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ABSTRACT 

As current reactors approach the end of their operable lifetime, new reactors are 

needed if nuclear power is to continue being generated in the United States. Some utilities 

have already began construction on newer, more advanced LWR reactors, which use the 

same fuel as current reactors and have a similar but updated design. Others are researching 

next generation (GEN-IV) reactors which have new designs that utilize alternative fuel, 

coolants and other reactor materials. Many of these alternative fuels are capable of 

achieving higher burnups and are designed to be more accident tolerant than the currently 

used UO2 fuel. However, before these new materials can be used, extensive research must 

be done in order to obtain a detailed understanding of how the new fuels and other materials 

will interact. 

 New fuels, such as uranium nitride (UN) and uranium carbide (UC) have several 

advantages over UO2, such as increased burnup capabilities and higher thermal 

conductivities. However, there are issues with each that prevent UC and UN from being 

used as direct replacements for UO2. Both UC and UN swell at a significantly higher rate 

than UO2 and neither fuel reacts favorably when exposed to water. Due to this, UC and UN 

are being considered more for GEN-IV reactors that use alternative coolant rather than for 

current LWRs. In an effort to increase accident tolerance, silicon carbide (SiC) is being 

considered for use as an alternative cladding. The high strength, high melting point and 

low oxidation of SiC make it an attractive cladding choice, especially in an accident   
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scenario. However, as a ceramic, SiC is not ductile and will not creep outwards upon pellet-

clad mechanical interaction (PCMI) which can cause a large build up in interfacial 

pressure. 

 In order to understand the interaction between the high swelling fuels and 

unyielding SiC cladding, data on the properties and behaviors of these materials must be 

gathered and incorporated into FRAPCON. FRAPCON is a fuel performance code 

developed by PNNL and used by the Nuclear Regulatory Commission (NRC) as a licensing 

code for US reactors. FRAPCON will give insight into how these new fuel-cladding 

combinations will affect cladding hoop stress and help determine if the new materials are 

feasible for use in a reactor.  

To accurately simulate the interaction between the new materials, a soft pellet 

model that allows for stresses on the pellet to affect pellet deformation will have to be 

implemented. Currently, FRAPCON uses a rigid pellet model that does not allow for 

feedback of the cladding onto the pellet. Since SiC does not creep at the temperatures being 

considered and is not ductile, any PCMI create a much higher interfacial pressure than is 

possible with Zircaloy. Because of this, it is necessary to implement a model that allows 

for pellet creep to alleviate some of these cladding stresses. These results will then be 

compared to FEMAXI-6, a Japanese fuel performance code that already calculates pellet 

stress and allows for cladding feedback onto the pellet. This research is intended to be a 

continuation and verification of previous work done by USC on the analysis of accident 
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tolerant fuels with alternative claddings and is intended to prove that a soft pellet model is 

necessary to accurately model any fuel with SiC cladding. 
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CHAPTER 1 

INTRODUCTION 

Nuclear utilities have been looking towards fuels and materials that are considered 

accident tolerant for use in new LWR designs as well as in the new GEN-IV reactor 

designs. Since the Fukushima accident, efforts to better understand these new fuels and 

claddings have greatly increased. The fuels and materials would be able to prevent and 

survive an accident scenario much better that the current UO2 pellet with Zircaloy cladding 

combination. These fuels tend to have higher thermal conductivities as well as higher 

uranium densities. This allows for the reactor to achieve higher burnups while maintaining 

low temperatures. New claddings that have reduced oxidation, lower hydrogen production 

and higher melting points are also being studied.  

Uranium carbide (UC) and uranium nitride (UN) are two of the above mentioned 

fuels that are being considered for use in current light water reactors (LWRs) as well as for 

GEN-IV designs such as sodium or gas cooled reactors. Each of these fuels has advantages 

over UO2 but also several major disadvantages which would cause them to not be easily 

adaptable to current LWRs without major design changes. For this reason, UN and UC are 

not major considerations for use in current reactors, but would instead be used primarily in 

GEN-IV reactors. Gen-IV reactors are new reactor designs that aim to replace current 

reactors as many of the reactors now in use are nearing the end of life. These reactors seek 

to achieve higher fuel burnups while being much safer in the event of an accident due to a 
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higher thermal conductivity resulting in lower temperatures and less stored energy. Gen-

IV reactors are radically different than currently used reactors, with some utilizing the fast 

neutron spectrum instead of the thermal spectrum and most using different coolants and 

operating at higher temperatures. 

The main issues with the accident tolerant fuels being considered is that they all 

have a higher swelling rate than UO2 and some aren’t compatible with current reactor 

designs. For example, UN has a higher uranium density and higher thermal conductivity 

than UO2 but reacts poorly with water, making it unsuitable as an accident tolerant fuel in 

current generation reactors. UC also has a higher uranium density and thermal 

conductivity, but has a much high swelling rate and poor compatibility with water which 

limits its application in current reactors.  

The high swelling rates of these new fuels coupled with the rigidity of the SiC 

cladding can cause massive interfacial pressure when contact is made; something that is 

not an issue when considering UO2 and Zircaloy. In order to accurately represent what is 

happening after the fuel pellet comes in contact with the cladding, a soft pellet model had 

to be implemented into the code. This model allows for feedback onto the pellet from the 

cladding which can cause the pellet to deform and lessen the stress on the cladding. Unlike 

the current Zircaloy cladding, SiC is a ceramic and therefore extremely brittle. Instead of 

deforming outwards under stress like the Zircaloy, the SiC cladding will crack once 

pressures get too high. If there is no model allowing for pellet deformation, the stress will 

build up too quickly due to the high swelling rate of UC. However, if the pellet is allowed 

to creep inward due to the high interfacial pressure between the pellet and cladding, then 

the hoop stress on the cladding may be reduced enough to prevent cladding failure. 
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Therefore, in order to accurately capture what is occurring, creep of the pellet must be 

allowed to achieve understanding of how the fuel and cladding interact.  

 Since FRAPCON does not natively calculate the stress on the pellet or pellet creep, 

it is not enough to just include a creep equation in the code. The method of implementation 

must be validated in order to prove that the soft pellet model is affecting the results of the 

code in the correct manner. In order to do this, a soft pellet model was created for UO2 in 

FRAPCON and the results were compared to an identical case run in FEMAXI. In order to 

prove that FRAPCON is predicting pellet creep correctly, the results from both cases 

should be nearly identical. With the method of implementation for UO2 validated, the soft 

pellet model can then be used for other fuel such as UC and UN. Implementing a soft pellet 

model for each of these fuels gives a better understanding of how high swelling fuels will 

interact with advanced claddings. This knowledge can then be used to determine what 

conditions are necessary to make SiC cladding a feasible choice for high swelling advanced 

fuels.  
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CHAPTER 2 

ADVANCED LWR MATERIALS 

In the nuclear power industry, there has been a growing desire for safer, higher 

burnup fuels as well as interest in new reactor designs that could incorporate these 

advanced fuels. Two of the most promising fuels in contention for use in advanced LWRs 

and GEN-IV reactors are uranium nitride and uranium carbide (S.J. Zinkle 2013). While 

each fuel is unique, they share certain characteristics, such as high uranium density and 

high thermal conductivity, that make them suitable candidates for some of the high 

temperature, high burnup GEN-IV reactor designs that are being proposed.   

Table 2.1: Comparison of Fuel Properties 

 UO2 UN UC 

Melting point (°C) 2865 2762±40   2350 

Density/U Density 

(g/cc) 
10.96 / 9.6 14.3 / 13.5 13.63 / 12.97 

Thermal 

Conductivity @500 

°C (W/m*K) 

4.0 18 20.1 

Irradiation Induced 

Swelling (Relative) 
Low Medium Medium 

Stability (Water) Medium Low Low 

Ease of Manufacture Easy Difficult Medium 
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2.1 URANIUM NITRIDE PROPERTIES 

On the surface, UN may seem to be an excellent choice for use in GEN-IV reactors 

and also a possibility in current LWR designs. It has a very good thermal conductivity and 

uranium density and does not swell as rapidly as some of the other advanced fuels. 

However, due to unfavorable reactions when it comes in contact with water, it is unsuited 

for use in any water cooled reactor without serious safety considerations (Arai 2012) (G.A. 

Rama Roa 1991). In addition, there is little experience in working with it and it can be quite 

difficult to manufacture correctly, especially when compared with the extremely fine-tuned 

UO2 manufacturing process.  

2.1.1 Thermal Properties 

 As previously mentioned, one of the most attractive features of UN is its high 

thermal conductivity. At 500°C, it has a thermal conductivity of 18.0 W/m-K, which is 

much higher than the 4.0 W/m-K of UO2 at the same temperature (Frost 1994) (Khromov 

1980). In addition to a higher base value, the thermal conductivity of UN also increases 

with temperature.  

