
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses 1911 - February 2014

January 2008

Energy Efficient Adaptive Reed-Solomon
Decoding System
Jonathan D. Allen
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 -
February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Allen, Jonathan D., "Energy Efficient Adaptive Reed-Solomon Decoding System" (2008). Masters Theses 1911 - February 2014. 91.
Retrieved from https://scholarworks.umass.edu/theses/91

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Ftheses%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses/91?utm_source=scholarworks.umass.edu%2Ftheses%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

ENERGY EFFICIENT ADAPTIVE REED-SOLOMON DECODING SYSTEM

A Thesis Presented

by

JONATHAN D. ALLEN

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

February 2008

Department of Electrical and Computer Engineering

ENERGY EFFICIENT ADAPTIVE REED-SOLOMON DECODING SYSTEM

A Thesis Presented

by

JONATHAN D. ALLEN

Approved as to style and content by:

__

Russell Tessier, Chair

__

Dennis Goeckel, Member

__

Marinos Vouvakis, Member

 C.V. Hollot, Department Head

 Department of Electrical and Computer Engineering

iii

CONTENTS

LIST OF TABLES... vi

LIST OF FIGURES .. vii

CHAPTER

1. INTRODUCTION ...1

2. BACKGROUND ...12

2.1. ECC and RS introduction..12

 2.1.1. Reed-Solomon Codes...14

 2.1.2. Galois Fields...15

 2.1.3. Reed-Solomon Encoding Algorithm..17

 2.1.4. Reed-Solomon Decoding ...23

2.2. Energy Consumption in FPGAs..31

2.3. Circuit Level Energy Reduction Methods...32

 2.3.1. Pipelining ...32

 2.3.2. Clock Gating ..34

 2.3.3. Memory Access Reduction Techniques ...37

2.4. Dynamic Reconfiguration ...38

3. RELATED WORK ..40

3.1. Previous RS Works ...40

 3.1.1. A Low-Power Reed-Solomon Decoder for STM-16 Optical

 Communications..40

 3.1.2. Design of a Reed-Solomon Decoder using Partial Reconfiguration of XILINX

 FPGAs – A Case Study ...41

 3.1.3. Architecture for Decoding Adaptive Reed-Solomon Codes with Variable

 Block Length ...42

iv

 3.1.4. A Reed-Solomon Decoder with Efficient Recursive Cell Architecture for

 DVD Applications...42

3.2. Previous FPGA Energy Reduction Works ..43

 3.2.1. The Impact of Pipelining on Energy per Operation in Field-Programmable

 Gate Arrays ..43

 3.2.2. Energy Efficient Signal Processing Using FPGAs ..44

3.3. An Adaptive Errors-and-Erasures Reed-Solomon Decoder....................................45

3.4. Differences from Previous Work ..48

4. IMPLEMENTATION..50

4.1. Channel Fading Model ..50

 4.1.1. Goals and Requirements...51

 4.1.2. Simulation Flow ...52

 4.1.3. Model Details ...54

 4.1.4. Experiments..56

4.2. Hardware Optimizations ...58

 4.2.1. Recoding...59

 4.2.2. Pipelining ...63

 4.2.3. Memory Optimizations ..70

 4.2.4. Clock Gating ..72

5. CIRCUIT LEVEL OPTIMIZATIONS RESULTS AND ANALYSIS76

5.1. Introduction ...76

 5.1.1. Previous Work..76

 5.1.2. Quartus Synthesis Power Optimization..77

5.2. Recoding..79

5.3. Pipelining ..82

 5.3.1. Galois Field Multipliers ...82

 5.3.2. Small-Scale Pipelining ...83

 5.3.3. Global Pipelining..84

v

5.4. Memory Optimizations ...85

5.5. Clock Gating ...87

5.6. Summary ...91

6. RECONFIGURATION RATE ANALYSIS AND RESULTS92

6.1. New Reconfiguration Table ..92

6.2. CER Analysis ..93

6.3. Energy Efficiency Results ...95

6.4. Decoding Rate Results ..97

6.5. Summary ...98

REFERENCES ..99

vi

LIST OF TABLES

2.1. Elements of GF(2
3
) shown in three different representations.....................................16

2.2. Roots of Key Polynomials ..30

3.1. Decoder Configurations, from [7]...47

4.1. Clock Gating Parameters ..74

5.1. Results Generated from Designs Developed in [7] using Quartus II, v7.1.................77

5.2. Previous Work with Quartus Automated Power Optimization Results......................78

5.3. K239 Unit-by-unit Power Results...78

5.4. Recoded Design Results, provides a new baseline for the following optimizations ..79

5.5. Functional Unit Energy Breakdown for Previous Work and Recoded.......................80

5.6. Cycle Counts for Decoding a Codeword ..81

5.7. Pipelined Galois Field Multiplier Results...82

5.8. MEA Unit Comparison ...83

5.9. Small-scale Pipelining Results..84

5.10. Global Pipelining Results ...85

5.11. Clock Cycles per codeword before and after global pipelining................................85

5.12. Power Consumption results of Memory Buffering 20,400 bit memory86

5.13. Power Consumption results of Memory Buffering 2040 bit memory86

5.14. Results of Memory Optimizations ..87

5.15. Final Results after Clock Gating...89

5.16. Final Results, in Energy (J) per MB of Message Data Reduction in relation to

 Recoded baseline values (Table 5.4.) ...90

6.1. Configuration Table ..92

vii

LIST OF FIGURES

1.1. Example of Glitching..8

2.1. Typical Communication Scheme..13

2.2. A General Reed-Solomon Encoder...20

2.3. Rayleigh Fading Channel..22

2.4. General Reed-Solomon Decoder Architecture ...25

2.5. Clock Gating circuit ..34

2.6. Memory Buffering ..37

2.7. Activity of Memory, original vs. buffered..38

3.1. From [7], Architecture of an Adaptive errors-and-erasures Reed-Solomon Decoding

 System...46

4.1. SNR due to Shadowing vs. Shadowing and Fading ...52

4.2. SNR variance during operation...57

4.3. System Block Diagram ...58

4.4. a) New MEA Structure b) Previous MEA structure [7]. ..61

4.5. Error Correction Unit..63

4.6. MEA unit with 3-stage (above), and 5-stage (below) pipelining................................66

4.7. Time breakdown of the decoding process for an example of K=239 decoding68

4.8. Timeline illustrating decoding of a codeword ..68

4.9. Pipelining of Decoder Circuitry..70

4.10. Example of Memory Buffering Logic ..71

4.11. Clock Gating Logic...74

4.12. Global Clocking Scheme ..75

viii

5.1. K239 Unit by Unit Energy Consumption Breakdowns ..80

5.2. Global Clocking Scheme ..88

5.3. Full Incremental Energy per Operation Results Breakdown89

6.1. Graph of CER vs. Codewords per Reconfiguration..94

6.2. Energy per Megabit vs. Codewords per Reconfiguration...96

6.3. Reconfiguration Rate vs. Decode Rate ..97

1

CHAPTER 1

INTRODUCTION

In recent years the continued rise of portable data-devices such as cell phones,

PDAs, and laptops has driven enormous growth in the area of wireless communications.

Whenever data is sent over a wireless channel, it is subject to degradation due to

multipath fading and noise. Depending on the amount of degradation, the effect can be a

loss or corruption of the original data during transfer. In order to alleviate this problem

and ensure the reliable transfer of data, the typical solution has been the use of an error

correction coding scheme. This work will detail the implementation of a low-energy error

correction coding (ECC) scheme, based on the widely used Reed-Solomon algorithm,

which will be implemented using a field programmable gate array (FPGA) device.

FPGAs have been adopted for use in wireless communication and digital signal

processing (DSP) applications due to their ease of use when compared to traditional DSP

microcontrollers, high performance characteristics, and inherent configurability. Despite

these benefits, much work remains to be done in order for these devices to truly be

adopted for use in wireless devices, as current FPGAs are not naturally low-energy

devices. This work will examine how to leverage the specialization and configurability of

these devices in order to achieve low energy consumption characteristics while

maintaining high levels of performance. This work is primarily aimed at systems which

already include an FPGA for computation, as the performance of our algorithm

implemented on an FPGA will not be able to outperform an ASIC implementation in

terms of energy consumption. However, there are situations where incorporating a Reed-

2

Solomon decoding system into the functionality of an FPGA based system may be

desirable, and the configurability of the FPGA allows for the processing unit to perform

multiple operations simultaneously. In this case, it is much more desirable to implement

the decoder in the pre-existing FPGA as opposed to incorporating a Reed-Solomon ASIC

into the design.

The main contribution of this work is the development and analysis of an FPGA

based Adaptive Reed-Solomon errors-and-erasures decoding system which is optimized

to minimize energy consumption characteristics. This work is based on an earlier project

[15][7], which has been modified to ensure low-energy operation through the use of

several circuit-level energy optimization techniques and in addition to a new analysis of a

scheduling approach for dynamic reconfiguration. The end result of the energy

optimization is a reduction in system energy consumption of more than 70% compared to

previous work.

The origin of ECC schemes dates back to the work of Shannon in 1948. His work

[1][3][11] demonstrated that by properly encoding information before transferring over a

lossy channel, the errors which are introduced in the channel can be reduced to any

desired level without a severe decrease in transmission rate. Since then researchers have

developed various error correction schemes. One of the most widely used of these

schemes is Reed-Solomon coding [1][2]. Reed-Solomon coding has been used in systems

ranging from CD players [4][23] (to correct errors introduced by dust in the optical drive)

to NASA’s wireless deep-space communications [24]. Reed-Solomon coding is what’s

known as a block coding scheme, under which fixed length blocks of data are encoded

with a fixed amount of parity information. Other ECC schemes include Viterbi coding

3

[5], along with more recent schemes such as Turbocoding [6]. Traditionally, these

algorithms have been implemented using DSP microcontrollers, which are based on

microprocessors but specialized to allow for better signal processing performance. Recent

work [25][26]has examined using FPGAs for these applications, as they provide similar

performance characteristics while allowing for a much more customized design, with

simplified and quicker development. FPGAs are customizable logic devices, which have

seen more and more use in consumer and industrial electronics in recent years, are an

alternative to traditional microproccessors and DSP devices. FPGAs are attractive

devices to developers in need of specific solutions, as their configurability allows

designers to tailor the device to provide the specific functionality necessary for a

particular application. In addition, because the functionality is coded into the hardware of

the device, mapping an application to an FPGA usually allows for an optimized, high-

speed implementation, and allows to designer to customize the application at a much

lower level than if he or she was using a general-purpose microprocessor.

Historically, the designers of ECC systems have focused on providing the best

possible performance while maintaining the desired quality of service (QoS). Typically

the limiting factor in these systems has been the data transfer rate, as all communication

channels pose restrictions on their maximum bandwidth. However, with the continued

growth of wireless systems, battery-powered devices of all types, power and energy

consumption have become increasingly important design constraints.

The majority of mobile devices are no longer stand-alone devices. Increasingly,

these devices are required to have extensive connectivity options, which means a need for

wireless communications. If one examines a recently developed device such as Apple’s

4

Iphone[27], we can see the need for not just one, but multiple wireless communication

methods, from BlueTooth to 802.11 b/g wireless to cellular phone service and data

transfer. These devices are constrained by the amount of energy which can be contained

in their batteries, which introduces new design challenges for developers of these devices.

The work detailed in this document includes the development and analysis of a

low-energy ECC decoding system, implemented on an Altera FPGA. It draws on

previous works on ECC coding, and low power and energy FPGA design. The starting

point for this is the work of Lilian Atieno [7], who developed an FPGA based adaptive

errors-and-erasures Reed-Solomon decoding system. Her system was designed to adapt

dynamically to changes in the noise level of the communication channel in order to

provide maximum data-rates and reduced power consumption when compared to a static

implementation of the decoding circuitry. If the channel is noisy, leading to increased

error rates, a larger, more power-hungry decoder is swapped into the FPGA in order to

keep the error rate below the required level. When there is less noise in the channel, a

smaller, faster, and less power-hungry decoder is swapped in. The main metric of success

for this previous work was decoding speed, with the secondary metric being power

consumption.

Building on this previous work, this project adapts the previous design to

minimize the amount of energy required to decode a particular amount of message data.

Several modifications are made to both the structure of the design at the circuit level, and

to the overall system functionality. An additional contribution of this work is the

development of a more accurate channel noise and fading model, to get a better

understanding of the real-world performance characteristics that could be expected.

5

The methods used in this work fall into two basic categories, application specific

optimizations, and application independent, circuit level optimizations.

The application specific methods used during this work include:

1) Efficient Implementation of Application Primitives

The Reed-Solomon decoding application requires a multitude of specialized

functional units to decode and correct errors in message data coming from a noisy

channel. The fundamental units are Galois Field multipliers and Galois Field adders,

which perform the most basic operations within the decoder. Larger units include the

syndrome generation unit, the syndrome expansion unit, and the modified Euclidean

algorithm block. Some of these units can be implemented several different ways in the

FPGA hardware, so it is important that care be taken to ensure not only that the most

efficient structure is used (in terms of energy consumption), but also that the desired

structures are mapped as expected to the FPGA fabric. The development of a pipelined

Galois field multiplier will be specifically documented in Chapter 4, along with the

comparison of different structural implementations of the modified Euclidean algorithm

block.

2) Adaptive System Design and Scheduling

The previous system makes use of a reconfiguration scheme designed to allow the

functionality of the decoder to adapt to changing channel conditions in order to maintain

the maximum possible decoding rate. For this work, the goal was to adapt to changing

channel conditions to ensure the lowest energy consumption possible while maintaining a

6

fixed minimum codeword error rate (CER). Several changes to the overall system

functionality were made. The previous system used several RS decoders in parallel, while

maintaining the desired CER and decoding rate. This approach is inherently wasteful in

terms of energy, since the result from only one decoder is ultimately used. Given that we

are primarily concerned with energy, only single decoder versions are considered. This

has a positive side-effect of reducing the total number of reconfigurations needed, as

there are only seven different configurations as opposed to the previous system’s twenty.

The negative side effect is a slight reduction in decoding speed. This will be described in

detail in Chapter 4.

The second change from the previous work is a more accurate channel model to

evaluate the system’s overall performance. The previous approach was designed to

operate in a Rayleigh fading channel environment, with average SNRs varying from

around 13 to 21dB. However, the model used to evaluate the system performance was not

time-dependant, allowing for unrealistic changes in signal quality in short amounts of

time. In order to better evaluate the performance of the system in a real-world situation, a

time-dependant Rayleigh fading channel model was developed, which has several

benefits over the previous model. Time dependency allows for evaluation of optimal

reconfiguration rates answering the question, “How long should we wait before

evaluating whether to reconfigure the system?” In addition, we evaluate the effects of

differing reconfiguration rates on both the energy consumption characteristics and error-

rate performance. The new model is used to answer several questions: first, what is the

effect of the rate of reconfiguration on energy consumption, and second, what is the

7

effect of varying the rate of reconfiguration on the codeword error rate? This analysis is

described in detail in Chapter 4, with final results shown in Chapter 5.

