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ABSTRACT 

PHASE SYNTHESIS USING COUPLED PHASE-LOCKED LOOPS  

 

SEPTEMBER 2008 

 

 

S.P.ANAND IYER 

  

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS, AMHERST 

 

 

 

Directed by: Professor Omid Oliaei 

 

Phase Synthesis is a fundamental operation in Smart Antennas and other Phased 

Array systems based on beamforming. There are increasing commercial applications for 

Integrated Phased Arrays due to their low cost, size and power and also because the RF 

and digital signal processing can be performed on the same chip. These low cost 

beamforming applications have augmented interest in Coupled Phase Locked Loop 

(CPLL) systems for Phase Synthesis.  

Previous work on the implementation of Phase Synthesis systems using Coupled 

PLLs for low cost beamforming had the constraint of a limited phase range of ±90°. The 

idea behind the thesis is that this phase synthesis range can be increased to ±180° 

through the use of PLLs employing Phase Frequency Detectors(PFDs), which is a 

significant improvement over conventional coupled-PLL systems.  

This work presents the detailed design and measurement results for a phase 

synthesizer using Coupled PLLs for achieving phase shift in the range of ±180°. Several 

Coupled PLL architectures are investigated and their advantages and limitations are 

evaluated in terms of frequency controllability, phase difference synthesis control and 
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phase noise of the systems. A two-PLL system implementation using off the shelf 

components is presented, which generates a steady-state phase difference in the range 

±180° using an adjustable DC control current. This is the proof of concept for doing an 

IC design for a Coupled Phase Locked Loop system. Commercial applications in the 

Wireless Medical Telemetry Service (WMTS) band motivate the design of a CPLL 

system in the 608-614 MHz band. The design methodology is presented which shows 

the flowchart of the IC design process from the system design specifications to the 

transistor level design. MATLAB simulations are presented to model the system 

performance quickly. VerilogA modeling of the CPLL system is performed followed by 

the IC design of the system and each block is simulated under different process and 

temperature corners. The transistor level design is then evaluated for its performance in 

terms of phase difference synthesis and phase noise and compared with the initial 

MATLAB analysis and improved iteratively. The CPLL system is implemented in IBM 

130nm CMOS process and consumes 40mW of power from a 1.2V supply with a phase 

noise performance of -88 dBc/Hz for 177° phase generation. 
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CHAPTER 1 

INTRODUCTION 

1.1 CPLL Systems Literature Survey 

 

Recently, agile beamforming technology has been finding an increasing number 

of commercial applications. Phase-shifting is a fundamental operation in any smart-

antenna or phased-array system based on beamforming [1]. Coupled-oscillators or 

coupled-PLLs using analog multipliers have been proposed in the past to realize the 

phase-shifting operation without the need for phase shifters [1]-[6]. The coupled-PLLs 

approach offers the advantage of being insensitive to the output of the voltage controlled 

oscillator (VCO) and also providing better immunity to noise and larger lock range 

compared to coupled-oscillators [1]-[3]. In these systems, the array provides periodic 

signals with an adjustable phase progression to excite the elements of the phased-array. 

It is noted that the coupled-PLLs architecture is fundamentally different from the 

cascaded-PLL structures [7]. The coupled-PLLs system provides a better phase noise 

performance than the cascaded-PLLs structure, where phase noise tends to accumulate 

at each node, whereas the close-in phase noise of a coupled-PLL system with N 

elements is 1/N that of a single VCO [8]. Phased-array applications need ±180° phase 

shift between adjacent elements to achieve 90° beam steering from the broadside [3]. 

Arrays of coupled-oscillators or coupled-PLLs using analog multipliers are able to 

generate a variable phase progression limited to ±90°. Here, we show that utilizing 

phase-frequency detectors (PFDs) in a coupled-PLLs system allows for self-

synchronization and also makes it possible to achieve ±180° phase shift. In addition, 
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using charge pumps provides better immunity to power supply variations, compared to a 

PLL with just PFD. It also obviates the need for active filters.  

 

1.2 Outline of Thesis 

 

This thesis is organized as follows: 

In chapter 2, we provide an overview of the injection locking mechanism in 

oscillators. We present the mathematical reasons behind the phase synthesis range being 

constrained to ±90°. We propose two CPLL architectures to increase the phase synthesis 

range to ±180° and discuss the application areas for each. 

In chapter 3, we present the previous work done in the area of phase synthesis 

using coupled oscillators and PLLs. We present the evolution of the proposed coupled 

PLLs system, after iterations with different PLL designs and understanding their 

limitations. We also show MATLAB simulations and analysis confirming the 

theoretical observations.  

Chapter 4 shows the implementation results with a simple board design using 

off-the-shelf components which provides a proof of concept. 

In chapter 5, we present the IC design methodology for the CPLL system. We 

also show the CPLL system specifications and the corresponding MATLAB simulation 

results. 

In chapter 6, we present the IC design for each block for the CPLL system and 

also the VerilogA modeling of the system.We present simulation results for each block 

design at different process and temperature corners. 
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In Chapter 7, we present a conclusion of the present work and propose future 

work that can be carried out in this area. 
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CHAPTER 2 

PHASE SYNTHESIS OVERVIEW AND APPLICATIONS 

2.1 Injection Locking 

Injection locking is a known mechanism through which one oscillator is phase-

locked to an injected input signal. Adler’s equation describes the dynamics of phase 

locking in a two-oscillator system as [9] 

    )sin(00 θωωω
θ

K
dt

d
inj −−=     (1)          

where θ  is the phase difference between two oscillators, ωinj the injection frequency, ωo 

the free-running frequency of the enslaved oscillator and K is a constant. At steady state, 

the enslaved oscillator is phased-locked to the injected signal such that the two 

oscillators oscillate at the same frequency with a constant phase difference θ. The phase 

difference θ  is obtained by setting dθ/dt = 0 in (1) 

      )(sin
0

01

ω

ωω
θ

K

inj −
= −      (2) 

So the steady state phase offset can be controlled by controlling (ωinj-ωo).  

Adler’s equation has been the cornerstone of the techniques proposed for phase 

synthesis using coupled-oscillators or coupled-PLLs [1]. In both systems, a chain of 

oscillators or PLLs is formed through bidirectional coupling of adjacent oscillators or 

PLLs. A schematic of a bidirectional coupled-PLLs system and a bidirectional coupled 

oscillators system is shown in Figure 1 [1] and Figure 2 [1] respectively. 
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 Figure 1: N-PLL system using bidirectional coupled PLLs 

 

Coupling 

Circuit
Varactor Tuning 

Ports

Antenna

ωωωωωωωω ∆∆∆∆++++o
ωωωωωωωω ∆∆∆∆o -

f1 fNf2 f3 f(N-1)  
 

Figure 2 : N-Oscillator system using bidirectional coupled Oscillators  

 

Upon phase locking all oscillators or VCOs oscillate at the same frequency 

ωo[1]. If the oscillators at the edge of the chain are detuned by +/-∆ω , then the phase 

shift between any two adjacent oscillators or VCOs will be 

      
1

0

s in ( )
K

ω
θ

ω
− ∆

=     (3) 

where K is a constant. 

The function sin
-1

 in the above equations takes on values between –90° and 

+90°. This limits the phase shift between any two adjacent VCOs to the interval (–

90°,+90° ). This characteristic of sin
-1

 is a major drawback because it limits θ  to ±90°. 

If the signals from such a system are used to excite the radiating elements of a phased-

c

LPF LPF LPF

++ +

φ1 2φ φ3 φN

− − −

+ +

+ + +
+

VCO

Mixer

+Vc −V
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array spaced one half wavelength apart, a maximum scanning beam angle of only 30° 

can be achieved [3]. A scanning angle of 90° requires us to generate phases that can 

vary in the (–180°,+180°) interval. It is noted that the sin
-1

 function in the above 

equations is due to the phase detection mechanism used in these architectures. 

In particular, an analog multiplier-based frequency detector is responsible for the 

sin
-1

 function [10][11]. The chain of coupled-PLLs system discussed in [1] and [2] is a 

special case of PLL-neural networks described in [12].  

   

2.2 Applications 

 Integrated Phase Arrays used for phase synthesis have the advantage of low cost, 

size, weight, power and complexity. Moreover, RF and digital signal processing can be 

performed on the same chip. This would find applications in emerging wireless 

applications. The benefits to wireless communications include increased 

range/coverage, improved link quality/reliability, increased capacity of wireless 

network, interference reduction etc. 
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Figure 3: Typical Phased Array Receiver 

 

Figure 3 shows the basic architecture of a typical Phased Array receiver. 

Beamforming is realized by adjusting the relative phases of the received or transmitted 

signals. This is usually done by utilizing phase shifters. 

 This research aims to achieve the phase shifting operation without using phase 

shifters. The proposed structure (Figure 4) makes use of a PLL-network where each PLL 

is coupled to its adjacent PLLs. A constant phase shift can be obtained by detuning the 

end elements of the PLL array in opposite directions. This results in a uniform phase 

progression from one end of the network to the other. The proposed architecture is 

based on digital  PLLs, allowing for a phase rotation of ± 180° between any two 

adjacent  PLLs.  
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 Figure 4: Proposed Receiver Architecture without Phase Shifters 

 

 The Phased Array architecture presented in Figure 4 lacks a well defined 

frequency of operation for phase synthesis. The frequency of operation is determined by 

the  VCO free running frequencies. This architecture is however suitable for radar 

applications. For communications systems a well defined reference frequency becomes 

imperative. Hence the above architecture has to be modified with the addition of a 

reference frequency to be useful in communication system applications.  Figure 5 shows 

the chip architecture overview diagram for the proposed PLL network with two PLLs 

with a reference frequency for frequency stability. The coupled-PLL VCO output phase 

differences are controlled using a digitally controlled current source and sink.  
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Figure 5: Architectural overview of the proposed CPLL chip implementation 

  

2.2 Summary 

This chapter presented the concept of Injection Locking which was 

mathematically formulated in Adler’s equation which forms the basis for Phase 

Synthesis in Coupled PLL and coupled oscillator systems. Previous work was presented 

in the area of Phase Synthesis using a series of N PLL or N Oscillator chain, and the 

limitations mentioned. The basic architecture of a Phased Array receiver was presented 

and the corresponding implementation of Phase Shifters using Coupled PLL systems 

with and without a reference was shown. 

