
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses 1911 - February 2014

2008

Adaptive Inference and Its Applications to Protein
Modeling
Bo Jiang
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 -
February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Jiang, Bo, "Adaptive Inference and Its Applications to Protein Modeling" (2008). Masters Theses 1911 - February 2014. 165.
Retrieved from https://scholarworks.umass.edu/theses/165

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Ftheses%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses/165?utm_source=scholarworks.umass.edu%2Ftheses%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

ADAPTIVE INFERENCE AND ITS APPLICATION TO
PROTEIN MODELING

A Thesis Presented

by

BO JIANG

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE

September 2008

Electrical and Computer Engineering

ADAPTIVE INFERENCE AND ITS APPLICATION TO
PROTEIN MODELING

A Thesis Presented

by

BO JIANG

Approved as to style and content by:

Ramgopal R. Mettu, Chair

Dennis L. Goeckel, Member

Weibo Gong, Member

C. V. Hollot, Department Head
Electrical and Computer Engineering

TABLE OF CONTENTS

Page

LIST OF FIGURES . v

CHAPTER

1. INTRODUCTION . 1

2. GRAPHICAL MODELS AND ADAPTIVE INFERENCE 3

2.1 Factor Graphs and Sum-product Algorithm . 4

2.1.1 Factor Graph . 4
2.1.2 Sum-product Algorithm . 5
2.1.3 Min-sum Algorithm . 6

2.2 A Data Structure for Adaptive Inference . 8

2.2.1 Tree Contraction . 10
2.2.2 Local Orientations of Clusters . 11
2.2.3 Bottom-up Message-passing in Cluster Tree 13

2.3 Queries . 14

2.3.1 Query for Marginals . 14
2.3.2 Query for Min-sum Configuration . 15

2.4 Updates . 16

2.4.1 Updating Cluster Functions . 16
2.4.2 Updating GMC . 16

2.5 Comparison of Complexities . 18

3. APPLICATION TO PROTEIN MODELING . 21

3.1 The Side-chain Packing Problem . 21
3.2 Energy Minimization . 23

iii

3.3 Tree Decomposition . 23
3.4 Adaptive Side-chain Packing . 25

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 26

4.1 Ordering in Message Computation . 26
4.2 Test Results for Synthetic Benchmark . 27
4.3 Generating the Graphical Model of a Protein . 29

4.3.1 Initialization of Rotamers . 29
4.3.2 Energy Computation . 31
4.3.3 Construction of the Graph and Dead-end Elimination 32

4.4 Test Results for Proteins and Discussions . 35

5. CONCLUSIONS . 40

BIBLIOGRAPHY . 41

BIBLIOGRAPHY . 42

iv

LIST OF FIGURES

Figure Page

2.1 An example of factor graph. 5

2.2 Bottom-up message-passing. 9

2.3 Top-down message-passing for computing GMC. 9

2.4 Tree contraction. 12

2.5 Cluster tree for the tree contraction in Fig. 2.4. 12

2.6 Algorithm for computing local orientations. 13

2.7 Algorithm for configuration update. 17

2.8 Markov property. 18

3.1 Amino acid and protein segment. 22

4.1 Log-log plot of running time for sum-product, building cluster tree,
computing queries and updating factors. 28

4.2 Log-log plot of running time for min-sum, building cluster tree,
computing queries and updating factors. 29

4.3 Log-log plot of updating time as the factor tree size increases. 30

4.4 Log-log plot of updating time as the number of updated factors per
round increases. 30

4.5 Linear plot of updating time as the number of updated variables per
round increases. 31

4.6 Comparison of DEE time. 35

4.7 Running time for changing states of multiple residues for proteins in
SCWRL benchmark. 36

v

4.8 Running time for changing states of multiple residues for proteins in
SCWRL benchmark. 37

4.9 Running time for changing states of multiple residues for SCWRL
proteins for which min-sum takes nonzero time. The protein
indices here are different from that in Figs. 4.7 and 4.8, though
still in the order of increasing protein size. 39

4.10 Average numbers of updated rotameric states for proteins in the
SCWRL benchmark. 39

vi

CHAPTER 1

INTRODUCTION

Inference problems naturally arise in many scientific and engineering areas. For

some applications, the inference is done once and for all. We can call such inference

static. For many other applications, however, we need to perform inference under

dynamically changing conditions. For example, it might be desirable to assess the

effects of a large number of possible interventions. This poses the problem of adaptive

inference, namely, how to quickly incorporate changes and compute new inference

results from old ones.

In this thesis, we present an adaptive inference algorithm with application to

computational biology. The contributions of this thesis include an algorithm for dy-

namically updating optimal configuration and its theoretical analysis, the application

of adaptive inference to protein modeling, a modified dead-end elimination method

and a C++ library for performing adaptive inference.

In Chapter 2, we will discuss the use of graphical models to solve inference prob-

lems. We will first review the classical sum-product type algorithms [9]. Then the

adaptive inference algorithm in [1] is introduced. In [1], the focus is on the compu-

tation of marginals. In this thesis, we will also address the problem of adaptively

updating minimizers in the context of the min-sum algorithm, which is a variant of

the sum-product algorithm.

Chapter 3 considers the application of the adaptive inference algorithm to com-

putational biology. A central problem in computational biology is the prediction of

the three-dimensional conformation of a protein, given its sequence of amino acids.

1

Usually the backbone is assumed to be known [5, 6, 16] and the problem reduces to

side-chain packing. The need for adaptiveness is motived by the study of ligand bind-

ing and allostery, where we would like to know how the global conformation changes

when some local changes are introduced. Chapter 3 will briefly review the side-chain

packing problem and then introduce the adaptive side-chain packing problem.

Chapter 4 presents some implementation details and the experimental results. The

adaptive inference algorithm is tested first on a synthetic benchmark and then on real

proteins. The results for both tests are presented. Finally, Chapter 5 concludes the

thesis.

2

CHAPTER 2

GRAPHICAL MODELS AND ADAPTIVE INFERENCE

In probability theory, a graphical model is a graph in which each node represents a

random variable, and the absence of an edge between two nodes represents the condi-

tional independence of the corresponding variables. Thus a graphical model captures

the structural information of the joint probability distribution. More generally, a

graphical model provides a graphical representation of the structure of any function

f of a set of variables x1, x2, . . . , xn. For the purpose of this thesis, we will focus on

a particular type of graphical model, namely the factor graph.

Given a graphical model, some useful information can be efficiently computed by

exploiting the structural information. The information extraction process is referred

to by the general term inference. Classical examples include the sum-product algo-

rithm and its variants [9]. In some applications, for example, the structural study of

proteins in Section 3.4, we need to extract information under dynamically changing

conditions. This poses the problem of adaptive inference. In [1], Acar et al proposed

an adaptive inference scheme, which provides a solution to this problem in the special

case of factor trees.

In this chapter, we start with a discussion of factor graphs and the classical sum-

product type algorithms in Section 2.1. Then we introduce the data structure for

adaptive inference in Section 2.2. The two basic operations, query and update, are

discussed in Sections 2.3 and 2.4, respectively. Finally Section 2.5 concludes this

chapter with a comparison of the complexities of the classical and adaptive inference

schemes.