 

Figure 2.1: Thermal Conductivity Comparison 
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 The equation implemented in FRAPCON for thermal expansion is a function of 

temperature and is affected by the porosity of the fuel, especially at higher temperatures. 

The thermal expansion for UN is entirely dependent on temperature and is valid up to 2273 

K, a far higher temperature than will be reached in a reactor environment (Matzke 1986). 

Thermal Conductivity 

𝑘 = 1.37 × 𝑇 .41 (
1 − 𝑝

1 + 𝑝
) 

 

k =Thermal Conductivity Coefficient (W/m-K) 

T =Temperature (K) 

p =Fuel Porosity (as a decimal) 

Thermal Expansion Coefficient 

𝛼 = 7.096 × 10−6 + 1.409 × 10−9𝑇 

 

α = Thermal Expansion Coefficient  

T = Temperature (K) 

 

 

 Due to the high thermal conductivity of the fuel, it is not predicted that UN will 

relocate upon reactor startup, at least at the power levels used in this study. Therefore, 

relocation for UN has been disabled.   

2.1.2 Irradiation Properties 

 The swelling model implemented for UN was chosen based on results from several 

different studies which predicted a wide variety of different swelling rates. The model 

implemented in FRAPCON is burnup dependent for temperatures under 1200 °C (Bo Feng 

2012). Past 1200 °C, the formula changes and becomes much more temperature dependent. 

However, due to the high thermal conductivity of UN, these temperatures will not be 

reached in typical reactor settings (Ross 1990).  
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Swelling 

T < 1200 °C 

∆𝑉

𝑉
=  1% 𝑝𝑒𝑟 𝑎𝑡𝑜𝑚𝑖𝑐 % 𝐵𝑢𝑟𝑛𝑢𝑝 

T > 1200 °C 

∆𝑉

𝑉
= 4.7 × 10−11𝑇𝑎𝑣

3.12𝐵𝑢0.83𝜌0.5 

 

 

 

 

 

Tav = Fuel Average Temperature (K) 

Bu = atomic percent burnup 

ρ = percent of theoretical density 

Creep 

𝜀𝑐𝑟
𝑖𝑟𝑟 = 1.81 × 10−26(1 + 1250𝑃2)𝑓𝜎 

 

𝜀𝑐𝑟
𝑖𝑟𝑟 =  Creep due to irradiation (s-1) 

P = fraction of porosity in the pellet 

f = Fission rate (fissions/cm3 s) 

 

  

 The creep equation that was implemented for UN is a function of stress, porosity 

and fission rate. It was implemented into FRAPCON in same way that the creep for UO2 

was implemented. While there is also a thermal creep term, the thermal creep is 

overwhelmed by irradiation creep as long as fuel temperatures are below 1200 K (J. T. S.L. 

Hayes 1990). As with UO2 creep, the creep rate for UN was implemented so that it modifies 

the swelling rate of the fuel. However, the code separates and distinguishes between the 

two phenomena and outputs the results accordingly.  

2.1.3 Viability of UN as a Fuel 

 The main advantage that UN has over UO2 is the higher uranium density and higher 

thermal conductivity. With the higher uranium density, reactors would be able to operate 

longer without exceeding burnup limits set by the NRC, resulting in less reactor downtime. 

The high thermal conductivity that increases with temperature makes UN an excellent 

candidate for GEN-IV reactors which use alternative coolants, such as high temperature 

gas cooled reactors. Despite these advantages, there are limitations in working with UN. It 
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is a relatively new fuel and there is very little experience with it when compared to UO2, 

especially in terms of mass fabrication (Josef Bugl 1964). However, once more 

experienced is gained with UN, manufacturing costs will inevitably be driven down as the 

process is fine-tuned and longer operating cycles could offset the increased cost of 

enrichment. While UN is not suitable for use in LWRs due to the reactivity with water, it 

is an excellent candidate for use in GEN-IV reactors.  

2.2 URANIUM CARBIDE OVERVIEW 

For several reasons, uranium carbide is being considered as a replacement fuel for 

UO2 as reactor owners seek to operate their reactors for longer cycles and get more power 

out of the fuels. However, due to the lack of experience with UC, this concept is at best a 

long way from becoming a realistic prospect and at worst an unfeasible possibility. The 

benefits of using UC lie in its high uranium density and high thermal conductivity. Due to 

both of these attributes, the fuel will be able to produce more power while remaining at a 

lower temperature. Keeping the fuel centerline temperature lower is important in the case 

of an accident scenario. In a loss of coolant accident (LOCA), having less thermal energy 

in the fuel at the time of accident helps to keep the fuel from melting down. However, 

despite these advantages, the fuel does have an extremely high swelling rate which is not 

desired in a reactor because of the large pressures it puts on the cladding. Also, since UO2 

has been used for many years and is well understood and easily manufactured, there would 

have to be substantial differences in using UC fuel for it to be considered. 

2.2.1 Thermal Properties 

The primary thermal properties of interest for UC are thermal conductivity and 

thermal expansion. As previously mentioned, the thermal conductivity of UC is one of its 
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most attractive features. At 500 °C, UC has a thermal conductivity of 20.1 W/m-K 

significantly higher than UO2 and slightly higher than UN (A. K. Sengupta 2012). This 

value also increases with temperatures, similarly to UN. The thermal expansion model is 

entirely dependent on temperature.  

Thermal Conductivity 

𝑘 = 21.7 − 3.04 × 10−3𝑇 + 3.61 × 10−6𝑇2 (
1 − 𝑝

1 + 𝑝
) 

 

 

k = conductivity (W/m °C) 

T = temperature (°C)  

Thermal Expansion 

𝛼(𝑇) = 1.007 × 10−5 + 1.17 × 10−9𝑇 

 

α = Coefficient (1/°C) 

T = temperature (°C) 

 

Relocation for UC is not predicted to occur at most power levels. Due to the high 

thermal conductivity of UC, the thermal gradient across the fuel does not cause enough 

thermal stress for the fuel to crack when operating at normal power levels. A subroutine 

implemented in the code by a previous USC student Luke Hallman will calculate the stress 

caused by the thermal gradient and if a high enough stress occurs, the fuel will relocate (Jr. 

2013). Using an identical case as for the other research cases, it took increasing the power 

levels to about 35 kW/m to cause the fuel to relocate. When the fuel relocates, the relocation 

amount is based on the gap between the pellet and cladding at beginning of life. 

2.2.2 Irradiation Properties 

The swelling model implemented in FRAPCON for UC was based on work done 

by W. Dienst. Studies were done at temperatures at or below ½ of the melting point of the 

fuel; about 1200° C for both restrained and unrestrained swelling. In order to best 

incorporate the fuel into FRAPCON in the way that gives the most accurate results, the 

unrestrained swelling model needs to be used. Changes in swelling due to restraints on the 
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fuel can then be modeled as creep. The model for swelling in FRAPCON for UO2 uses an 

unrestrained swelling model and keeping with this method will allow for the best 

comparisons and greater accuracy. The formula used for swelling is a function of burnup 

which is converted to %FIMA and then multiplied by 1.5% to obtain the solid swelling rate 

of UC. 

Swelling 

 
∆𝑉

𝑉
= 1.5 volume percent per 10 GWD/MTU 

 

 

 

Based on studies done by Dienst, if the uranium carbide pellet has high enough 

porosity, then it will densify immediately at the beginning of life. However, this 

densification will only cause the pellet to reach about 90% TD. Since the cases being run 

for the purpose of this research use an as manufactured pellet porosity of 95% TD, 

densification is not predicted to occur. However, if the as manufactured %TD was lowered 

to 85%, then densification of the pellet would occur according to this formula: 

 

The creep formula implemented for UC is a function of pressure and fission density 

and, like UO2 modifies the swelling term instead of being a separate phenomenon. 

However, in order to implement this formula in FRAPCON, the fission density needed to 

be converted into burnup. This creep model was developed based on work done by Dienst. 

Densification 

∆𝑃 = ∆𝑃𝑡𝑜𝑡𝑎𝑙[1 − exp (−
𝐵

𝐵𝑑𝑒𝑛𝑠𝑖𝑓
)] 

 

P = Porosity Reduction 

Ptotal = -3.4 vol% 

B = Burnup 

B = 0.6 at% U+Pu 
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The process of implementing the creep formula will be discussed in detail later in this paper 

but, in short, it is implemented in such a way that it modifies the swelling rate of the fuel.  

Creep 

𝜀𝑐𝑟
𝑖𝑟𝑟 (ℎ−1) = 3.0 × 10−27𝐹𝜎 

 

F = Fission rate (fissions/m3-s) 

σ = Interfacial pressure (MPa) 

2.3 SILICON CARBIDE OVERVIEW 

Silicon carbide is being considered for use as a more accident tolerant cladding. As 

a ceramic, it has several advantages over current Zircaloy claddings such as an extremely 

high melting point and a low neutron absorption cross-section. In addition, a lower 

oxidation results in a lower hydrogen production. However, there are drawbacks to be 

considered. Due to the brittle nature of ceramics, large stresses on the cladding will cause 

instant failure if the yield strength is reached. This heavily contrasts the behavior of 

Zircaloy, which deforms easily under stress.  

