
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses 1911 - February 2014

2010

Scalable, Memory-Intensive Scientific Computing
on Field Programmable Gate Arrays
Salma Mirza
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

Part of the VLSI and Circuits, Embedded and Hardware Systems Commons

This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 -
February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Mirza, Salma, "Scalable, Memory-Intensive Scientific Computing on Field Programmable Gate Arrays" (2010). Masters Theses 1911 -
February 2014. 404.
Retrieved from https://scholarworks.umass.edu/theses/404

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Ftheses%2F404&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F404&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F404&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Ftheses%2F404&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses/404?utm_source=scholarworks.umass.edu%2Ftheses%2F404&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


 

 

 

 

 

 

 

 

 

 

SCALABLE, MEMORY-I�TE�SIVE SCIE�TIFIC COMPUTI�G O� FIELD 

PROGRAMMABLE GATE ARRAYS 

 

 

 

 

 

 

 

A Thesis Presented 

 

 

by 

 

SALMA MIRZA 

 

 

 

 

 

 

 

 

 

 

Submitted to the Graduate School of the 

University of Massachusetts Amherst in partial fulfillment 

of the requirements for the degree of 

 

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING 

February 2010 

 

Department of Electrical and Computer Engineering 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Salma Mirza 2010 

 

All Rights Reserved 

 

 

 

 



 

 

 

SCALABLE, MEMORY-I�TE�SIVE SCIE�TIFIC COMPUTI�G O� FIELD 

PROGRAMMABLE GATE ARRAYS 

 

 

 

 

 

 

 

A Thesis Presented 

 

by 

 

SALMA MIRZA 

 

 

 

 

 

 

Approved as to style and content by: 

 

 ______________________________________  

Russell Tessier, Chair 

 

 

 ______________________________________  

Blair Perot, Member 

 

 

 ______________________________________  

Do-Hoon Kwon, Member 

 

 

 ___________________________________  

C. Hollot, Department Head 

Department of Electrical and Computer 

Engineering 

 

 

 

 



FOR RYA� CHRISTOPHER JOH�SO� 



 

v 

ACK�OWLEDGME�TS 

I thank my advisor Professor Russell Tessier for teaching me Reconfigurable 

Computing, letting me work on a thesis under his supervision, motivating and guiding the 

research. I thank Professor Blair Perot for introducing me to Sparse Matrices, and for his 

help and enthusiasm in driving the work. I thank Professor Do-Hoon Kwon for serving 

on my thesis committee. I thank all my lab-mates at the Reconfigurable Computing 

Group, particularly Jia Zhao for helping me select the FPGA Boards for my thesis and 

Emmanuel Seguin for helping me debug timing issues. I thank Julie Staraitis, the 

technical manager during my coop at Advanced Micro Devices who unwittingly became 

my role model for a woman in engineering besides training me to be a circuit design 

engineer. I thank Steve Fundakowski of Student Affairs for letting me take days off work 

to work on my thesis. I would like to thank my parents for setting me an example of 

working hard throughout. I thank Ryan Johnson for teaching me how to write state 

machines in Verilog, and for his immeasurable help, encouragement and support. Lastly, 

I would also like to thank our cat Kitty for staying up late nights when I was working 

even if he did not have to.  

 

 



 

vi 

 

ABSTRACT 

SCALABLE, MEMORY-INTENSIVE SCIENTIFIC COMPUTING ON FIELD 

PROGRAMMABLE GATE ARRAYS 

 

FEBRUARY 2010 

 

SALMA MIRZA, B.S, MUMBAI UNIVERSITY 

 

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Russell Tessier 

 

 

Cache-based, general purpose CPUs perform at a small fraction of their maximum 

floating point performance when executing memory-intensive simulations, such as those 

required for many scientific computing problems. This is due to the memory bottleneck 

that is encountered with large arrays that must be stored in dynamic RAM. A system of 

FPGAs, with a large enough memory bandwidth, and clocked at only hundreds of MHz 

can outperform a CPU clocked at GHz in terms of floating point performance. An FPGA 

core designed for a target performance that does not unnecessarily exceed the memory 

imposed bottleneck can then be distributed, along with multiple memory interfaces, into a 

scalable architecture that overcomes the bandwidth limitation of a single interface.  

Interconnected cores can work together to solve a scientific computing problem and 

exploit a bandwidth that is the sum of the bandwidth available from all of their connected 

memory interfaces. The implementation demonstrates this concept of scalability with two 

memory interfaces through the use of available FPGA prototyping platforms. Even 

though the FPGAs operate at 133 MHz, which is twenty one times slower than an AMD 

Phenom X4 processor operating at 2.8 GHz, the system of two FPGAs performs eight 

times slower than the processor for the example problem of SMVM in heat transfer. 



 

vii 

However, the system is demonstrated to be scalable with a run-time that decreases 

linearly with respect to the available memory bandwidth. The floating point performance 

of a single board implementation is 12 GFlops which doubles to 24 GFlops for a two 

board implementation, for a gather or scatter operation on matrices of varying sizes.  



 

viii 

 

TABLE OF CO�TE�TS 

 

 Page 

 

ACKNOWLEDGMENTS ................................................................................................... v 

ABSTRACT ....................................................................................................................... vi 

LIST OF TABLES .............................................................................................................. x 

LIST OF FIGURES ............................................................................................................ xi 

CHAPTER 

 

1. INTRODUCTION ................................................................................................... 1 

2. SPARSE MATRIX VECTOR MULTIPLICATION .............................................. 4 

2.1 Specific Example of SMVM ............................................................................. 4 

2.2 Specific Example of SMVM ........................................................................... 12 

2.3 SMVM on Field Programmable Gate Arrays ................................................. 16 

 

3. PREVIOUS WORK .............................................................................................. 21 

4. FPGA IMPLEMENTATION OF SMVM............................................................. 23 

4.1 FPGA Platform ................................................................................................ 23 

4.2 Memory Management ..................................................................................... 26 

4.3 Implementation Algorithm .............................................................................. 28 

4.3.1 The Gather Operation ....................................................................... 28 

4.3.1 The Scatter Operation....................................................................... 30 

4.4 Step by Step Implementation of a Gather or a Scatter Algorithm .................. 32 

4.5 The Router Module ......................................................................................... 42 

4.6 Memory Request Ordering .............................................................................. 45 

 

5. RESULTS.............................................................................................................. 47 

5.1 Expected Performance..................................................................................... 47 

5.2 Measured Performance .................................................................................... 54 

5.3 Resource Utilization ........................................................................................ 56 

5.4 Potential Parallization ..................................................................................... 57 

5.5 Comparison to Previous Work ........................................................................ 59 

 



 

ix 

6. CONCLUSIONS AND FUTURE WORK ........................................................... 61 

BIBLIOGRAPHY ............................................................................................................. 62 

 



 

x 

 

LIST OF TABLES 

 

Table Page 

 

Table 1: Memory Management in Proposed Architecture ........................................ 27 

Table 2: EP3SL150 Resources .................................................................................. 47 

Table 3: Floating Point Core Utilization ................................................................... 48 

Table 4: Peak Performance on a Single and Double Board Implementation ............ 49 

Table 5: Final Estimates ............................................................................................ 54 

Table 6: Measured Performance ............................................................................... 55 

Table 7: DDR Utilization .......................................................................................... 57 

 

 



 

xi 

 

LIST OF FIGURES 

 

Figure Page 

 

Figure 1: Discretization of PDE over an unstructured (triangular) mesh ................... 4 

Figure 2: The Gradient Operation ............................................................................... 5 

Figure 3: The Discrete Divergence Operation ............................................................ 8 

Figure 4: Look up Table implements Boolean algebraic functions .......................... 17 

Figure 5: Implementation Architecture of the System .............................................. 19 

Figure 6. Implementation Platform [11] ................................................................... 25 

Figure 7. Stacking Multiple DE3s (a) ....................................................................... 26 

Figure 8: Stacking Multiple DE3s (b) ....................................................................... 26 

Figure 9: A Gather and Scatter Operation Demonstrated on Two FPGAs ............... 34 

Figure 10: A system of FIFOs ................................................................................... 35 

Figure 11: Performance of the DE3 System.............................................................. 56 

Figure 12: Parallelization using a single memory interface ...................................... 58 

Figure 13: Parallelization using three memory interfaces ......................................... 59 

 

 

 

 



 

1 

CHAPTER 1 

 

I�TRODUCTIO� 

 

Simulations allow scientists to quantitatively predict results of real-life 

phenomena for a range of input conditions and with a programmable degree of accuracy. 

In many cases, simulations are preferred to physical experiments because they are often 

cheaper, faster and less dangerous than these types of experiments. For a reasonably good 

mathematical model, the accuracy of the simulations is given by how closely a simulation 

set up can imitate a physical experimental set up. To increase accuracy, the problem must 

be made larger. This translates to an increase in the number of computations, which in 

turn is constrained by the available computing resources and their efficiency.  

 

Low cost commodity computers are often used in clusters for scientific 

simulations. Commodity computers utilize a cache-based architecture which is ill-suited 

for scientific computations.  Scientific computing performs poorly on cache-based CPUs 

because of the vast and constantly changing data associated with iterative simulations. 

The data is too big to fit on the CPU cache, and exhibits little temporal locality making 

cache hits rare. The speed of computation is limited by memory access times that, 

typically, are at least ten times slower than the time taken to perform an operation on the 

CPU.  

 

This problem is particularly apparent in sparse matrix vector multiplication 

(SMVM). SMVMs are of the type: y += A.x; where x and y are dense vectors and A is 



 

2 

sparse matrix. SMVM often requires memory intensive operation. Often, the matrix A is 

extremely sparse and unstructured. For a dynamic problem, the matrix would change with 

time and would need to be rebuilt at every step. Construction and storage of a sparse 

matrix during computations is difficult, expensive and unnecessary. If constructed at all, 

the sparse matrix should be stored in an alternate representation – either a compressed 

row or compressed column representation, whichever may be more appropriate for the 

matrix at hand [1].  