3

2.1 Factor Graphs and Sum-product Algorithm

This section provides some background information about factor graphs and the

sum-product algorithm. Section 2.1.1 introduces the concept of a factor graph. Sec-

tion 2.1.2 discusses the classical sum-product algorithm for computing marginal distri-

butions. Section 2.1.3 discusses the min-sum algorithm, a variant of the sum-product

algorithm, with an emphasis on computing the consistent variable configurations.

2.1.1 Factor Graph

Throughout this thesis, a variable is assumed to take on finitely many values, and

a factor is a function of finitely many such variables. We now give a formal definition

of factor graphs [9].

Definition 1 (Factor graph). A factor graph is a bipartite graph (X,F,E), where

X = {x1, . . . , xn} is a set of variables, F = {f1, . . . , fm} a set of factors, and E ⊂

X × F a set of edges such that e = (xi, fj) ∈ E if and only if xi is an argument of

factor fj.

Definition 2 (Factor tree). A factor tree is a factor graph with no cycles.

A factor graph serves as a graphical representation of the factorization of a func-

tion. Suppose, for example, a function f factors as follows,

f(x, y, z, u, v) = f1(u) · f2(x, u, v) · f3(v) · f4(x, y) · f5(y, z) · f6(z)

Then the corresponding factor graph is shown in Fig. 2.1. Note that it is acyclic, so

it is also a factor tree.

Although a factor graph is initially used to represent the factorization of a function

into factors, we see in Fig. 2.1 that the graph itself does not specify multiplication

as the operation which combines the “factors” f1, . . . , f6. Therefore, it is perfectly

4

f1 f2 f3 f4 f5 f6

u v yx z

Figure 2.1. An example of factor graph.

suitable to represent the decomposition of f , for instance, into the sum of several

additive terms,

f(x, y, z, u, v) = f1(u) + f2(x, u, v) + f3(v) + f4(x, y) + f5(y, z) + f6(z)

We will make use of this observation when we model the energy of proteins in Sec-

tion 3.2.

2.1.2 Sum-product Algorithm

Given the factorization of a function f(X) = f(x1, . . . , xn) and its factor graph

representation, various computations can be done efficiently. In particular, we con-

sider the case that the factor graph is in fact a tree. In this case, the marginals,

defined for each variable x by

fx(x) =
∑
X\{x}

f(X) (2.1)

can be computed using the sum-product algorithm [9] very efficiently. The sum-

product algorithm can be described by the following message-passing protocol: For

each e = (u, v) ∈ E, u sends to v a message µu→v upon receiving messages from all its

5

neighbors other than v and similarly for µv→u from v to u. Now suppose u = x is a

variable and v = f a factor, then the messages µu→v and µv→u are defined as follows:

µx→f (x) =
∏

g∈Nx\{f}

µg→x(x) (2.2)

µf→x(x) =
∑
X\{x}

f(X) ·
∏

y∈Nf\{x}

µy→f (y)

 (2.3)

where Nv is the set of neighbors of v. After all the 2|E| messages have been passed,

the marginal fx(x) is computed by multiplying all the messages received by node x,

fx(x) =
∏
f∈Nx

µf→x(x) (2.4)

Although it is specified by the above protocol that a node send a message imme-

diately it is able to do so, this is not necessary. The same correct marginals will be

obtained, as long as all the 2|E| messages are sent in accordance with the causality

constraints, i.e. a node sends a message to a neighbor only after it has received mes-

sages from all the other neighbors. In particular, we can specify a node as the root,

thus making the factor tree into a rooted tree, and pass messages first from bottom

up and then top down.

2.1.3 Min-sum Algorithm

The sum-product algorithm introduced in Section 2.1.2 is not confined to the

operations of addition “+” and multiplication “×”. In fact, it is valid for any semiring

(R,⊕,⊗), where ⊕ corresponds to “addition” and ⊗ to “multiplication” [9]. Of

particular interest is the “min-sum” semirings, where minimization plays the role

of “addition”, and summation that of “multiplication”. Therefore, if we want to

6

compute the “min-marginals” of a function f that is the sum of several additive

terms, the corresponding message-passing protocol will take the following form

µx→f (x) =
∑

g∈Nx\{f}

µg→x(x) (2.5)

µf→x(x) = min
X\{x}

f(X) +
∑

y∈Nf\{x}

µy→f (y)

 (2.6)

By associating each variable node with the additive identity function, which is

identically zero, we can combine the above equations into a single equation

µu→v(Xu ∩Xv) = min
Xu\Xv

fu(Xu) +
∑

w∈Nu\{v}

µw→u(Xw ∩Xu)

 (2.7)

where Xv is the set of variables involved at node v. For a variable node v = x,

Xv = {x}. For a factor node v = f , Xv is just the argument of the factor. Note that

every node is treated equally in this form, and the sum-product algorithm applies to

not only trees but “junction trees” as well, as we will discuss in Section 3.3.

In many applications, for instance, the protein side-chain packing problem to be

discussed in Section 3.1, rather than the min-marginals, we are interested in the actual

minimizers

X̂ = (x̂1, . . . , x̂n) = arg min f(x1, . . . , xn) (2.8)

which we call an global minimum configuration (GMC). Note that the GMC is by no

means unique for a given f . When it is unique, it can be obtained by computing the

individual minimizers of the min-marginals

x̂i = arg min fxi(xi) (2.9)

where x̂i is the unique minimizer for fxi . When it is not unique, however, care must

be taken to insure the consistency of individual minimizers. One way to do this is

7

to compute the minimizers in a two-phase procedure similar to that described at the

end of Section 2.1.2. In the top-down phase, when a node receives the message from

its parent, it compute the minimizers for the involved variables

X̂u = arg min
Xu

(
fu(Xu) +

∑
w∈Nu

µw→u(Xw ∩Xu)

)
(2.10)

in such a way that X̂u is consistent with that of its parent. If we are only interested

in the GMC and do not care about the min-marginals, a parent node needs only to

send to its children the minimizers of its variables. More precisely, given a node u

and its parent v, we can decompose the variables at u into two groups, Xu = Yu∪Zu,

where Yu = Xu ∩Xv and Zu = Xu \Xv. Then in the top-down process, v only needs

to pass to u the minimizers Ŷu, and u will compute Ẑu according to

Ẑu = arg min
Zu

fu(Ŷu, Zu) +
∑

w∈Nu\v

µw→u(Ŷu, Xw ∩ Zu)

 (2.11)

When Zu = ∅, no computation is performed.

The above procedure is best illustrated by an example. Fig. 2.2 illustrates the

bottom-up phase of min-sum algorithm for the example corresponding to Fig. 2.1,

of which node f1 is taken as the root. Fig. 2.3 then shows the top-down phase for

computing the GMC.

2.2 A Data Structure for Adaptive Inference

As we have mentioned at the beginning of this chapter, some applications require

the computation of marginals, the GMC, etc, under dynamically changing conditions.