SiC Properties 

Theoretical Density (g/cm3) 

Melting Temperature (K) 

Thermal Conductivity (W/m-K) 

Thermal Conductivity (irradiated) (W/m-K) 

Thermal Expansion Coefficient (10-6/K) 

Elastic Modulus (GPa) 

Yield Strength (MPa) 

Poisson’s Ratio 

 

3.21 

3000 

350 

3.6 

2.2 

384 

261-551 

0.21 

 

The thermal conductivity of SiC before it is irradiated is very high. However, after 

only a short time in the reactor, radiation causes it to drastically decrease to about 3.6 W/m-

K (Lance L. Snead 2007). As a ceramic, it boasts an extremely high melting point of about 

3000 K. The elastic and shear modulus for SiC were added into FRAPCON and are 

functions of neutron fluence and temperature (Li 2013). Results from research suggest that 

the irradiation creep rate of SiC is extremely low below 1400 °C and would negligibly 
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affect the results (M. Ben-Belgacem 2014). Therefore, when SiC was implemented in 

FRAPCON, creep was disabled. Research on the yield strength of SiC has produced a 

variety of results based on who manufactured the material. To be conservative, the lower 

value will be used for this research.  
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CHAPTER 3 

IMPLEMENTATION OF SOFT PELLET MODEL IN FRAPCON 

3.1 BACKGROUND 

Uranium dioxide (UO2) is the standard fuel for use in light water reactors. The 

nuclear industry has a good understanding of its mechanical, thermal and irradiation 

properties and behaviors as well as many years of experience manufacturing it for use in 

reactors. However, as industry begins to research new GEN-IV reactor designs, interest is 

shifting to different fuels as UO2 is limited by its low thermal conductivity, especially at 

high temperatures. 

3.1.1 Methodology 

As previously discussed, in order to accurately model the interactions between high 

swelling fuels and SiC, the fuel pellet needs to be allowed to deform based on the high 

stress that it will be under. However, as this is new ground for FRAPCON, it makes sense 

to first implement a soft pellet model for UO2, a fuel that is extremely well modeled and 

understood. Due to the wide usage of UO2 as a fuel, there are other countries with other 

fuel performance codes that FRAPCON can be compared against. One of these codes is 

FEMAXI, a code developed by the Japanese to regulate their reactors. FEMAXI is similar 

to FRAPCON in that both are fuel performance codes that are centered on UO2 modeling. 

However, one major difference is that FEMAXI allows for pellet deformation based on 

stresses on the fuel. This feature can be used to validate the approach used to implement 

the soft pellet model in FRAPCON for UO2. With the method of implementation verified, 
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the UO2 soft pellet model can then be adapted for use with both UN and UC as well as any 

other future fuel types.  

3.1.2 FRAPCON Overview 

 FRAPCON is a nuclear fuel performance code developed by PNNL and used by 

the NRC to license reactors in the United States. It is a steady state code intended to be 

used to calculate the performance of a LWR fuel rod from beginning to end of life. The 

official version of FRAPCON models the fuel as a rigid pellet that is unable to be deformed, 

even when under stress from the cladding and is only capable of modeling UO2 pellets with 

a zirconium alloy cladding. Work done by USC has altered the code so that it is able to be 

used to model fuels such as UC, UN and U3Si2 as well as other new materials such as SiC 

as a cladding and helium as a coolant. Many of the models in FRAPCON have been altered 

slightly to fit test reactor data.  

3.1.3 FEMAXI Overview 

 FEMAXI-6 is used by the Japanese Atomic Energy Agency (JAEA) to license their 

reactors. Many of the same phenomena that are represented in FRAPCON are also modeled 

in FEMAXI and the two codes should provide similar results when running the same case. 

One major difference is that FEMAXI provides a detailed mechanical analysis of stresses 

on the pellet which includes inward creep of the pellet, something that FRAPCON does 

not calculate. Also, while FRAPCON has chosen one model to use for each of the different 

fuel phenomena, FEMAXI has many different models implemented for most of the 

phenomena that occur within the reactor and the user is able to choose between these.  
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3.2 CROSS-CODE COMPARISON OF UO2 SURFACE DISPLACEMENT PHENOMENA 

Since this comparison is being done to verify the implementation of creep how it 

affects the fuel, it is important to be able to directly compare the results from each code. 

Therefore, each code needs to be using the same design parameters in order to get the cases 

as similar as possible. In order to begin analyzing the differences of how all the phenomena 

are represented within the two codes, it is necessary to understand a fundamental difference 

between the two codes. While both codes are able to accurately represent what is happening 

within the reactor, they make use of known data differently to achieve this goal. As 

previously mentioned, FRAPCON has altered many of its models so that the predicted 

results more closely match test reactor data. FEMAXI, however, does not alter its models 

to fit data. Instead, each model is represented as it was in the study from which the model 

was taken. Results from identical cases run with each code which better illustrate the 

differences are plotted below. Case parameters are as follows: 

 Linear average power: 200 W/cm 

 Coolant pressure: 15.5 MPa 

 Coolant inlet temperature: 580 K 

 Coolant inlet mass flux: 3800 kg/m2-s 

 Rod fill gas: helium 

 Fill gas initial pressure: 2.0 Mpa 

 Initial fuel density: 95% 

 

3.21 Swelling 

 The model used in FRAPCON for swelling is a modified version of the MATPRO 

UO2 swelling model. This model is entirely burnup dependent and predicts that swelling 

occurs at a constant rate until 80 GWD/MTU, at which point the swelling rate is increased 

(W.G. Luscher 2014). FRAPCON has modified the MATPRO model so that swelling does 
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not begin until 6 GWD/MTU and when it does begin it occurs at a slightly lower rate than 

is predicted by MATPRO.  

 

Burnup 

0 – 6 GWD/MTU  

 

Swelling = 0 

6 – 80 GWD/MTU 𝑆𝑤𝑒𝑙𝑙𝑖𝑛𝑔 = 𝐴 × (2.315 × 10−23 + 2.315 × 10−24 

> 80 GWD/MTU 𝑆𝑤𝑒𝑙𝑙𝑖𝑛𝑔 = 𝐴 × (3.211 × 10−23 + 3.211 × 10−24 

 𝐴 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × 2974 × 1010 × (𝑏𝑢𝑟𝑛𝑢𝑝) 

 

 The model chosen for swelling in FEMAXI is the unaltered MATPRO-09 formula. 

This model predicts a mostly burnup dependent swelling rate but the rate changes slightly 

at certain temperature intervals. However these changes do not appear until the fuel 

centerline temperature is about 1400 °C and this temperature is not often reached during 

regular reactor operation.  

 

Temperature at Pellet Center (°C) 𝑆𝑤𝑒𝑙𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 (% 𝑝𝑒𝑟 1020/𝑐𝑚3)

𝑇  1 400

1 400  𝑇  1 800

1 800  𝑇  2 200

2 200  𝑇

0.28

0.28[1 + 0.00575 𝑇 −1 400 ]

0.28[3.3 − 0.004 𝑇 −1 800 ]

0.476
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Figure 3.1: FRAPCON/FEMAXI Swelling Comparison 

 

As shown in Figure 1 above, FEMAXI predicts swelling to occur immediately at 

the beginning of life. Swelling continues to occur at a constant rate throughout the cycle. 

FRAPCON, however, delays the start of swelling until about 6 GWD/MTU as well as 

predicts swelling to occur at a slightly lower rate. At end of life, the differences in swelling 

models for this case has accounted for about 10 microns of radial displacement difference 

between the two codes.  

 

3.22 Thermal Expansion 

 FRAPCON uses the MATRPO version of thermal expansion but has altered the 

coefficients slightly to account for new data from studies done by Martin (1988) and 

Momin (1991). This model is entirely temperature dependent for the first 40 GWD/MTU 

of burnup. However, after 40 GWD/MTU and if the temperature is above 1370 °C, the 

thermal expansion of the fuel increases. These conditions are not often met in normal 

reactor operation. FEMAXI also uses a MATPRO model it is a different version of 
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MATPRO than is used by FRAPCON. This model is entirely based on temperature. 

Despite the differences in MATPRO versions, the two codes predict almost the exact same 

values for thermal expansion with the only slightly differences that are attributed to 

temperature differences.  

