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CHAPTER 1

INTRODUCTION

1.1 Overview

Thermal infrared imaging is increasingly being used in medicine for applications

that include evaluation of allergic tests, morphea, basal cell carcinoma, chilblains,

port wine stains, melanocytic naevi and melanoma extensivity, deep vein thrombosis,

burn depth, diabetic foot, Raynaud’s phenomenon, thyroid gland changes, pneumonia

development, arthropathy and many other pathological conditions [26]. The basis for

all of these applications is the fact that skin temperature (the measurement produced

in Infrared (IR) thermography) is a key indication of the presence of underlying med-

ical conditions. In this thesis we will study the feasibility of using IR thermography

to diagnose two conditions: (1) testicular torsion, in which the blood flow to a testicle

is severely reduced; and (2) skin infection with resulting inflammation. The major

work in the thesis is to identify features to consistently diagnose these conditions as

currently there are no statistical models for torsion or infection detection using IR

thermography .

Thermal imaging uses the fact that inflammation causes the body to produce heat

and hence any abnormal increase in the body surface temperature indicates inflam-

mation. On the other hand, a decrease in skin temperature indicates that there is a

decrease in blood flow or vasomotor tone. The different activities of tissues, organs,

and vessels inside an animal’s body affect skin temperature, and a disease may have

a unique thermal signature depending on its effect on the body [8]. For example ma-

lignancies, inflammation and infection cause localized increases in temperature which
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are seen in thermographs as hot spots. For detecting infection there are no precise

distribution models. This thesis will include identifying features and finding temper-

ature distributions for various infections. We will also use the fact that under normal

conditions in the human body there is contra lateral temperature symmetry and thus

a temperature difference in symmetrically located regions indicates an abnormality.

If infrared thermography proves to be a reliable means for diagnosing medically sig-

nificant conditions, it will be very useful in a number of clinical settings (eg., the

emergency room) because it is a non-invasive, non-contact technique, and because

modern infrared cameras are portable, relatively inexpensive, and easy to use [4].

1.1.1 Contributions of This Thesis

We have done the first (to our knowledge) systematic study of the features of skin

temperature distributions (as measured by IR cameras) that can be used to detect

and classify two significant medical conditions: testicular torsion and skin infection.

We have have found that the most common first order statistic (mean temperature

in a skin region) often fails to be adequate for diagnosis. Even a more comprehensive

marginal statistic (Kullback-Liebler distance between suspect and control tempera-

ture distributions) often fails to be a sufficiently sensitive feature. We tried a spatial

statistic (pattern spectrum) that measures shape features of the temperature distri-

bution on the skin, and found that for both torsion and skin infection it provided a

much better differentiation.

Finally, we investigated the use of hypothesis testing techniques (particularly case-

based reasoning) to see if further improvement in detection is possible using multiple

features (pattern spectrum and marginal features). Our conclusion is that the use of

other features along with the pattern spectrum did not significantly improve perfor-

mance beyond the use of the pattern spectrum statistic alone.
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1.2 Torsion and Skin Infection

1.2.1 Characteristics and Current Methods of Diagnosis

In this study we focus mainly on two potential applications of infrared thermog-

raphy:

(a). Testicular Torsion detection: In testicular torsion the spermatic cord that

provides the blood supply to a testicle is twisted, cutting off the blood supply, often

causing severe pain. Prolonged testicular torsion will result in the death of the testicle

and surrounding tissues. The risk of acute scrotal pain is 1 in 160 males by the age of

25 years and the incidence of testicular torsion is 1 in 4000 [27]. Because of the risk

of infarction (i.e, tissue death due to lack of oxygen) surgery is typically performed

in cases of acute scrotal pain when torsion cannot be excluded. An accurate means

of diagnosing torsion would help to avoid unnecessary surgery. Clinical evaluation

of acute scrotal symptoms is often unreliable due to small testicular size in children,

presence of a reactive hydrocele (i.e., swelling due to accumulation of fluid), and lack

of patient cooperation. The test used currently to evaluate acute scrotal symptoms is

Color Doppler ultrasound. The advantage of using it is that one can directly visualize

the testicular blood supply and also can avoid using ionizing radiation. But its use is

limited because it is difficult to detect the flow in small volume. This technique is also

imperfectly available to emergency providers. In this work, we assume that the loss

of blood supply to the scrotum causes substantial temperature difference detectable

by an infrared camera. (This assumption has been verified in previous work) [27].

We plan to make use of this difference to detect torsion using infrared thermography.

(b) Diagnosis of soft skin infections (abscess, cellulitis): An abscess is a collection

of pus that has accumulated in a cavity formed in the tissue as the result of an

infectious process (usually caused by bacteria or parasites) or other foreign materials

(e.g. splinters or bullet wounds). It is a defensive reaction of the tissue to prevent the

spread of infectious materials to other parts of the body. The final structure of the
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abscess is an abscess wall that is formed by the adjacent healthy cells in an attempt

to build a barrier around the pus that limits the infected material from neighboring

structures and also limits immune cells from attacking the bacteria [6]. The cardinal

symptoms and signs of any kind of inflammatory process are redness, heat, swelling,

pain and loss of function. Abscesses may occur in any kind of solid tissue but most

frequently on skin surface (where they may be superficial pustules (boils) or deep

skin abscesses), and in the lungs, brain, kidneys and tonsils. Major complications are

spreading of the abscess material to adjacent or remote tissues and extensive regional

tissue death (gangrene). Abscesses in most parts of the body rarely heal themselves, so

prompt medical attention is indicated at the first suspicion of an abscess. Cellulitis is a

bacterial infection characterized by redness, swelling, warmth, and pain or tenderness.