The classical sum-product type algorithms are not designed for this kind of task, in

the sense that if we change the function associated with a single node, it will take

O(n) time to update the extracted information, where n is the size of the graph. This

8

f1

f2

f3

f3

f3

f4

f5

f6

f6

f6

u

v

y

x

z

f̄5

f̄5

f̄4

f̄4

f̄2

f̄2 f̄2(u) = min
x,v

[f2(x, u, v) + f3(v) + f̄4(x)]

f̄4(x) = min
y

[f4(x, y) + f̄5(y)]

f̄5(y) = min
z

[f5(y, z) + f6(z)]

Figure 2.2. Bottom-up message-passing.

f1

f2

f3 f4

f5

f6

u

v

y

x

z

u0

u0

v0

v0

x0

x0

y0

y0

z0

z0

u0 = arg min
u

[f1(u) + f̄2(u)]

(x0, v0) = arg min
x,v

[f2(x, u0, v) + f3(v) + f̄4(x)]

y0 = arg min
y

[f4(x0, y) + f5(y)]

z0 = arg min
z

[f5(y0, z) + f6(z)]

Figure 2.3. Top-down message-passing for computing GMC.

9

is because the tree can be highly unbalanced. For example, if the tree is a chain, and

a leaf node is updated, then in the worst case we will have to propagate the change

all the way to the other leaf node. In [1], Acar et al proposed an adaptive inference

scheme for trees, which updates information in O(log n) time. The idea is to balance

the input tree in such a way that messages can be passed hierarchically.

Section 2.2.1 discusses tree contraction, which transforms the input tree into a

balanced tree. Section 2.2.2 discusses the local orientation of clusters, which is some

structural information inherited from the input tree that is needed for marginal com-

putation. Section 2.2.3 discusses the upward message passing in the cluster tree,

which is similar to the message passing in the classical sum-product algorithm.

2.2.1 Tree Contraction

The pre-processing technique proposed in [1] is tree contraction. Tree contraction

is used to construct a balanced representation of the input tree, which they call a

cluster tree. There are three basic operations, rake, compress and finalize. A final-

ize operation removes a degree-0 node; a rake operation removes a degree-1 node;

and a compress operation removes a degree-2 node while connecting its two neigh-

bors. When a node is removed, the incident edges are also removed. Its neighbors

immediately before the removal are also recorded for later use.

The cluster tree is constructed by applying rake and compress operations in rounds

until there is only one node left, which is then removed by the finalize operation. In

each round, the rake operation is applied to each degree-1 node and the compress

operation to an independent set of degree-2 nodes randomly chosen by the method

described below. In each round, we flip coins for each degree-2 node. Then a degree-2

node is chosen if and only if (1) it flips head and (2) each of its two neighbors either

has degree more than two, or has degree two and flips tail. This way, each round

10

removes an expected constant fraction of nodes, making balanced the cluster tree to

be constructed below.

When tree contraction terminates, we construct the cluster tree as follows. For

each node v of the factor tree, a node v̄, called a cluster, is added to the cluster tree.

Here we make the convention that an unbarred letter v always refers to a node in the

factor graph, and the same barred letter v̄ to the corresponding cluster. If a node v

is raked and u is its neighbor immediately before the rake operation, then an edge is

added between clusters v̄ and ū. If v is compressed, and u and w are its neighbors

immediately before the compress operation, then an edge is added between v̄ and ū

or w̄, according as u or w is removed first during the contraction.

Here we have conceptually divided the clustering process into two phases for the

sake of clearness, though in the implementation the cluster tree is built on the fly as

the nodes are removed.

For the example in Fig. 2.1, the contraction process is illustrated in Fig. 2.4. In

the first round, f1, f3 and f6 are raked, and f4 is compressed. In the second round,

u, v and z are raked. This process continues until x is finalized in the fifth round.

The resulting cluster tree is shown in Fig. 2.5. Note that the two neighbors of f4

immediately before its removal are x and y, of which y is removed first, so ȳ is the

parent of f̄4 in the cluster tree.

2.2.2 Local Orientations of Clusters

To facilitate the computation of marginals, we need to additional structural infor-

mation of the factor tree. Let node r be the one removed by the finalize operation,

which corresponds to the root r̄ of the cluster tree. Let u be a neighbor of a non-

root node v at v’s removal. If u is closer to r than v is, then ū is said to be the in

neighbor of v̄, denoted by in(v); otherwise, ū is said to be the out neighbor of v̄,

denoted by out(v). The orientations can be computed recursively by the algorithm

11

Round 1 Round 2 Round 3

Round 4 Round 5

Figure 2.4. Tree contraction.

x4

f6f1 f3 f4

f5f2

x

y

zvu

Figure 2.5. Cluster tree for the tree contraction in Fig. 2.4.

12

1: if v is raked with neighbor u at its removal then
2: in(v̄)⇐ ū, out(v̄)⇐ NIL

3: else if v is compressed with neighbors u and w then
4: compute orientation of u and w.
5: if ū = in(w̄) or w̄ = out(ū) then
6: in(v̄)⇐ ū, out(v̄)⇐ w̄
7: else
8: in(v̄)⇐ w̄, out(v̄)⇐ ū
9: end if

10: end if

Figure 2.6. Algorithm for computing local orientations.

in Fig. 2.6. For the raked nodes, the orientations can be set during tree contraction.

For compressed nodes, the orientations can be computed only after tree contraction

is completed.

2.2.3 Bottom-up Message-passing in Cluster Tree

After tree contraction, further computations such as computing the marginals, can

be accomplished by message passing in the cluster tree. This is, as before, divided

into two phases, a bottom-up phase and a top-down phase. The bottom-up phase

will be described here while the top-down phase will be deferred to Section 2.3. As a

convention, we will use fv to refer to the factor at node v in the factor graph, which,

we recall, is set to the identity 1v of the “multiplication” ⊗ if v is a variable node.

We will also use Xv, as in Section 2.1.3, to represent the set of variables involved at

node v.

To each cluster v̄, we associate a function gv̄, called the cluster function, and a set

of variables Av̄, called the cluster variables.

If v is the root of cluster tree, then Av̄ = ∅; otherwise, Av̄ is computed by

Av̄ =

(
Xv ∪

⋃
ū∈Cv̄

Aū

)
∩

(⋃
u∈Nv

Xu

)
(2.12)

13

where Nv is the set neighbors at v’s removal, not its neighbors in the original graph

as in Section 2.1.3. Note that |Nv| = 1 if v is raked and |Nv| = 2 if it is compressed.

Here Cv̄ is the set of children of v̄ in the cluster tree.

For the sum-product semiring, the cluster function is given by

gv̄(Av̄) =
∑
∼Av̄

(
fv(Xv)

∏
ū∈Cv̄

gū(Aū)

)
(2.13)

where ∼Av̄ is the complement of Av̄. For the min-sum semiring, this becomes

gv̄(Av̄) = min
∼Av̄

(
fv(Xv) +

∑
ū∈Cv̄

gū(Aū)

)
(2.14)

As is the case for the construction of cluster tree, the process of bottom-up

message-passing can be merged with the tree contraction process.

2.3 Queries

After the bottom-up message-passing described in Section 2.2.3 , we obtain, for

example, the minimum value of the summation in the case of the min-sum algorithm,

which is of limited interest. If we are to get some other useful information, such as

the marginals and the GMC, we need to perform some top-down message-passing,

from the root to the node whose information we are querying.

2.3.1 Query for Marginals

Using the local orientations of clusters, the marginals can be computed by message-

passing according to Eq. 2.15, which is a type of top-down message passing in the

cluster tree. The message from cluster ū to cluster v̄ is computed as follows,

mū→v̄ =

∑
∼Av̄

(
min(ū)→ū · fu(Xu) ·

∏
w̄∈Cū\{v̄,out(v̄)}

gw̄(Aw̄)
)
, if ū = in(v̄)

∑
∼Av̄

(
mout(ū)→ū · fu(Xu) ·

∏
w̄∈Cū\{v̄,in(v̄)}

gw̄(Aw̄)
)
, if ū = out(v̄)

(2.15)

14

Whenever out(·) is undefined, i.e. NIL, the corresponding message is set to the

identity.