 

Figure 3.2: FRAPCON/FEMAXI Thermal Expansion Comparison 

 

3.23 Densification 

As a reactor starts up, the high temperatures of the reactor environment cause some 

of the voids within the pellet to disappear. This results in a rapid 1% decrease in fuel pellet 

volume. This phenomena was first discovered in 1972 when it was noticed some PWR rods 

had flattened or collapsed sections. Upon discovery, fuel manufacturers began programs to 

better understand how densification could be limited. Through the efforts of these 

manufactures, it was discovered that a resintering anneal at 1700 °C causes a density 

change that limits the amount of densification that can occur in the reactor (Meyer 1976).  
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Figure 3.3: FRAPCON/FEMAXI Densification 

 

Due to these limits, densification is a fairly simple phenomena to model and 

therefore both codes predict it to affect the fuel in a very similar way. The model used in 

FRAPCON predicts slightly less than 1% densification. In FEMAXI, the densification can 

be specified so that the user inputted amount of densification occurs over the desired 

amount of time. In the cases used in this research, densification is set so that 1% volumetric 

change occurs within the first 5 GWD/MTU. 

3.24 Relocation 

 One of the most noticeable difference when comparing FRAPCON and FEMAXI 

surface displacement results is the relocation value. Relocation is a displacement 

phenomenon that is unique to the reactor environment and because of this it can be difficult 

to tell exactly how relocation occurs. In general, relocation occurs due to the extreme 

thermal gradient caused by reactor startup. As the pellet rapidly heats up as the reactor 

starts, the thermal stress across the pellet causes it to crack radially. Once the pellet cracks, 
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the pieces may relocate outwards towards the cladding. As the cladding creeps inward and 

the fuel swells outward, there is some recovery of the relocation displacement as the fuel 

fragments are forced back together. The way this is predicted to affect fuel performance 

can vary and both FRAPCON and FEMAXI represent relocation and recovery in different 

ways. 

 In FRAPCON, relocation occurs over a period of 6 GWD/MTU, starting at the 

beginning of life of the reactor. At 6 GWD/MTU, the full relocation value is reached. 

FEMAXI does not use the same relocation model that FRAPCON currently employs but 

instead predicts that the fuel cracks and that the fragments relocate at the beginning of life. 

Both codes predict about the same amount of initial relocation.  

At first, it may seem as though there is not much difference between the relocation 

models of both codes. This is because the real difference is in how this relocation is 

recovered. Relocation recovery occurs as the cladding creeps down enough to come in 

contact with the pellet and exert pressure on it. When discussing relocation and relocation 

recovery, there are three stages that must be understood. 

 

 

Figure 3.4: Types of Contact 

 

 As shown in the above picture, when the fuel first relocates, there is no contact 

between the pellet and the cladding since cladding creep down has not yet began. During 

                No Contact                Soft Contact              Hard Contact 
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this phase, the fuel fragments move towards the cladding as the cladding creeps inward. 

Eventually, due to the creep of the cladding and other surface displacement phenomena 

causing the fuel pellet to expand, soft contact occurs. The soft contact phase must be looked 

at from a thermal and mechanical standpoint. 

Thermally, the gap between the pellet and cladding is effectively closed. As far as 

heat transfer from the pellet to the cladding is concerned, there is not a gap between the 

pellet and the cladding. However, despite the contact between the pellet and the cladding, 

the fuel pellet is not yet solid enough to mechanically influence the cladding. This stage is 

what is referred to as soft contact and marks where relocation recovery begins. Although 

the pellet fragments have spread out to the point where they are in contact with the 

cladding, there is still a lot of space between the pellet pieces. As the cladding creeps down 

even more, it forces the pellet pieces together until the pellet is roughly solid again from a 

mechanical stand point. It is at this point that the relocation is said to have been recovered 

and it can now resist the inward creep of the cladding. This is referred to as hard contact. 

It is important to note that all of the relocation is not recovered. Since only enough must 

be recovered to cause the pellet fragments to be forced together, there are still gaps between 

the fragments, but not large enough gaps to affect the pellet stiffness.  

In FRAPCON, relocation is represented through the use of a mechanical and 

thermal radius. The thermal radius is used to calculate the heat transfer and other thermal 

properties of the fuel at that time. The pellet’s thermal radius is what is used to determine 

when soft contact occurs.  
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Figure 3.5: Pellet Thermal and Mechanical Radius 

 

At soft contact, the thermal radius begins to decrease at the same rate as the 

cladding’s inward creep as shown in the graph above. This continues to occur over the 

next 6 GWD/MTU until hard contact. It is important to note that the thermal radius will 

never be equal to the cladding inner radius, even when they are in contact. Since neither 

the cladding nor the pellet are perfectly smooth, there will never be perfect heat 

conduction between the pellet and the cladding. This results in the gap between the pellet 

and cladding radius.   

 The mechanical radius is used to calculate when the pellet has recovered the 

allotted amount of the relocation value. When calculating the mechanical radius, the 

relocation value is multiplied by the percentage of relocation that can be recovered; in 

most cases, 50%. This altered relocation value, along with the other fuel displacement 
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phenomena, is used to calculate the mechanical radius. The mechanical radius is used to 

determine what the radius of the pellet and cladding are when relocation has been 

recovered and once the mechanical radius is equal to the cladding radius, the fuel is said 

to be in hard contact with the cladding and the pellet begins to push the cladding 

outwards as it swells (K.J. Geelhool 2014).  

Instead of using a thermal and mechanical diameter, FEMAXI represents 

relocation and recovery by altering the Young’s Modulus of the fuel once it relocates. As 

soon as the fuel relocates, which is at BOL, the Young’s Modulus of the fuel is set to an 

extremely low value, making it unable to resist the inward creep of the cladding. As the 

fuel makes soft contact, the Young’s Modulus begins to increase until it is solid enough 

to resist the cladding’s inward creep. This is represented by the following formulas: 

 

Figure 3.6: FEMAXI Relocation Recovery 

 

 The phase of increasing Young’s modulus is the relocation recovery. Once 

enough of the relocation has been recovered, the fuel is considered hard enough to push 

out against the cladding. It’s worth noting that since the increase of Young’s Modulus is a 

gradual affect, there is a smoother transition between soft and hard contact, unlike the 
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abrupt change as it is on FRAPCON. In FEMAXI, soft contact occurs from when the fuel 

first contacts the cladding and persists until the fuel is hard enough to cause the cladding 

to push outwards. Once it is rigid enough to do this, it is considered hard contact. When 

recovering the relocation, cladding creep inwards is not the only factor when strain is 

calculated. The total strain of the pellet is taken into account. For example, if a rigid 

pellet model is used and the pellet is not allowed to creep, the pellet recovers more 

relocation than it normally would.  

 

Figure 3.7: FEMAXI Young’s Modulus Recovery 

 

In FEMAXI, the amount that the pellet relocates is calculated by examining the 

difference between the cladding inner radius and the pellet outer radius at hot stand-by 

multiplied by a radial relocation parameter. This parameter is 0.5 by default but is able to 

be changed by the user. As previously mentioned, FEMAXI alters the Young’s Modulus 

of the fuel to make it weak enough to be pressed inward by the cladding. As it is pressed 

inward, it regains its hardness. Until the allotted amount of relocation is recovered, the 
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pellet’s Young’s Modulus is a function of the inward strain of the pellet (Motoe Suzuki 

2005). Once the inward strain of the pellet is equal to the amount of strain caused by 

relocation, the pellet’s Young’s Modulus is considered fully recovered. (eq. 3.2.34 in 

Femaxi Manual) 

 

Figure 3.8: FRAPCON/FEMAXI Relocation Comparison 

 

The graph above displays the differences in the two models quite clearly. 

FRAPCON predicts relocation to initially occur at a rapid rate and then taper off until it 

plateaus at about 32 microns of total radial displacement. The relocation stays constant 

until the pellet and cladding come into contact at about 13 GWD/MTU. Once contact is 

made, the allotted amount of relocation is recovered over about 6 GWD/MTU. At this 

point, the pellet is considered to be in hard contact with the cladding and immediately 

begins pushing out the cladding at the same rate as the fuel is swelling.  
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FEMAXI represents relocation recovery in a much different way which results in a 

large discrepancy in the two codes’ predicted relocation values. As previously discussed, 

FEMAXI represents relocation recovery as more of the degradation and recovery of pellet 

strength instead of modeling a separate thermal and mechanical radius. As shown, 

relocation occurs instantly as soon as the reactor starts up and reaches a maximum value 

of about 35 microns of radial displacement. At about 16 GWD/MTU, the fuel comes into 

contact with the cladding. However, unlike FRAPCON, the fuel’s strength isn’t completely 

disregarded until the relocation is recovered. Instead, the Young’s modulus of the fuel is 

reduced so that it is not strong enough to force the cladding outwards. FEMAXI predicts 

that the fuel takes about twice as long to fully recover the relocation and during that time 

the pellet isn’t compressed nearly as much as the cladding creeps inwards. Instead, the 

pellet and cladding diameter are held roughly constant until, as it is interpreted by 

FEMAXI, the pellet begins to regain some of its strength.  