The present implementation of coupled PLL systems for Phase synthesis are able 

to provide phase difference synthesis only within a range of ±90°. This presents a 
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serious limitation of such systems in practical applications. The next chapter focuses on 

techniques to overcome these present limitations of phase synthesis using coupled PLL 

systems by increasing the range of synthesized phase difference to ±180°. 
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CHAPTER 3 

PHASE GENERATION USING DIGITAL COUPLED PLLS  

3.1 Previous Work 

Recently, it has been proposed to use phase-frequency detectors in coupled-PLL 

networks to remedy the limited range of the phases generated by a coupled-PLL system 

using analog multipliers (see Figure 6) [13]. Phase-frequency detectors are able to detect 

phase differences between –180° and +180° [10]. The self-synchronization dynamics of 

coupled-PLLs system with PFDs is not described by Adler’s equations, however they 

can be explained on the basis of the Synchronization Theorem [12][13]. 

 

   c

PFD

LPF

PFD

LPF

PFD

LPF

++ + +

φ1 φ2 φNφ3

− − −

+ +

+ + +

VCO

D U D DU U

+Vc −V
 

     

Figure 6: N-PLL system using phase-frequency detectors 

 

An overview of the theorem is presented below using an N PLL system where 

each PLL is connected to each of the other PLLs through a network of gain matrix, as 

shown in Figure 7. 
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Figure 7: Generalized Coupled-PLL network  

The Synchronization Theorem states that the PLL Network converges to a steady 

state frequency if : 

a) the gain matrix are symmetrical, 

      for all i and j       (4) 

b) the waveforms  V(θ) and V(θ-π/2) satisfy the following conditions: 

 •     : V(θ) is an odd function    (5) 

 •     : V(θ-π/2) is an even function    (6) 

 

 It is possible to extend the above result to PLL-networks using phase-frequency 

detectors and prove their self-synchronization property based on the averaging theory 

[14]. Upon synchronization, all VCOs oscillate at their free-running frequency with a 

constant phase progression set by the DC voltage Vc. If the free running frequencies are 

different, the PLLs still converge to a particular frequency at steady state (which is equal 

to the average of the free running frequencies). However, in this case the phase 

relationships will be affected by the free running frequencies [4]. 

jiij gg =

)()( θθ VV −=−

)
2

()
2

(
π

θ
π

θ −−=−− VV
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3.1.1 Simulation Results 

To verify the above theory, a system of N PLLs was simulated in MATLAB as 

in  Figure 8 with N = 10. The loop filter was designed as a first order passive lead-

lag filter with a single pole and a zero. Five PLLs were given a free running frequency 

of 101Hz and the remaining five a free running frequency of 99 Hz. The transient plot 

for the PLL frequencies is shown in Figure 8. We observe that the PLLs converge to a 

steady state frequency of 100 Hz. 

0 50 100 150 200 250 300 350
80

100

120

140

160

180

200

F
re

q
u

e
n

c
y
(H

z
)

 

 

Time(Unit Time T0=10ms)

PLL1

PLL2

PLL3

PLL4

PLL5

PLL6

PLL7

PLL8

PLL9

PLL10

 

 Figure 8: N PLL system frequency convergence plot 

 Now we keep the free running frequencies of the PLLs at 100 Hz and detune  the 

VCO input voltages of the end elements of the 10-PLL chain by 0.04V. The MATLAB 

simulation shown in Figure 9 is the transient plot of the phase difference between the 

adjacent PLLs. We see that the phase difference between adjacent PLLs reaches a 

steady-state value of 90°. The Phase Difference that can be synthesized can range 

between +/-180° by tuning the control voltage of the end elements of the PLL chain, 

thus confirming the theory. 
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Figure 9: N PLL System Phase Synthesis between adjacent PLLs 

  

3.2 Preliminary Implementation               

Here, we consider the special case of a PLL-network comprising two identical 

PLLs which are symmetrically coupled to each other (see  Figure 10).  

   
 Figure 10: Coupled PLL system using phase-frequency detectors with 

charge pump(charge pump not shown) 

 

Each PLL includes a DC input for detuning the VCOs in opposite directions 

using the DC voltages -Vc and Vc.  The output current of the phase-frequency 

detectors(PFDs) with charge pump is proportional to the phase difference at their input. 

φ1111 

φ2222 

-Vc 

Vc 
PFD 
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Noting that the low pass filters remove the high-frequency signal components present at 

the output of the phase-frequency detectors, the equations of the system can be written 

as: 

( )

( )

1
0 2 1 1

2
0 1 2 2

( )
( ) ( ) * ( )

( )
( ) ( ) * ( )

v d c

v d c

d t
K K t t F t V

dt

d t
K K t t F t V

dt

φ
φ φ ω

φ
φ φ ω

 = − − +  

 = − + +  

      (7) 

where “*” represents the convolution operation, Kv0 is the frequency sensitivity of the 

VCO, Kd the PFD gain, F(t) the loop filter impulse response, φ1(t) and φ2(t) are the 

output phases of the VCOs and ω1 and ω2 are the free running VCO frequencies. Upon 

synchronization, both PLLs oscillate at the same frequency with a constant phase 

difference θ =φ1 −φ2. Then, subtracting the two equations and setting dθ/dt=0 results in 

     ( )0 2 1 2 12 ( ) ( ) * ( ) 2
v d c

K K t t F t Vφ φ ω ω ω− − = − = ∆        (8) 

  or,  [ ]
0

( ) * ( )
2

d c

v

K t F t V
K

ω
θ

∆
− =         (9) 

Taking the Laplace transform of both sides we obtain, 

         
0

( ) ( )
2

c
d

v

V
K s F s

s sK

ω
θ

∆
− =       (10) 

  or,      0

0

2
( )

2 ( )

v c

v D

K V
s s

K F s K

ω
θ

∆ +
=        (11) 

Using the Final Value Theorem[10], 

 0 0

0 0
0 0

2 2
( ) lim ( ) lim

2 ( ) 2 (0 )

v c v c

s s
v D v D

K V K V
t s s

K F s K K F K

ω ω
θ θ

→ →

∆ + ∆ +
→ ∞ = = = (12) 

If the VCOs have the same free running frequencies, ∆ω = 0, and we get, 
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 :
(0)

c

d

V

K F
θ π θ π= − ≤ ≤       (13) 

Thus there exists a linear relation between the phase difference θ  and the amount of 

frequency detuning, or equivalently the DC voltage Vc. In addition to the wider angle 

range, this linear relationship makes this system more suitable for practical applications. 

Another advantage is the fact that that the frequency of the interconnection paths can be 

reduced by using frequency dividers in the feedback path of the PLLs [14]. 

Conventional loop filter design for a charge pump PLL involves designing the 

filter with infinite DC impedance to obtain minimum steady-state phase between input 

and output [10]. On the contrary, the objective of the present loop filter design is to 

generate phase offsets between the PLL outputs which can be tuned by controlling the 

free running VCO frequencies. The charge pump delivers a current of +Ip when the PFD 

output is UP and a current of -Ip when the PFD output is DOWN. This current is 

converted by the loop filter to a voltage to control the VCO frequency. The open loop 

transfer function for each PLL in the CPLL system is 

  )2/()()( 0 ssZIKsT pV π=      (14)  

where Z(s) is a the loop filter impedance 

Typically there are two poles at the origin in the open loop transfer function, one 

contributed by the VCO and the other contributed by the loop filter. In the present 

design the loop filter has two poles, so the system is third order. The first pole of the 

filter impedance is set at a non-zero value to avoid infinite DC impedance and thus 

produce a non-zero phase offset. The second pole in the loop filter reduces the high-

frequency ripple at the VCO input which may cause undesired modulation of the VCO 
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output frequency. The zero is introduced to provide adequate phase margin in the open 

loop transfer function. Hence the selected driving-point impedance has the following 

form: 

 
))((

)(
212 pp

z

wswsC

ws
sZ

++
+

=     (15) 

The choice of the poles ωp1 and ωp2 and the zero ωz of the filter are based upon a 

trade-off between stability, noise suppression and lock time of the coupled PLLs system. 

The circuit implementation of the driving-point impedance using passive components is 

depicted in Figure 11. R1 and R2 create a path from the output of the charge pump to 

ground, which results in a finite DC gain for the loop filter. C2 prevents any fast 

frequency variation of the VCOs. 

 

                      

 

Figure 11: Loop Filter Schematic 

 

3.2.1 Simulation Results 

A 25 MHz coupled-PLL network has been designed to verify the theory and also 

get an insight into IC design. The VCO sensitivity is Kv0=40 MHz/V, the phase detector 

gain is Kd = Ip/2π  and the charge pump output current is Ip=2mA. The noise bandwidth 

is chosen to be less than 1/20 of the center frequency [10]. For second or higher order 

R1 

R2 C1 

C2 

Zin 
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loops with a high gain with damping factor ξ=0.707 the relation between the transition 

frequency ωt and the 3dB frequency ω3dB is ωt ≈ ω3dB/1.33 [10]. The transition frequency 

for the open loop transfer function, T(s), is chosen as ωt = 2.013*10
6
 rad/sec such that it 

will be less than 0.05*ωc/1.33. The pole ωp2 and zero ωz are calculated from the 

transition frequency by ensuring sufficient ripple suppression and enough phase margin, 

which is taken as 60
o
 in the present design. The design equations yield the following 

values for the loop time constants: ωp2 = 5.905*10
7
 rad/sec and ωz =  1.181*10

6
 rad/sec.  

The pole ωp1 is placed at ωp1 = 1.0*10
5
 rad/sec to obtain unity open loop gain at the 

transition frequency. The values of the components can be related to the zeros and poles 

of the system as: 

 
211

21

RRC

RR
z

+
=ω                   (16) 

 
2121

21

1

RRCC
pp =ωω      (17) 

 
111221

21

111

RCRCRC
pp ++=+ ωω     (18) 

The coupled PLL system is required to generate a phase of θ = π rad for a 

frequency offset of  ∆f = 8 MHz. The given specifications are used in equations (13), 

(16), (17) and (18) to obtain the values of the components: R1 = 8.62Ω, R2= 91.3Ω, C1 = 

10.043 µF and C2 = 2 nF. The designed coupled-PLLs system has been simulated using 

the SimPower toolbox in MATLAB. Figure 12 shows the frequency transient of the two 

PLLs with initial offset frequency of ∆f = 8 MHz and random initial phase offsets. It is 

seen that the two PLLs become frequency-locked by converging to the steady state 

frequency of 25 MHz. Figure 13 shows the phase transients for various frequency 
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detuning values of 300 KHz, 4 MHz and 8 MHz. It appears that the phase transient is 

smoother for smaller frequency detuning. This observation illustrates that the lock time 

should be a function of initial detuning. 
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Figure 12: Frequency Convergence for a 2 PLL system for Free Running 

Frequency Offset of 8 MHz between the PLLs 
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Figure 13: Phase Difference Plots for different Free Running Frequency Offsets 

between the PLLs 

 

3.3 Phase Synthesizers based on Phase-Frequency Detectors  

Now we consider a practical version of the PLL-network in Figure 10 

comprising two identical PLLs symmetrically coupled to each other (see Figure 14). 
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Each PLL includes a DC current input –Ik and Ik for detuning the VCOs in opposite 

directions. These current sources serve to adjust the phase difference between the two 

PLLs. In practice, these current sources can be low-speed current-mode digital-to-analog 

converters (DACs) for digital phase synthesis. Using charge pumps in the structure in 

Figure 14 facilitates phase adjustment compared with Figure 10, since the DC currents ± 

Ik can be easily injected into the circuit without need for an adder, an improvement over 

the voltage controlled version.  Also the loop filter can include a pole at the origin, 

which is inherently contributed by the charge pump.  