Cellulitis frequently occurs on exposed areas of the body such as the arms, legs, and

face. Other symptoms can include fever or chills and headaches. In advanced cases

of cellulitis, red streaks (sometimes described as ’fingers’) may be seen traveling up

the affected area. The swelling can spread rapidly. Currently abscess and cellulitis

are diagnosed by examining the affected area or by using techniques like computer

tomography (CT) or magnetic resonance imaging (MRI) for more complicated cases.

These methods are often not effective or are complicated and consume a lot of time

and resources.

1.2.2 Aims and Objectives of This Thesis

Infrared thermography (IRT) cameras might offer a novel diagnostic approach

to both these conditions. They are capable of non-invasive, instant estimation of

temperature differences that might be associated with ischemic conditions such as

testicular torsion or skin temperature increase associated with inflammation. Our

primary objective is to determine whether an IR camera can reliably detect testicular

torsion (using a sheep model) and skin infection in humans. A secondary objective is

4



to see if infrared thermography might be used to distinguish between various infection

types such as abscess and cellulitis by identifying the precise temperature distributions

characteristic to each of them and classifying the images based on the model developed

for each of these specific infections.

The expectations underlying this study are that (1) Testicles undergoing torsion

will exhibit skin temperature difference (relative to the non-torsed testicle) that are

detectable with an IRT camera [28]; and (2) The inflammation associated with in-

fection of specific tissues at particular stages of the disease should be detectable by

infrared thermography. In cases of infections we know that there should be contra

lateral symmetry in the majority of the cases, so diagnosis amounts to determining

if the suspected region of infection has a temperature distribution, relative to the

contra lateral (healthy) region, that is indicative of skin infection.

In both the cases of our interest, we can assume that diagnosis is a hypothesis

testing problem. We have an image of the control case (non-torsed testicular image

or non-infected contra lateral skin region image) and a test image (of torsed testicular

image or skin infection region image). We consider the hypotheses as:

H0: control and test images come from same distribution

H1: control and test images come from different distributions

But for this hypothesis testing we cannot define the optimal likelihood ratio test

because we do not have the complete statistical image model to define the test, so

the main work of the thesis is:

(i). To determine the effective statistical features for testing the hypotheses

(ii). To develop the hypothesis test for diagnosing torsion and skin infection using

infrared images.

The rest of the thesis proposal is organized as follows: Chapter 2 discusses the

acquisition of the data to be analyzed and the various techniques used for analysis. It

gives the details of the first order statistics that were tried to differentiate between the
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torsed and non-torsed images and the results obtained using them. It then discusses

the inadequacy of first order statistics and an analysis of the second order (spatial)

statistics that were sufficient to differentiate between the torsed and non torsed images

is done. The initial results that were obtained using first order statistics are compared

with the results obtained using the spatial statistics.

Chapter 3 discusses the infection detection using thermographic images. The

results obtained after trying the various statistics used for torsion study on skin

infection detection are presented. Chapter 4 contains the detection strategy methods

that were tried using multiple features for detection. The results obtained when Case

Based Reasoning and Support Vector Machines were used are included. The final

chapter is the conclusion chapter that discusses a summary of the contributions the

thesis has made, and a prospect for future research.
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CHAPTER 2

TORSION STUDY

2.1 Introduction

The testicular torsion study makes use of IRT image data supplied by Dr. Geof-

frey Capraro of Baystate Medical Center Springfield, MA. For the study, six sheep

were sedated and anesthetized. A single testicle in each sheep was subjected to ex-

perimental 720 degree torsion. Doppler Ultrasound was used to confirm the presence

and absence of blood flow. The animal was placed in the prone position to allow IRT

image capture from a tripod at 11 inches, and images were captured pre-procedure,

and every 15 min for six hours after the procedure. After six hours the torsion was

corrected to restore blood flow, and IRT images were taken every 15 min for 75 min

after reduction of torsion.

The images were taken using a FLIR Systems B2 camera and transferred to an

attached computer. In our processing, image regions corresponding to each of the

testicles were manually segmented and the temperature information was extracted

using MATLAB. The temperature information for each testicle was stored as a .CSV

file. To test the usefulness of infrared thermography for diagnosing torsion we need

to define features that distinguish torsion/non-torsion conditions in infrared images.

2.2 Technical Details

As mentioned previously the primary objective of this study is to address a two-

fold problem, namely: (i). To determine the effective statistical features for testing

7



Figure 2.1. Original image from FLIR camera

the hypotheses; and (ii). To develop a hypothesis test for diagnosing torsion using

infrared images.

