

number of streams equal to the capacity of the region. The lemma follows since the 

number of slots required to fulfill the demand in a region is at least the total demand in 

the region divided by its capacity. 

 

Figure 6.1: Worst case scenario for stream scheduling for MUM links. All the flows are 

in the same contention region and each flow is mutually exclusive to two other flows. 
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Lemma 4. The length of any contention-free schedule for MUM satisfies: 

( )














∈





≤ ∑
i

F

R
Ru k

uW
L

i

max  

Proof. First, observe that the worst case scenario for MUM is when no two flows 

share a common transmitter or receiver in the dominant contention region. This happens 

when the flows form triangular configurations as shown in Fig. 6.1. It can be observed 

from the scenario shown in the figure that any fourth flow cannot be simultaneously 

mutually exclusive to three other flows as it will result in two flows sharing a common 

transmitter or receiver. This is due to the fact that a node can either be in transmit or 

receive state, thus any third edge incident on the node implies any two flows (out of the 

three incident on the node) as sharing a common transmitter or receiver. This would 

allow MUM to exploit the configuration to simultaneously schedule the flows. 

Now, for this worst case configuration we can see that the optimal schedule length 

will be a complex expression of the actual flow weights in the contention region. But 

we show that upper bound given in the lemma is the worst case upper bound for MUM. 

Observe that for the given configuration, if all the flow weights are multiples of k then 

only one flow will be scheduled for stream transmission (there can not be any gain by 

partially scheduling the streams of the flows). Thus, the lemma follows as each 

scheduled flow consumes all the capacity of the contention region. 

We observe that the lower/upper bound for the MUM case is exactly the same as 

that for SUM. Thus, it is the cumulative traffic demand in the dominant contention 

region and the available DoF at each node that determines the lower/upper bound on the 

schedule length. 
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In order to compute the optimal schedule length, as before we can repeatedly solve 

the ILP formulation for MUM, using binary search. The algorithm is as described for 

SUM (see Fig. 5.3 for the pseudo code) except that we invoke the ILP formulation for 

MUM. 
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CHAPTER 7 

PROBLEM FORMULATION FOR SISO LINKS 

 

In this chapter we describe the ILP formulation for stream scheduling when the links 

utilize SISO communication. Though the ILP formulation for SUM and MUM includes 

the SISO case for k=1 in the formulation, we describe here a simpler formulation to 

capture the SISO stream scheduling for the sake of completeness. We formulate for the 

two cases when SISO communication link has the capacity equivalent to a single DoF 

available to MIMO links as well as the capacity equivalent of the MIMO link with k 

DoF. We formulate for these two cases to evaluate and compare the performance of 

SISO links with equivalent capacity as MIMO links as well as when SISO links do not 

have the MIMO equivalent capacity. 

7.1 Physical Layer and Network Model 

We assume for the single antenna case the same MIMO physical layer but with the 

exception that each node employs only single antenna (thereby no multiplexing or 

diversity gain). We do not consider coding gain either.  

The network model remains unchanged except for the definition of the mutually 

exclusive flows. For the network equipped with a single antenna (a single radio), all the 

flows are mutually exclusive since the radios are incapable of interference suppression 

(due to another interfering radio in the same frequency channel) compared to MIMO 

link radios (neither these single antenna radios are capable of multiuser 

communication). 
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7.1.1 Stream Scheduling Algorithm for SISO Links with Capacity Equivalent to a MIMO Link 

with Single DoF 

We now present our ILP formulation for contention-free stream scheduling in 

networks utilizing single antenna radios with link capacity equivalent to a MIMO link 

with a single active DoF. 

Input: The node graph NG , the contention graph FG , the contention 

regions lRRR ,...,, 21 , the demands to be satisfied FW , the DoF 1 at each node and the 

desired schedule length L . 

ILP Formulation 

Minimize 
( )∑ ∑

∈ =









−

FVu

L

t

utF SuW
1

 

Subject to: 

a. Capacity constraints and flow demands: 

0utS ≥      (14) 

 { }1,0:, ∈∀ ∑
∈ iRu

uti StR     (15) 

             ( )uWSu F

L

t

ut ≤∀ ∑
=1

:      (16) 

Compared to the contention-free SUM and MUM stream scheduling, we do not 

require any receiver overloading or mutual exclusivity constraints for strict fairness. 