 

However, given the elegance with which most problems can be represented in 

matrix formats, mathematical journals present algorithms in terms of matrices. Engineers 

implementing these algorithms for their simulation purposes, inevitably write codes that 

create matrices and operate on them. Computer codes build these matrices that slow 

down simulations because of the memory access times involved. This ultimately restricts 

the accuracy at which these simulations can be performed in a constrained time period.  

 

In Chapter 2, we explain the sparse matrix vector multiplication problem that 

arises in an iterative simulation of two dimensional heat transfer. We quantify results of 

the expected performance of the heat transfer simulation on a CPU. In Chapter 3, we 

review the previous work that has been done in this area, how our work relates to it, and 

highlight the differences. In Chapter 4, we explain our implementation algorithm for 

gather and the scatter operations and go through the implementation details of our 

algorithm on Field Programmable Gate Arrays (FPGAs). In Chapter 5, we calculate the 



 

3 

expected performance of SMVM on a system of FPGAs and then compare it with the 

measured performance. In Chapter 6, we conclude the thesis and discuss potential work. 

 



 

4 

CHAPTER 2 

 

 

 SPARSE MATRIX VECTOR MULTIPLICATIO� 

 

2.1 Specific Example of SMVM 

 

Throughout this document, we shall consider heat transfer as an example of 

SMVM. However, the implementation holds true for any SMVM that arises from any 

PDE solution. Consider the problem of two dimensional heat transfer on an unstructured 

mesh as shown in Figure 1. 

L5

L1

L3

L4

L2

x1

x2

x3x4
 

Figure 1: Discretization of PDE over an unstructured (triangular) mesh 

 

To discretize the partial differential equations associated with this problem, the 

mesh is divided into smaller domains. In practice the mesh may consist of 100,000 sub-

domains for a 2-D problem, and a million tetrahedras for a 3-D problem. Dividing the 

mesh into smaller sub domains results in a more accurate solution, but also involves more 

data and intensified computation. For the purpose of simplification, we consider two 

triangles that are a part of a larger mesh. The temperature unknowns are located at the 

four vertices and are calculated iteratively in two steps as discussed below.   



 

5 

L5

L1

L3

L4

L2

x1

x2

x3x4








 −
=

1L

2x1x

1k  1y










 −
=

5L

4x1x

5k  5y










 −
=

3L

3x1x

3k  3y

 
Figure 2: The Gradient Operation 

 

Step 1: The Gradient or the Gather Operation  

 

The first step to solve the heat transfer problem is to calculate the temperature 

gradient along the edges (Figure 2). Roughly, this is given by the difference in 

temperature at the vertices that connect an edge divided by the length of the edge.   This 

is the gradient operation and in a matrix form, is given by y = Gx 

 























































−

−

−

−

−

=





















4x
3x
2x
1x

L

1
00

L

1

L

1

L

1
00

0
L

1
0

L

1

0
L

1

L

1
0

00
L

1

L

1

4y
3y
2y
1y

55

44

33

22

11

 

 

Matrix G is a sparse matrix. Every row of G contains exactly two non-zero items. 

For simplicity, we shall refer to non-zero values as items. In relation to the problem at 



 

6 

hand, the number of columns in the matrix depends on the number of nodes (or the 

number of unknowns), and the number of rows depends on the total number of edges.  In 

general, the number of rows and columns is not equal. The location of items in a row 

indicates the nodes connected to that edge. The value of the item represents the length of 

that edge.  The values in a row are repeated except for a minus sign. For example, in row 

1, the items are located in column 1 and column 2, indicating that edge 1 is between 

nodes x1 and x2 and has length L1.  

 

Each row has two items even when the number of unknowns is 100000, so the 

matrix continues to remain extremely sparse as it increases in size. As a result, it is best if 

this matrix is not constructed to include all or most of the points. The construction and 

storage of such a sparse matrix is unnecessary and adds to the computational overhead. If 

a matrix is constructed at all, it is best stored in a compressed format.  Matrix G can be 

stored in a compressed row format as follows: 

 























−

−

55

44

33

22

11

ii

i-i

ii

ii

ii

L-00L

LL00

0L0L

0LL0

00L-L

 

 

Li represents the inverse of length L. The above matrix becomes: 

Multiplier [ Li1 - Li1 Li2 - Li2 Li3 - Li3 Li4 -Li4 Li5 -Li5 ] 

Destination [ 1 2 2 3 1 3 3 4 1 4 ] 

Pointer [ 0 2 4 6 8 ]      

Number [ 2 2 2 2 2 ]      



 

7 

The Multiplier array contains the non-zero values in the matrix obtained by 

traversing each row in the matrix from column 1 to column 4. The column to which the 

non-zero element belongs is stored in the Destination array. The pointer to the first 

multiplier value in each row is stored in the Pointer array. The Pointer array thus 

indicates the beginning of a new row. The number of non-zero elements in each row is 

stored in the “Number” Array. In case a row has all zero elements in it, the Number 

Array would indicate this.  

 

Given the regularity the matrix displays in each row, it is best stored in the 

compressed row format. When stored in the compressed row format, the Pointer array 

and the Number Array are unnecessary and can be constructed on the fly.  

 

To solve for y, without generating an explicit (sparse) matrix for the gradient 

operation, we construct the Edge to Node [E2N] data structure which holds the 

connectivity information for the mesh. The E2N structure contains the pointer 

information specifying which two nodes define each edge. In this sense, the E2N data 

structure is equivalent to compressed row sparse matrix because they hold the same 

connectivity information. The E2N data structure for the problem in consideration is 

given by: 

   Edge1 Edge2 Edge3 Edge4 Edge5  

E2N= 
Node1 

[ 
x1 x2 x1 x3 x1 

] 
Node2 x2 x3 x3 x4 x4 

 

 



 

8 

Then in pseudo-code, the gradient operation can be implemented with a single 

line (and without generating an explicit matrix) as: 

Equation 2.1  

} (1/L[e]);*) e]]x[E2N[1, – e]]x[E2N[2, (  y[e]

{ )e num_edges;e 0;(efor 

=

++<=
 

 

In the above operation, indirect memory reads of the type x=a[i] are performed in 

which the value of x is “gathered” from the array a at address i. Henceforth, we refer to 

the gradient operation as the “gather operation” 

 

Step 2: The Discrete Divergence or the Scatter Operation  

 

1
*k
1
y

5
*k
5
y

3*k3y

5
*k
5
y

3
*k
3
y

1
*k
1
y ++

 
Figure 3: The Discrete Divergence Operation 

 

 

The second step to solve this problem is to multiply the gradient on each edge (‘y’ 

as obtained in the first step) by the conductivity along the edge (k), to obtain the flux 

along each edge. The fluxes associated with each edge attached to a node are then 

summed up, to obtain the temperature unknown at the node. This is the Discrete 

Divergence Operation and in matrix form is given by z=Dy 



 

9 







































































=

5y
4y
3y
2y
1y

5k-4k-000

04k3k-2k-0

0002k1k-
5k03k01k

4z
3z
2z
1z

.
 

 

Matrix D is also a sparse matrix. The sparsity pattern of Matrix D is the transpose 

of the sparsity pattern of Matrix G. Every column of D contains exactly two items. In 

relation to the problem, the number of rows in the matrix depends on the number of 

nodes (or the number of unknowns), and the number of columns depends on the total 

number of edges. The location of items in a column indicates the nodes connected to each 

edge. The value of the item represents the conductivity of each edge.  The values in a 

column are repeated except for a minus sign. For example, in column 1, the items are 

located in row 1 and row2, indicating that edge 1 is between nodes x1 and x2 and has 

conductivity k1.  

 

Each column has two items, as with the rows of G, even when the number of 

unknowns is 100000 so the matrix continues to remain extremely sparse as it increases in 

size. It is again best to not construct this matrix at all, and if it is constructed, it is best 

stored in the compressed column format, as opposed to the compressed row format. 

Matrix D can be stored in a compressed column as follows: 

 

 



 

10 





















5-k4-k000

04k3-k2-k0

0002k1-k
5k03k01k

 

becomes 

Multiplier [ k1 -k1 k2 -k2 K3 -k3 k4 -k4 k5 -k5 ] 

Destination [ 1 2 2 3 1 3 3 4 1 4 ] 

Pointer [ 0 2 4 6 8 ]      

Number [ 2 2 2 2 2 ]      

 

The Multiplier array contains the non-zero values in the matrix obtained by 

traversing each column in the matrix from row 1 to row 5. The row to which the non-zero 

element belongs is stored in the Destination array. The pointer to the first multiplier value 

in each column is stored in the Pointer array. The Pointer array thus indicates the 

beginning of a new column. The number of non-zero elements in each column is stored in 

the “Number” Array. In case a column has all zero elements in it, the Number Array 

would indicate this.  

 

Given the regularity the matrix displays in each column, it is best stored in the 

compressed column format. When stored in the compressed column format, the Pointer 

array and the Number Array are unnecessary and can be constructed on the fly.  

 

This operation can be efficiently implemented using the same E2N connectivity 

structure (and no explicit matrix).  In this case, the E2N data structure is equivalent to 

using a compressed column matrix format. 