    

Figure 14: Proposed Coupled PLL system 

 

These modifications make the structure much more amenable to integration. The 

output of the phase-frequency detectors is a square-wave signal whose duty-cycle is 

proportional to the phase difference at their inputs. The low pass filters remove the high-

frequency signal components of the phase-frequency detector outputs and generate a 

Ik 
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nearly DC signal proportional to phase difference between the inputs of the PFDs. 

Hence the equations of the system can be written as: 

 

( )

( )

1
0 2 1 0

2
0 1 2 0

( )
( )* ( ) ( )

( )
( )* ( ) ( )

v F d K

v F d K

d t
K Z t K t t I

dt

d t
K Z t K t t I

dt

φ
φ φ ω

φ
φ φ ω

 = − + +  

 = − − +  

               (19) 

where “*” represents the convolution operation, Kd is the PFD gain and ZF(t) is the 

impedance of the loop filter. The gain of the PFD is Kd = Icp/2π, where Icp represents the 

charge pump current. Upon synchronization, both PLLs oscillate at the same frequency 

with a constant phase difference θ = φ1-φ2. Then, following the same derivation process 

as in Section 3.2, that is, subtracting the two equations and setting dθ/dt =0 results in 

           πθππθ ≤≤−= :2
cp

K

I

I
               (20) 

Thus the steady state output phase can be varied linearly from –180° to +180° by 

varying Ik between –Icp/2 and +Icp/2. The linear dependence of θ on the control current 

arises from the linearity of the gain of the PFD. 

3.3.1 Simulation Results 

 Behavioral simulations have been performed to evaluate the system 

performance. Figure 15 shows the frequency transient of the two PLLs with Ik = 1.5 mA 

and random initial phase offsets. 



 

 22 

 

 
0 50 100 150

2

2.2

2.4

2.6

2.8

3
x 10

7

Time(40ns/div)

P
L
L
 F

re
q
u
e
n
c
y
(H

z
)

 

 

PLL1

PLL2

 

Figure 15: Frequency Convergence Plot for current input Ik = 1.5 mA 

 

It is seen that the two PLLs become frequency-locked by converging to the 

steady state frequency of 25 MHz. Figure 16 shows phase difference transients for 

various values of the control current. It is observed that the phase difference(θ) is 

extended well beyond +/-90°. 
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Figure 16: Phase Difference transient plots for different current inputs Ik 

 

3.4 Phase-frequency synthesizer  

The frequency of the Phase Synthesizer architecture presented above is not well-

controlled because of the absence of any reference signal. Here, we propose a phase-
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frequency synthesizer architecture based on CPLL system which is capable of achieving 

±180° phase shift while being able to lock to a reference signal for frequency stability. 

Such a phase-frequency synthesizer finds application in communication systems based 

on the beamforming technology and also in MIMO receivers [15]. We thus aim to 

enhance the system in Figure 14 to enable accurate phase and frequency synthesis. The 

proposed phase-frequency synthesizer embedding two PLLs is depicted in Figure 17. 

The system employs one additional PFD/CP for each PLL to enable frequency 

controllability. The goal here is to accurately set the output frequency using the 

reference signal while still being able to vary the phase difference using the control 

currents ±Ik. We denote the phase of the reference signal by φref (t), the phase of the first 

VCO by θ1(t), the phase of the second VCO by θ2(t), and the free-running frequency of 

the VCOs by ω1 and ω2, respectively. 
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 Figure 17: Phase Frequency Synthesizer using Reference and control 

currents 
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The dynamics of the system in the time domain is described by the following 

differential equations: 

 
1 2 1 1

1
( ) ( ) ( ) ( )

[( ( ) ) ( ) ( )]* ( )ref d d k f v

t t t d t
t K K I t Z t K
N N N dt

θ θ θ θ
φ ω− + − − + =   (21) 

2 1 2 2
2

( ) ( ) ( ) ( )
[( ( ) ) ( ) ( )]* ( )ref d d k f v

t t t d t
t K K I t Z t K
N N N dt

θ θ θ θ
φ ω− + − + + =    (22) 

where ‘*’ denotes convolution operation, N is the divider ratio, Kd (Amperes/rad), the 

PFD/CP gain, Zf (Ω), the loop filter impedance and Kv (rad/sec/V) is the VCO 

sensitivity. Now we assume that the VCOs achieve frequency-lock after sufficiently 

long time. To obtain the steady-state phase difference ∆θ(t)=θ2(t)–θ1(t), we subtract (21) 

from (22) and set dθ1(t)/dt = dθ2(t)/dt. So, 

2 1
2 1

( ) ( )
[3( ) 2 ( )] * ( )d k f v

t t
K I t Z t K

N N

θ θ
ω ω ω− − = − =∆       (23) 

Taking the Laplace transform of both sides, we obtain  

2
( )

3 3 ( )
k

d d v

NI N
s s

K K K Z s

ω
θ

∆
∆ = +              (24) 

Noting that Z(s) is has a pole at DC, i.e., Z(s)=F(s)/s, (as is the case in usual 

Charge Pump PLL loop filter implementations as shown in Figure 14) we find the 

steady-state phase difference as 

0 0

2 2
( ) lim ( ) lim( )

3 3 ( ) 3
k k

s s d d v d

NI sN NI
t s s

K KKFs K

ω
θ θ

→ →

∆
∆ →∞ = ∆ = + =           (25) 

Hence the synthesized phase difference is independent of the input reference 

frequency. Furthermore, it appears that the phase difference is independent of the VCO 

free-running frequencies, which is due to the infinite DC gain of the loop filters. This 
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result demonstrates the advantage of the proposed system in terms of phase accuracy. 

Interestingly, the phase-frequency synthesizer in Figure 17 can be extended to 3 PLLs to 

generate three signals with a constant phase progression controlled by the currents ±Ik 

injected only to the end PLLs. Extensive time-domain simulations were performed to 

verify that the VCOs always lock to the input frequency despite difference in their free-

running frequencies. Figure 18 shows the transient response of the system when the 

reference frequency is 0.5 Hz and the VCO free running frequencies are 0.95 Hz and 

1.03 Hz. Each PLL uses a divide-by-two divider. It is observed that upon 

synchronization the VCOs oscillate at 1 Hz, which is the reference frequency multiplied 

by two. 
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Figure 18: Frequency Convergence for the Phase Frequency Synthesizer 
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Figure 19: Phase Difference Transient for various values of the input reference 

frequency 

 

The transient response of the system for a specific phase difference and various 

values of the input reference frequency are shown in Figure 19. In this simulation we 

have set f1 = 0.95 Hz, f2 = 1.03 Hz, and Ik = 0.6Ip corresponding to a steady-state phase 

difference of 144°. These simulations confirm the result in (25) indicating that the 

synthesized phase difference is independent of the reference frequency as well as the 

free-running frequency of the VCOs. 

3.5 Phase Noise Analysis 

In this section, we analyze the phase noise performance of the phase synthesizer 

in Figure 14 and the phase-frequency synthesizer in Figure 17. Then, we extend the 

results to a system comprising larger number of PLLs. To this end, we first consider the 

single-PLL system in Figure 20.  
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Figure 20: Single PLL with different noise sources 
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For the sake of simplicity, we have dropped the frequency divider. The phase 

noise components of the reference, charge pump and loop filter are considered to be 

uncorrelated and they are lumped into an equivalent input-referred phase noise, 
2
ipφ  . 

The input-referred phase noise sees a low pass transfer function to the PLL output given 

by: 

   

2
2 2
1

( )

1 ( )out ip

G s

G s
θ φ=

+
    (26) 

Here G(s) is the Open Loop Gain of the system = KdKvZ(s)/s where Kd is the 

PFD/CP gain, Kv is the VCO sensitivity, Z(s) is the loop filter impedance and s = jω. 

The VCO open loop phase noise 2
vcoφ  undergoes a high pass filtering before reaching 

the output: 

   

2
2 2
2

1

1 ( )out vco
G s

θ φ=
+    (27) 
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3.5.1 Phase Synthesizer(PS) 
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Figure 21: VCO noise sources contribution to the PS output phase noise 

 

To analyze the phase noise of the phase synthesizer in Figure 14, we consider 

only the contribution of the VCOs to the output phase noise(Figure 21). Denoting the 

open loop phase noise of the first and second PLL by, respectively, 
2

1vcoφ and
2

2vcoφ , 

the phase noise at the output of PLL1 due to each VCO will be given by 

   

2
2 2
1 1

1 ( )

1 2 ( )out vco

G s

G s
θ φ

+
=

+
   (28)

         

2
2 2
2 2

( )

1 2 ( )out vco

G s

G s
θ φ=

+
     (29)  

   The factor two in the denominator of the above equations is due to the presence 

of two loop filters. Since the VCOs are identical, they generate the same amount of 

phase noise, i.e., 2
1vcoφ =

2
2vcoφ =

2
v c oφ , Thus, the total output phase noise becomes 
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2 2
2 21 ( ) ( )

1 2 ( ) 1 2 ( )out vco

G s G s

G s G s
θ φ

  + = + 
 + +  

     (30) 

The phase noise transfer function expressed in the above equation is plotted in 

Figure 22 and compared with the transfer function given in (27) for a single PLL.  It is 

observed that the VCO phase noise at frequencies far from the carrier frequency is not 

attenuated but it undergoes some attenuation (3 dB) at frequencies close to the carrier. 

