
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses 1911 - February 2014

2010

Web-Dinar: Web Based Diagnosis of Network and
Application Resources in Disaster Response
Systems
Kartik Deshpande
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

Part of the Digital Communications and Networking Commons

This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 -
February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Deshpande, Kartik, "Web-Dinar: Web Based Diagnosis of Network and Application Resources in Disaster Response Systems" (2010).
Masters Theses 1911 - February 2014. 420.
Retrieved from https://scholarworks.umass.edu/theses/420

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Ftheses%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.umass.edu%2Ftheses%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses/420?utm_source=scholarworks.umass.edu%2Ftheses%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

WEB-DINAR:

WEB BASED DIAGNOSIS OF NETWORK AND APPLICATION

RESOURCES IN DISASTER RESPONSE SYSTEMS

A Thesis Presented

by

KARTIK DESHPANDE

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

May 2010

ELECTRICAL AND COMPUTER ENGINEERING

© Copyright by Kartik Deshpande 2010

All Rights Reserved

WEB-DINAR:

Web Based Diagnosis of Network and Application Resources in

Disaster response systems

A Thesis Presented

by

KARTIK DESHPANDE

Approved as to style and content by:

 Aura Ganz, Chair

 C. Mani Krishna, Member

 Tilman Wolf, Member

__

C. V. Hollot, Department Head

Electrical & Computer Engineering

iv

ACKNOWLEDGEMENTS

It gives me immense pleasure to present my thesis work of DiNAR guided by

Prof. Aura Ganz. It has been a great learning experience working with her in

Multimedia Networking Lab. Working on live projects like Diorama have given me a

great understanding of the challenges involved. Apart from the technical knowledge I

will also take with me the professionalism she taught us when approaching any project.

I am also very thankful to Prof C. Mani Krishna and Prof. Tilman Wolf for

agreeing to be on my thesis committee and providing adequate inputs.

Lastly all this would not have been possible without the support of my parents,

wife (Rashmi) and brother. It made this journey much easier than it could have been.

`

v

ABSTRACT

WEB-DINAR:

WEB BASED DIAGNOSIS OF NETWORK AND APPLICATION RESOURCES IN

DISASTER RESPONSE SYSTEMS

KARTIK DESHPANDE, B.E., PESIT BANGALORE

M.S.E.C.E, UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Aura Ganz

Disaster management and emergency response mechanisms are coming of age post

9/11. Paper based triaging and evacuation is slowly being replaced with much advanced

mechanisms using remote clients (Laptops, Thin clients, PDAs), RFiDs etc. This

reflects a modern trend to deploy Information Technology (IT) in disaster management.

IT elements provide a great a deal of flexibility and seamlessness in the communication

of information. The information flowing is so critical that, loss of data is not at all

acceptable. Loss of data would mean loss of critical medical information portraying the

disaster scenario. This would amount to a wrong picture being painted of the disaster

incident. This basic idea led to the motivation of DiNAR (Diagnosis of Network and

Application Resource). The aim of DiNAR was to remotely monitor all the components

of the deployed system infrastructure (Remote clients, Servers) and if there is a fault in

the infrastructure (Hardware, Software or Communication) DiNAR captures the fault

alarm and do an event correlation to find the source of the problem.

The biggest challenge that lies here is the fact that the entities we are trying to monitor

are scattered around in the Internet. Traditional network management techniques always

assume that the network is within administrative control and every device we monitor is

`

vi

easily reachable on demand. But the ad-hoc scenario of deployment of disaster

management systems makes this task non trivial.

DiNAR has been designed with an aim to work with any application which has its

infrastructure elements scattered in the Internet space. DIORAMA (A real time disaster

management system) represents a new series of applications (especially in medical field)

where the deployment of network infrastructure is scattered around with Internet being

the backbone connector. Another such example is the Intel® Health Guide PHS6000

[1], which is used in patient monitoring in homes. This thesis work uses DIORAMA as

a case study application used to prove the concept of DiNAR.

`

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iv

ABSTRACT .. v

LIST OF TABLES …………………………...…………………………………………ix

LIST OF FIGURES ... x

CHAPTER

1.INTRODUCTION.. 1

1.1 Example of Information Technology (It) In Disaster Management……….....2

1.2 Motivation for DiNAR ……………………………………………………...3

2.BACKGROUND AND RELATED WORK ... 7

3.DINAR: CONCEPT, DESIGN AND IMPLEMENTATION 11

3.1 DiNAR Architecture………………………………………………………..12

3.2 DiNAR Agent………………………………………………………………13

3.3 DiNAR Manager……………………………………………………………19

3.4 Directory Server…………………………………………………………….27

4.IMPLEMENTATION DETAILS ... 29

 4.1 DiNAR Agent………………………………………………………………29

 4.2 DiNAR Manager……………………………………………………………29

5.SYSTEM EVALUATION AND RESULTS…..………………………………….…31

 5.1 Testing Scheme……………………………………………………………..31

 5.2 Test Cases and Results……………………………………………………..33

 5.3 Agent Overhead…………………………………………………………….42

Page

`

viii

6.REPAIR AND RECOVERY MEASURES FOR DIORAMA ……………………...46

 6.1 Disaster Site ………………………………………………………………..46

 6.2 Remote Site ………………………………………………………………..49

7.CONCLUSIONS AND FUTURE WORK .. 51

APPENDIX: DIORAMA OVERVIEW………………....…………………………….52

BIBLIOGRAPHY……………………………………………………………………...54

`

ix

LIST OF TABLES

1 Spurious alarm Suppression Window ... 38

2 Summary of Correlation Results ... 41

3 Alarm Generation Time .. 44

Table Page

`

x

LIST OF FIGURES

 Figure Page

1. IT In Disaster Management [12] ... 2

2. SNMP Architecture ... 7

3. DiNAR Architecture ... 12

4. DiNAR Agent architecture .. 14

5. Manager Agent interaction .. 18

6. DINAR Manager Architecture .. 21

7. DIORAMA Alarm Model ... 22

8. DiNAR Data Model for DIORAMA .. 23

9. Cloud ... 24

10. Analysis Engine .. 25

11. Dependency Graph .. 26

12. Directory Server Operation ... 28

13. DiNAR Summarized ... 31

14. Testing Model ... 32

15. Convergence Time .. 40

16. Bandwidth Overhead... 43

17. DIORAMA Overview ... 53

`

1

CHAPTER 1

INTRODUCTION

“Disasters are events that disrupt the normal functioning of the economy and society on

a large scale” [7]. One word to describe disaster events is complex. This complexity

comes from the sudden and abrupt nature of disasters. It disrupts the normal socio-

economic setup. Thus it is very essential that disaster response management is handled

by a specialized set of trained people in handling such events. It also needs a very

thoughtful and streamlined process. Emergency Medical Services (EMS) experts believe

that there are four major phases in disaster: “mitigation, preparedness, response, and

recovery” [7]. Of these four phases, the response and recovery from disaster pose the

biggest challenges for EMS officials. Disaster management has been a very vibrant area

of research from technological perspective off late. Till recently, it was considered a

much localized phenomenon where the efforts were based more on local resources and

organizations [7].