Initially we tested a number of first order statistics to see if they could differenti-

ate between the torsed and the non-torsed images. We used the partial least squares

method [14] to determine the test statistics that are most effective (e.g., sample vari-

ance) to distinguish the torsed and non-torsed images. This led us to eliminate some

statistics as not useful for discrimination. Our preliminary results showed that even

8



Figure 2.2. Preliminary Image analysis using FLIR software.

the first order statistics that were identified as most useful were not adequate to dis-

tinguish between the torsed and the non-torsed images in several test cases. However

using the first order statistics we could distinguish between the images in cases where

the external noise was minimal, so the inadequacy of the first order statistics might

be because of the noise (presumably due to the specific testing conditions) in the

images. We next tried a spatial statistic called the pattern spectrum, which not only

differentiates the temperature disparities but also makes a differentiation based on the

spatial distribution of the heat. The results based on the pattern spectrum show that

using that statistic we could distinguish between the torsed and non-torsed images in

28 out of 31 cases (91% of the cases) in one of the sheep, with similar performance

levels in other cases.

9



Figure 2.3. Left Testicle. Figure 2.4. Right testicle.

2.2.1 First Order Test Statistics

1. Mean temperature difference. The means of the temperature readings

of the two sides were calculated and compared. The side with the torsion is

expected to have a lower mean temperature. This is a very simple and commonly

used test statistic but not always effective.

2. Kullback-Liebler divergence (histogram measure). The Kullback Leibler

(K-L) divergence is a measure of the divergence between two probability dis-

tributions: from a true probability distribution to an arbitrary distribution.

Typically the true distribution represents data, observations, or a precise cal-

culated probability distribution. The arbitrary distribution represents a theory,

model or an approximation of the true distribution [7] . In our case we generate

the histograms of the temperature distributions of both testicles and normalize

them. This creates the distributions for us. We take the normalized histogram

obtained from the side with suspected torsion as the true distribution and the

normalized histogram from the control side as the arbitrary distribution to cal-

culate the Kullback Leibler divergence.

10



DKL(P ‖ Q) =
∑

i

P (i) log
P (i)

Q(i)

where i images over the temperatures in the images , P(i) is the true distribution,

and Q(i) is the arbitrary distribution . This test statistic measures difference

in the entire histogram.

3. Wald Wolfowitz test. This is a nonparametric test for testing the null hy-

pothesis that the distribution functions of two populations are the same. The

observations (in our case the pixel temperature values) are taken from the re-

spective sides and arranged in increasing order of magnitude, irrespective of the

side they came from. Each value is then replaced by 0 or 1, depending on the

testicle from which it was taken. The total number of runs of like elements is

then counted and used as a test statistic. If the two populations differ among

themselves, then elements of one type (0s or 1s) would be expected to cluster

together and the total number of runs will be small. If the populations are

identical then the arrangements of 0s and 1s should be random and the total

number of runs should be large [27].

2.2.1.1 Preliminary Results

The various test statistics were calculated for each set of the sheep images and

the results plotted.

The mean and K-L divergence were calculated for selected pairs of images for

each sheep and scaled using the standard deviation. The images selected were images

taken from 120 minutes to 330 minutes, after the torsion started (these represent cases

where one testicle is torsed), and one pair of images before the torsion was started

and 2 pairs of images that correspond to 45 and 60 minutes after the blood supply

11



Figure 2.5. Sheep 6 KL vs MD for selected cases. Images with
torsion are indicated in blue and images with no torsion in red.(The
X-Axis represents the Kullback-Liebler distance and the Y-Axis
represents the Mean Difference.)

Figure 2.6. Sheep 4 KL (X-Axis) vs MD (Y-Axis) for selected
cases. The blue points represent torsed image pairs and the red
points represent the non-torsed image pairs.
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was restored (these are used to represent cases where there actually is no torsion).

From the graphs we can see that using the metrics, mean temperature difference

and Kullback-Leibler divergence we can easily distinguish (i.e, separate the points

corresponding to) the pairs of images with torsion (blue) and without torsion (red)

in several cases.

However when all the pairs of images taken for a particular sheep were considered

and plotted we found certain cases (e.g., sheep 4, see Figure 2.6 ) in which we cannot

completely distinguish torsion/non-torsion .

Figure 2.7. Sheep 4, 6 and 7 KL vs MD (Selected cases from sheep 4, 6 and 7).
Blue Points represent images with torsion and red points images without torsion.

When we plot the metrics for images of sheep 4, 6 and 7 treated as a group, we

get a plot where we can see that we cannot easily distinguish the pairs of images with

torsion and images without torsion (see Figure 2.7). This problem might have arisen

because of the inconsistency in taking the images for different sheep under conditions

that could not be controlled.
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Similar results were found using the Wald-Wolfowitz statistic - it successfully dis-

criminated the conditions in some cases, but failed in several others. The inadequacy

of these first-order statistics led us to consider a spatial statistic based on mathemat-

ical morphology, which we describe next.

2.2.2 Spatial Statistics

The preliminary results on torsion images indicate that marginal distribution

statistics may not be sufficient to distinguish the torsion images from the non-torsion

images in all cases. Hence, we consider a statistic that not only accounts for the

differences in the marginal temperature differences but also the difference in the tem-

perature distribution pattern. We expect that spatial pattern of temperatures may

differ in torsion/non-torsion cases even when the marginal distributions are similar.