Since the capacity constraint allows only one flow to be active in any contention region 

at any time all the flows are mutually exclusive. So, mutual exclusivity is captured by 

the capacity constraint, (15), of the ILP formulation. In a MIMO-based network, an 
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active receiver can receive streams from other interfering transmitters because of 

interference suppression and hence must be assured that the number of interfering 

streams do not exceed the available DoF. But for a SISO-based network, if a receiver is 

active then it implies that the corresponding flow is active and hence it will be mutually 

exclusive to all the flows which are in the common contention region of this active 

flow. All the other flows remain inactive in the common contention regions. Therefore, 

capacity constraint guarantees that receivers never get overloaded. 

1) Optimal Schedule Length 

In this section, we will present a simple proof for finding the optimal schedule length.   

Lemma 5: The length of the optimal contention-free schedule satisfies: 

( )







= ∑

∈ i
i Ru

F
R

uWL max  

Proof: Note that in each contention region only one flow can be scheduled at any 

given time. Thus, the optimal schedule length will be determined by the contention 

region with the most traffic demand. The lemma follows since only a unit traffic 

demand is satisfied for any contention region at any given time slot. 

 

7.1.2 Stream Scheduling for SISO Links with Capacity Equivalent to a MIMO Link with k active 

DoF 

We now present our ILP formulation for contention-free stream scheduling in 

networks utilizing single antenna radios equivalent to a MIMO link with k active DoF. 

.Input: The node graph NG , the contention graph FG , the contention 

regions lRRR ,...,, 21 , the demands to be satisfied FW , the DoF k at each node and the 

desired schedule length L . 
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ILP Formulation 

Minimize ( )∑ ∑
∈ =









−

FVu

L

t

utF SuW
1

 

Subject to: 

a.  Mutual exclusivity: 

1:, ≤∀ ∑
∈ iRu

uti xtR       (17) 

b. Capacity constraints and flow demands: 

      0u tS ≥                              (18) 

    kStR
iRu

uti ≤∀ ∑
∈

:,       (19) 

utut kxSu ≤∀ :      (20) 

( ): ut ut Fu S x W u∀ ≤      (21) 

                                                     ( )uWSu F

L

t

ut ≤∀ ∑
=1

:                           (22) 

Compared to the contention-free SUM and MUM stream scheduling, we do not 

require any receiver overloading for strict fairness. The mutual exclusivity constraint is 

required since compared to the SISO case for k=1 the flows can communicate the 

minimum of ( ){ }, Fk W u streams when scheduled (so mutual exclusivity is not implicit) 

as captured by (19) and (20). The capacity and flow demand constraints, (19) and (20) 

respectively, coupled with the mutually exclusivity constraint makes a scheduled flow 

to communicate the minimum of ( ){ }, Fk W u streams (minimum of link capacity and the 
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demand). That is, either a schedule flow communicates as much data in a time slot as 

the SISO link can accommodate (when ( ) kuWF > ) or as much as its traffic demands 

(when ( )uWk F> ). Note that to achieve strict fairness the flows would communicate 

exactly ( )FW u data streams. So, even if the SISO link has a capacity equivalent to 

MIMO link with DoF k but when the flow is allocated stream transmission in any slot 

such that utS k< the SISO link will use modulation techniques to reduce the link data 

rate to the unit of utS . 

1) Optimal Schedule Length 

In this section, we will present a simple proof for finding the optimal schedule length.   

Lemma 6: The length of the optimal contention-free schedule satisfies: 

( )














= ∑

∈ i
i Ru

F

R k

uW
L max  

Proof: Note that in each contention region only one flow can be scheduled at any 

given time. Thus, the optimal schedule length will be determined by the contention 

region with the most traffic demand. The lemma follows since only k units of traffic 

demand is satisfied for any contention region at any given time slot. 
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CHAPTER 8 

CENTRALIZED GREEDY ALGORITHM FOR MIMO STREAM 

SCHEDULING  

 

While our ILP-based algorithm guarantees a schedule that has optimal length for 

achieving strict fairness, it relies on a number of potentially costly invocations to an ILP 

solver. Therefore, we propose a greedy heuristic for stream scheduling in networks 

utilizing SUM and MUM communication.  The results from the greedy heuristic-based 

scheduler are presented in chapter 9 and also compared to the optimal results from the 

binary search algorithm. 