Disaster response management has seen significant growth in terms of technology and

processes after 9/11. One of the major reasons to this can be attributed to the need for

good evacuation and victim tracking mechanism, the lack of which contributed to

significant casualties during 9/11 and previous disasters. The traditional EMS disaster

evacuation process involved paramedics using paper tags with different color codes to

represent the victim condition [2]. The victims were tagged with these paper tags with

their corresponding color code. The paramedic then establishes contact with a command

center using the available communication mechanisms like satellite phones or other

`

2

media to report the victims' statistics. This primitive method is now being replaced by

use of modern sensing technology and Internet. This advancement in technology adds

speed and ease of managing the information generated at the disaster site.

1.1. Example Of Information Technology (IT) In Disaster Management:

Figure 1.IT In Disaster Management [12]

A normal setup of disaster management system consists of a “Disaster Site” from where

emergency medical information is being collected and a “Remote Site” which is the

information sink for all the data.

Figure 1 shows an emergency response network with its main components such as

1) Wireless network devices deployed at the disaster site (used for both wireless local

area network communication and cellular communication). Such devices interconnect

`

3

the devices in the disaster site as well as relay the information from the disaster site to

the remote site.

2) Computing and sensing devices at the disaster site such as Remote clients, RFID

readers. Such devices collect the relevant information from the disaster site, process it

and transmit it to the remote servers through the

This setup can change depending on the technology used to relay the information to the

remote site from the disaster site. If each device is empowered with Interconnectivity

using 3G/GPRS or other cellular technologies, the topology will look slightly different.

But the method of information collection across the two sites still remains the same.

1.2. Motivation for Dinar:

Modern day disaster management has Information Technology (IT) as a major player in

it. The activities which involve IT in this process are, identifying the EMS and related

resources, establishing connectivity with these resources and deploying them where

needed. This is then followed by coordinating the activities and providing

communication between various geographically separated locations [7]. The National

Academic Report (2007) [7] on use of IT for emergency response management gives us

some of the examples of application of IT in disaster response management. Some of

these use modern sensing technologies like RFID, sensor networks coupled with

wireless networks, Internet etc to provide an end to end solution for disaster

management. Thus forming a mini overlay network with the Internet as its backbone.

One of the primary motives of applying IT to disaster management is to provide quick

communication methodology and faster response time. It also helps in quickly building

`

4

a high level view of the disaster scene. On a broad sense, it can be visualized as building

a seamless information flow from the site of disaster to the command centers where

actual decisions to act are taken.

Although IT makes disaster response management quick and simple, the biggest

question mark on its practical applicability lies in its reliability. It uses various elements

of IT like:

1. Internet

2. Remote clients and Servers

3. Wireless networking devices

4. Etc.

And all these elements have inherent potential to fail or to be mis-configured. Failure to

operate of any entity in any section of the information flow could lead to loss of the

critical information. This information lost would reflect in a wrong perception being

printed about the disaster. This is a potentially very dangerous situation. Use of

technology to solve problem can be potentially disastrous if the reliability is not

properly addressed. But we need to understand that the IT elements which constitute

disaster management systems are very volatile. Below are few of the scenarios of failure

of components which are common:

1. Application crashes

2. Device power outage

3. Wireless network access issues

4. Internet outages

`

5

Thus any of the above scenarios would lead to loss of information which is getting

generated dynamically from the disaster site. It is very essential to understand the

criticality of this information which is getting lost. This information is getting generated

seamlessly from the disaster site and represents the state of victims. For example, an

application reading data from RFID readers could crash and lead to complete blacking

out of the RFID reader. This is not a hardware fault or a communication problem. Yet

the information is lost. This would mean loss of vital victim statistics. Hence every

piece of information being carried is very critical and there is a vulnerability of losing it.

Reliability is a big concern in a volatile system like this, or for that matter any enterprise

network. In practical world, failures cannot be avoided. But the robustness of a system

depends on how quick the failure is detected and recovered from. Traditional enterprise

networks invest heavily on softwares that do automated network management. Despite

of the sophisticated softwares, these networks still need the expertise of human element

in the form network administrators. But the rapidly deployed networks used in disaster

management face a very rare set of challenges. They are:

1. Lack of trained technical personnel on site to manage IT infrastructure failure.

2. The remote site network setups are very ad-hoc in nature and done in a short

span of time.

3. Certain failures in connectivity and data flow can never be recognized as

everything would look perfect from the outside.

Thus these new challenges should be addressed in a new way. The National Academics

report on “Improving Disaster Management: The Role of IT in Mitigation,

Preparedness, Response, and Recovery” [7] says that both agility and robustness of

`

6

the IT infrastructure is very crucial for the proper operation of the disaster management

systems. Although it is a great idea to have a very robust and reliable system which is

operational and keeps information floating all the while, from a more technical

perspective it is important to understand that the entire IT infrastructure is volatile and

prone to failure. Thus we need a solution which makes the disaster management system

more agile and responsive to failures.

So with these factors in mind, we designed a reactive solution to address the

vulnerability of disaster management systems: DINAR, Diagnosis of Network and

Application Resources using a web based model. It is a network management

methodology adapted to suite the nature of disaster management and similar systems.

Chapter 2 describes the Backgroud and Related Work. In chapter 3 we introduce

DiNAR and talk about its architecture and design. This is followed by implementation

details in Chapter 4. Chapter 5 presents the System evaluation and results.

`

7

CHAPTER 2

BACKGROUND AND RELATED WORK

Network resource management has been a traditional research problem. Over the years

multiple solutions have been proposed and implemented. Simple Network Management

Protocol (SNMP) [3] has been predominantly used by many commercial products.

SNMP uses a Manager-Agent model, where every managed node in the network hosts a

SNMP agent which reports health information to the SNMP manager. The architecture

of an SNMP based management system is as shown in Figure. 2.

 Figure 2 SNMP Architecture

SNMP Manager is a centralized node which is responsible for collecting the network

information from each individual node which is running an SNMP Agent. The agent is

software running on every node which collects health information about the local

hardware and software environment. This information is stored in a localized database

known as Management Information Base (MIB). SNMP assumes the entire manageable

network to be under one administrative domain.

SNMP

Manager

SNMP

Agent

MIB

SNMP Messages

`

8

Outside SNMP, there have been lots of efforts in designing network management

systems for different application scenarios. We will briefly explore three such designs.

1. Web Based Enterprise Management (WBEM):

 WBEM [6] brings interoperability among management solution providers. It was

introduced by Distributed Management Task Force to standardize the XML based

network management protocols. XML based methods are a new class of management

standards which use XML for data representation. WBEM defines a set of management

and Internet standards to bring together management of distributed environments.

WBEM is defined by three main components:

 Common Information Model (CIM): CIM is a standard which defines how to model

network, application and other business processes in enterprise and service provider

environments. It uses a standard object oriented structure using classes, properties,

methods and relations (also known as associations).

 HttpAccess: Http acts as the transport mechanism in WBEM. HttpAccess

component defines the specifics of http requests used to perform the CIM operations

over the network.

 XmlCIM: WBEM defines xmlCIM which defines the xml grammar for mapping the

CIM classes into XML elements and the CIM class properties into attributes. This is

done by defining the XML Document Type Data (DTD). The DTDs specify the

XML grammar for CIM. This component holds a very important key in achieving

Interoperability.