 



 

11 

Then in pseudo-code, the discrete divergence operation can be implemented 

without generating an explicit matrix as: 

 

Equation 2.2 
 

}

k[e];*y[e]e]]z[E2N[2,

k[e];*y[e]e]]z[E2N[1,

{ )e num_edges,e 0,(efor 

0;  z

=−

=+

++<=

=

 

 

In the above operation, indirect memory writes of the type a[i]=x are performed in 

which the value of x is “scattered” to the array a at address i. Henceforth we refer to the 

discrete divergence operation as the “scatter operation” 

 

Both the Gradient and the Divergence matrix can be efficiently represented using 

the same E2N data structure. For the gradient operation, the E2N structure is equivalent 

to compressed row sparse matrix storage and in the divergence operation it is equivalent 

to compressed column sparse matrix storage. This mixed representation of the matrices 

(both row and column format, whichever is appropriate to the structure of the matrix) 

saves memory in addition to improving code efficiency.  

 

Now that we have found the most efficient representations for the gradient and the 

divergence operators, in the next Section 2.2 of Chapter 2, we analyze the efficiency of a 

CPU in implementing the gather and the scatter operation. Finally, in Section 2.3 of 

Chapter 2, we discuss the implementation of the same operations on a system of FPGAs 

with memory banks. 



 

12 

2.2 Specific Example of SMVM 

 

Advances in CMOS technology depend upon the minimum feature size that can 

be fabricated on an integrated circuit. The minimum feature size decreases at a rate of 

over forty percent every two years [2]. For the semiconductor industry, this coarsely 

translates as doubling of the number of transistors on a chip every other year.  The 

minimum feature size available at a particular time is referred to as a technology node. 

The channel capacitances in the MOS transistor depend primarily on the product of the 

width (W) and the length (L) of the transistor. In order to keep the W/L ratio constant for 

a circuit design, a decrease in L is followed by a decrease in W of the same magnitude. 

This effectively reduces the channel capacitances by a squared value of the ratio of 

decrease in gate length. This decrease in channel capacitance coupled with a decrease in 

threshold voltage creates transistors with faster switching times, reducing the delays in 

the critical paths and allowing the synchronous circuits to be clocked faster.  

 

The increased performance of CPUs is primarily attributed to faster clock rates 

that piggy back on the decrease in transistor gate length. For every jump in CPU 

performance, eighty percent of the contributions can be attributed to a faster clock rate 

and twenty percent of the improvements can be attributed to changes in architecture [3]. 

 

Cache based CPU’s continue to remain the norm for commodity computers. In a 

cache based CPU, for a memory-fetch operation, data from the adjacent memory 

locations will be fetched into the cache. This is because spatially coherent data is also 

assumed to be temporally coherent. While this may be true for most general purpose 



 

13 

applications, this is not true for sparse matrix vector multiplication, where data is not 

temporally coherent and is too vast to be stored on a cache. In this case the data has to be 

fetched from the main memory through indirect memory accesses which are limited by 

the speed of the memory itself. The DRAM memory speed does not scale at the same rate 

that processor speeds do. They both increase exponentially, but the difference between 

two exponentials also increases exponentially [4]. This disparity between the memory 

and the processor speeds is especially apparent for memory intensive applications where 

the speed of the application is highly dependent on the speed of the memory.  

 

Without a significant change in memory technology, cache based memory access 

times will rely heavily on memory performance for applications that frequently reference 

memory. As an example, consider the performance of an AMD Phenom X4 920 

Processor which operates at a frequency of 2.8 GHz, has a memory bandwidth of 6.8 

GBps for sequential access and a theoretical floating point performance of 6.8 GFlops, 

for the SMVM problem discussed earlier. The memory bandwidth degrades to 20% of the 

sequential memory access bandwidth for random access which is 1.36GBps. The 

performance of a memory bandwidth constrained problem can be calculated using the 

Processor Balance and Application Balance Metrics [5][10].   

 

 

 

 

 



 

14 

 

The Processor Balance for the Xeon is calculated as:  

Bytes/Flop0.2

GFlops 6.8

GBytes/sec 1.36

(GFlops) ePerformancPeak 

sec) / (GBytes Bandwidth
  Balance Processor

=

=

=

 

 

Consider the application balance for the gather operation: 

 

y[e] (x[E2N[2,e]] - x[E2N[1,e]])* [ ]Li e+ =  

 

 

Consider the memory requirement for the gather operation.  This requires the 

following data from memory: 

2 - 4 byte sequential read for E2N[1,e], E2N[2,e] 

1 - 8 byte sequential read for Li[e] 

3 - 8 byte random reads for x[E2N[1,e]], x[E2N[2,e]] and y[e] 

1 – 8 byte random write for y[e] 

 

Each gather operation requires 48 bytes of memory, including both sequential and 

random accesses, read and write operations. Since the slowest memory operation is 

random reads, we consider it exclusively for performance calculations. The gather 

operation requires 8 x 3 = 24 bytes to be randomly read from the external memory. Three 

floating point operations are performed. 

 

 

 

 



 

15 

Bytes/Flop8
Flops 3

Bytes 24

flops ofNumber 

references memory ofNumber 
  Balance nApplicatio gather ===  

 

The FPGA performs with a maximum theoretical performance of: 

 

MFlops 170GFlops 8.6
Bytes/Flop 8

Bytes/Flop 0.2
  ePerformanc gather =×=  

 

 

The FPGA performs at 2.5% of its maximum floating point performance for a gather. 

 

Consider the memory requirement for the scatter operation: 

k[e]*y[e] e]]z[E2N[i, =+  

 

This requires the following data from memory: 

1 - 4 byte sequential read for E2N[1,e] and E2N[2,e] 

1 - 8 byte sequential read for Li[e] 

2 - 8 byte random reads for z[E2N[i,e]] and y[e] 

1 – 8 byte random write for y[e] 

 

Each scatter operation requires 36 bytes of memory, including both sequential and 

random accesses, read and write operations. Out of these, 16 bytes have to be read 

randomly from the memory. Two floating point operations are performed.  

 

Bytes/Flop8
Flops 2

Bytes 16

flops ofNumber 

references memory ofNumber 
  Balance nApplicatio scatter ===  

 

The FPGA performs with a maximum theoretical performance of: 

 

MFlops 170GFlops 8.6
Bytes/Flop 8

Bytes/Flop 0.2
  ePerformanc gather =×=  

 

 

The FPGA performs at 2.5% of it’s maximum floating point performance for a scatter. 

 



 

16 

From the above calculations it is clear that the Phenom performs poorly for a 

problem that is constrained by memory bandwidth. It exhibits a relatively small 

performance of 2.5% for a gather or a scatter operation.  

 

Evidently, a cache based CPU performs poorly on the SMVM problem because of 

the memory bottleneck. This problem is primarily because of the cache-based 

architecture a commodity CPU is based on, that is ill-suited to handle scientific 

computations as discussed earlier. In the next section, we explore the implementation of 

the heat transfer problem on a system of Field Programmable Gate Arrays (FPGAs), in 

which each FPGA communicates with an on-board memory module.  

 

2.3 SMVM on Field Programmable Gate Arrays 

 

An FPGA can be considered as an “on-chip breadboard” that can implement 

digital logic functions. The logic functions are implemented in the form of four-input 

look up tables (LUTs). A LUT can implement any four input Boolean algebraic function. 

In Figure 4, a four input ‘or’ function is implemented using a LUT, but a more 

complication function can be implemented as easily, as long as it has not more than four 

inputs. 

 



 

17 

 

Figure 4: Look up Table implements Boolean algebraic functions 

 

The LUTs are wired together by a programmable interconnect and this constitutes 

the fabric of the FPGA. The LUTs can be combined to implement functions with more 

inputs.  Another, or perhaps the most significant feature of FPGAs is that many such 

LUTs (upto 254,400 for Stratix III) that implement Boolean algebra can function in 

parallel.  

 

Configuring an FPGA for specific functionality requires that those functions be 

described in some manner. This can be done through the use of a hardware description 

language (HDL), typically Verilog or VHDL. Verilog, in particular, is a robust hardware 

description language that allows a user to create behavioral or data flow models of digital 

systems. Behavioral modeling is akin to computer programming, where a process is 

described sequentially. Data flow modeling is a better approach for digital circuits, which 

are more appropriately described using a parallel process. A specific approach to data 

flow modeling is known as Register Transfer Level (RTL) modeling and is synthesizable. 

The subset of Verilog language that is used in RTL descriptions can be automatically 

converted to circuits for a specific technology using CAD tools. The subset is known as 

synthesizable Verilog and the conversion process is known as Synthesis. For FPGAs, 



 

18 

synthesis of Verilog RTL descriptions generates circuits made of LUTs. The physical 

placement of LUTs on the FPGAs and the routing, or wiring, between them is decided by 

another CAD tool, the place and route tool. Finally, this information is transferred to the 

FPGA in a bitstream to configure it for the specific functionality. 

 

Each FPGA consists of a series of LUTs, storage resources, and hardware 

multipliers. FPGAs contain logic elements to the order of tens of thousands, allowing for 

the construction of large parallel functions. Numerous implementations of hardware-

multiplier based floating point multipliers and adders have been developed for FPGAs 

[6], [10]. Besides parallelism, another significant advantage that an FPGA based 

implementation offers over a CPU is regular memory access rates. This is because an 

FPGA has a memory-bank architecture as opposed to the cache-based architecture of a 

CPU. Each memory channel allows 200-400 MHz connections to on board DRAM. 

FPGAs provide significant parallelism in implementation because several floating point 

operations can be carried out simultaneously, the only constraint being the rate at which 

operands are loaded and saved to the memory and the size of the memory itself. This 

memory bandwidth and memory capacity can be multiplied, as can the number of 

operations by using multiple FPGAs in parallel - splitting the operands across memory 

banks, and splitting the operations between them to achieve optimal performance. 



