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CHAPTER 1 

INTRODUCTION 

 

In recent years the continued rise of portable data-devices such as cell phones, 

PDAs, and laptops has driven enormous growth in the area of wireless communications. 

Whenever data is sent over a wireless channel, it is subject to degradation due to 

multipath fading and noise. Depending on the amount of degradation, the effect can be a 

loss or corruption of the original data during transfer. In order to alleviate this problem 

and ensure the reliable transfer of data, the typical solution has been the use of an error 

correction coding scheme. This work will detail the implementation of a low-energy error 

correction coding (ECC) scheme, based on the widely used Reed-Solomon algorithm, 

which will be implemented using a field programmable gate array (FPGA) device. 

FPGAs have been adopted for use in wireless communication and digital signal 

processing (DSP) applications due to their ease of use when compared to traditional DSP 

microcontrollers, high performance characteristics, and inherent configurability. Despite 

these benefits, much work remains to be done in order for these devices to truly be 

adopted for use in wireless devices, as current FPGAs are not naturally low-energy 

devices. This work will examine how to leverage the specialization and configurability of 

these devices in order to achieve low energy consumption characteristics while 

maintaining high levels of performance. This work is primarily aimed at systems which 

already include an FPGA for computation, as the performance of our algorithm 

implemented on an FPGA will not be able to outperform an ASIC implementation in 

terms of energy consumption. However, there are situations where incorporating a Reed-
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Solomon decoding system into the functionality of an FPGA based system may be 

desirable, and the configurability of the FPGA allows for the processing unit to perform 

multiple operations simultaneously. In this case, it is much more desirable to implement 

the decoder in the pre-existing FPGA as opposed to incorporating a Reed-Solomon ASIC 

into the design. 

The main contribution of this work is the development and analysis of an FPGA 

based Adaptive Reed-Solomon errors-and-erasures decoding system which is optimized 

to minimize energy consumption characteristics. This work is based on an earlier project 

[15][7], which has been modified to ensure low-energy operation through the use of 

several circuit-level energy optimization techniques and in addition to a new analysis of a 

scheduling approach for dynamic reconfiguration. The end result of the energy 

optimization is a reduction in system energy consumption of more than 70% compared to 

previous work. 

The origin of ECC schemes dates back to the work of Shannon in 1948. His work 

[1][3][11] demonstrated that by properly encoding information before transferring over a 

lossy channel, the errors which are introduced in the channel can be reduced to any 

desired level without a severe decrease in transmission rate. Since then researchers have 

developed various error correction schemes. One of the most widely used of these 

schemes is Reed-Solomon coding [1][2]. Reed-Solomon coding has been used in systems 

ranging from CD players [4][23] (to correct errors introduced by dust in the optical drive) 

to NASA’s wireless deep-space communications [24]. Reed-Solomon coding is what’s 

known as a block coding scheme, under which fixed length blocks of data are encoded 

with a fixed amount of parity information. Other ECC schemes include Viterbi coding 
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[5], along with more recent schemes such as Turbocoding [6]. Traditionally, these 

algorithms have been implemented using DSP microcontrollers, which are based on 

microprocessors but specialized to allow for better signal processing performance. Recent 

work [25][26]has examined using FPGAs for these applications, as they provide similar 

performance characteristics while allowing for a much more customized design, with 

simplified and quicker development. FPGAs are customizable logic devices, which have 

seen more and more use in consumer and industrial electronics in recent years, are an 

alternative to traditional microproccessors and DSP devices. FPGAs are attractive 

devices to developers in need of specific solutions, as their configurability allows 

designers to tailor the device to provide the specific functionality necessary for a 

particular application. In addition, because the functionality is coded into the hardware of 

the device, mapping an application to an FPGA usually allows for an optimized, high-

speed implementation, and allows to designer to customize the application at a much 

lower level than if he or she was using a general-purpose microprocessor. 

Historically, the designers of ECC systems have focused on providing the best 

possible performance while maintaining the desired quality of service (QoS). Typically 

the limiting factor in these systems has been the data transfer rate, as all communication 

channels pose restrictions on their maximum bandwidth. However, with the continued 

growth of wireless systems, battery-powered devices of all types, power and energy 

consumption have become increasingly important design constraints. 

The majority of mobile devices are no longer stand-alone devices. Increasingly, 

these devices are required to have extensive connectivity options, which means a need for 

wireless communications. If one examines a recently developed device such as Apple’s 
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Iphone[27], we can see the need for not just one, but multiple wireless communication 

methods, from BlueTooth to 802.11 b/g wireless to cellular phone service and data 

transfer. These devices are constrained by the amount of energy which can be contained 

in their batteries, which introduces new design challenges for developers of these devices.  

The work detailed in this document includes the development and analysis of a 

low-energy ECC decoding system, implemented on an Altera FPGA. It draws on 

previous works on ECC coding, and low power and energy FPGA design. The starting 

point for this is the work of Lilian Atieno [7], who developed an FPGA based adaptive 

errors-and-erasures Reed-Solomon decoding system. Her system was designed to adapt 

dynamically to changes in the noise level of the communication channel in order to 

provide maximum data-rates and reduced power consumption when compared to a static 

implementation of the decoding circuitry. If the channel is noisy, leading to increased 

error rates, a larger, more power-hungry decoder is swapped into the FPGA in order to 

keep the error rate below the required level. When there is less noise in the channel, a 

smaller, faster, and less power-hungry decoder is swapped in. The main metric of success 

for this previous work was decoding speed, with the secondary metric being power 

consumption. 

Building on this previous work, this project adapts the previous design to 

minimize the amount of energy required to decode a particular amount of message data. 

Several modifications are made to both the structure of the design at the circuit level, and 

to the overall system functionality. An additional contribution of this work is the 

development of a more accurate channel noise and fading model, to get a better 

understanding of the real-world performance characteristics that could be expected. 
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The methods used in this work fall into two basic categories, application specific 

optimizations, and application independent, circuit level optimizations.  

The application specific methods used during this work include: 

 

1) Efficient Implementation of Application Primitives 

The Reed-Solomon decoding application requires a multitude of specialized 

functional units to decode and correct errors in message data coming from a noisy 

channel. The fundamental units are Galois Field multipliers and Galois Field adders, 

which perform the most basic operations within the decoder. Larger units include the 

syndrome generation unit, the syndrome expansion unit, and the modified Euclidean 

algorithm block. Some of these units can be implemented several different ways in the 

FPGA hardware, so it is important that care be taken to ensure not only that the most 

efficient structure is used (in terms of energy consumption), but also that the desired 

structures are mapped as expected to the FPGA fabric. The development of a pipelined 

Galois field multiplier will be specifically documented in Chapter 4, along with the 

comparison of different structural implementations of the modified Euclidean algorithm 

block. 

 

2) Adaptive System Design and Scheduling 

The previous system makes use of a reconfiguration scheme designed to allow the 

functionality of the decoder to adapt to changing channel conditions in order to maintain 

the maximum possible decoding rate. For this work, the goal was to adapt to changing 

channel conditions to ensure the lowest energy consumption possible while maintaining a 
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fixed minimum codeword error rate (CER). Several changes to the overall system 

functionality were made. The previous system used several RS decoders in parallel, while 

maintaining the desired CER and decoding rate. This approach is inherently wasteful in 

terms of energy, since the result from only one decoder is ultimately used. Given that we 

are primarily concerned with energy, only single decoder versions are considered. This 

has a positive side-effect of reducing the total number of reconfigurations needed, as 

there are only seven different configurations as opposed to the previous system’s twenty. 

The negative side effect is a slight reduction in decoding speed. This will be described in 

detail in Chapter 4. 

The second change from the previous work is a more accurate channel model to 

evaluate the system’s overall performance. The previous approach was designed to 

operate in a Rayleigh fading channel environment, with average SNRs varying from 

around 13 to 21dB. However, the model used to evaluate the system performance was not 

time-dependant, allowing for unrealistic changes in signal quality in short amounts of 

time. In order to better evaluate the performance of the system in a real-world situation, a 

time-dependant Rayleigh fading channel model was developed, which has several 

benefits over the previous model. Time dependency allows for evaluation of optimal 

reconfiguration rates answering the question,  “How long should we wait before 

evaluating whether to reconfigure the system?”  In addition, we evaluate the effects of 

differing reconfiguration rates on both the energy consumption characteristics and error-

rate performance. The new model is used to answer several questions: first, what is the 

effect of the rate of reconfiguration on energy consumption, and second, what is the 
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effect of varying the rate of reconfiguration on the codeword error rate? This analysis is 

described in detail in Chapter 4, with final results shown in Chapter 5. 

As mentioned above, application independent optimization methods were also 

used to reduce decoder energy consumption in the FPGA device. These methods are 

applicable to any design mapped to an FPGA, and have been shown in previous work to 

reduce energy consumption characteristics. Each of these methods was applied to the 

decoder circuitry at the highest level, and represent design choices which can be made by 

the designer of the application in order to reduce dynamic energy consumption. This is in 

contrast to algorithmic modifications which are automatically performed at lower levels 

by the CAD software used in FPGA development. It has been shown that higher level 

optimizations lead to the greatest possible benefit.  

The methods used are detailed briefly below, and in full detail in Chapter 2. 

1) Pipelining 

Pipelining has been shown to reduce energy consumption in digital circuits, 

including FPGAs [8]. Pipelining allows for lower energy consumption by reducing the 

propagation of glitches through the circuitry. Glitches are defined as spurious transitions 

in the circuitry caused by timing mismatches. Figure 1.1 below illustrates how 

mismatched logic delays can cause spurious transitions. 
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Figure 1.1. Example of Glitching 
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Assuming all of the gates have a delay of t, at t0, input A goes from high to low. 

After one time unit, A inverse reflects this change. After another time unit, inverse A has 

caused a change in the output, even though the output of the AND gate hasn’t 

propagated. After another time unit, the correct result is shown at the output. However, as 

the output went high briefly, this is an example of a glitch cause by mismatched logic 

depths, and in fact this glitch caused two separate spurious signal transitions. 

As each signal transition in a digital device dissipates energy, minimizing the 

amount of unneeded transitions due to differing logic timing characteristics and reducing 

the distance these glitches are allowed to propagate is important in reducing energy 

consumption. If the output of the above circuit was fed onto a long communication line in 

the FPGA, the amount of energy dissipated by the glitch could be very large. 

Pipelining is accomplished by inserting registers throughout the design, which 

effectively cuts off the propagation of glitches beyond the register. FPGAs have a 

configurable internal communication network made up of many long, high-capacitance 

wires, which dissipate significant amounts of energy. Considering their energy 

dissipation characteristics, reducing the number of transitions on these lines is paramount. 

In addition, pipelining allows for the hardware resources to be better utilized by allowing 

for greater levels of parallelism to be built into the application. This improves energy 

characteristics by preventing logic from being idle and thus dissipating energy without a 

purpose. 
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2) Clock Gating 

Clock gating of digital circuits is another technique which has been shown to 

reduce energy consumption both in ASICs [9] and FPGAs [10]. The essential idea is that 

some parts of a design may not be needed for part of its operation, i.e. this portion of the 

circuit on this clock cycle generates an output value which is not needed by another 

portion of the circuit. If this is the case, these design features can have their clock 

suppressed (gated) so that the clock is not propagated to them when their results are 

unneeded, ensuring that they do not dissipate energy. Given that the RS system contains 

many individual functional blocks which are not needed at all times, clock gating these 

units so that they are only active when needed provides the opportunity to save large 

amounts of energy.  

 

3) Efficient Structuring of Embedded Memories 

As memory units dissipate energy on every read or write operation, reducing the 

overall number of accesses reduces the overall energy consumption of the design. A 

method was developed to combine data into large blocks for each read and write 

operation to reduce the number of required memory accesses. This technique allows for a 

more efficient use of clock gating for internal FPGA memory blocks and allows the 

memory to be inactive for a larger percentage of the time. While this can increase the 

energy required to perform an individual read or write, by greatly reducing the number of 

necessary reads and writes, energy consumption can be reduced. In many ways, these 

units work as small caches, preloading the data which will be needed for the next several 

clock cycles in order to allow the memory to maintain a lower activity rate. 
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Overall, applying these circuit level techniques resulted in a net reduction in the 

energy required to decode a megabit of data by 70%. The specific areas where each 

optimization was performed are detailed in Chapter 4, while the numerical benefits are 

shown in Chapter 5. 

The rest of this document is structured as follows. Chapter 2 provides background 

information on the Reed-Solomon algorithm, a discussion of the sources of energy 

consumption in FPGA circuitry, and a detailed look at the energy reduction techniques 

which were used in this work. 

Chapter 3 details related works in FPGA energy reduction and Reed-Solomon 

decoder implementations. 

Chapter 4 details where the aforementioned techniques were used in the 

development of the decoding system, while also describing in detail the methodology that 

was used for these techniques, along with a detailed description of the new channel 

model, and how it was used to evaluate the performance of the system. 

Chapter 5 provides numerical results for each individual optimization technique, 

while also providing overall system performance data. 

Chapter 6 provides numerical results for the reconfiguration scheduling and 

analysis part of this work. 
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CHAPTER 2 

BACKGROUND 

 

2.1) ECC and RS introduction 

All methods of digital communication are subject to some sort of noise or 

interference, whether the medium of communication is a physical link or a wireless one. 

