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ABSTRACT

IMPLEMENTATION OF NETWORK SERVICES SUPPORTING MULTI-PARTY

POLICIES

SEPTEMBER 2009

SANTOSH CHANDRA PRODDATOORI

B.E E.C.E, OSMANIA UNIVERSITY, INDIA

M.S.E.C.E, UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Tilman Wolf

Next-generation network architectures support complex services in the data-path of

routers. A key challenge is the integration of multiple policy constraints from senders,

receivers, and network providers when using such services. We introduce a multi-

party service specification framework based on our service socket API. We illustrate

the operation of this approach in an IPTV scenario that uses a video transcoding

service implemented on a Cisco ISR platform.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The current Internet architecture has been the best example of a computer net-

work. It is still dominant because of its ability and flexibility to add and support new

protocols, technologies and applications due to the increasing demand. This simple

architecture provides a basic end-to-end communication service with the end-systems

providing more complex functionality and the high speed routers between providing

simple functionality of moving packets from one node to another. It is just a store-

forward platform for data. However, this design pattern has a lot of shortcomings on

the ability to adapt to the requirements of the current and future technologies. This

can be best shown in the current Internet, where the introduction of new networking

concepts and increase in the diversity of end systems has resulted in new applica-

tions like peer-to-peer networks, content distribution and caching architectures that

go beyond the traditional end-to-end argument. These developments and applications

placed within the network make it necessary for the routers to perform more complex

functions.

To address these issues, these architectures need to be replaced by some new

network architectures. Hence, a great amount of research is going on in the area of

new network architectures that can provide the foundations of the next-generation

Internet. These next generation network architectures do not need to be backward

compatible with the existing Internet and hence can be considered a clean-slate design

[11].
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As a part of this, a new network architecture has been proposed [23] and [20] based

on the concept of a network service. These network services are just like a processing

function performed in the data path of the network that provide all functions needed

for data communication and those placed on end-systems (e.g. TCP, UDP) along

with the functions that are placed on routers (e.g. NAT). This approach makes the

deployment of network services simpler and hence to implement these network services

programmable routers that are capable of high-performance packet processing can be

used.

The major challenge here would be the need for abstractions, which allow end

system applications to make use of the features provided by the network services.

This needs to be taken care without forcing any considerable complexity and allow-

ing for transparency in the service specification and application. Another challenge

here would be the composition of services and its placement within the composed

set of services. When network services are composed as a sequence of operations,

it poses constraints on the application of network policies on traffic. This can be

best explained by the following example: When IDS service is applied as a network

policy to network data, it invariably fails if the packet payloads are encrypted. To

avoid these, it is very much necessary if semantics of data can be considered to decide

whether to enforce a policy or work around it. As well, the semantics of data and

policy requirements can be used to add new services to the earlier service composition

to ensure that the policy is enforced if it is a ’strict’ policy. Generally, the network

policies are specified using simple rules that depend on specific values in the packet

headers. But, this will not be sufficient in next generation networks, where additional

services need to be added to or removed from the service compositions based on the

semantics of data being sent, which cannot be extracted from the packet headers

alone. This thesis work is thus based on the ways to overcome the above said chal-

lenges and support network policies by extending the service specification framework

2



and service sockets API [20] to include semantics of data the end-systems intend to

send.
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CHAPTER 2

RELATED WORK

There have been a wide number of different approaches proposed to extend and

adapt the functionality of the original Internet architecture. Some of the examples

are network address translation to allow IP address reuse [10], firewalls to improve

security [17]. Furthermore, for providing data path flexibility (e.g., active networks

[22], configurable protocol stacks [7], protocol heaps [8]) protocol extensions have

been proposed. Routers have been designed with advanced features for handling

packet processing (extensible workstations routers [14], programmable routers [19],

and virtualized router platforms [4]). In this work, the network services describe the

advanced networking functions.

An important challenge with providing new network capabilities is finding a way

of allowing management and control. An interesting attempt in this case was active

networks [22], which provided a powerful and very general approach to customizing

packet processing. But, programming network features is a difficult task. Active

networks were one of them that were difficult to control and hence the application

programmers found it impossible to use. To handle the complexity of new features

in the network, an attempt was made by an IETF working group to define Open

Pluggable Edge Services (OPES) [6]. The end systems in such an architecture will

have the option of specifying a set of data flow operations that are implemented on

nodes through out the network. Here, we use the concept of pipeline abstractions [16]

to provide a general method of specifying services. Another general approach to man-
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aging network functionality is the SILO architecture [18], which provides mechanisms

for composing custom protocol stacks [5].

This thesis work allows a more general sequential composition of services rather

than just limiting to a layered composition of function. An important concept here

is to use a tagging mechanism to convey semantic information from the packet data.

Multiparty service composition and service placement according to network policies

is the main theme of this thesis work.
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CHAPTER 3

NEED FOR NETWORK SERVICES

The current Internet design has no provision for supporting dynamic deployment

of new protocols. Because of this drawback, it took time for implementing several

additional protocols since the initial Internet design did not consider them.

Some of the applications, which cannot be implemented on the end systems only

and are characterized by the need of support by the network are listed below:

• Intrusion Detection Systems (e.g., snort [21]) is used to check several types of

malicious behaviors that can compromise the network security. This includes

host based attacks such as privilege escalation, unauthorized logins, network

attacks against vulnerable services, data driven attacks on applications and

malware (viruses, trojan horses, and worms). This mechanism dynamically

blocks the traffic that is considered malicious by checking packet headers and

content against signatures of well-known attacks.

• Web Switching [9] is a mechanism for distributing a single web server over

several physical machines while presenting a single front-end to the outside.

Here, the Http requests are parsed in packets and an appropriate server will be

determined to which the request will be forwarded. As the Http request is sent

only after establishing a TCP connection, the web switch also has to splice the

TCP connection between client and back-end server.

• Random Early Detection (RED [12]), is an algorithm used for queue manage-

ment and congestion avoidance. It basically monitors the average queue size

6



and then drops packets based on statistical properties. The incoming packets

are accepted only when the buffer is empty. With the increase in size of the

buffer, the probability of dropping an incoming packet also increases. The prob-

ability reaches 1 when the buffer is full meaning all the incoming packets will

be dropped. This trend is implemented by many current routers, but only a

few are used in practice.

• Network Address Translators (NAT [10]) is a technique for IP address reusing.

When the network traffic flows through a router, the source and/or destination

IP addresses and the TCP/UDP port numbers of IP packets will be rewritten.

This is basically done to expand the set of possible IP addresses within a given

network. Thus, NAT allows the usage of a single globally unique IP address

among multiple hosts in a subnet. The NAT modifies the IP packets passing

between the subnet and the Internet. Due to this, the number of IP addresses

used by a subnet reduces and thereby extends the time before the IP address

space is exhausted.

• Firewalls [17] is a network security component incorporated in most networks for

inspecting the network traffic flowing through it and deny or permit the passage

based on a set of rules. As a result, network traffic that compromises the security

of hosts on the network (such as port scanning) can be blocked. Firewall rules

can be numerous and complex, which requires significant computational power

on the firewall to keep up with typical access link speeds.

The above mentioned systems provide an example of how new protocols slowly

forced their way into the network. This shows an expansion to the traditional store-

process-forward networking. The upcoming issues of security, resource management

and isolation, and programming complexity limit the practicality of such a general

approach to network services. A more constraint model of programmable routers is

7



a more realistic scenario for deployment. In programmable routers, a selected set

of features are installed by an administrator and end-systems may choose if their

communication utilizes these services.