 

19 

ROUTER

FPGA 1

SMVM CORE

MEMORY MODULE

ROUTER

FPGA 1

SMVM CORE

MEMORY MODULE

 

Figure 5: Implementation Architecture of the System 

 

 

In our implementation, demonstrated in Figure 5, source and destination vectors 

and matrix values are partitioned across multiple memory banks attached to FPGAs. Data 

does not have to be accessed at fixed periods; data is fetched from off-chip memory as 

needed. The operations are data driven, and buffers are used rather than scheduling to 

keep the various sub-units of the computation busy. The configuration uses many FPGA-

based load and store units to keep the series of compute elements implemented in the 

FPGAs busy. These load and store units are connected to DRAM memory banks to 

provide the necessary memory bandwidth. The compute elements perform floating point 

addition, subtraction, and multiplication and contain control circuitry to coordinate 

computation and data transport. An on-chip router is used as an interface between the 

memory and the compute elements. Any compute element can access any memory 

location via the router as long as the associated memory address is known. Efficient inter-

FPGA connections can be accomplished via several mechanisms such as low-voltage 



 

20 

differential signaling (LVDS) and 12.8 GB/s multi-bit Hypertransport connections. The 

FPGAs can be connected to each other in a mesh or a bi-directional loop. The proposed 

architecture can implement both a gather and a scatter operation. Most importantly, this 

scheme is scalable: greater number of FPGAs or bigger memory banks can be used for 

problems of a larger size, without any changes in the implementation architecture.  

 

The keynotes in our implementation are: 

• Scalable to multiple FPGAs depending on problem size.  

• Can implement scatter (compressed column) or gather (compressed row) 

operations without recompilation.  

• Optimized for the common case (very sparse matrices of millions of rows – 2 

items per row or column). 

• Can operate on vectors and matrices that are too large to be locally stored in 

FPGA embedded memory. 

• Effectively uses the FPGA pin count and existing I/O units to achieve peak 

memory bandwidth. 



 

21 

CHAPTER 3 

 

PREVIOUS WORK 

 

The primary criteria we use to evaluate previous work are: 

1. Can the scheme implement both a gather and a scatter operation? 

2. Is a specific matrix format used? 

3. Is the scheme scalable to larger problem sizes? 

 

Several previous research projects have implemented sparse matrix vector 

multiplication using FPGAs. de Lormier and DeHon [10] developed a multi-FPGA 

approach which uses matrices available in compressed row format. As discussed, some 

sparse matrices are best represented in compressed row format, while others are best 

represented in the compressed column format. Forceful representation of a matrix in a 

compressed row format might not be efficient. The limited size of the source and 

destination vectors (about 10000 values) allows them to be stored inside FPGA 

embedded memory. This approach is hence not scalable to larger problem sizes. This 

design was also optimized for repeated multiplication by the same matrix. Inter-FPGA 

communication is coordinated at compile time and hard-coded into FPGA hardware. 

Although efficient, this approach requires recompilation for every matrix. This is 

unsuitable for dynamic problems where matrices are continually changing or scientific 

codes where the device needs to operate on the order of 20 different matrices for each 

iteration/timestep of the solver.  

 



 

22 

Zhuo and Prasanna [7] also developed a sparse matrix-vector multiplication 

approach based on FPGAs which uses a matrix represented in compressed row format. 

For this implementation, the entire source value vector is again placed in each FPGA. 

This is a limiting factor on problem size and scalability.  

 

A faster implementation is by Sun, Peterson and Storaasli [8]. They designed an 

FPGA approach which uses a non-conventional data format and takes advantage of a 

specialized accumulator. This approach is again limited to small matrices and uses a 

prescribed (but slightly nonstandard) matrix format as well as the assumption of an 

explicitly built matrix. 

 

Our algorithm differs considerably from these prior designs by focusing on 

improving the memory bandwidth rather than improving the performance of the FPGA 

implementation. Previous works have surpassed the memory bottleneck by placing the 

data on FPGA memory blocks. This is convenient for problems that can fit on the 

memory blocks. However, for problems with larger data sizes, this architecture is not 

scalable. In our approach, the data is stored explicitly on on-board memory and accessed 

by the FPGA at DDR2 data rates. This data is stored in multiple memory banks, and the 

FPGA’s capability of accessing multiple memory banks is used to overcome the memory 

wall. In this scheme, our algorithm is closer to that of El-kurdi, Gross, and 

Giannocopolos [9], which also focuses on very large vectors that cannot reside in FPGA 

embedded memory. The algorithm implemented by DuBois et al. [10] can work on very 

long vectors, but still assumes an explicit matrix is present in a prescribed format.  



 

23 

CHAPTER 4 

 

FPGA IMPLEME�TATIO� OF SMVM 

 

In Chapter 4, we shall discuss the choice of our FPGA platform in Section 4.1. In 

Section 4.2, we discuss the optimal way of saving SMVM data in the external memory. 

In Section 4.3, we broadly discuss the implementation algorithm for a gather and a scatter 

operation. In Section 4.4, we discuss the step by step implementation of the algorithm for 

a gather and a scatter operation by following the lifecycle of a packet. In Section 4.5, we 

explain the router module of the design. Finally, in Section 4.6 we discuss the memory 

access ordering.  

4.1 FPGA Platform 

 

The FPGA platform was carefully chosen to provide three capabilities: 

1. Access to one or many off-chip DRAM Modules 

2. Inter-board communication ability 

3. On-chip hardware multipliers 

 

A DE3 board (Figure 6) available from Terasic was chosen which contains a 

Stratix III EP3SL150 FPGA with 142,000 logic elements (LEs) and 384 18x18-bit 

Multiplier blocks. The DE3 has a single DDR2 SO-DIMM socket with a maximum 

capacity of up to 4GB. Each board has four HSTC Connectors, which can be used to 

stack up multiple such boards. The connectors provide a mechanism for inter-board 

communication while multiplying the memory bandwidth, which is essential for this 

implementation.  



 

24 

 

The circuitry on each board includes DDR2 DRAM controllers, floating point 

multipliers, and adders, inter-FPGA routers, and control circuitry needed to dynamically 

coordinate data movement. This circuitry has been developed in register-transfer level 

(RTL) Verilog, simulated for correctness and finally has been tested on a single and two 

FPGA Boards. During computation, large arrays are stored on the DRAM memory banks, 

and intermediate values are not transferred to CPU memory, transfer of initial data or 

final results occurs only at the very beginning and  at the end of the computation through 

the USB ByteBlaster Interface. 

 

As mentioned, each DE3 Board has four 128-bit HSTC connectors, labeled 

HSTC-A through D. The DRAM module is connected to HSTC-B. It is possible to create 

a system of DE3 Boards by stacking the boards as show in Figure 7. However stacking 

the boards causes the HSTC-B connectors to short and the DDR interface on either board 

to function errantly due to timing violations. It was therefore decided to stack the DE3 

Boards as demonstrated in Figure 8. 



 

25 

 

Figure 6. Implementation Platform [11] 



 

26 

 

 

Figure 7. Stacking Multiple DE3s (a) 
Figure 8: Stacking Multiple DE3s (b) 

 

 

 

4.2 Memory Management 

 

The gather and the scatter operation require that the following arrays be stored on 

the external memory: 

1 The edge to node matrix            : E2N[1,e], E2N[2,e] 

 
1 Temperature gradient along an edge : y[e]  

 
1 The inverse length of an edge           : Li[e] 

 
1 Conductivity along an edge           : k[e] 

 
2 The temperature at each node           : x[E2N[i,e]] 

 
2 The sum of fluxes at each node          : z[E2N[i,e]] 

 
1 The length of these arrays is the number of edges in a particular problem 
2 The length of these arrays is the number of nodes in a particular problem 

 

 



 

27 

The matrices are stored in banks of the external DRAM. The term ‘banks’ does 

not imply the presence of multiple memory interfaces. These banks cannot be accessed in 

parallel. Only one bank can be accessed at a time, through the single memory interface. 

However, we continue to use the bank structure to organize data, as if multiple interfaces 

were available to us. The motivation in doing this is that if multiple memory interfaces 

were indeed available, this data could be accessed in parallel in a way that would 

maximize the memory bandwidth of the design.  Stratifying the data into banks is also 

helpful in estimating how the presence of multiple banks would improve performance of 

the design.  For a multiple board implementation the matrix is evenly divided among the 

boards. In case the matrix cannot be evenly divided; one board hosts the larger part of the 

matrix. 

Table 1: Memory Management in Architecture 

 FPGA 0 FPGA 1 

Bank 0 

Gradient: L[0] to L[e1] 

Divergence: k[0] to k[e1] 

 

Gradient: L[e1+1] to L[e] 

Divergence: k[e1+1] to k[e] 

Bank 1 

 

E2N[1,0] to  E2N[1, e1] 

E2N[2,0] to  E2N[2, e1] 

E2N[1,e1+1] to  E2N[1,e] 

E2N[2,e1+1] to  E2N[1,e]x 

Bank 2 

 
y[0] to y[e1] 

E2N[1,e1+1] to  E2N[1,e] 

E2N[2,e1+1] to  E2N[1,e] 

Bank 3 
Gradient: x[0] to x[n1] 

Divergence: z[0] to z[n1] 

Gradient:  x[n1+1] to x[n] 

Divergence: z[n1+1] to z[n] 

0< e1  < e; e = total number of edges 

0< n1 < n; n = total number of nodes 

 



 

28 

4.3 Implementation Algorithm 

 

In our implementation, both scatter and gather operations are supported with the 

same architecture without any reconfiguration. To indicate whether an operation is a 

gather or a scatter, a single slide switch on the board is flipped (SW[0]). The slide switch 

is in the ON position for a gather operation and in the OFF position for the scatter 

operation. The list of edges is distributed to memory modules attached to each FPGA. 

The distribution places an equal amount of matrix data on each memory bank. In order to 

distribute computations between FPGAs, data needed for operations is divided into 

packets which are sent between FPGAs. For bigger matrices, this architecture can be 

scaled by using more FPGAs or bigger memory modules. The implementation 

architectures for gather and scatter operations are discussed in subsection 4.3.1 and 4.3.2 

of Chapter 4, respectively.  