When a node v̄ has received messages from its neighbors, the marginal at that

node is given by

fv̄(Av̄) =
∑
∼Av̄

min(v̄)→v̄ ·mout(v̄)→v̄ · fv(Xv) ·
∏
w∈Cv̄

gw̄(Aw̄) (2.16)

For the min-sum semiring, the min-marginals can be computed similarly using

mū→v̄ =

min
∼Av̄

(
min(ū)→ū + fu(Xu) +

∑
w̄∈Cū\{v̄,out(v̄)}

gw̄(Aw̄)
)
, if ū = in(v̄)

min
∼Av̄

(
mout(ū)→ū + fu(Xu) +

∑
w̄∈Cū\{v̄,in(v̄)}

gw̄(Aw̄)
)
, if ū = out(v̄)

(2.17)

and

fv̄(Av̄) = min
∼Av̄

(
min(v̄)→v̄ +mout(v̄)→v̄ + fv(Xv) +

∑
w∈Cv̄

gw̄(Aw̄)

)
(2.18)

2.3.2 Query for Min-sum Configuration

In the min-sum algorithm, what are also interesting other than the min-marginals

are the variable values (states) that actually achieve the minimum. The set of vari-

ables

Xv̄ = Xv ∪
⋃
ū∈Nv̄

Aū (2.19)

involved at a cluster v̄ is partitioned into two subsets Av̄ and Zv̄ = Xv̄ \ Av̄. Once

the configuration Âv̄ of Av̄ is known, we can compute the configuration of Zv̄, if it is

nonempty, by

Ẑv̄ = arg min
Zv̄

(
fv(Xv)

∣∣∣
Âv̄

+
∑
u∈Cv̄

gū(Aū)
∣∣∣
Âv̄

)
(2.20)

where fv(Xv)
∣∣∣
Âv̄

means the variables Xv ∩Av̄ are set to the value specified by Âv̄ and

similarly for gū(Aū)
∣∣∣
Âv̄

.

15

Since Av̄ ⊂ Xū, where ū is the parent cluster of v̄, we can always query ū for the

configuration Âv̄. Since Av̄ = ∅ if and only if v̄ is the root cluster r̄, the configurations

can be computed following the path from root r̄ to cluster v̄. The message passed

here from parent to child is the states of the cluster variables of the child cluster. If

the downward passing continues until all leafs are reached, we will obtain a consistent

GMC when it terminates.

2.4 Updates

The main purpose of using a tree contraction based algorithm is to make the

algorithm adaptive to changes, i.e. it can efficiently update the current results to

get the new results when some input information changes. There are two categories

of input changes, of which one involves topological changes of the factor graph, e.g.

addition and deletion of edges, and the other only changes the numerical values of

input factors. In [1], both categories are considered in the context of computing

marginals. In this section, we will focus on the latter, i.e. updates of factors without

changing the graph topology.

2.4.1 Updating Cluster Functions

If we are to update a certain factor at a node v, we first replace the old factor

fv(Xv) with the new one f̃v(Xv). Then we propagate the change upward to the root

cluster according to Eq. 2.13, i.e. we recompute the cluster functions on the path from

v̄ to the root. Now the cluster tree is ready for query as described in Section 2.3.

2.4.2 Updating GMC

Sometimes it is useful to maintain the GMC as part of the state of the cluster tree.

For example, in protein modeling, the GMC gives the protein conformation, which is

what people are most interested in. We can always do a top-down tree traversal to

recompute the GMC, but it can be done more efficiently as we will see presently.

16

Config(v̄)

1: recompute the configuration at v̄.
2: for each child ū of v̄ do
3: if ū is dirty, or Âū have changed then
4: call Config(ū)
5: end if
6: end for

Figure 2.7. Algorithm for configuration update.

The key observation here is the Markov property. The optimal configuration

of a subgraph, given the configuration of its neighboring set, is independent of the

configurations of the rest of the graph. This property manifests itself in the cluster

tree as follows. The configuration of variables involved in a subtree rooted at v̄ are

independent of the rest of the variables, given the configuration at the parent of v̄.

Therefore, if the configuration at a cluster v̄ remains the same after the update as

before the update, there is no need to recompute the configuration of a subtree rooted

at a child cluster of v̄, unless the subtree itself contains some dirty cluster whose factor

function has been updated from the first place. Thus we need to mark each cluster

on the path as dirty, when updating cluster functions. Then we update the GMC

iteratively by the algorithm in Fig. 2.7, starting from the root cluster r̄.

As an example, a portion of a factor tree and its corresponding portion of cluster

tree are shown in Fig. 2.8. The boundary of this subtree consists of u and v. If

the configurations û and v̂ are given, then the optimal configurations of x, y and

z are independent of the rest of the factor tree. In the cluster tree, this translates

to that the configuration of the subtree rooted at ȳ is guaranteed to be unchanged,

if Âȳ = {û, v̂} does not change in some updating process where none of the factor

f1 ∼ f4 changes. However, if, for instance, f4 has been updated, we will always check

all the cluster along the path ȳ− f̄2− z̄− f̄4, irrespective of whether Âȳ has changed

or not.

17

yf3 f4x zf1 f2u v

(a) Factor tree.

ȳ(u, v)

f̄4(y, z)

f̄1(y, u) f̄2(y, v)

z̄(y, z)f̄3(x, y)

x̄(x)

(b) Cluster tree.

Figure 2.8. Markov property.

2.5 Comparison of Complexities

In this section, we will compare the theoretical complexities of the classical sum-

product (or min-sum) and the adaptive (cluster-tree based) algorithms.

Let T be a factor tree with n nodes with maximum degree k, and the domain size

of each variable be at most d. The traditional sum-product algorithm passes n − 1

messages in order to find the marginal at a given node, and 2(n− 1) messages to find

all the marginals. Thus the complexity is always O(n), i.e. linear in the size of the

graph. If the constant involving d is written out explicitly, the complexity is then

O(dkn). In [1], it is shown that the cluster tree can be built in O(dk+2n) time. Due to

the additional factor d2, the time it takes to build the cluster tree grows quickly as d

increases. This may impose some limitation on the practical usage of this algorithm,

as we will see later.

In the adaptive algorithm, the query process takes O(kdk+2 log n) time per node,

as does updating cluster functions [1]. If we need to update factors repeatedly and

query the marginals at a small fraction of nodes after each update, it is advantageous

to use the adaptive algorithm instead of running sum-product each time. If all the

marginals are needed, the adaptive algorithm can also produce the desired result in

linear time by a top-down tree traversal, though it will have an additional factor of

d2 in the running time.

18

Interestingly, the cluster-tree framework allows us to update the GMC in time

roughly proportional to the number of changed minimizers after an update, even

though we do not know a priori which minimizers are going to change. The precise

statement is given by the following theorem.

Theorem 1 (Updating GMC). Let a factor tree be given with n nodes, maximum

degree k, domain size d, and its cluster tree. If l factors are modified, resulting in m

changes in variable configurations, then the algorithm in Fig. 2.7 updates the GMC

in O(dkβ(1 + log n
β
)) time, where β = min{n, l + km}.