The advantage of this approach of explicit service features in the network is that

such services can be visible to the end-system and thus managed accordingly. The

management issue of middle boxes has been addressed by the IETF Open Pluggable

Edge Services (OPES) working group [15] and the IRTF End-Middle-End (EME)

working group.
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CHAPTER 4

NETWORK SERVICE ARCHITECTURE

The concept of network services and network service architecture provides the

necessary context for our multiple service policy design. The design of network service

architecture is a prior work [13] and the same concept is used in this work for multiple

service policy design by modifying the service sockets API and the service specification

syntax to include data semantics aware multiparty service composition.

4.1 Network Services Concepts

Network services form the basic components of the functions performed on a

connection. The data is first encoded and then the encoded data is transferred in

various ways. The end system applications in a service-centric end-to-end architecture

specify the information transfer that is desired and the network (in assistance with

the end systems) determines how the data needs to be handled. There are three

major aspects that need to be considered in this process:

• Data Semantics and Encoding: The information that needs to be transmitted

has to be encoded into data. This is already given in many of the cases, such

as in a file transfer.

• Data Transmission: The transfer of data between end-systems and network

systems corresponds to the traditional functionality of a network.

9



• Data Processing: Data needs to be processed on its way to the destination to

support advanced services. This includes tasks like modification of the trans-

ferred data.

As mentioned in the last point above, the existing Internet architecture differs in

having data processing as its key networking function. The network service archi-

tecture thus permits the idea of processing through out the network rather then just

limiting to the end systems as is done in our existing Internet architecture. The de-

sired functionalities and performance properties will be then handled by the network

services placed in the data path of the network.

The encoding of information will allow the system to maintain semantic informa-

tion on the bits that are being transmitted. The data is then modified by the network

to transfer the information in an efficient manner. If we consider the example of web

caching, a proxy could intercept web requests and respond with a local copy of a doc-

ument. This results in transferring the same information without actually involving

an end-to-end data transfer. As this could be done transparently by the network,

there is no requirement of any configuration on the end system.

A network service can receive, store, process and transmit data that is sent over the

network. Services leverage semantic information about a data stream to implement

different functionalities. Some of the examples of network services are:

• Reliability: This includes lossless transmission of data by using the mechanisms

like buffering and acknowledgment-based retransmission of lost data as is done

in TCP.

• Privacy: This includes encryption and decryption services between end-systems

(similar to SSL) or subnets (the same as VPN).

10



• Congestion Control: Controlling the rate at which the data is being sent ac-

cording to the state of the sub-network to avoid congestion that leads to the

loss of data.

• Security: This includes various mechanisms to detect and mitigate attacks.

Intrusion detection systems, firewalling and payload scanning are some of these

mechanisms.

• Quality of Service: This includes prioritized forwarding of data based on service

requirements.

• Multicast: This includes duplicating the data and transmitting it across multi-

ple links.

• Payload Transcoding: This service can adapt the content that is transferred

depending on the semantics of the transferred information. A simple example

of this kind is a video transcoding application, which can reduce the resolution

of a large image so that it can be down sampled for display on a cell phone.

This is implemented here as one of the services on a Cisco ISR.

A significant point to note here is that these services are implemented in the

data path of the network and act on all (or a subset of) packets. As the networking

functions are decomposed into basic services, connections can then compose a custom

sequence of such services to be applied to the packets transferred in this connection.

The end-system applications will make an efficient use of functionality of the network

from such custom compositions.

The figure 4.1 illustrates an example of a network service connection. A connec-

tion setup request with two services is shown at the bottom of the figure. During

connection setup, if such a request is provided by the end-system to the network,

the network then identifies the nodes that are capable of performing the requested

11



 
Figure 4.1. [20] Network with Data Path Services. Connection requests specify
sequence of services that need to be allocated by Network.

Service Node Service Node Service Node
Control plane
Data plane Service NodeService Node Service Node

Service Controller Service Node
Service ControllerEnd-System End-System

Service-EnabledNetwork

 Figure 4.2. [13] Network Service Architecture.

services (denoted by corresponding colors) and chooses one for each service (arrows).

The connection is then established between the end systems such that the traffic tra-

verses these nodes on the way from one end-system to the other. The service nodes

are informed about the kind of processing the packets of a particular connection re-

quire during setup. When the packets are sent via this connection, the correct set of

services is performed along the way.
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4.2 Design of Network Service Architecture

The high level design of the service-centric network is illustrated in figure 4.2.

The control plane is shown on the top of the figure and the data plane is shown

on the bottom. To set up a service-based communication, an end-system initiates

the connection by sending a service specification to its local Service Controller using

the service socket API. The service controller manages several service nodes. This

controller allocates processing services to service nodes that it manages and arranges

the data transfers between them. The service specification describes the functional

requirements of a connection and lists services that are to be applied in order, to

the data that the end-system intends to send. For services that cannot be allocated

to nodes that the controller manages (either due to resource limitations or due to

placement constraints specified by the end-system), the request is forwarded to a

neighboring downstream service controller that is along the path to the destination.

The service controller identifies the service nodes that are capable of performing the

requested services and informs them about the kind of processing that needs to be

applied to the packets belonging to a particular connection. When the path is set up,

the end-system is notified by the local service controller about the connection setup

and the next hop node it should send the data packets to. Therefore, the end-system

can then send the data packets through this hop-by-hop connection and the correct

set of services are applied to the data packets along the connection.

The section below describes in detail the in-built functionalities of a service con-

troller and a service node, which form the key components of the network [13]. Fig-

ure 4.3 illustrates the details of these components.

4.2.1 Service Controller

The service controller consists of four major components: resource management

(tracking of available processing and memory on service nodes), connection man-

13



Service NodeResource MonitorFlow Manager Service Manager
Packet Demultiplexer Packet SchedulerI/O System

Control Interface to Local Service Controller

Service Controller

Control Interface to Service Nodes
Distributed Service Matrix Routing Algorithm

Connection ManagementConnection Management Interface to End-Systems Connection Management Interface to Service ControllersFlow ManagerFlow Configu-ration
Request ParserController View of Local Network and Resources

... ...

...

Flow Configuration and State Processing ServiceFlow-independent Processing State

Service ControllerService ControllerEnd-SystemEnd-System

ServiceNode

 
Figure 4.3. [13] Network Service Router System. Service Controller functionality is
shown in the upper half, Service Node functionality is shown in the lower half.
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agement interfaces (between end-systems and other service controllers), flow specific

components and control interface to service nodes.

Connection Management Interfaces communicates with end-systems to receive

requests for service-based communications. An active pipe abstraction is used as

the specification notation that provides a mechanism for expressing services, their

parameters and placement constraints in a textual string ([16, 23]). During the con-

nection setup, this string is communicated to the service controller. The string is then

analyzed by the request parser component and translates this into a representation

suitable for the mapping algorithm. The advantage of the active pipe notation is that

services that are not handled by the service controller can be passed on to another

service controller downstream.

Resource management component tracks the available resources on local service

nodes. This information is needed to decide if any new service requests can be ac-

cepted. This can be implemented in two ways: open-loop and closed-loop. In open-

loop, available resources are estimated based on previous allocation, nodes do not

provide direct feedback on their actual state that leads to many problems, especially

when resource requirements vary depending on changes in flow bandwidth, packet

payloads, etc. On the other hand in a closed-loop implementation, nodes periodically

report about their available resources, memory and hence this method is preferred.