As mentioned above, application independent optimization methods were also

used to reduce decoder energy consumption in the FPGA device. These methods are

applicable to any design mapped to an FPGA, and have been shown in previous work to

reduce energy consumption characteristics. Each of these methods was applied to the

decoder circuitry at the highest level, and represent design choices which can be made by

the designer of the application in order to reduce dynamic energy consumption. This is in

contrast to algorithmic modifications which are automatically performed at lower levels

by the CAD software used in FPGA development. It has been shown that higher level

optimizations lead to the greatest possible benefit.

The methods used are detailed briefly below, and in full detail in Chapter 2.

1) Pipelining

Pipelining has been shown to reduce energy consumption in digital circuits,

including FPGAs [8]. Pipelining allows for lower energy consumption by reducing the

propagation of glitches through the circuitry. Glitches are defined as spurious transitions

in the circuitry caused by timing mismatches. Figure 1.1 below illustrates how

mismatched logic delays can cause spurious transitions.

8

A

B

Ā

ĀB Ā XOR ĀB

t t t

A

B

Ā

ĀB

Ā

XOR

ĀB

t0 t1 t2 t3

Figure 1.1. Example of Glitching

9

Assuming all of the gates have a delay of t, at t0, input A goes from high to low.

After one time unit, A inverse reflects this change. After another time unit, inverse A has

caused a change in the output, even though the output of the AND gate hasn’t

propagated. After another time unit, the correct result is shown at the output. However, as

the output went high briefly, this is an example of a glitch cause by mismatched logic

depths, and in fact this glitch caused two separate spurious signal transitions.

As each signal transition in a digital device dissipates energy, minimizing the

amount of unneeded transitions due to differing logic timing characteristics and reducing

the distance these glitches are allowed to propagate is important in reducing energy

consumption. If the output of the above circuit was fed onto a long communication line in

the FPGA, the amount of energy dissipated by the glitch could be very large.

Pipelining is accomplished by inserting registers throughout the design, which

effectively cuts off the propagation of glitches beyond the register. FPGAs have a

configurable internal communication network made up of many long, high-capacitance

wires, which dissipate significant amounts of energy. Considering their energy

dissipation characteristics, reducing the number of transitions on these lines is paramount.

In addition, pipelining allows for the hardware resources to be better utilized by allowing

for greater levels of parallelism to be built into the application. This improves energy

characteristics by preventing logic from being idle and thus dissipating energy without a

purpose.

10

2) Clock Gating

Clock gating of digital circuits is another technique which has been shown to

reduce energy consumption both in ASICs [9] and FPGAs [10]. The essential idea is that

some parts of a design may not be needed for part of its operation, i.e. this portion of the

circuit on this clock cycle generates an output value which is not needed by another

portion of the circuit. If this is the case, these design features can have their clock

suppressed (gated) so that the clock is not propagated to them when their results are

unneeded, ensuring that they do not dissipate energy. Given that the RS system contains

many individual functional blocks which are not needed at all times, clock gating these

units so that they are only active when needed provides the opportunity to save large

amounts of energy.

3) Efficient Structuring of Embedded Memories

As memory units dissipate energy on every read or write operation, reducing the

overall number of accesses reduces the overall energy consumption of the design. A

method was developed to combine data into large blocks for each read and write

operation to reduce the number of required memory accesses. This technique allows for a

more efficient use of clock gating for internal FPGA memory blocks and allows the

memory to be inactive for a larger percentage of the time. While this can increase the

energy required to perform an individual read or write, by greatly reducing the number of

necessary reads and writes, energy consumption can be reduced. In many ways, these

units work as small caches, preloading the data which will be needed for the next several

clock cycles in order to allow the memory to maintain a lower activity rate.

11

Overall, applying these circuit level techniques resulted in a net reduction in the

energy required to decode a megabit of data by 70%. The specific areas where each

optimization was performed are detailed in Chapter 4, while the numerical benefits are

shown in Chapter 5.

The rest of this document is structured as follows. Chapter 2 provides background

information on the Reed-Solomon algorithm, a discussion of the sources of energy

consumption in FPGA circuitry, and a detailed look at the energy reduction techniques

which were used in this work.

Chapter 3 details related works in FPGA energy reduction and Reed-Solomon

decoder implementations.

Chapter 4 details where the aforementioned techniques were used in the

development of the decoding system, while also describing in detail the methodology that

was used for these techniques, along with a detailed description of the new channel

model, and how it was used to evaluate the performance of the system.

Chapter 5 provides numerical results for each individual optimization technique,

while also providing overall system performance data.

Chapter 6 provides numerical results for the reconfiguration scheduling and

analysis part of this work.

12

CHAPTER 2

BACKGROUND

2.1) ECC and RS introduction

All methods of digital communication are subject to some sort of noise or

interference, whether the medium of communication is a physical link or a wireless one.

In physical systems, noise can be introduced by the electromagnetic fields generated by

the surrounding circuitry and components, by errors in data storage, or even physical

phenomena such as a particle of dust getting in the way of a laser beam reading data from

an optical storage device. In wireless channels, errors can be created by interference from

other wireless signals, interference caused by the signal passing through a building, or

fading caused by differing propagational paths of the wireless signal. The main challenge

in digital communications has become how to deal with these unavoidable errors in an

efficient way, so as to prevent data loss without causing undue overhead.

The work of Shannon [11] demonstrated that even though communication

channels are subject to noise and errors, if some amount of redundancy is encoded into

the signal, errors can be accounted for and corrected at the receiving end. This is the

fundamental principle of error-correction coding schemes, and has led to the development

of various encoding schemes, including Reed-Solomon coding. A typical communication

scheme that meets this criterion can be modeled as seen in Figure 2.1.

13

Figure 2.1. Typical Communication Scheme

 The source represents the origin of the data to be sent, and can be a physical

storage device such as a CD, DVD, or Magneto-Optical recording device with the data

already in digital form, or an analog signal such as a voice or music sample. The source is

first encoded into digital form if it wasn’t already in such a form. The output of the

source encoder must be a sequence of binary digits representing the data. How this

encoding is performed is determined by the needs of the system, and is irrelevant to the

communication methodology.

The data stream is then sent through the channel encoder, where the ECC

encoding is performed. This unit takes the incoming data and adds redundancy via

whichever ECC scheme is in use. In this work, a Reed-Solomon encoding device is used.

Source Source

Encoder

Channel

Encoder

Digital

Modulator

Digital

Demodulator

Channel

Channel

Decoder

Source

Decoder

End User

Noise

14

The encoded data is then sent to the digital modulator, which takes the digital signal and

creates an analog waveform to be transmitted over the communication channel.

As the analog signal is transmitted over the channel, it is subject to noise, which

distorts the original signal so that what is received at the other end is not identical to the

signal which was sent. Noise is the source of the errors, which need to be corrected.

When the signal is received at the end of the channel, it is demodulated back into

digital form by the demodulator. This process is the exact inverse of the modulation

process, and the end result is again a stream of binary data. However, as mentioned

above, the signal has changed due to noise during transmission, and so in most cases, the

binary sequence output from the demodulator is not identical to the one which was

originally presented to the modulator.

This sequence is then fed into the channel decoder, which attempts to decode the

signal in a way that recovers all of the original data, correcting any errors which were

introduced during transmission. This is made possible by the redundancy which was

added to the signal during encoding. In this work, the decoding system is the main

application of interest, and represents a Reed-Solomon decoding system.

After the errors have been corrected to the decoder’s best ability, the data is

transformed into the required format, for example, in a phone conversation, the binary

stream is converted back into an analog signal to be output to the receiver’s speaker.

2.1.1) Reed-Solomon Codes

 Reed-Solomon codes were first introduced by Irving Reeds and Gus Solomon in

1960, in a paper entitled “Polynomial codes over certain finite fields” [2]. Since their

15

inception, RS codes have been one of the most widely used ECC schemes, mainly

because the coding scheme allows for efficient correction of both burst and random

errors. Reed-Solomon coding is known as a non-linear, block based coding scheme. RS is

a block scheme because it encodes blocks of a specific amount of data individually, as

opposed to operating on the entire data stream as a whole. RS codes are based on finite

field arithmetic, known as Galois fields. These fields are mathematical constructs in

which any operation on one data element results in another element in a constrained field.

The general operation can be described as follows; a predetermined sized block of data (k

bytes) is encoded so that the result is a data block of size n, where n>k. This size n block

contains the k original data bytes, along with n-k parity bytes, representing the

redundancy in the signal, for transmission over the noisy channel. Within the block, the

RS algorithm works on multiple bits of data at a time, typically a byte. Each byte is a

symbol, and the nature of the RS algorithm allows for the correction of whole symbols, as

opposed to correcting individual bits. This means that the RS decoder can correct a

symbol with 8 bit errors as well as a symbol with 1 bit in error. This is the particular

characteristic which allows RS codes to be effective at correcting burst errors in addition

to random errors.

2.1.2) Galois Fields

 As mentioned above, the RS coding scheme uses abstract mathematical constructs

known as Galois Fields. Each field contains a finite number of elements, and operations

on elements in the field can only produce a result within the same field. The benefits of

this kind of arithmetic include not having to deal with overflows and carries. Galois fields

16

are defined as GF(X
Y
), where X

Y
 equals the total number of elements in the field. For RS

codes, X must be a prime positive integer, and Y must be an integer greater than or equal

to 3. Y also determines the number of bits operated on simultaneously, so in the case of

our RS system, Y will be equal to 8. X will be defined as 2 as this is a common value,

and lends itself well to digital implementations.

 As an example, Table 2.1 shows the elements of the Galois field GF(2
3
). Elements

of the Galois field are generated from the ‘primitive polynomial’ p(x), in this case,

p(x)=1 + x + x
3
. When doing calculations in digital circuitry, the elements of each table

entry are typically represented by bit values, instead of polynomial or power

representations.

Power Representation Polynomial Representation 3-Tuple Representation

-∞ 0 0 0 0

0 1 0 0 1

α α 0 1 0

α
2
 α

2
 1 0 0

α
3
 α + 1 0 1 1

α
4
 α

2
 + α 1 1 0

α
5
 α

2
 + α + 1 1 1 1

α
6
 α

2
 + 1 1 0 1

Table 2.1. Elements of GF(2
3
) shown in three different representations

17

Arithmetic operations performed within a Galois field are performed differently

than when using typical arithmetic. The two operations used in the RS system are GF

adds and GF multiplications. GF addition is performed in binary systems by XORing the

corresponding bits of the codeword, which represent the coefficients of the polynomial.

For example:

 α
6
 + α

4
 = [101] + [110] = [011] = α

3

GF multiplication is performed by adding the indices of the polynomial, for example:

α
3
* α

2
 = α

2+3
= α

5

In binary form, this operation is a modulo 2 sum of partial products, and which requires

specialized multiplier circuitry. The circuitry will be described in detail in Chapter 4.

2.1.3) Reed-Solomon Encoding Algorithm

 This section will provide an overview of the Reed-Solomon encoding and

decoding algorithms, focusing on the mathematical description, while Chapter 3 will

provide a look at how the decoding algorithm was previously implemented in hardware.

 As mentioned above, Reed-Solomon codes operate on GF of the order q=p
m

,

where m is a positive integer greater than or equal to 3. Typically, the value of p is 2, and

a typical value of q is 256. For this example, the assumed values will be p=2 and q=8,

because the math becomes very complex as q scales upward. Our experimental

implementation utilizes a q value of 256. Each GF is generated from a primitive

polynomial of p(x)=1 + x + x
3
.

 The three columns in Table 2.1 illustrate different ways of representing the same

data. If this particular GF was to be implemented in circuitry, 3-tuple representation

18

would be used, given its binary representation. All of the operations in the RS algorithm

operate within this constrained field, meaning that any operation on data within the field

will result in another entry within the field.

 The encoding process is accomplished by taking in a k-bit block of data, and

generating n-k parity bits to append to the original data for transfer. RS encoding makes

use of a generator polynomial. The encoder generates the parity symbols by dividing the

data by the generator polynomial, with the remainder being the parity bits.

 An example of RS encoding follows. For this example, the code used is RS(7,3)

operating on the GF(2
3
), the elements of which are shown in Table 2.1. This implies that

the encoder operates on 3-bit symbols, 3 of which will be used to generate 4 3-bit parity

values, for a total message length of 7 3-bit symbols. A summary of the parameters is

shown below.

 n=7, k=3

t=(7-3)/2=2

N represents the total codeword length in symbols, while K represents the number

of data symbols in each codeword. T represents the error correcting capability of the

coding scheme. In this case, an errors-only RS(7,3) decoder can correct 2 erroneous

symbols in the codeword, while and errors-and-erasures version of the same decoder can

correct 2t=4 erroneous symbols. The difference between an errors-only and an errors and

erasures decoder will be discussed in Chapter 3.

Suppose that the message below is to be encoded:

u_binary=[011,011,010]

19

As one can see from examining Table 2.1., this data can be represented in both

polynomial form, as:

u(x) = α
3
x

2
 + α

3
x

1
 + α

1
x

and in power form, as:

u= α
3
α

3
α

1

The value of x in the polynomial form represents the position of the symbol in the block.

 To determine the parity bits of the signal, a generator polynomial is used. It’s

general form is:

g(x) = (x + α
0
)(x + α

1
)+……+(x + α

2t-1
)

Given that for this example, t=2, the generator polynomial used is:

g(x) = (x + α
0
)(x + α

1
)(x + α

2
)(x + α

3
)

This can be expanded to g(x)= α
6
+ α

5
x+ α

5
x

2
+ α

2
x

3
+x

4
, so the coefficients of g are g0=

α
6
, g1= α

5
, g2= α

5
, g3= α

2
. A simplified architecture for the encoder is illustrated below.

20

Figure 2.2. A general Reed-Solomon Encoder

 The encoder uses the roots of g(x), along with a selection signal. This signal

ensures that for the first m clock cycles, the input data is propagated to the output,

followed by the propagation of the calculated parity symbols. An example using GF(2
3
)

is detailed below.

- Clock Cycle 1: The first message symbol 011 (or α
3
) is sent into the encoder. The

symbol is multiplied by each of the generator coefficients, and added to the

previous data in registers b0,b1,b2,b3, which in this case, since this is the initial

cycle, are all equal to 000. The resulting register values are:

o b0= α
3
 * α

6
 = α

9
, which simplifies to α

2

Gate

Transmitted Codeword

 b0

g0

g1

g2

g3

 b1

 b2

 b3

Selector

Selector

Key:

m-bit Register

GF(2m) adder

GF(2m) multiplier

21

o b1= α
3
 * α

5
 + 000= α

8
, which simplifies to α

1

o b2= α
3
 * α

5
 + 000= α

1

o b3= α
3
 * α

2
 + 000= α

5

- Clock Cycle 2: The second message symbol, 011 (α
3
) is sent into the decoder. It is

XORed with the value of b3, which is 111 (α
5
) resulting in 101 (α

2
). This value is

multiplied by the generator coefficients, resulting in register values of:

o b0= α
2
 * α

6
 = α

9
 = α

1

o b1= α
2
 * α

5
 + α

2
 = α

6

o b2= α
2
 * α

5
 + α

1
 = α

3

o b3= α
2
 * α

2
 + α

1
 = α

2

- Clock Cycle 3: The third message symbol, 010 (α
1
) is fed into the decoder. It is

XORed with the value of b3, α
2
, resulting in α

4
. The end results in the registers

are:

o b0= α
4
 * α

6
 = α

3

o b1= α
4
 * α

5
 + α

1
 = α

4

o b2= α
4
 * α

5
 + α

6
 = α

0

o b3= α
4
 * α

2
 + α

3
 = α

4

- Clock Cycle 4-7: As the counter is now equal to 4, the data in registers b0, b1, and

b2 contain the parity data to be appended to the signal. The gate is disconnected,

and the data is allowed to propagate out of the circuit.