In particular, we expect higher temperatures to be aligned above blood vessels in

non-torsion control images and be more scattered (due to noise) in torsion images.

1. Pattern spectrum. Mathematical morphology is a method to quantitatively

describe processing operations that are sensitive to the shape of objects in an

image. It is sometimes used for modeling the processes of human recognition

of visual information. Mathematical morphology describes such operations by

combinations of basic set operations between an image and a small object called

a structuring element. The pattern spectrum is an application of mathematical

morphology. The pattern spectrum extracts the size distribution of objects

contained in an image by decomposing the target image into objects of various

sizes whose shapes are similar to the structuring element [9]. Mathematical

morphological operations are shift-invariant image manipulations and can be

decomposed into two simple basic operations - dilation and erosion. We first

explain these basic operations in terms of binary structuring elements for binary

images. These operations are defined as set operations. An image is assumed
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to be a set of pixel positions that constitute image objects (represented as 1’s

in binary images). Let X denote a set representing an image. Let B be another

set called a structuring element (SE). The structuring element is used to define

morphological filtering operations, based on which Minkowsky set subtraction

and addition are defined as follows:

subtraction: X ªB = {x|Bx ⊆ X}

addition: X ⊕B = {x|Bx ∩X 6= Ø}

where Bx denotes translation of B by x, defined as

Bx = {z + x|z ∈ B}

The operations of erosion and the dilation are defined as X ⊕Bv and X ªBv ,

respectively, where Bv is defined as Bv = {−x|x ∈ B}.

The effects of dilation and erosion are schematically illustrated in Figure 2.8.

Clearly, dilation expands the original image while erosion shrinks the original

image . These binary operations can be extended to morphological operations

for gray scale images by introducing the concept of umbra. Consider a function

X(y), which expresses a grayscale image, where y ∈ Rn and consider an Rn+1

coordinate system for (y,X(y)). In most cases for image processing, n = 2.

In this case y is regarded as a pixel position and X(y) as the pixel value at y.

The umbra of a function is defined in this Rn+1 coordinate system as the set

of all coordinate points lower than the value of the function over the extent of

the function. Using this expression, the morphological operations of grayscale

images are reduced to binary operations on the umbrae of the function for the

image [10]. In the case that the structuring element is binary, the structuring
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Figure 2.8. Erosion and dilation on grayscale image by binary structuring element.
(One dimensional case where images X is the solid curve).

element is defined as an area above the y axis. The mathematical operations

of erosion and dilution are defined similarly to the case of binary images. The

results of dilation and erosion of a grayscale umbra by a binary structuring

element are depicted in Figure 2.8.

Two other important and basic operations, called opening and closing, are de-

rived from the erosion and dilation. The opening is defined as erosion followed

by dilation by the mirrored SE of the original SE used for the erosion. The

closing is also defined as dilation followed by erosion. More formally, opening

and closing are defined as follows:

Opening: XB = X ªBv ⊕B

Closing: XB = X ⊕Bv ªB
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The opening eliminates the portions of image objects smaller than the SE while

preserving the other portion of the objects. The closing is the complement: it

fills up smaller spots while preserving the other portions of the background.

Openings and closings can be used to quantify the size distribution of objects,

which is the idea behind the definition of the pattern spectrum. The pattern

spectrum of size n (defined below) by an SE is defined as the pixel-wise difference

between the target image opened by a homothetic set of a SE of size n and that

opened by SE of size n + 1. Let nB be the homothetic set of a structuring

element B of size n, defined as follows:

nB = B ⊕B ⊕ ...⊕B{(n− 1)additions}

0B = {0}

Then the pattern spectrum of size n by the SE B for image X, denoted as

PS(X,B, n), is defined as follows:

PS(X, B, n) =
∑

y∈whole image
{XnB(y)−X(n−1)B(y)}

where ”-” sign denotes the pixel-wise difference. Since the opening removes the

portion smaller than the SE, the difference of the images opened by the SEs of

size n and size n + 1 contains the portion whose size is exactly n. The original

image is thus decomposed into sets of the SEs of various sizes. The normalized

pattern spectrum, which is defined as the ratio of the original pattern spectrum

to the sum of the pixel values over the whole original image, is often used. The

spectral values of the normalized pattern spectrum indicate the ratio of the

portions of a given size to the whole image [10].

When applied to the torsion test images, we expect that in images of non-

torsed testicles the temperature pattern will exhibit relatively smooth peaks
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Figure 2.9. Figure illustrating the process to calculate the pattern spectrum.

corresponding to skin regions above blood vessels. Hence, when we do the

opening of the images with structuring elements of growing sizes, we expect

the differences calculated between subsequent openings to be relatively high

compared to the testicle images with torsion. We define a test statistic which

is the sum of the differences in subsequent openings normalized by the total

number of pixels in the image-

That is: Test statistic =
∑

[(pixel wise difference in opening by n and opening

by n-1)/total number of pixels in that image].