Flow Setup and Management consists of a mapping algorithm that is used for

determining service placement and the flow manager. The service request that is

translated by the request parser is used by the mapping algorithm and attempts to

map it to local service nodes.

Service Node Interface communicates with the service nodes that are managed by

a service controller. It manages the connection setup by sending control messages

and receives updates on available resources.

15



4.2.2 Service Node

A service node is composed of five major components: flow manager, control

interface to the service controller, service manager, resource monitor and data I/O

system.

Service Controller Interface communicates with the service controller to receive

connection requests. It then sends updates on available resources. It acts as the

complement component of service node interface on the service controller.

Flow manager takes care of setting up appropriate flow classification rules in

the packet demultiplexer to ensure that each flow receives the appropriate service

processing. It also keeps track of which flows are currently using service on the

service node. The flow manager maintains the state between packets across the flow

for the services.

Service Manager takes care of managing the implementation of network services.

For this, processing resources are made available for all packets that are passed from

the demultiplexer. Service manager also manages the flow-independent per-service

state.

Resource Monitor monitors the operation of the service manager and reports the

available resources to the service controller. It takes care of resetting services and

free up processing resources and memory in case of the resources locked up due

to erroneous behavior. This may impact the per-flow state and hence needs to be

coordinated with the service controller.

The Data I/O system takes care of receiving and transmitting the actual packets

that are forwarded and processed by the service node. The access to the outgoing

link can be controlled by the system through the packet scheduler.
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4.3 Service Sockets

Service sockets form the main interface between the applications and the network

service architecture. These sockets are conceptually similar to our traditional TCP

and UDP sockets, but provide a mechanism for exchanging a service specification. The

service specification informs the network what services are required by the application.
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CHAPTER 5

NETWORK POLICIES AND POLICY-BASED
NETWORKING

5.1 What are Network Policies?

A network policy is a guideline or a rule describing how the network ought to re-

solve the resource conflicts that are a natural consequence of the interactions between

the users and different applications available on the network. Policies can dictate,

which network resources and applications are to be accessible to which users, as well

as classify different applications and users into multiple categories and give prefer-

ential treatment to some users/applications over others. As an example, a network

policy may state that transaction-oriented business applications should be considered

more important than random web-surfing. Another network policy may state that

communication across two machines be encrypted using IPSEC.

Most of the network policies are enforced on a network with the simple idea of

keeping the bad guys out, i.e. for maintaining security. They are meant to govern data

access, web-browsing habits, use of passwords and encryption, email attachments and

many more.

With the convergence of data, telephone and video traffic in the same network, it

is a challenge to manage traffic so that one kind of service doesn’t preempt another

kind. Using policy statements, network administrators can specify which kinds of

service to give priority at what times of the day on what parts of their Internet

Protocol (IP) based network. This kind of management is often known as Quality of

Service.
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A Policy-based network is formed by policies that basically consist of two compo-

nents:

• A set of conditions under which the policy applies. This might include param-

eters such as user name, addresses, protocols and applications types.

• A set of actions that apply as a consequence of satisfying (or not satisfying)

the conditions including bandwidth guarantees, access control, service load-

balancing, cache redirection and intelligent routing.

These conditions and actions consist of a series of passive and active components

on the network. In addition, this would include a policy manager that is the central

policy administration and directory repository point and a policy enforcer that con-

sists of remote active management components that make up the local policy decision

and enforcement points throughout the local wide-area networks.

The Policy Manager takes care of the policy administration. It consists of a

directory database where all the policy information will be available. The policies

stored in the directory database are then translated to network actions and policies.

The Policy Manager will also identify all policy manageable enforcement devices in

its domain. It responds to requests from policy enforcement devices for specific policy

information. In the case of nodes that have local decision capabilities, it will act as a

higher level administrator of policies. It provides added capabilities for coordinating

discovery and management of specific policy enforcement devices. It tracks changes

to the directory database and relays the information to the policy enforcers in its

domain.

The Policy Enforcer can be a simple router that makes policy decisions based on

a field in a particular tagged packet. Alternatively, the Policy Enforcer may be a

piece of equipment that locally consolidates and analyzes traffic flows and network

conditions to perform complex network actions such as:
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• Traffic Conditioning and Shaping: This includes things such as traffic prioriti-

zation, traffic guarantees and bandwidth management.

• Policing: This includes access control, user authentication and remote login.

• Tagging/Signal Provisioning: This includes translating and relaying signal-

provisioning information (RSVP, Differentiated Services, 802.1P, MPLS) through

the network.

• Server Resource Control: This includes advanced enforcement capabilities such

as server load-balancing and cache redirection.

In this work, the service controller (as shown in the figure 4.2) plays the role of

a policy manager and then the service controller identifies one of its nodes that runs

the equivalent service as its policy enforcer.

5.2 Multi-Party Service Specification using Data semantics

The service specification of the network service architecture [20], expresses services

as a pipeline. It consists of a source and a sink that form the end systems. As a simple

example, an end-system application that wants to send data to 192.168.1.2 on port 80

and as well wants to have compression/decompression (with Lempel-Ziv algorithm)

service pairs to be applied to its data packets along the way can use the following

service specification:

*:*>>compression(LZ)>>decompression(LZ)>>192.168.1.2:80

The services have to be applied in the order mentioned in the service specification and

the intermediate services can appear any number of times (again following the order

as mentioned in the service specification). However, the service specification does not

place any constraints on where the above mentioned services should be placed in the

network, i.e. in the service specification example above, the placement of compression
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and decompression services is at the discretion of the network and is based on the

availability of the service and resources in its local network. When the service is

not available in the local network, the service specification can be forwarded to a

neighboring service controller where the service is known to be available.

But there can be several constraints that are placed on the application of network

service policies on traffic due to the composition of network services as an atomic

sequence of operations. The following example will explain the above scenario: con-

sider a service specification used by an end- system application that wants to use the

encryption/decryption service pair.

*:*>>encryption(AES)>>decryption(AES)>>192.168.1.2:80

From the above service specification , it clearly shows that any network policy that

enforces the incorporation of an intrusion detection service on the traffic invariably

fails if the packet payloads are encrypted. This can be avoided by enforcing a network

policy before the encryption service is applied to the data traffic. But, again a network

policy such as an IDS service policy cannot possibly be applied if the end-system itself

sends encrypted data traffic. In general, simple rules are being used for specifying

current network policies in network. These rules are based on specific values in the

packet headers. A simple example in this case will be that of a QoS Priority based

forwarding policies where the decisions are made based on Source IP. Next-generation

networks have a more challenging functionality and hence the above mentioned simple

rule based network policies are not sufficient as the focus is also on service policies

rather than solely on forwarding and services need to be added or removed from service

compositions. A relevant solution for this will be to include semantics of the data

while making service policy decisions. For example, an end-system sending a request

to the service controller needs to incorporate the semantics of the data it intends

to send in the service specification. The service controller can then make informed

decisions on whether to enforce a policy (in case of ’strict’ policies) or to work around
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it depending on the semantics and service policies from the service specification sent

by the end-system. Hence, in order to support these policies, we extend our service

specification framework and service sockets API [20] to include semantics of the data

sent by the end-systems.

5.2.1 Data Semantics Specification Syntax

Here, we have considered the service specification syntax from [20], which we have

modified through this work to incorporate data semantics. It consists of the following

entities:

• Source/sink: These are represented by a sequence of IP addresses and port

numbers separated by a ‘:’. The source may or may not have the IP address

and/or port number specified. For example, both 192.168.1.2:80 or *.* are valid.