The heuristic greedily selects the dominant contention regions (based on their rank 

which is determined by the cumulative traffic demand/workload in the contention 

regions) for scheduling stream transmission. The approach is motivated by the fact that 

the bounds on the schedule length are determined by the dominant contention region. 

The heuristic proceeds in two phases where in the first phase contention regions are 

identified and ranked in ascending order of the traffic workload in the contention 

region. The actual scheduling takes place in the second phase in two stages. In the first 

stage, non-overlapping dominant contention regions are scheduled (greedily for the 

contention region with highest traffic workload first) for up to k stream transmissions. If 

there are non-overlapping contention regions that are not scheduled, each is greedily 

scheduled to transmit as many streams as possible without overloading any active 

receiver. Each flow is selected in a manner such that it is not mutually exclusive to the 

scheduled flows. Note that any set of flows selected across non-overlapping contention 
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regions in the first stage of the second phase, may still belong to a lower ranked 

contention region. Hence such set of flows are scheduled to communicate not more than 

k streams by virtue of their membership in the same contention region. Also, when 

scheduling non-overlapping contention regions k streams may not be scheduled in the 

region because of the mutual exclusivity of the flows. This approach makes sure that no 

active flow scheduled in the contention region gets overloaded beyond k streams. 

In the second stage of the second phase, the heuristic attempts to squeeze as many 

streams as possible in the regions between non-overlapping contentions such that no 

active flows scheduled in the first stage gets overloaded beyond k streams. The heuristic 

greedily selects a contention region which has not been scheduled yet (and is not any 

scheduled in the first stage) and finds a flow which is not a member of any of the 

already scheduled contention region. If this contention region has any capacity left 

(after flows scheduled in the first stage) the flow is scheduled for stream transmission. 

The greedy scheduler can be easily modified to incorporate the multiuser spatial 

multiplexing capability of the MIMO nodes in the network. When scheduling flows in 

any contention region, pair of flows which share a transmitter/receiver are now eligible 

to be scheduled in the same time slot. 
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Phase I 

Input: GF WF K (Degree of Freedom at each node) 

1. Indentify all the contention regions 

2. Rank the contention regions weighted by the cumulativeWF 

Output:  CR1, CR2…CRl 

Rank(CR1),Rank(CR2)…Rank(CRl) 

Phase II 

Input:  CR = {CR1, CR2…. CRl} 

Rank(CR1),Rank(CR2)…Rank(CRl) 

Output: 

Stream schedule FGf ∈∀  

T := 0; Capacity(CRj)=K ∀ CRj∈CR 

While there is non-zero traffic workload in CR 

Sort CR in decreasing order of cumulativeWF 

Scheduled_CR = {} 

/* Stage 1 Stream Scheduling */ 

1. Choose the next highest ranked contention region, CRi, which doesn’t overlaps with CRj,∀ CRj∈Scheduled_CR 

a.. Schedule non-mutually exclusive flow/flows f∈CRi, for up to min{K,min{Capacity(CRj) } ∀ CRj such 

that f∈CRj} 

b. Update the flow demands of the scheduled flows f∈CRi 

c. Reduce the capacity of CRj by the number of streams communicated by f, ∀ CRj such that f∈CRj 

d. Add CRi to Scheduled_CR 

2. If more contention regions available in CR which doesn’t overlaps with CRj, ∀ CRj∈Scheduled_CR then goto 

step 1 

/* End of Stage 1 */ 

/* Stage 2 Stream Scheduling */ 

3 .Choose the next dominant contention region CRi such that CRi∈CR ∧  CRi∉Scheduled_CR; if no such CRi then 

goto step 8 

4. Find the flow/flows which are scheduled for stream transmission and  ∈CRi 

5. If the flows above transmit total x streams such that x < K, then find flow/flows f’ ∈CRi 

∧ f’∉CRj∀ CRj∈Scheduled_CR and schedule f’ for upto K-x streams 

6. Reduce the capacity of CRj by the number of streams communicated by f’, ∀ CRi such that f’∈CRi 

7. Add CRi in Scheduled_CR; goto step 3 

/* End of Stage 2 */ 

8. T := T+1 

  

Figure 8.1: Pseudo code for the centralized greedy stream scheduling algorithm for 

single user MIMO communication 
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CHAPTER 9 

RESULTS 

9.1 ILP Formulation Verification 

The ILP formulation has been rigorously tested on large ad hoc network topologies 

with traffic flow demands superposed on the links. We used the publicly available 

mixed integer linear programming solvers [35,36,37] for solving our formulation in the 

binary search algorithm. Some results from the algorithm for simple topologies (each 

node is equipped with four antennas) have been illustrated here. 