 

 4.3.1 The Gather Operation 

 

Consider a gather operation (the gradient operation) performed using the system 

configuration shown in Figure 5. The gather operation is given by: 

 

}  ; ) e]])x[E2N[2, * (Li[e] –) e]]x[E2N[1,*(Li[e] (  y[e]

{ )e num_edges;e 0;(e for

=

++<=
 

 

 



 

29 

 

This can also be written as: 

 

Equation 4.3.1 

}

  ; e]]x[E2N[2, * Li[e] y[e]–

; e]]x[E2N[1,*Li[e]  y[e]

{ )e num_edges;e 0;(e for

=

=+

++<=

 

 

Broadly speaking, the gather operation consists of two steps: 

 

A. The Source Operation 

On each clock, every load unit reads the multiplier Li[e] and the source addresses 

E2N[i,e] for the source value x[E2N[i,e]]. The address for y[e] is internally generated 

because y[e] is laid out exactly like Li[e]. For each y[e], ‘i' packets are generated. In this 

case, because the value of ‘i’ is 2, hence two packets are generated that contain: 

 

the sign bit              : + or - 

the multiplier value  : Li[e]  

the source address        : E2N[1,e] or E2N[2,e] 

destination address  : &y[e] 

 

For each packet a source operation is initiated. The source operation propagates 

through the routing subsystem which moves it towards the correct source value memory 

bank. Depending on the source address, the packet may be transferred to a different 

FPGA. Upon its traversal through the routers (the routers operate using the source 

 

Organized into Packet 1 
 
Organized into Packet 2 
 



 

30 

address), the source data will be located on the memory module attached to the correct 

FPGA.  The compute unit will proceed to load the source data and multiply it with Li[e]. 

The product x[E2N[1,e]]*Li[e]  replaces Li[e] in the packet. The source operation is non-

trivial and required, unlike the source operation in the scatter, as shall be seen in Section 

4.2 of Chapter 4. 

 

B. The Store Operation 

A store operation for the result is then initiated. The store operation propagates 

through the router subsystem which moves it to the FPGA with the correct storage 

memory bank. In this case, the store operation directs it back to the FPGA where this 

operation was initiated. Upon its traversal through the routers (the routers operate using 

the destination address), the data will be located at the correct memory bank for storage, 

where the store unit will proceed to add it to / subtract it from the existing data in the 

desired location. 

 

 4.3.1 The Scatter Operation 

 

Consider a scatter operation (the divergence operation) performed using the 

system configuration shown in Figure 5. 

 

Equation 4.3.2 

} k[e];*y[e] e]]z[E2N[2,

k[e];*y[e] e]]z[E2N[1,

{)e num_edges;e 0;(efor 

0;  z

=+

=+

++<=

=

 

 

 

Organized into Packet 1 
 

Organized into Packet 2 
 



 

31 

Broadly speaking, the scatter operation consists of two steps: 

A. The Source Operation  

On each clock, every load unit reads the multiplier k[e] and the destination 

addresses E2N[i,e] for the value z[E2N[i,e]]. The source address for y[e] is internally 

generated because y[e] is laid out exactly like k[e]. For each E2N[i,e], a packet is 

generated that contains: 

the sign bit                          : + or - 

the multiplier value              : k[e] 

 the source address  : &y[e] 

destination address  : E2N[1,e] or E2N[2,e] 

In this case two packets are generated. For each packet a source operation is 

initiated. In this case, the source data is located on the same FPGA. The compute unit 

will proceed to load the source data and multiply it with k[e]. The product y[e]*k[e]  

replaces k[e] in the packet. The source operation is trivial, in this case, and is performed 

simply to maintain consistency in the architecture of the gather and the scatter operation. 

 

B. The Store Operation 

For each (E2N[i,e]) destination, a store operation is initiated. For each destination 

address, the store operation propagates through a series of switches which slowly move it 

towards the correct destination value memory bank. Depending on the destination 

address, data may be transferred to a different FPGA. Upon its traversal through the 

switches (the switch operates using the source address), the data will be located at the 



 

32 

correct memory bank, where the store unit will proceed to add or subtract it to or from the 

existing data in the desired location.  

 

In the following Section, the step by step implementation of a gather of a scatter 

operation will be discussed. For the sake of simplicity, the data present at the source 

address will be referred to as source data, and the data present at the destination address 

will be referred to as destination data.  

 

4.4 Step by Step Implementation of a Gather or a Scatter Algorithm 

 

The gather or scatter operation proceeds in ten steps as explained below.  Figure 9 

demonstrates  the life cycle of a packet, from the time it is created to the time the data is 

finally written to the destination address. Figure 10 illustrates a system of FIFOs a packet 

passes through during its lifetime.  

Step 1:  Sequential Read 

The DDR Interface is used in this step. The primary operation being performed is a 

sequential read.  Two operations happen concurrently in this step: 

1. The multiplier value (Li[e] for gather and k[e] for scatter) is fetched sequentially 

from the first sixteen addresses of Bank 0 of the DDR. Since each DDR location 

in Bank 0 stores four 64 bit multiplier values, this corresponds to 64 multiplier 

values. They are stored in a FIFO hence referred to as “seq0_fifo”. 

2. The destination values for the gather operation (source values for the scatter 

operation), y[e], are laid out exactly as the multiplier values but in Bank 3. It is 



 

33 

possible to generate their addresses and store them in another FIFO as the 

multiplier value is being fetched from the DRAM. This FIFO will be referred to 

as “addr_fifo”.  This operation does not require the memory interface hence can 

be performed in parallel with the memory operation.  

 

Step 2:  Sequential Read 

The DDR Interface is used in this step. The operation being performed is a 

sequential read.  The E2N values, which represent the source address for the gather 

operation (the destination address for the scatter operation) are fetched sequentially from 

the first sixteen addresses of Bank 1 of the DDR. Since each DDR location in Bank 1 

stores eight 2-bit address values, this corresponds to 128 E2N address. These addresses 

are stored in a FIFO referred to as “seq1_fifo”. These addresses are fetched sequentially; 

however the addresses themselves are random. The addresses contain the complete 

DRAM address information, including the board address. Out of the 32 bits, the first 

eight bits are zero padded, the next bit specifies the board address in a double board 

implementation  and the final 23 bits specify the DRAM address.  

 

Step 3: Packet Creation 

Packets are created in this step. This operation begins after the data first appears 

on the bus in Step 2. It is run parallel with Step 2, but is staggered by the read latency of 

the first read operation in Step 2. Packets are created from the data available in seq0_fifo, 

seq1_fifo and addr_fifo. A single bit is used to represent a “+” or “-“ sign, which will be 



 

34 

used to decide whether the value in the packet is added to, or subtracted from the final 

destination value. The packets are stored in a FIFO hence referred to as “packet_fifo”.  

MEMORY BANKS

ROUTER

+ ,@y[e], E2N[1,e], Li[e]

+, Li[e]*x[E2N[1,e]], @y[e]

+, Li[e]*x[E2N[1,e]], y[e], @y[e]

y[e] + Li[e]*x[E2N[1,e]], @y[e]

ACCMULATOR

STEP 1,2,3

STEP 7

STEP 8

STEP 9

STEP 10

ROUTER

GATHER

+ ,@y[e], E2N[1,e], Li[e]

+, Li[e], x[E2N[1,e]], @y[e]

MULTIPLIER

+, Li[e]*x[E2N[1,e]], @y[e]

STEP 4

STEP 5

STEP 6

STEP 7

FPGA-2

MEMORY BANKS

@y[e]

@y[e]

+ ,@y[e], E2N[1,e], Li[e]

STEP 4

E2N[1,e]

E2N[1,e] + ,y[e]*k[e],  E2N[1,e]

+ ,y[e]*k[e],  x[E2N[1,e]], E2N[1,e]

ACCUMULATOR

[x[E2N[1,e]] + y[e]*k[e], E2N[1,e]

STEP 7

STEP 8

STEP 9

STEP 10

E2N[1,e]

+ ,@y[e], E2N[1,e], k[e]

+ ,@y[e], E2N[1,e], k[e]

+ ,y[e], E2N[1,e], k[e]

+ ,y[e]*k[e], E2N[1,e]

MULTIPLIER

STEP 1,2,3

STEP 4

STEP 5

STEP 6

STEP 7

@y[e]

+ ,@y[e], E2N[1,e], k[e]

STEP 4

@y[e]

E2N[1,e]

SCATTER

GATHER FPGA-1 SCATTER

DDR2 MEMORY CONTROLLER

DDR2 MEMORY CONTROLLER

 

Figure 9: A Gather and Scatter Operation Demonstrated on Two FPGAs 



 

35 

 
Figure 10: A system of FIFOs 

 

 



 

36 

The only difference between the gather and the scatter operations is in this step, 

where the packets are constructed differently. After this, the knowledge whether the 

operation is a gather or a scatter is unnecessary, as both operations proceed in exactly the 

same way. 

The structure of the packets is as follows:  

 

 

Step 4: Route to Source Address 

This step is one of the two route operations in the lifecycle of a packet. For a 

gather, this route operation is required because the source address could be located on 

either board. For a scatter operation, this operation is not required because the source 

address is located on the board where the packet is created, but is performed to maintain 

consistency between the gather and the scatter operations. This routing does not create 

any overhead on design performance, as shall be seen in the results in Chapter 5. Once a 

packet is present in packet_fifo, the route operation begins and continues until 

packet_fifo is empty. The router compares the location information present in the source 

address of the packet with the board identifier. If the address is a match, the packet does 

not need to be routed and is stored in a FIFO hence referred to as “noroute0_fifo”. If the 

packet needs to be routed it is stored in a FIFO called “route_fifo”. If the router detects 



 

37 

that route_fifo is not empty, the route operation is initiated. The route operation shall be 

discussed in a Section 4.5 of Chapter 4. Step 4 is run in parallel with Step 3, and is 

staggered by a clock cycle.  