`

9

With use of XML and HTTP WBEM has overcome one of the limitations posed by

SNMP, i.e. the management traffic will not be blocked by service providers as it looks

same as a web traffic. But the manager would still need the exact IP or URL to access

the devices. This cannot be expected in the typical emergency response setup. This

inspires for the design of a system management method which suits this special scenario

where different entities are scattered across the Internet.

2. Ad-hoc Network Management Protocol (ANMP) [14]:

 ANMP is a management framework with special design considerations for ad-hoc

networks, mainly used in battlefield and emergency response systems [14]. It uses a

policy based management mechanism. The network requirements are expressed as high

level policies. There is a hierarchy of policy agents which realize these policies and also

report management information to a global policy agent. ANMP was developed with

two basic motives:

 It should be lightweight and suitable for Ad hoc networks.

 It should be compatible with SNMP.

ANMP uses its version of MIB to store the information of the Ad hoc network devices.

It also supports alarms like SNMP traps to have asynchronous reporting of problems.

3. Yelp Announce Protocol (YAP):

YAP is a network configuration management scheme [15] which collects configuration

settings from all the managed entities and stores them. The YAP architecture consists of

a YAP Server and multiple YAP Relays. YAP Relays are like SNMP agents, but with a

`

10

difference. Instead of responding to requests from the manager, they relay the

management information at regular intervals to the YAP server. The YAP server on the

other hand collects as well as distributes configuration information through the relays.

This theme of relaying data from the YAP Agents (Relays) without being polled by the

manager, presents an interesting idea and food for thought. This scheme, although very

pertinent to collection of configuration information, can also be applied to network

health information collection.

As discussed earlier, emergency response systems and applications like Diorama pose a

special set of challenges on the management methodology. This makes choosing of one

among the above said protocols directly difficult. The primary reasons for this are:

 Non existence of a single administrative domain: All management solutions expect

all the nodes to be within the same administrative domain. However, in emergency

response networks, infrastructure elements are in separate sites and are connected

through the Internet. Thus having one administrative domain is ruled out.

 Explicit addressing: Explicit addressing of managed nodes is a must. However, we

can not provide such guarantee for a volatile and mobile network like the disaster

management network.

In the next section we introduce DiNAR management solution which overcomes these

challenges while using some of the principles used in all three of the modern network

management methods presented above. DiNAR has been developed to adapt to

applications of different needs. In this thesis work, Diorama has been used as a case

study for implementing the proof of DiNAR concept. In the rest of the document, we

use Diorama as an example under all scenarios.

`

11

CHAPTER 3

DINAR: CONCEPT, DESIGN AND IMPLEMENTATION

We understood in the previous chapters that present day network management methods

altough effective and robust, are not suitable for applications which have infrastructure

elements scattered across internet and rely on Internet as a backbone. It should be noted

that we are not considering multiple office sites connected via VPN (over internet) as an

example of such an application. Figure 1 shows a typical example of the target

application. Ex. Diorama [Appendix A]. The primary reasons why SNMP, WBEM and

other existing architectures cannot be used for applications like DIORAMA are:

 The communication between the manager and the agents goes through networks

which are outside the administrative controls.

 Lack of explicit addressing. There is no direct way the manager can contact the

agents and vice-versa using the addressing scheme (IP).

To overcome these challenges, DiNAR has been designed with the following design

goals:

 Provide seamless information flow between agents and managers irrespective of

the locations of the agents (provided there is network connectivity)

 Use a Push paradigm instead of a request response paradigm to overcome the

need of explicit addressing.

 Finally to have the system as simple as possible at the disaster site. The aim is to

avoid any configuration or setting up processes on the disaster site by the

paramedics.

`

12

3.1. Dinar Architecture

DiNAR architecture follows a Manager-Agent based model and draws inspiration from

WBEM[6] and YAP[14] in the way management information is represented and

collected. DiNAR architecture consists of two main entities, the DiNAR manager and

agent. An agent is a daemon service installed on all managed nodes in the field like

PDAs, laptops, wireless routers etc. While a Manager which resides on a server in the

remote control center is a central application to which agents report the management

information. Figure 3 depicts the DiNAR architecture over the Diorama setup shown in

Figure 1.

Figure 3.DiNAR Architecture

`

13

As shown in Figure 3, DiNAR consists of the following three major components:

1) DiNAR Manager: Manager is the centralized web server which collects information

about all the nodes in the infrastructure. A detailed architecture of the manager and its

subcomponents is discussed later in the chapter.

2) DiNAR Agent: Agent is a daemon process running on every computing node in the

system (Remote clients, Web servers etc). Its job is to collect the health information of

its environment and report it to the Manager. More details about the agent are discussed

later in the chapter.

3) Directory Server: The directory server helps the agents to locate the manager on the

World Wide Web. This acts a single point of reference to manager location and leaves

the manager location flexible. More details about the directory server are discussed later

in the chapter.

We now begin to analyze each component of DiNAR in greater detail and how they help

in achieving the design goals of DiNAR.

3.2. Dinar Agent

The DINAR agent is a process which runs on every managed device. Its primary tasks

are:

 Collect status parameters for the device on which it is running and also from

interfaced gadgets and applications running on the same machine.

 Contact and establish connection with the DINAR Manager.

 Send updates at regular pre decided intervals .

`

14

The agent is an independent application running on the device and has no relation with

the other applications that are running. Figure 4 shows a block diagram view of an

agent. The functionality of an agent has been split into multiple components with a

motive to keep things simple and modularized. It also allows future expansion and

customization of the agent. Let us look into each component in detail:

To Manager

Figure 4 DiNAR Agent architecture

 Agent Daemon: This is the main backbone process which controls all the other

components of an agent. Whenever the agent is started, it is this daemon process

which kicks off. One of the initial tasks for this daemon is to locate the manager and

initiate a contact. Locating the manager is achieved using the Directory server which

is described in greater detail. So as of now we can safely assume that the manager

location (URL) is known. After the initial contact with the manager, the agent starts

the information engine and receives regular updates from it. This update information

is structured and passed onto the manager at regular intervals. Thus agent daemon is

AgentDaemon

Generic

Adapter
App

Adapter

XYZ

Adapter

Information Engine

HttpClient�Module

`

15

the nucleus of the DINAR agent and controls all its operation.

 HttpClient module: This is the communication engine of the agent. The agent

communicates with the manager using the Http protocol. The HttpClient module

manages the establishment and maintenance of the Http Connection with the

manager. It uses the Apache HttpClient 3.1 library to perform all the Http

operations. It also tries to maintain only one connection to the manager throughout

and keep this connection persistent. This means all Http messages will be sent on

the same TCP connection. Persistence is achieved using Http 1.1 which pipelines

multiple requests onto same HTTP connection. DiNAR manager expects the

connection from the agent to last until it’s operational in the field under ideal

circumstances. The manager sets a timeout value of 60 seconds. This means any

agent idle beyond 60 seconds is considered to be unreachable for the moment.

Although this does not brand the Agent or the link to be down. The manager does

further processing to determine if agent is truly down. More details about event

processing done by the manager are described in Section 3.3.4 (Analysis Engine).

 Information Engine: The information engine is like the Management Information

Base (MIB) in SNMP. It stores all the relevant and needed status parameters and

tracks them continuously. As described above, the agent daemon interfaces with the

information engine to get hold of the current state of the machine and pass the

information. The information engine in itself is of not much value. It just acts a

central docking point for all information adapters. Information Adapters are

specialized modules for continuously monitoring a certain environment and getting

its state information. In Figure 4, all modules displayed in blue represent

`

16

information adapters. They are started in cascade to the Information engine.