The near-carrier phase noise is obtained by letting s→0 in (30) 

    
2 21

2ou t vcoθ φ=                (31)

       

So, for a 2-PLL phase synthesizer with no reference the output close-in phase 

noise due to the VCOs is half the open loop phase noise of each VCO. Further analysis 

shows that for an N-PLL phase synthesizer the close-in phase noise at the output of each 

PLL is 1/N
th

 of the phase noise of each VCO. This result obtained for a phase 

synthesizer based on phase-frequency detectors is in agreement with the results in [8] 

for coupled-PLLs using analog multipliers. 
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Figure 22: Single PLL and Phase Synthesizer VCO Noise Transfer functions(NTF) 
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Figure 23: Noise sources contributing to the Phase Frequency Synthesizer output 

phase noise 

 

3.5.2. Phase-Frequency Synthesizer 

For the system in Figure 23 we need to consider the phase noise contributions of 

the reference and the two VCOs. The reference phase noise 2
refφ undergoes a low pass 

filtering to yield at the output,  

  

2
2 2

1
( )

1 ( )out ref

G s

G s
θ φ=

+
              (32)              

where G(s) is the open loop gain of the PLL. Comparison with (26) indicates that the 

reference signal contributes to the same amount of output phase noise compared with a 

single PLL. The phase noise contribution from the VCOs is given by:

 
2

1 2 ( )12 2
2 11 ( ) 1 3 ( )

G s
ou t vcoG s G s

θ φ
+

=
+ +

            (33) 

2( )12 2
3 21 ( ) 1 3 ( )

G s
out vcoG s G s

θ φ=
+ +

            (34) 
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where the open loop phase noise of the first and second PLL are denoted by 2
1vcoφ and 

2
2vcoφ .Once again since the open loop VCO phase noise are the same, 2

1vcoφ  = 2
2vcoφ  

= 2
vcoφ , the total output phase noise due to the VCOs is obtained as: 

 
( )

( )
2 2 2

1 2 ( )12 2
1 ( ) 1 3 ( ) 1 3 ( )

G s G s
vcoout G s G s G s

θ φ+
+

=
+ + +

  (35)

   The phase noise transfer function in (35) is plotted in Figure 24 and compared 

with the phase noise transfer function in (27). In a single-PLL system using a charge 

pump, the VCO phase noise is highly attenuated at frequencies near the carrier 

frequency due to the presence of a pole at DC. It is observed that this important property 

is preserved in the 2-PLL phase-frequency synthesizer. Moreover, the phase-frequency 

synthesizer exhibits 2.6dB additional phase noise attenuation. It is noticed that, as 

shown in Figure 22, this property was not preserved in the phase synthesizer in Figure 

14. Hence in addition to frequency controllability, the phase-frequency synthesizer 

shows superior close-in phase noise performance compared to the phase-synthesizer. 

Analysis of a phase-frequency synthesizer comprising three PLLs indicates that the 

additional phase noise reduction increases to 3.25 dB. We do not observe a phase 

progression for the Phase Frequency synthesizer for more than 3 PLLs, with the current 

architecture. 
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Figure 24: Comparison of VCO Noise Transfer functions (NTF) of a 1 PLL system 

and a Phase Frequency Synthesizer with 2 PLLs 

 

3.6 Summary 

This chapter discussed the N-PLL network design which could be used to 

increase the range of Phase Difference Synthesized to ±180°. MATLAB simulations for 

10 PLL chain demonstrating its frequency convergence and Phase Difference generation 

properties were presented. The loop filter design for a Coupled PLL system was 

presented with in which a control voltage provides for generating the Phase Difference. 

An improved version of the system was presented with the control voltage replaced by a 

control current and the advantages mentioned. The system was further improved with 

the addition of a reference frequency for frequency stability. Analytical results and 

MATLAB simulations for the latter were presented to show that the output phase 

difference synthesized is independent of the reference frequency and the free running 

VCO frequencies, unlike the previous architectures. Extensive phase noise analyses 

were performed on the Phase Synthesizer and the Phase Frequency Synthesizer. Phase 
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Noise reduction of 3.25 dB was observed for a Phase Frequency Synthesizer comprising 

three PLLs compared to that of a single PLL. 

A quick practical verification of the proposed design is essential before getting 

involved in the costly process of IC design for the whole CPLL system. This aids in 

refining the system level design in MATLAB and shows the practical issues, all of 

which may not be observed in the simulations. To this end, a board design for the 

Coupled PLL system was done using off-the-shelf components (TLC2932A PLLs[16]) 

and is presented in the next chapter. 
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CHAPTER 4 

BOARD IMPLEMENTATION RESULTS  

4.1 Coupled PLL Implementation with no Divider 

The purpose of the implementation has been to demonstrate the self-

synchronization phenomenon in the coupled-PLLs network using PFDs and its 

capability to generate a variable phase using DC inputs. A 25 MHz coupled-PLLs 

network has been designed using two off-the-shelf TLC2932A PLLs [16] (see Figure 

25).  

    
 

   Figure 25: Implemented Coupled PLL system 

 

The loop filter was designed as a second-order passive lead-lag filter. The VCO 

sensitivity is Kv0 = 40 MHz/V and the phase detector gain is Kd = 0.1671 V/rad. The 

system is designed for a natural frequency [10][11][17] ωn = 7.632*10
6
 rad/sec and a 

damping factor ξ = 1.0 for adequate phase margin. The loop filter values chosen were R1 
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= 496 Ω, R2 = 242 Ω, C1 = 1 nF and C2 = 68 pF. The steady-state phase difference θ can 

theoretically be varied linearly over (–180°, 180°) by varying the control current Ik with 

the following relation: 

  1 K

d

R I

K
θ =                    (36) 

 Figure 26 and Figure 27 show the PLL output waveforms having 50° and 160° 

phase difference, respectively. The measurements were obtained using a Tektronix 

Digital Storage Oscilloscope. The phase measurement accuracy is +/- 4°. 
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 Figure 26: CPLL outputs for steady state phase offset of 50° 
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            Figure 27: CPLL outputs for steady state phase offset of 160° 
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 Figure 28 shows the average steady-state phase difference as a function of the 

control current.  The average phase difference between the PLL outputs varies between 

40° and 220° for control current tuning between 0.6 mA and 1.8 mA.  Excessive jitter at 

low values of phase difference made the measured phase difference versus control 

current curve inaccurate. 
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            Figure 28: CPLL output phase vs. Control current 

 

Figure 29 shows the transient waveforms at the VCO inputs when the control 

current is switched at 25 KHz. The waveforms depict the VCO input voltage transitions 

from the time the PLLs are unlocked to the time they acquire a steady lock frequency of 

25 MHz. The PLLs are unlocked when the VCO input voltage is below 0.9 V and 

locking onto each other at other times. 
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Figure 29: VCO input transients for control current switching at 25kHz 

 

4.2 Coupled PLL Implementation with Divider 

 

The next logical step in the implementation was the addition of frequency 

dividers in the feedback loop. The frequency dividers reduce the coupling frequency and 

also the speed requirement of the phase-frequency detectors. These enhancements make 

the structure suitable for integration in a CMOS or BiCMOS technology. Figure  30 

shows the board schematic.  
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Figure  30: Implemented Coupled PLL system with dividers 

 

The system is designed for a natural frequency ωn = 598.8*10
3
 rad/sec, a divider 

ratio N = 8 and a damping factor ξ = 1.0 for adequate phase margin. The loop filter 

values chosen were R1 = 557 Ω, R2 = 21 Ω, C1 = 1 uF and C2 = 97 nF. The steady-state 

phase difference θ, can be varied linearly from –180° to +180° by varying the control 

current Ik with the following relation: 

  
d

K

K

NIR ∗
=

*1θ      (37) 

Figure 31 shows the average steady-state phase difference as a function of the 

control current.  The average phase difference between the PLL outputs varies between 

20° and 200° for control current tuning between 0.06 mA and 0.23 mA. 
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 Figure 31: CPLL output phase vs. Control current 

 

 

Figure 32 shows the transient waveforms at the VCO inputs when the control 

current is switched at 25 Hz. 
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Figure 32: CPLL VCO input transient for control current switching at 25 Hz 

 

The results prove that phase synthesis and synchronization are possible even in 

the presence of frequency dividers. It is noted that it would not have been possible to 

use frequency dividers without using PFDs. 
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4.3 Summary 

This chapter demonstrated the implementation of the Coupled PLLs system with 

two PLLs to verify the theory. The implementation was done using off-the-shelf 

components available. The first implementation was Coupled PLLs system without 

dividers and the second implementation was a Coupled PLLs system including dividers. 

Adding dividers has the advantage of reducing the coupling frequency of the Phase 

Frequency Detectors. 

Having verified the theory of phase difference generation in the range of ±180° 

using Coupled PLLs system, the next step is the IC design for a Coupled PLLs system 

with two PLLs. The specification and the design methodology for the same is presented 

in the next chapter. 
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CHAPTER 5 

CPLL DESIGN METHODOLOGY AND SYSTEM SPECIFICATION 

5.1 CPLL Design Flowchart 

 The CPLL design methodology can be summarized through the following 

flowchart: 
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Figure 33: CPLL Design Methodology Flowchart 
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5.1.1 CPLL Design Methodology 

This section enumerates the IC design methodology for the CPLL system as 

presented in the above flowchart.  The methodology involes initially specifying the 

CPLL top level requirements and performing the necessary simulations in MATLAB. 

This is followed by modeling the same system in VerilogA [18]-[22] and then by 

transistor level design of each block. Now the final system performance is compared 

with that of the initial specifications in MATLAB and one(or both) of the following is 

performed :  

a) the transistor-level design of the system is improved (if required) so that it 

performs on par with the initial system specifications, 

 b) the CPLL system-level specifications are made less stringent or practical if 

required. 

The methodology steps are enumerated in the following steps: 

1) CPLL top-level system requirements are specified. This includes the 

CPLL system design with the control element for phase difference 

generation, the CPLL operating frequency, charge pump current, 

divider ratio, Phase Noise requirements etc. The Phase Noise 

requirement is stipulated as better than -90 dBc/Hz at 1 MHz under 

worst case conditions for maximum phase difference synthesis of 

180°. 

2) The loop filter [10][11][23]-[25] is designed according to the 

required loop bandwith which is a critical factor in deciding the 

contribution of thermal and deterministic noise of various sources in 
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the CPLL to the total Phase Noise performance of the system. The 

other important factors in designing the loop filter include the phase 

margin of the system, the charge pump current and the VCO 

sensitivity. 

3) The CPLL system is designed in MATLAB and the following 

important simulations are performed: a) frequency convergence 

transient for the two PLLs in the CPLL, b) variation of the output 

phase difference synthesized with the control element, c) the Phase 

Noise due to random and deterministic noise in the CPLL system is 

simulated and compared with the specifications. If the specifications 

are not met, one of the most critical elements that can be varied is the 

loop filter design for the PLLs. 