 

Figure 3.9: FRAPCON/FEMAXI Total Surface Displacement Comparison 
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The difference of how each code interprets relocation recovery is most noticeable 

directly after relocation is recovered. In FEMAXI, since the pellet is just weakened, there 

is much less inward displacement as the pellet relocation recovers which results in a large 

discrepancy between the results at about 20 GWD/MTU.  

3.2.5 Thermal Conductivity 

For the thermal conductivity model, the origin of the data that each code uses comes 

from the same source. However, FRAPCON alters the thermal conductivity equation 

slightly while FEMAXI uses it in its original form. This results in FRAPCON using a 

slightly higher thermal conductivity model, with differences especially noticeable at lower 

temperatures and burnups.  

Frapcon uses a modified version of the model developed by NFI (Ohira and Itagaki, 

1997). They altered the model at first in a way that raised low burnup thermal conductivity 

at low temperatures and lowered thermal conductivity at very high temperatures. This 

involved changing the temperature dependent portion of the burnup function in the phonon 

term and changing the electronic term. The formula was later altered again to account for 

the porosity of the fuel.  

FEMAXI has an option to use the original, unaltered Ohira and Itagaki model so 

that is what is used for these cases. The equation in FEMAXI does not take into account 

the electronic term of the equation. When plotted at various temperatures and burnups, 

alongside the FRAPCON thermal conductivity model, the FEMAXI model predicted a 

slightly lower thermal conductivity with larger discrepancies at low temperatures and low 

burnups.  
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3.25 Creep 

 Other than densification, creep is the only phenomena that actually causes the 

pellet to reduce in size. As the pellet swells outward and the cladding creeps inward, 

there is a lot of interfacial pressure buildup. In addition to the creep caused by the 

interfacial pressure between the pellet and the cladding, the pressure from the gap gas 

begins to affect the pellet from the beginning of life. These pressures on the pellet, along 

with the high temperatures of the reactor environment and the fission process that is 

occurring within the pellet cause pellet creep. Temperature, stress and fission density are 

all variables that affect the amount of pellet creep that occurs. It is important to note here 

that although creep always occurs, it is not represented as a separate phenomenon in 

FRAPCON and is accounted for empirically elsewhere in the code through altering other 

displacement phenomena as it is not believed to be a significant source of displacement 

when coupled with Zircaloy. For the purpose of comparison, however, a creep module 

has been added that calculates pellet creep based on fission density and interfacial 

pressure despite it possibly being accounted for elsewhere in the code.   

 In order for the pellet to be able to creep at all, there first must be space for it to 

creep into. Previously it was discussed that 50% of the relocation value must be recovered 

before the pellet can begin to affect the cladding. This remaining 50% relocation value is 

still available as space that can be crept into and is the first space that will be occupied. 

Other than the relocation space, the pellet can also theoretically creep into any remaining 

porosity. Usually, UO2 is manufactured at 95% of its theoretical density. After 

densification, which is a 1% volumetric reduction, is accounted for there is still 4% 

remaining porosity. Once the remaining relocation is filled, the pellet can then creep into 
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some of this remaining porosity. Obviously it is not reasonable to assume that the pellet is 

able to creep in enough to reach 100% theoretical density, so the amount the pellet can 

creep in must be limited. Unlike FRAPCON, FEMAXI has allows for creep by default as 

a separate phenomenon that is more deeply ingrained in the code. The FEMAXI creep 

model comes from MATPRO Version 09 and is the most commonly accepted creep 

formula for UO2. The FEMAXI model allows the gap gas pressure in the plenum to affect 

the fuel until hard contact is made. At this point the interfacial pressure drives the fuel 

creep until a limit based on relocation and fuel porosity is reached. The model for UO2 

creep implemented in FRAPCON will be discussed later in this paper. 

3.3 DEVELOPMENT OF UO2 SOFT PELLET MODEL IN FRAPCON 

To implement a soft pellet model in FRAPCON for UO2, several other 

displacement phenomena had to be altered. As previously discussed, several of the models 

used in FRAPCON have been slightly altered so that the code results would match test 

data. These changes have been reverted to match the original models so that results using 

the soft pellet model closely match what is predicted by the official version of FRAPCON 

as well as FEMAXI.  

3.31 Swelling 

 FRAPCON has been altered so that when using the soft pellet model, the swelling 

regimen changes slightly. It is no longer delayed 6 GWD/MTU and the rate has been 

increased slightly so that it now matches the MATPRO model for swelling. Since the 

swelling models for UN and UC and not altered to fit any data, this is only significant for 

UO2.  
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3.32 Relocation Recovery 

 As previously discussed, the model for relocation recovery is not as concrete as 

some of the other FRAPCON phenomena. The code currently predicts that after soft 

contact is made, 50% of the relocation value will be recovered. This 50% value is used so 

that code will better fit test data. With the addition of creep, the soft pellet model was 

under-predicting the total surface displacement of the fuel by a fairly significant amount. 

To counter this, the amount of relocation that could be recovered was reduced from 50% 

to 15%, a value that is much more in line with the relocation recovery predicted by 

FEAMXI. This new value will also be used for UC and UN in the event that they do 

relocate.  

3.33 Creep 

 The model developed for UO2 creep includes both a low and high stress regime and 

is a function of temperature, stress, fission rate and grain size. Creep was implemented in 

such a way that it modifies the swelling rate of the fuel instead of being a separate 

phenomenon. The UO2 creep rate equation that was implemented into FRAPCON was 

developed by Solomon et al (1971) and is the same formula that is currently being used in 

FEMAXI. For the low stress regime, the creep rate is directly proportional to the stress and 

the pellet. In addition, there is a high stress regime where the creep rate is proportional to 

σ4.5. The formula implemented is as follows: 
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𝜀 = 𝐴(𝐹)𝜎4.5 exp (−
𝑄

𝑅𝑇
) + 𝐴1(𝐹) = 𝜎𝐺

−2 exp (
𝑄1
𝑅𝑇
) + 𝑐𝜎𝐹 

 

𝐴(𝐹) =
1.38 × 10−4 + 4.6 × 10−17

−90.5 + 𝛿
 

 

𝐴1(𝐹) =
9.73 × 106 + 3.24 × 10−17

−87.7 + 𝛿
 

 

Q = 552.3 kJ/mol 

Q1 = 376.6 kJ/mol 

𝑐 = 7.10 × 10-23 

σ = Stress (psi) 

G = grain size (μm) 

T = temperature (K) 

R = Universal Gas Constant 

F = Fission Rate (f/cm3 s) 

𝛿 = % theoretical density 

 

 During the initial comparison of the soft pellet model results to FEMAXI, it was 

noticed that FRAPCON was predicting a much higher amount of creep despite both codes 

using the same model and coming into hard contact at about the same point. Other 

displacement phenomena, such as thermal expansion and swelling were extremely similar 

in both codes and didn’t seem to be the cause of the higher creep displacement.  

 

Figure 3.10: Initial FRAPCON/FEMAXI Creep Results 
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As previously mentioned, the pellet in FRAPCON is treated as a solid right 

cylinder that cannot be deformed. Therefore, there is no need to know what kind of 

stresses are acting on the pellet since it is not affected by them. Because of this, when 

calculating the creep, the interfacial pressure is what is used by FRAPCON. FEMAXI, 

however, allows for feedback onto the pellet and therefore calculates the stress on the 

pellet as well as the PCMI pressure. Therefore, when FEMAXI calculates creep, it uses 

the pellet stress value.  

 Comparing results from FRAPCON and FEMAXI gives insight into how the soft 

pellet model affects the pressure and stress on the pellet. For this test, FRAPCON and 

FEMAXI were altered so that the exact same displacement results would be obtained. 

Relocation was disabled as it was causing issues in displacement similarities. Once this 

was done, a case was run using a soft and rigid pellet model for both FEMAXI and 

FRAPCON and the interfacial pressures and pellet stress differences were examined. 

 

Figure 3.11: FRAPCON Interfacial Pressures 
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In FRAPCON, using a soft pellet model results in about a 4 MPa drop in the 

interfacial pressure at 30 GWD/MTU which is about a 15% reduction. This interfacial 

pressure value, about 22 MPa, is what is used for the creep calculations in FRAPCON. In 

FEMAXI, the soft pellet model affects pellet stress in a slightly different way.   