 

Step 5: Random Read from Source Address 

This is the first of the two random read operations in the lifecycle of a packet. 

After the DDR interface has completed the sequential operations in Step 1 and 2, the 

random reads from the source address can begin. At this point, if noroute0_fifo is not 

empty, this signifies that a random read access to the memory is needed, to either the 

source address or the destination address (as shall be seen in Step 7).  All random 

memory accesses are directed through a single FIFO that interfaces with the DDR2 

Controller. This FIFO will be referred to as “rand_fifo”. The packet from noroute0_fifo 

joins the random access request queue in rand_fifo with a packet header, which indicates 

whether the random access request is a read operation from the source address or the 

destination address, or a write operation to the destination address. This information can 

be represented by an additional two bits. For the gather operation, this step is a read 

operation from the source address.  

 



 

38 

 

A read request is sent to the source address via the DDR Controller. If rand_fifo 

continues to be non-empty and the DDR Controller is accepting read requests, another 

read request is sent out. This continues until rand_fifo is empty. Now that some read 

requests have been sent, the corresponding data will appear on the bus in the same order 

as the requests that were sent. There is a need to maintain a record of the read requests 

that were sent, that indicate whether a read from the source or the destination address was 

requested, thus indicting the FIFO that the packet with read data will be saved in – the 

multiply or the accumulate FIFO. In addition to the extended header, other information 

such as the multiplier value, the destination address and the sign bit are required to 

reconstruct the packet. This record is maintained in another FIFO called “shadow_fifo”. 

Therefore as each read request is sent to the DDR, the packet information from rand_fifo 

is captured into shadow_fifo except for the source address which is discarded.  

 

When the rdata_valid signal is asserted by the DDR controller, indicating presence of 

valid data on the data bus, the data is buffered in a register. This data is then stored into 

the packet, which is retrieved from shadow_fifo and is written into “source_fifo”. The 

header is now discarded.  



 

39 

 

 

Step 6: Multiply 

This is the double precision floating point (DPFP) multiply operation. If 

source_fifo is found to be non-empty, the DPFP multiply operation is initiated. This 

operation multiplies the multiplier value (that was fetched sequentially from the DDR in 

Step 1) with the source value obtained by a random access in the Step 6. The multiply 

operation takes seven clock cycles, thus seven multipliers are used in rotation, such that a 

multiply operation can be initiated in each clock cycle, if the multiplicands are available. 

Seven clock cycles after the multiply was initiated, the product replaces the multiplier 

value in the packet that is written to “mult_fifo”. The source data is discarded.  

 

 

 

 



 

40 

Step 7:  Route to Destination Address 

This is the second route operation in the lifecycle of a packet. Once a packet is 

present in mult_fifo, the route operation begins and continues until mult_fifo is empty. If 

the packet does not need to be routed it is stored in a FIFO called “noroute1_fifo”. If the 

packet needs to be routed it is stored in route_fifo.  The route operation is discussed in 

detail in Section 4.5. 

 

Step 8:  Random Read from Destination Address 

This is the second of the two random read operations in the lifecycle of a packet. 

The packet from noroute1_fifo once again joins the random access request queue in 

rand_fifo with a packet header. In this case, the header indicates it is a read operation 

from the destination address.  

 

 

Read requests are sent to the destination address via the DDR Controller constantly if the 

DDR Controller is accepting read requests, until rand_fifo is empty. Once again, 

shadow_fifo is used to store the header and the remaining packet information until the 

data corresponding to the packet appears on the data bus of the DDR controller. The 



 

41 

modified packet is then stored in a FIFO called “dest_fifo”. The destination address is 

retained, because it will be required for the packet to be written back. 

 

 

Step 9: Accumulate 

This is a 64-bit DPFP accumulate operation. If dest_fifo is non-empty, the DPFP 

accumulate operation is initiated. Based on the sign bit information that each packet 

holds, the accumulate operation adds or subtracts the product obtained in Step 6 with the 

destination value obtained by the random access Step 7. The accumulate operation takes 

seven clock cycles, thus seven accumulators are used in rotation, such that an accumulate 

operation can be initiated in each clock cycle.  

Seven clock cycles after the accumulate was initiated, the accumulator output replaces 

the multiplier value in the packet that is written to a FIFO called “accum_fifo”. The sign 

bit, destination data and the product are discarded.  

 

 



 

42 

Step 10:   Write to Destination Address 

If accum_fifo is found to be non-empty, its contents are written into rand_fifo 

with the packet header indicating that this is a random write operation. The data is finally 

written to the destination address.  

 

The operation goes back to Step 1, where the next set of data is fetched, and so 

on, until all the data has been processed.  

 

4.5 The Router Module 

 

Each FPGA has in the system has a board identifier hard-coded into the RTL. The 

FPGA’s are connected to each other over a 128-bit bi-directional High Speed Terasic 

Connector (HSTC) channel. Since there is a single 128-bit channel present to route the 

packets from any FPGA to any other FPGA in the system, a bus arbitration mechanism is 

required. For this purpose a single board is designated as the bus controller, and all the 

other boards are designated as slaves. A single slide switch - SW[2], indicates whether a 

board is a Master or a Slave. If the slide switch is in the ON position, the board is the 

Master. There can be only one Master board in the system. The Master board receives 

and processes all routing requests according to a rotating priority mechanism.  

 



 

43 

On each board, the router sorts and routes packets over the HSTC interface that 

connects all the boards in the system. The router compares the board address present in 

the source (or the destination) address of each packet with the board identifier of the 

board the packet is present on. If the packet is present on the correct board already, it is 

not routed, but is written to rand_fifo for random access to the memory module attached 

to the board. If the comparison fails, the packet needs to be routed to a different board, 

and the route operation is initiated.  

 

A 129 bit packet (for a route to the source address) needs to be routed over a 128 

bit bus, in addition to various control signals. To do this, the packet is compressed, so that 

only 24 useful bits out of 32 bits for the source or the destination address are retained. 

This compresses a 129 bit packet into a 113 bit packet. The packet size for a route to the 

destination address is 97 bits, and this is not a problem to route across a 128 bit channel. 

However, for consistency, this packet is compressed into an 89 bit packet as well and 

buffered to be 113 bits.  

 

Each packet is assigned a single bit header that indicates whether it is being 

routed to the source address or the destination address. Once the packet reaches the 

destination board, this information is useful in knowing whether the data to be fetched is 

from the source or the destination address of the packet.   

 

 

 



 

44 

The interface between the Master and the Slave consists of the following signals: 

1. A 114 bit bi-directional data bus  

2. A “Busy” signal driven by the Master 

3. Dedicated bus requests signals between the Master and each Slave (1 in this case) 

4. Dedicated bus grant signals between the Master and each Slave (1 in this case) 

 

If the board that requires a route is a Slave, the following set of events takes place: 

• The Slave requests the Master to release the bus using the dedicated bus 

request line between them.  

• If the bus is not busy, the Master does the following: 

i. Stops driving the data bus 

ii. Drives high the dedicated bus grant signal 

iii. Drives high the busy signal 

iv. When the Slave receives the bus grant signal, it starts driving the 

data bus to transfer packets. 

• If the bus is busy, the Master waits for the current transfer to complete 

then assigns the bus to the Slave. If there are other requests present then 

the Master uses a rotating priority scheme to assign the bus. 

 

The Slave now drives the data bus, sending packet information across along with the 

destination board ID. The Slave will maintain the bus request signal high for as long as it 

requires transferring data. This data is sent to all the boards in the system, but only the 

board with the correct board ID processes this information. Once the Slave has 



 

45 

transferred all the packets, it releases the data bus and drives the bus request signal low. 

The Master takes control of the bus, drives the Busy signal low and processes the next 

request, if any. 

 

If the board requiring a route is the Master, the following set of events takes place: 

• If the busy signal is driven low, and no other bus requests are available, 

the Master drives high the busy signal and broadcasts the destination 

board id and the packet information.  

• If the busy signal is driven high, it indicates that a transfer is currently in 

progress. The Master will send the packets across, once that transfer is 

complete.  

 

4.6 Memory Request Ordering 

 

All packets that require random memory access are directed to rand_fifo. This is 

because multiple packets may require random memory access at the same time through a 

single memory interface and a robust priority scheme needs to be implemented. The 

memory operation required could be to:  

1. read from the source address(for packets present in noroute0_fifo) 

2. to read from the destination address(for packets present in noroute1_fifo) 

3. to write to the destination address(for packets present in accum_fifo).  

If the three aforementioned FIFOs are non-empty, then to choose the packet that 

will first be written into rand_fifo, a fixed priority scheme is used.  



 

46 

Random read source address > Random read destination address > Write 

This is to improve the DDR controller efficiency by preventing the controller 

from swapping between writes and reads to different rows, forcing a row to be opened 

and closed on every transaction.  

 

 



 

47 

CHAPTER 5 

 

RESULTS 

 

In Section 5.1 of Chapter 5, we analyze the floating point performance of the 

system based on the available resources. In Section 5.2, we compare the expected 

performance of the system with its measured performance, and compare the performance 

versus an AMD Phenom X4 9200 CPU. Based on the resource utilization summarized in 

Section 5.3, we discuss parallelization techniques in Section 5.4. In Section 5.5, we 

briefly compare the performance of our implementation with implementations in [6] and 

[10] 

 

5.1 Expected Performance 

 

First, we calculate the maximum floating point performance of a single DE3 

board. The DE3 Board has a Stratix EP3SL150 with 142,000 logic elements (LEs) and 

384 18x18-bit multiplier blocks as indicated in Table 2 below.  