• Network services: The services that needs to be performed by the network ser-

vice architecture has to be specified along with its configuration parameters with

the name of the service followed by a sequence of parameters in parantheses.

For example, the syntax: encryption(AES:key=128), denotes that encryption is

a service, and 128-bit AES is the algorithm used for encryption (configuration

parameters). In the same way, multiple parameters can be specified separated

by a comma.

• Director: This indicates the symbol ‘>>’ that is used to specify the sequence in

which the services need to be applied to the data.

In this work we have also considered the data semantics that have been incor-

porated in the specification. Thus, the end-system that requests services from the

network appends to the specification the semantics of the data (such as the kind of

data, data attributes) that it intends to send to enable the network to make informed

policy decisions based on both data semantics and header values extracted from the
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request packet. The data semantics are specified as an extendable list of semantic

indicators that are used to represent the data. It is vital that the list is extendable

because this makes the semantics specification framework flexible and extensible with

regards to new protocols and data types. This can be explained using the following

simple example: An end-system application that wants to send raw video through

RTP and wanting to use a video compression service (more specifically, a H.264

codec) followed by a video encapsulation service using MPEG, can use the following

specification:

*:*[VIDEO(raw),PROTOCOL(rtp)]>>video compression(H.264:targetres=320x240)

>>video encapsulation(MPEG)>>192.168.1.2:80

During our implementation of this concept, we have considered a standard format

for service specification. The initial service specification provided by one of the end-

systems will only consist of the source and destination information. The properties of

data (such as type, resolution, format etc) that are being transmitted are mentioned

as semantics. The following example shows one of the service specifications used by

us in our implementation.

10.2.0.2:6000(HDTV,1280x544,WMV)>>10.1.0.2:6004(H264,320x240,MPEG)

This service specification indicates the transfer of a Video file from the server (10.2.0.2:6000)

to client (10.1.0.2:6004). The semantics at each end gives the kind of video file that

can be played on that device. For the client to receive a video of the format as

given in its semantics, the original video format available at the server needs to be

converted. Thus, the initial service specification is provided to the Network Service

Policy Manager (to be explained in the next section), which then introduces ser-

vices if required based on policies defined and hence the service specification changes.

In the above mentioned service specification, based on the policy rules defined, two

services TranscodeResolution(320x240) and TranscodeFormat(WMvxMPEG) will be
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introduced in the data path. These services will convert the initial video available at

the server to a format required for the client. The updated service specification given

by the Network Service Policy Manager is shown below:

10.2.0.2:6000(HDTV,1280x544,WMV)>>TranscodeResolution(320x240)

>>TranscodeFormat(WMVxMPEG)>>10.1.0.2:6004(H264,320x240,MPEG)

We expect that adoption of the next-generation Internet architectures will lead

to standardization of network services and data semantics specifications leading to a

flexible, extendable and standardized service and semantics specification framework.

5.2.2 Network Service Policy Management

The Network Service Policy Manager in the Service Controller is the primary

module responsible for extraction of the semantic header from the request packet,

verification of the semantics and service composition and enforcement of service poli-

cies. The figure 5.1 illustrates in detail the internal steps of the extended service

socket API.

As mentioned earlier, here the end-system application includes the semantics of the

data that it intends to send along with the services it needs in the service specification.

The svc request is the service request call that uses a lexer and a parser to interpret

the service specification string, which is then translated into a request packet. It also

prepares a Semantic Header that is appended to the request packet and then sent to

the local service controller. The packet at the service controller is supplied to Network

Service Policy Management module that extracts the Semantic Header and service

composition as requested by the end-system. Depending on the semantics of the data

and service composition, the Network Service Policy manager creates an OWL (Web

Ontology Language) description of the services requested and the semantics of the

data that will be sent by the end-system application. An integration of Python with

Web Ontology Language, [2] is one of the suitable methods for implementing this.
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Figure 5.1. Extension to Service Socket API that processes and appends a semantic
Header to the request packet.
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It allows us to represent formal semantics in an XML-based syntax and automate

the process. It also makes the syntax extremely easier to read for humans. OWL

helps in representing the hierarchical constraints present among various services and

data semantics in an XML like syntax. OWL provides us with a semantically rich

language that is both extendable and flexible, which are very important with regards

to altering service compositions in lieu of multi-party service policies. The various

policy rules are represented using SWRL(Semantic web rule language).

OWL: Web Ontology Language (OWL) designed by the W3C Web Ontology

Working Group, is a family of knowledge representation languages that is intended

to be used when the information contained in documents needs to be processed by

applications, as opposed to situations where the content only needs to be presented

to humans. OWL can be used to explicitly represent the meaning of terms in vo-

cabularies and the relationships between those terms. This representation of terms

and their interrelationships is called an ontology. OWL facilitates greater machine

interpretability of Web content than that supported by XML, RDF, and RDF Schema

(RDF-S) by providing additional vocabulary along with a formal semantics. OWL

has three increasingly-expressive sublanguages: OWL Lite, OWL DL, and OWL Full.

• OWL Lite supports those users primarily needing a classification hierarchy and

simple constraints. For example, while it supports cardinality constraints, it

only permits cardinality values of 0 or 1. It should be simpler to provide tool

support for OWL Lite than its more expressive relatives, and OWL Lite provides

a quick migration path for systems utilizing thesauri and other taxonomies. In

practice, however, most of the expressiveness constraints placed on OWL Lite

amount to little more than syntactic inconveniences: most of the constructs

available in OWL DL can be built using complex combinations of OWL Lite

features. Development of OWL Lite tools has thus proven almost as difficult as

development of tools for OWL DL, and OWL Lite is not widely used.
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• OWL DL was designed to provide the maximum expressiveness possible while

retaining computational completeness (all conclusions are guaranteed to be com-

pleted), decidability (all computations will finish in finite time), and the avail-

ability of practical reasoning algorithms. OWL DL includes all OWL language

constructs, but they can be used only under certain restrictions (for example,

number restrictions may not be placed upon properties, which are declared to

be transitive). OWL DL is so named due to its correspondence with descrip-

tion logic, a field of research that has studied the logics that form the formal

foundation of OWL.

• OWL Full is based on a different semantics from OWL Lite or OWL DL, and

was designed to preserve some compatibility with RDF Schema. For example,

in OWL Full a class can be treated simultaneously as a collection of individuals

and as an individual in its own right; this is not permitted in OWL DL. OWL

Full allows an ontology to augment the meaning of the pre-defined (RDF or

OWL) vocabulary. It is unlikely that any reasoning software will be able to

support complete reasoning for OWL Full.

Each of these sublanguages is a syntactic extension of its simple predecessor.

OWL is a component of the semantic web activity. This effort aims to make Web

resources more readily accessible to automated processes by adding information about

the resources that describe or provide Web content. As the Semantic Web is inherently

distributed, OWL must allow for information to be gathered from distributed sources.

This is partly done by allowing ontologies to be related, including explicitly importing

information from other ontologies.

In addition, OWL makes an open world assumption. That is, descriptions of re-

sources are not confined to a single file or scope. For example, while class c1 may

be defined originally in ontology O1, it can be extended in other ontologies. The
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consequences of these additional propositions about c1 are monotonic. New informa-

tion cannot retract previous information. New information can be contradictory, but

facts and entailments can only be added, never deleted. Hence, to write an ontology

that can be interpreted unambiguously, we require a syntax and formal semantics

for OWL. OWL is a vocabulary extension (RDF Semantics) of RDF. OWL can be

represented using two types of syntaxes:

• Using RDF/XML documents: This is being used in general as OWL is part of

the Semantic Web. This syntax is followed so that OWL can be an extension

of RDF and RDF applications can parse OWL.