Individual adapters are invoked by the Information Engine at a predefined interval to

collect the present state information for the components they are responsible. E.g. an

adapter responsible for collecting the health information of all the aplications on the

Diorama server is invoked every x seconds where x is configurable based on the

user’s requirement. “x” here is called the refresh interval. DiNAR sets the default

value of 60 seconds. This is arrived at based on the tests conducted on the

performance of the Agent process for varying refresh interval. We then did a trade

off between the performance and the freshness of the information to conclude 60

seconds as an ideal refresh interval.

 Information Adapters: As mentioned above information adapters are specialized

modules for continuously monitoring a certain environment and getting its state

information. The number and class of adapters can be customized. If the device is a

hand-held device in the field, then it can have adapters for the interfaced gadgets,

applications etc. If the device is a central web server, then it would mainly contain

application adapters. The application adapters keep track of all the managed

applications and monitor their status continuously. We developed an application

adapter for Servers and other Client machines running windows. This gives us the

dynamic availability and performance statistics of the listed applications. Apart from

the specific adapters, all agents have a mandatory generic adapter. The function of

generic adapter is to gather vital parameters of the health of the machine itself like

CPU usage, memory usage etc. Except the generic adapter, the rest are optional.

This architectural decision on information adapters will help in making DINAR

`

17

apply to wide variety of scenarios. Anybody can write a custom adapter and plug it

into the agent. This can help a great deal in customizing the agent according to the

needs. We developed the generic adapter and an application adapter for windows

environment.

3.2.1. XML Representation

As discussed above, XML is used to model the management information. In this section

we will take a look at sample XML update sent from an agent and understand its

structure:

As shown above, every agent update begins with a “DINAR” start tag. This is followed

by the tag which represents the type of device which is reporting. Within this we have

the XML tags representing the components which the agent is collecting data for. In

Start Element

DeviceType

Component Tag

MetaTag

`

18

some cases there can be meta tags like the one shown above e.g.

DINAR_GenericAppHeader. The meta tag is used by adapters to group multiple peer

tags coming from same adapter.

3.2.3. Agent ID

AgentId is the unique id to represent the agent in the manager repository. To ensure

uniqueness across multiple sites, we use the MAC address of the device to be its

AgentID. This helps maintaining the uniqueness off the agent.

3.2.2. Agent Bootup and Configuration:

Figure 5.Manager Agent interaction

`

19

As soon as the agent boots up and knows the URL at which the manager is residing, it

first issues an HTTP request with messageType set to “Hi”. Along with this, it also

sends a polling interval, which indicates to the manager the frequency with which it

should expect updates. If the manager receives all this information correctly, then it

would send a “Hi” response. The agent which receives the “Hi” response now knows

that the initial handshake has ended succesfully. The agent now sends the skeleton XML

document which represents the device, applications and the attached gadgets which the

agent will be monitoring. There are no status updates in this XML document, just the

skeletal XML. After receiving this skeletal document successfully the manager sends

back an ACK to indicate to the agent that everything was received successfully. After

the ACK is received, the agent starts a timer and after every t secs (equal to polling

interval) it sends out the update XML document. Figure 5 depicts these handshake

messages. This continues unless and until the agent or the manager are stopped or the

communication is affected.

3.3. Dinar Manager

DiNAR manager is the focal point of the whole DiNAR system. It is the information

sink for all the DiNAR agents running across the environment. Hence we can define the

DiNAR manager as a central application which receives and processes the management

information. The manager can also be visualized as a web server listening for agent

updates on one of the Http ports. The Figure.6 shows the block diagram view of the

DINAR Manager and its components.

 Manager Servlet: This module acts as a global interface of the manager. It listens

`

20

on the assigned manager port and accepts the updates from all the agents. The

updates from the agents are in XML format. The servlet extracts the xml data and

passes it to the XML parser for further processing.

 XML Parser: The XML parser module parses the incoming xml data from the

servlet and creates objects for each of the Element in the xml document. DiNAR

manager uses a DOM parser. Each Incoming XML tag is converted into an object

(except few meta tags) defined in the Data model (Explained in section 3.3.2).

 Object Pool: The DINAR manager looks at every device and its components and

attachments as an object defined in its Data model. Even the DINAR agent is

represented as an object in the pool. It instantiates an object for every new device or

component it manages. This object is an abstraction of the real device. Whenever

updates are received for an already created object, only the property of the object is

updated. Objects follow the class structure defined in the DiNAR data model which

represents the blueprint of the topology and all its classes.

 Alarm Module: This module is responsible for triggering alarms based on

the properties of the objects in the object repositories. The agents transmit

abnormal activity reports using the status attribute for each object. Based on

this, the alarm module triggers alarms to highlight the problem. These alarms

are then picked up by the analysis engine for alarm correlation.

 Analysis Engine: The goal of this module is to analyze the management data

received from the agents. It consists of an event correlation engine which correlates

the alarms. The Analysis engine is explained in greater detail in section 3.3.4.

`

21

Agent updates

Figure 6.DINAR Manager Architecture

3.3.1. Alarm Model

Alarm model defines the set of alarms that can be triggered by the Alarm Module. It is

very specific to the application for which DiNAR is being used. We developed an alarm

model for DIORAMA[Appendix A] application. Figure 7 shows the alarm model for

DIORAMA application.

The alarm model is implemented as an inheritance of Java classes where each event

inherits from a parent event. In Figure 7, Event is the base alarm which contains basic

properties of an alarm. This is then inherited by the other other alarms as shown in the

Figure 7.

Object Repository

Manager

Servlet

Analysis Engine

XML

Parser

Alarm

Module

`

22

Figure 7.DIORAMA Alarm Model

3.3.2 Data Model

DiNAR Data Model is the blueprint which the DiNAR manager uses in creating the

abstract topology. The is represented by an interrelated set of classes which are specific

to an application. In this section we will demonstrate the modeling of DIORAMA

system. Data model forms an important part of the application as all the objects in the

object pool of the manager depend on the data model. For the purpose of DIORAMA,

we designed a data model encompassing all the components of DIORAMA. Figure 8

below shows the complete data model for DIORAMA. Each of the class is represented

using a rectangular box. For example DINAR_ClientDevice is a class which represents

any generic computing device in the disaster site. These classes are then linked using

arrows. These arrows indicate class inheritance. Lets consider the DINAR_ClientDevice

example. This class has two subclasses: DINAR_TrackDevice and DINAR_SiteDevice.

The former represents a D-Track device as defined by DIORAMA [Appendix A] while

`

23

the later represents a generic purpose remote client. The arrows used always point

towards the base class. Other than the directed arrows, the other connections between

the classes are known as relationships between them. Relationships are all unidirectional

and each relationship has a converse to it.

The naming of the classes and the relations has been done following the CIM

guidelines. CIM classes are named in two strings separated using an “_”. The first string

is known as the domain name and should be constant throughout the model. This model

all in all represents the entire DIORAMA system. Figure 8 shows the diorama data

model. In this model, even DINAR_Agent is treated as an object and as a part of the

repository.