 

Figure 3.12: FEMAXI Pressures and Stresses 

 

 FEMAXI also calculates a PCMI pressure but additionally calculates the radial 

stress on the pellet. The value predicted for interfacial pressure in FEMAXI for a rigid 

pellet is about 14 MPa, which is significantly less than the 28 MPa predicted by 

FRAPCON. When the soft pellet model is turned on, the interfacial pressure is reduced 

by about the same percentage as in FRAPCON, about 15% at 30 GWD/MTU. The more 

important comparison though is what happens to the stress on the pellet when a soft pellet 

model is enabled. For a rigid pellet model, the stress on the pellet ranges from 20 to 30 

MPa after contact has been made. However, when a soft pellet model is used, the pellet 
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stress is reduced to about 11 MPa, which is a far more substantial reduction than the 

interfacial pressure reduction. This 11 MPa value is what is used when calculating the 

creep rate of the pellet in FEMAXI and is about half of the value used in FRAPCON. The 

difference between these two values would explain the difference in creep rates between 

FRAPCON and FEMAXI.  

 

Figure 3.13: Interfacial Pressure Modifiers 
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predicted by FEMAXI. The multiplier was chosen based on the stresses used in FEMAXI 
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Figure 3.15: Creep Modifier Power Level Tests 

 

 Investigating further into the assessment data for both codes reveals that 

FRAPCON-3.5 is known to significantly over-predict cladding hoop strain due to the rigid 

pellet model. This lends more credibility to using a modifier for the pellet creep calculation.  

3.34 Verification 

 The soft pellet model has been compared to both FEMAXI-VI and FRAPCON-3.5 

and was based on results from the FEMAXI-VI model. FRAPCON and FEMAXI are 

assessed using test reactor data from a large variety of sources. These sources overlap in 

some cases, but for the most part FRAPCON and FEMAXI area validated against different 

sets of test reactor data. Results from the FRAPCON soft pellet model match up well with 

both the FRAPCON 3.5 rigid pellet model and the FEMAXI-VI model.  
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3.34 Creep Limitation 

Since creep is not a standard part of the FRAPCON code, there is nothing to keep 

the pellet from creeping into space that isn’t actually there. Therefore, the pellet creep must 

be limited based on the amount of volume that is available. The sources of space for the 

pellet to creep into come from the initial porosity of the fuel as well as the remaining 

relocation that is not recovered upon soft contact. A flag was put into the input deck that 

allows the user to set a maximum % theoretical density. Based on this number as well as 

the amount that the pellet relocates, the available volume for creep is calculated. Once this 

is known, the code calculates the volumetric displacement caused by creep based on the 

pellet’s radius at the time. This radius takes into account the displacement caused by 

thermal expansion, densification, swelling and relocation. If the volumetric displacement 

caused by creep is greater than the volume available for creep, then the creep rate is set to 

zero. For the purpose of this research, the creep limitation so that the fuel is able to creep 

into 100% of the allotted space. This value is able to be changed so that the space available 

for creep can be limited based on the density of the fuel. For most UO2 – Zircaloy cases, 

this limit will not be reached. However, for a case where PCMI occurs early and SiC is the 

cladding, it is more likely a limit will be reached. Due to relocation not occurring for UN 

and UC, these fuels have a much higher chance at reaching 100% TD if PCMI is allowed 

to occur since there is less space for them to creep into. The graphs below show results 

from when the creep limitation is set to 95.5% of the fuel’s theoretical density.  
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Figure 3.16: Creep Limitation - UO2 - Zircaloy – FRAPCON 

 

Figure 3.13 shows the effect creep limitation has on the pellet surface displacement. 

As the pellet creep occupies all of the volume allotted for it, the pellet creep rate is set to 

zero and the rate of radial displacement of the fuel increases.  

 

Figure 3.17: Creep Limitation Calculation 
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Figure 3.14 shows how the creep occupies the volume available from relocation 

and porosity. At the low %TD limits set for these graphs, the relocation provides most of 

the space for the pellet to creep into. Implementing a creep limitation calculation prevents 

the pellet from becoming unrealistically dense.  
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CHAPTER 4 

EFFECT OF SOFT PELLET MODEL IN FRAPCON 

Before FRAPCON and Femaxi are compared to each other to validate the creep 

model, it must first be understood how creep effects the results within each code. In the 

soft pellet model for FRAPCON, a model was implemented that allows the pellet to creep 

inward based on interfacial pressure. In addition to this, the swelling model was altered so 

that it swells at a higher rate and begins swelling at the beginning of life. 

4.1 UO2 WITH ZIRCALOY 

Before results from FRAPCON and FEMAXI can be compared, it must be 

understood how using a soft pellet model affects the results predicted by each code.  

 

Figure 4.1: Effect of Soft Pellet Model on UO2 with Zircaloy Cladding - Radial 

Displacements 
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Figure 4.1 shows the effect that the soft pellet model has on the radial displacement 

of a UO2 when it is used with Zircaloy cladding. The most notable difference is the addition 

of creep as well as the difference in relocation recovery and swelling. Altering the 

relocation recovery results in about an 11 microns difference between the relocation values 

and the soft pellet swelling model causes about 9 microns higher swelling displacement. 

These differences are countered by the added creep of the pellet. Although the pellet begins 

to creep slightly at beginning of life due to gap gas pressure, creep is not a substantial cause 

of surface displacement until hard contact is made.  

The change in relocation recovery causes a large discrepancy between the soft and 

rigid pellet models at 20 GWD/MTU, however, the total displacement at beginning and 

end of life is very similar to what is predicted by FRAPCON 3.5.  

 

 

Figure 4.2: Effect of Soft Pellet Model on Cladding Hoop Stress - UO2 Pellet with 

Zircaloy Cladding 
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When studying the effects of the soft pellet model, one of the main interests is how 

allowing for pellet creep can alleviate stress on the cladding. Due to the ductile nature of 

Zircaloy, interfacial pressures never reach the point where having a pellet creep model is 

absolutely necessary. However, with interest in new, unyielding claddings such as SiC, 

understanding how much the soft pellet model alleviates is very important.  

 

Figure 4.3: Effect of Soft Pellet Model on Cladding Hoop Stress - UO2 Pellet with 

Zircaloy Cladding 
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stress rapid increases as it is forced outward by the pellet swelling. Even without pellet 

creep, the hoop stress when using a rigid pellet model begins to level off due to the 

relaxation of the cladding as it creeps outward. Due to the addition of creep in the soft 

pellet model, it takes less interfacial pressure to offset the stress caused by pellet swelling. 

Overall, the biggest difference that results from using a soft pellet model is in 

cladding stress. Due to the altered relocation recovery, hard contact is predicted to occur 

about 6 GWD/MTU earlier than when a rigid pellet model is used. However, even though 

this causes the cladding to be under tension for a longer amount of time, the amount of 

stress is significantly less. This reduced hoop stress is an initial confirmation that the soft 

pellet model is functioning as intended.  

4.2 COMPARISON OF FRAPCON SOFT PELLET MODEL TO FEMAXI 

A favorable comparison with FEMAXI fuel performance code is imperative to 

verifying the implementation of a soft pellet model for UO2 in FRAPCON. As previously 

mentioned, creep in FEMAXI is a standard part of its fuel surface displacement models. 

However, there is an option to turn off pellet plasticity and creep which will simulate the 

rigid pellet model used by FRAPCON. Since in FEMAXI creep is treated as a separate 

phenomenon and is more deeply ingrained in the code, altering the creep also slightly 

affects the relocation recovery.  
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Figure 2.4: FEMAXI Rigid and Soft Comparison 

 

 In FEMAXI, the addition of creep and a slight change in the pellet’s relocation term 

are the only changes when a soft pellet model is used instead of a rigid pellet model. These 

differences make up the difference between the total displacements for the soft and rigid 

models. It is interesting to note that after the pellet comes into contact with the cladding, 

more of the relocation value is recovered when using a rigid pellet model. In FEMAXI, 

relocation recovery is calculated based on strain on the surface pellet. Once the total surface 

strain is equal to the amount of strain that was caused by relocation, the pellet is considered 

solid again. When creep is turned off, it takes longer for this strain value to be reached.  
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Figure 4.3: FRAPCON/FEMAXI Soft Pellet Comparison 

 

 After the previously mentioned changes were made to FRAPCON to implement the 

soft pellet model, FRAPCON predicts very similar results that are very similar to what is 

predicted by FEMAXI with the main difference being within the first 6 GWD/MTU. The 

rate of creep, which is the main interest in this verification is almost exactly the same in 

both codes. Due to differences in relocation recovery, hard contact is made a few 

GWD/MTU earlier in FRAPCON which results in a slightly larger total displacement due 

to creep.  

 When the soft pellet model is used in FRAPCON for UO2 with Zircaloy cladding, 

the results very closely resemble what is predicted by FEMAXI, with only minor 

differences due to the relocation recovery models. The fuel pellets creep at almost exactly 

the same rate once hard contact has been made and both codes predict very similar total 
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surface displacements. In FEMAXI, there is an elastic displacement term that is calculated 

but it is small enough that is does not significantly affect the results. Judging from these 

results, the soft pellet model in FRAPCON was implemented correctly and is accurately 

representing the effects of allowing fuel creep.  