In physical systems, noise can be introduced by the electromagnetic fields generated by 

the surrounding circuitry and components, by errors in data storage, or even physical 

phenomena such as a particle of dust getting in the way of a laser beam reading data from 

an optical storage device. In wireless channels, errors can be created by interference from 

other wireless signals, interference caused by the signal passing through a building, or 

fading caused by differing propagational paths of the wireless signal. The main challenge 

in digital communications has become how to deal with these unavoidable errors in an 

efficient way, so as to prevent data loss without causing undue overhead. 

The work of Shannon [11] demonstrated that even though communication 

channels are subject to noise and errors, if some amount of redundancy is encoded into 

the signal, errors can be accounted for and corrected at the receiving end. This is the 

fundamental principle of error-correction coding schemes, and has led to the development 

of various encoding schemes, including Reed-Solomon coding. A typical communication 

scheme that meets this criterion can be modeled as seen in Figure 2.1. 
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Figure 2.1. Typical Communication Scheme 

 

 The source represents the origin of the data to be sent, and can be a physical 

storage device such as a CD, DVD, or Magneto-Optical recording device with the data 

already in digital form, or an analog signal such as a voice or music sample. The source is 

first encoded into digital form if it wasn’t already in such a form. The output of the 

source encoder must be a sequence of binary digits representing the data. How this 

encoding is performed is determined by the needs of the system, and is irrelevant to the 

communication methodology. 

The data stream is then sent through the channel encoder, where the ECC 

encoding is performed. This unit takes the incoming data and adds redundancy via 

whichever ECC scheme is in use. In this work, a Reed-Solomon encoding device is used. 

Source Source 
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The encoded data is then sent to the digital modulator, which takes the digital signal and 

creates an analog waveform to be transmitted over the communication channel. 

As the analog signal is transmitted over the channel, it is subject to noise, which 

distorts the original signal so that what is received at the other end is not identical to the 

signal which was sent. Noise is the source of the errors, which need to be corrected. 

When the signal is received at the end of the channel, it is demodulated back into 

digital form by the demodulator. This process is the exact inverse of the modulation 

process, and the end result is again a stream of binary data. However, as mentioned 

above, the signal has changed due to noise during transmission, and so in most cases, the 

binary sequence output from the demodulator is not identical to the one which was 

originally presented to the modulator. 

This sequence is then fed into the channel decoder, which attempts to decode the 

signal in a way that recovers all of the original data, correcting any errors which were 

introduced during transmission. This is made possible by the redundancy which was 

added to the signal during encoding. In this work, the decoding system is the main 

application of interest, and represents a Reed-Solomon decoding system. 

After the errors have been corrected to the decoder’s best ability, the data is 

transformed into the required format, for example, in a phone conversation, the binary 

stream is converted back into an analog signal to be output to the receiver’s speaker. 

 

2.1.1) Reed-Solomon Codes 

 Reed-Solomon codes were first introduced by Irving Reeds and Gus Solomon in 

1960, in a paper entitled “Polynomial codes over certain finite fields” [2]. Since their 
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inception, RS codes have been one of the most widely used ECC schemes, mainly 

because the coding scheme allows for efficient correction of both burst and random 

errors. Reed-Solomon coding is known as a non-linear, block based coding scheme. RS is 

a block scheme because it encodes blocks of a specific amount of data individually, as 

opposed to operating on the entire data stream as a whole. RS codes are based on finite 

field arithmetic, known as Galois fields. These fields are mathematical constructs in 

which any operation on one data element results in another element in a constrained field. 

The general operation can be described as follows; a predetermined sized block of data (k 

bytes) is encoded so that the result is a data block of size n, where n>k. This size n block 

contains the k original data bytes, along with n-k parity bytes, representing the 

redundancy in the signal, for transmission over the noisy channel. Within the block, the 

RS algorithm works on multiple bits of data at a time, typically a byte. Each byte is a 

symbol, and the nature of the RS algorithm allows for the correction of whole symbols, as 

opposed to correcting individual bits. This means that the RS decoder can correct a 

symbol with 8 bit errors as well as a symbol with 1 bit in error. This is the particular 

characteristic which allows RS codes to be effective at correcting burst errors in addition 

to random errors. 

 

2.1.2) Galois Fields 

 As mentioned above, the RS coding scheme uses abstract mathematical constructs 

known as Galois Fields. Each field contains a finite number of elements, and operations 

on elements in the field can only produce a result within the same field. The benefits of 

this kind of arithmetic include not having to deal with overflows and carries. Galois fields 
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are defined as GF(X
Y
), where X

Y
 equals the total number of elements in the field. For RS 

codes, X must be a prime positive integer, and Y must be an integer greater than or equal 

to 3. Y also determines the number of bits operated on simultaneously, so in the case of 

our RS system, Y will be equal to 8. X will be defined as 2 as this is a common value, 

and lends itself well to digital implementations. 

 As an example, Table 2.1 shows the elements of the Galois field GF(2
3
). Elements 

of the Galois field are generated from the ‘primitive polynomial’ p(x), in this case, 

p(x)=1 + x + x
3
. When doing calculations in digital circuitry, the elements of each table 

entry are typically represented by bit values, instead of polynomial or power 

representations. 

 

Power Representation Polynomial Representation 3-Tuple Representation 

-∞ 0 0 0 0 

0 1 0 0 1 

α α 0 1 0 

α
2
 α

2
 1 0 0 

α
3
 α + 1 0 1 1 

α
4
 α

2 
 + α 1 1 0 

α
5
 α

2 
 + α + 1 1 1 1 

α
6
 α

2 
 + 1 1 0 1 

Table 2.1. Elements of GF(2
3
) shown in three different representations 
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Arithmetic operations performed within a Galois field are performed differently 

than when using typical arithmetic. The two operations used in the RS system are GF 

adds and GF multiplications. GF addition is performed in binary systems by XORing the 

corresponding bits of the codeword, which represent the coefficients of the polynomial. 

For example: 

 α
6
 + α

4
 = [101] + [110] = [011] = α

3
 

GF multiplication is performed by adding the indices of the polynomial, for example: 

α
3
* α

2
 = α

2+3 
= α

5
 

In binary form, this operation is a modulo 2 sum of partial products, and which requires 

specialized multiplier circuitry. The circuitry will be described in detail in Chapter 4. 

 

2.1.3) Reed-Solomon Encoding Algorithm 

 This section will provide an overview of the Reed-Solomon encoding and 

decoding algorithms, focusing on the mathematical description, while Chapter 3 will 

provide a look at how the decoding algorithm was previously implemented in hardware. 

 As mentioned above, Reed-Solomon codes operate on GF of the order q=p
m

, 

where m is a positive integer greater than or equal to 3. Typically, the value of p is 2, and 

a typical value of q is 256. For this example, the assumed values will be p=2 and q=8, 

because the math becomes very complex as q scales upward. Our experimental 

implementation utilizes a q value of 256. Each GF is generated from a primitive 

polynomial of p(x)=1 + x + x
3
.  

 The three columns in Table 2.1 illustrate different ways of representing the same 

data. If this particular GF was to be implemented in circuitry, 3-tuple representation 
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would be used, given its binary representation. All of the operations in the RS algorithm 

operate within this constrained field, meaning that any operation on data within the field 

will result in another entry within the field. 

 The encoding process is accomplished by taking in a k-bit block of data, and 

generating n-k parity bits to append to the original data for transfer. RS encoding makes 

use of a generator polynomial. The encoder generates the parity symbols by dividing the 

data by the generator polynomial, with the remainder being the parity bits. 

 An example of RS encoding follows. For this example, the code used is RS(7,3) 

operating on the GF(2
3
), the elements of which are shown in Table 2.1. This implies that 

the encoder operates on 3-bit symbols, 3 of which will be used to generate 4 3-bit parity 

values, for a total message length of 7 3-bit symbols. A summary of the parameters is 

shown below. 

 n=7, k=3 

t=(7-3)/2=2 

N represents the total codeword length in symbols, while K represents the number 

of data symbols in each codeword. T represents the error correcting capability of the 

coding scheme. In this case, an errors-only RS(7,3) decoder can correct 2 erroneous 

symbols in the codeword, while and errors-and-erasures version of the same decoder can 

correct 2t=4 erroneous symbols. The difference between an errors-only and an errors and 

erasures decoder will be discussed in Chapter 3. 

Suppose that the message below is to be encoded: 

u_binary=[011,011,010] 
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As one can see from examining Table 2.1., this data can be represented in both 

polynomial form, as: 

u(x) = α
3
x

2
 + α

3
x

1
 + α

1
x 

and in power form, as: 

u= α
3
α

3
α

1
 

The value of x in the polynomial form represents the position of the symbol in the block. 

 To determine the parity bits of the signal, a generator polynomial is used. It’s 

general form is: 

g(x) = (x + α
0
)(x + α

1
)+……+(x + α

2t-1
) 

Given that for this example, t=2, the generator polynomial used is: 

g(x) = (x + α
0
)(x + α

1
)(x + α

2
)(x + α

3
) 

This can be expanded to g(x)= α
6
+ α

5
x+ α

5
x

2
+ α

2
x

3
+x

4
, so the coefficients of g are g0= 

α
6
, g1= α

5
, g2= α

5
, g3= α

2
. A simplified architecture for the encoder is illustrated below. 
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Figure 2.2. A general Reed-Solomon Encoder 

 

 The encoder uses the roots of g(x), along with a selection signal. This signal 

ensures that for the first m clock cycles, the input data is propagated to the output, 

followed by the propagation of the calculated parity symbols. An example using GF(2
3
) 

is detailed below. 

 

- Clock Cycle 1: The first message symbol 011 (or α
3
) is sent into the encoder. The 

symbol is multiplied by each of the generator coefficients, and added to the 

previous data in registers b0,b1,b2,b3, which in this case, since this is the initial 

cycle, are all equal to 000. The resulting register values are: 

o b0= α
3
 * α

6
 = α

9
, which simplifies to α

2
 

Gate 

Transmitted Codeword 

 

  b0 

g0 

g1 

g2 

g3 

  b1 

  b2 

  b3 

Selector 

Selector 

Key: 

m-bit Register 

GF(2m) adder 
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o b1= α
3
 * α

5
 + 000= α

8
, which simplifies to α

1
 

o b2= α
3
 * α

5
 + 000= α

1
 

o b3= α
3
 * α

2
 + 000= α

5
 

- Clock Cycle 2: The second message symbol, 011 (α
3
) is sent into the decoder. It is 

XORed with the value of b3, which is 111 (α
5
) resulting in 101 (α

2
). This value is 

multiplied by the generator coefficients, resulting in register values of: 

o b0= α
2
 * α

6
 = α

9
 = α

1
 

o b1= α
2
 * α

5
 + α

2
 = α

6
 

o b2= α
2
 * α

5
 + α

1
 = α

3
 

o b3= α
2
 * α

2
 + α

1
 = α

2
 

- Clock Cycle 3: The third message symbol, 010 (α
1
) is fed into the decoder. It is 

XORed with the value of b3, α
2
, resulting in α

4
. The end results in the registers 

are: 

o b0= α
4
 * α

6
 = α

3
 

o b1= α
4
 * α

5
 + α

1
 = α

4
 

o b2= α
4
 * α

5
 + α

6
 = α

0
 

o b3= α
4
 * α

2
 + α

3
 = α

4
 

- Clock Cycle 4-7: As the counter is now equal to 4, the data in registers b0, b1, and 

b2 contain the parity data to be appended to the signal. The gate is disconnected, 

and the data is allowed to propagate out of the circuit.  
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 The final message sent to the channel is [011,011,010,110,001,110,011]. The first 

3 tuples are the original data, and the trailing four are the parity symbols. This binary 

string is modulated into an analog form. A typical modulation scheme is the Binary Phase 

Shift Key (BPSK) modulator, which transforms the data into a waveform, with 1s 

becoming -1s, and 0s becoming +1s. This signal is transmitted over the channel, and is 

subject to noise in the form of Rayleigh channel fading, and additive Gaussian white 

noise (AGWN). 

 

Figure 2.3. Rayleigh Fading Channel 

 

 The above diagram illustrates a typical Rayleigh fading channel. Rayleigh fading 

occurs because of the nature of a wireless transmitting environment. Signals in an 

environment such as this scatter off of physical objects such as walls and the result is that 

there are multiple paths from the transmitter to the receiver, resulting in different amounts 

of signal power coming to the antenna from different directions. In addition, 

electromagnetic interference also affects the signal while in transit. The resulting effect 

can be described mathematically as: 

yr = ys*ƒ + n 

Channel 

Received 

Signal 

AWGN Rayleigh 

Fading 

Original 

Signal 
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where ys represents the signal as sent, yr represents the signal as received, ƒ represents the 

Rayleigh fading gain of the channel, and n represents the AWGN during transmission. 

Typically these parameters change over the course of the transmission of the codeword, 

so this can be better modeled on a bit by bit basis as: 

yr
i
 = ys

i
*ƒ

i
 + n

i 

where i stands for the i
th

 bit of the transmitted sequence. 