2.2.2.1 Preliminary Results

The preliminary results show that there are cases where the previous statistics

could not distinguish torsion but pattern spectrum was very effective. In the case

of sheep 7 where the first order statistics failed completely to distinguish the torsion
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Figure 2.10. Plot of size of opening vs. pixel wise difference. The X-Axis represents
the size of the opening and the Y-Axis is the pixel wise difference. We can see that
there is a difference in in the pixel wise difference for various size of openings when
we compare the results for left and right testicle images but less difference when we
compare the results for two left testicle images or the right testicle images. We use this
information to differentiate between the torsed and non-torsed images. (The images
on the left are the results obtained for the left testicle images taken at 255 minutes
and 300 minutes and the images on the right for the images of the corresponding right
testicles).
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Figure 2.11. Comparing plots of Pattern Spectrum and KLvsMD for sheep 7. We
can see that by thresholding the graph in the Pattern Spectrum plot one can distin-
guish the torsed cases from the non-torsed cases. In the pattern spectrum graph the
Y-Axis represents the difference in the test statistic of the left and right testicles in
each case. In the KL Vs MD graph, the X-Axis represents the KL distance and the
Y-Axis represents the Mean Difference. We can see that we cannot isolate the torsed
cases from the non-torsed cases.
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Figure 2.12. Pattern Spectrum plot in case of Sheep 6.

Figure 2.13. Pattern Spectrum plot in case of Sheep 4.
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side from the non-torsion side pattern spectrum analysis was effective in 28 out of

31 cases by simple thresholding of the test statistic . Also pattern spectrum analysis

was used in two other sets of sheep images where it was effective in 28 out of 32 cases

in one and 29 out of 32 in the other set of sheep images.

In the three sheep cases we considered we can threshold the pattern spectrum

statistic around 0.1 and segregate the torsion images from the non-torsion images. In

sheep 6 it is approximately 0.18 and in case of sheep 4 it is approximately 0.12.

The reason why pattern spectrum analysis was effective could be that heat is

distributed according to the blood flow in the blood vessels and follows a pattern.

When the blood supply was cut off during torsion, there was no heat from the blood

vessels and the temperature pattern could have been changed because the heat had

been dissipated in the tissue but there is no heat supply from blood flow. This change

in the pattern is detected and quantified in the pattern spectrum analysis enabling

us to distinguish torsed images from non-torsed ones. A similar effect is expected

in infection images where the temperature pattern would change due the increase in

heat in the region of inflammation.
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CHAPTER 3

SOFT SKIN INFECTION DIAGNOSIS

3.1 Introduction

The soft skin infection study is based on a sample of patients suspected to have ei-

ther cellulitis or abscess, seeking care in a tertiary, urban ED. The study was approved

by the IRB and participants and guardians provided consent and assent. Digital in-

frared images were captured from infected and corresponding contra-lateral regions

of interest using a Flir B2 IRT camera (Flir Inc. Billerica, MA) after one minute of

unclothed exposure to room temperature. Skin markers were applied at the margins

of the infected region to demarcate the region of interest and facilitate post hoc image

analysis. Images were stored in the camera’s on-board memory and image analysis

deferred until study completion.

Localized heat production is a cardinal feature of inflammation broadly and infec-

tion specifically. At present, the determination of localized heat is a clinical, bedside

maneuver, and emergency providers make no attempt to quantify this sign. IRT

technology is capable of quantifying heat in the infrared range of the electromag-

netic spectrum and encoding this data in the pixels of a digital image. IRT cameras

could allow non-invasive quantification of asymmetric temperature. This investiga-

tion was performed as a proof of concept, which if proven, might be followed by more

sophisticated image analysis, and investigation of more challenging infections [28].
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3.2 Data Collection

The images were taken using a FLIR Systems B2 camera and transferred to an

attached computer. In our processing, image regions corresponding approximately

to the infected area were manually segmented and the temperature information was

extracted using MATLAB. The temperature information for each segmented image

was stored as a .CSV file. To test the usefulness of infrared thermography for diagnos-

ing skin infection we need to define features that distinguish infection/non-infection

conditions in infrared images.

A bed mounted tripod assembly was used to capture the IRT digital images. The

images were captured from a fixed distance of three feet. Images were captured from

both the infected and contralateral unaffected sides. Images were taken of the dry

skin, fan-cooled skin and saline- and fan-cooled skin. The margins of the tenderness

of the infection were marked with metal beads.

Figure 3.1. Left Ankle (Control
Side).

Figure 3.2. Right Ankle (Side
with cellulitis infection).

3.2.1 Infection Verification

Ultrasound was performed after image capture to establish the presence or absence

of an abscess, and to measure the size of the abscess. This ultrasound measurement
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was used as a “gold standard” for determining presence of infection on the day of

image capture [28].

3.3 Technical Details

The primary objective of this study is: (i). To determine the effective statisti-

cal features for testing the hypotheses; and (ii). To develop a hypothesis test for

determining whether non-draining, untreated soft tissue infections presenting to the

emergency department (ED) are associated with increased localized heat as deter-

mined by an infrared thermography (IRT) camera.

Initially we tested the first order statistics used in the torsion study to see if they

could differentiate between the infected and the non-infected images. We expected

a better performance with the skin infection images as these were taken from a cal-

culated distance and angle and also care was taken to remove the external noise.