4) The MATLAB design of the CPLL system is modeled in VerilogA in 

the Cadence environment. Each block in the CPLL system , viz. the 

Phase Frequency Detector, Charge Pump, Voltage Controlled 

Oscillator and Frequency Divider is modeled in VerilogA and 

transient simulations are performed and compared to the results 

obtained in MATLAB design.  VerilogA modeling is helpful in 

context switching between the mathematical models and their 

transistor level designs and comparing their performance. 

5) IC Design of the CPLL 

  a) The Phase-Frequency Detector is designed in Current Model 

Logic [26]-[28] instead of the usual CMOS rail-to-rail logic to 
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mitigate the effects of power supply and substrate noise. The 

operating frequency of the PFD is 38.125 MHz. 

       b) The Charge Pump is designed to source and sink current of    

1.353mA at the PFD operating frequency = 38.125 MHz. The design 

is based on a DAC (Digital to Analog Converter) architecture with no 

poles in the signal path. It is observed that this design is a non-trivial 

task with a supply voltage of just 1.2 V. Also care is taken to avoid a 

dead zone in the PFD/CP design. 

 c) The VCO essentially converts the input voltage of the loop filter to 

output frequency. It consists of two blocks: a) the V-2-I converter, 

which converts the input voltage to an output current and b) the 

current controlled oscillator, which converts the input current into 

output frequency. Both the V-2-I converter and the CCO are designed 

differentially. The open loop phase noise requirement of the VCO is 

stipulated to be -90 dBc/Hz at 1 MHz offset from the carrier. The 

VCO sensitivity is designed as 500 MHz/V so that +/-16% open loop 

VCO frequency variation can be controlled by a +/-200mV variation 

of the VCO control voltage, around the steady state VCO input 

voltage of 600mV. 

 d) The frequency divider is designed as a four stage ripple counter, 

where each stage divides by two to create a divide-by-16 counter. 

Each stage consists of two differential latches connected in a master 

slave fashion and clocked by a differential inverter. 
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6) Simulate the transistor level design of the CPLL system and observe 

the phase difference generation and the phase noise performance of 

the system. If the specifications are not met we go back to step 4 and 

analyze the performance of each block and try to improve the 

performance if possible. Also after having performed a preliminary 

IC design and simulated across Process and Temperature corners if 

the requirements are found to be stringent and impractical we go 

back to step 1 and reformulate the system requirements to a more 

pragmatic specification. 

 

 

        

 

 

5.2 CPLL System Specifications 

Figure 34 shows the schematic of the proposed CPLL system for IC design. This 

system is essentially the Phase Frequency Synthesizer described in Chapter 3. In 

comparison to the board implementation, a reference frequency has been introduced. 

The symmetric nature of the system makes the synthesized output phase difference at 

steady state independent of the reference frequency as mentioned in Chapter 3. 
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 Figure 34: Proposed CPLL for IC design  

 

The equations relating the input and output phases are as follows: 
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                  (38) 

where “*” represents the convolution operation, Kd is the PFD gain and ZF(t) is the 

impedance of the loop filter in the time domain. The gain of the PFD is Kd  = Icp/2π, 

where Icp represents the charge pump current. Upon synchronization, both PLLs 
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oscillate at the same frequency with a constant phase difference θ =φ1 −φ2. Then, 

subtracting the two equations we obtain: 

2 1
0 2 1

3( ( ) ( ))
( ) * [ ( ( ) ( )) 2 ]d

F v K

Kd t td
Z t K t t I

dt dt N

φ φθ
φ φ

−
= = − − +                (39) 

Hence the rate of change of the phase difference with time is independent of the 

reference frequency. Setting dθ/dt =0 results in 

           πθπθ ≤≤−= :
3

2

d

K

K

NI
                 (40) 

Thus, as shown before, the synthesized output phase difference can be controlled 

linearly. In this particular design the control input is a current. The CPLL top level 

specifications are as follows: The VCO free running frequency is Fvco = 610 MHz which 

is chosen to fall in the WMTS (Wireless Medical Telemetry Serivce) band between 608 

to 614 MHz [29]. The reference is a crystal oscillator which is commercially available 

for tens of MHz range. Taking this into account, the frequency divider is chosen to have 

a ratio of Ndiv =16. Hence the reference frequency(Fref) is related to the VCO output 

frequency(Fvco)  as: 

    v c o
r e f

d i v

F
F

N
=       (41) 

Substituting the values, the reference frequency is obtained as Fref = 38.125 MHz. The 

control current (Ik) used for phase difference generation has a resolution of Ik-minimum =1 

uA. If the DAC is to be designed for 6 bits accuracy Ik-maximum = 64uA. The phase 

synthesized is related to the control and the charge pump current according to (40). 

Hence for a maximum phase syhthesis of 180°, the control current can be related to the 

charge pump current as :  
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max4

3

k imum

cp

NI
I −=      (42) 

where the charge pump gain is Kd = Icp/2π. The charge pump current is obtained as Icp = 

1.353mA. We choose a phase margin of φm = 60° and the VCO sensitivity Kvco = 500 

MHz/V. The latter has been obtained iteratively after a transistor-level design of the 

VCO and observing VCO output frequency variation across process and temperature 

corners. The transition frequency(ωp)[10][11][17] is chosen to be approximately 1/100
th

 

of the reference frequency: 

   
2

1 0 0 * 1 .3

r e f

p

fπ
ω =       (43) 

Also the transition frequency and the natural frequency(ωn) have the following simple 

relation )[10][11][17]: 

   
1 .3 3

2 .0 6

p

n

ω
ω =       (44) 

Using the above information the time constants related to the pole ( pt) and zero(zt) are 

calculated as follows [23][25] for a second order impedance filter: 

  ( s e c ( ) ta n ( ) ) /
t m m p

p φ φ ω= −     (45) 

  
21 /t t pz p ω=        (46) 

The capacitance and resistor values can be calculated by the following equations: 
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  1

1

tz
R

C
=         (49) 

The above CPLL specifications are tabulated as follows: 

Table Table 1: CPLL System Specifications 

 

 

 CPLL Parameters           Values 

             VCO Frequency(Fvco)            610 MHz 

            Frequency Divider (Ndiv)               16 

          Reference Frequency(Fref)        38.125 MHz 

         Charge Pump current(Icp)          1.353mA 

               Phase Margin(φm)             60° 

           VCO Sensitivity(Kvco)        500 MHz/V 

          Natural Frequency(ωn)    1.16*10
6
 Rad/sec 

             Control Current(Ik)        0 to 64µA 

                    Process      IBM 130nm 

                    Supply            1.2V 

                Phase Noise       -95 dBc/Hz 

  Phase Difference Synthesis(θ ) Range         0 to 180° 

 

5.2.1 CPLL System Simulation 

The above system was initially simulated in MATLAB to see the system 

response in terms of phase generation and also its phase noise performance. Figure 35 

shows the transient response of the phase difference between the PLL outputs in the 
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CPLL system. The system was simulated with a control current of 62.3µA. This leads to 

a steady state phase difference of 175°. 
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Figure 35: Phase Difference Transient for the CPLL system 
 

 

Noise performance of the CPLL system was evaluated in terms of random noise 

and deterministic noise contributing to the CPLL phase noise[18],[30]-[33]. Random 

noise affecting the phase noise of the CPLL system contributed by the noise generated 

by the reference frequency, PFD, charge pump, divider and the loop filter have a low 

pass characteristic. Since all of them have the same characteristic they are conveniently 

measured as the input referred noise. The input referred noise from all these sources 

within the loop bandwidth of the PLL, is transferred from the input to the output. 

Outside the loop bandwidth the thermal noise accumulating from the reference 

frequency, PFD, charge pump, divider and the loop filter resistor is suppressed by the 

loop filter. Noise from the VCO has a high pass characteristic. Hence at low frequency 

offsets the VCO noise is suppressed by the feedback action of the loop. However at high 

frequencies, the phase noise of the system is essentially contributed by the VCO. In 
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contrast to random noise which are stochastic in nature, deterministic noise arises due to 

sources like supply and substrate where the noise is correlated. In the present case we 

are concerned with the deterministic noise arising due to charge pump activity due to a 

non-zero phase difference generation. The effect of this is the presense of reference 

spurs at an offset from the carrier frequency which is equal to the reference frequency. 

  Figure 36 shows the random phase noise performance of the 

CPLL system. The CPLL system shows a phase noise performance of -92.6 dBc/Hz at 1 

MHz offset, which meets the design specifications. 
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  Figure 36: Random Phase noise of the CPLL system 

 

 

 Figure 37 shows the phase noise performance of the CPLL system including 

both random noise and deterministic noise caused due to reference feed through. The 

total phase noise due to random noise and deterministic noise is -92.5 dBc/Hz at 1 MHz 
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offset from the carrier. The noise due to the reference spurs is at -77 dBc/Hz at 38.125 

MHz offset from the VCO operating frequency.  
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Figure 37: Deterministic and Random Phase noise of the CPLL system 

 

 

5.3 Summary 

This chapter presented the design methodology to be followed for implementing 

the IC for the Coupled PLLs system. The methodology shows the process to be followed 

when implementing the initial design and then improving the same iteratively. The top- 

level specifications for the Coupled PLLs system were mentioned. The system was 

implemented in MATLAB and transient simulations followed by Phase Noise Analysis 

of the system was performed to see the design meets the specifications. 

The next chapter focuses on the IC design at the transistor level beginning with 

VerilogA modeling of the system.  
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CHAPTER 6 

COUPLED PHASE LOCKED LOOP IC DESIGN 

6.1  CPLL VerilogA Modelling and Simulation  

The first step in the IC design process was modeling the CPLL system in 

VerilogA. Each block in the CPLL system is modeled mathematically in VerilogA and 

the system functionality is verified. Then we proceed to do the transistor level design of 

each block. Preliminary VerilogA modeling of the system has the advantage of fast 

context switching between the transistor level designs and the mathematically modeled 

designs to verify the proper functioning of the former with the mathematical models.  

 

REF IP

PLL1
DIV OUT

VCO OUT

PLL2

DIV OUT

VCO OUT

DIV IP

REF IP

DIV IP

PHASE 

MEASUREMENT
PHASE 

DIFFERENCE

REFERENCE  

OSCILLATOR

 

 Figure 38: CPLL Top Level Block Schematic 
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Figure 38 shows the top level schematic of the CPLL system. It shows two PLL 

blocks coupled to each other and also the phase measurement block. The latter takes the 

VCO output waveforms from the two PLLs as its input and shows the phase difference 

between the two waveforms. During the IC design phase the entire CPLL is designed at 

the circuit level except the phase measurement blocks, for which only VerilogA models 

are used. Each PLL block consists of two PFDs and two CPs (each one more than in the 

usual PLLs), one VCO, one frequency divider and the loop filter. 