22

 The final message sent to the channel is [011,011,010,110,001,110,011]. The first

3 tuples are the original data, and the trailing four are the parity symbols. This binary

string is modulated into an analog form. A typical modulation scheme is the Binary Phase

Shift Key (BPSK) modulator, which transforms the data into a waveform, with 1s

becoming -1s, and 0s becoming +1s. This signal is transmitted over the channel, and is

subject to noise in the form of Rayleigh channel fading, and additive Gaussian white

noise (AGWN).

Figure 2.3. Rayleigh Fading Channel

 The above diagram illustrates a typical Rayleigh fading channel. Rayleigh fading

occurs because of the nature of a wireless transmitting environment. Signals in an

environment such as this scatter off of physical objects such as walls and the result is that

there are multiple paths from the transmitter to the receiver, resulting in different amounts

of signal power coming to the antenna from different directions. In addition,

electromagnetic interference also affects the signal while in transit. The resulting effect

can be described mathematically as:

yr = ys*ƒ + n

Channel

Received

Signal

AWGN Rayleigh

Fading

Original

Signal

23

where ys represents the signal as sent, yr represents the signal as received, ƒ represents the

Rayleigh fading gain of the channel, and n represents the AWGN during transmission.

Typically these parameters change over the course of the transmission of the codeword,

so this can be better modeled on a bit by bit basis as:

yr
i
 = ys

i
*ƒ

i
 + n

i

where i stands for the i
th

 bit of the transmitted sequence.

2.1.4) Reed-Solomon Decoding

 When the signal from the encoder is modulated and passed through the channel, it

is subject to both Rayleigh fading and AGWN, and thus the signal is not the clean -1 and

+1 signs when it is received. The demodulator takes in this analog signal, and outputs

floating point estimations of each bit’s value. There are two ways to perform the

decoding of this modified data, hard-decision decoding, and soft-decision decoding. Hard

decision decoding yields an error-only RS decoder, and functions by determining that any

signal received which is below 0 becomes a -1, and above zero becomes a +1. While this

is usually correct, in the case where a large amount of noise was injected into the signal,

these hard decisions may be incorrect. Consider for example a symbol which is received

and demodulated into the values {.0675, -.0238, -.8905}. Using hard decision

demodulation, this would become {+1, -1, -1}. However, the second bit is so close to 0

that it could conceivably have been either a +1 or -1 originally. When using hard-decision

demodulation, the decoder has no way of knowing that this bit is unreliable, information

which could aid in the decoding process.

24

 Soft decision demodulation uses an erasure generator to signal the decoder when

particular symbols are unreliable. The decoder still receives streams of the “most likely”

symbols, but also receives a stream of flags indicating when a particular symbol is

unreliable. The erasure generator takes in a symbol at a time, and generates two possible

values, the most likely symbol (MLS), and 2
nd

 MLS. The second MLS is determined by

negating the bit with the lowest absolute amplitude, as this is the least reliable bit. It then

calculates the difference between the two different symbols, the MLS and the 2
nd

 MLS,

and compares this to a pre-set threshold value. The actual function to determine whether

to assert the erasure flag is detailed below.

 The receiver receives y, representing the amplitudes of the received data from the

channel. It then calculates the most likely symbol, or MLS, based on the fact that y was

received. The possible symbols are denoted as s0, s1, …sn-1. This function is denoted as:

The erasure flag is asserted for a particular symbol if and only if:

where sv represents the MLS, and the bottom term represents the total conditional

probability of sv given that y
j
 was received.

 The principal benefit of using a soft decision, errors-and-erasures version of an

RS decoder is that the amount of errors that can be corrected per codeword is increased.

The amount of errors that can be corrected by a hard decision decoder is t, while a soft-

decision decoder can correct 2t erroneous symbols per codeword.

25

 Figure 2.4 shows the general structure of an errors-and-erasures RS decoder. This

decoder receives the stream of estimated data and a stream of erasure flags from the

erasure generator, and attempts to correct any errors.

Figure 2.4. General Reed-Solomon Decoder Architecture

 This next section will contain an example of RS soft-decision decoding, following

from the encoding example. Each block’s operation will be discussed along with the

example.

1) Syndrome Generation Block

 The function of the syndrome generation block is to divide the received codeword

by the generator polynomial. As mentioned earlier, any valid codeword will be exactly

divisible by the generator polynomial. If there is a remainder, one can assume that there

are errors in the codeword. The typical method of performing this division is to substitute

Corrected

Codeword

Erasure

Syndrome

Generator

Erasure

Location

Extraction

Syndrome

Polynomial

Expansion

Erasure-location

Polynomial

Generation

Errata

Polynomials

Generation

Chien

Search

Algorithm

Forney

Algorithm

Error

Correction

Unit

FIFO

26

all of the 2t roots of the generator poly into the received polynomial, generating 2t

syndrome coefficients. This is known as the syndrome polynomial. If all of the

coefficients are zero, then there are no errors in the codeword, and error correction can be

bypassed.

 Given the example from the encoding section, the received codeword should be

u(x) = [011,011,010,110,001,110,011].

Let us assume that instead, the received sequence is:

 u(x) = [011,010,100, 110,001,110,011].

The polynomial representation of this sequence is:

u(x) = α
3
x

6
 + α

1
x

5
 + α

2
x

4
 + α

4
x

3
 + α

0
x

2
 + α

4
x + α

3

Two errors were introduced during the transmission of the signal over the

channel, one in the second symbol, and one in the third. The syndrome generation unit

substitutes all of the roots of the generator polynomial into the above equation, resulting

in:

s(x) = α
4
x

3
 + α

2
x

2
 + α

6
x + α

5

2) Erasure Location Extraction

 This block receives the stream of erasure flags from the erasure generator, and

expands them into a polynomial for use in calculating the locations of errors in the

codeword. As erasure generation is not 100% accurate, let us assume that only the second

symbol was flagged as being unreliable, and the third symbol, which also has an error,

was missed.

27

 When the second symbol arrives at the syndrome generation block, an erasure

flag arrives at the erasure location extraction block. This block then performs the

following calculation:

 t = α
n-1

 t = α
7-2

 t = α
5

The resulting polynomial is the sum of all of the results for every erasure flag plus 1.

Since in this case there is only a single erasure flag, the resultant polynomial is:

 t(x) = 1 + α
5
x = α

0
 + α

5
x

3) Syndrome Polynomial Expansion Block

 This block receives the syndrome polynomial s(x) and the erasure location

polynomial t(x) from the preceding blocks. Its job is to multiply these two polynomials

together to generate the modified syndrome polynomial, T(x). Continuing with the

example, the received vectors were:

s(x) = α
4
x

3
 + α

2
x

2
 + α

6
x + α

5

t(x) = α
0
 + α

5
x

T(x) is defined as:

 T(x) = t(x)s(x)mod x
2t

 T(x) = (α
0
 + α

5
x)(α

4
x

3
 + α

2
x

2
 + α

6
x + α

5
) mod x

4

 T(x) = α
5
 + α

4
x + α

1
x

2
 +α

5
x

3

4) Erasure-Location Polynomial Generator Block

28

 This block calculates the erasure location polynomial in parallel with the above

syndrome expansion block. This block expands the erasure location polynomial. Given

that the current example has only one erasure, the poly remains unchanged, but if for

example both of the erroneous symbols in the example had been flagged, then t(x) would

have been:

 t(x) = (1 + α
6
x)(1 + α

5
x)

And in this case, this would need to be expanded by multiplying out the factors. In this

case, the polynomial is unchanged and is forwarded as is,

 D(x) = 1 + α
5
x = α

0
 + α

5
x

5) Errata Polynomials Generation Block

 The job of this block is two create two key polynomials which will help to

identify the location and magnitude of the errors in the codeword. The two polynomials

are the errata-locator-polynomial, Ψ(x), and the errata-magnitude-polynomial Ω(x). The

inputs to this block are the modified syndrome polynomial, T(x), and the erasure-

location-polynomial, D(x). There are two methods of computing these polynomials, the

Berlekamp-Massey algorithm[28], or the Modified-Euclidean algorithm (MEA)[29]. In

this work, the MEA algorithm will be used.

 The MEA algorithm is a recursive algorithm which operates on 4 polynomials, R,

Q, L, and U. They are initialized as follows:

- R is initialized to x
2t

- L is initialized to 0

- Q is initialized with T(x)

29

- U is initialized with D(x)

The equations used to update the polynomial are:

Ri(x) = [σi-1bi-1Ri-1(x) + σ`i-1ai-1Qi-1(x)] – x
|l

i
-1|

[σi-1ai-1Qi-1(x) + σ`i-1bi-1Ri-1]

Li(x) = [σi-1bi-1Li-1(x) + σ`i-1ai-1Ui-1(x)] – x
|l

i
-1|

[σi-1ai-1Ui-1(x) + σ`i-1bi-1Li-1]

Qi(x) = σi-1Qi-1(x) + σ`i-1Ri-1(x)

Ui(x) = σi-1Ui-1(x) + σ`i-1Li-1(x)

where ai-1 and bi-1 are the leading coefficients of Ri-1(x) and Qi-1(x), li-1 = deg(Ri-1(x)) –

deg(Qi-1(x)), where deg(y) signifies the degree of y, and σi-1 = 1 if li-1 ≥ 0. σ`i-1 is the

opposite of σi-1.

The number of iterations needed depends on the number of errors which were not

flagged by the erasure generator. It can be seen that the more accurate the erasure

generator, the better the performance of this block. The computation stops when the

degree of Ri(x) is less than the degree of Li(x). When this occurs, the value of Li(x) is

output as the error-locator polynomial, Ψ(x), and the value of Ri(x) is output as the error-

magnitude polynomial, Ω(x). Continuing with the example, the initial values are:

R0(x) = x
4

Q0(x) = T(x) = α
5
 + α

4
x + α

1
x

2
 +α

5
x

3

L0(x) = 0

U0(x) = D(x) = α
0
 + α

5
x

The end result of the MEA calculation results in:

 Ψ(x) = α
3
x

2
 + α

1
x + α

1

 Ω(x) = α
2
x + α

6

30

6) Chien Search Block

 The job of the Chien-Search block is to take the error-location (Ψ(x)) and error

magnitude (Ω(x)) polynomials, and evaluate them across all of the possible values in the

GF(2
m

). In addition, the Chien-Search block creates and evaluates the derivative of Ψ(x),

Ψ`(x), which is the odd terms of Ψ(x).

 When the result of an evaluation of Ψ(x) equals 0, it indicates that there is an error

in the (n-i)th symbol in the codeword. These three sets of evaluations are passed on to the

Forney Algorithm and Error-Correction Block. Continuing the example, the result of

these calculations yields:

 Ψ(x) Ψ`(x) Ω(x)

α
0

α
3
 α

1
α

0

α
1
 α

0
 α

2
 α

4

α
2
 0 α

3
 α

3

α
3
 0 α

4
 α

1

α
4
 α

3
 α

5
 0

α
5
 α

1
 α

6
 α

2

α
6
 α

0
 α

0
 α

5

Table 2.2. Roots of Key Polynomials

These results indicate an error at location 7-2=5 and 7-3=4 in the received codeword,

which is correct.

7) Forney Algorithm and Error-Correction Block

This block is responsible for evaluating the magnitude of each error indicated by

the Chien-Search block and performing the correction to the original received codeword.

31

It receives the evaluations of Ψ(x), Ψ`(x), and Ω(x), along with the original codeword

from the FIFO. The magnitude of the error in location l is determined by the equation:

ê(α
1
) = Ω(α

1
)/Ψ`(α

l
)

A polynomial ê(x) is formed by combining the error locations (as powers of x) with the

error magnitudes (as powers of α). The codeword is corrected by combining this

polynomial with the original codeword polynomial, u(x), as follows:

ĉ(x) = ê(x) + u(x)

The result, ĉ(x), is the corrected codeword. Following the example, errors are in location

5 and 4, corresponding to α
2

and α
3
. The error magnitudes are calculated as:

ê(α
2
) = Ω(α

2
)/Ψ`(α

2
) = α

3
/ α

3
 = α

0

ê(α
3
) = Ω(α

3
)/Ψ`(α

3
) = α

1
/ α

4
 = α

4

And thus the error vector ê(x) is:

ê(x) = α
0
x

5
 + α

4
x

4

This vector is combined with u(x), the original received codeword, as follows:

ĉ(x) = ê(x) + r(x)

ĉ(x) = (α
0
x

5
 + α

4
x

4
) + (α

3
x

6
 + α

1
x

5
 + α

2
x

4
 + α

4
x

3
 + α

0
x

2
 + α

4
x + α

3
)

ĉ(x) = α
3
x

6
 + α

3
x

5
 + α

1
x

4
 + α

4
x

3
 + α

0
x

2
 + α

4
x + α

3

ĉ = [011,011,010,110,001,110,011]

This creates the original codeword, as all errors have been corrected.

2.2) Energy Consumption in FPGAs

There are two distinct types of energy consumption in FPGAs, static and

dynamic. Static energy is consumed by all parts of the FPGA, whether active or not, as

32

long as the device is on. Static energy is consumed at a roughly constant rate. The main

source of static energy consumption is the SRAM used to store the configuration of the

device. Static energy consumption can be viewed as the cost of having the FPGA device

“on”, and is roughly design independent, meaning that the opportunities for reducing

static energy consumption available to the designer are limited.

The second type of energy consumption in FPGAs is dynamic energy

consumption. This is caused by signal transitions in the circuitry as the application

performs work. Dynamic energy consumption is the cost of the device performing

calculations. The amount of energy consumed is governed by the capacitance on a

particular signaling line, and each transition will generally dissipate the same amount of

energy. There are two types of signal transitions, transitions necessary for calculations,

and spurious transitions caused by path-delay differences in the logic circuits, which are

commonly referred to as glitches.

In general, reducing the length (and thus the capacitance) of a signal line, or

reducing the number of transitions across a line, whether required or spurious, will reduce

dynamic energy consumption. This work focuses on high level techniques which reduce

the total number of signal transitions.

2.3) Circuit Level Energy Reduction Methods

2.3.1) Pipelining

 The impact of pipelining has previously been examined for a variety of different

devices, and has been found to be effective at reducing energy consumption in digital

33

circuits[30]. Most recently, Wilton et al did an analysis of the effects of pipelining on

energy consumption in FPGA circuits [8]. The conclusion of this study was that

pipelining is an effective method of reducing dynamic energy consumption in FPGAs.