Our preliminary results showed that the first order statistics were not adequate to

distinguish between the infected and the non-infected images in several test cases.

However using the first order statistics we could distinguish between the images

in cases where the focus of the images was good and the images not zoomed in too

much. Also cases in which the region of interest was marked using beads showed

better performance. Hence we can conclude that human factors like zooming and

focussing on the subject of interest played an important role in the success of the first

order statistics. We next tried the spatial statistic, the pattern spectrum to see if

that would eliminate the role of the human factor. The results based on the pattern

spectrum show that using that statistic we could distinguish between the infected

and non-infected images in 78 out of 81 cases (96% of the cases).
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3.3.1 First Order Test Statistics

The various test statistics that were used in the torsion study were calculated for

each set of the infection images and the results plotted.

3.3.1.1 Preliminary Results

1. Mean temperature difference. Mean temperature within the region of

interest was determined using the manufacturer’s analysis software, by ’“draw-

ing” a best-fit polygon oval bounded by the skin markers around the infected

site and corresponding contra-lateral region. The difference in mean tempera-

tures, infected minus control, was calculated and analyzed. The side with the

infection is expected to have a higher mean temperature because of the inflam-

matory nature of skin infections . When we considered the set of images in

which the infection region was clearly marked with metal beads (temperature

different from skin) there was a significant difference in the mean temperature

of the infected image and non-infected image. Except for one case out of thirty

one we can easily distinguish the infected cases from the non-infected cases.

But when we considered all the images, including the ones without markers it

was difficult to distinguish using just the mean temperature statistic.

2. Kullback-Liebler divergence (histogram measure). The Kullback Leibler

(K-L) divergence (defined in Sec.2.2.1) was calculated for the sets of images and

plotted along with the mean-difference. The K-L distance could distinguish

twenty six out of the thirty one sets of images correctly.

The mean and K-L divergence were calculated for the pairs of images for each

subject and scaled using the standard deviation. When calculating the pa-

rameters we assumed both cellulitis and abscess as just infection and did not

distinguish between them. From the graphs we can see that using the metrics,

mean temperature difference and Kullback Leibler divergence we can easily dis-
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Figure 3.3. KL vs MD for selected cases where metal beads
were used to mark the infected region. (The X-Axis represents
the Kullback-Liebler distance and the Y-Axis represents the Mean
Difference). The red points represent cases with no infection and
blue points cases with infection.

Figure 3.4. KL (X-Axis) vs MD (Y-Axis) for all cases. The red
points represent cases with no infection and blue points cases with
infection.
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tinguish (i.e, separate the points corresponding to) the pairs of images with

infection (blue) and without infection (red) in 93.5 % of the cases where the

infection region was marked clearly.

3. Wald Wolfowitz test.

When we tested using the Wald-Wolfowitz statistic - it successfully discrim-

inated the conditions in some cases, but failed in several others. Hence, we

deemed it not useful as a detection statistic.

3.3.2 Spatial Statistics

The results on the infected images clearly indicate that marginal distribution

statistics may not be sufficient to distinguish the infected images from the non-infected

images when we consider all the cases. Hence, we consider second order statistic

pattern spectrum in the study. In particular, we expect high temperature at the

center of the infection gradually decreasing as we move towards the non infected

healthy region. We might also find a difference in the patterns of abscess and cellulitis

infections.

3.3.2.1 Preliminary Results (Pattern Spectrum)

The pattern spectrum was calculated for each of the pair of images (the segmented

region of the infected side and the contralateral symmetric side) and compared.

From the figure Figure 3.5 we can see that when the infection region is marked with

beads in the images, the pattern spectrum of the infected side and the contralateral

symmetric side differs significantly. We can attribute this to the fact that we can

capture the area of interest and remove the unwanted (equivalent to noise) region

from our analysis. In figure Figure 3.7 we can see that when the infected region was

not marked we considered a region that included more than the infection area and
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Figure 3.5. Pattern Spectrum
calculated in the case where there
was infection on one side and the
region marked with beads.

Figure 3.6. Pattern Spectrum
calculated in case where there was
no infection.

Figure 3.7. Pattern Spectrum
calculated for a case where there
was infection but region was not
marked (had to consider a larger
area when calculating) .
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hence the difference in pattern spectrum is less than that of the case where the region

was marked.

Figure 3.8. Pattern Spectrum calculated for all cases.

When we plot the K-L distance between the pattern spectrum statistics for the

images, we can see (Figure 3.8 that we can distinguish the infected cases and non-

infected cases at a threshold of 0.05. When we keep the threshold at 0.05 there is

one case where there is infection but not detected but the value is very close to 0.05.

Also there is one false positive. Instead of taking all the cases into consideration, if

we take just the case of the images where the infected regions are marked using the

beads then we can easily raise the threshold to a value greater than 0.1 and miss

one case.See Figure 3.9. Also in this case there is no false positive. This one case is

missed because the image was not focussed when taken and could easily be rectified

in all future studies or real life.