Figure 39 shows the deterministic noise performance of the CPLL system when 

the control current is zero and hence the phase difference at the PLL outputs at steady 

state is zero. The phase noise performance due to deterministic noise is -175 dBc/Hz at 

1 MHz offset. Also absence of reference spurs at offset of 38.125 MHz (which is the 

reference frequency) from the carrier frequency indicates good phase noise performance 

of the CPLL system in attenuating deterministic noise at zero control current.  
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Figure 39: VerilogA deterministic phase noise simulation of the CPLL system at 

zero control current 
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Figure 40 shows the total phase noise performance of the VerilogA model when 

the control current is 63µA and the phase difference between the PLLs is 177.5°(near 

maximum). The simulation results show the cumulative result of deterministic noise 

from the VerilogA model and the analytical models for thermal noise from various 

sources in the PLL( e.g. the PFD/CP, VCO,divider etc) which have been presented in 

the MATLAB simulations above. The total random phase noise of the system is 

attenuated by the loop, at frequencies close to the carrier frequency. The deterministic 

spurs are present at the reference frequency offset from the carrier at -60dBc/Hz and 

multiples of the reference frequency. The total phase noise is -88 dBc/Hz at 1MHz 

offset from the carrier, which is acceptable if consideration is given to the fact that, at 

this phase offset the charge pump is active for 3.125% of its time period, which directly 

contributes to phase noise at the output. 
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Figure 40: VerilogA total phase noise simulation of the CPLL system with 63uA 

control current input 
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6.2 CPLL IC Design and Results 

6.2.1 Current Mode Logic Design 

The CPLL design is a typical example of high speed mixed signal design with 

low switching noise requirements. If the PFD is implemented using CMOS logic, the 

rail-to-rail switching affects the sensitive analog blocks, like the VCO, detrimentally, 

thereby increasing the phase noise of the system. The same is the case with the 

frequency divider if implemented using CMOS rail-to-rail logic. In order to reduce the 

effect of the switching noise of the PFD and divider on the VCO, they can be 

implemented using Current Mode Logic (CML). CML circuit design involves 

implementing the circuits in a differential manner. Thus the noise due to logic 

transitions and other sources like the power supply noise, appear as common mode 

noise at the output of one CML gate, thereby rejected.  
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Figure 41: CML Inverter  
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Figure 41 shows the basic inverter implementation using CML. It is basically a 

differential amplifier, with tail current biasing using an NMOS transistor M3. The load 

is designed using two PMOS transistors; one of which is a diode connected load (M8, 

M11) and the other is biased as a variable current source (M9, M10). The 

implementation of the bias circuitry required by the NMOS and PMOS current sources ( 

VbiasN and VbiasP respectively) is also shown.  Purely differential implementation 

with biasing tail current sources reduces the output voltage swings and hence the 

switching noise affecting the analog circuitry is also reduced.  

V0.5(VDD-VbiasP) (VDD-VbiasP)

I_output

Idd/2

Idd
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M1 M2
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V

 

Figure 42: Symmetric load for CML circuits and I-V characteristics 

 

The load for the CML inverter is implemented using a diode connected 

PMOS(M1) and a constant voltage biased current source(M2) as shown in Figure 42. 

The I-V characteristic of the load is also shown. The characteristics appear symmetrical 

and linear on the average, hence the name symmetrical load [34]. Due to the linearity of 

the loads the differential circuits exhibit high rejection for common mode noise.  
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6.2.2 Phase Frequency Detector 

The block schematic of the Phase Frequency Detector (PFD) [33][35] is shown 

below (Figure 43). It consists of two D Flip Flops (DFF) and a differential AND gate for 

resetting the DFFs. The blocks in the PFD are implemented using Current Mode Logic 

(CML) . The DFFs have a RESET input to set the output to LOGIC LOW in addition to 

the CLOCK input.  

CLK VCO+

CLK VCO-

CLK REF+

CLK REF-

UP+

UP-

DN+

DN-

D Flip Flop

D Flip Flop

RST-RST+

RST-RST+

OUT+

OUT-

OUT+

OUT-

 

 Figure 43: CML Phase Frequency Detector 

 

The functionality of the PFD is explained in the following. If the rising edge of 

the REF input to the PFD arrives before the VCO rising edge, the UP input is HIGH 

during that duration. At the rising edge at the VCO input, the PFD DN output is HIGH. 

This enables the differential AND gate which RESETs the DFF outputs to LOGIC 

LOW. 

The DFF is in turn implemented using NOR gates as in Figure 44 [35]. The DFF 

design has been simplified to suit the present design requirement, by assuming the D 

input to the Flip Flop is tied to LOGIC HIGH. Hence the output tracks the first rising 

edge of the clock pulse to go HIGH after which the RESET mechanism in the PFD sets 

the output of the Flip Flop to LOW. 
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 Figure 44 : CML D Flip Flop with input set to HIGH 

 

 

 Figure 45: DFF Output Waveforms 
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 Figure 45 shows the DFF output waveforms when the input clock to the DFF is 

set to a frequency of 50MHz, RESET input is set to 7 MHz and the output load is 50fF. 

It is observed that the DFF output is set to logic ZERO with each RESET pulse. The 

output goes to HIGH with the next rising edge of the clock. The average propagation 

delay = 952 ps, rise time = 2.45ns and fall time = 2 ns under worst case conditions of 

process corner = Slow-Slow and temperature = 125°C.  

The implementation of NOR/OR CML gate is shown in Figure 46. An additional 

vertical stacking of transistors is necessary compared to the CML inverter because of 

one additional input for the NOR/OR gate. Reversing the inputs changes the NOR/OR 

gate to NAND/AND gate. 
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 Figure 46: CML NOR Gate implementation 

 

 The PFD has been designed in CML using all the CML gates discussed above. 

Figure 47 shows the transient PFD waveforms. Here VCO and REF are the PFD input 
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waveforms and UP and DN are the output waveforms. For experimental purposes, the 

VCO has a frequency of 39 MHz and REF has a frequency of 38.125 MHz. Also at t = 0 

the VCO has a positive phase delay compared to the REF waveform, which is indicated 

by the HIGH transitions of the UP output of the PFD. Due to the larger frequency the 

VCO gradually reduces the phase delay. This is indicated by the gradual decrease in the 

HIGH state of the UP waveform and the gradual increase in the HIGH state of the DN 

waveform. This verifies the PFD functionality. 

 Dead zone minimization [33][35] is an important design aspect in PFDs. Dead 

zone occurs when the PFD/CP combination fails to respond to a phase difference at the 

PFD inputs, below a certain value. Hence below this value the feed back loop is 

essentially open which leads to high phase noise at the output due to VCO open loop 

phase noise. Dead zone can be minimized by essentially keeping the charge pump active 

during the period, by keeping either the UP or DN output of the PFD at the HIGH state 

which turns the charge pump on. This is done by adjusting the delay in the feedback 

path in the PFD. Increasing the delay in the feedback path, increases the time to reset the 

PFD outputs and hence gives sufficient time for the PFD outputs to reach the HIGH 

state and turn on the charge pump. Careful simulations were performed to see that the 

delay in the feedback path was long enough to minimize the dead zone. Also the 

transient simulation above shows at any given transition time, the minimum voltage at 

the PFD outputs is a HIGH, even when the phase difference at the inputs is very small. 
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 Figure 47 : PFD Input and Output Waveforms 

 

6.2.3 Charge Pump 

Figure 48 shows the charge pump [36] design which is compatible with CML 

PFD. The charge pump is based on Digital to Analog Converter (DAC) design. Here the 

output current is controlled by switches which determine the direction of flow of the 

charge pump current, by either sinking or sourcing current into the loop filter. The 
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Charge Pump inputs are controlled by the PFD outputs UP and DN (and the 

complementary outputs).  

DN DNB UPB UP

UPB UP DN DNB
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X
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Figure 48: Charge Pump Implementation Compatible with PFD CML 

 

The charge pump output current is taken from the drain of transistors M1 and 

M3 at node X. Due to the purely differential nature of the DAC stage it is necessary to 

keep the voltages of nodes X and Y as close as possible to maintain symmetry. This 

necessitates a common mode feedback implementation between nodes X and Y. To 

avoid amplifier implementation and the associated stability related issues a simple DC 

bias implemented using a diode connected load is used to fix the voltage of node Y 

equal to the voltage at node X at steady state. Also a second identical DAC stage 

implemented using switching transistors M5, M6, M7 and M8 helps to maintain a 

symmetric current flow in the circuit. The fixed DC bias implementation and the 

sourcing and sinking of current in transistors M2 and M4, by the second DAC stage 

helps obviate the design of the common mode feedback amplifier. 
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Figure 49 shows the current flows in the charge pump when the PFD outputs are 

UP=HIGH and DN=LOW. Under this condition the Charge Pump should source current 

into the loop filter. Since UP = HIGH, M1 is active and directs current to the Charge 

Pump output as required by the condition at the PFD outputs. Also since DN = LOW, 

the current in the second stage of the Charge Pump flows from M5 through M4. 
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Figure 49: Charge Pump current flows when UP=HIGH and DN=LOW 

 

Figure 50 shows the current flows in the charge pump when the PFD outputs are 

UP = LOW and DN = HIGH. Under this condition the Charge Pump should sink current 

from the loop filter. Since DN = HIGH, M3 is active and directs current into the Charge 

Pump as required by the condition at the PFD outputs. Also since UP = LOW, the 

current in the second stage of the Charge Pump flows into M7 from M2. 
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 Figure 50: Charge Pump current flows when UP= LOW and DN= HIGH 

 

 

Figure 51 shows the current flows in the charge pump when the PFD outputs are 

UP = LOW and DN = LOW. Under this condition the Charge Pump output should be at 

high impedance. As shown in the figure, M1 and M3 are OFF and hence the charge 

pump output is disconnected from the loop filter. The current in the first stage directly 

flows in the right branch through M2 and M4. Similarly the current in the second stage 

flows directly through the left branch through M5 and M7. 
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Figure 51: Charge Pump current flows when UP= LOW and DN= LOW  

 

This charge pump is not as power efficient as the charge pumps used with 

CMOS rail-to-rail logic since this always consumes DC power. However the design will 

have good current matching since the UP and DOWN stages are symmetric. This leads 

to reduction in the reference spurs [33]. 

Figure 52 shows the CP average output current measured across different phase 

offsets of the waveforms at the PFD inputs. The average current is measured across 

several transitions at the PFD inputs and plotted across temperature and process corners. 