• Abstract Syntax: It is easier to read and write manually. It corresponds more

closely to description logics and frames.

OWL can be used only by building Ontologies. Most of the elements of an OWL

ontology concern classes, properties, instances of classes, and relationships between

these instances. Ontology basically determines how the world (domain) should work

and involves the following sequence of steps:

• determining the classes and properties in the domain.

• determining domains and ranges for properties.

• determining characteristics of classes.

• adding individuals and relationships as necessary.

• iterating until it is good enough.

• packaging all this into an ontology.

OWL’s ability to express ontological information about instances appearing in

multiple documents supports linking of data from diverse sources in a principled
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way. The underlying semantics provides support for inferences over this data that

may yield unexpected results. In particular, the ability to express equivalences us-

ing owl:sameAs can be used to state that seemingly different individuals are ac-

tually the same. Owl:InverseFunctionalProperty can also be used to link individ-

uals together. For example, if a property such as ”SocialSecurityNumber” is an

owl:InverseFunctionalProperty, then two separate individuals could be inferred to be

identical based on having the same value of that property. When individuals are

determined to be the same by such means, information about them from different

sources can be merged. This aggregation can be used to determine facts that are not

directly represented in any one source.

The ability of the Semantic Web to link information from multiple sources is a

desirable and powerful feature that can be used in many applications. However, the

capability to merge data from multiple sources, combined with the inferential power

of OWL, does have potential for abuse. Hence, users of OWL should be alert to the

potential privacy implications.

SWRL: Semantic Web Rule Language (SWRL) is a proposal for a semantic web

rules-language, combining sublanguages of the OWL Web Ontology Language (OWL

DL and Lite) with those of the Rule Markup Language (Unary/Binary Datalog).

SWRL includes a high-level abstract syntax for Horn-like rules in both the OWL

DL and OWL Lite sublanguages of OWL. It includes a model-theoretic semantics to

provide the formal meaning of OWL ontologies including rules written in an abstract

syntax, an XML syntax based on RuleML and the OWL XML Presentation syntax

as well as an RDF concrete syntax based on the OWL RDF/XML exchange syntax.

The rules specified by SWRL will be in the form of an implication between an

antecedent (body) and consequent (head). The intended meaning of this is that

whenever the conditions specified in the antecedent hold, then the conditions specified

in the consequent must also hold.
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Both the antecedent (body) and consequent (head) consist of zero or more atoms.

An empty antecedent is treated as trivially true (i.e. satisfied by every interpretation),

so the consequent must also be satisfied by every interpretation; an empty consequent

is treated as trivially false (i.e., not satisfied by any interpretation), so the antecedent

must also not be satisfied by any interpretation. Multiple atoms are treated as a

conjunction. Atoms in these rules can be of the form C(x), P(x,y), sameAs(x,y) or

differentFrom(x,y), where C is an OWL description, P is an OWL property, and x,y

are either variables, OWL individuals or OWL data values.

Rules offer users the ability to express certain logical relationships in a form suit-

able for machine processing. They are declarations like ’if P is true, then Q must

also be true,’ and for some applications they are easy for people to understand and

efficient for machines to use in computation.

As a rule language for the Semantic Web, SWRL uses URIs to identify things,

making it essentially compatible with RDF and OWL. For example, In RDF, an

organization can express that a particular person is an employee and is also granted

access to all internal documents. In SWRL, one can express the rule that all employees

are granted access to internal documents. Given this rule and the fact that someone

is an employee, a SWRL reasoner can conclude that the person is granted access.

SWRL is unique in being an extension of OWL DL, so that users of OWL DL

can add rules to their ontologies and maintain clear semantics. Some rule systems

offer meta-processing (rules about rules), and with the addition of OWL comes the

possibility for new confusion in rules about OWL axioms and OWL axioms about

rules; the design of SWRL 0.6 carefully steers clear of these potentially-confusing

areas.

SWRL rules can be represented using the following set of syntaxes:

• Human Readable Syntax: In this syntax, rule has the form: antecedent=>consequent

where both antecedent and consequent are conjunctions of atoms written a1 ^
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... ^ an. Variables are indicated using the standard convention of prefixing

them with a question mark (e.g., ?x).

• XML Concrete Syntax: The XML Concrete Syntax is a combination of the

OWL Web Ontology Language XML Presentation Syntax with the RuleML

XML syntax.

• RDF Concrete Syntax: It is straightforward to provide an RDF concrete syntax

for rules, but the presence of variables in rules goes beyond the RDF seman-

tics. Translation from the XML Concrete Syntax to RDF/XML could be easily

accomplished by extending the XSLT transformation for the OWL XML Pre-

sentation syntax.

Thus, in this work we used SWRL language as it is an extension of the semantics

of OWL and provides the network operators with human-readable syntax and an easy

to use method to specify precondition-action-postcondition and provisional execution

rules. The OWL description is then matched with the SWRL rules. This is achieved

by running a semantic reasoning engine that takes the OWL description and SWRL

rules and determines the actions to be taken based on the policy that the matched

rule describes. OWL is compatible and can be easily integrated with many semantic

reasoning engines such as Bossam, Hoolet, Pellet etc. Depending on the action asso-

ciated with the policy, new services can then be either added (service composition is

changed) or other actions will be applied. Depending on the new service composition,

the service controller will then make a routing and mapping decision to determine

which of the services can be processed locally and which needs to be sent to the

neighboring service controller. Once the path is set up, the service controller returns

the information about the next hop to the end-system that requested the services. A

service socket to the next hop is then opened and returned to the application.
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We have used the pellet reasoner in this implementation. Pellet API provides

various functionalities to see the species validation, check consistency of ontologies,

classify the taxonomy, check entailments and answer a subset of RDQL queries(known

as ABox queries in DL terminology). Pellet is an OWL DL reasoner based on the

tableaux algorithms developed for expressive Description Logics. It supports the

full expressivity OWL DL including reasoning about nominals (enumerated classes).

Therefore, OWL constructs owl:oneOf and owl:hasValue can be used freely. Currently,

Pellet is the first and only sound and complete DL reasoner that can handle this

expressivity. Pellet ensures soundness and completeness by incorporating the recently

developed decision procedure for SHOIQ(the expressivity of OWL-DL plus qualified

cardinality restrictions in DL terminology). The main feature of this reasoner is the

Conjunctive ABox query used for Query answering. This ABox query answering

module is based on ”rolling-up” technique. The algorithms devised optimize the

query answering by changing how likely candidates for variables are found and tried.

Exploiting the dependencies between different variable bindings helps us to reduce

the total number of satisfiability tests thus speeding up the answer significantly.

Here, we have differentiated service policies based on their priorities. A service

policy that is required for the proper working of a network is considered a high priority

policy and thus is a ’forced’ policy. For example, TCP is essential for reliable data

transfer and hence is called as a forced policy. As against to this, a service like

intrusion detection within an enterprise network is not really required if the parties

involved are trusted. The same principle applies even when encrypted data is involved,

as an intrusion detection service applied to on an encrypted payload does not yield

any useful results. Such service policies are called as optional service policies.
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CHAPTER 6

PROTOTYPE IMPLEMENTATION AND RESULTS

We have used a Cisco ISR (Integrated services router) as a service node of our

network service architecture prototype. The Cisco ISR will run the Video transcoding

application as a service.