4.3 UO2 WITH SILICON CARBIDE 

For the purposes of understanding PCMI, the main difference between Zircaloy and 

silicon carbide is that SiC does not creep. Without the inward creep of the cladding, the 

gap must be closed entirely by pellet swelling, thermal expansion and relocation which 

results in a significantly longer period of no contact between the pellet and cladding. 

However, since the cladding does not creep outward either, there is a massive build-up of 

interfacial pressure once contact is made.  

 

Figure 4.6: Effect of Soft Pellet Model on Radial Displacement - UO2 – SiC 
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While the radial displacement of the fuel is not heavily affected by the introduction 

of a soft pellet model, the interaction between the pellet and the cladding is extremely 

different when using SiC cladding. As a ceramic, SiC cladding is not ductile like Zircaloy 

cladding and thusly will not deform elastically under pressure as Zircaloy does. However, 

without the use of a soft pellet model, the cladding has no choice but to deform as the rigid 

pellet swells outward. If the pellet is allowed to deform, cladding hoop stress is massively 

relieved as the pellet creeps inwards.  

 In Figure 4.6, the slight pellet creep inward due to gap gas pressure is enough to 

cause soft contact to occur at about the same time, despite differences in the swelling 

models. After hard contact, the influence of the soft pellet model is most noticeable. As 

mentioned previously, the SiC cladding has no choice but to deform as the rigid UO2 pellet 

swells outwards. However, this causes a massive hoop stress on the cladding, even with 

the cladding yielding to the pellet.   

 

Figure 4.5: Effect of Soft Pellet Model on Cladding Hoop Stress - UO2 - SiC 
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Figure 4.7: Effect of Soft Pellet Model on Cladding Hoop Stress - UO2 - SiC – 

FRAPCON 

 

 When using a soft pellet model for UO2 with SiC, there is an interesting interaction 

which causes the peak on cladding hoop stress shown in Figure 4.7. This peak is due to a 

change in the thermal expansion regimen that is only noticeable when using SiC cladding 

due to the high fuel temperatures that it causes. In FRAPCON for UO2, there is an increase 

in thermal expansion rate at 40 GWD/MTU which stops at 50 GWD/MTU that only occurs 

at temperatures above 1370 °C. When the fuel comes into contact with the cladding, the 

increased thermal expansion rate causes a larger increase in cladding hoop stress than it 

would if the thermal expansion rate was steady. At 50 GWD/MTU, once the rate stops 

increasing, there is a sharp dip in the hoop stress of the cladding which continues to 

decrease as pellet creep alleviates stress on the cladding.  
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Figure 4.8: Effect of Soft Pellet Model on Cladding Hoop Stress - SiC and Zircaloy 

Comparison 

 

At end of life, there is about a 565 MPa difference in the hoop stress of the cladding 

when the soft pellet model is used. Compared to using Ziracloy cladding, where the soft 

pellet model only decreases the hoop stress of the cladding by about 50 MPa, this is a 

massive decrease in hoop stress. If creep is not predicted to occur, then any case where the 

pellet comes into contact with the SiC cladding will cause the cladding to rupture shortly 

after contact. While it may not be imperative to use a soft pellet model when modeling with 

Zircaloy as a cladding, the interfacial pressure when using SiC is so high that the only way 

to accurately model any fuel as a rigid pellet with SiC cladding is to never allow PCMI to 

occur. However, judging from the hoop stresses obtained during the soft pellet case, it 

would be possible to design a UO2 – SiC combination in a way that would prevent cladding 

fracture.  
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Figure 4.9: Effect of Cladding Type on Centerline Temperature 

 

 

 One downside to the SiC cladding is that the lack of cladding inward creep delays 

soft contact which causes about a 100 degree increase in fuel centerline temperature at end 

of life due to the thermal gap being open longer. Thus, creating a configuration where the 

pellet never comes into contact with the cladding would be detrimental to the heat 

conduction from the pellet to the coolant. This further exemplifies the importance of using 

a soft pellet model to accurately model fuel with a SiC pellet and shows how big of an 

impact creep can have. By allowing for fuel creep, the rod can be modeled in such a way 

that the thermal gap can be closed while keeping the cladding from fracturing. Therefore, 

in order to accurately model any fuel with SiC cladding, fuel creep must be considered, 

otherwise either the pressure on the cladding or the centerline temperature of the fuel will 

be too high.  

600

700

800

900

1000

1100

1200

1300

1400

1500

0 10 20 30 40 50 60

C
en

te
rl

in
e 

Te
m

p
er

at
u

re
 (

K
)

Burnup (GWD/MTU)

Effect of Cladding on Centerline Temperature - UO2 -
FRAPCON

SiC Cladding Zircaloy Cladding



50 

 

4.4 UC WITH ZIRCALOY 

Interest in using UC fuel with SiC cladding is one of the main reasons that 

FRAPCON is being altered to allow for pellet creep. As shown in the previous section, 

when UO2 is used with SiC, there is only a short amount of time where the pellet is in 

contact with the cladding. However, due to the high swelling rate of UC, there will be a 

much longer period of PCMI and the interfacial pressures will be much higher.  

As shown with a UO2 pellet, running FRAPCON using a soft pellet model can cause 

the code to predict very different results than the same case run with a rigid pellet model. 

These differences are significant enough that not allowing the pellet to creep could cause 

the cladding to fracture upon PCMI. When a UC pellet is considered, these differences are 

magnified due to the swelling rate being over twice that of UO2. This means that the pellet 

will come in contact with the cladding sooner and provide even more of a pressure between 

the pellet and the cladding.  

 Cases for UC with both Zircaloy and SiC need to be run in order to obtain 

results which can be compared to UO2 results. This will help ensure that the soft pellet 

model was implemented correctly and affecting the results as predicted.  
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Figure 4.10: Effect of Soft Pellet Model on UC Radial Displacement - Zircaloy Cladding 

 

With Zircaloy cladding, the interfacial pressure isn’t high enough to cause large 

amounts of creep, but it is still enough to cause a drop in fuel surface displacement. The 

Zircaloy cladding will creep outward quickly enough to accommodate the high swelling of 

UC. Swelling and thermal expansion have been omitted from this graph as they are not 

changed by the soft pellet model.  
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Figure 4.11: Effect of Soft Pellet Model - UC Pellet – Zircaloy 

 

 The difference in cladding hoop stress between the soft and rigid pellet model is as 

to be expected based on the results from the radial surface displacement. The stresses 

increase at about the same rate and have a similar slope. However, the soft pellet model 

causes the cladding hoop stress to be about 20 MPa less than when the rigid model is used.  

 As with UO2, the effect of the soft pellet model is most evident when using 

SiC cladding. The rigidity of the cladding causes large amounts of feedback onto the pellet. 

This creates a massive amount of interfacial pressure between the pellet and cladding 

unless some of that pressure is relieved through fuel creep. 

4.5 UC WITH SILICON CARBIDE 

When uranium carbide is paired with SiC cladding, using a soft pellet model causes 

drastically different results when compared with the results from using a rigid pellet model. 
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inwards which in turn alleviates some of the stress on the cladding and in theory prevents 

the cladding from fracturing. 

 

Figure 4.12: Effect of Soft Pellet Model - UC Pellet - SiC Cladding 

 

 

Figure 4.13: Effect of Soft Pellet Model on Cladding Radius - UC Pellet – FRAPCON 
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Figure 4.13 shows how the soft pellet model affects cladding radius after contact is 

made. For both the soft and rigid pellet model, the pellet swells until it comes into contact 

with the cladding at about 28 GWD/MTU. For UC, the mechanical radius will be used 

instead of the thermal radius since there is not relocation occurring. When there is no 

relocation, the thermal and mechanical radius are the same other than the thermal radius 

never contacts the cladding due to there being a thermal gap. When a soft pellet model is 

used, the rigidity of the cladding causes the pellet to creep inward and there is very little 

change in the inner radius of the cladding. However, with the rigid pellet model, the 

cladding can’t affect the pellet and therefore is forced outwards at the same rate as the 

swelling of the pellet. Since UC and a non-ductile ceramic, it would not be able to 

realistically creep outwards as is shown in the results from the rigid pellet model. 

 

Figure 4.14: Effect of Soft Pellet Model on Cladding Hoop Stress - UC Pellet - SiC 

Cladding 
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 When the cladding stress is examined, it is obvious that for UC fuel and SiC 

cladding to be a successful combination, creep has to play a significant role in reducing the 

hoop stress on the cladding. Without a soft pellet model being used, the hoop stress in the 

cladding is almost 8000 MPa, far higher than the cladding is capable of withstanding. If 

the pellet is allowed to creep, the code predicts a cladding hoop stress of about 1000 MPa. 

While this stress is still too high for the SiC cladding to be able to withstand, it is a much 

more reasonable amount of stress when compared to the hard pellet model. The graph 

above also assumes that the pellet is able to creep indefinitely. As shown in a previous 

graph, the pellet radial displacement due to creep is about 50 microns, which is a substantial 

amount of displacement.  