The solver output, scheduled stream transmissions, is displayed in tables for the 

various schedule lengths. For topology in Figure 9.1, we see (ref. Table 9.1) that for 

schedule length of one slot the flow y is not scheduled as such its demand remains 

unsatisfied. Also we see that the receiver of flow y is overloaded with eight streams 

since it is inactive in 1
st
 slot. While schedule length of two slots assures contention-free 

strict fairness; for all the flows have their traffic demands satisfied hence it is the 

optimal schedule length. In both schedule, none of the active receivers receive more 

than four streams in any of the slots. For topology in Figure 9.2, the optimal schedule 

length that achieves contention-free strict fairness corresponds to three slots.  
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Figure 9.1: Node graph, corresponding flow graph and contention regions (with traffic 

flow demands) 
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Table 9.1: Stream allocation with scheduled transmissions for topology in Figure 9.1 

Schedule Length Slot 

No. 

No. of Streams Scheduled 

 

L=1   

X 1 4 

Y 1 0 

Z 1 4 

   

L=2   

x 1 2 

y 1 2 

z 1 0 

x 2 2 

y 2 0 

z 2 4 
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Figure 9.2: Node graph, corresponding flow graph and non-overlapping contention 

regions (with traffic flow demands) 
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Table 9.2: Stream allocation and scheduled transmissions for topology in Figure 9.2 

 

Schedule Length 

 

Slot No. 

 

No. of Streams Scheduled 

L=1   

w 1 4 

x 1 2 

y 1 0 

z 1 0 

   

L=2   

w 1 4 

x 1 2 

y 1 0 

z 1 0 

w 2 0 

x 2 0 

y 2 1 

z 2 0 

   

L=3   

W 1 4 

X 1 2 

Y 1 0 

Z 1 0 

W 2 0 

X 2 0 

Y 2 1 

Z 2 0 

W 3 0 

X 3 0 

Y 3 0 

Z 3 1 
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9.2 Performance Comparison of Stream Scheduling for Single User and Multiuser 

Communication 

In this section, we study the performance of stream scheduling utilizing SISO, SUM 

and MUM communication. We use optimal schedule length, traffic workload (demand) 

in the network and the available DoF at each node as parameters for the performance 

study.  The stream scheduling is performed for a random ad hoc network topology 

generated in a 4X4 unit square area with two nodes per unit area. The topology has a 

total twenty six flows in the network as shown in Fig. 9.3. The topology has ten 

contention regions for SUM and twenty nine contention regions for MUM representing 

a dense network scenario. Also, for the SISO case we assume the capacity of the link to 

be equivalent to that of MIMO link with a single active stream (or, a MIMO link with a 

single active DoF). Compared to SISO case, stream scheduling for SUM as well as 

MUM (see Fig. 9.4 and Fig. 9.5), clearly provide better performance in terms of 

schedule length (this in turn translates into higher network throughput compared).  The 

benefit of MIMO is more pronounced for heavier traffic workload in the network since 

it can schedule more traffic streams compared to SISO. As the DoF at each node in the 

network is increased, the optimal schedule length is reduced for a given traffic 

workload. We see diminishing returns in terms of schedule length for increased DoF at 

nodes for a given traffic workload. This will happen because either the DoF made 

available would sufficiently satisfy the traffic demands or the schedule length will hit 

saturation (as explained next). 

We also observe that increasing the DoF freedom causes saturation in the schedule 

length. The saturation of the schedule length happens because of mutually exclusive  
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flows in the network. SUM and MUM cannot schedule mutually exclusive flows at the 

same time and hence must schedule them independently in different slots causing 

saturation in the schedule length irrespective of the available DoF at the nodes. Also, 

because MUM can schedule flows which are mutually exclusive for SUM (flows 

sharing a common transmitter or those sharing receiver) we find that the saturation limit 

in the schedule length for MUM is lower than that for SUM (see Fig. 9.4, Fig. 9.5 and 

Fig. 9.6). 