Proof. Consider a path from the root r̄ to a cluster v̄ where the configuration is

recomputed for v̄ but not for any of its children. Denote by P the collection of such

paths. Observe that each path p in P satisfies at least one of the following properties:

1. The path p contains at least one of the l factors that are modified initially.

2. The path p involves at least one of the m variables whose states are changed.

The number of paths having Property 1 is at most l. Since each node of the factor

tree has degree at most k, there are at most km paths having Property 2. Therefore,

the size of P is upper bounded by β = min{n, l + km}.

Now we bound the total number N of clusters involved in P . To this end, we order

the paths in P as follows. Select an arbitrary path p1 from P . After p1, . . . , pi−1 have

been selected, we select pi to be a path that shares the fewest number of clusters with

p1, . . . , pi−1. Denote the number of clusters involved in p1, . . . , pi by Ni and the depth

of the tree by D. Then the Ni’s satisfy the following inequalities.

N1 ≤ D

Ni −Ni−1 ≤ D − s, for ks−1 < i ≤ ks, s = 1, 2, . . .

19

Therefore,

N = N|P | = N1 +

|P |∑
i=2

(Ni −Ni−1)

≤ D +

β∑
i=2

(D − dlogk ie)

≤ Dβ −
kdlogk βe∑
i=2

dlogk ie

= Dβ −
dlogk βe−1∑

j=0

kj(k−1)∑
a=1

blogk(k
j + a)c

= Dβ − dlogk βekdlogk βe +
kdlogk βe − 1

k − 1

≤ Dβ − β logk β + β

Since D = O(log n), we see that N = O(β(1 + log n
β
). Since the computation at each

cluster is O(dk), the theorem follows.

20

CHAPTER 3

APPLICATION TO PROTEIN MODELING

Previous work [5, 16, 17] has shown that proteins can be reasonably modeled by a

graphical model, from which some useful information can be extracted by inference.

In this chapter, we discuss the application of adaptive inference to protein modeling.

Section 3.1 gives some background about proteins and introduces the side-chain pack-

ing problem. Section 3.2 then gives a particular way of modeling proteins through

energy minimization. Section 3.3 shows how to convert a model on a general graph to

a model on a tree, making the inference algorithm developed in Chapter 2 applicable.

Section 3.4 discuss the possibility of exploiting the adaptiveness of our scheme to

study protein structures.

3.1 The Side-chain Packing Problem

In chemistry, an amino acid is a molecule containing both an amino group −NH2

and a carboxyl group −COOH. There are twenty different types of naturally occurring

amino acids; all of these amino acids have the general structure in Fig. 3.1(a), with

the amino and the carboxyl groups bonded to the same carbon, denoted Cα. Different

amino acids are differentiated by the sets of “side-chain” atoms bonded to Cα, denoted

by R in Fig. 3.1(a). A protein is one or more chains of amino acids joined together

by peptide bonds, which are the C− N bonds intersected by the vertical dashed lines

in Fig. 3.1(b). The linear peptide chain then folds into a 3-dimensional conformation,

which plays a crucial role in determining the function of the protein.

21

C

H

NH2 COOH

R

(a) Amino acid.

C
C

C

CC
H

O

O

N
N

H

H
H

R1

R2

R3

(b) Protein segment.

Figure 3.1. Amino acid and protein segment.

Experimental methods such as X-ray or NMR are typically used to determine

protein structures. These methods can find some or all of the necessary structural

information, but are usually very time-consuming and must be supplemented by com-

putational methods. The computation is usually divided into two phases, backbone

prediction and side-chain prediction. In this thesis, we assume the backbone is given

and only consider the side-chain prediction, also known as the side-chain packing

(SCP) problem.

In most of the methods for solving the side-chain packing problem, the state space

of each residue is discretized into a finite number of conformation candidates called

rotamers[5, 6, 16, 17]. Then the problem becomes selecting one rotamer for each

residue to minimize the energy of the protein. In other words, we would like to find

S∗ = (s∗1, . . . , s
∗
N) such that

E(S∗) = minE(s1, . . . , sN) (3.1)

Here E is the total energy of the protein and si the state of the ith side-chain. In

practice, some simple forms of the energy function E are used, which are decomposed

into sums of functions of fewer variables. One commonly used form is the sum of

pairwise interactions (Section 3.2). Unfortunately, however, even in this simplified

model, the side-chain packing problem is still NP hard [2, 13].

22

3.2 Energy Minimization

In this section, we will introduce a specific model for the energy E(S). The basic

assumption is that E(S) can be reasonably approximated by the sum of singleton

scores for each residue and pairwise scores for each residue pair.

E(S) =
∑
i

Si(si) +
∑
i<j

Pij(si, sj) (3.2)

Let E(a, b) be the energy between two atoms a and b. Let Du, SCu and BBu be

the sets of rotamers, side-chain atoms and backbone atoms for residue u, respectively.

Then the singleton scores and pairwise scores are computed as follows [6, 16]

Si(si) = −K log

(
Pri(si | φ, ψ)

maxs∈Di Pri(s | φ, ψ)

)
+
∑
|i−j|>1

∑
s∈SCi

∑
b∈BBj

E(s, b) (3.3)

Pij(si, sj) =
∑
a∈SCi

∑
b∈SCj

E(a, b) (3.4)

where Pri(s | φ, ψ) is the probability of rotamers s of residue i, given the backbone

dihedral angles φ and ψ, and K is a weighting factor which we set to 6.

Now we can construct the so-called geometric neighborhood graph for the protein

as follows [16]. Each residue of the protein is represented by a node and an edge is

added between two nodes i and j if and only if

max
si∈Di,sj∈Dj

Pij(si, sj) > 0 (3.5)

which means residues i and j interact with each other. The specific definitions of the

pairwise atomic energy will be discussed in Section 4.3.2.

3.3 Tree Decomposition

The geometric neighborhood graph can now be converted into a factor graph,

which, in general, contains cycles. The min-sum algorithm can then be applied to

23

find the approximate minimum energy configuration [17]. In order to find the exact

minimum energy configuration, we transform the geometrical neighborhood graph

into a tree through tree decomposition [15, 16].

Definition 3 (Tree decomposition). Given a graph G = (V,E), a tree decomposition

of G is a pair (X,T) such that

(1) X is a cover of the set V , i.e. a collection of subsets of V whose union is V .

(2) For each edge e = (u, v) ∈ E, there is a C ∈ X such that u, v ∈ C.

(3) T is a tree such that X is its vertex set and such that for each v ∈ V , elements

of X containing v span a subtree of T .

The tree width of a tree decomposition (X,T) is maxC∈X(|C| − 1).

It has been shown that it is NP-complete to find the minimum width decomposi-

tion of a given graph [3]. We will use the minimum degree heuristic to compute the

tree decomposition.

Given a tree decomposition (X,T) corresponding to the geometrical neighborhood

graph of a protein, we assign a potential to each hypernode C ∈ X as follows:

1. Initialize p(C) = 0, for ∀C ∈ X.

2. For each residue r, select a covering hypernode C ∈ X such that r ∈ C, and let

p(C)⇐ p(C) + Sr, where Sr is the singleton score function for residue r.