The reason that pattern spectrum worked is probably due to the fact that the

heat is distributed radially when there is inflammation due to infection and pattern

spectrum captures this heat distribution pattern. First order statistics would capture
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Figure 3.9. Pattern Spectrum calculated for Images with infected
area marked.

the measure of heat and would miss the cases when the difference in the heat measure

is too little to distinguish or if the difference is lost in external noise.
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CHAPTER 4

DETECTION STRATEGY

As shown in the previous chapters, use of the pattern spectrum difference as

a test statistic enables effective detection of temperature distribution disparities in

a large majority of our test cases. However, even that statistic alone does not give

perfect detection. In this chapter we investigate detection strategies that use multiple

statistics in an attempt to improve performance.

The key for detection strategy would be to define a test with very small probability

of false alarm with probability of detection almost equal to one. Since we have a very

small data set we need to use a detection strategy that uses all the features available

from the data and gives an effective test. Since we do not have distributions for

features so the detection strategy must include training to ‘learn’ best division rules.

We had tried two methods for detection strategy, Case Based Training and Support

Vector Machines.

1. Case based reasoning (CBR) : The CBR classifier compares a test case to

a reference (training) collection of cases, and identifies similar cases. Euclidean

distance measure is used to determine the similarity between the test case and

the reference cases. Suppose there are n scalar features, denoted φii = 1, 2, ..., n.

The distance between a test case and a reference case is then

DEucledian(test, ref) =

√√√√
n∑

i=1

|φitest − φiref
|2.

(Note that this weights each of the features equally.) Given this distance be-

tween the test case and a reference case, the two cases are judged to be similar
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if the distance between them is less than a specified similarity threshold. In the

search for the best similarity threshold, we start at 0 where few cases are similar

and continue increasing the threshold. As the similarity distance increases, the

CBR categorizes more cases as similar. The ’‘best” similarity threshold can be

obtained by exhaustively examining all possible thresholds to draw the Receiver

Operating Characteristic (ROC) and for example, choosing the threshold that

maximizes partial ROC area (0.90AUC) (where AUC is defined as the area-

under-curve. The expected performance of a classifier can be characterized by

the AUC. A perfect classifier has AUC = 1).

A receiver operating characteristic (ROC), or simply ROC curve, is a graphical

plot of the sensitivity vs. (1 - specificity) for a binary classifier system as its

discrimination threshold is varied. The ROC can also be represented equiva-

lently by plotting the fraction of true positives (TPR = true positive rate) vs.

the fraction of false positives (FPR = false positive rate)

In our case we used both the first order statistics and pattern spectrum measure

as the features, and tested the similarity between a known image of infection

region and an image of the contralateral symmetric region. In our case the

φis are the mean difference, the K-L distance and pattern spectrum statistic.

Then a threshold was determined to predict if the test case had infection or not

and the probabilities of false alarm were calculated. Also we repeated the same

process but used an image without infection as the test image.

In the Table sensitivity measures the proportion of actual positives which are

correctly identified as such (i.e. the percentage of infection images that are cor-

rectly identified as having infection); and the specificity measures the proportion

of negatives which are correctly identified (i.e. the percentage of non-infected

images that are identified as not having infection).
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Threshold Sensitivity Specificity
1 .3514 .8571
1.5 .6081 .8571
2 .7568 .8571
2.5 .8378 .8571
3 .8784 .8571
3.5 .8919 .8571
4 .9459 .1429
4.5 .9459 0
5 .9595 0
5.5 .9730 0
6 .9730 0
6.5 .9730 0
7 1 0
7.5 1 0

Table 4.1. Sensitivity and Specificity values for different thresholds.

Sensitivity =
numberofTruePositives

numberofTruePositives + numberofFalseNegatives

Specificity =
numberofTrueNegatives

numberofTrueNegatives + numberofFalseNegatives

FalsePositiveRate = 1− Specificity

The ROC was plotted and AUC calculated. The exact AUC was calculated

using:
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AUC =
∑

i

(yi+1 + yi) ∗ (xi+1 − xi)

2

Figure 4.1. ROC when the test case had infection and all others
were used as reference cases.

In the case when the test case used had infection and the rest of the images

were used as reference cases the AUC was calculated to be 0.8166 which can be

classified as good. In this case the detection strategy was to find out whether the

test image had infection. The threshold corresponding to 0.9*AUC lay between

3.5 and 4.0, with probability of false alarm 0.1429 and detection probability

0.8919. Note from the ROC that incorporating other features in addition to the

pattern spectrum provided little (if any) improvement in performance beyond

the use of pattern spectrum alone.

The ROC was plotted with the detection strategy to find if the test case did

not have infection. This would mean that a false positive would be an infected
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Figure 4.2. ROC when the test case had no infection and rest all
were used as reference cases.

image classified an a non-infected image. In this case the AUC was calculated to

be 0.9546 which can be classified as excellent and the threshold corresponding

to 0.9*AUC was found to be between 6.5 and 7.0 with probability of false alarm

0. The probability of detection in this case is around 0.45 and hence might not

be a useful threshold.