 

Fig. 9.3: The flow graph of a randomly generated topology in a 4X4 unit area with two 

nodes per unit area (the edges represent the traffic flow between two nodes) 
 
 

We see that the advantage of multiuser communication is more pronounced at 

higher traffic workload on the links. MUM nearly halves the schedule length compared 

to SUM (see Fig. 9.5) case for heavy traffic workload on the links in the network. SUM 

requires more DoF to achieve the same optimal schedule length. Also, MUM reduces 

the lower bound on the schedule length because now the mutually exclusive flows 

which shared a transmitter or receiver can be scheduled at the same time slot. It can be 
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deduced that for denser network topologies MUM will far outweigh the performance of 

SUM. But increasing DoF also introduces double the overhead for MUM. Since CSI 

estimation requires only few bits [34], MUM will overall give a drastic improvement in 

performance. Therefore, we can say that for light traffic workloads SUM can give the 

same performance of MUM with more DoF but without the complexity of closed loop 

CSI (channel information at both uplink and downlink) and multiuser 

transmitter/receivers. For heavier traffic workloads, though SUM can give the same 

performance as MUM but the number of DoFs required can be much higher than 

achievable using practical implementations (typically 8X8 single user MIMO systems 

are practical). For such heavier workloads, MUM can give higher performance 

amortizing the channel estimation costs when compared to SUM.    
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Figure 9.4: A comparison of the optimal schedule length for varying DoF for a random 

topology shown in Figure 9.3 (SUM is Single User MIMO). 
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Figure 9.5: A comparison of the optimal schedule length for varying DoF for a random 

topology shown in Figure 9.3 (MUM is Single User MIMO). 

 

0

5

10

15

20

25

30

12 24 36 48

Total Traffic Workload (unit)

O
p
ti
m
a
l 
S
c
h
e
d
u
le
 L
e
n
g
th

SUM DOF=2

SUM DOF=4

SUM DOF=8

SUM DOF=12

MUM DOF=2

MUM DOF=4

MUM DOF=8

MUM DOF=12

 
Figure 9.6: Optimal schedule lengths for varying DoF when the nodes utilize SUM and 

MUM. 
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9.3 Performance Comparison of Stream Scheduling for SISO with Single User and 

Multiuser MIMO Stream Scheduling 

For SISO, we see that higher link capacity doesn’t necessarily translate into shorter 

schedule length. This is because SISO doesn’t allow concurrent stream transmission 

which is possible for MIMO single user and multiuser communication. While SISO 

with link capacity equivalent to MIMO link capacity with DoF k, gives better 

performance compared to SISO link capacity equivalent to MIMO link with a single 

DoF it never performs better than MIMO.  Further, SISO schedule length is bounded by 

the size of the dominant contention region while SUM lower bound on the schedule 

length is also determined by the number of mutually exclusive flows in the contention 

region. 

While SISO with higher link capacity can give better performance, as a side effect, 

it leads to inefficient use of bandwidth as it cannot utilize the available bandwidth at the 

links for concurrent stream transmission due to lack of spatial degree of freedom. As we 

can see from Fig 9.7 and Fig. 9.8, SISO with higher link capacity follows a staircase 

curve for the optimal schedule length as it cannot utilize all the bandwidth when the 

traffic demand is low. When the traffic demand of the flows is such that it is a factor of 

the link capacity the optimal schedule length is same as that for SUM because there is 

no gain in partially scheduling flows for stream transmission. And, when the demand 

exceeds the link capacity SISO wastes bandwidth by allowing a flow to communicate as 

much data stream as the capacity even if it doesn’t has that much traffic demand. But 

MIMO links in such scenarios will concurrently schedule multiple interfering links such 
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that as much capacity of the contention regions are utilized as possible without 

overloading any active receivers. 