We observed a linear increase in the average charge pump current when the phase 

difference at the PFD inputs is varied from -180° to +180°. Hence the PFD CP gain is 

nearly constant across different phase differences which is a required PPFD/CP 

characteristic. Also we see that the average CP current curve maintains its linearity at 

very small phase differences at the PFD inputs. Hence dead zone is reduced to almost 

zero in the present PFD design.  
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Figure 52: Average Charge Pump Output Current 

 

 

Figure 53 shows the output noise current of the charge pump obtained from 

Periodic Noise Analysis of the charge pump in Spectre RF. The Periodic Noise Analysis 

has been performed for worst case conditions, that is, maximum phase offset at the PFD 

inputs at steady state, and across process and temperature corners. We observe a noise 

current of 30 pA/√Hz at 1 MHz offset and current peaks at multiples of the reference 

frequency of 38.125 MHz. 
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Figure 53: Charge Pump Output Current Noise(A/sqrt(Hz)) 

 

The current noise observed at the charge pump outputs can be referred to the 

input of the PFD by dividing the output noise current with the PFD/CP gain. The input 

referred PFD/CP noise is shown in Figure 54 . The input referred noise is -134 dBc/Hz 

at 1 MHz offset. This value is still much below the expected phase noise performance of 

the VCO at 1 MHz offset from the carrier which is -95 dBc/Hz and hence can be safely 

accepted as good performance figure. At the frequency of operation of the charge pump 

the input referred PFD/CP noise peaks to -127 dBc/Hz. This is because under the worst 

conditions for maximum phase difference synthesis, the charge pump is active for nearly 

3.125% of the period. This value is arrived at as follows. For maximum phase 

difference synthesis of +/-180° the VCO output waveforms are offset from each other by 

T/2, where T is the time period of the VCO output waveforms. Since the frequency 
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divider divides by 16, the waveforms at the input of the charge pump are offset from 

each other by T/32 = 0.03125*T. This gives the worst case charge pump activity factor. 

 
 

 Figure 54: PFD CP Input Referred Noise(dB) 

 

 

 

 

 

 

 

 

6.2.4 Loop Filter 

The loop filter is a second order passive filter and has been implemented as in 

Figure 34 with the following values: R1 = 45.48Ω, C1 = 45.56nF and C2 = 3.524nF. 

The large values for the capacitors necessitate their implementation as external 

components, rather than being integrated on chip. 
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6.2.5 VCO 

The VCO [33][34][35][37]-[43] is the most critical block in the CPLL design in 

terms of phase noise performance. Figure 55 shows the block schematic of the VCO. It 

consists of two sub blocks: 1) the V-to-I converter or the transconductance block which 

converts the input voltage from the loop filter into output current, 2) the Current 

Controlled Oscillator (CCO) which converts the output current of the V-to-I converter 

to VCO Output frequency. 

V-to-I 

Converter

Current 

Controlled 

Oscillator

Input 
Voltage 

from Loop 

Filter

VCO 

Output 

Frequency

 

Figure 55: System Block diagram for the VCO 

 

 Figure 56 shows the detailed schematic of the V-to-I converter [44], which has 

been implemented in a differential form. The idea is to compare the loop filter 

voltage(Vctrl) to a reference voltage(Vref) which should be present at the VCO inputs at 

steady state. In the present design the reference voltage is 600mV. The upper current 

sources are biased at 156µA and the bottom current sources are biased at 312µA. The 

feedback loop controlled by PMOS transistors M3 and M4 supply the difference 156µA 

current. The feedback loop essentially serves to reduce the input impedance at the 

source of transistors M1 and M2, by the gain of the common source feedback 

transistors. This helps in increasing the linearity of the transconductance gain from the 

gates of M1,M2, that is, Vctrl and Vref , to the drain currents of M3,M4. This drain 
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current in M3,M4 is further mirrored into M5, M6. M6 essentially controls the input 

current to the current controlled oscillator. The dummy transistors M5, M7 are present 

to maintain the symmetry in the circuit. 
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Figure 56: Circuit Schematic for the V-2-I converter 

 

 Figure 57 shows the current flows and the output current change in the V-to-I 

converter due to small change in the VCO input voltage. If the control voltage Vctrl is 

increased by a small amount v, this leads to an increment in the drain current of M2. 

This increases the gate-source voltage (Vgs) of M4, leading to an increase in current in 

M4 by,  

    i =  v/(R/2)      (50) 

 where R is the resistance connected between nodes A and B. In a similar way, the 

transient current in M3 decreases by i. The sizing ratio of M4 and M6 is given as: 
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         (W/L)M6 /(W/L)M4 = 10      (51) 

Hence a change in current by i in M4 leads to a change in current by 10i in M6 which 

then feeds into the CCO.  
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Figure 57: Small Signal current flows in the V-2-I converter 

 

 Figure 58 shows a delay block which is the basic element in the CCO. It is 

essentially a differential amplifier with symmetric loads and tail current biasing. The 

biasing for the tail current and symmetric loads is also shown in the figure. 
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Figure 58: CCO Delay element 

 

 As mentioned before, the symmetrical loads have linear I-V characteristics like 

resistors. Hence any disturbance like power supply noise, appear as common mode 

noise at the outputs of the delay elements and is rejected by the next stage delay 

element. The delay in each element is controlled by the slew rate: 

     ∆v/∆t = Itail/Coutput     (52) 

where Coutput is the total capacitance at the output nodes, for example, at the drain of 

M6, M10 and M11. The capacitance at the output node, depends on parasitic component 

values which vary with process and temperature and hence not controlled accurately. 

This affects the frequency controllability of the VCO in open loop condition. However 
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this is offset by the feedback action of the loop and accurate frequency output of the 

reference clock [45][46]. 
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Figure 59: CCO block schematic 

 

The delay element in Figure 58 is replicated four times and connected as shown 

in Figure 59 for the CCO. The four stages are used in the present design for quadrature 

phase generation. A first order VCO parameter design procedure is as follows [33][35]: 

The VCO free running frequency is assumed to be subjected to +/-16% variation due to 

process and temperature variations. This has been verified by simulations on the IBM 

130nm process. The supply voltage being 1.2V, the +/-16% open loop VCO frequency 

variation is to be controlled by a +/-200mV variation of the VCO control voltage around 

the steady state VCO input voltage of 600mV. Hence the nominal VCO sensitivity is 

given by: 

Kvco  = Change in VCO Output voltage / Change in VCO control current  (53) 

          = 16% of 610 MHz / 0.2 V = 488 MHz/V  
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A preliminary estimate for the biasing current required for the CCO based on the 

phase noise requirements is as follows:  

The VCO output voltage oscillates between 0.6V and 1.2V and hence Vpeak-to-peak 

= 0.6V and Vrms = Vpeak-to-peak/2√2 = 0.3/√2 = 0.212V. We denote Td as the time required 

for each delay element to trigger the next delay element in the ring oscillator. In time Td 

the maximum swing at the output of each stage is half the maximum swing, Vmaximum-

swing. Hence swing ∆V = Vmaximum-swing /2 = (VDD- VDD/2 )/2 = VDD/4 in time 

Td.Substituting the values in equation (40) we get, 

  VDD/4 = Itail* Td /Coutput     (54) 

The VCO free running frequency is given by  

   fvco = 1/(2*N* Td )                 (55) 

where N is the number of delay stages in the oscillator which is 4 in the present case. 

Substituting (42) in (41) we get,  

   fvco = 2 Itail /(N* Coutput* VDD )     (56) 

The following equation gives a first order estimate of the open loop VCO phase noise 

due to thermal noise [33]: 

   
2

2

2
( ) * ( )o sc

rm s o sc o u tp u t

kT
PN

v C

ω
ω

ωω
∆ =

∆
  (57) 

where PN(∆ω) = phase noise of the VCO = -100 dBc/Hz at 1 MHz offset, 

 kT = 4*10
-21

 J at T = 300K, 

 Vrms = 0.212V, 

 ωosc = 2*π*610*10
6
 rad/sec., 

 ∆ω = 2*π*1*10
6
 rad/sec., 
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 Coutput = load capacitance of each delay element which is to be computed. 

Substituting the values we obtain the load capacitance as Coutput = 172.6 fF. Now the tail 

current required is given by the following: 

  252
2

output DD osc
tail

NC V f
I uA= =     (58) 

The VCO was initially designed and the transistors sized using these values of the tail 

current and the capacitance at the output of each delay element. The Spectre RF 

simulation was performed on the VCO to obtain the phase noise performance. It was 

observed that the performance was not as expected and the degradation was due to 

flicker noise of the biasing elements in the CCO and the V-to-I converter. The 

procedure to reduce flicker noise in the biasing elements is to increase the transistor area 

while keeping the aspect ratio constant. The latter is done so as not to disturb the bias 

point. Increasing the transistor area has the effect of reducing the VCO free running 

frequency, due to increasing parasitic capacitance. To compensate for this, the control 

current has to be increased. So after the initial first order design, Spectre RF analysis 

was used to size the transistors and arrive at the final results.  
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6.2.5.1 VCO Simulation Results 

 Figure 60 shows the differential VCO transient outputs for the final design. It is 

observed that the VCO reaches its maximum stable output with a peak to peak voltage 

of 600mV and an output frequency of 610 MHz as expected. 

 

 Figure 60: Open Loop VCO transient response 

 

 Figure 61 shows the open loop VCO phase noise[47]-[53] output across process 

and temperature variations at 610 MHz. The worst case phase noise performance 

obtained is -95 dBc/Hz at 1 MHz offset. Negligible difference between flicker noise and 

white noise contribution to the phase noise is due to poor flicker noise model of the 

transistors [54]. 
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 Figure 61: VCO Open Loop Phase Noise 

 

Figure 62 shows the variation of VCO output frequency with change in the VCO 

input control voltage. The VCO output frequency is 613 MHz at 600mV under nominal 

conditions, as required. 

 

 Figure 62:VCO output frequency vs control voltage 
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Figure 63 shows the variation of the VCO sensitivity for different values of the 

input control voltage. The nominal value of VCO sensitivity is 483 MHz/V at 600 mV 

which is close to the theoretically calculated value of 488 MHz/V. 