 

Table 2: EP3SL150 Resources 

Device ALUTs 
Equivalent 

Les 

18x18 

Multipliers 
PLLs 

EP3SL150 113600 142000 384 8 

 

 



 

48 

Using Altera’s intellectual property tool, it is possible to implement a double 

precision floating point (DPFP) multiplier using 9 on-chip 18x18 hardware multipliers 

and 900 LUTs. It is possible to implement a DPFP accumulator using 1721 ALUTs. 

 

Table 3: Floating Point Core Utilization 

 Synthesis Multipliers ALUTs Latency 
Performa

nce 

DPFP 
Multiplier 

Logic + Muliplier 9 900 13 300 MHz 

DPFP 

Adder 
Logic 0 1721 17 300MHz 

 

 

Summarizing the ideal floating point capability of the DE3: 

 

Number of hardware multipliers available        : 384 18x18 bit hardware multipliers  

Max DPFP Multipliers that can be implemented  : 384/9 = 42 

42 Multipliers Utilize           : 42 * 900 = 37800 ALUTs 

Maintaining a 1:1 Multiplier:Adder Ratio        : 42 DP Adders can be implemented 

42 Adders Utilize           : 42 * 1721 = 72282 ALUTs 

Total Resources Used 

ALUTs             : 110082 out of 113600 ALUTs  

Multipliers            : 378 out of 384 multipliers 

Theoretical Maximum Peak Floating  

Point Performance           : 300*84 = 25.2 GFlops 

 

When many DPFP cores are used in parallel, data sheet performance may be 

unachievable. It is difficult to route 64 bit data paths while populating the FPGA with 

DPFP cores without a considerable decrease in system performance. This may result in 



 

49 

unused logic and decrease in clock speed for the DPFP functions. The clock speed will 

degrade by 1/3
rd
 and 15 percent of the logic will be unused [10] 

 

Thus 39 (42*0.15) adders and 39 multipliers can fit on the FPGA and will operate 

at a conservative frequency of 133 MHz. This leads to a maximum floating point 

performance of 10.374 GFlops and not 25.2 GFlops as calculated.  Extrapolating the 

results to a two FPGA DE3 System: 

 

Table 4: Peak Performance on a Single and Double Board Implementation 

 
Single Board DE3 

Implementation 

Two Board DE3 

System 

 Number LUTS Number LUTS 

DP Multipliers 39 35100 78 70200 

DP Adders 39 67119 78 134238 

DDR2 Interfaces 1 1946 2 3892 

Switches 1 5000 2 10000 

Total ALUTs 109165 218330 

1 Memory Bandwidth 0.396 GBps 0.792 GBps 

2 Expected Performance 10.374 GFlops  20.748 GFlops 

 

 

 

 

 

 



 

50 

 

1 Memory Bandwidth  for a single Stratix EP3SL150 based DE3 Board: 

= DDR SDRAM Bus Width *  2 * frequency of operation * efficiency 

= 8 Bytes * 2 clock edges * 133 MHz * 0.2 

= 0.396 GBps 

 

2 Expected Performance for a single Stratix EP3SL150 based DE3 Board: 

= (39 DPFP Multiplications + 39 DPFP Additions) x 133 MHz  

= 10.374 GFlops 

 

 

In the next few steps, we will calculate the application balance, the processor 

balance and finally the performance of a single DE3 Board for a gather and a scatter 

operation.  

The processor balance for a single DE3 Board is calculated as:  

 

p Bytes/Flo038.0
 GFlops374.10

sec GBytes/396.0

lops)rmance (GFPeak Perfo

)sec(GBytes / Bandwidth 
 lance ocessor BaPr ===  

 

Consider the memory requirement for a single packet of the gather operation: 

 

y[e] x[E2N[1,e]*Li[e]+ =  

 

 

The gather operation requires the following data from memory: 

 

1 - 4 byte sequential read for E2N[i,e] 

1 - 8 byte sequential read for Li[e] 

2 - 8 byte random reads for x[E2N[i,e]] and y[e] 

1 – 8 byte random write for y[e] 

 



 

51 

 

Now consider the memory requirement for a single packet for the scatter 

operation: 

 
k[e]*y[e] e]]z[E2N[i, =+  

 

 

The scatter operation requires the following data from memory: 

 

1 - 4 byte sequential read for E2N[i,e] 

1 - 8 byte sequential read for k[e] 

2 - 8 byte random reads for z[E2N[i,e]] and y[e] 

1 – 8 byte random write for z[E2N[i,e]] 

 

The random accesses are the bottleneck in this operation, and we shall exclude 

other memory operations in the successive calculations. The random memory access 

requirements for a packet in the gather or the scatter operation are the same. 16 bytes of 

data needs to be randomly read from the memory for each packet. This takes place in two 

separate read transactions. Since 32 bytes of data is fetched or sent by the controller on 

the local side at a time, it corresponds to a 64 byte random read operation instead of a 16 

byte operation. Dividing the gather and the scatter operations into packets equalizes them 

with regards to number of floating point operations needed. Both the gather and the 

scatter require two floating point operations per packet, making their performance alike. 

 

 

 

 



 

52 

 
 

Bytes/Flop32
Flops 2

Bytes 64

flops ofNumber 

references memory ofNumber 
  Balance nApplicatio gather ===  

 

The FPGA performs with a maximum theoretical performance of: 

 

MFlops 32.12GFlops 374.01
Bytes/Flop 32

Bytes/Flop 0.038
  ePerformanc =×=  

 

 

The FPGA performs at 0.12% of it’s maximum floating point performance for a 

gather or a scatter. 

 

 

Another way to understand this is as follows:  

The memory bandwidth offered by a DE3 Board is 0.374 GBps. At a clock speed 

of a 133 MHz, 2.98 bytes can be transferred to the DE3 from the memory per clock cycle. 

Each y calculation for the gather, or z calculation for the scatter requires 64 bytes, so we 

can effectively implement 2.98/64 = 0.0466 y operations per clock cycle. Each y 

operation has 2 DPFP operations.  At a clock speed of 133 MHz clock, and a 0.396 GBps 

bandwidth, we can implement 2*0.0466 = 0.093 DPFP operations. 

 

The DE3 Board can implement 78 DPFP operations, so at a clock speed of 133 

MHz, we effectively utilize 0.12% of the available DPFP resources. To utilize 100% of 

the available DPFP resources, a practical memory bandwidth of 330 GBps is needed per 

DE3 board. This is not possible as only 0.12% of this bandwidth is available. 

Alternatively, the FPGA can be operated at a lower frequency to increase the percentage 

of on-chip DPFP resources that can be used. At a frequency of 120 KHz, 100% of the 

DPFP resources can be used. 

 



 

53 

The FPGA can be operated at a lower frequency to utilize more of the on-chip 

DPFP resources, or at a higher frequency and use fewer resources. The floating point 

performance of the FPGA remains constant. To calculate the tradeoff between operating 

the FPGA at a higher frequency with fewer DPFP resources, and a lower frequency with 

higher DPFP resources, we consider the power consumption metric. To estimate the 

power that would be used by our design we used PowerPlay – an early power estimator 

by Altera. The power consumption remains constant for any combination of frequency 

and consequent number of DPFP resources we would use and is of the order of hundreds 

of mWatts. 

 

Consequently, we have the freedom of choosing any operating frequency, without 

affecting the DPFP performance or the power performance of our system. We choose to 

maximize the frequency of operation of the FPGA (and decreasing total number of DPFP 

resources we use). The reasoning for this is that when many DPFP cores are used in 

parallel, routing 64 bit data paths is complicated. At a frequency of 133 MHz, the gather 

and scatter operations can at the most utilize 0.12% of the DPFP resources i.e. 0.09 

compute elements. Since the DPFP resource needed may be either a multiplier or an 

accumulator, we need to implement 1 DPFP multiplier and 1 DPFP accumulator. The 

multiplier and the accumulator have a latency of 7 clock cycles. For this reason, 7 

multipliers and 7 accumulators are implemented.  

 

 

 

 



 

54 

For a single DE3 board: 

 

 

Expected Performance for a single DE3 board for a Gather or Scatter: 

= 0.09 x 133 MHz  

= 11.97 MFlops 

 

 

This concurs with our previous calculations. On a system of 2 DE3 boards: 

 

Expected Performance for a DE3 System for a Gather or Scatter: 

= 2 x 0.09 x 133 MHz 

= 23.94 MFlops 

 

 

Finally, the expected performance for a gather or a scatter operation on the 

system of two FPGAs is:  

 

Table 5: Final Estimates 

Performance Single DE3 Board DE3 System CPU 

Gather / Scatter 11.97 MFlops 23.94 MFlops  

 

 

5.2 Measured Performance 

 

The experiments were run on a single board, and then on a dual board set-up. The 

type of operation (a gather or a scatter) was set by using an on-board slide switch. For a 

multiple board implementation the Master board was also determined by the position of a 

slide switch. The matrices were loaded into the on board DRAM using Perl scripts for 

efficiency. Another slide switch (SW[2]) was flipped to begin the operations. An on-chip 

counter counted the time taken from start to completion of an SMVM. Signal Tap Logic 

Analyzer was used to view the counter at the end of the operation.  



 

55 

 

The results were found to be as indicated in Table 6. The results for the FPGA were 

found to be very close to the estimated values in the previous section. The results for the 

CPU could only be recorded for the largest SMVM. The CPU performed 8 times better 

than the two FPGA system, even when it is clocked 21 times faster than the FPGAs.  