Figure 8.DiNAR Data Model for DIORAMA

`

24

3.3.3. Cloud Aggregation

DiNAR was aimed to be applied on distributed applications which have multiple sites

and whose elements interact over the internet E.g DIORAMA [Appendix A]. In

DIORAMA, the disaster site devices connect to the internet using a wireless LAN

(WLAN). This wireless LAN comprises of a wireless router. To model this network

scenario, we defined a new entity in the DiNAR model known as “Cloud”. A cloud is

meant to represent a particular disaster site location. Every agent sending updates from a

particular disaster site is believed to behind a cloud representing its site. Figure 9 shows

a capture from the DiNAR console where two agents reporting from the same site are

clubbed under a single cloud.

Figure 9.Cloud

The source IP of the HTTP connection coming into the manager is used to define a

cloud. All agents within a single WLAN will be having the same source public IP.

3.3.4 Analysis Engine

The analysis engine is the module responsible for performing alarm correlation on all

the triggered alarms in the DiNAR repository. Figure 10 shows a block diagram view of

`

25

the analysis engine and its components.

Figure 10.Analysis Engine

 Dependency Graph: Our Analysis engine has been built using the Dependency

graph based event correlation algorithm [8]. Dependency graph is a mechanism

where the different classes in the data model share a dependency relationship

between them. This dependency can be read as “Fault in class A will lead to

Fault in class B” [8]. Thus class B is dependent on A. This schema helps us to

build a hierarchical structure of dependencies among components. The alarm

correlation algorithm uses the dependency graph as an input. To build the

dependency graph we use the DiNAR Data model as a reference for

relationships between the devices. While designing the dependency graph we

condensed the graph as much as possible to its base classes. Thus if any class in

the Data Model is not shown in the dependency graph, its base class needs to be

looked up. Figure 11 below shows the Dependency graph for DIORAMA.

`

26

Figure 11.Dependency Graph

 Correlator: The correlation algorithm uses the dependency graph to reach to the

root cause of a fault. It correlates multiple alarms and filters out alarms which

are caused due to failure in parent components. It also helps in pointing out the

more pertinent problem, resolution of which can be a possible resolution of the

other. Although this might not be always true. The dependency graph correlation

algorithm [8] implemented in DiNAR works as explained below

o The correlator kicks in every 60 seconds and builds the dependency

graph using the above blueprint.

o It then traces through the graph and assigns respective alarms to each

object (if any).

o It then marks all the leaf nodes with alarms and starts analysing them in a

loop

`

27

o For every alarm in a node, it checks to see if the object on which it

depends has an alarm. We define a certain set of alarms to be unrelated.

E.g a HighCPUUtilization alarm on the Application server is not related

to an ApplicationDown alarm although Application Classes are

dependent on the DINAR_Node class. If the alarms in the parent and the

child object are not Unrelated, then the alarm in the parent is considered

to be the cause of the algorithm in the child object.

o If the alarm in the parent object is concluded as the cause then the alarm

in child object is marked as a symptom and the parent object alarm is

now processed recurcively. If not, the child object alarm is itself marked

as a root cause.

3.4. Directory Server

Locating a manager involves finding the exact hostname (or IP) and the http port on

which it is listening. Launching a full fledged directory service would mean, the agents

having the capability of finding the manager address using broadcast. However this is

not feasible in the present setup. So we add a step of indirection to reach to the actual

manager. Instead of the manager's address, all the agents would contain the address of a

pre coded directory server. This directory server will then know the address to the actual

manager. So as soon as the agents boot up, they will first contact the directory server

and request for the location of the manager. The directory server responds with the

manager URL. Hence with one additional step, the agent can get the manager address

dynamically. Even if the manager location changes, only the directory server needs to be

`

28

updated and not all the agents. Thus, this approach is more scalable. The requirements

of a directory server are to have a URL which is constant all the time.

Figure 12.Directory Server Operation

`

29

CHAPTER 4

IMPLEMENTATION DETAILS

4.1 Dinar Agent:

This has been implemented in core Java SE. Some of the highlights of the agent

development were:

 It is a single threaded application. This was done mainly due to

 Reduce load on the agent machines

 Agent has a fixed update interval. Hence data collected between update

cycles is of not much use if overwritten

 Uses HttpClient 4.0 module to perform http 1.1 operations.

 Agent was developed only on Java Standard Edition. Hence it cannot be ported to a

mobile device. Attempts to port the agent onto a mobile device were not succesful

owing to the stripped down version of the Java Mobile Edition which does not

support the core HttpClient 4.0 API. Hence development of agent on mobile devices

needs to be done using the local development frameworks provided by the vendor.

 It uses the NSClient service to pull the health information from Windows hosts like

uptime, cpuUtilization.

4.2 Dinar Manager

DiNAR manager is a multithreaded J2EE application. It contains of two main threads:

 Thread 1 : Main thread responsible for collecting updates from agents and

creating the abstract topology

`

30

 Thread 2 : Alarm correlation engine thread

Manager uses the XML Schema Definition (XSD) to validate the incoming data before

processing the agent updates.

`

31

CHAPTER 5

SYSTEM EVALUATION

The previous chapter described the details of DiNAR system architecture and

implementation. To summarize, DiNAR system can be broadly visualized as shown by

Figure 13.

Figure 13.DiNAR Summarized

The system evaluation strategy was concentrated on segregating every independent

component of the system and testing it individually. It was the followed by a complete

feature testing to test the resultant output of the system. This chapter discusses the

testing schemes, parameters considered and the test bench details followed by the results

of the system evaluation.

5.1. Testing Scheme:

DiNAR system evaluation tests have been classified as:

 Tests in the Monitoring phase.

 Tests in the Diagnosis phase.

Figure 14 below shows the DiNAR test model and the functionality being tested at the

end of every phase (sub phase). The system evaluation used two testing methodology.

1) Live topology testing.

2) Simulated topology using test bench.

Diagnosis / Alarm

Correlation

Monitoring

XML Data from

field agents
Alarms Root Cause

Faults

`

32

 Abstract

 Topology

Monitoring

 Alarms

Diagnosis

Figure 14.Testing Model

1) Live topology testing: DiNAR agents were deployed in three laptops running

Windows operating system and on a web server running a server version of Windows.

One of the laptop agents was made to portray as a mobile device agent. The web server

agent was in a separate cloud thean the rest. The manager collected health information

from all the agents. Faults were induced into this setup. We used the Network Fault

Model (NFM) [11] which defines 5 different types of faults possible in a networked

application.

 Drop

Faults on components

(Persistent and spurious faults)

Network Fault Model [11]

Alarms Correlator :

Dependency Graph

Algorithm

*

Alarm Generation

Abstract Topology

Generation

Test 1

Test 2

Test 3
Root Cause

Faults

`

33

 Cut

 Lost

 Corrupt

 Carrier

NFM faults are designed for individual packets, but as DiNAR abstracts packet level

details, we considered every HTTP request/communication as an atomic entity and

applied this model.

2) Simulated topology using test bench.

We developed a test bench to simulate multiple agents. Each agent is feeded with a

separate configuration file and an internal topology. The agents in the test bench

function like any normal agents, except that it does not have an Information Engine. It

picks up the topology information from a hard coded XML. The agentID of the

simulated agents is preassigned using a configuration file.

The test bench introduced the faults as mentioned in the Network Fault model [11]

using a FaultInduction thread. This thread is a daemon which introduces faults by.

 Stopping and starting agents.

 Changing status information of individual components.