Pipelining is especially applicable to FPGAs because a) the registers used for pipelining

are embedded in the FPGA fabric in every logic element, so the cost of using them is

minimal, and b) because the communication lines on FPGAs tend to be longer and have

higher capacitance on average than those in a custom ASIC, signal transitions require a

significant amount of energy. It is necessary to minimize spurious transitions on these

lines, one of the beneficial effects of pipelining.

One effect of pipelining is to split the logic into discrete sections, separated by

registers. By splitting the logic up, it is possible to selectively de-activate sections of

logic by using clock gating, another method of energy reduction. The granularity of the

pipelining determines the size of the logical register-to-register sections which can be

clock gated, and thus the two methods have significant interaction.

The methodology used in this work to reduce energy via pipelining is as follows.

Pipelining was performed by hand, to evaluate differing amounts of pipelining while

maintaining identical logical functionality, differing only in latency. The initial designs

are examined for areas which could potentially be pipelined. Examples of such areas

include areas of large logic depths between registers. As we are attempting to minimize

the amount of logic through which a glitch can propagate, it is desirable to separate

functional units by inserting pipeline registers between them.

Although pipeline registers can reduce the propagation of glitches across logic

and interconnect, and thus reduce energy consumption, the additional registers also

34

dissipate some amount of energy. Thus it is not always the case that additional pipelining

will be effective in reducing energy, as a balance must be found between the energy

saved from reduced glitching, and the energy consumed by additional registers. It was

observed in preliminary work that there is a degree of pipelining which provides optimal

energy per operation results. The goal is to find the optimal amount of pipelining to

achieve minimal energy-per-operation performance.

Figure 2.5. Clock Gating circuit

2.3.2) Clock Gating

Clock gating is a technique which has been shown to be effective for reducing

power and energy consumption for all types of digital circuits [9] [10]. As illustrated in

Figure 2.5, in its simplest form, clock gating is achieved by ANDing the clock signal to a

particular element with an enable signal, so that when the enable is low, the combined

signal is always forced low, effectively halting any clocked operations in any logic

controlled by that clock signal. This is done to reduce unnecessary transitions in the logic,

thus reducing dynamic energy consumption. Typically, we gate computational elements

35

when the results of their computation is unneeded, meaning the results have no impact on

a current or future output signal. Clock gating is particularly applicable to FPGA circuits

because the ability to enable and disable the clock is typically built into the logic

elements in the FPGA, so the cost of using them is minimal. Preventing a transition on an

interconnect line is particularly beneficial for FPGAs since interconnect capacitance is

quite high compared to ASICs.

Despite these advantages, clock gating has significant tradeoffs. While energy

may be saved by preventing unnecessary computation, additional energy will be

consumed by the gating logic, and the designer must make sure that the energy saved

exceeds the additional energy of the gating logic. In addition, the generation of clock

gating control signals can sometimes introduce additional levels of logic, reducing the

maximum operational frequency of the design.

Our methodology for applying clock gating is as follows. Given a design which

has previously been pipelined, we have the option of gating a register, effectively cutting

off any computation driven by the output of that register. We begin by examining the

application for areas whose computation will not always be needed. For example, in a

pipelined ALU, there are separate functional units for every operation, AND, OR,

ADD/SUB, etc. Each particular unit is only needed when a particular operation is needed.

Thus, it makes sense to gate portions of the functional unit based on the value of the

required operation. In addition, given a pipelined architecture, it is often possible to know

which units will be needed a cycle or more ahead of time. If this is the case, it is possible

to perform cycle-ahead gating.

36

Once areas have been identified for possible clock gating, the designer must

weigh the energy consumption of the logic needed to generate the enable signal against

the energy which can be saved when the functional logic is gated. This depends not only

on the amount of logic which is gated, but the percentage of the time that the logic will

actually be used, which often depends on the incoming data. Often, it is a matter of

running simulations based on expected data to determine the viability of reducing energy

consumption via gating a particular section of logic.

To gate a clock, the designer needs to provide a control signal which allows logic

to operate only when it is needed. In the ALU example, a simple solution is to use a

combination of operand signals to create a gating signal. This control signal is then

connected with the clock to an AND gate, so that when the enable signal is low, the clock

is forced to remain low.

One final note is that it can be seen from the above discussion that we can only

gate contiguous sections of logic, separated by registers. The granularity of the possible

gating thus depends on the degree of pipelining applied to the circuit.

 The end goal of clock gating the Reed-Solomon decoder design is to ensure that

the various functional units only receive a clock when they are currently processing data.

Because each of the units in the decoder takes a different amount of time to perform its

operations, there is significant downtime among some of the functional units in the

design.

37

2.3.3. Memory Access Reduction Techniques

Clock gating of embedded memory units is of particular interest in FPGAs, due to

their high energy consumption rates when compared to general logic circuitry. Rather

than clock gating an entire memory, it is possible to re-format a memory unit and insert

small buffers before and/or after an embedded memory to allow it to be gated for larger

periods of time. This is accomplished by reconfiguring the memory to have a bus size

which is a multiple of the original width, reducing the overall number of elements,

keeping the same overall size constant. The buffers then combine data from two or more

contiguous writes into one data point, and similarly read a large data point and then

provide each unit of the data to the logic separately, one after the other. Figure 2.6 and

2.7 below illustrate this concept.

Figure 2.6. Memory Buffering

38

Figure 2.7. Activity of Memory, original vs. buffered

 Figure 2.6 illustrates the structural differences between a typical memory setup

(above), and the buffered setup (below). The buffered setup collects four 8-bit data points

before performing each 32-bit write to the embedded memory block. On the read side,

one 32-bit data point is read every four clock cycles, and 8-bits are presented to the

output every cycle. Figure 2.7 illustrates the activity of the embedded memory under the

typical and buffered schemes. From the activity diagram, it is evident that the activity of

the memory can be reduced by 75% by buffering.

This method allows the memory to be deactivated for half or more of the time it

would have previously been active, reducing energy consumption significantly. While

some extra energy will be consumed by the buffers, it is typically much less than the

energy saved by deactivating the memory. A caveat of this method is that it is only

possible when the data will be written and read in order, otherwise this method is not

applicable.

2.4. Dynamic Reconfiguration

 One of the other methods used in this work is the concept of dynamic

reconfiguration. Dynamic reconfiguration refers to the technique of changing the

39

functionality of a component during operation, to achieve a specific goal such as

increased performance, reduced power consumption, increased speed, etc. Previous

works have shown dynamic reconfiguration of FPGA based applications to be effective

for many goals, including reducing the size of the necessary hardware component [12],

for the support of concurrent applications[32], and directly related to this work, to reduce

power consumption and increase performance [15]. This particular work will examine

dynamic reconfiguration for energy efficiency, essentially attempting to minimize the

amount of energy needed to decode a certain amount of data, and reconfiguring as

channel conditions allow in order to swap in a more efficient decoder. The methodology

of this process will be examined in Chapter 4.

40

CHAPTER 3

RELATED WORK

3.1. Previous RS works

 This section will contain an overview of previous works in the area of Reed-

Solomon decoders. As mentioned in the introduction, this system is designed to provide

Reed-Solomon decoder functionality for a system which is already FPGA based, as the

performance and energy consumption characteristics of an FPGA based RS decoder are

unlikely to better an ASIC implementation.

3.1.1. A Low-Power Reed-Solomon Decoder for STM-16 Optical Communications

 This paper [21] describes a low-power ASIC implementation of a Reed-Solomon

(255,239) decoder, designed for submarine communications. It is included here to

illustrate the current performance levels of ASIC implementations of the Reed-Solomon

algorithm. The design implements a novel syndrome calculation unit, along with a

modified Berlekamp-Massey algorithm as opposed to an implementation of the MEA or

EA algorithms to solve the key equations. The chip was implemented using .25um

CMOS standard cells. The resulting performance characteristics are a sustained 2.5Gbps

throughput with a CER of 10
-4

, and the entire chip consumes 68.5mW of power.

Calculating the energy-per-codeword value from these characteristics, it is clear that each

bit requires approximately 2.74x10
-11

 J to process. Comparing this to the previous work,

which required approximately 1.25x10
-9

 J to process a bit, counting dynamic power only,

it is unlikely that any FPGA implementation of an RS decoder will be able to beat the

41

ASIC in terms of energy consumption. This is why this work is aimed at systems already

containing an FPGA for processing, in which case the RS decoder can be added to the

existing FPGA code instead of requiring an external RS ASIC.

3.1.2. Design of a Reed-Solomon Decoder using Partial Reconfiguration of XILINX

FPGAs – A Case Study

 This paper [12] uses a Reed-Solomon coder and decoder to test a design

methodology aimed at allowing for partial run-time reconfiguration of applications. The

design uses both static modules, and so called pRTR modules, which are the partial run-

time reconfigurable parts of the design. The design works by maintaining the same

overall structure by loading pRTR units as needed into the same physical location. It

makes use of a static CLB interface macro to handle communications between modules.

The seven pRTR modules encompassing the RS encoder and decoder are: RS coder, RS

decoder, syndrome calculation, error locations, error locator polynomial, error

magnitudes, and error corrections. The design allows for the system to be implemented

on a small FPGA by swapping in and out the modules as they are needed.

Unlike the above approach, the approach used in this work makes use of full

dynamic reconfiguration. In addition, the reconfiguration is used to adapt to changing

channel conditions, not allow for implementation of the design on area-limited devices.

42

3.1.3. Architecture for Decoding Adaptive Reed-Solomon Codes with Variable Block

Length

 This work [13] describes the implementation of an adaptive RS decoding system

on an Altera APEX20KE FPGA. The system adapts to allow for varying block lengths

between 13 and 255, while maintaining error correction capabilities of up to 10 erroneous

bytes in a codeword. The goal of this work is to maintain the needed CER by varying the

amount of redundancy in the symbol. With this design, the value of t can be varied on a

codeword to codeword basis. The design makes use of a multiplexed MEA unit, which

allows for pipelined operation of the design. The resultant data rate achieved is 240Mbps,

with a resource utilization of approximately 17,000 LUTs.

 The main difference between this and the work described in this document is that

the system in this work does not vary the block length, it varies the value of K. This

allows for less communication between the encoder and decoder, which is desirable in a

real-world system. As the goal of this work was to reduce energy consumption over

speed, the multiplexed MEA structure is not desirable. Lastly, our system is able to

correct more errors given that it implements erasures. The use of erasures allows for a

reduction on the load of the MEA unit, and thus a faster operation of this part of the

algorithm.

3.1.4. A Reed-Solomon Decoder with Efficient Recursive Cell Architecture for DVD

Applications

 This paper presents an errors-only RS(208,192) decoder implemented on an

Altera FLEX10KE200 FPGA [14]. The goal of this work was to examine and design an

43

efficient MEA architecture which would reduce the time to compute MEA by 32%

compared to standard architectures. The design makes use of a reduced number of MEA

cells, which are multiplexed and used recursively. The design makes use of the number of

MEA cells needed so that the computation is not limited by the MEA block. This means

that the computation must be performed in n clock cycles, as this is the number of clock

cycles between codewords. For the RS(208,192) decoder, this needs only one MEA cell.

However, if the architecture was used on larger decoders, such as RS(255,223), it would

require 4 MEA cells. The architecture achieves a decoding speed of 20Mbps.

 In the proposed work, again, the decoder can correct more errors by using an

errors-and-erasures approach. This allows for a reduction in the necessary processing

using the MEA unit, and thus one MEA unit can be used recursively, which also reduces

overall energy consumption compared to the above work.

3.2. Previous FPGA Energy Reduction Works

 This section will highlight previous works involving reduction of FPGA energy

consumption.

3.2.1. The Impact of Pipelining on Energy per Operation in Field-Programmable Gate

Arrays

 This work by Wilton [8] examines the impact of pipelining on energy

consumption for FPGA designs. The study used 4 benchmarks, 64-bit Integer Array

Multiplication, Triple DES encryption, 8-tap FIR filter, and a CORDIC circuit. These

designs were implemented with varying degrees of pipelining ranging from one or 2

44

levels to the maximum possible amount of pipelining, a register after every LUT. The

result of the work demonstrates that pipelining can reduce the overall energy-per-

operation values across all of the benchmarks, by as much as 75%. However, with some

benchmarks, there is a reduction in benefits as more and more pipeline stages are

introduced, suggesting that there is a particular amount of pipelining at which the best

energy performance can be achieved.

 An approach similar to the one used above, although less exhaustive, was used in

this work to examine exactly how much pipelining is beneficial in the design.

3.2.2. Energy-Efficient Signal Processing Using FPGAs

 In this work by Choi et al, [10], algorithmic level energy optimizations were

examined for their impacts of energy dissipation in several FPGA applications. The

applications studied were the Fast Fourier Transform (FFT) and Matrix Multiplication.

The methods used to reduce energy were Architecture Selection, Module Disabling,

Algorithm Selection, Pipelining, and Parallel Processing. Module disabling is essentially

implemented by using clock gating to restrict the clock from propagating to sections of

the logic when no result is needed. One of the main uses of this technique in this work is

to clock gate the memories when they are not in use. The authors point out through

simulations that an embedded FPGA memory block will dissipate approximately 10% of

the energy when it is disabled than it would if enabled.

45

 This technique was adopted with great success in this work given the large

number of embedded memory units required by the design. In addition, clock gating, as

mentioned in Chapter 2, was expanded to include any functional unit which can be

switched off for any amount of time.

3.3. An Adaptive Reed-Solomon Errors-and-Erasures Decoder

This section will provide a detailed description of the Reed-Solomon errors-and-

erasures decoder system developed by Lilian Atieno as part of her masters thesis [15].

The resultant work was presented at the Proceedings of the ACM/SIGDA International

Symposium on Field Programmable Gate Arrays, Monterey, CA, February 2006 [7], and

can be referred to for more in depth analysis of her work. The work described in this

document uses this previous work as a baseline to improve upon.

For this previous work, an FPGA based adaptive errors-and-erasures Reed-

Solomon (255,k) decoding system was developed. An FPGA was used for this work

because it allows for dynamic reconfiguration during run-time, and also allows for high

levels of parallelism and an efficient implementation of the design. The system makes use

of a multi-decoder scheme, under which multiple decoders operate in parallel to allow for

more accurate decoding of data. The system makes use of the reconfigurability inherent

to the FPGA device by swapping in decodes of differing K values and thresholds as

channel conditions dictate.

 The adaptive algorithm operates on two levels. First, it attempts to adapt to small

changes in the SNR value of the channel by changing the number of active decoders

between 1 and 3 without changing the K value. In this case, each decoder has a different

46

threshold value. Secondly, if larger variations in SNR occur, the decoder sends a request

to the encoder to modify the K value to add or subtract from the amount of included

redundancy in the signal, and changes the decoder to match. A diagram of the adaptive

system is shown in Figure 3.1.

Figure 3.1. From [7], Architecture of an Adaptive errors-and-erasures Reed-Solomon

Decoding System

 The system aims to maintain a CER of better than 10
-4

, while allowing for the

maximum possible decode rate, as channel conditions dictate. The thresholds for the

various erasure generators were determined through Matlab simulations, and the values

47

were chosen so that the required CER of 10
-4

 could be maintained under all

circumstances. The table of decoder configurations is shown below.