Also, though we assume that SISO links can have as much link capacity as MIMO 

links its well established that conventional techniques like modulation and coding 

cannot help SISO links achieve the same link capacity as MIMO links. From our 

analysis, we conclude that simply high link capacity, as with SISO links, cannot result 

in better performance in terms of throughput and proportional fairness of the wireless 

channel resources for different traffic flows in the network. It is the additional degrees 

of freedom available to MIMO links (spatial DoF with SUM, and multiuser as well as 

spatial DoF with MUM) that results in better performance of the network. 
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Figure 9.7: Optimal schedule length for SISO with link capacity k (equivalent to MIMO 

links with k DoF) compared to SUM 
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Figure 9.8: Optimal schedule length for SISO with link capacity k (equivalent to MIMO 

links with k DoF) compared to MUM 
 

9.4 Performance Comparison of the Greedy Heuristic and Optimal Scheduler 

We proposed a simple greedy heuristic for stream scheduling in networks utilizing 

SUM and MUM. Our results show that greedy heuristic closely approximates the 

optimal schedule length. For the topology in Fig. 9.3, we see from the plot in Fig. 9.9 

that the greedy heuristic almost matches the performance of the optimal scheduler for 

low and high traffic workloads. 

The plot in Fig. 9.10 shows the divergence in the schedule length (of the greedy 

scheduler) from the optimal schedule length. We can see that the divergence is upper 

bounded for all traffic workloads and also that the divergence is very small compared to 

the optimal schedule length (for the given traffic workload and the DoF).  
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Figure 9.9: Performance comparison of the greedy scheduler with the optimal scheduler 

(SUM represents optimal scheduler and GSUM represents greedy scheduler for Single 

User MIMO) 
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Figure 9.10: Divergence of the greedy scheduler from the optimal schedule length for 

varying DoFs 
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CHAPTER 10 

SIMULATION 

 

Owing to the ease and flexibility of simulation, it is the preferred mode for network 

performance evaluation. OPNET is the de facto standard for evaluation of the protocol 

performance in the networking research community.  

Therefore, we will use OPNET simulations to evaluate the performance of MIMO 

stream scheduling (the optimal binary search algorithms for contention free scheduling) 

utilizing SUM (single user spatial multiplexing) in OPNET. The performance is 

evaluated using network goodput as a metric to characterize the gain of using MIMO in 

ad hoc networks. Our simulation results show that stream scheduling using SUM 

outperforms that based on SISO communication.    

 

10.1  OPNET Modeler 

OPNET Modeler [5] is object-oriented discrete-event network simulation software 

that supports many network types and technologies. It is based on a series of 

hierarchical models such as network models, node models and process models that 

directly parallel the structure of real networks and protocols. The behavior of the 

network is simulated usually in process models, which comprises of Finite State 

Machines (FSM). These states are constructed using C/C++ codes and OPNET kernel 

functions. Transition between states is done using a wide variety of interrupts.  

Wireless Module is one of the several add-on modules available from OPNET. It is 

used in conjunction with the Modeler software to simulate wireless networks. Fixed or 

mobile wireless nodes can be simulated using wireless module. Transmission of packets 
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is done through fourteen built-in radio transceiver pipeline stages that depict different 

aspects of transmission in wireless medium.  

Using the graphical editor interface and APIs (application level interfaces), one can 

design and build models for various network entities from physical layer modulator to 

application processes and study the behavior of these entities. 

 
 

Figure 10.1: A MIMO node model in OPNET with three antennas (or, DoF) 

 

10.2 MIMO OPNET Model 

We developed a synchronous time slotted medium access (TDMA) protocol in 

OPNET for MIMO stream transmission. The wireless 802.11a node model in OPNET is 

modified with multiple radios at the physical layer to accommodate the multiple MIMO 

antennas, or DoF. Also, we modify the 802.11a MAC to allow for contention-free 

slotted transmission in the network. The stream transmission schedule produced by the 
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binary search algorithm, using the ILP solver, serves as input to the simulation. A node 

reads the input at the start of the TDMA superframe and schedules itself to 

transmit/receive at its next active time slot. The scheduled node wakes up at the active 

time slot and reads the input to find the number of data streams it has to transmit/receive. 

Only those radios at nodes that are involved in transmission/reception are active in a 

time slot while other radios (at the active and inactive node) are tuned to very high 

frequency (at which current active receivers cannot receive the signals) to emulate radio 

sleep state. 