6.1 Why Cisco ISR?

The Cisco Integrated Services Router (ISR) emphasizes the concept of an inte-

grated system, which has the ability to tie together and run multiple value-added

services such as voice, layer 2 switching, security and application acceleration. Inte-

grated services can be hosted within the router operating system (IOS) or decoupled

and hosted on modular application service modules. The Cisco ISR is provided with

a new platform called AXP (Application Extensions Platform) that can host applica-

tions in a separate runtime environment with dedicated resources. This new platform

is preferred due to the following reasons:

• It provides a predictable and constant set of resources to the host application

(third party application). These resources (including CPU, memory, disk and

network IO) are segmented in such a way that neither the host application nor

the router can adversely affect the performance of the other.

• It provides an execution environment, which sufficiently separates the applica-

tion space from the router space. Therefore, a crash of the host application

cannot destabilize or crash the router.
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• It provides an extensible and flexible platform for hosting third party applica-

tions. The platform can support multiple programming languages and hosting

environments.

• It hosts a hardened Cisco Linux OS with virtualization and supports applica-

tions in programming languages like C, C++, Java , Tomcat and scripts like

bash, perl and python.

• It provides robust debugging and troubleshooting facilities. The hosting envi-

ronment further provides extensive logging and analysis tools to help support

personnel determine the origin of the problem.

• It provides protection against unauthorized software. The platform provides

mechanisms to ensure that only Cisco certified parties can install software on

the AXP.

• It also provides facilities for third party applications to interact with IOS to

produce advanced applications. These facilities consist of programmatic inter-

face to modify IOS configuration, receive notification of events from IOS as well

as the ability to access peripherals attached to the ISR.

These facilities make possible tighter integration of third party application in ISR

thus increasing the attractiveness of the AXP platforms as hosting platform of choice,

over server based solution.

In this work, we consider the implementation of a video distribution scenario and

the service composition process for this is shown in the figure 6.1.

The figure 6.1 provides a general view of how the multiparty service policies over-

look the service composition process. It illustrates how the network components such

as sender/receivers (end-systems) and network service providers specify services ac-

cording to their local and network wide service policies respectively, which are then

used to compose services. We may have the following services in this scenario:
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Figure 6.1. Service Composition Process.

• Transcoding: An end-system that receives a high-quality streaming video might

not be capable of displaying it. For example, cellphone displays have a limi-

tation on the resolution and bitrates. Thus, such an end-system may request

a transcoding service conveying to the service controller the resolution, the

streaming protocol used and the format of the video it is compatible with. The

format of the video is determined by the codec installed on the end-system and

is a representation of the data semantics, which enable the service controller to

make informed decisions. Here, we use the Cisco ISR to act as a service node

that runs the transcoding service.

• Monitoring: A network service provider might have a monitoring service policy

on all video streaming connections to ensure Quality of service. Thus, even

though the receiver has not requested a monitoring service in its service speci-
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fication, the network service provider can choose to install one in the data path

to the receiver.

• Multicast: The streaming video may be sent to multiple destinations as re-

quested by the sender of the stream. In such a case, the service provider may

choose to install separate monitoring services on all multicast paths to ensure

QoS.

• Intrusion Detection: A service Provider may have a ’strict’ intrusion detection

service policy for all traffic through its network. However, applying an intrusion

detection service for data known to be video streaming data results in wastage

of resources and may result in degradation of service. In such cases, the service

provider can take into account the semantics of the data being sent and drop

the policy altogether for this type of traffic.

• Payload Compression/Decompression: To maintain QoS in networks affected

by congestion, the monitoring service may trigger a service policy resulting in

the network provider installing a payload compression/decompression service

pair in the data path. In this case, it only makes sense to install the pay-

load compression/decompression service pair between monitoring/transcoding

services and the end-system. The services may be colocated. This may be

taken care of by the reasoning engine that reasons over the OWL description of

the service constraints and hierarchies, the current service specification and the

SWRL rules describing service policies and determines the actions that need

to be initiated. In this case, based on the service pair constraints between

compression/decompression services, the reasoning engine may determine that

exact nodes in the network where the new services may be placed.
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Figure 6.2. Prototype Setup of NSA.

6.2 Prototype Setup

Here we present our prototype of the network service architecture. The Cisco ISR

acts as a service node that runs the video transcoding service. This service is only

applied based on the network policy rules defined in the SWRL format. The figure 6.2

illustrates our prototype implementation.

6.2.1 Introducing Transcoding Services based on Policy Rules

There exist a wide range of client devices in this world and each one requires a

different resolution of video to be played on it. For example, a laptop or a desktop

can play a larger resolution(1280x544) HDTV video but a smaller client like a mobile

device or a PDA can play only a smaller resolution(320x240) H264 video. Further-

more, even the video format requirements may vary from one client to other. One

may require a WMV format, the other may require a MPEG format etc. Hence, to

handle such different kinds of requirements of various types of client devices, here we

introduce transcoding services based on client requirements and the available formats

with the server based on policy rules.
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We basically have a video file of different resolutions (such as 1280x544(HDTV),

640x480(H264), 320x240(H264)) and formats like WMV and MPEG at the server

end. The policies are defined in the Network Service Policy Manager in such a way

that depending on the video format,resolution and type required by the client device

and those available with the server machine, new services will be introduced in the

data path. the output resolution of the video delivered to the client varies depending

on the client address. Thus, the transcoding services will be applied if the client has

to receive a smaller resolution video and a different format than that of the server.

We have illustrated the above mentioned scenario using three different client ad-

dresses: 10.1.0.2:6004, 10.1.0.2:6005, 10.1.0.2:6006. The initial service specification is

provided by the server(10.2.0.2:6000). As mentioned earlier, we have just followed a

standard format with only server and client addresses and the data semantics such

as properties of Video data being transferred (such as type, resolution and format).

This initial service specification is then parsed to form a request packet and sent to

the Service Controller. The Service Controller passes on this to the Network service

Policy Manager, which then forms an OWL description of the request. The OWL

formed is then matched against the predefined policy rules (defined using SWRL)

with the help of pellet reasoner. The rule matched provides a solution of which ser-

vice has to be applied next or, which node has to be included next in the data path.

This process continues till the next node result is the same as the client address given

in the initial service specification. The Network Service Policy Manager then provides

with the updated service specification with all the intermediate nodes or services.

The above setup has been tested with 36 different scenarios varying video types,

resolutions and formats both at server and client end. The chart in figure 6.3 shows

the results of these 36 different scenarios.

The following are the notations used in figure 6.3:

R : denotes the resolution change service.
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            O/P
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to
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→
F(WMV  to

MPEG)

R(1280x544

to

320x240)

R(1280x544

to

640x480)
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F(WMV  to

MPEG)
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F(WMV  to

MPEG)

       -->

HDTV,
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MPEG
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R(1280x544

to
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F(MPEG  to
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       -->

F(MPEG  to
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H.264,

640x480,
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R(640x480

to

320x240)

→
F(WMV  to

MPEG)

R(640x480

to

320x240)

F(WMV  to

MPEG)

      -->         X          X

H.264,

640x480,

MPEG

R(640x480

to

320x240)

R(640x480

to

320x240)

→
F(MPEG  to

WMV)

    -->

F(MPEG  to

WMV)

        X          X

H.264,

320x240,

WMV

F(WMV  to

MPEG)

     -->         X         X          X          X

H.264,

320x240,

MPEG
     -->

F(MPEG  to

WMV)

        X         X          X          X

Figure 6.3. Results showing the introduction of transcoder services in the data path.
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F : denotes the format change service.