 

Table 6: Measured Performance  

Nodes Edges 

DPFP 

Calcula

tions 

Calculation Time (msec) 
DPFP Performance 

(MFlops) 

   
1 

Board 

2 

Board 
CPU 

1 

Board 

2 

Board 
CPU 

11k 34k 136k 11.5 5.8  11.82 23.44  

128k 383k 1532k 125 65  12.26 23.56  

237k 710k 2840k 228 118 ~15 12.45 24.06 ~190 

 

As demonstrated in Figure 11, the system is scalable. The floating point performance of a 

two board implementation is twice that of a single board implementation. This is 

primarily because the memory bandwidth doubles for a two board implementation, due to 

the presence of twice as many memory interfaces and this directly improves the floating 

point performance of the system. This also demonstrates that there is no routing overhead 

involved in using multiple boards due to the memory performance limitation. 



 

56 

Performance of DE System

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000

Floating Point Operations (x1000)

T
im
e
 (
m
s
e
c
)

0

5

10

15

20

25

F
P
 P
e
rf
o
rm
a
n
c
e
 (
M
F
lo
p
s
)

Calculation time for 1 board

Calculation time for 2 boards

FP Performance for 1 board

FP Performance for 2 boards

 

Figure 11: Performance of the DE3 System 

 

The FPGA performs a random read each time it requires some data from the 

DRAM, buffering up to four reads at a time, but still suffering from longer access 

latencies that plague random reads on dynamic memory.  It is possible to improve the 

performance of the system of FPGAs by adding more memory interfaces per board, and 

increasing the number of boards in the system. This will be discussed in detail in Section 

5.4 of Chapter 5.    

 

5.3 Resource Utilization 

 

70 of the 384 hardware multipliers are used (18%) to perform DPFP 

multiplication.  0.5MB of on chip memory is used of the available 0.68 MB (76%). Out 

of the 0.5 MB block memory being utilized in the design, 0.25MB is being used to load 



 

57 

the matrices into the DRAM through the USB Byte Blaster, and the remaining is used by 

various FIFOs being used in the design.  

 

The DDR Utilization was measured with another counter, that counted for each 

clock cycle that the DDR interface was being used, either sending a requesting, or 

waiting for data to be read or written. The DDR interface was found to be busy 90% of 

the total run time. Further analysis revealed that the DDR interface spent 88% of the time 

sending or awaiting random reads, 10% of the time doing random writes and only 2% of 

the time doing sequential reads. This conforms to our choice of having taken only the 

random reads into consideration for calculating the floating point performance of the 

FPGAs. 

 

5.4 Potential Parallization 

 

The parallelization in the steps mentioned in Chapter 2, Section 2.4 can be 

summarized as show in Figure 12.  As mentioned in the previous section, the memory 

interface utilization can be split as show below: 

 

Table 7: DDR Utilization 
Operation Percentage of total DDR Busy time  

Sequential Read 2% 

Random Read (Source Address) 44% 

Random Read (Destination Address) 44% 

Write (Destination Address) 10% 

 



 

58 

The sequential read operations in Step 1 and Step 2, are performed by the DDR 

Controller for only 2% of total time that the DDR is busy. Similarly, the write operation 

in Step 10 occupies only 10% of the DDR time, while 98% of the time is spent doing the 

random reads from the source and the destination addresses.   

STEP 1 

(Sequential Read)

STEP 2 

(Sequential Read)

STEP 3 

(Packet Creation)

STEP 4 

(Route)

STEP 5 (Read 

from Source)

STEP 6 

(Multiply)

STEP 7 

(Route)

STEP 8 (Read 

from Destination)

STEP 9 

(Accumulate)

STEP 10 (Write to 

Destination)

Memory Operations

Non Memory Operations

 

Figure 12: Parallelization using a single memory interface 

 

The operations that require memory access are constrained by the presence of a 

single memory interface and have to be performed sequentially. If three memory 

interfaces were present and it would be possible to parallelize the steps as summarized in 

Figure 13. In this figure, for simplicity in representation, the random read operations are 

performed using Interface 2 and Interface 3 only. Realistically, it would be possible to 

perform random reads from all three interfaces, interleaving random reads and writes in 

Interface 1. Since the random read memory access latency is the largest, dividing the 

random reads between three interfaces, would decrease the computation time to 33% of 

the time taken with a single interface.  



 

59 

M
E
M
O
R
Y
 

IN
T
E
R
F
A
C
E
-2

M
E
M
O
R
Y
 

IN
T
E
R
F
A
C
E
-1

M
E
M
O
R
Y
 

IN
T
E
R
F
A
C
E
-3

 
Figure 13: Parallelization using three memory interfaces 

 

5.5 Comparison to Previous Work 

 

In the SMVM implemented by DuBois et al. [10], sparse matrices are represented in 

the ELLPACK-ITPACK format. This format is a row-packet format and offers an 

efficient representation for matrices that can benefit from the compressed row format. 

The rank of the compressed matrix depends upon the number of non-zero elements that 

the most populated row contains. For the gradient matrix discussed in Chapter 2, this 

does not pose a potential problem because each row in the Gradient matrix contains only 

two elements. The divergence matrix, however is best represented in the compressed 

column format, given its sparsity pattern. The ELLPACK-ITPACK format is not an 

efficient format for the divergence matrix. The E2N data structure can store the sparse 

matrix in the compressed row or the compressed column format with equal ease. In the 

SMVM implementation by DeHon et al[6], the matrix is stored in the Compressed Sparse 



 

60 

Row structure. This too is efficient for storing the gradient matrix, but not for storing the 

divergence matrix.  

 

In both [6] and [10] matrices are stored on the on-chip SRAM, and the computational 

capability of the FPGA is used to its maximum to achieve the highest floating point 

performance possible. Storing the matrices on the FPGA itself limits the matrix sizes to 

those that can fit on the low capacity on-chip memory, than on high-capacity external 

memory. For example, in [6], 16 Virtex II boards are used to fit a matrix with 460k non-

zero elements in it. This data could fit on a single FPGA in our implementation. 

However, on-chip SRAM blocks can be accessed with a two clock cycle latency, and data 

is available at a much faster rate to the on-chip computational resources than from off-

chip memory access. Accordingly, in [6] the maximum floating point performance 

achieved is 1500 MFlops and in [10] the maximum floating point performance achieved 

is about 400 MFlops.  

 

 



 

61 

CHAPTER 6 

 

CO�CLUSIO�S A�D FUTURE WORK 

 

A hardware engine to perform SMVM has been implemented using a system of 

FPGAs boards, each board having a single off-chip memory interface. Although the 

SMVM example in consideration is for heat transfer, the design remains the same for any 

SMVM that arises from any PDE solution such as those for fluid flow, quantum 

mechanics, electromagnetism, gravitation, heat transfer and solid mechanics,. The two 

FPGA implementation performs eight times slower than the CPU. However, the 

performance of the FPGA system is easily scalable by adding more memory interfaces or 

more boards to the system. It is more intuitive to parallelize operations on an FPGA than 

it is on a cluster of CPUs, because parallelization is inherent to FPGAs. All the FPGAs in 

the system have the same configuration, and the data is stratified across their memories in 

a straight forward manner.  

Future work involves building a system with multiple boards, each having 

multiple memory interfaces on it, to perform SMVM. The FPGA is primarily a 

prototyping device and hence has a limited clock speed. Once the memory bottleneck is 

somewhat overcome, it would be possible to design an ASIC for SMVMs and clock it at 

a higher frequency, that does not unnecessarily exceed the memory bandwidth. 

 



 

62 

BIBLIOGRAPHY 

[1] Y. Saad, “Iterative Methods for Sparse Linear Systems,” SIAM, 2003, page 90 

 

[2] G. Moore, “Cramming More Components Onto Integrated Circuits,” Electronics 

Magazine, Vol. 38, no. 8, April 19, 1965, pages 114-117 

 

[3] K. Underwood, “FPGAs vs. CPUs: Trends in Peak Floating-Point Performance,” In 

Proceedings of the International Symposium on Field-Programmable Gate Arrays, 

pages 171-180, February 2004 

 

[4] W. Wulf, S. McKee, “Hitting the Memory Wall: Implications of the Obvious,” 

Computer Architecture News, pages 20-24, 1995 

 

[5] G. Wellein, G. Hager, T. Zeiser, “Basic principles of modern processors: Memory 

Hierarchy Optimization of Data Access,” April, 2005 

 

[6] M. deLorimier and A. DeHon, “Floating-point Sparse Matrix-vector Multiply for 

FPGAs,” In FPGA ’05: Proceedings of the 2005 ACM/SIGDA 13th International 

Symposium on Field-Programmable Gate Arrays, pages 75–85, New York, NY, 

USA, 2005. ACM Press 

 

[7] Zhou, Ling and Prasanna, Viktor, “Sparse Matrix-Vector Multiplication on FPGAs.” 

Proceedings of the 2005 ACM/SIGDA 13th international symposium on Field-

programmable gate array, pages 63-74. 2005 
 
[8] J. Sun, G. Peterson and O. Storaasli, “Sparse Matrix-Vector Multiplication Design on 

FPGAs,”  Field-Programmable Custom Computing Machines Conference, April, 

2007 

 

[9] Y. El-Kurdi, D. Fernández, E. Souleimanov, D. Giannacopoulos, W. J. Gross, “FPGA 

architecture and implementation of sparse matrix-vector multiplication for the finite 

element method,” Computer Physics Communications 178(8): 558-570 (2008) 

 

[10] D. Dubois, A. Dubois, C. Connor, S. Poole, "Sparse Matrix-Vector Multiplication 

on a Reconfigurable Supercomputer,"  IEEE Symposium On Field-Programmable 

Custom Computing Machines 

 

[11] Altera Whitepaper, “Designing and Using FPGAs for Double-Precision Floating-

Point Math” 

 

[12] http://tinyurl.com/alterade3board 
 


	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2010

	Scalable, Memory-Intensive Scientific Computing on Field Programmable Gate Arrays
	Salma Mirza

	Scalable, Memory-Intensive Scientific Computing on Field Programmable Gate Arrays