 
 

Figure 10.2: The OPNET process model for MIMO TDMA MAC interface 
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Figure 10.3: The OPNET process model for MIMO TDMA MAC 

 

Fig. 10.1 shows a MIMO node model in OPNET with DoF 3. Fig. 10.2 and 10.3 

shows states and transitions for process model in OPNET for the MIMO MAC interface 

and the TDMA MAC respectively. The source module generates packets to be sent to 

the destination node. The mimo_mac_intf module buffers the packets arriving from the 

upper application layer and sends to a radio whenever that particular radio interrupts the 

mac interface process (through a packet request interrupt) during its active transmission 

slot. On the successful reception of packet at a destination receiver, it is forwarded up 

the layer, where the packet is sent to the sink (for destruction to free up the allocated 

memory in the simulation for the packet). The mimo_tdma_mac at a particular radio 

wakes up only at its active time slot where it is involved in a transmission or reception 

while it sleeps at other time slots. When it is scheduled for a transmission it requests for 

a packet from the mac interface through an interrupt and upon receiving the packet 

transmits it immediately. 
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Figure 10.4: Simulation scenarios with 32 nodes placed randomly in 400X400 square 

meter area 
 

10.3 Simulation Results 

We evaluated our model for a dense network scenario where nodes are randomly 

placed over an area of 400 x 400 square meters (shown in Fig. 10.4). There are 26 

traffic flows in the network. Each node is equipped with either one, two or three radios 

depending on the SISO or SUM scenarios. Each DoF has a data rate support for 54 

Mbps. Data packets of 1024 bytes were generated. The time slot length for TDMA was 

set to 152µs, which is equal to the sum of transmission and propagation delay. Also, the 

SISO links have a capacity of 54 Mbps i.e. equivalent to MIMO link capacity with single 

DoF. 
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The traffic load is varied from by uniformly increasing the application data rate at 

each of the flow node involved in a transmission. It is to be noted that by traffic load we 

mean the peak traffic workload such that transmission schedule is fully utilized i.e. if a 

flow is scheduled for transmission it successfully communicates as many streams as per 

the schedule (packets are guaranteed to be available at the mac interface queue for 

transmission). The metric used for performance comparison of the stream scheduling 

for SUM and SISO is network goodput - defined as the total number of successful 

packet receptions at the receivers in the network in a given time interval. Also, it is to 

be noted that in our simulations we have an overhead of a slot for each TDMA 

superframe which is implemented to reflect the real world scenario where all network 

setup and negotiations are performed at the beginning of the TDMA superframe. This 

slot will be called setup slot, henceforth. 
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Figure 10.5: Time averaged network goodput for the network scenario in Figure 10.4 

for varying DoF and a given traffic load on the flows 
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From Fig. 10.5, we see that SISO goodput is almost constant while that for SUM with 

DoF=2 is almost double that of SISO while for SUM with DoF=3 is 2.4 times the goodput of 

the SISO case. It is to be noted that the theoretical slot length for contention free schedule for 

this scenario was as follows: SISO: 12 slots, 6 slots for SUM DoF=2 and 5 slots for SUM 

DoF=3.    

The simulated goodput for SUM cases almost mirrors the theoretical result which was in 

terms of slot length. Since the schedule length for SUM cases is almost half that of SISO case, 

the number of overhead slot is also almost double that for SISO case as a result the goodput for 

SUM case is not exactly in the ratio as conveyed by the theoretical results. 
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Figure 10.6: Time averaged network goodput for the network scenario in Figure 10.4 

for varying DoF when traffic load on the flows is tripled compared to previous case 
 

 

From Fig. 10.6, the traffic load on the flows is tripled compared for the case in Fig. 10.5. It 

is to be noted that the theoretical slot length for contention free schedule for this scenario was as 

follows: SISO: 36 slots, 18 slots for SUM DoF=2 and 12 slots for SUM DoF=3.    

The simulated goodput for SUM cases almost mirrors the theoretical result which was in 

terms of slot length. Since the schedule length for SUM cases is half and a third, respectively, of 
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the SISO case, the numbers of overhead slot is also almost double and triple for the two SUM 

cases; as a result the goodput for SUM case is not exactly in the ratio as conveyed by the 

theoretical results. 
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Figure 10.7: Performance comparison of SUM (DoF 3) and SISO for varying traffic 

load in the network (Demand units represents the relative load on the links for the 

different scenarios) 
 

In Fig 10.7, we compare the performance of SISO and SUM for varying traffic demands of 

the flows. We see that SISO gives almost same goodput even when the traffic demand of the 

flows is tripled. This is because SISO links do not have additional DoFs which can 

accommodate multiple flows when traffic load on the flow increases as such SISO goodput in 

the network remains constant even when load increases. The slight difference in the goodput is 

attributed to the more number of overhead slots for SISO schedule for lower traffic demand on 

the flow (the scheduled length is 3 times for higher traffic demand compared to that for lower 

traffic demand). 