-->: denotes normal forwarding of data without any services being

introduced.

X : denotes that no services exist for given service specification

and hence there will not be any connection established between

source and destination.

The following are some sample initial service specifications used to test the func-

tionality of our system:

1) 10.2.0.2:6000(HDTV,1280x544,WMV)>>10.1.0.2:6004(H264,320x240,MPEG)

2) 10.2.0.2:6000(HDTV,1280x544,WMV)>>10.1.0.2:6005(H264,640x480,MPEG)

3) 10.2.0.2:6000(HDTV,1280x544,WMV)>>10.1.0.2:6006(HDTV,1280x544,WMV)

The OWL description of the above mentioned service specification created by the

Network service Policy Manager is given figure 6.4 below:

In the OWL given in figure 6.4, the values of Source, Service,Type,Resolution,Format

and Destination are filled from the initial service specification and the service result

obtained from the initial service specification.

The Network Service Policy Manager has some policy rules defined corresponding

to the above OWL description. These rules have been defined using the SWRL

language as mentioned previously. The figure 6.5 shows the various policy rules in

human readable syntax, defined by us to test our system:

When the OWL description of specification 1 is provided to the reasoner, rules 1, 2

and 4 will be matched introducing intermediate services TranscodeResolution(320x240)

and TranscodeFormat(WMVxMPEG).In this case first the input video will be transcoded

to a resolution of 320x240 and then it will be transcoded from WMV format to MPEG
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<owl:Class rdf:ID="Source">
    <rdfs:subClassOf>
      <owl:Restriction>
        <owl:allValuesFrom>
          <owl:Class rdf:ID="Destination"/>
        </owl:allValuesFrom>
        <owl:onProperty>
          <owl:ObjectProperty rdf:ID="hasdestination"/>
        </owl:onProperty>
      </owl:Restriction>
    </rdfs:subClassOf>
    <rdfs:subClassOf>
      <owl:Class rdf:ID="Node"/>
    </rdfs:subClassOf>
  </owl:Class>
  <owl:Class rdf:about="#Node">
    <rdfs:subClassOf>
      <owl:Restriction>
        <owl:allValuesFrom>
          <owl:Class rdf:ID="Resolution"/>
        </owl:allValuesFrom>
        <owl:onProperty>
          <owl:ObjectProperty rdf:ID="hasresolution"/>
        </owl:onProperty>
      </owl:Restriction>
    </rdfs:subClassOf>
    <rdfs:subClassOf>
      <owl:Restriction>
        <owl:onProperty>
          <owl:ObjectProperty rdf:ID="hasformat"/>
        </owl:onProperty>
        <owl:allValuesFrom>
          <owl:Class rdf:ID="Format"/>
        </owl:allValuesFrom>
      </owl:Restriction>
    </rdfs:subClassOf>
    <rdfs:subClassOf>
      <owl:Restriction>
        <owl:allValuesFrom>
          <owl:Class rdf:ID="Type"/>
        </owl:allValuesFrom>
        <owl:onProperty>
          <owl:ObjectProperty rdf:ID="hastype"/>
        </owl:onProperty>
      </owl:Restriction>
    </rdfs:subClassOf>
    <rdfs:subClassOf>
      <owl:Restriction>
        <owl:onProperty>
          <owl:ObjectProperty rdf:ID="hasnextnode"/>
        </owl:onProperty>
        <owl:allValuesFrom rdf:resource="#Node"/>
      </owl:Restriction>
    </rdfs:subClassOf>
    <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
  </owl:Class>
  <owl:Class rdf:about="#Type">
    <rdfs:subClassOf>
      <owl:Class rdf:ID="Semantics"/>
    </rdfs:subClassOf>
  </owl:Class>
  <owl:Class rdf:ID="Service">
    <rdfs:subClassOf>
      <owl:Restriction>
        <owl:allValuesFrom>
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          <owl:Class rdf:about="#Destination"/>
        </owl:allValuesFrom>
        <owl:onProperty rdf:resource="#hasdestination"/>
      </owl:Restriction>
    </rdfs:subClassOf>
    <rdfs:subClassOf rdf:resource="#Node"/>
  </owl:Class>
  <owl:Class rdf:about="#Format">
    <rdfs:subClassOf rdf:resource="#Semantics"/>
  </owl:Class>
  <owl:Class rdf:about="#Resolution">
    <rdfs:subClassOf rdf:resource="#Semantics"/>
  </owl:Class>
  <owl:Class rdf:about="#Destination">
    <rdfs:subClassOf rdf:resource="#Node"/>
  </owl:Class>
<Source rdf:ID="">
    <hasresolution rdf:resource="#"/>
    <hastype>
      <Type rdf:ID=""/>
    </hastype>
    <hasdestination>
      <Destination rdf:ID="">
        <hastype>
          <Type rdf:ID=""/>
        </hastype>
        <hasresolution>
          <Resolution rdf:ID=""/>
        </hasresolution>
        <hasformat rdf:resource="#"/>
      </Destination>
    </hasdestination>
    <hasformat rdf:resource="#"/>
  </Source>
  <Service rdf:ID="">
    <hasresolution rdf:resource="#"/>
    <hastype>
      <Type rdf:ID=""/>
    </hastype>
    <hasdestination>
      <Destination rdf:ID="">
        <hastype>
          <Type rdf:ID=""/>
        </hastype>
        <hasresolution>
          <Resolution rdf:ID=""/>
        </hasresolution>
        <hasformat rdf:resource="#"/>
      </Destination>
    </hasdestination>
    <hasformat rdf:resource="#"/>
  </Service>

Figure 6.4. OWL description of Service specification.
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Rule 1:

Source(?x) hastype(?x, ?t1) hasresolution(?∧ ∧  x, 1280x544) ∧ hasformat(?x, ?f1) ∧
hasdestination(?x, ?y) ∧ hastype(?y, ?t2) ∧ hasresolution(?y, 320x240) ∧ hasformat(?y, ?f2)
→ hasnextnode(?x, TranscodeResolution(320x240))

Rule 2:

Service(TranscodeResolution(320x240)) ∧ hastype(TranscodeResolution(320x240), ?t1) ∧
hasresolution(TranscodeResolution(320x240), ?r1) ∧ hasformat(TranscodeResolution(320x240),
WMV) ∧ hasdestination(TranscodeResolution(320x240), ?y) ∧ hastype(?y, ?t2) ∧
hasresolution(?y, ?r2) ∧ hasformat(?y, MPEG)
→ hasnextnode(TranscodeResolution(320x240), TranscodeFormat(WMVxMPEG))

Rule 3:

Service(TranscodeResolution(320x240)) ∧ hastype(TranscodeResolution(320x240), ?t1) ∧
hasresolution(TranscodeResolution(320x240), ?r1) ∧ hasformat(TranscodeResolution(320x240),
MPEG) ∧ hasdestination(TranscodeResolution(320x240), ?y) ∧ hastype(?y, ?t2)
∧ hasresolution(?y, ?r2) ∧ hasformat(?y, WMV)
→ hasnextnode(TranscodeResolution(320x240), TranscodeFormat(MPEGxWMV))

Rule 4:

Service(TranscodeFormat(WMVxMPEG)) ∧ hastype(TranscodeFormat(WMVxMPEG), ?t1) ∧
hasresolution(TranscodeFormat(WMVxMPEG), ?r1) ∧
hasformat(TranscodeFormat(WMVxMPEG), ?f1) ∧
hasdestination(TranscodeFormat(WMVxMPEG), ?y) ∧ hastype(?y, ?t2) ∧
hasresolution(?y, ?r2) ∧ hasformat(?y, ?f2)
→ hasnextnode(TranscodeFormat(WMVxMPEG), ?y)