3. For each residue pair i, j, select a hypernode C ∈ X such that i, j ∈ C, and let

p(C)⇐ p(C) + Pij, where Pij is the pairwise score function for i and j.

By construction, the total energy E of the protein is equal to the sum of the

potentials. Equipped with potentials, the junction tree is a generalization of the

factor graph. We can apply the algorithms in Chapter 2 to the junction tree T ,

where the potentials play the role of factor functions. The minimizers then give a

energy-minimizing conformation of the protein.

24

3.4 Adaptive Side-chain Packing

The inference framework can be potentially useful in studying allostery, protein-

ligand binding or even inter-protein interactions. The basic idea here is that any

minor change to a protein can be rapidly incorporated into the model.

In the study of ligand binding, we are interested in how the binding ligands change

the three-dimensional conformations of proteins. The ligand directly affects the ro-

tameric states of the binding site, from which the impact propagates to the whole

protein. In protein design, we need to change the amino-acid type and hence the

rotameric states of particular residues and examine whether the protein changes into

some desired conformation.

In both examples, we are interested in the minimum energy conformations as the

conformation of some given site changes dynamically. We call such problems the

adaptive side-chain packing. This fits into our framework of updating the GMC in a

min-sum cluster tree and it is natural to use our algorithm to study this problem.

25

CHAPTER 4

IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this chapter, we will discuss the implementation of our algorithm and present

some experimental results. Section 4.1 discusses how to organize the local computa-

tions in the adaptive inference in a more efficient way that gives a practical speed-up

when the variable dimensions are large. Section 4.2 gives the test result of the algo-

rithm on a randomly generated synthetic benchmark. Section 4.3 gives the detailed

procedure for generating the graphical model of a protein, following [16] and the test

result is given in Section 4.4.

4.1 Ordering in Message Computation

It is shown in [1] that the cluster tree can be built in O(dk+2n) time, and a query

for marginal takes O(kdk+2 log n) time; see also Section 2.5. In this section, we will see

that a careful organization of the computation can reduce the factor dk+2 to dmax{k,3},

which can give a practical speed-up when the variable dimensions are large.

We now give a closer analysis of the message passing. Eq. 2.13 is repeated here.

gv̄(Av̄) =
∑
∼Av̄

(
fv(Xv)

∏
ū∈Cv̄

gū(Aū)

)
(4.1)

Note that the size of the function table for gū is O(d) or O(d2) according as u is

raked or compressed. Since the factor tree has maximum degree k, the size of the

function table for fv(Xv) is O(dk). If we carry out all the multiplications before the

26

summation, the worst case occurs when v̄ has k children, two of which corresponds

to compressed nodes. In this case, the running time for computing gv̄ is

(k − 2)dk + dk+1 + 2dk+2 = O(dk+2)

However, if we interleave the multiplication and summation, the practical running

time can be improved. More specifically, let the elements of Cv̄ be ū1, ū2, . . . , ūk,

where uk−1 and uk are compressed. Let g
(0)
v̄ = fv(Xv), and for i = 1, 2, . . . , k, let

g
(i)
v̄ (A

(i)
v̄) =

∑
A

(i−1)
v̄ ∩Aūi

g
(i−1)
v̄ (A

(i−1)
v̄)gūi(Aūi) (4.2)

Then we have gv̄(Av̄) = g
(k)
v̄ (A

(k)
v̄). Assuming d ≥ 2, the time for the computation at

a single node is

k−2∑
i=1

dk+1−i + 2d3 + 2d3 = 2
dk+1 − d3

d− 1
+ 4d3 ≤ 4dk + 4d3 = O(dmax{k,3})

Thus we have reduced the per-node complexity from dk+2 to dmax{k,3} and the number

of nodes can be bounded as before.

4.2 Test Results for Synthetic Benchmark

We have implemented the adaptive inference algorithm in C++ and tested it on

a randomly generated synthetic benchmark as in [1]. The random factor tree has

maximum degree 5. The dimension of each variable is randomly chosen to be 5, 52

or 53, so that each factor has size between 5 and 56. The test is done for both the

sum-product and min-sum semirings. In each round of the updating process, only

one randomly chosen factor is updated. Fig. 4.1 shows the result for the sum-product

semiring, where the queries are for the for marginals. Fig. 4.2 shows the result for

27

the min-sum semiring, where the queries are for the variable states. In both cases,

the time required to build the cluster tree is comparable to one run of sum-product

or min-sum. The query and update operations are about two or three orders or

magnitude faster. Note that the query in the case of min-sum semiring is much faster

than that of sum-product. This is because in Eq. 2.20 we are operating on sections

of the factors or cluster functions, which greatly reduces the function sizes when the

variable dimensions are large.

103.1 103.3 103.5 103.7
10−3

10−2

10−1

100

101

of nodes

Ti
m

e
(s

ec
)

Sum−product(excluding I/O)
Build(excluding I/O)
Query
Update

Student Version of MATLAB

Figure 4.1. Log-log plot of running time for sum-product, building cluster tree,
computing queries and updating factors.

The test for doing batch updates are shown in Figs. 4.3 and 4.4. In Fig. 4.3, ten

randomly selected factors are updated each round for factor trees of different sizes.

We also give an O(log n) reference line. Though it is not logarithmic, the increase in

running time is slow as the size of factor tree increases, similar to the single update

case. Fig. 4.4 shows the running time as the number of updated factor per round

increases. The running time increases as more factors are updated each round and

the rate of increase roughly follows a power-law in the test range. Fig. 4.5 shows

28

103.1 103.3 103.5 103.7
10−4

10−3

10−2

10−1

100

101

of nodes

Ti
m

e
(s

ec
)

Min−sum(excluding I/O)
Build(excluding I/O)
Query
Update

Student Version of MATLAB

Figure 4.2. Log-log plot of running time for min-sum, building cluster tree, com-
puting queries and updating factors.

that the updating time is approximately linear in the number of variables with state

changes, in agreement with our analysis in Section 2.5.

4.3 Generating the Graphical Model of a Protein

In this section, we will describe the procedure to generate the graphical model

of a protein, following [16]. Section 4.3.1 discusses how sets of rotamers are chosen

for a given amino acid. Section 4.3.2 details the energy computation. Section 4.3.3

discusses dead-end elimination (DEE) and an extension of it.

4.3.1 Initialization of Rotamers

We use the backbone-dependent rotamer library in [5]. For a given residue, we

first determine its backbone dihedral angles φ and ψ and the rotamers corresponding

to these angles are loaded. When we cannot obtain both φ and ψ, e.g. at the end of

the peptide chain, we use the backbone-independent library [5]. Rotamers are ranked

29

103 104
10−3

10−2

10−1

of nodes

Ti
m

e
(s

ec
)

of updates per round = 10

Update time
log reference line

Student Version of MATLAB

Figure 4.3. Log-log plot of updating time as the factor tree size increases.

100 101 102 103
10−3

10−2

10−1

100

of updated factors

Ti
m

e
(m

s)

tree size ~5000

Update time

Student Version of MATLAB

Figure 4.4. Log-log plot of updating time as the number of updated factors per
round increases.

30

0 100 200 300 400 500 600 700 800 900
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

of updated variables

Ti
m

e
(m

s)

tree size ~5000

Update time
Linear reference line

Student Version of MATLAB

Figure 4.5. Linear plot of updating time as the number of updated variables per
round increases.

from the highest probability to the lowest, and those corresponding to the tail are

removed. The cutoff probability can be varied. In [6, 16], it is set to 90%.