 

2.1.4) Reed-Solomon Decoding 

 When the signal from the encoder is modulated and passed through the channel, it 

is subject to both Rayleigh fading and AGWN, and thus the signal is not the clean -1 and 

+1 signs when it is received. The demodulator takes in this analog signal, and outputs 

floating point estimations of each bit’s value. There are two ways to perform the 

decoding of this modified data, hard-decision decoding, and soft-decision decoding. Hard 

decision decoding yields an error-only RS decoder, and functions by determining that any 

signal received which is below 0 becomes a -1, and above zero becomes a +1. While this 

is usually correct, in the case where a large amount of noise was injected into the signal, 

these hard decisions may be incorrect. Consider for example a symbol which is received 

and demodulated into the values {.0675, -.0238, -.8905}. Using hard decision 

demodulation, this would become {+1, -1, -1}. However, the second bit is so close to 0 

that it could conceivably have been either a +1 or -1 originally. When using hard-decision 

demodulation, the decoder has no way of knowing that this bit is unreliable, information 

which could aid in the decoding process. 
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 Soft decision demodulation uses an erasure generator to signal the decoder when 

particular symbols are unreliable. The decoder still receives streams of the “most likely” 

symbols, but also receives a stream of flags indicating when a particular symbol is 

unreliable. The erasure generator takes in a symbol at a time, and generates two possible 

values, the most likely symbol (MLS), and 2
nd

 MLS. The second MLS is determined by 

negating the bit with the lowest absolute amplitude, as this is the least reliable bit. It then 

calculates the difference between the two different symbols, the MLS and the 2
nd

 MLS, 

and compares this to a pre-set threshold value. The actual function to determine whether 

to assert the erasure flag is detailed below. 

 The receiver receives y, representing the amplitudes of the received data from the 

channel. It then calculates the most likely symbol, or MLS, based on the fact that y was 

received. The possible symbols are denoted as s0, s1, …sn-1. This function is denoted as: 

 

The erasure flag is asserted for a particular symbol if and only if: 

 

where sv represents the MLS, and the bottom term represents the total conditional 

probability of sv given that y
j
 was received. 

 The principal benefit of using a soft decision, errors-and-erasures version of an 

RS decoder is that the amount of errors that can be corrected per codeword is increased. 

The amount of errors that can be corrected by a hard decision decoder is t, while a soft-

decision decoder can correct 2t erroneous symbols per codeword. 
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 Figure 2.4 shows the general structure of an errors-and-erasures RS decoder. This 

decoder receives the stream of estimated data and a stream of erasure flags from the 

erasure generator, and attempts to correct any errors. 

 

Figure 2.4. General Reed-Solomon Decoder Architecture 

 

 This next section will contain an example of RS soft-decision decoding, following 

from the encoding example. Each block’s operation will be discussed along with the 

example. 

 

1) Syndrome Generation Block 

 The function of the syndrome generation block is to divide the received codeword 

by the generator polynomial. As mentioned earlier, any valid codeword will be exactly 

divisible by the generator polynomial. If there is a remainder, one can assume that there 

are errors in the codeword. The typical method of performing this division is to substitute 
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all of the 2t roots of the generator poly into the received polynomial, generating 2t 

syndrome coefficients. This is known as the syndrome polynomial. If all of the 

coefficients are zero, then there are no errors in the codeword, and error correction can be 

bypassed. 

 Given the example from the encoding section, the received codeword should be  

u(x) = [011,011,010,110,001,110,011].  

Let us assume that instead, the received sequence is: 

 u(x) = [011,010,100, 110,001,110,011].  

The polynomial representation of this sequence is: 

u(x) = α
3
x

6
 + α

1
x

5
 + α

2
x

4
 + α

4
x

3
 + α

0
x

2
 + α

4
x + α

3
 

Two errors were introduced during the transmission of the signal over the 

channel, one in the second symbol, and one in the third. The syndrome generation unit 

substitutes all of the roots of the generator polynomial into the above equation, resulting 

in: 

s(x) = α
4
x

3
 + α

2
x

2
 + α

6
x + α

5
 

 

2) Erasure Location Extraction 

 This block receives the stream of erasure flags from the erasure generator, and 

expands them into a polynomial for use in calculating the locations of errors in the 

codeword. As erasure generation is not 100% accurate, let us assume that only the second 

symbol was flagged as being unreliable, and the third symbol, which also has an error, 

was missed. 
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 When the second symbol arrives at the syndrome generation block, an erasure 

flag arrives at the erasure location extraction block. This block then performs the 

following calculation: 

 t = α
n-1

 

 t = α
7-2

 

 t = α
5
 

The resulting polynomial is the sum of all of the results for every erasure flag plus 1. 

Since in this case there is only a single erasure flag, the resultant polynomial is: 

 t(x) = 1 + α
5
x = α

0
 + α

5
x 

 

3) Syndrome Polynomial Expansion Block 

 This block receives the syndrome polynomial s(x) and the erasure location 

polynomial t(x) from the preceding blocks. Its job is to multiply these two polynomials 

together to generate the modified syndrome polynomial, T(x). Continuing with the 

example, the received vectors were: 

s(x) = α
4
x

3
 + α

2
x

2
 + α

6
x + α

5
 

t(x) = α
0
 + α

5
x 

T(x) is defined as: 

 T(x) = t(x)s(x)mod x
2t

 

 T(x) = (α
0
 + α

5
x)( α

4
x

3
 + α

2
x

2
 + α

6
x + α

5
) mod x

4
 

 T(x) = α
5
 + α

4
x + α

1
x

2
 +α

5
x

3
 

 

4) Erasure-Location Polynomial Generator Block 



 

 

28 

 This block calculates the erasure location polynomial in parallel with the above 

syndrome expansion block. This block expands the erasure location polynomial. Given 

that the current example has only one erasure, the poly remains unchanged, but if for 

example both of the erroneous symbols in the example had been flagged, then t(x) would 

have been: 

 t(x) = (1 + α
6
x)(1 + α

5
x) 

And in this case, this would need to be expanded by multiplying out the factors. In this 

case, the polynomial is unchanged and is forwarded as is, 

 D(x) = 1 + α
5
x = α

0
 + α

5
x 

 

5) Errata Polynomials Generation Block 

 The job of this block is two create two key polynomials which will help to 

identify the location and magnitude of the errors in the codeword. The two polynomials 

are the errata-locator-polynomial, Ψ(x), and the errata-magnitude-polynomial Ω(x). The 

inputs to this block are the modified syndrome polynomial, T(x), and the erasure-

location-polynomial, D(x). There are two methods of computing these polynomials, the 

Berlekamp-Massey algorithm[28], or the Modified-Euclidean algorithm (MEA)[29]. In 

this work, the MEA algorithm will be used. 

 The MEA algorithm is a recursive algorithm which operates on 4 polynomials, R, 

Q, L, and U. They are initialized as follows: 

- R is initialized to x
2t

 

- L is initialized to 0 

- Q is initialized with T(x) 
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- U is initialized with D(x) 

The equations used to update the polynomial are: 

Ri(x) = [σi-1bi-1Ri-1(x) + σ`i-1ai-1Qi-1(x)] – x
|l

i
-1|

[σi-1ai-1Qi-1(x) + σ`i-1bi-1Ri-1] 

Li(x) = [σi-1bi-1Li-1(x) + σ`i-1ai-1Ui-1(x)] – x
|l

i
-1|

[σi-1ai-1Ui-1(x) + σ`i-1bi-1Li-1] 

Qi(x) = σi-1Qi-1(x) + σ`i-1Ri-1(x) 

Ui(x) = σi-1Ui-1(x) + σ`i-1Li-1(x) 

where ai-1 and bi-1 are the leading coefficients of Ri-1(x) and Qi-1(x), li-1 = deg(Ri-1(x)) – 

deg(Qi-1(x)), where deg(y) signifies the degree of y, and σi-1 = 1 if li-1 ≥ 0. σ`i-1 is the 

opposite of σi-1. 

The number of iterations needed depends on the number of errors which were not 

flagged by the erasure generator. It can be seen that the more accurate the erasure 

generator, the better the performance of this block. The computation stops when the 

degree of Ri(x) is less than the degree of Li(x). When this occurs, the value of Li(x) is 

output as the error-locator polynomial, Ψ(x), and the value of Ri(x) is output as the error-

magnitude polynomial, Ω(x). Continuing with the example, the initial values are: 

R0(x) = x
4
 

Q0(x) = T(x) = α
5
 + α

4
x + α

1
x

2
 +α

5
x

3 

L0(x) = 0 

U0(x) = D(x) = α
0
 + α

5
x 

The end result of the MEA calculation results in: 

 Ψ(x) = α
3
x

2
 + α

1
x + α

1 

 Ω(x) = α
2
x + α

6
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6) Chien Search Block 

 The job of the Chien-Search block is to take the error-location (Ψ(x)) and error 

magnitude (Ω(x)) polynomials, and evaluate them across all of the possible values in the 

GF(2
m

). In addition, the Chien-Search block creates and evaluates the derivative of Ψ(x), 

Ψ`(x), which is the odd terms of Ψ(x). 

 When the result of an evaluation of Ψ(x) equals 0, it indicates that there is an error 

in the (n-i)th symbol in the codeword. These three sets of evaluations are passed on to the 

Forney Algorithm and Error-Correction Block. Continuing the example, the result of 

these calculations yields: 

 Ψ(x) Ψ`(x) Ω(x) 

α
0 

α
3
 α

1 
α

0
 

α
1
 α

0
 α

2
 α

4
 

α
2
 0 α

3
 α

3
 

α
3
 0 α

4
 α

1
 

α
4
 α

3
 α

5
 0 

α
5
 α

1
 α

6
 α

2
 

α
6
 α

0
 α

0
 α

5
 

Table 2.2. Roots of Key Polynomials 

 

These results indicate an error at location 7-2=5 and 7-3=4 in the received codeword, 

which is correct. 

 

7) Forney Algorithm and Error-Correction Block 

This block is responsible for evaluating the magnitude of each error indicated by 

the Chien-Search block and performing the correction to the original received codeword. 
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It receives the evaluations of Ψ(x), Ψ`(x), and Ω(x), along with the original codeword 

from the FIFO. The magnitude of the error in location l is determined by the equation: 

ê(α
1
) = Ω(α

1
)/Ψ`(α

l
) 

A polynomial ê(x) is formed by combining the error locations (as powers of x) with the 

error magnitudes (as powers of α). The codeword is corrected by combining this 

polynomial with the original codeword polynomial, u(x), as follows: 

ĉ(x) = ê(x) + u(x) 

The result, ĉ(x), is the corrected codeword. Following the example, errors are in location 

5 and 4, corresponding to α
2 

and α
3
. The error magnitudes are calculated as: 

ê(α
2
) = Ω(α

2
)/Ψ`(α

2
) = α

3
/ α

3
 = α

0
 

ê(α
3
) = Ω(α

3
)/Ψ`(α

3
) = α

1
/ α

4
 = α

4 

And thus the error vector ê(x) is: 

ê(x) = α
0
x

5
 + α

4
x

4 

This vector is combined with u(x), the original received codeword, as follows: 

ĉ(x) = ê(x) + r(x) 

ĉ(x) = (α
0
x

5
 + α

4
x

4
) + (α

3
x

6
 + α

1
x

5
 + α

2
x

4
 + α

4
x

3
 + α

0
x

2
 + α

4
x + α

3
) 

ĉ(x) = α
3
x

6
 + α

3
x

5
 + α

1
x

4
 + α

4
x

3
 + α

0
x

2
 + α

4
x + α

3 

ĉ = [011,011,010,110,001,110,011] 

This creates the original codeword, as all errors have been corrected. 

 

2.2) Energy Consumption in FPGAs 

There are two distinct types of energy consumption in FPGAs, static and 

dynamic. Static energy is consumed by all parts of the FPGA, whether active or not, as 
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long as the device is on. Static energy is consumed at a roughly constant rate. The main 

source of static energy consumption is the SRAM used to store the configuration of the 

device. Static energy consumption can be viewed as the cost of having the FPGA device 

“on”, and is roughly design independent, meaning that the opportunities for reducing 

static energy consumption available to the designer are limited.  

The second type of energy consumption in FPGAs is dynamic energy 

consumption. This is caused by signal transitions in the circuitry as the application 

performs work. Dynamic energy consumption is the cost of the device performing 

calculations. The amount of energy consumed is governed by the capacitance on a 

particular signaling line, and each transition will generally dissipate the same amount of 

energy. There are two types of signal transitions, transitions necessary for calculations, 

and spurious transitions caused by path-delay differences in the logic circuits, which are 

commonly referred to as glitches. 

In general, reducing the length (and thus the capacitance) of a signal line, or 

reducing the number of transitions across a line, whether required or spurious, will reduce 

dynamic energy consumption. This work focuses on high level techniques which reduce 

the total number of signal transitions. 

 

2.3) Circuit Level Energy Reduction Methods 

 

2.3.1) Pipelining 

 The impact of pipelining has previously been examined for a variety of different 

devices, and has been found to be effective at reducing energy consumption in digital 
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circuits[30]. Most recently, Wilton et al did an analysis of the effects of pipelining on 

energy consumption in FPGA circuits [8]. The conclusion of this study was that 

pipelining is an effective method of reducing dynamic energy consumption in FPGAs. 

Pipelining is especially applicable to FPGAs because a) the registers used for pipelining 

are embedded in the FPGA fabric in every logic element, so the cost of using them is 

minimal, and b) because the communication lines on FPGAs tend to be longer and have 

higher capacitance on average than those in a custom ASIC, signal transitions require a 

significant amount of energy. It is necessary to minimize spurious transitions on these 

lines, one of the beneficial effects of pipelining. 