Table 3.1. From [7], Decoder Configurations

As mentioned above, the system was designed to adapt to changing channel

conditions. A set of experiments were performed to evaluate the effectiveness of this

reconfiguration scheme given simulated channel characteristics. The results illustrate a

14% increase in decoding speed over a non-reconfigurable decoder with a K value fixed

at 217.

48

3.4. Differences from Previous Work

There are several important differences between the previous work described in

section 3.3 and the work done for this thesis, which will be described in detail in Chapter

4. These differences will be highlighted briefly here.

As mentioned above, the previous work made use of several multi-decoder

implementations, in which several decoders were implemented in parallel. This was done

in order to maintain the required CER while allowing for increased decoding speed.

However, in terms of energy, it is extremely inefficient to have multiple decoders running

at the same time when only one of their outputs is utilized. For this work, only single

decoder implementations will be examined, with a slight reduction in decoding speed

being the result. The new table (similar to Table 3.1 above) resulting from this change

will be shown in Chapter 4.

The algorithm which will control the reconfiguration scheduling will be

simplified as a result of the simplified single decoder system, changing configurations in

order to maintain the required CER while attempting to use the most energy efficient

decoder.

The channel model in the previous work was a very basic model, and part of this

work is to evaluate the system using a more accurate model. The previous model

assumed that the change in SNR between reconfiguration windows was essentially

random, while also assuming that there was very little variation during the time a

particular decoder was in operation. In order to get a more accurate assessment of the

system performance characteristics, the new model is time-dependant, meaning that the

SNR at any given point is related to the previous SNR values. In addition, we are not

49

assuming that the channel conditions remain static during the operation of a particular

decoder. The analyses which were preformed include analysis of CER and energy

consumption using different rates of reconfiguration, and will be detailed in the next

section, Chapter 4.

50

CHAPTER 4

IMPLEMENTATION

 This chapter contains two contributions. In section 4.1, the development of a new

communication channel fading model will be discussed, including the reasoning behind

changing the model from the previous version. In section 4.2, the process of performing

hardware optimizations will be discussed in detail.

4.1. Channel Fading Model

 A minor contribution of this work was the development of an accurate channel

model to answer important questions regarding system-level performance characteristics

under real-world constraints. The channel model used in [7] was a non-time-dependant

Rayleigh fading channel model. While the channel model represented a Rayleigh

channel, there was no correlation between consecutive samples. Thus, unrealistic

variations in SNR could occur in very short amounts of time. This is not a realistic model,

and while useful for general analysis, a more accurate time-dependant model is needed.

 The non-time-dependent model made the assumption that the SNR would remain

static between reconfigurations. This leads to an unrealistic representation of a Rayleigh

fading channel, as it assumes the channel spends long periods of time in a relatively

stable state while a particular decoder is operating, and then changes suddenly when we

examine whether to reconfigure or not. Because of these reasons, a Rayleigh fading

channel was developed which more accurately represents a real wireless environment.

51

4.1.1. Goals and Requirements

 The main goal of applying a more accurate channel fading model is to accurately

assess system characteristics relating to the time between reconfigurations of the adaptive

decoding system. Specifically, the effects of reconfiguration on system energy

consumption and CER are considered.

 The most important requirement of this new model is that it be time dependant, so

that each sample depends on the previous sample. In addition, it is important to model

channel fading and shadowing as two distinct processes. The reasoning behind this

requirement is that a decoding system can measure the average channel shadowing over

time, but cannot measure the channel fading, as the changes due to fading occur too

rapidly and vary greatly over short intervals of time. The system’s decisions on how to

reconfigure would thus be based on the channel shadowing measured over time, while the

performance in terms of CER would be determined with regard to the cumulative effects

of both shadowing and channel fading.

Finally, the model should represent a channel with an average SNR of

approximately 16.8dB, with a range of SNR values (with regard to shadowing) from

about 13dB to about 20.5-21dB, as this is the range of SNR values used by the original

decoder. In reality, this range could be adjusted based on the required CER performance

and other parameters, but for this work the previous assignments will be used for

evaluation purposes.

52

Figure 4.1 illustrates how the SNR in the channel varies with regard to shadowing

alone vs. shadowing and fading. With the inclusion of fading, the SNR varies wildly

compared to the results of shadowing alone. This variation can sometimes be as much as

40dB from top to bottom.

Figure 4.1. SNR due to Shadowing (red) vs Shadowing and Fading (blue).

4.1.2 Simulation Flow

 In order to simulate the process of the message data being transferred over the

noisy channel, we perform several steps. These steps are outlined below and discussed in

more detail in subsequent sections. The purpose of simulation is to determine appropriate

decoder parameters for later implementation in hardware.

53

1. An initial data block of size K bytes is randomly generated. This represents the

message data. This data block is then encoded using the RS algorithm, resulting in

a 255 byte-encoded message.

2. The encoded message is modulated using BPSK modulation, where each ‘0’ bit

becomes a +1, and each ‘1’ it becomes a -1. This generates a stream of +1 and -1

values of length 2040.

3. The stream of BPSK modulated values is affected by shadowing and fading as it

passes through the noisy channel. The details of this process are described in

section 4.1.3. The result is a stream of values ranging from about -2 to 2.

4. To determine if the codeword will be decoded properly, we simulate the soft-

decision demodulation process which is performed by the erasure generator. This

process is described in detail in section 2.1.4. The end result is a number of

erasure flags representing suspected errors. By comparing the received data

stream to the original stream, we can quickly determine how many errors were

introduced. We can then determine if this codeword would be decoded properly

by comparing the number of erasures and unflagged errors to the error correction

capacity of the particular decoder using the equation:

N-K ≥ (number of erasures) + 2*(number of unflagged errors)

54

5. If this equation holds true, then the decoder will properly decode the message, and

no error has occurred. If not, then the decoder will be unable to correct the

message. By simulating over a large number of codewords, we can determine the

effective CER.

4.1.3. Model Details

 The new channel model developed for this dissertation has two distinct parts. The

first part models the shadowing. For the following equations, the basic parameters are

SNR_mean = 16.8dB and ρ=0.99999. The variable ρ is determined by the time between

samples and the expected relative velocity of the two nodes, which communicate via the

wireless channel. Parameter N(x,y) is a Gaussian random variable, with mean x and

variance y.

 The algorithm for determining the SNR with respect to shadowing is:

1. Generate values of xi, where xi+1 = ρxi + N(0,1-ρ
2
), beginning with an initial x0 value

of 0.

2. Generate SNRi values via the equation SNRi = SNR_mean + xi. Each SNRi value

represents the channel as seen by the decoder over the course of a single codeword,

measured in decibels (dB).

 The resulting series of SNRi values are representative of what the decoder

measures during operation. The average of these values over time is used by the decoder

to determine how to reconfigure the system in response to channel variations.

55

 The second part of the channel model determines signal noise variations due to

channel fading. These variations occur at a much greater frequency than the variations

due to shadowing, and are assumed for this work to not be accurately measurable with

regards to the decoding system.

Channel fading is performed as follows:

1. For each symbol in the codeword, generate a fading variable, φ.

The fading variable φ is created via the following equations where C is a constant:

- φ = sqrt(φr
2
 + φi

2
)

- φr = C + N(0,(1-C
2
)/2). This is the real part of the fading.

- φi = N(0,(1-C
2
)/2). This is the imaginary part of the fading.

2. This affects the BPSK modulated transmission of the symbol via:

 - Ri = φ * ±1 + N(0,σ
2
)

where ±1 is the original value of the bit sent over the channel by the BPSK

modulator, and σ
2
 = 1/(2*SNRa). SNRa is SNRi in absolute notation, which is

calculated via the equation: SNRa = (10)
SNR

i
/10

. The Ri values represent the

floating point values received by the decoder after the message data has been

impacted by the channel fading during transmission. One can see that in this

equation, we have the impact due to both channel shadowing (the random variable

has variance equal the SNR due to shadowing), and channel fading, which is

represented by the φ variable, on the original sequence of +1/-1 values

representing each bit of the message.

56

Part of the benefit of the above model is that it can be changed from Rayleigh to

Rician or anything in between very easily. A Rayleigh channel is representative of a

situation without line-of-sight communications, whereas a Rician channel represents a

situation where line-of-sight communication is possible. If the variable C is set to zero,

the model is Rayleigh, whereas if C is set to approximately sqrt(0.8), the model is Rician.

Setting the value of C to a smaller number creates more variance in the fading variable by

increasing the variance of the random variables which determine φ.

The new model was coded as a C program to allow for simulation, which is

described in the next section.

4.1.4) Experiments

Several avenues of investigation were pursued with the new channel model. First

and foremost, an examination of the effect of time-between-reconfiguration on system

energy consumption was performed. Since the focus of this work is on minimizing the

energy consumption characteristics of the system while maintaining constant CER, there

was a desire to evaluate how lengthening or shortening the time between system

reconfiguration would affect the overall energy consumption.

 The second part of the reconfiguration analysis was driven by a desire to examine

how the CER would vary with regard to the reconfiguration rate. Conceptually, the

longer the time between reconfigurations, the more the chance of the SNR varying to a

point where the SNR is outside the range that the currently instantiated decoder was

designed to operate in. If the SNR rises above the range for the decoder, it is not a

problem, since that simply implies fewer errors on average than the maximum the

57

decoder was designed for. If, on the other hand, the SNR falls below the decoder’s

designated range, the CER will suffer as the decoder will be unable to correct all of the

errors. Figure 4.2 below illustrates how the SNR can vary in between reconfigurations.

Figure 4.2. SNR variance during operation

 Figure 4.2 displays how the SNR can vary between reconfigurations. The pink

line displays the floor of the SNR range of the currently instantiated decoder. Notice that

it varies periodically due to system reconfiguration. The blue line shows the actual SNR,

and the red shading shows times when the SNR is below the desired level for the current

configuration. These represent areas where we would expect to see an increase in the

CER.

58

 During experimentation we determined the optimal reconfiguration rate in terms

of energy consumption, while maintaining the desired CER of 10
-4

. Results of this

analysis are presented in Chapter 6.

4.2. Hardware Optimizations

 The second major part of this work applies hardware optimizations to Reed-

Solomon decoders at the architectural level, with the goal of reducing energy

consumption. The metric of success for this part of the work is the amount of energy

required to decode each codeword. As described in Chapter 2, the optimizations used for

this process are pipelining, memory operation optimization, and functional unit clock

gating. This section provides a detailed look at the modifications, which were applied to

the original design. Results of these modifications on design energy consumption

characteristics are shown in Chapter 5. Figure 4.3. illustrates a basic system diagram.

Figure 4.3. System Block Diagram. All connections are 8-bit unless otherwise specified.

Erasure Generator

Input

Buffer

10 x

2040

FIFO

8x255

FIFO

1x255

Unit1

Syndrome

Gen.

Erasure

Position

Unit2

Syndrome

Expansion

Erasure

Poly Gen

MEA

Unit

EC Unit

Chien

Unit

Forney

Unit

10 8

FIFO 8x255

59

4.2.1 Recoding

 Before energy reduction techniques were applied, the Verilog source code for

each portion of the design was re-coded with an eye towards performing each required

operation as efficiently as possible, in terms of both power consumption and the number

of required clock cycles. During this re-coding, several design goals were targeted. First,

the required number of clock cycles to complete the decoding process was minimized. In

most cases, this provides a reduction in required energy to decode each codeword, as

energy consumption depends not only on power dissipation, but also on the length of

time that power is dissipated. Second, the number of control signals was minimized.

Since much of the control circuitry drives clock gating signals for individual modules,

some unnecessary signals could be removed. Each design module was re-designed to

function only when it receives a clock signal. Thus, the clock distribution to these

modules acts as a de-facto control structure. In addition, the decoder structures were

written to ensure that the final hardware mapping from Verilog would result in efficient

RTL structures. This was done by explicitly defining each individual circuit element and

associated connections, as opposed to coding a higher-level description of the

functionality, using tasks, for loops, etc. It was observed that this approach leads to a

more accurate mapping of functions to the FPGA fabric. Lastly, the designs were coded

to include parameterization wherever possible, allowing for easier modifications across

all seven decoders.

60

 In addition to these general goals, some specific modifications were performed

during the re-coding process, as detailed below.

4.2.1.1. Syndrome Unit

 Originally, the syndrome vector, generated by the syndrome unit (see Figure 2.4

for the system diagram), was sent serially to the syndrome expansion unit. Each

coefficient was then loaded serially into a register before syndrome expansion began.

This inefficiently increased the number of required clock cycles, since the entire

syndrome can be transferred in parallel to the expansion unit, allowing for the expansion

unit to begin work immediately.

4.2.1.2. Modified Euclidean Algorithm

 Several structural changes were implemented for the MEA unit, or Key

Polynomial Generation Unit (Figure 4.4a) compared to the structure described in the

previous work [7] (Figure 4.4b). First, the dual-ported RAM units, which were used in

the previous design, were replaced with shift registers. The use of RAM units to store

MEA results after each iteration causes increased delays due to memory accesses. Given

the size of the required memories, which range from 128 to 304 bits, using energy-

consuming embedded memory blocks is inefficient. In addition, the slightly modified

structure detailed in [30] was adopted, as it allows for easy pipelining of the unit. The

main difference between the new structure and the previous one is that instead of

evaluating the degree of the L polynomial (the number of coefficients) via evaluation

before each iteration to see if a stopping point is reached, which causes additional delays

61

and increased logic usage, we run the unit for a specified number of iterations (n-k) for

each decoder that guarantees the processing will be finished. This is controlled by the

stop_logic block.

Figure 4.4a. New MEA Structure

‘1’

sw

n-k

n-k-1

‘0’

x16

Qin

‘0’

Uin

start

Shift Register

Shift Register

Shift Register

Shift Register

Shift Register

Shift Register

Shift Register

Shift Register

degRi-1

degQi-1

stop

Ri-1

Qi-1

Li-1

Ui-1

start

A

B

Ri

Qi

Li

Ui

if degR <

degQ,

sw=1, else,

sw=0

if A=0, z=1,

else, z=0

z

degR

degQ

Stop

Logic
stop_out

data_in

62

Figure 4.4b. Previous MEA structure [7]. Note the degree of the polynomial L must be

computed each iteration.

‘1’

sw

n-k

n-k-1

‘0’

x16

Qin

‘0’

Uin

start

Memory Unit

Memory Unit

Memory Unit

Memory Unit

Memory Unit

Memory Unit

Memory Unit

Memory Unit

degRi-1

degQi-1

stop

Ri-1

Qi-1

Li-1

Ui-1

start

A

B

Ri

Qi

Li

Ui

if degR <

degQ,

sw=1, else,

sw=0

if A=0, z=1,

else, z=0

z

degR

degQ

Stop

Logic
stop_out

data_in

L degree

comp.

63

4.2.1.3. Inverse ROM

Figure 4.5. Error Correction Unit

 For the inverse ROM used in the error correction unit (Figure 4.5), an FPGA

embedded memory block was pre-loaded with inverse GF elements. The job of the

inverse ROM is to invert values within the Galois Field. The previous approach [7]

generated the inverses algorithmically on chip after device reset. The pre-computation

approach saves both energy and area.