4.3.2 Energy Computation

After the initialization step, the singleton and pairwise energies are computed

according to Eqs. 3.3 and 3.4. The particular form of energy function we will use is

the following piecewise linear function [6, 16]

E(a, b) =

0, r ≥ Rab

10, r ≤ 0.8254Rab

57.273(1− r
Rab

), otherwise

(4.3)

where r is the distance between the two atoms and Rab the sum of their radii. While

we use this relatively simple energy function, more sophisticated energy functions such

31

as AMBER [14] and CHARMM[4] can also be used in combination with a distance

threshold.

If we are to compute the energy E(a, b) for all possible combinations of atom

pair a, b and then add them up, this will take quadratic time. Note that the energy

function in Eq. 4.3 and many others are non-zero only when the distance between the

two atoms is below a certain threshold. This property can be exploited to compute the

energies very efficiently. As in [16], we use the ANN library in [10] to determine if two

atoms are within a certain distance from each other. ANN stands for Approximately

Nearest Neighbor library. ANN uses sophisticated data structures such as the k-d

tree that are very efficient in searching with multidimensional key.

Let the totality of side-chain atoms be SC. Here atoms of the same residue

corresponding to different rotamers are considered as different atoms. For each a ∈

SC, ANN gives all the neighbors Na in SC of a within the distance threshold. Then,

for each b ∈ Na, if a, b are from different rotamers of different residues, we add E(a, b)

to the corresponding pairwise score Pij(si, sj). The singleton scores can be computed

similarly. As in [16], we use the BALL library [8] for basic concepts such as proteins

and rotamers.

4.3.3 Construction of the Graph and Dead-end Elimination

Now that the energies have been computed, we can construct the graphical model.

However, the graph thus constructed would be too dense to do inference efficiently.

Therefore, dead-end elimination (DEE) is applied before the construction of the model

in order to reduce the density. Let Di be the state space of the ith residue. The The

Goldstein criterion [7] states: if there exists an s′i ∈ Di such that

E(si)− E(s′i) +
∑
j:j 6=i

min
sj∈Dj

[E(si, sj)− E(s′i, sj)] > 0 (4.4)

32

then remove si from Di. Eq. 4.4 means that we can always replace si by s′i to

reduce the energy, hence losing no optimality by removing si from the search space.

The Goldstein criterion can be applied iteratively until no rotamer is removed in an

iteration. This will greatly reduce the search space, hence making it possible to search

for the minimum energy conformation when the protein size is large.

However, the DEE procedure needs to be slightly modified for the adaptive SCP

problems. In the adaptive case, we need to iterate through many possible conforma-

tions of a given site. For example, in protein design, we need to change the amino acid

type and hence the rotameric state of a particular site. Using the adaptive inference

framework, we build the cluster tree only once and then perform updates repeatedly.

Here our goal is not to compute a single minimum energy conformation, but rather

many min-energy conformations, each conditioned on the local conformation of the

given site. Therefore, we must ensure that all such conditional minimum energy con-

formations are feasible after DEE, where by saying a conformation is feasible, we

mean that every rotamer in this conformation is a valid choice for the correspond-

ing residue. In order to generate this property, we show that it suffices to keep the

rotamers of the given site from DEE pruning.

Theorem 2 (Modified DEE). If the rotamers of a given subset of residues be pre-

served, i.e. not pruned by DEE, then all the minimum energy conformations condi-

tioned on that subset remain feasible after DEE.

Proof. Note that the Goldstein criterion Eq. 4.4 is equivalent to the following: remove

a rotamer si only if there exists s′i ∈ Di such that

E(si)− E(s′i) +
∑
j:j 6=i

[E(si, sj)− E(s′i, sj)] > 0 (4.5)

for all conformations (s1, . . . , ŝi, . . . , sn) ∈ (D1 × · · · × D̂i × · · · ×Dn). Hereˆmeans

the corresponding component should be removed.

33

Therefore, a rotamer si is preserved if for all s′i ∈ Di, there exists a conformation

(s1, . . . , ŝi, . . . , sn) ∈ (D1 × · · · × D̂i × · · · ×Dn) such that

E(si)− E(s′i) +
∑
j:j 6=i

[E(si, sj)− E(s′i, sj)] ≤ 0 (4.6)

Let n be the size of the protein and I ⊂ {1, 2, . . . , n} the indices of residues whose

rotamers are preserved. By rearranging if necessary, we may assume without loss of

generality that I = {1, 2, . . . ,m}, where m < n. Let

C∗ = (s∗1, . . . , s
∗
m, s

∗
m+1, . . . , s

∗
n) (4.7)

be the minimum energy conformation conditioned on si = s∗i , i = 1, . . . ,m, i.e.

E(C∗) = min
(sm+1,...,sn)∈Dm+1×···×Dn

E(s∗1, . . . , s
∗
m, sm+1, . . . , sn) (4.8)

We need to show that s∗j is automatically preserved for j = m+ 1, . . . , n.

Suppose the contrary. Let s∗k be the first such rotamer being removed. Before

s∗k is removed, C∗ is a feasible conformation. For any s′k ∈ Dk \ {s∗k}, consider the

conformation C ′ = (s∗1, . . . , s
′
k, . . . , s

∗
n), i.e. C∗ with s∗k replaced by s′k. Then C ′ is also

a feasible conformation. By definition of C∗,

E(C∗)− E(C ′) ≤ 0 (4.9)

After canceling corresponding terms, we have

E(s∗k)− E(s′k) +
∑
j:j 6=i

[E(s∗i , s
∗
j)− E(s′i, s

∗
j)] ≤ 0 (4.10)

which means s∗k should be preserved, a contradiction. This completes the proof.

34

After DEE, the geometric neighborhood graph is constructed as described at the

end of Section 3.2, with the state spaces Di’s replaced by the reduced ones. Then

we find a tree decomposition for this graph and run the min-sum algorithm on the

junction tree to compute the minimum-energy conformation.

4.4 Test Results for Proteins and Discussions

We first tested our implementation for static SCP on the SCWRL benchmark [6].

Our implementation achieves a performance comparable to that of [16]. The accuracy

is slightly worse, but this test serves only as a sanity check here and does not greatly

affect our comparison between the static SCP and adaptive SCP.

The test for adaptive SCP goes as follows. For a given protein, we randomly select

10 residues that form a subtree of the largest connected component of the geometric

neighborhood graph generated by the static SCP program. Then in the adaptive SCP,

all the rotamers of the selected residues are kept from DEE pruning. The rotameric

states of the selected residues are randomly changed and the min-energy conformation

of the protein is updated.

10−2 10−1 100 101 102
10−2

10−1

100

101

102

original DEE time (sec)

m
od

ifie
d

DE
E

tim
e

(s
ec

)

Student Version of MATLAB

Figure 4.6. Comparison of DEE time.

35

Fig. 4.6 compares the time for performing the original DEE and the modified

one. It is not surprising that both take about the same amount of time, since we

only prevented a small fraction of rotamers from being pruned and that should not

have a huge impact on the running time. The change from static SCP to adaptive

SCP does, however, affect the densities of the resulting graphs and junction trees.