One effect of pipelining is to split the logic into discrete sections, separated by 

registers. By splitting the logic up, it is possible to selectively de-activate sections of 

logic by using clock gating, another method of energy reduction. The granularity of the 

pipelining determines the size of the logical register-to-register sections which can be 

clock gated, and thus the two methods have significant interaction. 

The methodology used in this work to reduce energy via pipelining is as follows. 

Pipelining was performed by hand, to evaluate differing amounts of pipelining while 

maintaining identical logical functionality, differing only in latency. The initial designs 

are examined for areas which could potentially be pipelined. Examples of such areas 

include areas of large logic depths between registers. As we are attempting to minimize 

the amount of logic through which a glitch can propagate, it is desirable to separate 

functional units by inserting pipeline registers between them. 

Although pipeline registers can reduce the propagation of glitches across logic 

and interconnect, and thus reduce energy consumption, the additional registers also 
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dissipate some amount of energy. Thus it is not always the case that additional pipelining 

will be effective in reducing energy, as a balance must be found between the energy 

saved from reduced glitching, and the energy consumed by additional registers. It was 

observed in preliminary work that there is a degree of pipelining which provides optimal 

energy per operation results. The goal is to find the optimal amount of pipelining to 

achieve minimal energy-per-operation performance. 

 

 

Figure 2.5. Clock Gating circuit 

 

2.3.2) Clock Gating 

Clock gating is a technique which has been shown to be effective for reducing 

power and energy consumption for all types of digital circuits [9] [10]. As illustrated in 

Figure 2.5, in its simplest form, clock gating is achieved by ANDing the clock signal to a 

particular element with an enable signal, so that when the enable is low, the combined 

signal is always forced low, effectively halting any clocked operations in any logic 

controlled by that clock signal. This is done to reduce unnecessary transitions in the logic, 

thus reducing dynamic energy consumption. Typically, we gate computational elements 
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when the results of their computation is unneeded, meaning the results have no impact on 

a current or future output signal. Clock gating is particularly applicable to FPGA circuits 

because the ability to enable and disable the clock is typically built into the logic 

elements in the FPGA, so the cost of using them is minimal. Preventing a transition on an 

interconnect line is particularly beneficial for FPGAs since interconnect capacitance is 

quite high compared to ASICs. 

Despite these advantages, clock gating has significant tradeoffs. While energy 

may be saved by preventing unnecessary computation, additional energy will be 

consumed by the gating logic, and the designer must make sure that the energy saved 

exceeds the additional energy of the gating logic. In addition, the generation of clock 

gating control signals can sometimes introduce additional levels of logic, reducing the 

maximum operational frequency of the design. 

Our methodology for applying clock gating is as follows. Given a design which 

has previously been pipelined, we have the option of gating a register, effectively cutting 

off any computation driven by the output of that register. We begin by examining the 

application for areas whose computation will not always be needed. For example, in a 

pipelined ALU, there are separate functional units for every operation, AND, OR, 

ADD/SUB, etc. Each particular unit is only needed when a particular operation is needed. 

Thus, it makes sense to gate portions of the functional unit based on the value of the 

required operation. In addition, given a pipelined architecture, it is often possible to know 

which units will be needed a cycle or more ahead of time. If this is the case, it is possible 

to perform cycle-ahead gating.  
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Once areas have been identified for possible clock gating, the designer must 

weigh the energy consumption of the logic needed to generate the enable signal against 

the energy which can be saved when the functional logic is gated. This depends not only 

on the amount of logic which is gated, but the percentage of the time that the logic will 

actually be used, which often depends on the incoming data. Often, it is a matter of 

running simulations based on expected data to determine the viability of reducing energy 

consumption via gating a particular section of logic. 

To gate a clock, the designer needs to provide a control signal which allows logic 

to operate only when it is needed. In the ALU example, a simple solution is to use a 

combination of operand signals to create a gating signal. This control signal is then 

connected with the clock to an AND gate, so that when the enable signal is low, the clock 

is forced to remain low. 

One final note is that it can be seen from the above discussion that we can only 

gate contiguous sections of logic, separated by registers. The granularity of the possible 

gating thus depends on the degree of pipelining applied to the circuit. 

 The end goal of clock gating the Reed-Solomon decoder design is to ensure that 

the various functional units only receive a clock when they are currently processing data. 

Because each of the units in the decoder takes a different amount of time to perform its 

operations, there is significant downtime among some of the functional units in the 

design. 
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2.3.3. Memory Access Reduction Techniques 

Clock gating of embedded memory units is of particular interest in FPGAs, due to 

their high energy consumption rates when compared to general logic circuitry. Rather 

than clock gating an entire memory, it is possible to re-format a memory unit and insert 

small buffers before and/or after an embedded memory to allow it to be gated for larger 

periods of time. This is accomplished by reconfiguring the memory to have a bus size 

which is a multiple of the original width, reducing the overall number of elements, 

keeping the same overall size constant. The buffers then combine data from two or more 

contiguous writes into one data point, and similarly read a large data point and then 

provide each unit of the data to the logic separately, one after the other. Figure 2.6 and 

2.7 below illustrate this concept. 

 

Figure 2.6. Memory Buffering 
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Figure 2.7. Activity of Memory, original vs. buffered  

 

 Figure 2.6 illustrates the structural differences between a typical memory setup 

(above), and the buffered setup (below). The buffered setup collects four 8-bit data points 

before performing each 32-bit write to the embedded memory block. On the read side, 

one 32-bit data point is read every four clock cycles, and 8-bits are presented to the 

output every cycle. Figure 2.7 illustrates the activity of the embedded memory under the 

typical and buffered schemes. From the activity diagram, it is evident that the activity of 

the memory can be reduced by 75% by buffering. 

This method allows the memory to be deactivated for half or more of the time it 

would have previously been active, reducing energy consumption significantly. While 

some extra energy will be consumed by the buffers, it is typically much less than the 

energy saved by deactivating the memory. A caveat of this method is that it is only 

possible when the data will be written and read in order, otherwise this method is not 

applicable.  

 

2.4. Dynamic Reconfiguration 

 One of the other methods used in this work is the concept of dynamic 

reconfiguration. Dynamic reconfiguration refers to the technique of changing the 
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functionality of a component during operation, to achieve a specific goal such as 

increased performance, reduced power consumption, increased speed, etc. Previous 

works have shown dynamic reconfiguration of FPGA based applications to be effective 

for many goals, including reducing the size of the necessary hardware component [12], 

for the support of concurrent applications[32], and directly related to this work, to reduce 

power consumption and increase performance [15]. This particular work will examine 

dynamic reconfiguration for energy efficiency, essentially attempting to minimize the 

amount of energy needed to decode a certain amount of data, and reconfiguring as 

channel conditions allow in order to swap in a more efficient decoder. The methodology 

of this process will be examined in Chapter 4. 
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CHAPTER 3 

RELATED WORK 

 

3.1. Previous RS works 

 This section will contain an overview of previous works in the area of Reed-

Solomon decoders. As mentioned in the introduction, this system is designed to provide 

Reed-Solomon decoder functionality for a system which is already FPGA based, as the 

performance and energy consumption characteristics of an FPGA based RS decoder are 

unlikely to better an ASIC implementation. 

 

3.1.1. A Low-Power Reed-Solomon Decoder for STM-16 Optical Communications 

 This paper [21] describes a low-power ASIC implementation of a Reed-Solomon 

(255,239) decoder, designed for submarine communications. It is included here to 

illustrate the current performance levels of ASIC implementations of the Reed-Solomon 

algorithm. The design implements a novel syndrome calculation unit, along with a 

modified Berlekamp-Massey algorithm as opposed to an implementation of the MEA or 

EA algorithms to solve the key equations. The chip was implemented using .25um 

CMOS standard cells. The resulting performance characteristics are a sustained 2.5Gbps 

throughput with a CER of 10
-4

, and the entire chip consumes 68.5mW of power. 

Calculating the energy-per-codeword value from these characteristics, it is clear that each 

bit requires approximately 2.74x10
-11

 J to process. Comparing this to the previous work, 

which required approximately 1.25x10
-9

 J to process a bit, counting dynamic power only, 

it is unlikely that any FPGA implementation of an RS decoder will be able to beat the 
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ASIC in terms of energy consumption. This is why this work is aimed at systems already 

containing an FPGA for processing, in which case the RS decoder can be added to the 

existing FPGA code instead of requiring an external RS ASIC. 

 

3.1.2. Design of a Reed-Solomon Decoder using Partial Reconfiguration of XILINX 

FPGAs – A Case Study 

 This paper [12] uses a Reed-Solomon coder and decoder to test a design 

methodology aimed at allowing for partial run-time reconfiguration of applications. The 

design uses both static modules, and so called pRTR modules, which are the partial run-

time reconfigurable parts of the design. The design works by maintaining the same 

overall structure by loading pRTR units as needed into the same physical location. It 

makes use of a static CLB interface macro to handle communications between modules. 

The seven pRTR modules encompassing the RS encoder and decoder are: RS coder, RS 

decoder, syndrome calculation, error locations, error locator polynomial, error 

magnitudes, and error corrections. The design allows for the system to be implemented 

on a small FPGA by swapping in and out the modules as they are needed. 

Unlike the above approach, the approach used in this work makes use of full 

dynamic reconfiguration. In addition, the reconfiguration is used to adapt to changing 

channel conditions, not allow for implementation of the design on area-limited devices. 
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3.1.3. Architecture for Decoding Adaptive Reed-Solomon Codes with Variable Block 

Length 

 This work [13] describes the implementation of an adaptive RS decoding system 

on an Altera APEX20KE FPGA. The system adapts to allow for varying block lengths 

between 13 and 255, while maintaining error correction capabilities of up to 10 erroneous 

bytes in a codeword. The goal of this work is to maintain the needed CER by varying the 

amount of redundancy in the symbol. With this design, the value of t can be varied on a 

codeword to codeword basis. The design makes use of a multiplexed MEA unit, which 

allows for pipelined operation of the design. The resultant data rate achieved is 240Mbps, 

with a resource utilization of approximately 17,000 LUTs. 

 The main difference between this and the work described in this document is that 

the system in this work does not vary the block length, it varies the value of K. This 

allows for less communication between the encoder and decoder, which is desirable in a 

real-world system. As the goal of this work was to reduce energy consumption over 

speed, the multiplexed MEA structure is not desirable. Lastly, our system is able to 

correct more errors given that it implements erasures. The use of erasures allows for a 

reduction on the load of the MEA unit, and thus a faster operation of this part of the 

algorithm. 

 

3.1.4. A Reed-Solomon Decoder with Efficient Recursive Cell Architecture for DVD 

Applications 

 This paper presents an errors-only RS(208,192) decoder implemented on an 

Altera FLEX10KE200 FPGA [14]. The goal of this work was to examine and design an 
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efficient MEA architecture which would reduce the time to compute MEA by 32% 

compared to standard architectures. The design makes use of a reduced number of MEA 

cells, which are multiplexed and used recursively. The design makes use of the number of 

MEA cells needed so that the computation is not limited by the MEA block. This means 

that the computation must be performed in n clock cycles, as this is the number of clock 

cycles between codewords. For the RS(208,192) decoder, this needs only one MEA cell. 

However, if the architecture was used on larger decoders, such as RS(255,223), it would 

require 4 MEA cells. The architecture achieves a decoding speed of 20Mbps. 

 In the proposed work, again, the decoder can correct more errors by using an 

errors-and-erasures approach. This allows for a reduction in the necessary processing 

using the MEA unit, and thus one MEA unit can be used recursively, which also reduces 

overall energy consumption compared to the above work. 

 

3.2. Previous FPGA Energy Reduction Works 

 This section will highlight previous works involving reduction of FPGA energy 

consumption. 

 

3.2.1. The Impact of Pipelining on Energy per Operation in Field-Programmable Gate 

Arrays 

 This work by Wilton [8] examines the impact of pipelining on energy 

consumption for FPGA designs. The study used 4 benchmarks, 64-bit Integer Array 

Multiplication, Triple DES encryption, 8-tap FIR filter, and a CORDIC circuit. These 

designs were implemented with varying degrees of pipelining ranging from one or 2 
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levels to the maximum possible amount of pipelining, a register after every LUT. The 

result of the work demonstrates that pipelining can reduce the overall energy-per-

operation values across all of the benchmarks, by as much as 75%. However, with some 

benchmarks, there is a reduction in benefits as more and more pipeline stages are 

introduced, suggesting that there is a particular amount of pipelining at which the best 

energy performance can be achieved. 

 An approach similar to the one used above, although less exhaustive, was used in 

this work to examine exactly how much pipelining is beneficial in the design. 

 

3.2.2. Energy-Efficient Signal Processing Using FPGAs 

 In this work by Choi et al, [10], algorithmic level energy optimizations were 

examined for their impacts of energy dissipation in several FPGA applications. The 

applications studied were the Fast Fourier Transform (FFT) and Matrix Multiplication. 

The methods used to reduce energy were Architecture Selection, Module Disabling, 

Algorithm Selection, Pipelining, and Parallel Processing. Module disabling is essentially 

implemented by using clock gating to restrict the clock from propagating to sections of 

the logic when no result is needed. One of the main uses of this technique in this work is 

to clock gate the memories when they are not in use. The authors point out through 

simulations that an embedded FPGA memory block will dissipate approximately 10% of 

the energy when it is disabled than it would if enabled. 
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 This technique was adopted with great success in this work given the large 

number of embedded memory units required by the design. In addition, clock gating, as 

mentioned in Chapter 2, was expanded to include any functional unit which can be 

switched off for any amount of time. 