We see that SUM gives better performance when the traffic demand of the flows is tripled. 

This is because SUM links utilize the additional resources (DoFs) to concurrently schedule 
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transmission of mutually interfering flows and hence the goodput increase when the load 

increases. But as our theoretical analysis has shown, SUM goodput will also saturate at a point 

when additional DoF cannot concurrently schedule mutually exclusive flows. 

While for the stream transmission schedule produced by the optimal binary search 

algorithm, we evaluated the performance of SUM and SISO for peak traffic workload, we are 

also interested in comparing their respective performance when the traffic load is not at the peak 

for full utilization of transmission slots. From Figure 10.8, we can see that the loss in network 

goodput is more for SUM compared to SISO and the loss becomes more pronounced as DoF 

increases. This is because when traffic workload is not at the peak SUM’s lose in link utilization 

is more compared to SISO and the lose increases as the DoF increases (the network has more 

capacity when DoF at SUM links increase). Also, it can be observed from the simulation results 

in Figure 10.8 that at even when traffic load is not at its peak, SUM gives much better 

performance compared to SISO. In this case, we note that if the traffic workload is at the peak 

then strict fairness in terms of traffic transmission may not be met.  

Figure 10.9 shows the per-hop average delay for the packets when the traffic load in the 

network is varied upto the peak traffic load for SUM and SISO. When the traffic load is upto 

40% of the peak, the per-hop delay is almost the same for SUM and SISO indicating that the 

queuing delay is almost nil for the packets. But, as the traffic load increases the per-hop delay 

for both SISO and SUM increases indicating that the packets are getting queued. For the case of 

SUM DoF=3, the per-hop delay is almost 1/3
rd
 of that for SISO as it is transmitting three 

streams (or, packets) compared to SISO in a given time slot there by lowering the average 

queuing delay of the packets (for SISO, for the same traffic workload these packets would have 

to wait for the duration of three TDMA superframe in the queue for transmission). Similar 

argument holds for SUM DoF=2 case when compared to SISO. 
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Figure 10.8: Network goodput for varying traffic workload in the network (traffic load 

is percentage of x, where x represent traffic load where transmission slots are fully 

utilized by the scheduled flows) 
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Figure 10.9: Per hop delay for varying traffic load in the network (traffic load is 

percentage of x, where x represent traffic load where transmission slots are fully utilized 

by the scheduled flows) 
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Figure 10.10: Network goodput for varying per-hop delay (where per hop delay for each 

DoF is for varying traffic workload as shown in Figure 10.9) 
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CHAPTER 11 

CONCLUSION 

 

In this thesis, we formulated the problem of fair stream allocation in MIMO ad hoc 

networks based on traffic demands, for single user and multiuser MIMO 

communication. We developed a scheduling strategy to achieve fair allocation of the 

streams to the traffic flows in minimum schedule length and maximizing the network 

throughput in each slot; previous work did not focus on traffic demands for stream 

allocation, providing guarantees on schedule length for fairness and utilizing multiuser 

aspect of MIMO communication. For this scheduling strategy, we formulated an ILP 

problem for both the MIMO single user and multiuser communication. We solve the 

ILP in conjunction with a binary-search algorithm to compute the optimal schedule 

length to achieve strict fairness goals. The performance of single user and multiuser 

stream scheduling, using the optimal binary search algorithm, for varying traffic 

workloads and DoF was studied on a random ad hoc network topology. We show that 

the benefits of multiuser communication are more pronounced over single user 

communication in heavily loaded network. Further, at light-to-medium traffic workload, 

using single user MIMO with more DoF rather than multiuser MIMO can give the same 

performance but without the complexity of closed loop CSI and multiuser transceivers. 

While our ILP-based algorithm guarantees a schedule that has optimal length for 

achieving strict fairness, it relies on a number of potentially costly invocations to an ILP 

solver. Therefore, we developed a centralized greedy heuristic for the stream 

scheduling. The greedy heuristic closely approximates the performance in terms of 
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fairness goals and the schedule length compared to the optimal ILP-based algorithm.  

Also, our OPNET-based stochastic simulation confirms our theoretical results and 

reinforces the benefits of MIMO compared to SISO communication.  
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