4.2.2 Pipelining

 Pipelining was divided into two separate steps, small-scale pipelining, and global

pipelining. Small-scale pipelining is used within a particular functional unit, while global

pipelining is performed at functional unit boundaries. Specific applications of pipelining

for energy savings in the RS decoder designs are detailed below.

error

vector
sigma

omega
Chien

Block

Forney

Block

Zero Detect

Inverse

ROM

64

4.2.2.1. Small-Scale Pipelining

 In this step, each functional unit was examined to determine if pipelining could be

used to improve energy consumption characteristics. Initially, the most promising

location for pipelining appeared to be in the 8-bit GF multiplier circuits. As the design

uses hundreds of these small units, any reduction in energy consumption in this unit was

expected to have large effects on the overall energy consumption characteristics of the

decoder. Initial work was done to develop pipelined versions of the Mastrovito GF

multiplier, which was used in the previous design [7]. Pipelining of between zero

(combinational) and four stages was examined.

 An alternative GF multiplier, described by Paar in [19], was constructed and

tested to see if it would be more energy efficient. The Paar multiplier has been shown to

have a lower VLSI complexity than the standard Mastrovito multiplier, so the initial

thought was that the lower complexity would lead to lower energy consumption.

However, despite the fact that the Paar multiplier was implemented using three fewer

LUTs than the Mastrovito, it was observed through testing that the Paar multiplier in fact

dissipated about 20% more energy than the Mastrovito multiplier because of increased

glitching due to mismatched path lengths. The maximum amount of pipelining was found

to be four stages due to the critical path length being 4 LUTs. In the end, the 2-stage

Mastrovito multiplier was used for our final design as it was found to be the most

efficient in terms of energy.

 Despite the reduced energy consumption of the pipelined multiplier, it could not

be used to replace the majority of the GF multipliers in the decoder design. When the

design was examined in detail, it was discovered that the vast majority of the GF

65

multipliers in the design exist within feedback loops which require a latency of only a

single cycle to function properly. Thus, the pipelined multiplier, which requires multiple

cycles to perform a multiplication, could not be used in these cases. In the end, only four

of the GF multipliers in the design were replaced with pipelined multipliers. These three

multipliers are: the two GF multipliers in the MEA unit, and one each in the Forney and

Chien units. While these multipliers were replaced with the pipelined units (see Figure

4.5), the overall effect on energy consumption was limited, resulting in a decrease of only

about 2.5% on the system level. Full results can be seen in Chapter 5.

 The other unit which showed the potential for savings using pipelining was the

MEA unit. The paper describing the recursive MEA structure [30] suggests using a 5

stage pipeline within the recursive unit for performance reasons, and it was

experimentally determined using 5 stages was in fact optimal for energy characteristics.

The results of this analysis will be detailed in Chapter 5.4.2. Figure 4.6 below illustrates

the MEA unit with 3 and 5 levels of pipelining.

66

done

‘0’

sw

n-k

n-k-1

‘0’

x
16

Qin

‘0’

Uin

start

Shift Register

Shift Register

Shift Register

Shift Register

Shift Register

Shift Register

Shift Register

Shift Register

degRi-1

degQi-1

stop

Ri-1

Qi-1

Li-1

Ui-1

start

Ri

Qi

Li

Ui

if degR <

degQ,

sw=1, else,

sw=0

if A=0, z=1,

else, z=0

z

‘1’

degR

degQ

Stop

Logic

stop_out

data_in

start1 start2 start3 ‘0’

B

A

start3

‘0’

67

Figure 4.6. MEA unit with 3-stage (above), and 5-stage (below) pipelining. In the 5-stage

figure, note that the multipliers are now pipelined 2 stages

4.2.2.2. Global Pipelining

 Global pipelining refers to the practice of pipelining various functional units to

decrease the overall design throughput. This allows for the more efficient utilization of

done

‘0’

sw

n-k

n-k-1

‘0’

x16

Qin

‘0’

Uin

start

Shift Register

Shift Register

Shift Register

Shift Register

Shift Register

Shift Register

Shift Register

Shift Register

degRi-1

degQi-1

stop

Ri-1

Qi-1

Li-1

Ui-1

start

Ri

Qi

Li

Ui

if degR <

degQ,

sw=1,

else, sw=0

if A=0, z=1,

else, z=0

z

‘1’

degR

degQ

Stop

Logic

stop_out

data_in

start1 start2 start3 start4 start5 ‘0’

B

A

start4

‘0’

Pipelined GF Multiplier GF Multiplier

68

functional units, which reduces the energy-per-operation characteristics of the overall

design.

 The previous decoder was not pipelined at all, so that a codeword was sent into

the erasure generator (the first functional unit) only after the previous codeword had been

completely processed (see Figure 2.4). As a result, only a single functional unit is active

at any given time. Ideally, all functional units should be active at the same time, as idle

units receiving clock signals still dissipate energy. Operational restrictions can limit this

opportunity, as certain units may require more operating time than others. Placing

registers between functional units helps improve operation overlapping.

 When examining the design at hand, it helps to break the operation into discrete

steps, and to examine the time required and dependencies for each individual functional

unit. The diagram below shows a clock cycle description of the activity of each

functional unit in the decoder for the decoding of a codeword with K=239.

Erasure Generator Unit1 Unit2 MEA Error Correction

2049 Cycles 260 Cycles 8 Cycles 262 Cycles 280 Cycles

Figure 4.7. Time breakdown of the decoding process for an example of K=239 decoding

Figure 4.8. Timeline illustrating decoding of a codeword

Erasure Generator

Unit1

MEA

EC

Unit2

69

 The above breakdown makes it clear that the bottleneck in the system, in terms of

number of required clock cycles, is the erasure generator. The erasure generator requires

approximately 3076 cycles regardless of the K value of the design, while the entire

operation of the decoder takes only between 764 (K=239) and 1064 (K=217) cycles. For

the re-coded design, a similar trend was seen, with the erasure generator requiring

approximately 2049 cycles, and the decoding requiring between 903 and 2081 cycles.

From this, it was observed that by splitting the design into 2 pipelined stages, all

decoders, except for the K=217 decoder, could function with only 2 pipeline stages; the

erasure generator, and the decoder. By separating each functional unit in the decoder, a

rate of 2049 cycles per codeword could be maintained for all versions of the design. In

the case of the K=217 decoder, one codeword is output through the error correction unit

while the next codeword is evaluated by the syndrome unit. In all other cases, the decoder

only operates on a single codeword at a time, while the erasure generator processes the

next codeword. Despite the added pipelining, since there is a memory between the

erasure generator and the decoder, no additional pipelining registers were necessary.

 This pipelining has several important effects on the design. First, by reducing the

time-per-codeword of the design, a significant reduction in energy consumption-per-

codeword is achieved (this can be seen in Chapter 5 in section 5.4.3). In addition, all

decoders (regardless of K) can operate at the same clock rate, and achieve identical

throughput in terms of codewords decoded per second. Lastly, by separating each of the

units in a distinct pipeline, each unit can be individually clock gated and turned on and

off as needed. The energy reduction results of this global pipelining scheme can be seen

70

in the following chapter, while the diagram below shows the global pipelining scheme

which was adopted for this project.

Figure 4.9. Pipelining of Decoder Circuitry

(unless specified otherwise, signals are 8-bit)

4.2.3. Memory Optimizations

 As described in Section 2.2.3, the energy required for memory operations using

FPGA embedded memories can be reduced by using small buffers before and after the

memories which act to collect data coming in and out of the memory units, with the goal

of reducing the overall number of memory accesses. Embedded memories in Stratix

devices have a physical I/O port size of 32 bits. If several read or write operations can be

combined to include most or all of the 32 available bits for each memory access, not only

can the number of necessary read and write operations be reduced, but the memory can

10

Erasure

Gen.

Syndrome

Erasure

Location

Extraction

Syndrome

Expansion

Erasure

Location

Poly

Modified
Euclidean
Algorithm

FIFO

Error

Correction

Unit

71

be utilized more efficiently. If a value of less than 32 bits is accessed, the RAM will still

consume power for the entire 32 bits.

 Figure 4.10 illustrates the structure of the buffers and memories when making use

of this method. This is just an example, but is representative of the memories between the

erasure generator and the decoder, and also the FIFO which holds the received codeword

while the decoder is processing. The buffers consist of a number of registers, in this case,

4 8-bit registers because the data is 8-bit and we are packing 4 of the values together, in

addition to a small amount of control logic to change the addressing.

Figure 4.10. Example of Memory Buffering Logic

The Adaptive Reed-Solomon design includes several large memory units, each of

which was buffered for fewer accesses as described below:

8 32

6

32 Output

Output 8

8

8

Rd_Addr

Wr_Addr
Write_Data

DPRAM
8x255

FU
q

8

DPRAM
32x64

8

8
Wr_Addr
Write_Data

Buffer
4x8

6
Rd_Addr

FU
Buffer
4x8

72

1. There is a memory unit which receives 10-bit values representing each bit of the

codeword from the A/D converter (see figure 4.3). This unit needs to be able to hold

2040 10-bit values, representing one codeword. The values are stored in this memory

and withdrawn by the erasure generator.

2. A memory unit serves as a bridge between the erasure generator and the decoder. It

consists of a memory which holds the 255 8-bit symbols of the codeword (see figure

4.3).

3. A memory unit serves as a FIFO which holds the received codeword while the

decoder determines the error vector needed to correct the codeword. This unit must

also hold 255 8-bit values (see figure 4.3).

 A detailed discussion of the buffering of each unit is presented in section 5.5.,

along with the energy benefits of this optimization.

4.2.4. Clock Gating

 The RS decoder design includes a linear series of functional units (see figure 4.3).

As mentioned in Section 4.2.2.2, the erasure generator serves as the performance

bottleneck. Although the erasure generator is always active, we would like to reduce the

energy consumption characteristics of the remaining units by shutting off their clock

signal when they are not needed.

73

 To reduce energy, the functional units in each decoder stage were clock gated. A

small control unit handles the distribution of the clock to each unit, and attempts to

minimize the number of clock transitions required by each unit by enabling the functional

unit only when it needs to process the codeword. The control unit generates four

individual enable signals: one for the syndrome and erasure location extraction, one for

the syndrome expansion and the erasure polynomial computation, one for the key

polynomials generation or MEA unit, and one for the error correction unit which consists

of the Chien search block and the Forney algorithm block. Each unit receives a clock

signal immediately before it is presented with data, and once it has output its calculations,

the clock signal is discontinued until it is needed again to process the next codeword.

Figure 4.11 illustrates how this clock gating was implemented, which is the method

suggested by Altera in the Quartus II documentation [31]. The enable signal for a gated

clock is clocked into a register on the falling edge of the global clock, and this result is

ANDed with the original clock to produce a gated clock signal for the functional unit.

 Each enable signal is set high by one trigger, and set low by another. Table 4.1

lists the conditions for activating and deactivating each enable, along with the number of

cycles each unit is receiving a clock signal before and after the clock gating was

performed. It should be noted that the number of cycles that each unit is active is data

dependant and also dependant on K, thus the ranges in the table. The triggering signals

were all internal signals which already existed, and did not add any logic to the design.

This is why the MEA unit begins when Unit2 has begun, because the activity of Unit2

can be as short as 4 clock cycles, and in order to not create any extraneous control logic,

74

it is best to start the clock to the MEA unit at this point. Figure 4.12 shows the final

system block diagram showing each individual clock domain.

Enable

Signal

Enable

Condition

Disable

Condition

Clock cycles to

FU (per CW)

Clock cycles

seen after

(per CW)

Unit1

New_Codeword

strobe from

erasure

generator

syndrome and

erasure

locations

finished being

presented to

unit2

2049

256 to 294

(dependant on

number of

erasures)

Unit2

syndrome unit

has received

255 symbols

MEA unit has

begun

processing

2049

4 to 42

(dependant on

number of

erasures)

MEA

unit 2 has

begun

processing

error correction

has begun
2049

262 to 1450

(dependant on

K value)

Error

Correction

last iteration of

MEA has begun

corrected

codeword has

been output

2049 280

Table 4.1. Clock Gating Parameters

Figure 4.11. Clock Gating Logic

Enable DFF

Clock

Functional

Unit

75

The end result of this optimization is a large reduction (See Table 4.1) in the

number of clock cycles seen by each unit in the decoder resulting in a large reduction

(~40%) in energy consumption for each gated unit. The full energy numbers are

presented in section 5.6.

Figure 4.12. Global Clocking Scheme

Erasure

Generator

Syndrome

Erasure

Location

Extraction

Syndrome

Expansion

Erasure

Location

Poly

Modified

Euclidean

FIFO

Error

Correction

Unit

Unit 1 Unit 2 MEA EC Unit

Clock
Clock

Control

Data

76

CHAPTER 5

CIRCUIT LEVEL OPTIMIZATION RESULTS AND ANALYSIS

 The next two chapters will provide numerical results generated during the course

of this work, along with a detailed analysis of the results. This chapter provides the

results of the circuit optimization techniques described in section 4.2. Chapter 6 provides

the detailed results of the reconfiguration analysis, described in section 4.1.

5.1. Introduction

 This section evaluates the results of applying the energy reduction techniques to

the Reed-Solomon decoders developed in [7], both in terms of area and energy

consumption. All of the results detailed below were generated by compiling and

simulating the RS decoder designs in Quartus II version 7.1, with power numbers from

the built in PowerPlay analysis tool used to determine energy consumption values. All

designs were simulated at 50 MHz, using waveforms from the previous work. All designs

were mapped to the Altera Stratix EP1S10F484C5 FPGA.

5.1.1. Previous Work

 To begin evaluation, some modifications to the previous designs were necessary.

Previous results were generated using an older version of the Quartus II software, in

which the power analysis features had not been fully developed, leading to indeterminate

accuracy when measuring power consumption. The old designs were thus recompiled and

re-simulated (1 full codeword each), using Quartus II, version 7.1. Energy-per-codeword

77

and energy-per-Mb of data were determined from these new results. Table 5.1 below

illustrates these results.

K

Value
LUTs Regs

Memory

Bits

Fmax

(MHz)

Pwr @

50 MHz

(mW)

Period

(us)
E/Mb (J)

239 5694 1661 35536 65.26 65.14 76.80 2.74E-03

237 6278 1758 35552 62.68 66.27 77.28 2.83E-03

233 6988 1950 35584 65.12 66.34 78.20 2.92E-03

229 7567 2142 35616 64.44 68.29 78.73 3.08E-03

225 8517 2371 35648 64.60 70.27 82.09 3.36E-03

221 9697 2564 35680 63.50 73.27 82.90 3.60E-03

217 10427 2758 35712 64.88 74.13 86.80 3.89E-03

Table 5.1. Results Generated from Designs Developed in [7] using Quartus II, v7.1

5.1.2. Quartus Synthesis Power Optimization

 To provide a comparison with an alternate method of reducing power and energy

consumption, the original designs were compiled and simulated using the new built-in

power-reduction synthesis options available in Quartus II, v7.1. These features have been

added to the Quartus II software since the work described in [7] was completed. The tool

now provides an automated method of reducing power and energy consumption for

FPGA based designs based on low-level logic restructuring. The results of compiling the

previous designs with this new option are presented in Table 5.2. The automated power-

reducing synthesis algorithms in Quartus result in an energy reduction of 3.48% on

average across the seven designs.