 

3.3. An Adaptive Reed-Solomon Errors-and-Erasures Decoder 

This section will provide a detailed description of the Reed-Solomon errors-and-

erasures decoder system developed by Lilian Atieno as part of her masters thesis [15]. 

The resultant work was presented at the Proceedings of the ACM/SIGDA International 

Symposium on Field Programmable Gate Arrays, Monterey, CA, February 2006 [7], and 

can be referred to for more in depth analysis of her work. The work described in this 

document uses this previous work as a baseline to improve upon. 

For this previous work, an FPGA based adaptive errors-and-erasures Reed-

Solomon (255,k) decoding system was developed. An FPGA was used for this work 

because it allows for dynamic reconfiguration during run-time, and also allows for high 

levels of parallelism and an efficient implementation of the design. The system makes use 

of a multi-decoder scheme, under which multiple decoders operate in parallel to allow for 

more accurate decoding of data. The system makes use of the reconfigurability inherent 

to the FPGA device by swapping in decodes of differing K values and thresholds as 

channel conditions dictate. 

 The adaptive algorithm operates on two levels. First, it attempts to adapt to small 

changes in the SNR value of the channel by changing the number of active decoders 

between 1 and 3 without changing the K value. In this case, each decoder has a different 
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threshold value. Secondly, if larger variations in SNR occur, the decoder sends a request 

to the encoder to modify the K value to add or subtract from the amount of included 

redundancy in the signal, and changes the decoder to match. A diagram of the adaptive 

system is shown in Figure 3.1. 

 

 

Figure 3.1. From [7], Architecture of an Adaptive errors-and-erasures Reed-Solomon 

Decoding System 

 

 The system aims to maintain a CER of better than 10
-4

, while allowing for the 

maximum possible decode rate, as channel conditions dictate. The thresholds for the 

various erasure generators were determined through Matlab simulations, and the values 
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were chosen so that the required CER of 10
-4

 could be maintained under all 

circumstances. The table of decoder configurations is shown below. 

 

  

Table 3.1. From [7], Decoder Configurations 

 

As mentioned above, the system was designed to adapt to changing channel 

conditions. A set of experiments were performed to evaluate the effectiveness of this 

reconfiguration scheme given simulated channel characteristics. The results illustrate a 

14% increase in decoding speed over a non-reconfigurable decoder with a K value fixed 

at 217. 
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3.4. Differences from Previous Work 

There are several important differences between the previous work described in 

section 3.3 and the work done for this thesis, which will be described in detail in Chapter 

4. These differences will be highlighted briefly here. 

As mentioned above, the previous work made use of several multi-decoder 

implementations, in which several decoders were implemented in parallel. This was done 

in order to maintain the required CER while allowing for increased decoding speed. 

However, in terms of energy, it is extremely inefficient to have multiple decoders running 

at the same time when only one of their outputs is utilized. For this work, only single 

decoder implementations will be examined, with a slight reduction in decoding speed 

being the result. The new table (similar to Table 3.1 above) resulting from this change 

will be shown in Chapter 4. 

The algorithm which will control the reconfiguration scheduling will be 

simplified as a result of the simplified single decoder system, changing configurations in 

order to maintain the required CER while attempting to use the most energy efficient 

decoder. 

The channel model in the previous work was a very basic model, and part of this 

work is to evaluate the system using a more accurate model. The previous model 

assumed that the change in SNR between reconfiguration windows was essentially 

random, while also assuming that there was very little variation during the time a 

particular decoder was in operation. In order to get a more accurate assessment of the 

system performance characteristics, the new model is time-dependant, meaning that the 

SNR at any given point is related to the previous SNR values. In addition, we are not 
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assuming that the channel conditions remain static during the operation of a particular 

decoder. The analyses which were preformed include analysis of CER and energy 

consumption using different rates of reconfiguration, and will be detailed in the next 

section, Chapter 4.  
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CHAPTER 4 

IMPLEMENTATION 

 

 This chapter contains two contributions. In section 4.1, the development of a new 

communication channel fading model will be discussed, including the reasoning behind 

changing the model from the previous version. In section 4.2, the process of performing 

hardware optimizations will be discussed in detail. 

 

4.1. Channel Fading Model 

 A minor contribution of this work was the development of an accurate channel 

model to answer important questions regarding system-level performance characteristics 

under real-world constraints. The channel model used in [7] was a non-time-dependant 

Rayleigh fading channel model. While the channel model represented a Rayleigh 

channel, there was no correlation between consecutive samples. Thus, unrealistic 

variations in SNR could occur in very short amounts of time. This is not a realistic model, 

and while useful for general analysis, a more accurate time-dependant model is needed. 

 The non-time-dependent model made the assumption that the SNR would remain 

static between reconfigurations. This leads to an unrealistic representation of a Rayleigh 

fading channel, as it assumes the channel spends long periods of time in a relatively 

stable state while a particular decoder is operating, and then changes suddenly when we 

examine whether to reconfigure or not. Because of these reasons, a Rayleigh fading 

channel was developed which more accurately represents a real wireless environment. 
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4.1.1. Goals and Requirements 

 The main goal of applying a more accurate channel fading model is to accurately 

assess system characteristics relating to the time between reconfigurations of the adaptive 

decoding system. Specifically, the effects of reconfiguration on system energy 

consumption and CER are considered.  

 The most important requirement of this new model is that it be time dependant, so 

that each sample depends on the previous sample. In addition, it is important to model 

channel fading and shadowing as two distinct processes. The reasoning behind this 

requirement is that a decoding system can measure the average channel shadowing over 

time, but cannot measure the channel fading, as the changes due to fading occur too 

rapidly and vary greatly over short intervals of time. The system’s decisions on how to 

reconfigure would thus be based on the channel shadowing measured over time, while the 

performance in terms of CER would be determined with regard to the cumulative effects 

of both shadowing and channel fading. 

Finally, the model should represent a channel with an average SNR of 

approximately 16.8dB, with a range of SNR values (with regard to shadowing) from 

about 13dB to about 20.5-21dB, as this is the range of SNR values used by the original 

decoder. In reality, this range could be adjusted based on the required CER performance 

and other parameters, but for this work the previous assignments will be used for 

evaluation purposes.  
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Figure 4.1 illustrates how the SNR in the channel varies with regard to shadowing 

alone vs. shadowing and fading. With the inclusion of fading, the SNR varies wildly 

compared to the results of shadowing alone. This variation can sometimes be as much as 

40dB from top to bottom. 

 

 

Figure 4.1. SNR due to Shadowing (red) vs Shadowing and Fading (blue). 

 

4.1.2 Simulation Flow 

 In order to simulate the process of the message data being transferred over the 

noisy channel, we perform several steps. These steps are outlined below and discussed in 

more detail in subsequent sections. The purpose of simulation is to determine appropriate 

decoder parameters for later implementation in hardware. 
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1. An initial data block of size K bytes is randomly generated. This represents the 

message data. This data block is then encoded using the RS algorithm, resulting in 

a 255 byte-encoded message. 

 

2. The encoded message is modulated using BPSK modulation, where each ‘0’ bit 

becomes a +1, and each ‘1’ it becomes a -1. This generates a stream of +1 and -1 

values of length 2040. 

 

3. The stream of BPSK modulated values is affected by shadowing and fading as it 

passes through the noisy channel. The details of this process are described in 

section 4.1.3. The result is a stream of values ranging from about -2 to 2.  

 

4. To determine if the codeword will be decoded properly, we simulate the soft-

decision demodulation process which is performed by the erasure generator. This 

process is described in detail in section 2.1.4. The end result is a number of 

erasure flags representing suspected errors. By comparing the received data 

stream to the original stream, we can quickly determine how many errors were 

introduced. We can then determine if this codeword would be decoded properly 

by comparing the number of erasures and unflagged errors to the error correction 

capacity of the particular decoder using the equation: 

 

N-K ≥ (number of erasures) + 2*(number of unflagged errors) 
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5. If this equation holds true, then the decoder will properly decode the message, and 

no error has occurred. If not, then the decoder will be unable to correct the 

message. By simulating over a large number of codewords, we can determine the 

effective CER. 

 

4.1.3. Model Details 

 The new channel model developed for this dissertation has two distinct parts. The 

first part models the shadowing. For the following equations, the basic parameters are 

SNR_mean = 16.8dB and ρ=0.99999. The variable ρ is determined by the time between 

samples and the expected relative velocity of the two nodes, which communicate via the 

wireless channel. Parameter N(x,y) is a Gaussian random variable, with mean x and 

variance y. 

  

 The algorithm for determining the SNR with respect to shadowing is: 

1. Generate values of xi, where xi+1 = ρxi + N(0,1-ρ
2
), beginning with an initial x0 value 

of 0. 

2. Generate SNRi values via the equation SNRi = SNR_mean + xi. Each  SNRi value 

represents the channel as seen by the decoder over the course of a single codeword, 

measured in decibels (dB). 

  

 The resulting series of SNRi values are representative of what the decoder 

measures during operation. The average of these values over time is used by the decoder 

to determine how to reconfigure the system in response to channel variations. 
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 The second part of the channel model determines signal noise variations due to 

channel fading. These variations occur at a much greater frequency than the variations 

due to shadowing, and are assumed for this work to not be accurately measurable with 

regards to the decoding system. 

 

Channel fading is performed as follows: 

1.  For each symbol in the codeword, generate a fading variable, φ. 

The fading variable φ is created via the following equations where C is a constant: 

- φ = sqrt(φr
2
 + φi

2
) 

- φr = C + N(0,(1-C
2
)/2). This is the real part of the fading. 

- φi = N(0,(1-C
2
)/2). This is the imaginary part of the fading. 

2. This affects the BPSK modulated transmission of the symbol via: 

  - Ri = φ * ±1 + N(0,σ
2
)     

where ±1 is the original value of the bit sent over the channel by the BPSK 

modulator, and σ
2
 = 1/(2*SNRa). SNRa is SNRi in absolute notation, which is 

calculated via the equation: SNRa = (10)
SNR

i
/10

. The Ri values represent the 

floating point values received by the decoder after the message data has been 

impacted by the channel fading during transmission. One can see that in this 

equation, we have the impact due to both channel shadowing (the random variable 

has variance equal the SNR due to shadowing), and channel fading, which is 

represented by the φ variable, on the original sequence of +1/-1 values 

representing each bit of the message. 
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Part of the benefit of the above model is that it can be changed from Rayleigh to 

Rician or anything in between very easily. A Rayleigh channel is representative of a 

situation without line-of-sight communications, whereas a Rician channel represents a 

situation where line-of-sight communication is possible. If the variable C is set to zero, 

the model is Rayleigh, whereas if C is set to approximately sqrt(0.8), the model is Rician. 

Setting the value of C to a smaller number creates more variance in the fading variable by 

increasing the variance of the random variables which determine φ.  

The new model was coded as a C program to allow for simulation, which is 

described in the next section. 

 

4.1.4) Experiments 

Several avenues of investigation were pursued with the new channel model. First 

and foremost, an examination of the effect of time-between-reconfiguration on system 

energy consumption was performed. Since the focus of this work is on minimizing the 

energy consumption characteristics of the system while maintaining constant CER, there 

was a desire to evaluate how lengthening or shortening the time between system 

reconfiguration would affect the overall energy consumption. 

 The second part of the reconfiguration analysis was driven by a desire to examine 

how the CER would vary with regard to the reconfiguration rate. Conceptually, the 

longer the time between reconfigurations, the more the chance of the SNR varying to a 

point where the SNR is outside the range that the currently instantiated decoder was 

designed to operate in. If the SNR rises above the range for the decoder, it is not a 

problem, since that simply implies fewer errors on average than the maximum the 
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decoder was designed for. If, on the other hand, the SNR falls below the decoder’s 

designated range, the CER will suffer as the decoder will be unable to correct all of the 

errors. Figure 4.2 below illustrates how the SNR can vary in between reconfigurations. 

 

 

Figure 4.2. SNR variance during operation 

 

 Figure 4.2 displays how the SNR can vary between reconfigurations. The pink 

line displays the floor of the SNR range of the currently instantiated decoder. Notice that 

it varies periodically due to system reconfiguration. The blue line shows the actual SNR, 

and the red shading shows times when the SNR is below the desired level for the current 

configuration. These represent areas where we would expect to see an increase in the 

CER. 



 

 

58 

 During experimentation we determined the optimal reconfiguration rate in terms 

of energy consumption, while maintaining the desired CER of 10
-4

. Results of this 

analysis are presented in Chapter 6. 

 

4.2. Hardware Optimizations 

 The second major part of this work applies hardware optimizations to Reed-

Solomon decoders at the architectural level, with the goal of reducing energy 

consumption. The metric of success for this part of the work is the amount of energy 

required to decode each codeword. As described in Chapter 2, the optimizations used for 

this process are pipelining, memory operation optimization, and functional unit clock 

gating. This section provides a detailed look at the modifications, which were applied to 

the original design. Results of these modifications on design energy consumption 

characteristics are shown in Chapter 5. Figure 4.3. illustrates a basic system diagram. 

 

Figure 4.3. System Block Diagram. All connections are 8-bit unless otherwise specified. 
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4.2.1 Recoding 

 Before energy reduction techniques were applied, the Verilog source code for 

each portion of the design was re-coded with an eye towards performing each required 

operation as efficiently as possible, in terms of both power consumption and the number 

of required clock cycles. During this re-coding, several design goals were targeted. First, 

the required number of clock cycles to complete the decoding process was minimized. In 

most cases, this provides a reduction in required energy to decode each codeword, as 

energy consumption depends not only on power dissipation, but also on the length of 

time that power is dissipated. Second, the number of control signals was minimized. 