From the results of the graph above, it is obvious that a UC pellet with SiC cladding 

could not be used when manufactured to the same specifications as UO2 and Zircaloy 

cladding. For UC to be used with SiC, the fuel must be designed so that it never contacts 

the cladding or the cladding must be thick enough to withstand the high hoop stresses.   

4.7 UN WITH ZIRCALOY 

UN is another advanced fuel with many desirable qualities but also a few 

drawbacks, including a high swelling rate more similar to that of UC than UO2. As with 

UC, it is important to understand how it will interact with current and future reactor 

materials, such as Zircaloy and SiC.  
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Figure 4.15: Effect of Soft Pellet Model on Radial Displacement - UN - Zircaloy – 

FRAPCON 

 

 Similar to UC, using a soft pellet model for UN with Zircaloy cladding does not 

have a major effect on the total surface displacement of the fuel as the outward creep of 

the cladding alleviates a lot of the stress on the pellet.  
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Figure 4.16: Effect of Soft Pellet Model on Radius - UN - Zircaloy – FRAPCON 

 

 

Figure 4.17: Effect of Soft Pellet Model on Pellet Hoop Stress - UN - Zircaloy – 

FRAPCON 

 

Due to the higher swelling rate, the UN pellet puts a higher amount of stress on the 

Zircaloy cladding than UO2 and since the creep rate is less, the amount of stress reduction 

4.1

4.12

4.14

4.16

4.18

4.2

4.22

0 10 20 30 40 50 60

R
ad

iu
s 

(m
m

)

Burnup (GWD/MTU)

Effect of Soft Pellet Model on Radius - UN - Zircaloy -
FRAPCON

Soft Pellet Radius Soft Pellet Inner Radius

Rigid Pellet Radius Rigid Pellet Inner Radius

-150

-100

-50

0

50

100

150

0 10 20 30 40 50 60

C
la

d
d

in
g 

H
o

o
p

 S
tr

es
s

Burnup (GWD/MTU)

Effect of Soft Pellet Model on Pellet Hoop Stress - UN -
Zircaloy - FRAPCON

Soft Pellet Hoop Stress

Rigid Pellet Hoop Stress



58 

 

caused by pellet creep is less than that for UO2. Even with UN causing 40 more MPa of 

hoop stress, implementing a soft pellet model only reduces stress by about 30 MPa, 

compared to a 50 MPa reduction for UO2. However, as UN reacts poorly with water, it 

would not make for a suitable fuel in current LWRs, and is instead more viable in Gen-IV 

reactors. Therefore, it is of more interest to understand how UN will interact with SiC.  

4.8 UN WITH SILICON CARBIDE 

The same issues that exist for UC with SiC cladding are also present of UN with 

SiC cladding. The high swelling rate and lower creep rate cause massive hoop stress on the 

cladding.  

 

Figure 4.18: Effect of Soft Pellet Model on Radial Displacement - UN - SiC – 

FRAPCON 

 

 The lack of creep in the SiC cladding causes pellet creep to occur at a much later 

burnup but also causes the pellet to creep at a much fast rate due to the high interfacial 
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pressures. These two things results in the total creep of the pellet to be about the same as it 

is with Zircaloy cladding.  

 

Figure 4.19: Effect of Soft Pellet Model on Radius - UN - SiC - FRAPCON 

 

 

Figure 4.20: Effect of Soft Pellet Model on Cladding Hoop Stress - UN - SiC – 

FRAPCON 
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 Despite nearly the exact same amount of creep occurring for UN with Zircaloy and 

SiC claddings, the soft pellet model has a much bigger impact when UN is coupled with 

SiC. The lack of creep in SiC causes an extremely large hoop stress in the cladding. If the 

pellet is not allowed to creep inwards, there is nothing to relieve the hoop stress and it will 

continually increase as the fuel swells outwards. However, if the pellet is allowed to creep, 

it reduces the amount of hoop stress on the cladding by almost 1000 MPa.  

 

Figure 4.21: SiC - Zircaloy UN Centerline Temperature Comparison 

 

Even with this significant reduction in cladding hoop stress, the stress on the 

cladding is still too high when using the UO2 – Zircaloy specifications. If the fuel is not 

allowed to contact the cladding at all, there are significantly increased temperatures as 

shown above. As with UC, significant alterations in fuel design would have to be made for 

SiC to be a viable cladding. 
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CHAPTER 5 

COMPARISON OF ADVANCED FUELS TO UO2 

The soft pellet model will be used to compare UO2 and UC since the effect of 

creep is what is of interest in this study. A case with the same parameters as was 

previously used for the UO2 comparisons will be used for these comparisons despite the 

fact that if UC were to be used in a reactor it would likely have different as manufactured 

specifications than those currently used for UO2.  

 

Figure 4.22: UO2 – UC - UN Swelling Comparison 

  

The graph above illustrates how much more the UC fuel swells under the same 

conditions as the UO2 pellet. At the end of life, the UC pellet has swelling over twice the 
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swelling rate is the main reason that adjustments would have to be made to current 

reactor fuel rod designs if they were to accommodate UC pellets. The UN pellet still 

swells at a significantly high rate than UO2 but would be far more manageable, especially 

considering that UN will densify unlike UC. When considering only the swelling rate, 

UN would be much more easily adapted than UC into current fuel rod designs.  

 

Figure 4.23: UC - UO2 – UN Thermal Expansion Comparison 

 

 Thermal expansion for UC is dependent only on temperature and keeps the same 

model throughout, unlike UO2 which uses different models for thermal expansion based 

on burnup. The higher thermal conductivity of the UC keeps the pellet at a lower 

temperature than UO2, causing the thermal expansion value to be much lower. For the 

same linear average power, the centerline temperature of UC is 400 K to 500 K lower, 

depending on how long it has been in the reactor. Again, UN is in between UO2 and UC. 

Neither UN nor UC relocates so both come into soft contact a few GWD/MTU later than 

UO2.  
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Figure 4.24: UO2 - UC Centerline Temperature Comparison 

 

Due to the high thermal conductivity of UC, the thermal stress across the fuel are 

not high enough to cause the fuel to relocate. However, due to the high swelling rate, UC 

makes hard contact about 5 GWD/MTU before the UO2 pellet and from there continues 

to swell outward at a much greater rate. The total surface displacement of UC is over 

twice that of UO2. 

 

Figure 4.25: Soft Pellet Hoop Stress Comparison UC - UO2 
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 The large difference in total fuel displacement is evident when examining 

how much more stress the Zircaloy cladding is under when the UC pellet is used. The stress 

caused by the UC pellet is about three times as much as that caused by UO2 and also occurs 

over a longer period of time. UN comes into hard contact at about the same time as UO2 

but builds up more stress due to a higher swelling rate. In addition, the UC and UN pellets 

do not creep as fast as the UO2 pellet which results in the cladding hoop stress for UC and 

UN to continue to increase after contact. 
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CHAPTER 6 

CONCLUSIONS 

Understanding and accurately representing how materials interact within the reactor is the 

first step to being able to use these new materials for future reactor designs. Without a 

thorough understanding of what happens when these new materials interact, it isn’t possible 

to even begin to design a fuel rod that uses a new cladding and a new fuel. From these 

results, significant changes will have to be made to the existing UO2 – Zircaloy design 

specifications. Even with pellet creep, the stress on the cladding from UC and UN is too 

much for the SiC to handle.  

UO2 would be able to be combined with SiC cladding without changing any design 

specifications. However, using SiC instead of Zircaloy would cause the pellet centerline 

temperatures to be much higher due to hard contact being delayed. It is possible that the 

gap size could actually be decreased if the pellet is able to continually creep.  

For both UN and UC there are two options for use with SiC cladding. If pellet creep 

is assumed, then the cladding can be thickened to the point where it would be able to 

withstand the stress from the high swelling rates of both fuels. In doing this, the pellet 

would come into contact with the cladding more quickly, however, the thicker cladding 

would hurt the neutron economy of the reactor as well as negatively affect heat transfer. 

The other option is to increase the gap size to a point where the pellet never comes into 

contact with the cladding. The large gap would greatly affect the transfer of heat from the 
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pellet to the cladding but in general this would be the more conservative method. However, 

a large factor of safety would have to be allowed. As previously shown, the hoop stress of 

SiC increases so rapidly upon contact that any contact at all would cause fracture.  

Based on these result, significant design changes would have to be made before 

UC, UN or SiC could be used safely and effectively in a LWR reactor. It is much more 

possible that UN and UC with SiC as a cladding will be used in a GEN-IV reactor that does 

not use water as a coolant. Regardless of reactor type, to accurately model either of these 

fuels with SiC a soft pellet model must be used unless to accurately represent PCMI 

between any reactor fuel and SiC cladding.  
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