78

K Value LUTs Regs
Memory

Bits

Fmax

(MHz)

Pwr @

50MHz

(mW)

Period

(us)
E/Mb (J) Change

239 6382 1663 45776 63.10 63.07 76.80 2.66E-03 3.18%

237 6774 1760 45792 65.71 63.88 77.28 2.73E-03 3.61%

233 7635 1952 45824 64.89 64.03 78.20 2.82E-03 3.48%

229 8227 2144 45856 63.00 66.05 78.73 2.98E-03 3.28%

225 8945 2373 45888 63.34 68.40 82.09 3.27E-03 2.66%

221 9760 2566 45920 65.21 70.27 82.90 3.45E-03 4.09%

217 10513 2760 45952 64.05 71.14 86.80 3.73E-03 4.03%

 Average 3.48%

Table 5.2. Previous Work with Quartus Automated Power Optimization Results

 LUTs Regs Memory Bits Power (mW)

Functional Unit Original

Power

Opt. Original

Power

Opt. Original

Power

Opt. Original

Power

Opt.

Erasure Generator 502 498 216 218 24912 24912 33.21 27.78

Unit1 537 441 385 385 128 128 1.49 1.48

Unit2 1827 1824 327 327 0 0 0.22 0.24

MEA 826 683 238 238 2048 2048 8.45 8.29

Error Correction 1841 2692 420 420 6400 16640 20.08 23.7

Fifo 0 0 0 0 2048 2048 1.58 1.58

Top level control 161 244 75 75 0 0 0.11

Total 5694 6382 1661 1663 35536 45776 65.14 63.07

Table 5.3. K239 Unit-by-unit Power Results

 Table 5.3 illustrates the power optimizations on a unit by unit basis. As the table

illustrates, the unit which improves the most is the erasure generator. The optimizations

reduce the power consumption of the input buffer from 18.33 mW to 13.20 mW.

However, for an unknown reason, simultaneously increases the power consumption of

the GF inverse lookup table (contained in the EC unit) from 1.38 mW to 4.43 mW

79

because instead of using logic cells, the table is instantiated as 3 M512 and 2 M4K RAM

blocks. This also explains the increase in total memory bits. Why this change is selected

by Quartus is unknown.

5.2. Re-Coding

 As mentioned in section 4.2.1. the first step in performing the set of optimizations

on the decoders was to re-code the basic un-optimized decoders in a more structurally

explicit manner, so as to ensure the correct structure when the design is mapped to the

FPGA, and also to perform several minor modifications (discussed in section 4.2.1.), and

to prepare the designs for the following optimization steps, pipelining (section 5.4),

memory optimizations (section 5.5), and clock gating (section 5.6). The results of this

recoding process are detailed in Table 5.4, with a unit by unit breakdown for the K239

decoder illustrated in Figure 5.1.

K

Value
LUTs Regs

Memory

Bits

Fmax

(MHz)

Pwr @

50MHz

(mW)

Period

(us)
E/Mb (J) Change

239 4854 2289 30538 108.25 59.96 57.00 1.87E-03 31.59%

237 5282 2483 30626 107.20 60.79 58.40 1.96E-03 30.62%

233 6201 2866 30802 107.01 62.24 61.68 2.16E-03 26.04%

229 7054 3250 30978 106.37 63.66 65.60 2.39E-03 22.39%

225 7930 3634 31154 105.09 65.49 70.16 2.68E-03 20.34%

221 8867 4025 31390 105.33 67.42 75.36 3.01E-03 16.30%

217 9711 4410 31574 108.34 69.07 81.20 3.39E-03 12.91%

 Average 22.89%

Table 5.4. Recoded Design Results, provides a new baseline for the following

optimizations

80

Figure 5.1. K239 Unit by Unit Energy Consumption Breakdowns

Power

(mW) Energy per CW (J)

Power @

50 MHz

(mW)

Energy per CW

(J) Difference

EG 33.21 1.40E-03 32.61 1.02E-03 -27.12%

Fifo 1.58 6.65E-05 3.93 1.23E-04 84.61%

Unit1 1.49 6.28E-05 3.22 1.01E-04 60.39%

Unit2 0.22 9.27E-06 0.20 6.25E-06 -32.53%

MEA 8.45 3.56E-04 12.77 3.99E-04 12.16%

EC 20.08 8.46E-04 7.51 2.35E-04 -72.24%

 Table 5.5. Functional Unit Energy Breakdown for Previous Work and Recoded

 The major impact of this recoding was a reduction in the overall number of clock

cycles the decoder takes to complete the decoding of a codeword. By eliminating

unnecessary handshaking and other communication delays, the decoder can complete the

same amount of work in a shorter amount of time (see table 5.6), reducing to overall

energy consumption. Although the overall energy results are better with the recoded

81

version, certain units show higher energy consumption rates than seen in the previous

work (as seen in Figure 5.1, Table 5.5). This is because most of the units were designed

to use a minimum amount of control logic, since it was assumed that further

optimizations (such as clock gating) would be applied later. For instance, the syndrome

unit and erasure locator units, collectively referred to as Unit1 (figure 4.3), are designed

to run all the time, even though its output is not always necessary..

The benefits are greater for the smaller decoders due to the reduction in MEA run

time. As mentioned in Section 4.2.1, the implementation of the MEA unit for this work

runs for a distinct number of iterations to avoid expensive control logic, and as a result as

the K values decrease, the MEA unit runs for a longer period of time. This is why the

benefits of the recoding decrease as the K value increases, when compared to the

previous work. All further results will be compared to these new baseline values.

K

Value Previous Recoded

239 3840 2850

237 3864 2920

233 3910 3084

229 3937 3280

225 4105 3508

221 4145 3768

217 4340 4060

Table 5.6. Cycle Counts for Decoding a Codeword

82

5.3. Pipelining

 This section will detail the numerical results of pipelining, both small-scale and

global. In addition, the development and analysis of both the Mastrovito and Paar

multipliers with varying degrees of pipelining will be detailed here, despite the fact that

they were used sparsely in the final designs.

5.3.1. Galois Field Multipliers

As was described in section 4.2.2.1 several efforts were attempted to reduce the

energy consumption characteristics of the GF multipliers, which are used in large

numbers throughout the design of the RS decoder.

 Two separate implementations of the multiplier circuitry were developed, one

using the original Mastrovito[18] structuring, and one using the structure suggested by

Paar in [19]. Each of these was examined both in combinational form, and with

pipelining between one and four stages. The results are shown below in Table 5.7. The

most efficient, the 2 stage Mastrovito multiplier, was adopted for use in the MEA unit,

along with the Chien and Forney units.

 LUTs Regs Power Consumption

Pipeline

Stages Mastrovito Paar Mastrovito Paar Mastrovito Paar

0 58 53 0 0 2.75 3.54

1 58 53 8 8 2.09 2.25

2 58 53 47 26 1.63 1.95

3 92 53 92 40 2.23 2.47

4 97 72 97 72 2.58 2.68

Table 5.7. Pipelined Galois Field Multiplier Results

83

84

5.3.2. Small-Scale Pipelining

 When examining the design for opportunities to pipeline within functional units,

the only one which stood out as providing the opportunity for energy savings was the

MEA unit. Based on the amount of pipelining in the GR multipliers in the unit, we have

the opportunity to pipeline the unit with between 3 and 5 stages (see section 4.2.2.1 and

Figure 4.6). The analysis of the MEA unit versions are shown in Table 5.8 below.

Pipelining

Stages LUTs Regs

Power @

50Mhz

(mW)

3 783 326 12.60

4 796 482 12.17

5 810 646 9.69

Table 5.8 MEA Unit Comparison

 As the results in Table 5.8 indicate, the optimal version uses five pipeline stages,

and the overall results of making this change are detailed in Table 5.9. The general trend

illustrated by these results is of a larger reduction in energy consumption for the larger

decoders. This result makes sense as the larger decoders spend a larger percentage of

their decoding time using the MEA unit. As a note, there is an increase in the power

dissipation of the EC unit when changing from 3 to 5 pipeline stages. As the EC unit

directly follows the MEA unit, it is assumed that the synthesizer is moving logic around

to optimize. The net effect is shown in Table 5.9, and in general is a reduction of about

0.5 mW.

85

K

Value LUTs Regs

Memory

Bits

Fmax

(MHz)

Pwr @

50 MHz

(mW)

Period

(us) E/Mb (J) Change

239 4889 2513 30447 108.34 59.45 57.00 1.86E-03 0.85%

237 5316 2705 30535 107.97 60.16 58.40 1.94E-03 1.04%

233 6231 3089 30711 107.22 61.69 61.68 2.14E-03 0.88%

229 7087 3474 30887 108.73 63.09 65.60 2.37E-03 0.90%

225 7964 3858 31063 103.85 64.45 70.16 2.63E-03 1.59%

221 8904 4253 31239 106.87 66.41 75.36 2.97E-03 1.50%

217 9739 4637 31415 109.49 67.65 81.20 3.32E-03 2.06%

 Average 1.26%

Table 5.9. Small-Scale Pipelining Results. Change values are with regard to Table 5.4.

5.3.3. Global Pipelining

 The original decoders [7] processed a single codeword at a time. As described in

Section 4.2.2.2, a second codeword is not fed into the erasure generator until the decoder

has completely finished processing the previous codeword. Even though the erasure

generator finishes processing after 41 us, another codeword is not started until the

decoder is finished processing, 15 to 40 us later. As a result, the design was modified to

start a new codeword as soon as the erasure generator finishes processing the previous

codeword (Section 4.2.2.2). This more efficient use of the available processing resources

allows for a throughput across all of the decoders of 40.98 us per codeword, the latency

of the erasure generator. The resulting energy reduction results versus the results in Table

5.9 are detailed in Table 5.10. Table 5.11 illustrates the clock cycles per codeword for

each decoder before and after.

86

K

Value LUTs Regs

Memory

Bits

Fmax

(MHz)

Pwr

(mW)

Period

(us) E/Mb (J) Change

239 4889 2513 30447 108.34 59.67 40.98 1.34E-03 27.84%

237 5314 2715 30535 107.97 60.38 40.98 1.37E-03 29.57%

233 6231 3089 30711 107.22 61.94 40.98 1.43E-03 33.29%

229 7089 3474 30887 108.73 63.38 40.98 1.49E-03 37.24%

225 7963 3858 31063 103.95 64.77 40.98 1.55E-03 41.30%

221 8904 4253 31239 106.87 66.76 40.98 1.62E-03 45.33%

217 9739 4637 31415 109.49 68.02 40.98 1.68E-03 49.26%

 Average 37.69%

Table 5.10. Global-Pipelining Results, compared to Table 5.9.

Clock Cycles per Codeword

K Value Original

Global

Pipelined

239 2850 2049

237 2920 2049

233 3084 2049

229 3280 2049

225 3508 2049

221 3768 2049

217 4060 2049

Table 5.11. Clock Cycles per codeword before and after global pipelining

5.4. Memory Optimizations

There are three major memory units in the adaptive RS decoding unit (see figure

4.3). There is one memory which holds a full codeword’s worth of 10-bit data values

from the A/D converter unit outside the FPGA, a total of 20,480 bits. There are also two

memories that each holds a full codeword of data, one that stores the output of the erasure

generator, and one stores the uncorrected codeword while the decoder processes it to

determine the correction vectors. Both of these memories are of size 2040 bits.

87

 As the erasure generator works on eight 10-bit values at a time, representing on 8-

bit symbol which was received from the channel, the optimal implementation is to pack

each set of 80 bits into one read and write. This would reduce the total required number

of reads by a factor of 8. The results of reading at different rates are illustrated in Table

5.12 below.

Reading

Scheme

Power

(mW)

8 x 10 22.19

4 x 20 11.23

2 x 40 5.62

1 x 80 2.89

Table 5.12. Power Consumption Results of Memory Buffering

Of 20,400 bit Memory Units Using M4K Blocks

 The other two large memories in the design use 8-bit data values, so the natural

choice to make use of all of the physical circuitry available, is to make each read and

write 32 bits exactly. The benefits are shown in Table 5.13 below.

Reading

Scheme

Power

(mW)

4 x 8 3.93

2 x 16 3.08

1 x 32 2.06

Table 5.13. Power Consumption Results of Memory Buffering

2040 bit Memory Units

88

 The overall system effects of performing these optimizations are shown in Table

5.14. The benefits are greater for the smaller decoders as the memory units consume a

larger percentage of the overall power in the smaller decoders. The size and activity of

the memory units do not vary between decoders.

K

Value
LUTs Regs

Memory

Bits

Fmax

(MHz)

Pwr @

50 Mhz

(mW)

Period

(us)
E/Mb (J) Change

239 5082 2591 30447 120.55 37.65 40.98 8.46E-04 36.90%

237 5502 2771 30535 117.66 38.73 40.98 8.78E-04 35.86%

233 6428 3155 30711 118.39 40.39 40.98 9.31E-04 34.79%

229 7299 3552 30887 116.04 41.76 40.98 9.80E-04 34.11%

225 8174 3924 31063 120.48 43.61 40.98 1.04E-03 32.67%

221 9121 4319 31295 122.19 46.10 40.98 1.12E-03 30.95%

217 9970 4703 31479 125.57 48.37 40.98 1.20E-03 28.89%

 Average 33.45%

Table 5.14. Results of Memory Optimizations, compared to Table 5.10.

5.5. Clock Gating

 Figure 5.2 illustrates the various clock domains used to clock gate design

functional units. Each of the units, Unit1, Unit2, MEA, and the Error Correction unit,

receives its own gated clock signal.

89

Figure 5.2. Global Clocking Scheme

 The colored blocks illustrate the boundaries of different clock gating domains. As

the erasure generator is the bottleneck in the system, it is always active and thus no gating

is necessary. The other units are Unit 1, Unit 2, MEA unit, and the Error Correction unit,

consisting of the Chien and Forney blocks. Each of these units was given its own clock

enable signal, and this signal was used to enable the clock just before the unit is needed

for processing. The clock is shut off after processing is finished. Table 4.1 illustrates the

number of clock cycles that each unit is active before and after clock gating was applied.

 The overall system benefits of this clock gating are shown in Table 5.15 below,

while Figure 5.3 illustrates the incremental benefits of each of the techniques that were

used in this work, while Table 5.16 illustrates the full results in numerical form.

Erasure

Generator

Syndrome

Erasure

Location

Extraction

Syndrome

Expansion

Erasure

Location

Poly

Modified

Euclidean

FIFO

Error

Correction

Unit

Unit 1 Unit 2 MEA EC Unit

Clock
Clock

Control

Data

90

K

Value LUTs Regs

Memory

Bits

Fmax

(MHz)

Pwr

(mW)

Period

(us) E/Mb (J) Change

239 5120 2644 30408 124.52 19.48 40.98 4.38E-04 48.26%

237 5552 2836 30496 111.26 19.77 40.98 4.48E-04 48.95%

233 6466 3208 30672 124.18 20.96 40.98 4.83E-04 48.11%

229 7325 3593 30848 121.71 21.97 40.98 5.15E-04 47.39%

225 8225 3989 31024 118.85 22.74 40.98 5.43E-04 47.86%

221 9159 4372 31256 114.93 24.17 40.98 5.87E-04 47.57%

217 10007 4756 31440 117.23 24.57 40.98 6.08E-04 49.20%

 Average 48.19%

Table 5.15. Final Results after Clock Gating, compared to table 5.14.