Since much of the control circuitry drives clock gating signals for individual modules, 

some unnecessary signals could be removed. Each design module was re-designed to 

function only when it receives a clock signal. Thus, the clock distribution to these 

modules acts as a de-facto control structure. In addition, the decoder structures were 

written to ensure that the final hardware mapping from Verilog would result in efficient 

RTL structures. This was done by explicitly defining each individual circuit element and 

associated connections, as opposed to coding a higher-level description of the 

functionality, using tasks, for loops, etc. It was observed that this approach leads to a 

more accurate mapping of functions to the FPGA fabric. Lastly, the designs were coded 

to include parameterization wherever possible, allowing for easier modifications across 

all seven decoders. 
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 In addition to these general goals, some specific modifications were performed 

during the re-coding process, as detailed below. 

 

4.2.1.1. Syndrome Unit 

 Originally, the syndrome vector, generated by the syndrome unit (see Figure 2.4 

for the system diagram), was sent serially to the syndrome expansion unit. Each 

coefficient was then loaded serially into a register before syndrome expansion began. 

This inefficiently increased the number of required clock cycles, since the entire 

syndrome can be transferred in parallel to the expansion unit, allowing for the expansion 

unit to begin work immediately. 

 

4.2.1.2. Modified Euclidean Algorithm 

 Several structural changes were implemented for the MEA unit, or Key 

Polynomial Generation Unit (Figure 4.4a) compared to the structure described in the 

previous work [7] (Figure 4.4b). First, the dual-ported RAM units, which were used in 

the previous design, were replaced with shift registers. The use of RAM units to store 

MEA results after each iteration causes increased delays due to memory accesses. Given 

the size of the required memories, which range from 128 to 304 bits, using energy-

consuming embedded memory blocks is inefficient. In addition, the slightly modified 

structure detailed in [30] was adopted, as it allows for easy pipelining of the unit. The 

main difference between the new structure and the previous one is that instead of 

evaluating the degree of the L polynomial (the number of coefficients) via evaluation 

before each iteration to see if a stopping point is reached, which causes additional delays 
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and increased logic usage, we run the unit for a specified number of iterations (n-k) for 

each decoder that guarantees the processing will be finished. This is controlled by the 

stop_logic block. 

 

Figure 4.4a. New MEA Structure 
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Figure 4.4b. Previous MEA structure [7]. Note the degree of the polynomial L must be 

computed each iteration. 
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4.2.1.3. Inverse ROM 

 

Figure 4.5. Error Correction Unit 

 

 For the inverse ROM used in the error correction unit (Figure 4.5), an FPGA 

embedded memory block was pre-loaded with inverse GF elements. The job of the 

inverse ROM is to invert values within the Galois Field. The previous approach [7] 

generated the inverses algorithmically on chip after device reset. The pre-computation 

approach saves both energy and area. 

 

4.2.2 Pipelining 

 Pipelining was divided into two separate steps, small-scale pipelining, and global 

pipelining. Small-scale pipelining is used within a particular functional unit, while global 
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for energy savings in the RS decoder designs are detailed below. 
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4.2.2.1. Small-Scale Pipelining 

 In this step, each functional unit was examined to determine if pipelining could be 

used to improve energy consumption characteristics. Initially, the most promising 

location for pipelining appeared to be in the 8-bit GF multiplier circuits. As the design 

uses hundreds of these small units, any reduction in energy consumption in this unit was 

expected to have large effects on the overall energy consumption characteristics of the 

decoder. Initial work was done to develop pipelined versions of the Mastrovito GF 

multiplier, which was used in the previous design [7]. Pipelining of between zero 

(combinational) and four stages was examined. 

 An alternative GF multiplier, described by Paar in [19], was constructed and 

tested to see if it would be more energy efficient. The Paar multiplier has been shown to 

have a lower VLSI complexity than the standard Mastrovito multiplier, so the initial 

thought was that the lower complexity would lead to lower energy consumption. 

However, despite the fact that the Paar multiplier was implemented using three fewer 

LUTs than the Mastrovito, it was observed through testing that the Paar multiplier in fact 

dissipated about 20% more energy than the Mastrovito multiplier because of increased 

glitching due to mismatched path lengths. The maximum amount of pipelining was found 

to be four stages due to the critical path length being 4 LUTs. In the end, the 2-stage 

Mastrovito multiplier was used for our final design as it was found to be the most 

efficient in terms of energy. 

 Despite the reduced energy consumption of the pipelined multiplier, it could not 

be used to replace the majority of the GF multipliers in the decoder design. When the 

design was examined in detail, it was discovered that the vast majority of the GF 
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multipliers in the design exist within feedback loops which require a latency of only a 

single cycle to function properly. Thus, the pipelined multiplier, which requires multiple 

cycles to perform a multiplication, could not be used in these cases. In the end, only four 

of the GF multipliers in the design were replaced with pipelined multipliers. These three 

multipliers are: the two GF multipliers in the MEA unit, and one each in the Forney and 

Chien units. While these multipliers were replaced with the pipelined units (see Figure 

4.5), the overall effect on energy consumption was limited, resulting in a decrease of only 

about 2.5% on the system level. Full results can be seen in Chapter 5. 

 The other unit which showed the potential for savings using pipelining was the 

MEA unit. The paper describing the recursive MEA structure [30] suggests using a 5 

stage pipeline within the recursive unit for performance reasons, and it was 

experimentally determined using 5 stages was in fact optimal for energy characteristics. 

The results of this analysis will be detailed in Chapter 5.4.2. Figure 4.6 below illustrates 

the MEA unit with 3 and 5 levels of pipelining. 
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Figure 4.6. MEA unit with 3-stage (above), and 5-stage (below) pipelining. In the 5-stage 

figure, note that the multipliers are now pipelined 2 stages 
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functional units, which reduces the energy-per-operation characteristics of the overall 

design. 

 The previous decoder was not pipelined at all, so that a codeword was sent into 

the erasure generator (the first functional unit) only after the previous codeword had been 

completely processed (see Figure 2.4). As a result, only a single functional unit is active 

at any given time. Ideally, all functional units should be active at the same time, as idle 

units receiving clock signals still dissipate energy. Operational restrictions can limit this 

opportunity, as certain units may require more operating time than others. Placing 

registers between functional units helps improve operation overlapping. 

 When examining the design at hand, it helps to break the operation into discrete 

steps, and to examine the time required and dependencies for each individual functional 

unit. The diagram below shows a clock cycle description of the activity of each 

functional unit in the decoder for the decoding of a codeword with K=239. 

 

Erasure Generator Unit1 Unit2 MEA Error Correction 

2049 Cycles 260 Cycles 8 Cycles 262 Cycles 280 Cycles 

Figure 4.7. Time breakdown of the decoding process for an example of K=239 decoding 

 

Figure 4.8. Timeline illustrating decoding of a codeword 
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 The above breakdown makes it clear that the bottleneck in the system, in terms of 

number of required clock cycles, is the erasure generator. The erasure generator requires 

approximately 3076 cycles regardless of the K value of the design, while the entire 

operation of the decoder takes only between 764 (K=239) and 1064 (K=217) cycles. For 

the re-coded design, a similar trend was seen, with the erasure generator requiring 

approximately 2049 cycles, and the decoding requiring between 903 and 2081 cycles. 

From this, it was observed that by splitting the design into 2 pipelined stages, all 

decoders, except for the K=217 decoder, could function with only 2 pipeline stages; the 

erasure generator, and the decoder. By separating each functional unit in the decoder, a 

rate of 2049 cycles per codeword could be maintained for all versions of the design. In 

the case of the K=217 decoder, one codeword is output through the error correction unit 

while the next codeword is evaluated by the syndrome unit. In all other cases, the decoder 

only operates on a single codeword at a time, while the erasure generator processes the 

next codeword. Despite the added pipelining, since there is a memory between the 

erasure generator and the decoder, no additional pipelining registers were necessary. 

 This pipelining has several important effects on the design. First, by reducing the 

time-per-codeword of the design, a significant reduction in energy consumption-per-

codeword is achieved (this can be seen in Chapter 5 in section 5.4.3). In addition, all 

decoders (regardless of K) can operate at the same clock rate, and achieve identical 

throughput in terms of codewords decoded per second. Lastly, by separating each of the 

units in a distinct pipeline, each unit can be individually clock gated and turned on and 

off as needed. The energy reduction results of this global pipelining scheme can be seen 



 

 

70 

in the following chapter, while the diagram below shows the global pipelining scheme 

which was adopted for this project. 

 

 

Figure 4.9. Pipelining of Decoder Circuitry  

(unless specified otherwise, signals are 8-bit) 

 

4.2.3. Memory Optimizations 

 As described in Section 2.2.3, the energy required for memory operations using 

FPGA embedded memories can be reduced by using small buffers before and after the 

memories which act to collect data coming in and out of the memory units, with the goal 

of reducing the overall number of memory accesses. Embedded memories in Stratix 

devices have a physical I/O port size of 32 bits. If several read or write operations can be 

combined to include most or all of the 32 available bits for each memory access, not only 

can the number of necessary read and write operations be reduced, but the memory can 
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be utilized more efficiently. If a value of less than 32 bits is accessed, the RAM will still 

consume power for the entire 32 bits.  

 Figure 4.10 illustrates the structure of the buffers and memories when making use 

of this method. This is just an example, but is representative of the memories between the 

erasure generator and the decoder, and also the FIFO which holds the received codeword 

while the decoder is processing. The buffers consist of a number of registers, in this case, 

4 8-bit registers because the data is 8-bit and we are packing 4 of the values together, in 

addition to a small amount of control logic to change the addressing. 

 

Figure 4.10. Example of Memory Buffering Logic 
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1. There is a memory unit which receives 10-bit values representing each bit of the 

codeword from the A/D converter (see figure 4.3). This unit needs to be able to hold 

2040 10-bit values, representing one codeword. The values are stored in this memory 

and withdrawn by the erasure generator. 

 

2. A memory unit serves as a bridge between the erasure generator and the decoder. It 

consists of a memory which holds the 255 8-bit symbols of the codeword (see figure 

4.3). 

 

3. A memory unit serves as a FIFO which holds the received codeword while the 

decoder determines the error vector needed to correct the codeword. This unit must 

also hold 255 8-bit values (see figure 4.3). 

 

 A detailed discussion of the buffering of each unit is presented in section 5.5., 

along with the energy benefits of this optimization. 

 

4.2.4. Clock Gating 

 The RS decoder design includes a linear series of functional units (see figure 4.3). 

As mentioned in Section 4.2.2.2, the erasure generator serves as the performance 

bottleneck. Although the erasure generator is always active, we would like to reduce the 

energy consumption characteristics of the remaining units by shutting off their clock 

signal when they are not needed. 
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 To reduce energy, the functional units in each decoder stage were clock gated. A 

small control unit handles the distribution of the clock to each unit, and attempts to 

minimize the number of clock transitions required by each unit by enabling the functional 

unit only when it needs to process the codeword. The control unit generates four 

individual enable signals: one for the syndrome and erasure location extraction, one for 

the syndrome expansion and the erasure polynomial computation, one for the key 

polynomials generation or MEA unit, and one for the error correction unit which consists 

of the Chien search block and the Forney algorithm block. Each unit receives a clock 

signal immediately before it is presented with data, and once it has output its calculations, 

the clock signal is discontinued until it is needed again to process the next codeword. 

Figure 4.11 illustrates how this clock gating was implemented, which is the method 

suggested by Altera in the Quartus II documentation [31]. The enable signal for a gated 

clock is clocked into a register on the falling edge of the global clock, and this result is 

ANDed with the original clock to produce a gated clock signal for the functional unit.  

 Each enable signal is set high by one trigger, and set low by another. Table 4.1 

lists the conditions for activating and deactivating each enable, along with the number of 

cycles each unit is receiving a clock signal before and after the clock gating was 

performed. It should be noted that the number of cycles that each unit is active is data 

dependant and also dependant on K, thus the ranges in the table. The triggering signals 

were all internal signals which already existed, and did not add any logic to the design. 

This is why the MEA unit begins when Unit2 has begun, because the activity of Unit2 

can be as short as 4 clock cycles, and in order to not create any extraneous control logic, 
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it is best to start the clock to the MEA unit at this point. Figure 4.12 shows the final 

system block diagram showing each individual clock domain. 
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The end result of this optimization is a large reduction (See Table 4.1) in the 

number of clock cycles seen by each unit in the decoder resulting in a large reduction 

(~40%) in energy consumption for each gated unit. The full energy numbers are 

presented in section 5.6. 

 

 

Figure 4.12. Global Clocking Scheme 
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CHAPTER 5 

CIRCUIT LEVEL OPTIMIZATION RESULTS AND ANALYSIS 

 

 The next two chapters will provide numerical results generated during the course 

of this work, along with a detailed analysis of the results. This chapter provides the 

results of the circuit optimization techniques described in section 4.2. Chapter 6 provides 

the detailed results of the reconfiguration analysis, described in section 4.1. 