5.2. Test Cases and Results

Figure 14 shows three tests (Test1, Test2 and Test3) conducted at various breakpoints in

the DiNAR system. Apart from these, we conducted two more tests to understand the

performance of the system and to obtain optimal update and refresh time intervals. In

this section we look and analyze the results of the tests.

`

34

5.2.1. Test 1: Abstraction Accuracy

Abstraction accuracy is the measure of closeness between the actual topology in the

field to the abstracted topology in DiNAR manager. We define this metric based on the

relationships between each component. To measure this subjective metric, we used the

following technique:

 On the agent side,

o (a1) Every component (sub component) to be measured is assigned 1

point.

o (a2) Every relationship to be built is assigned 1 point.

 On the Manager side

o (m1) Every component seen on the manager is assigned one point.

o (m2) Every correctly built relationship between the components by the

manager is assigned one point.

 (a3 and m3) Finally, the correct grouping of agents under respective clouds

(reflecting their locations physically) needs to be considered. To correctly

capture this metric, we assign 1 point for every cloud object seen on the manager

(a3) and 1 point for every remote site under consideration(m3).

All the points from both the agent side and the manager side are summed up. The

Abstraction Accuracy is finally calculated as

(m1 + m2 + a3) * 100 / (a1 + a2 +m3)

Note that m3 and a3 are swapped to give a correct meaning. Theoretically it is not

possible to get m3 < a3.

`

35

We conducted tests using the live physical topology as mentioned in section 4.1 and

simulated agents using the DiNAR test bench with varying number of agents (1-6)

under each site. The topology consisted of two sites to depict the disaster site and the

command center.

Results:

The tests were conducted considering the following assumption. All agents in a single

site were connected to Internet through a wireless LAN which had a single vertical

connection. This meant all of them were behind a natted gateway. Under these

circumstances we observed 100% accuracy in abstraction.

The other network setup which should ideally be considered is when every agent device

has a separate vertical link. This is scenario when every client device in the disaster site

has 3G connectivity and the site has no internal LAN. From DiNAR perspective, the

topology remains the same per agent. The only factor that gets affected is the

classification of agents into respective Clouds. This depends on the external IP of the

device individually unlike the case of a LAN network. The external IP is allotted by the

base station to these 3G clients using their Access Point Names (APNs) and is not

consistent for all the devices. We could not completely test this network scneario due to

lack of enough hardware for 3G/GPRS connectivity. But we observed the assignment of

external IPs using 4 iPhones with 3g connectivity. It was observed that irrespective of

same location, all of them got separate external IPs all the time. This would mean

DiNAR manager will show all 4 of them in separate clouds.

Thus assuming we had hypothetical agents installed on each of these iPhone, the

abstraction accuracy of this scenario would be (x)/(x + 3).

`

36

Where x is the sum of points for all other components.

5.2.2. Test 2: Spurious alarm suppression

One of the biggest challenges faced by Network management systems is the ability to

handle spurious alarms. Spurious alarms are unavoidable in any network scenario. Such

alarms originate mainly due to:

 Temporary loss of connectivity

 Temporary unresponsiveness of applications.

 Etc.

DiNAR uses a wait and hold approach to handle spurious. The wait time before an event

is considered non spurious is equal to two update cycles. To test spurious alarm

suppression and robustness of DiNAR we used the Network Fault Model (NFM) [11]

which defines 5 types of faults possible in a packet based network. Although it’s not

completely appropriate in our scenario, we only consider a subset of this model. The

fault types Drop, Lost, Corrupt are relevant in DiNAR perspective. The other two,

Carrier and Cut are very specific to packet level granularity and are not relevant in a

system which abstracts at the level of HTTP.

Test: The goal of this test is to check the robustness of DiNAR against errors and

spurious alarms. The test bed was created using the DiNAR test bench. The topology

consisted of 3 simulated agents per site and two such sites. The update interval was set

to 60 seconds. The Network Fault Model was then applied by inducing the following

faults:

 Drop: We induced this fault by introducing syntactical errors in the XML being

sent. This leads to the server dropping this update.

`

37

 Loss: This error type was achieved by stopping the agent for a varied time

intervals between 0 seconds to 180 seconds (at samples of 10 seconds)

successively. The time instance at which the agent is stopped is also critical in

this test. For this we chose the two extreme ends. The agent was paused once

immediately after a previous update. We called this as t=0. The next test had the

agent stopped right before an update. We called this as t=60.

 Corrupt: Corrupted data can be of many forms. In our tests we considered

corrupted data in two ways.

o Wrong status information about components. Involved flipping of the

status from Running to Crashed etc. We flipped the status information of

components. 5 such components retained this curruption for a single

update cycle, while remaining 5 components retained this corrupted

status information for 2 or 3 update cycles.

o Syntactically correct, yet semantically wrong information which does not

mean anything from DiNAR perspective. This test involved changing the

“status” attribute of a component to “XYZ” and keeping it same for 10

consecutive update cycles.

Results:

 Drop: All the syntactically errorenous XML messages were rejected without any

failure. But as the HTTP connection is still alive, an Unresponsive alarm for the

device is not fired and this was a just result. Yet this was logged in the server

logs but not shown in the GUI as a design consideration.

`

38

 Loss: We tabulated the percentage of spurious alarms suppressed under both the

cases and is shown in Table 1 below. The suppression window shows the

minimum amount of time for which spurious alarms can be suppressed for two

different values of “t”.

Time Instance (t) Suppression Window (in sec)

0 180

60 120

Table 1 Spurious alarm Suppression Window

 Corrupt: For the two types of data corruption mentioned above:

o Wrong status values:

 For all the components which held the corrupted data for just 1

update cycle and then the corrected values were injected, DiNAR

manager was successful in suppressing the alarms as transitive

and no alarm was generated.

 For the components which transmitted the corrupted data for 2 or

3 update cycles and then cleared the alarm, alarms was generated

which eventually were cleared. However, these were shown on

the GUI and were a part of the Alarm Correlation process.

o All incoherent values in the XML input from the agents were ignored by

the DiNAR manager. Yet this was logged in the server logs but not

shown in the GUI as a design consideration.

`

39

5.2.3. Test 3: Diagnosis Phase testing

In Chapter 3 we introduced the dependency graph event correlation technique to

diagnose the alarms generated by the DiNAR agents. To measure the effectiveness of

this method in our application, we used the following two metric.

 Convergence time: This metric indicates time taken for the dependency graph

algorithm to reach to its final conclusion. It is measured from the time the algorithm

is invoked with a set of alarms to the time it reaches its final conclusion.

 Percentage False positives/False negatives of root cause detection: This metric

indicates the number of faults wrongly detected (or not detected) in the experimental

setup.

Test Conducted:

To compute the convergence time of the correlation algorithm, we used the simulated

test bench with 20 agents. The performance of the dependency graph based correlation

algorithm depends on the depth of the graph (L) for every correlation [8]. Based on the

dependency graph for DIORAMA, we have maximum depth of L=3. Our test cases

consisted of generating 1-20 alarms of both L=2 and L=3 depth. We calculated the time

taken by the correlation algorithm to reach to its end for each of the 20 X 2 cases. Figure

15 shows the plot of convergence time against number of alarms in the system.

One factor which affected the convergence time was the thread dispatching schedule of

the JVM as correlation engine is a separate Java thread. However we reduced the effect

of thread dispatch by having no I/O statements.