The average size of the largest connected components of the geometric neighborhood

graph increases from 39 to 49 and the average tree width from 2.8 to 3.6.

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Protein index

Ti
m

e
(s

ec
)

min−sum
build

Student Version of MATLAB

Figure 4.7. Running time for changing states of multiple residues for proteins in
SCWRL benchmark.

Fig. 4.7 shows that the time for the original min-sum algorithm and that for

building cluster trees are also approximately the same. Fig. 4.8 compares the running

time for min-sum and that for updates. In both plots, proteins are indexed in the

order of increasing sizes. The average times are 0.0031 second for min-sum, 0.0048

second for building cluster trees and 0.1065 second per 100 updates. Note that for

the SCWRL benchmark, the adaptive updates are marginally faster on average than

running min-sum from scratch. However, when we examine the running time for

individual proteins, we see that for a very large fraction of them, the min-sum time is

zero while the updating time is not. This phenomenon may be due to the inaccuracy of

36

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Protein index

Ti
m

e
(s

ec
)

min−sum
update

Student Version of MATLAB

Figure 4.8. Running time for changing states of multiple residues for proteins in
SCWRL benchmark.

measurement. For those proteins that give zero min-sum time, the min-sum algorithm

terminates within one cycle of the measuring clock, so there are large relative errors

in these measurements. When we restrict our test set to the subset of proteins that

give nonzero min-sum time, the updates are considerably faster than recomputing

from scratch; see Fig. 4.9. We also note that the sizes of the proteins in the SCWRL

benchmark are relatively small. All but a few proteins have less than 500 residues

and the largest connected components of the geometric neighborhood graphs have

less than 150 nodes. Therefore, it is not surprising that we do not observe a huge

speed-up for many of them.

Fig. 4.10 gives the average numbers of updated rotameric states for SCWRL pro-

teins. The small numbers of changes might suggest that the rotameric states of the

selected sites may not have a great influence on the rotameric states of other residues

and the global conformation. However, similar results are observed when we change

the states of the allosteric sites of allosteric proteins such as 1ERK. This suggests

that the model we used may not be detailed enough to capture such phenomena. If

37

a better model is found, for example, one that incorporates backbone motions, it is

possible to use the adaptive inference to study such phenomena.

38

0 5 10 15 20 25
10−4

10−3

10−2

10−1

100

Protein index

Ti
m

e
(s

ec
)

min−sum
update

Student Version of MATLAB

Figure 4.9. Running time for changing states of multiple residues for SCWRL
proteins for which min-sum takes nonzero time. The protein indices here are different
from that in Figs. 4.7 and 4.8, though still in the order of increasing protein size.

0 50 100 150 200
0

1

2

3

4

5

6

7

Protein index

of

 u
pd

at
ed

 ro
ta

m
er

ic
st

at
es

 p
er

 ro
un

d

Student Version of MATLAB

Figure 4.10. Average numbers of updated rotameric states for proteins in the
SCWRL benchmark.

39

CHAPTER 5

CONCLUSIONS

In this thesis, we have presented a C++ library for doing adaptive inference using

the cluster tree based framework introduced in [1]. It has been shown in [1] that for

an input factor tree of size n, the cluster tree can be built in O(n) time, marginals

can be computed in O(log n) time and updates to factors can be incorporated in

O(log n) time. We have extended this framework by showing that the variable states,

e.g. the minimizers, can be computed in O(n) time and maintained in time roughly

proportional to the number of changed states. In an experiment on a synthetic

benchmark, considerable gains have been observed, in agreement with the theoretical

results. This suggests the potential use of the adaptive framework in practice.

We have suggested the potential application of this adaptive inference framework

to computational biology, for instance, in the study of ligand binding and allostery. In

particular, we have introduced the adaptive side-chain packing problem and a mod-

ified dead-end elimination method tailored for it. Experiments have been performed

on the SCWRL benchmark, using the protein model in [16]. Although noticeable

gains have been observed only for a small fraction of proteins in SCWRL, further

analysis shows that this does provide some evidence for the practical usefulness of

this framework. The experimental results also suggest that the protein model used

are not detailed enough to capture some interesting phenomena, and that it may be

essential, for instance, to incorporate backbone motions.

40

BIBLIOGRAPHY

41

BIBLIOGRAPHY

[1] U. A. Acar, A. T. Ihler, R. R. Mettu and Ö. Sümer. Adaptive Bayesian Inference,
21st Annual Conference on Neural Information Processing Systems, Dec. 2007.

[2] T. Akutsu. NP-hardness results for protein side-chain packing, Genome Infor-
matics, Vol. 8, 1997, pp. 180–186.

[3] S. Arnborg, D. G. Corneil and A. Proskurowski. Complexity of finding embed-
dings in a k-tree, SIAM Journal on Matrix Analysis and Applications 8(2), 1987,
pp. 277–284.

[4] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan,
M. Karplus. ”CHARMM: A program for macromolecular energy, minimization,
and dynamics calculations”. J Comp Chem 4, 1983, pp. 187–217

[5] M. J. Bower, F. E. Cohen and R. L. Dunbrack Jr. Prediction of protein side-chain
rotamers from a backbone-dependent rotamer library: A new homology modeling
tool, J. Mol. Biol. 267, 1268–1282, 1997.

[6] A. Canutescu, A. A. Shelenkov and R. L. Dunbrack Jr. A graph-theory algorithm
for rapid protein side-chain prediction, Prot. Sci. 12, 2003, pp. 2001–2014.

[7] R. Goldstein. Efficient rotamer elimination applied to protein side-chains and
related spin glasses. Biophys. J. 66, 1994, pp. 1335–1340

[8] O. Kohlbacher and H. Lenhof. BALL–Rapid software prototyping in computa-
tional molecular biology. Bioinformatics 16, 9, 2000, pp. 815–824.

[9] F. R. Kschischang, B. J. Frey and H. A. Loeliger. Factor Graphs and the Sum-
Product Algorithm. IEEE Trans. Info. Theory, Vol. 47, No. 2, Feb. 2001. pp. 498–
519.

[10] D. Mount and S. Arya. ANN: A library for approximate nearest neighbor search-
ing. In Proceedings of the 2nd CGC Workshop on Computational Geometry,
1997.

[11] K. Murphy. An Introduction to Graphical Models. Technical report, Intel Re-
search Technical Report, 2001.

[12] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco, 1988.

42

[13] N. Pierce and E. Winfree. Protein design is NP-hard, Protein Engineering,
Vol. 15, No. 10, Oct. 2002, pp. 779–782.

[14] J. W. Ponder and D. A. Case. Force fields for protein simulations. Adv. Prot.
Chem. 66, 2003, pp. 27–85.

[15] N. Robertson and P. Seymour. Graph minors. II. Algorithmic aspects of tree-
width, J. Algorithms 7, 1986, pp. 309–322.

[16] J. Xu and B. Berger. Fast and Accurate Algorithms for Protein Side-Chain Pack-
ing, Journal of the ACM, Vol. 53, No. 4, July 2006. pp. 533–557.

[17] C. Yanover and Y. Weiss. Approximate Inference and Protein Folding, Proceed-
ings NIPS, 2002.

43

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2008

	Adaptive Inference and Its Applications to Protein Modeling
	Bo Jiang

	Adaptive Inference and Its Applications to Protein Modeling