 

5.1. Introduction 

 This section evaluates the results of applying the energy reduction techniques to 

the Reed-Solomon decoders developed in [7], both in terms of area and energy 

consumption. All of the results detailed below were generated by compiling and 

simulating the RS decoder designs in Quartus II version 7.1, with power numbers from 

the built in PowerPlay analysis tool used to determine energy consumption values. All 

designs were simulated at 50 MHz, using waveforms from the previous work. All designs 

were mapped to the Altera Stratix EP1S10F484C5 FPGA. 

 

5.1.1. Previous Work 

 To begin evaluation, some modifications to the previous designs were necessary. 

Previous results were generated using an older version of the Quartus II software, in 

which the power analysis features had not been fully developed, leading to indeterminate 

accuracy when measuring power consumption. The old designs were thus recompiled and 

re-simulated (1 full codeword each), using Quartus II, version 7.1. Energy-per-codeword 
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and energy-per-Mb of data were determined from these new results. Table 5.1 below 

illustrates these results. 

 

K 

Value 
LUTs Regs 

Memory 

Bits 

Fmax 

(MHz) 

Pwr @ 

50 MHz 

(mW) 

Period 

(us) 
E/Mb (J) 

239 5694 1661 35536 65.26 65.14 76.80 2.74E-03 

237 6278 1758 35552 62.68 66.27 77.28 2.83E-03 

233 6988 1950 35584 65.12 66.34 78.20 2.92E-03 

229 7567 2142 35616 64.44 68.29 78.73 3.08E-03 

225 8517 2371 35648 64.60 70.27 82.09 3.36E-03 

221 9697 2564 35680 63.50 73.27 82.90 3.60E-03 

217 10427 2758 35712 64.88 74.13 86.80 3.89E-03 

Table 5.1. Results Generated from Designs Developed in [7] using Quartus II, v7.1 

 

5.1.2. Quartus Synthesis Power Optimization 

 To provide a comparison with an alternate method of reducing power and energy 

consumption, the original designs were compiled and simulated using the new built-in 

power-reduction synthesis options available in Quartus II, v7.1. These features have been 

added to the Quartus II software since the work described in [7] was completed. The tool 

now provides an automated method of reducing power and energy consumption for 

FPGA based designs based on low-level logic restructuring. The results of compiling the 

previous designs with this new option are presented in Table 5.2. The automated power-

reducing synthesis algorithms in Quartus result in an energy reduction of 3.48% on 

average across the seven designs. 
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K Value LUTs Regs 
Memory 

Bits 

Fmax 

(MHz) 

Pwr @ 

50MHz 

(mW) 

Period 

(us) 
E/Mb (J) Change 

239 6382 1663 45776 63.10 63.07 76.80 2.66E-03 3.18% 

237 6774 1760 45792 65.71 63.88 77.28 2.73E-03 3.61% 

233 7635 1952 45824 64.89 64.03 78.20 2.82E-03 3.48% 

229 8227 2144 45856 63.00 66.05 78.73 2.98E-03 3.28% 

225 8945 2373 45888 63.34 68.40 82.09 3.27E-03 2.66% 

221 9760 2566 45920 65.21 70.27 82.90 3.45E-03 4.09% 

217 10513 2760 45952 64.05 71.14 86.80 3.73E-03 4.03% 

 Average 3.48% 

Table 5.2. Previous Work with Quartus Automated Power Optimization Results 

 

  LUTs Regs Memory Bits Power (mW) 

Functional Unit Original 

Power 

Opt. Original 

Power 

Opt. Original 

Power 

Opt. Original 

Power 

Opt. 

Erasure Generator 502 498 216 218 24912 24912 33.21 27.78 

Unit1 537 441 385 385 128 128 1.49 1.48 

Unit2 1827 1824 327 327 0 0 0.22 0.24 

MEA 826 683 238 238 2048 2048 8.45 8.29 

Error Correction 1841 2692 420 420 6400 16640 20.08 23.7 

Fifo 0 0 0 0 2048 2048 1.58 1.58 

Top level control 161 244 75 75 0 0 0.11   

Total 5694 6382 1661 1663 35536 45776 65.14 63.07 

Table 5.3. K239 Unit-by-unit Power Results 

 

 Table 5.3 illustrates the power optimizations on a unit by unit basis. As the table 

illustrates, the unit which improves the most is the erasure generator. The optimizations 

reduce the power consumption of the input buffer from 18.33 mW to 13.20 mW. 

However, for an unknown reason, simultaneously increases the power consumption of 

the GF inverse lookup table (contained in the EC unit) from 1.38 mW to 4.43 mW 
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because instead of using logic cells, the table is instantiated as 3 M512 and 2 M4K RAM 

blocks. This also explains the increase in total memory bits. Why this change is selected 

by Quartus is unknown. 

  

5.2. Re-Coding 

 As mentioned in section 4.2.1. the first step in performing the set of optimizations 

on the decoders was to re-code the basic un-optimized decoders in a more structurally 

explicit manner, so as to ensure the correct structure when the design is mapped to the 

FPGA, and also to perform several minor modifications (discussed in section 4.2.1.), and 

to prepare the designs for the following optimization steps, pipelining (section 5.4), 

memory optimizations (section 5.5), and clock gating (section 5.6). The results of this 

recoding process are detailed in Table 5.4, with a unit by unit breakdown for the K239 

decoder illustrated in Figure 5.1. 

 

K 

Value 
LUTs Regs 

Memory 

Bits 

Fmax 

(MHz) 

Pwr @ 

50MHz 

(mW) 

Period 

(us) 
E/Mb (J) Change 

239 4854 2289 30538 108.25 59.96 57.00 1.87E-03 31.59%

237 5282 2483 30626 107.20 60.79 58.40 1.96E-03 30.62%

233 6201 2866 30802 107.01 62.24 61.68 2.16E-03 26.04%

229 7054 3250 30978 106.37 63.66 65.60 2.39E-03 22.39%

225 7930 3634 31154 105.09 65.49 70.16 2.68E-03 20.34%

221 8867 4025 31390 105.33 67.42 75.36 3.01E-03 16.30%

217 9711 4410 31574 108.34 69.07 81.20 3.39E-03 12.91%

              Average 22.89%

Table 5.4. Recoded Design Results, provides a new baseline for the following 

optimizations 
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Figure 5.1. K239 Unit by Unit Energy Consumption Breakdowns 

 

  

Power 

(mW) Energy per CW (J) 

Power @ 

50 MHz 

(mW) 

Energy per CW 

(J) Difference 

EG 33.21 1.40E-03 32.61 1.02E-03 -27.12%

Fifo 1.58 6.65E-05 3.93 1.23E-04 84.61%

Unit1 1.49 6.28E-05 3.22 1.01E-04 60.39%

Unit2 0.22 9.27E-06 0.20 6.25E-06 -32.53%

MEA 8.45 3.56E-04 12.77 3.99E-04 12.16%

EC 20.08 8.46E-04 7.51 2.35E-04 -72.24%

 Table 5.5. Functional Unit Energy Breakdown for Previous Work and Recoded  

 

 The major impact of this recoding was a reduction in the overall number of clock 

cycles the decoder takes to complete the decoding of a codeword. By eliminating 

unnecessary handshaking and other communication delays, the decoder can complete the 

same amount of work in a shorter amount of time (see table 5.6), reducing to overall 

energy consumption. Although the overall energy results are better with the recoded 
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version, certain units show higher energy consumption rates than seen in the previous 

work (as seen in Figure 5.1, Table 5.5). This is because most of the units were designed 

to use a minimum amount of control logic, since it was assumed that further 

optimizations (such as clock gating) would be applied later. For instance, the syndrome 

unit and erasure locator units, collectively referred to as Unit1 (figure 4.3), are designed 

to run all the time, even though its output is not always necessary.. 

The benefits are greater for the smaller decoders due to the reduction in MEA run 

time. As mentioned in Section 4.2.1, the implementation of the MEA unit for this work 

runs for a distinct number of iterations to avoid expensive control logic, and as a result as 

the K values decrease, the MEA unit runs for a longer period of time. This is why the 

benefits of the recoding decrease as the K value increases, when compared to the 

previous work. All further results will be compared to these new baseline values. 

K 

Value Previous Recoded 

239 3840 2850 

237 3864 2920 

233 3910 3084 

229 3937 3280 

225 4105 3508 

221 4145 3768 

217 4340 4060 

Table 5.6. Cycle Counts for Decoding a Codeword 
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5.3. Pipelining 

 This section will detail the numerical results of pipelining, both small-scale and 

global. In addition, the development and analysis of both the Mastrovito and Paar 

multipliers with varying degrees of pipelining will be detailed here, despite the fact that 

they were used sparsely in the final designs. 

 

5.3.1. Galois Field Multipliers 

As was described in section 4.2.2.1 several efforts were attempted to reduce the 

energy consumption characteristics of the GF multipliers, which are used in large 

numbers throughout the design of the RS decoder. 

 Two separate implementations of the multiplier circuitry were developed, one 

using the original Mastrovito[18] structuring, and one using the structure suggested by 

Paar  in [19]. Each of these was examined both in combinational form, and with 

pipelining between one and four stages. The results are shown below in Table 5.7. The 

most efficient, the 2 stage Mastrovito multiplier, was adopted for use in the MEA unit, 

along with the Chien and Forney units. 

  LUTs Regs Power Consumption 

Pipeline 

Stages Mastrovito Paar Mastrovito Paar Mastrovito Paar 

0 58 53 0 0 2.75 3.54 

1 58 53 8 8 2.09 2.25 

2 58 53 47 26 1.63 1.95 

3 92 53 92 40 2.23 2.47 

4 97 72 97 72 2.58 2.68 

Table 5.7. Pipelined Galois Field Multiplier Results 
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5.3.2. Small-Scale Pipelining 

 

 When examining the design for opportunities to pipeline within functional units, 

the only one which stood out as providing the opportunity for energy savings was the 

MEA unit. Based on the amount of pipelining in the GR multipliers in the unit, we have 

the opportunity to pipeline the unit with between 3 and 5 stages (see section 4.2.2.1 and 

Figure 4.6). The analysis of the MEA unit versions are shown in Table 5.8 below. 

 

Pipelining 

Stages LUTs Regs 

Power @ 

50Mhz 

(mW) 

3 783 326 12.60 

4 796 482 12.17 

5 810 646 9.69 

Table 5.8 MEA Unit Comparison 

 

 As the results in Table 5.8 indicate, the optimal version uses five pipeline stages, 

and the overall results of making this change are detailed in Table 5.9. The general trend 

illustrated by these results is of a larger reduction in energy consumption for the larger 

decoders. This result makes sense as the larger decoders spend a larger percentage of 

their decoding time using the MEA unit. As a note, there is an increase in the power 

dissipation of the EC unit when changing from 3 to 5 pipeline stages. As the EC unit 

directly follows the MEA unit, it is assumed that the synthesizer is moving logic around 

to optimize. The net effect is shown in Table 5.9, and in general is a reduction of about 

0.5 mW. 
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K 

Value LUTs Regs 

Memory 

Bits 

Fmax 

(MHz) 

Pwr @ 

50 MHz 

(mW) 

Period 

(us) E/Mb (J) Change 

239 4889 2513 30447 108.34 59.45 57.00 1.86E-03 0.85% 

237 5316 2705 30535 107.97 60.16 58.40 1.94E-03 1.04% 

233 6231 3089 30711 107.22 61.69 61.68 2.14E-03 0.88% 

229 7087 3474 30887 108.73 63.09 65.60 2.37E-03 0.90% 

225 7964 3858 31063 103.85 64.45 70.16 2.63E-03 1.59% 

221 8904 4253 31239 106.87 66.41 75.36 2.97E-03 1.50% 

217 9739 4637 31415 109.49 67.65 81.20 3.32E-03 2.06% 

              Average 1.26% 

Table 5.9. Small-Scale Pipelining Results. Change values are with regard to Table 5.4. 

 

5.3.3. Global Pipelining 

 The original decoders [7] processed a single codeword at a time. As described in 

Section 4.2.2.2, a second codeword is not fed into the erasure generator until the decoder 

has completely finished processing the previous codeword. Even though the erasure 

generator finishes processing after 41 us, another codeword is not started until the 

decoder is finished processing, 15 to 40 us later. As a result, the design was modified to 

start a new codeword as soon as the erasure generator finishes processing the previous 

codeword (Section 4.2.2.2). This more efficient use of the available processing resources 

allows for a throughput across all of the decoders of 40.98 us per codeword, the latency 

of the erasure generator. The resulting energy reduction results versus the results in Table 

5.9 are detailed in Table 5.10. Table 5.11 illustrates the clock cycles per codeword for 

each decoder before and after. 
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K 

Value LUTs Regs 

Memory 

Bits 

Fmax 

(MHz) 

Pwr 

(mW) 

Period 

(us) E/Mb (J) Change 

239 4889 2513 30447 108.34 59.67 40.98 1.34E-03 27.84% 

237 5314 2715 30535 107.97 60.38 40.98 1.37E-03 29.57% 

233 6231 3089 30711 107.22 61.94 40.98 1.43E-03 33.29% 

229 7089 3474 30887 108.73 63.38 40.98 1.49E-03 37.24% 

225 7963 3858 31063 103.95 64.77 40.98 1.55E-03 41.30% 

221 8904 4253 31239 106.87 66.76 40.98 1.62E-03 45.33% 

217 9739 4637 31415 109.49 68.02 40.98 1.68E-03 49.26% 

              Average 37.69% 

Table 5.10. Global-Pipelining Results, compared to Table 5.9. 