2. Support Vector Machine (SVM): Binary Support Vector Machines are

based on a decision-hyper plane heuristic that attempts to impose a training

instance void, or ’“margin,”’ around the decision hyper plane. Feature vectors

are denoted by xik, where index i labels the M feature vectors (1 ≤ i ≤ M) and

index k labels the N feature vector components (1 ≤ i ≤ N). For the binary

SVM, labeling of training data is done using label variable yi = ±1 (with sign

according to which class the training instance is from). The optimal separat-

ing hyperplane is one that maximizes the “margin” (i.e, minimum distance)
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between the data classes. Training the basic linear SVM formulation can be

extended to non-linear separating curves. See [16] and [19] for more details.

Once training is complete, discrimination is based solely on position relative to

the discriminating hyper plane.

Figure 4.3. SVM classification using 3 sets of sheep.

Figure 4.4. SVM classification using 4 sets of sheep.

On the testicular torsion data described in Chapter 2, we tested SVMs using

the mean difference and KL Distance as features. The seperating curves were

generated using the Radial Basis Kernel function.

In the graphs the areas marked in blue are the regions in which the pairs of

images with no torsion fall, and the areas outside the green lines are the area in
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which the pairs of images with torsion fall. We can see that, as expected the area

where both the mean difference and K-L divergence is small is marked in blue.

But also because of the inconsistencies and inadequate number of images there

are several other regions marked in blue which should not be. From the above

results we can again see the inadequacy of marginal distribution statistics. As

noted in Chapter 2 , the pattern spectrum alone was successful in distinguishing

torsion/non-torsion in many cases where marginal statistics failed.

The main drawback of current SVM models is their high computational com-

plexity for large data sets. As we increase the number of parameters the number

of training cases required for learning increases exponentially.

We tested SVMs again with the inclusion of pattern spectrum features along

with marginal statistics to see if we can achieve nearly perfect discrimination

but SVMs were not very effective. This is probably because we have a very low

number of test cases when compared to the number of test cases SVMs require.
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CHAPTER 5

CONCLUSION

Infrared Thermography is an excellent means to visualize soft tissue infection in

humans. We developed a very fast method using pattern spectrum and MATLAB that

is able to directly extract the heat pattern properties from the images. In practice this

means, for example, that after exposing the infected area for a minute we can take an

infrared image of the infected area and the contralateral area and compare the images.

Since infection has its own heat pattern we can distinguish it from normal skin. The

development of computer aided diagnosis of the skin temperature disparities is very

important for the Emergency Room which can now be supported with quick diagnosis

and interpretation of the inflamed region. This will lead to shorter and non-intrusive

examinations. A similar study has been done for detecting torsion which is another

common condition occurring in patients coming to the Emergency Room. Infrared

thermography was successful in detecting torsion in sheep testicles and can be applied

to humans.

The feature that best distinguished infected vs non-infected images or torsion vs

non-torsion infrared images was the pattern spectrum. This is due to the fact that

this second order statistic effectively captures the heat pattern distribution while the

first order statistics are just a measure of the heat. For the detection strategy we

considered all the features and used Case Based Reasoning (CBR). CBR was chosen

as we can use most of the images we have as a reference set and use one pair of

images as a test set and calculate the effectiveness of the detection strategy. The

results did not show improved performance beyond that obtained using the pattern
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spectrum alone as the detection statistic. We tried Support Vector Machines (SVMs)

for making a detection strategy but it was not very effective as SVMs require a lot of

training data which we lacked.

The Receiving Operator Curve plotted using this detection strategy gives an Area

Under Curve value of 0.9546 which is a measure of the ability of the test to correctly

classify images with and without infection. This test can be classified as an excellent

test.

Another conclusion from our work is that, when feasible a clinician should mark

the area of suspected infection (e.g., outlined by metal beads) before taking the IR

picture. This substantially improved detection performance in our cases.

5.1 Future Work

While our results using Case Based Reasoning did not show gains in performance

when we used marginal features in addition to the pattern spectrum, we could inves-

tigate what happens when we attempt to optimize weighing of the different features

in the test statistic.

Further study can be done to distinguish between abscess and cellulitis based

on the heat pattern characteristic specific to each infection. The plots of the size

opening Vs pixel wise difference were plotted for cases with Abscess and Cellulitis in

our data set were plotted and compared. There was significant difference between

the plots. See Figure 5.1. The K-L distance between the normalized distributions

was calculated to be 0.1547 which is comparable to the threshold we obtained in

distinguishing the infected vs non-infected images. Then the plots were compared to

the plots of the healthy contralateral regions. We can see from the plots (Figures 5.2

and 5.3) that when we compare Abscess and Cellulitis Vs Abscess and contralateral

there are differences that can be used to distinguish between the infections.
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Figure 5.1. Pattern Spectrum statistic for images with Abscess
and Cellulitis.

Figure 5.2. Pattern Spectrum for Abscess Vs Contralateral
healthy images .
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Figure 5.3. Pattern Spectrum for Cellulitis Vs Contralateral
healthy images .

The differences is because each of the infections has its own heat pattern. While

abscess is characterized by a cavity filled with pus with heat concentrated at the

center cellulitis is characterized by layers. This difference in pattern can be used to

distinguish them. Since we have limited data (only four cases of cellulitis) on the

infection images we did not do a full analysis on this.
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