Figure 5.3. Full Incremental Energy per Operation Results Breakdown. Values are in

J/Mb

91

92

5.6. Summary

 This section detailed the results of performing energy optimization techniques on

the set of Reed-Solomon errors-and-erasures decoders. A new baseline was generated by

recoding the designs to be efficient in terms of clock cycles. Using this recoded version

of the designs as a new baseline, low-level pipelining was found to provide on average a

2.35% reduction in energy consumption. Global pipelining was found to provide a benefit

of 36.77%, while memory optimizations yielded a reduction in energy consumption of

20.56%. Lastly, clock gating of the major functional units provided a reduction of another

19.43%. On the whole, the energy per megabit of data values were reduced by 76.8% to

82.3% over all of the designs, with the average reduction being 79.11%.

93

CHAPTER 6

RECONFIGURATION RATE ANALYSIS AND RESULTS

 This chapter provides numerical results related to the reconfiguration scheduling,

along with full system results for the new adaptive Reed-Solomon decoding system.

There were several questions which needed to be answered though this analysis, namely,

given a more realistic channel model, how does the rate of reconfiguration affect the

energy consumption, and how does the rate of reconfiguration affect the codeword error

rate. In addition, we will illustrate the benefits of reconfiguration on the overall decoding

rate.

6.1. New Configuration Table

 Using the final energy consumption values from Tables 5.12 and 5.13, we can

construct a table of different decoder configurations based on SNR (Table 6.1). The last

column illustrates the energy efficiency benefit of each decoder compared to having a

static (non-reconfigurable) K=217 decoder.

K

Value

SNR

Range

(dB) Mbps LUTs Regs

E/Mb Data

(J)

Benefit over

Static K=217

239 19.6 + 44.50 5120 2644 4.38E-04 28.01%

237 19.0-19.6 44.12 5552 2836 4.48E-04 26.33%

233 17.6-19.0 43.38 6466 3208 4.83E-04 20.55%

229 16.4-17.6 42.63 7325 3593 5.15E-04 15.27%

225 15.6-16.4 41.89 8225 3989 5.43E-04 10.74%

221 14.8-15.6 41.14 9159 4372 5.87E-04 3.41%

217 14.0-14.8 40.40 10007 4756 6.08E-04 ----------

Table 6.1. Configuration Table

94

 The SNR ranges for each decoder match the values in [7], which were verified via

simulation. In order to determine these values, simulations were run for 10 million

codewords with a static SNR (no shadowing), with SNR values from 13 to 21 dB for

each decoder. The value where the CER becomes 10
-4

 gives the bottom of each decoder’s

applicable range. The top of each decoder’s range is assigned to the bottom of the next

decoder’s range.

6.2. CER Analysis

 As mentioned in Section 4.1, a simulator was built to determine the performance

characteristics that could be expected from the adaptive decoder system. The first

parameter which needed to be explored was to see how the reconfiguration rate affects

the CER. Previous work [7] assumed that there was no change in the average SNR (the

SNR due to shadowing) during the time that a particular decoder was operating. This

assumption leads to a somewhat unrealistic representation of real world performance.

 As one of our parameters is to keep a static CER rate of 10
-4

, we must ensure that

the variance in the channel between reconfigurations does not reduce the CER below this

threshold. In order to determine this, reconfiguration rates from every 5,000 codewords to

every 100,000 codewords were tested. Initially the goal was to test reconfiguration rates

up to and exceeding the previous work’s 125,000 codewords, but as the results illustrate,

testing reconfiguration rates that high proved unnecessary.

 For these simulations, a total of 10 million codewords were run through the

system for each simulation. After the designated amount of codewords had been

simulated (5,000 – 100,000), the simulator makes a decision on whether to reconfigure

95

based on the average SNR during the previous run. If the average SNR is outside of the

current decoder’s specified range, then the system is reconfigured to insert a decoder

which is designed to operate in the current measured range.

 Several separate runs were made and the results averaged to eliminate some

inherent variance in the system. Figure 6.1 shows a graph of the results and the trend line

generated from these results.

Figure 6.1. Graph of CER vs. Codewords per Reconfiguration

 By examining the trend line, we can see that the point at which we reach the

desired 10
-4

 threshold is at approximately 18,000 codewords between reconfigurations.

96

6.3. Energy Efficiency Results

 If the total number of reconfigurations, the frequency of use for each decoder and

the energy consumption rates of each decoder are known, it is possible to determine the

benefit of reconfiguration versus the continuous use of a static K217 decoder. To benefit

from reconfiguration, the system must realize an energy savings versus the use of a static

decoder. Thus, the energy cost of reconfiguration must be lower than the savings due to

using a series of energy efficient decoders.

For these simulations, it was assumed that the system has access to only one

clock, running at 50 MHz. The time required to reconfigure was determined from the

Stratix Data Sheet [33], assuming configuration in FPP mode, where the configuration

data is loaded a byte per clock cycle. In addition to some initialization overhead, it was

determined that it takes 8.92ms to load the 3,534,640 configuration bits. During the

reconfiguration process, it was determined that a 4Mx32 Micron RAM unit, which holds

the configuration data, would dissipate approximately 189 mW. This is based on the

maximum power consumption listed in the Micron 4Mx32 data sheet [34], scaled down

from 166 MHz to our required 50 MHz. The FPGA’s power dissipation was modeled as

an 8-bit shift chain, of length 441,830. Previous work in this area [35] had determined the

power required for a single shift by modeling a 0.13u shift register in SPICE. This result

was modified to assume an 8-bit shift chain as opposed to a single bit, and the result was

that the FPGA is expected to dissipate 215 mW of power during the reconfiguration

process. This gives us reconfiguration parameters of 8.92 ms and a total power

dissipation of 404 mW.

 Figure 6.2 illustrates the results of this analysis.

97

Figure 6.2. Energy per Megabit vs. Codewords per Reconfiguration

 As this figure illustrates, reconfiguration allows for us to save from between 4%

and 12% in terms of energy per megabit of data, when compared to the static K=217

decoder. As we detailed above, in order to maintain the required CER of 10
-4

, we need to

reconfigure approximately every 18,000 codewords. Based on the above figure,

reconfiguring every 18,000 codewords provides a benefit in energy per megabit

performance of 6.93%.

 The third line in the graph illustrates the benefits of reconfiguring if we do not

account for the energy cost of reconfiguration. This serves to illustrate that if the cost of

reconfiguration could be reduced further, benefits of up to 13% could be achieved. This is

an area of possible future work.

98

6.4. Decoding Rate Results

 An additional benefit of reconfiguration is that we get an increase in effective

decoding rate. By making use of a higher K decoder, as opposed to using the K=217

decoder, we reduce the amount of redundancy in each codeword. Because the codewords

are all of a fixed length, this effectively increases the amount of data we are processing

with each codeword, increasing the overall decoding rate. The effects of reconfiguration

rate on decoding rate are detailed in Figure 6.3 below.

Figure 6.3. Reconfiguration Rate vs. Decode Rate

 The increase in decoding rate ranges from 4.23% to 4.75% depending on K value.

At our operating rate of reconfiguring every 18,000 codewords, the increase in decoding

rate is approximately 4.43%, increasing from 40.40 Mbps to 42.19 Mbps.

99

6.5. Summary

In this chapter we detailed the results of performing an analysis of the effects of varying

rates of reconfiguration on three important parameters of the adaptive Reed-Solomon

decoding system. We showed that in order to maintain the minimum codeword error rate

of 10
-4

, we need to reconfigure at a rate no greater than 18,000 codewords. When

examining energy consumption, it was shown that using current assumptions of the

energy required to reconfigure the FPGA, when reconfiguring every 18,000 codewords,

we see a reduction in the energy required to decode a megabit of data from 6.09x10
-4

 per

megabit when using the static K=217 decoder to 5.66x10
-4

 J per megabit when using the

adaptive system, a reduction of 6.93%. If the cost of reconfiguration could be further

reduced, benefits of up to 13% could be achieved. In concert with this energy benefit,

reconfiguring also increases the effective decoding rate by reducing the amount of

redundancy in each codeword. When reconfiguring at 18,000 codewords, we see an

increase over the static K=217 system from 40.40 Mbps to 42.19 Mbps, an increase of

4.43%.

100

REFERENCES

[1] Lin, Shu, and Costello, Jr. Error Control Coding: Fundamentals and Applications.

Prentice Hall, 1983

[2] Reed, I. S., and Solomon, G. Polynomial Codes Over Certain Finite Fields. SIAM J.

Appl. Math., Vol 8, No 2, pp. 300-304 (June 1960)

[3] Blahut, R. E. Theory and Practice of Error Control Codes. Addison Wesley, 1984

[4] Hoeve, H., Timmermans, J., Vries, L. B. Error correction and concealment in the

Compact Disc system. Philips Tech. Rev. Vol. 40, no. 6, pp. 166-172. (1982)

[5] Forney, G. D. The Viterbi Algorithm, Proceedings of the IEEE, Vol. 61, Issue 3, pp.

268-278 (March 1973)

[6] Berrou, C., Glavieux, A., Thitimajshima, P. Near Shannon limit error-correcting

coding and decoding: Turbo-codes, ICC, Volume 2, pp. 1064-1070 (May 1993)

[7] Atieno, L., Allen, J., Goeckel, D., and Tessier, R., An Adaptive Reed-Solomon

Errors-and-Erasures Decoder, in the Proceedings of the ACM/SIGDA International

Symposium on Field Programmable Gate Arrays, Monterey, CA (February 2006)

[8] Wilton, S., Ang, S., Luk, W. The Impact of Pipelining on Energy Per Operation in

Field Programmable Gate Arrays, Lecture Notes in Computer Science, Vol. 3203/2004,

pp. 719-728 (2004)

[9] Emnett, F., Beigel, M., Power reduction through RTL clock gating, Synopsys Users

Group, San Jose, CA, (2000)

[10] Choi, S., Scrofano, R., Prasanna, V. K., Jang, J. Energy-efficient signal processing

using FPGAs, Proceedings of the 2003 ACM/SIGDA eleventh international symposium

on Field programmable gate arrays, pp. 225 -234, (2003)

[11] Shannon, C. E. A Mathematical Theory of Communication. Bell Syst. Tech. Journal,

vol27, pp. 379-423(Part I), 623-656(Pat II). (July 1948)

[12] Haase, A., Boden, M., Langer, M. Design of a Reed Solomon Decoder Using Partial

Dynamic Reconfiguration of XILINX VIRTEX FPGAs – A Case Study. Design,

Automation and Test in Europe, Paris (France), (March 2002)

[13] Song, M. K., Kim, E. B., Won, H. S., Kong, M. H., Architecture for Decoding

Adaptive Reed-Solomon Codes with Variable Block Length. In IEEE Transactions on

Consumer Electronics, vol. 48, No. 3, (August 2002)

101

[14] Lee, D., Lee, S., Kim, J. A Reed-Solomon Decoder with Efficient Recursive Cell

Architecture for DVD Application. IEEE International Conference on Consumer

Electronics, pp. 184-185, (2001)

[15] Run-Time Dynamically Reconfigurable Reed-Solomon Decoder System, A Masters

Thesis by Lilian Atieno, Umiversity of Massachusetts Amherst, November 2004

[16] Hauck, S. The Roles of FPGAs in Reprogrammable Systems. In Proceedings

ofIEEE, pp. 615 – 638, (April 1998)

[17] Kavian, Y. S., Falahati, A., Khayatzadeh, A., Naderi, M., High Speed Reed-

Solomon Decoder with Pipeline Architecture, Iran University of Science & Technology

(IUST), Narmak, Tehran, Iran (2005)

[18] Mastrovito, E. D., VLSI Design for Multiplication over Finite Fields GF(2
m

). Proc.

of Sixth International Applied Algebra, Algebraic Algorithms, and Error Correcting

Codes, pp. 297-309 (July 1988)

[19] Paar, C. A New Architecture for a Parallel Finite Field Multiplier with Low

Complexity based on Composite Fields. IEEE Transactions on Computers, 45(7):856-

861 (July 1996)

[20] www.opencores.org

[21] Chang, H., Lin, C., Lee, C., A low-power Reed-Solomon decoder for STM-16

optical communications. IEEE Asia-Pacific conference on ASIC, pp. 351-354 (2002)

[23] CD-ROM Technical Summary,

pauillac.inria.fr/~lang/hotlist/cdrom/Documents/tech-summary.html

[24] Space Communications Protocol Standards, http://www.scps.org/

[25] Schoner, B., Villasenor, J., Molloy, S., Jain, R., Techniques for FPGA

Implementation of Video Compression Systems. ACM FPGA, pp154-159 (1995)

[26] Cummings, M., Haruyama, S., FPGA in the software radio. IEEE Communications

Magazine, Volume 37, Issue 2, pp. 108-112, Feb 1999

[27] Apple Iphone Technical Specifications, http://www.apple.com/iphone/specs.html

[28] Reed, I.S., Shih, M.T., VLSI design of inverse-free Berlekamp-Massey algorithm.

IEE Proceedings on Computers and Digital Techniques, Vol. 138, Issue 5, pp. 295-298,

Sep. 1991

102

[29] Lee, H., Azam, A., Pipelined recursive modified Euclidean algorithm block for low-

complexity, high-speed Reed-Solomon decoder, Electronics Letters, Vol. 39, Issue 19, 18

Sept 2003

[30] Bellas, N., Hajj, I.N., Polychronopoulos, C.D., Stamoulis, G., Architectural and

compiler techniques for energy reduction in high-performance microprocessors, IEEE

Transactions on VLSI Systems, Volume 8, Issue 3, pp. 317-326, Jun 2000

[31] Quartus II Development Software Library, http://www.altera.com/literature/lit-

qts.jsp

[32] Jean, J., Tomko, K., Yavagal, V., Shah, J., Cook, R., Dynamic reconfiguration to

support concurrent applications, IEEE Transactions on Computers, Vol. 48, Issue 6,

pp.591-602, Jun 1999

[33] Altera Stratix Device Handbook, http://www.altera.com/literature/lit-stx.jsp

[34] Micron MT48LC4M32B2B5 SDRAM data sheet,

http://www.micron.com/products/partdetail?part=MT48LC4M32B2B5-6

[35] J. Liang, R. Tessier, and D. Goeckel, A Dynamically-Reconfigurable, Power-

Efficient Turbo Decoder, in the Proceedings of the IEEE Symposium on Field-

Programmable Custom Computing Machines, Napa, California, April 2004

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	January 2008

	Energy Efficient Adaptive Reed-Solomon Decoding System
	Jonathan D. Allen

	Energy Efficient Adaptive Reed-Solomon Decoding System