 

Figure 63: VCO Sensitivity vs VCO control voltage 

 

 Figure 64  shows VCO frequency pushing (variation of VCO output frequency 

with change in the VCO supply voltage) across PVT. The figure shows that the VCO 

output frequency varies between 450 MHz to 800 MHz under extreme conditions, from 

the nominal output frequency of 610 MHz. The nominal VCO sensitivity is kept at 500 

MHz/V. This is optimal in terms of phase noise (which increases with VCO sensitivity) 

and for tuning the VCO back to the center frequency with minimal change in the control 

voltage. 
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 Figure 64: Frequency Pushing 

 

 

 

Figure 65: VCO Frequency Pulling 
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 When the VCO output is terminated with a non ideal load it affects the VCO 

output frequency. This effect is called frequency pulling, which should be minimized as 

much as possible. Frequency pulling is measured as the change in VCO output 

frequency due to a load having a nominal 12 dB return loss with all possible phases. 

Figure 65 shows the simulation of the frequency pulling across different process and 

temperature. It is observed that the peak-to-peak variation of output frequency is 9MHz 

maximum for 360° phase shift in the load. 

The VCO dissipates both static and dynamic power. Static power is consumed 

due to leakage and subthreshold current. Dynamic power is consumed due to the 

switching of transistors when the charging and discharging of parasitic capacitances 

takes place, and also due to the short-circuit current from the supply to ground when the 

NMOS and PMOS transistors are momentarily on simultaneously. Figure 66 shows the 

average power consumption of the VCO as -18.52 dBW or 14 mW. 

 

 Figure 66: VCO Power Dissipation  
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 Figure 67 shows the output power levels of the VCO. There is substantial power 

present in the higher harmonics of the VCO output frequency which should be filtered 

after downconversion by the mixer stage. 

 

Figure 67: VCO Output Power Level 
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6.2.6 Frequency Divider 

 

The frequency divider [55][56] in the present design performs a simple divide by 

16 operation using a ripple counter with four stages, as shown in Figure 68. Each stage 

consists of a D Flip Flop with the output connected to the next stage D Flip Flop and 

also back to the input. This enables the toggling mechanism for the ripple counter.  
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Figure 68: Frequency Divider Block Schematic 

 

Figure 69 shows the implementation of a single stage of the frequency divider. 

Each stage is implemented using two D latches [57] in a master slave configuration. The 

master and the slave stage latches are locked to the data at the rising edges of the clock. 

Also since the master and slave stage have clock inputs inverted with respect to each 

other they are clocked at opposite phases of the reference input clock.  Hence only one 

stage is active at a particular time. 
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Figure 69: Schematic of Master Slave D Flip Flop 
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 The data is latched to the master stage at the rising edge of the clock to the 

master input, which is obtained by the slave stage on the falling edge. However since 

the master and slave stages receive 180° out of phase clocks and the input clock is again 

inverter through the differential inverter, the data transition at the output of a single 

stage in the divider occurs at the falling edge of the clock.  

 

Figure 70: Master Slave DFF transient response 

 

Figure 70 shows the DFF output transient waveforms when the input is clocked 

at 50 MHz, and a reset pulse frequency is 7MHz. We observe that the output is reset to 

LOGIC LOW at every rising edge of the RESET pulse, and set to high at the next rising 

edge of the clock. The DFF has an average propagation delay of 950ps, a rise time = 

2.45ns and a fall time = 2.1ns under worst case conditions of process corner = Slow-

Slow and temperature = 125°C. 
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Figure 71: D Latch schematic 

 

Figure 71 shows the schematic design of the D-latch at the transistor level. It is 

also implemented in a differential manner, with two different functions performed 

during the two phases of the input clock pulse. When the clock input is low, the 

differential pair (consisting of output transistors M4 and M5) becomes active and the 

output follows the input data transitions. When the clock input is high the differential 

pair is turned off and the transistors M6 and M7  are turned on. M6 and M7 are 

connected to each other through positive feedback, and so they latch on to the value 

present at the outputs at the rising edge of the clock pulse. 
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Figure 72: D Latch transient response 

 

Figure 73: Frequency Divider transient response 
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 Figure 72 shows the D-Latch transient waveforms when the input clock 

frequency = 650 MHz, the D-Latch input is clocked at 110 MHz. We observe that when 

the clock is HIGH, the output is latched to the input and when the clock is LOW the 

output transitions to the same logic level as the input. 

 Figure 73 shows the data at the input and output of the frequency divider. The 

data transition at the divider outputs take place at the falling edge of the input with a 

divide by 16 frequency. The propagation delay is given by 165 ps, rise time = 460ps and 

fall times = 520ps for worst case conditions given by process = Slow-Slow and 

temperature = 125°C. 

 

Figure 74: Frequency Divider Output Phase Noise 

  

 Figure 74 shows the divider output phase noise simulation result using Spectre 

RF. The fundamental frequency is measured at the output of the divider and is equal to 
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38.125 MHz. The divider output phase noise simulated under different process and 

temperature corners shows a worst case performance of -135.3 dBc/Hz at 1 MHz offset, 

which is negligible compared to the VCO output phase noise. 

 

6.2.7 CPLL System simulation results 

 Having designed and simulated each building block of the CPLL, we perform 

the system level simulation for the CPLL system transistor level design. A transient 

simulation following by a phase noise simulation of the system was performed and the 

results are as follows. 

 

Figure 75: CPLL VCO control voltage input transient response 

 

 The CPLL system was initially simulated with a control current of 4µA for 

100µs. Figure 75 shows the transient waveforms for the VCO control input voltages 

over time. We see the waveforms reaching a steady state output of 592.5mV in 25µs. 
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Figure 76 shows the output phase difference transient which settles to 11.9° at steady 

state. 

 

Figure 76: CPLL Phase difference output transient 

 

Figure 77 shows the VCO transient outputs when the control current injected is 54µA. 

 

Figure 77: CPLL VCO output waveforms at steady state 
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Figure 78 shows the phase difference transient output of the CPLL system with 54µA 

control current. The phase difference generated is 176.6° at steady state. 

 

 Figure 78: CPLL Phase difference output transient 

 

Figure 79 shows the phase noise simulation of the entire CPLL system which 

includes both thermal noise and the deterministic noise in the system. The simulation 

was performed under nominal conditions of process = Typical-Typical and temperature 

=27°C. The control current injected is 16uA and the output phase difference at steady 

state is 48°. The CPLL gives a phase noise performance of -95dBc/Hz at 1MHz offset 

with reference spurs at -75dBc/Hz. 
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 Figure 79: Plot of Phase noise of the CPLL at the transistor level with 

control current of 16uA and 48 degree phase generation.  
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Figure 80: CPLL Phase difference output vs control current 

 

 Figure 80 shows the CPLL output phase difference generation versus the control 

current under nominal conditions. We observe that the output phase generated is linear 

with respect to the control current which is a critical requirement in the present design. 

Figure 81 shows the total phase noise simulation of the entire CPLL system 

under nominal conditions of process = Typical-Typical and temperature = 27°C. The 
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control current injected is 54µA and the output phase difference at steady state is 

176.6°. The CPLL gives a worst case phase noise performance of -87dBc/Hz at 1.62 

MHz offset with reference spurs at -70dBc/Hz. 
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 Figure 81: Plot of Phase noise of the CPLL at the transistor level with 

control current of 54uA and 176.6 degree phase generation 

 

6.3 Summary 

This chapter presented the VerilogA modeling of the Coupled PLLs system 

followed by the transistor-level design of each block, viz., the PFD, CP, VCO and the 

frequency divider. The PFD and the frequency divider were implemented in Current 

Mode Logic which is suitable for systems with low noise requirements like the present 

design. The CP was implemented using DAC architecture with another auxiliary DAC 

and a DC bias in place of an operational amplifier to maintain the symmetrical voltages 

between the two branches in the main DAC. Dead zone avoidance was a primary 

consideration in the PFD/CP design. The VCO was implemented differentially and has 
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two sub blocks: the V-2-I converter which converts the input loop filter voltage to 

output current and the Current Controlled Oscillator which converts the input current 

into the output frequency. Each of the blocks was simulated in Spectre across different 

Processes and Temperatures. The phase noise of each block was obtained and combined 

with the deterministic noise to obtain the total Phase Noise of the system. Also the 

output Phase Difference Synthesized was found to have a linear relationship with the 

input control current as desired. 
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CHAPTER 7 

  CONCLUSION  

 

This thesis presented a novel idea for phase generation in the range of +/-180° 

using Coupled PLL systems. The wide range of phase synthesis represents double the 

phase synthesis range possible previously and has been possible due to the use of Phase 

Frequency Detectors instead of the usual multiplier type phase detectors presented in 

earlier works. The implementation of this system in CMOS lends itself to easy 

integration with the base band circuit and makes the system economically feasible. 

Phased Array systems using the coupled PLL systems for phase synthesis find 

applications in emerging gigabit wireless applications  and also be beneficial in the area 

of wireless communications through increased range/coverage, improved link 

quality/reliability, increased capacity of wireless network, interference reduction etc.  

To verify the theory a prototype built using off-the-shelf components proved the 

self-synchronization of the PLL network and its capability to generate a controllable 

phase difference from -180° to +180° where phase adjustment was done using charge-

pumps along with DC control currents. Generating the control currents using current-

mode DACs allows for digital phase control.  

A phase-frequency synthesizer comprising two PLLs was presented, where the 

output frequency is accurately set by a reference input signal. The system allows for 

independent phase and frequency controllability. Mismatch between VCOs has no effect 

on the synthesized phase or frequency. Phase noise analysis indicates that, similar to a 

charge-pump PLL, the VCO phase noise is highly attenuated at frequencies near the 
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carrier. The proposed phase-frequency synthesizer can readily be extended to include 3 

PLLs, generating a constant phase progression. 

The design methodology for IC design was presented and MATLAB simulations 

and VerilogA modeling showed achievable system performance in terms of phase 

synthesis, frequency controllability and phase noise performance of the CPLL system. 

The transistor-level design was performed for each block and the performance of each 

was matched against the VerilogA models, both at the block level and also at the system 

level. The CPLL system is implemented in IBM 130nm process with a 1.2V supply and 

consumes 40mW of power with a phase noise performance of -88 dBc/Hz for 177° 

phase generation. 

The present work can be extended in different directions depending on whether 

the objective is the Coupled PLL performance or its applications. In terms of 

performance, the idea behind the present implementation was to show a practical system 

implementation which provides linear phase synthesis with proper control, has accurate 

frequency controllability and also good phase noise performance which are easily 

provided by the present design. However the phase noise performance of this system 

can be improved easily by using LC tank oscillators depending on the system 

requirements. In terms of system applications, the present system can be extended to a 

three PLL system for phase generation with an improvement in the phase noise 

performance of 3.25 dB compared to a single PLL system. Also an N PLL system for 

phase generation can also be achieved as per the MATLAB simulations shown. Also 

increased frequency of operation can be easily achieved by increasing the frequency 

divider ratio. 
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