 

  

Clock Cycles per Codeword 

  

K Value Original 

Global 

Pipelined 

239 2850 2049 

237 2920 2049 

233 3084 2049 

229 3280 2049 

225 3508 2049 

221 3768 2049 

217 4060 2049 

Table 5.11. Clock Cycles per codeword before and after global pipelining 

 

5.4. Memory Optimizations 

There are three major memory units in the adaptive RS decoding unit (see figure 

4.3). There is one memory which holds a full codeword’s worth of 10-bit data values 

from the A/D converter unit outside the FPGA, a total of 20,480 bits. There are also two 

memories that each holds a full codeword of data, one that stores the output of the erasure 

generator, and one stores the uncorrected codeword while the decoder processes it to 

determine the correction vectors. Both of these memories are of size 2040 bits. 
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 As the erasure generator works on eight 10-bit values at a time, representing on 8-

bit symbol which was received from the channel, the optimal implementation is to pack 

each set of 80 bits into one read and write. This would reduce the total required number 

of reads by a factor of 8. The results of reading at different rates are illustrated in Table 

5.12 below. 

 

Reading 

Scheme 

Power 

(mW) 

8 x 10 22.19 

4 x 20  11.23 

2 x 40 5.62 

1 x 80 2.89 

Table 5.12. Power Consumption Results of Memory Buffering 

Of 20,400 bit Memory Units Using M4K Blocks 

 

 The other two large memories in the design use 8-bit data values, so the natural 

choice to make use of all of the physical circuitry available, is to make each read and 

write 32 bits exactly. The benefits are shown in Table 5.13 below. 

 

Reading 

Scheme 

Power 

(mW) 

4 x 8 3.93 

2 x 16 3.08 

1 x 32 2.06 

Table 5.13. Power Consumption Results of Memory Buffering  

2040 bit Memory Units 
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 The overall system effects of performing these optimizations are shown in Table 

5.14. The benefits are greater for the smaller decoders as the memory units consume a 

larger percentage of the overall power in the smaller decoders. The size and activity of 

the memory units do not vary between decoders. 

 

K 

Value 
LUTs Regs 

Memory 

Bits 

Fmax 

(MHz) 

Pwr @ 

50 Mhz 

(mW) 

Period 

(us) 
E/Mb (J) Change 

239 5082 2591 30447 120.55 37.65 40.98 8.46E-04 36.90% 

237 5502 2771 30535 117.66 38.73 40.98 8.78E-04 35.86% 

233 6428 3155 30711 118.39 40.39 40.98 9.31E-04 34.79% 

229 7299 3552 30887 116.04 41.76 40.98 9.80E-04 34.11% 

225 8174 3924 31063 120.48 43.61 40.98 1.04E-03 32.67% 

221 9121 4319 31295 122.19 46.10 40.98 1.12E-03 30.95% 

217 9970 4703 31479 125.57 48.37 40.98 1.20E-03 28.89% 

              Average 33.45% 

Table 5.14. Results of Memory Optimizations, compared to Table 5.10. 

 

5.5. Clock Gating 

 Figure 5.2 illustrates the various clock domains used to clock gate design 

functional units. Each of the units, Unit1, Unit2, MEA, and the Error Correction unit, 

receives its own gated clock signal. 
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Figure 5.2. Global Clocking Scheme 

 

 The colored blocks illustrate the boundaries of different clock gating domains. As 

the erasure generator is the bottleneck in the system, it is always active and thus no gating 

is necessary. The other units are Unit 1, Unit 2, MEA unit, and the Error Correction unit, 

consisting of the Chien and Forney blocks. Each of these units was given its own clock 

enable signal, and this signal was used to enable the clock just before the unit is needed 

for processing. The clock is shut off after processing is finished. Table 4.1 illustrates the 

number of clock cycles that each unit is active before and after clock gating was applied. 

 The overall system benefits of this clock gating are shown in Table 5.15 below, 

while Figure 5.3 illustrates the incremental benefits of each of the techniques that were 

used in this work, while Table 5.16 illustrates the full results in numerical form. 
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K 

Value LUTs Regs 

Memory 

Bits 

Fmax 

(MHz) 

Pwr 

(mW) 

Period 

(us) E/Mb (J) Change 

239 5120 2644 30408 124.52 19.48 40.98 4.38E-04 48.26% 

237 5552 2836 30496 111.26 19.77 40.98 4.48E-04 48.95% 

233 6466 3208 30672 124.18 20.96 40.98 4.83E-04 48.11% 

229 7325 3593 30848 121.71 21.97 40.98 5.15E-04 47.39% 

225 8225 3989 31024 118.85 22.74 40.98 5.43E-04 47.86% 

221 9159 4372 31256 114.93 24.17 40.98 5.87E-04 47.57% 

217 10007 4756 31440 117.23 24.57 40.98 6.08E-04 49.20% 

              Average 48.19% 

Table 5.15. Final Results after Clock Gating, compared to table 5.14. 

 

 

Figure 5.3. Full Incremental Energy per Operation Results Breakdown. Values are in 

J/Mb 
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5.6. Summary 

 This section detailed the results of performing energy optimization techniques on 

the set of Reed-Solomon errors-and-erasures decoders. A new baseline was generated by 

recoding the designs to be efficient in terms of clock cycles. Using this recoded version 

of the designs as a new baseline, low-level pipelining was found to provide on average a 

2.35% reduction in energy consumption. Global pipelining was found to provide a benefit 

of 36.77%, while memory optimizations yielded a reduction in energy consumption of 

20.56%. Lastly, clock gating of the major functional units provided a reduction of another 

19.43%. On the whole, the energy per megabit of data values were reduced by 76.8% to 

82.3% over all of the designs, with the average reduction being 79.11%. 
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CHAPTER 6 

RECONFIGURATION RATE ANALYSIS AND RESULTS 

 

 This chapter provides numerical results related to the reconfiguration scheduling, 

along with full system results for the new adaptive Reed-Solomon decoding system. 

There were several questions which needed to be answered though this analysis, namely, 

given a more realistic channel model, how does the rate of reconfiguration affect the 

energy consumption, and how does the rate of reconfiguration affect the codeword error 

rate. In addition, we will illustrate the benefits of reconfiguration on the overall decoding 

rate. 

 

6.1. New Configuration Table 

 Using the final energy consumption values from Tables 5.12 and 5.13, we can 

construct a table of different decoder configurations based on SNR (Table 6.1). The last 

column illustrates the energy efficiency benefit of each decoder compared to having a 

static (non-reconfigurable) K=217 decoder. 

K 

Value 

SNR 

Range 

(dB) Mbps LUTs Regs 

E/Mb Data 

(J) 

Benefit over 

Static K=217 

239 19.6 + 44.50 5120 2644 4.38E-04 28.01% 

237 19.0-19.6 44.12 5552 2836 4.48E-04 26.33% 

233 17.6-19.0 43.38 6466 3208 4.83E-04 20.55% 

229 16.4-17.6 42.63 7325 3593 5.15E-04 15.27% 

225 15.6-16.4 41.89 8225 3989 5.43E-04 10.74% 

221 14.8-15.6 41.14 9159 4372 5.87E-04 3.41% 

217 14.0-14.8 40.40 10007 4756 6.08E-04 ---------- 

Table 6.1. Configuration Table 
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 The SNR ranges for each decoder match the values in [7], which were verified via 

simulation. In order to determine these values, simulations were run for 10 million 

codewords with a static SNR (no shadowing), with SNR values from 13 to 21 dB for 

each decoder. The value where the CER becomes 10
-4

 gives the bottom of each decoder’s 

applicable range. The top of each decoder’s range is assigned to the bottom of the next 

decoder’s range. 

 

6.2. CER Analysis 

 As mentioned in Section 4.1, a simulator was built to determine the performance 

characteristics that could be expected from the adaptive decoder system. The first 

parameter which needed to be explored was to see how the reconfiguration rate affects 

the CER. Previous work [7] assumed that there was no change in the average SNR (the 

SNR due to shadowing) during the time that a particular decoder was operating. This 

assumption leads to a somewhat unrealistic representation of real world performance. 

 As one of our parameters is to keep a static CER rate of 10
-4

, we must ensure that 

the variance in the channel between reconfigurations does not reduce the CER below this 

threshold. In order to determine this, reconfiguration rates from every 5,000 codewords to 

every 100,000 codewords were tested. Initially the goal was to test reconfiguration rates 

up to and exceeding the previous work’s 125,000 codewords, but as the results illustrate, 

testing reconfiguration rates that high proved unnecessary. 

 For these simulations, a total of 10 million codewords were run through the 

system for each simulation. After the designated amount of codewords had been 

simulated (5,000 – 100,000), the simulator makes a decision on whether to reconfigure 
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based on the average SNR during the previous run. If the average SNR is outside of the 

current decoder’s specified range, then the system is reconfigured to insert a decoder 

which is designed to operate in the current measured range. 

 Several separate runs were made and the results averaged to eliminate some 

inherent variance in the system. Figure 6.1 shows a graph of the results and the trend line 

generated from these results. 

  

 

Figure 6.1. Graph of CER vs. Codewords per Reconfiguration 

 

 By examining the trend line, we can see that the point at which we reach the 

desired 10
-4

 threshold is at approximately 18,000 codewords between reconfigurations. 
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6.3. Energy Efficiency Results 

 If the total number of reconfigurations, the frequency of use for each decoder and 

the energy consumption rates of each decoder are known, it is possible to determine the 

benefit of reconfiguration versus the continuous use of a static K217 decoder. To benefit 

from reconfiguration, the system must realize an energy savings versus the use of a static 

decoder. Thus, the energy cost of reconfiguration must be lower than the savings due to 

using a series of energy efficient decoders. 

For these simulations, it was assumed that the system has access to only one 

clock, running at 50 MHz. The time required to reconfigure was determined from the 

Stratix Data Sheet [33], assuming configuration in FPP mode, where the configuration 

data is loaded a byte per clock cycle. In addition to some initialization overhead, it was 

determined that it takes 8.92ms to load the 3,534,640 configuration bits. During the 

reconfiguration process, it was determined that a 4Mx32 Micron RAM unit, which holds 

the configuration data, would dissipate approximately 189 mW. This is based on the 

maximum power consumption listed in the Micron 4Mx32 data sheet [34], scaled down 

from 166 MHz to our required 50 MHz. The FPGA’s power dissipation was modeled as 

an 8-bit shift chain, of length 441,830. Previous work in this area [35] had determined the 

power required for a single shift by modeling a 0.13u shift register in SPICE. This result 

was modified to assume an 8-bit shift chain as opposed to a single bit, and the result was 

that the FPGA is expected to dissipate 215 mW of power during the reconfiguration 

process. This gives us reconfiguration parameters of 8.92 ms and a total power 

dissipation of 404 mW.  

 Figure 6.2 illustrates the results of this analysis. 
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Figure 6.2. Energy per Megabit vs. Codewords per Reconfiguration 

 

 As this figure illustrates, reconfiguration allows for us to save from between 4% 

and 12% in terms of energy per megabit of data, when compared to the static K=217 

decoder. As we detailed above, in order to maintain the required CER of 10
-4

, we need to 

reconfigure approximately every 18,000 codewords. Based on the above figure, 

reconfiguring every 18,000 codewords provides a benefit in energy per megabit 

performance of 6.93%. 

 The third line in the graph illustrates the benefits of reconfiguring if we do not 

account for the energy cost of reconfiguration. This serves to illustrate that if the cost of 

reconfiguration could be reduced further, benefits of up to 13% could be achieved. This is 

an area of possible future work. 
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6.4. Decoding Rate Results 

 An additional benefit of reconfiguration is that we get an increase in effective 

decoding rate. By making use of a higher K decoder, as opposed to using the K=217 

decoder, we reduce the amount of redundancy in each codeword. Because the codewords 

are all of a fixed length, this effectively increases the amount of data we are processing 

with each codeword, increasing the overall decoding rate. The effects of reconfiguration 

rate on decoding rate are detailed in Figure 6.3 below. 

 

 

Figure 6.3. Reconfiguration Rate vs. Decode Rate 

 

 The increase in decoding rate ranges from 4.23% to 4.75% depending on K value. 

At our operating rate of reconfiguring every 18,000 codewords, the increase in decoding 

rate is approximately 4.43%, increasing from 40.40 Mbps to 42.19 Mbps. 
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6.5. Summary 

In this chapter we detailed the results of performing an analysis of the effects of varying 

rates of reconfiguration on three important parameters of the adaptive Reed-Solomon 

decoding system. We showed that in order to maintain the minimum codeword error rate 

of 10
-4

, we need to reconfigure at a rate no greater than 18,000 codewords. When 

examining energy consumption, it was shown that using current assumptions of the 

energy required to reconfigure the FPGA, when reconfiguring every 18,000 codewords, 

we see a reduction in the energy required to decode a megabit of data from 6.09x10
-4

 per 

megabit when using the static K=217 decoder to 5.66x10
-4

 J per megabit when using the 

adaptive system, a reduction of 6.93%. If the cost of reconfiguration could be further 

reduced, benefits of up to 13% could be achieved. In concert with this energy benefit, 

reconfiguring also increases the effective decoding rate by reducing the amount of 

redundancy in each codeword. When reconfiguring at 18,000 codewords, we see an 

increase over the static K=217 system from 40.40 Mbps to 42.19 Mbps, an increase of 

4.43%. 
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