`

40

Figure 15.Convergence Time

Correlation accuracy and false positives: Event correlation in DiNAR unlike other

network management applications is less complex. This is due to the unidirectional

architecture of dependencies. Accuracy in correlation is a metric to measure the

outcome of the event correlator. In the above experimental setup, following were the

shortcomings observed in our event correlation engine.

1. A Device down alarm which was adjudged as the root cause overruled

other actual alarms from its components (E.g. Application down) even though

the later was a correct alarm and not a symptom of Device being down.

2. Cloud unresponsive alarm is based on the status of all the agents. It

assumes that if all agents are down, then there is a network level problem in the

site (Cloud).

`

41

Apart from these two, the correlation engine was successful in showcasing the correct

and the most pertinent problem with highest amount of severity. Although point number

1 above discusses a behavior of the engine where actual alarms from subcomponents are

suppressed by actual alarms from its dependent component, it does prove to be logical

from administrative point of view. For example, in a case where we have an alarm for

both the Device and its hosted application being down, it is logical to advise the

administrator to first look at the Device failure problem. Table 2 shows a summary of

the results of correlation for different failure scenarios.

Failure Scenario

Correlation Algorithm

Successful in pointing to all the

right problems?

Only ApplicationUnresponsive Yes

Only ApplicationDown Yes

Only HighCPUUtilization Yes

Only RfidReaderDown Yes

Application and Host device

Down
Yes

RFiD Reader and Host device

Down
Yes

RFiD Reader and Interfacing

application Down
Yes

RFiD Reader, Host device and

Interfacing Application Down
Not Always

Application/RFiD reader Down

along with High CPU Utilization

in the host device

Yes

All agents in cloud Down Yes

Only 1 agent in the cloud is Up Yes

Table 2 Summary of Correlation Results

`

42

5.3. Agent Overhead:

In this section we discuss the overhead posed by the Agent running on the devices. We

consider two types of overhead here:

 Bandwidth Overhead

 CPU Overhead

5.3.1. Bandwidth Overhead

Bandwidth overhead is measured as the additional bits per second (bps) contributed by

each agent. To measure this metric, the test setup consisted of four live agents

connected to the internet through a wireless LAN. We used the Cradle Point setup as

used in a real DIORAMA scenario. The test consisted a mock 10 min sessions involving

all the 4 agents reporting health information about the device and monitoring 3

applications. For each 10 min sessions we varied the update interval ranging from 10

seconds to 120 seconds and measured the bandwidth addition (in terms of bits per

second) by each agent. The bandwidth was measured for the entire http flow between

the agent and the manager.

Figure 16 shows the per agent bandwidth contribution for different update intervals. It

needs to be noted that, these values are specific to the amount of information being sent,

which depends on the number of information adapters. If there is significant increase in

the number of information adapters, then the bandwidth addition will be higher.

However, the relative proportions will remain the same.

`

43

Figure 16 Bandwidth Overhead

5.3.2. CPU Overhead

CPU overhead is a measure of the processing overhead added by running the Agent on

the agent devices. To measure the CPU over head we calculated the total time taken by

one update cycle of the agent. This involves the time to collect information from all the

adapters and transmit it across to the manger. For the test scenario mentioned in section

5.3.1, the average CPU time for one update cycle of the agent is 1224 ms.

For the mock 10 min test scenario, with varying update intervals, the total CPU time can

be represented as 1224*U ms, where U is the number of update cycles. The lower the

update interval, higher is the value of U and more is the CPU overhead.

5.3.3. Choice of Update Interval

The results obtained in section 5.3.1 and 5.3.2 helps us understand the choice of 60

seconds as the ideal update interval for all DiNAR agents. Figure 16 shows the varying

bandwidth overhead for varying update intervals for a fixed duration of time. Based on

`

44

this, it is ideal to have longer update intervals which reduce the overall overhead of the

agent. But longer update intervals lead to less fresh data at the manager. It also means

slow realization of failures by the Manager. Table 3 displays the minimum time needed

to fire the Device and Component alarms for different update intervals.

Update

Interval

Device

Alarms

(Sec)

Component

Alarms

(Sec)

10 80 20

20 100 40

30 120 60

40 140 80

50 160 100

60 180 120

70 200 140

80 220 160

90 240 180

100 260 200

110 280 220

120 300 240

Table 3Alarm Generation Time

As seen in Table 3, the time needed to trigger an alarm after a failure grows significantly

for higher update intervals. For update interval of 120 seconds, the time to obtain device

failure alarm is 5 mins. This is a very long time period for a scenario like DIORAMA

where the actual times of operations. At the other end of the table, the duration to trigger

`

45

device alarms are in the range of 80/100 seconds. The duration for component alarms is

20/40 seconds. This is a very less amount of time to trigger the alarm considering the

transient failures. Such low time periods for alarm generation will also affect the

windows size for spurious alarm suppression as discussed in section 5.2.2.

Thus the choice of update interval was made considering a tradeoff between alarm

generation time and agent overhead. Hence update interval ranging between 50-70

seconds is a good design choice considering the trade offs.

`

46

CHAPTER 6

REPAIR AND RECOVERY MEASURES FOR DIORAMA

In chapters 3, 4 and 5 we presented the details of DiNAR system and its evaluation

results. DiNAR as a tool helps guide the system administrator to have a complete view

of the IT infrastructure elements of DIORAMA. It helps detect the faults and analyze

these fault alarms through an alarm correlation engine. In this chapter we attempt to

provide the corrective actions that can be invoked based the alarms raised by DiNAR.

To understand these corrective measures, we divide the whole DIORAMA setup into its

two predominant zones

 Disaster site

 Remote site (Command Center)

6.1. Disaster Site

The disaster site is the area which generates the information about a particular disaster

which has just occurred. This information being generated is very critical to the correct

portrayal of the actual scenario. DIORAMA [Appendix A] uses PDAs and RFiD readers

to collect information about the victim’s position and this information is transmitted to

the Remote server using the wireless LAN.

Disaster response activities are conducted for a short duration of time. This duration

depends on the seriousness of the calamity. So disaster response systems are active and

operational only during this period. Unlike regular wired and wireless networks,

Disaster response systems like DIORAMA are setup and dismantled once the activity is

over. Hence the requirement of the IT infrastructure in systems like DIORAMA is not

`

47

perennial. However, that does not undermine the need of high availability of these

components during the actual times of operation. Rather they are very critical during the

operational periods.

A complete recovery model for a disaster response system like DIORAMA is beyond

the scope of this work. Hence here we provide the suggestive measures the

administrators can take for different types of fault alarms triggered by DiNAR. For

DIORAMA, whose availability requirements range from very high during the times of

operation to almost zero once the evacuations are done, the recovery measures for IT

related failures should involve sufficient amount of redundancy of hardware like

wireless routers, 3G cards, remote clients like PDAs/Laptops, RFiD readers.

Below we discuss different fault types detected by DiNAR in our present

implementation for DIORAMA and the recovery measures:

 Application Failure: At the disaster site, application failures could mean inability

to read information from the RFiD readers. Hence if the correlation algorithm

tags the RFiD reader interfacing application as root cause failure, then the

administrator looking at this picture should instruct the paramedics at the

disaster site to, restart the application on the tracking device. If this fault is

accompanied with a non root cause alarm for the RFiD reader, then it is

advisable to look at the operational status of the RFiD reader as well.

 Application Unresponsive: If any application is being reported as unresponsive,

then its status should be monitored for 2-3 update cycles. This is to allow the

application to become responsive again, as it is not an uncommon event for an

application to not respond at certain intervals. If the alarm does not clear, the

`

48

administrator should direct the paramedics about the situation and restart this

application.

 RFiD-Reader Down: Hard failures of the RFiD reader will lead to a root cause

fault being shown in the DiNAR GUI. The administrator should immediately

direct the paramedic to replace the concerned reader and restart the interfacing

application to do the initial handshake. This is needed considering the

importance of the RFiD reader in the whole setup of DIORAMA and also the

fact that troubleshooting it will take more time in an already time critical

application.

 Device Down: This alarm applies to a non responsive agent which is declared to

be down by the DiNAR manager. Handling this alarm will be relatively different

than the others as described above. It is due to the fact that this alarm is deduced

due to an agent which did not respond for two update cycles followed by 1 mins

wait time. This could have three possible causes:

o Device failure (shutdown/reboot)

o Agent Failure (Agent application crash)

o Network failure. Unable to connect to the Internet.

We will deal with the recovery steps for “Network Failure” later. From

DIORAMA perspective, the recovery steps should involve:

 Check to see if the device is up and running. Make sure the agent is

running. This can be done by tailing the agent logs. The other method

would be to check the DIORAMA server to see if the device is

`

49

reporting data. If so it is an agent failure and the agent needs to be

restart.

 If the device is down physically, then it should be replaced with a

backup device before beginning the troubleshooting.

Checking for the agent failure before the more severe possibility makes sure that the

DiNAR operations does to hamper the core operations of DIORAMA.

 Cloud Unresponsive: A CloudUnresponsive alarm hints at a problem in the

network connectivity. This is triggered when all the agents behind a particular

cloud are down. The administrator should direct the paramedics to first replace

the existing wireless gateway with a backup (having same SSID) and make sure

all the devices are reconnected to the new wireless gateway. If this still does not

clear the alarm, then each and every agent should be checked as explained

above.

6.2. Remote Site

Remote site in DIORAMA is normally a command center with good wired network

connectivity and high performance servers. Hence recovery measures in this site are not

as complicated as in the disaster site. Failures in remote site would include:

 Application Down/Unresponsive

 Server failure

 Network failure

`

50

The failures on the remote server, once detected can be corrected by regular

hardware/software/network recovery processes. It does not need any special instructions

unlike components in the disaster site.

`

51

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Design of DiNAR was aimed to be an end to end solution for managing disaster

response systems and provide real time fault detection. This thesis work was an effort to

prove this concept. With its current architecture and implementation, DiNAR can also

apply to other distributed application scenarios which have their elements distributed

and use only internet to connect among themselves, with no overlays. One other

example of such application is an Intel Health Guide [1] which is an in house patient

monitoring system. Nevertheless, disaster management systems are still the most

relevant applications for DiNAR.

The main contribution of this thesis work in designing DiNAR was the design and

implementation of the DiNAR manager-agent architecture and agent initiated collection

method. We implemented the analysis engine using the dependency graph algorithm

which helped DiNAR from just being a collection schema to a solution.

Future Work:

 One of the wrong design choices of DiNAR was the use of external IP for

grouping agents in a cloud. This mechanism is not flexible to accommodate the

usage of cellular network for data connectivity. Hence new methods should be

explored.

 Developing the agent for more platforms, mainly mobile device.

`

52

APPENDIX

DIORAMA OVERVIEW

DIORAMA is a system designed with an aim to expedite the EMS triaging process. It is

a solution designed by the Multimedia Networking Lab, University of Massachusetts,

Amherst. It uses the active RfID technology to track the victims after disaster and

collects all the data about the victims, their locations and beams it to a server which is

on the other side of the Internet.

Diorama System Architecture: Figure 18 shows the system architecture of

DIORAMA. On a broad level DIORAMA can be visualized to be divided into two

zones:

 Disaster Site: Where the actual disaster has occurred and where the

Emergency MS triaging process will be carried out.

 Remote Site: The place where a server resides and collects all information

from the disaster site.

The disaster site can be visualized as an open area which has been affected and has

victims scattered around. This is shown in Figure 17. Each of the circular zones is one

disaster site. Normal Emergency Medical Services (EMS) procedures [2] involves a

triaging round where the paramedics arrive at the disaster site and triage the victims

using paper tags. These tags contain information about the victim and his present status.

Although this triaging technique has been in place since a long time, applying modern

day Information Technology (IT) to it can revolutionize the whole process. This is what

DIORAMA aims to achieve.

`

53

Figure 17 DIORAMA Overview

`

54

BIBLIOGRAPHY

[1] Intel Corporation, Intel Health Guide PHS6000, Product Guide.

[2] Southeastern Massachusetts EMS council. Manual: Policy and Procedures. pp. 36-

37

[3] J. Case, M. Fedor, M. Schoffstall, J. Davin. RFC1157 - Simple Network

Management Protocol (SNMP). (May 1990)

[4] R. Presuhn, J. Case, K. McCloghrie, M. Rose, S. Waldbusser. RFC3418 -

Management Information Base (MIB) for SNMP (December 2002)

[5] Jürgen Schönwälder, Aiko Pras, Jean-Philippe Martin-Flatin. On the Future of

Internet Management Technologies. In IEEE Communications Magazine (October

2003). pp. 90-97.

[6] J. Patrick Thompson. Web-Based Enterprise Management Architecture. In IEEE

Communications Magazine (March 1998). pp. 80-86.

[7] Ramesh R. Rao, Jon Eisenberg, Ted Schmitt. THE ROLE OF IT IN MITIGATION,

PREPAREDNESS, RESPONSE, AND RECOVERY. Book ISBN: 0-309-66744-5,

National Academics (2007)

[8] Boris Gruschke. Integrated event management: Event Correlation using dependency

graphs. In Distributed Systems, Operations and Management (1998).

[9] C. Robert Nelms. The Problem with Root Cause Analysis. In Joint 8th IEEE HFPP /

13th HPRCT. (2007). pp. 253-258

[10] DPS Telecom. Tutorial: Simple Network Management Protocol.

`

55

[11] Fummi. F, Quaglia. D, Stefanni. F, “Network Fault Model for Dependability

Assessment of Networked Embedded Systems”. Computers, IEEE Transactions,

Volume: 58, Issue: 5 On page(s): 620 – 633

[12] Deshpande. K, Ganz. A, “DiNAR: Health monitoring of IT systems in emergency

response”, Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual

International Conference of the IEEE, on page(s): 1699 - 1702

 [14] W. Chen, N. Jain, S. Suresh. “ANMP: Ad Hoc Network Management Protocol”.

IEEE Journal on Selected Area in Communications, VOL. 17, NO. 8, August 1999

[15] C.J. Chiang, et al. “Generic Protocol for Network Management Data Collections

and Dissemination”, IEEE Military Communications Conference, October 2003.

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2010

	Web-Dinar: Web Based Diagnosis of Network and Application Resources in Disaster Response Systems
	Kartik Deshpande

	Web-Dinar: Web Based Diagnosis of Network and Application Resources in Disaster Response Systems