Rule 5:

Service(TranscodeFormat(MPEGxWMV)) ∧ hastype(TranscodeFormat(MPEGxWMV), ?t1) ∧
hasresolution(TranscodeFormat(MPEGxWMV), ?r1) ∧
hasformat(TranscodeFormat(MPEGxWMV), ?f1) ∧
hasdestination(TranscodeFormat(MPEGxWMV), ?y) ∧ hastype(?y, ?t2) ∧
hasresolution(?y, ?r2) ∧ hasformat(?y, ?f2)
→ hasnextnode(TranscodeFormat(MPEGxWMV), ?y)

Rule 6:

Service(TranscodeResolution(320x240)) ∧ hastype(TranscodeResolution(320x240), ?t1) ∧
hasresolution(TranscodeResolution(320x240), ?r1) ∧ hasformat(TranscodeResolution(320x240), ?f)
∧ hasdestination(TranscodeResolution(320x240), ?y) ∧ hastype(?y, ?t2) ∧ hasresolution(?y, ?r2)
∧ hasformat(?y, ?f)
→ hasnextnode(TranscodeResolution(320x240), ?y)

Rule 7:

Source(?x) hastype(?x, ?t1) hasresolution(?∧ ∧  x, 1280x544) ∧ hasformat(?x, ?f1) ∧
hasdestination(?x, ?y) ∧ hastype(?y, ?t2) ∧ hasresolution(?y, 640x480) ∧ hasformat(?y, ?f2)
→ hasnextnode(?x, TranscodeResolution(640x480))
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Rule 8:

Service(TranscodeResolution(640x480)) ∧ hastype(TranscodeResolution(640x480), ?t1) ∧
hasresolution(TranscodeResolution(640x480), ?r1) ∧ hasformat(TranscodeResolution(640x480),
WMV) ∧ hasdestination(TranscodeResolution(640x480), ?y) ∧ hastype(?y, ?t2) ∧
hasresolution(?y, ?r2) ∧ hasformat(?y, MPEG)
→ hasnextnode(TranscodeResolution(640x480), TranscodeFormat(WMVxMPEG))

Rule 9:

Service(TranscodeResolution(640x480)) ∧ hastype(TranscodeResolution(640x480), ?t1) ∧
hasresolution(TranscodeResolution(640x480), ?r1) ∧ hasformat(TranscodeResolution(640x480),
MPEG) ∧ hasdestination(TranscodeResolution(640x480), ?y) ∧ hastype(?y, ?t2) ∧
hasresolution(?y, ?r2) ∧ hasformat(?y, WMV)
→ hasnextnode(TranscodeResolution(640x480), TranscodeFormat(MPEGxWMV))

Rule 10:

Service(TranscodeResolution(640x480)) ∧ hastype(TranscodeResolution(640x480), ?t1) ∧
hasresolution(TranscodeResolution(640x480), ?r1) ∧ hasformat(TranscodeResolution(640x480), ?f)
∧ hasdestination(TranscodeResolution(640x480), ?y) ∧ hastype(?y, ?t2)
∧ hasresolution(?y, ?r2) ∧ hasformat(?y, ?f)
→ hasnextnode(TranscodeResolution(640x480), ?y)

Rule 11:

Source(?x) ∧ hastype(?x, ?t1) ∧ hasresolution(?x, ?r) ∧ hasformat(?x, MPEG) ∧
hasdestination(?x, ?y) ∧ hastype(?y, ?t2) ∧ hasresolution(?y, ?r) ∧ hasformat(?y, WMV)
→ hasnextnode(?x, TranscodeFormat(MPEGxWMV))

Rule 12:

Source(?x) ∧ hastype(?x, ?t1) ∧ hasresolution(?x, ?r) ∧ hasformat(?x, WMV) ∧
hasdestination(?x, ?y) ∧ hastype(?y, ?t2) ∧ hasresolution(?y, ?r) ∧ hasformat(?y, MPEG)
→ hasnextnode(?x, TranscodeFormat(WMVxMPEG))

Rule 13:

Source(?x) ∧ hastype(?x, ?t1) ∧ hasresolution(?x, ?r) ∧ hasformat(?x, ?f) ∧
hasdestination(?x, ?y) ∧ hastype(?y, ?t2) ∧ hasresolution(?y, ?r) ∧ hasformat(?y, ?f)
→ hasnextnode(?x, ?y)

Rule 14:

Source(?x) ∧ hastype(?x, ?t1) ∧ hasresolution(?x, 640x480) ∧ hasformat(?x, ?f1) ∧
hasdestination(?x, ?y) ∧ hastype(?y, ?t2) ∧ hasresolution(?y, 320x240) ∧ hasformat(?y, ?f2)
→ hasnextnode(?x, TranscodeResolution(320x240))

Rule 15:

Service(TranscodeResolution(640x480)) hastype(T ∧ ranscodeResolution(640x480), ?t1) ∧
hasresolution(TranscodeResolution(640x480), ?r1) ∧ hasformat(TranscodeResolution(640x480), ?f)
∧ hasdestination(TranscodeResolution(640x480), ?y) ∧ hastype(?y, ?t2)
∧ hasresolution(?y, ?r2) ∧ hasformat(?y, ?f)
→ hasnextnode(TranscodeResolution(640x480), ?y)

Figure 6.5. Policy rules defined in SWRL.
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format. The first service specification updated by the Network Service Policy Man-

ager is given below:

10.2.0.2:6000(HDTV,1280x544,WMV)>>TranscodeResolution(320x240)

>>TranscodeFormat(WMVxMPEG)>>10.1.0.2:6004(H264,320x240,MPEG)

Similarly, When the OWL description of specification 2 is provided to the reasoner,

rules 7, 8 and 4 will be matched introducing intermediate services TranscodeReso-

lution(640x480) and TranscodeFormat(WMVxMPEG).Here, the input video will be

first transcoded to a resolution of 640x480 and then it will be transcoded from WMV

format to MPEG format. The service specification updated by the Network Service

Policy Manager in this case is given below:

10.2.0.2:6000(HDTV,1280x544,WMV)>>TranscodeResolution(640x480)

>>TranscodeFormat(WMVxMPEG)>>10.1.0.2:6005(H264,640x480,MPEG)

When the OWL description of specification 3 is provided to the reasoner, rule 13

will be matched. In this case, no additional service will be introduced and hence

the input video will be delivered to the client without any transcoding. The service

specification given by the Network Service Policy Manager in this case is the same as

its initial specification.

10.2.0.2:6000(HDTV,1280x544,WMV)>>10.1.0.2:6006(HDTV,1280x544,WMV)

The figure 6.6 illustrates the space-time description of the above explained setup.

6.3 Results

We have set up a prototype of the NSA (Network service architecture) using the

Cisco ISR as the service node. This set up has a service node implementing the video

transcoding application. The figure 6.7 illustrates this setup. We have considered two

45



t

End

System

Service

Controller

Cisco AXP

(Service Node)

Videotranscoding

End

System

Service 

Request

Path Setup

Service 

Response

Video Input
Transcoded Video

Output

Setup ack

Path Setup

Setup ack

t

End

System

Service

Controller

Cisco AXP

(Service Node)

Videotranscoding

End

System

Service 

Request

Path Setup

Service 

Response

Video Input
Video Output

Setup ack

Figure 6.6. Space-time description of the service specification example with and
without transcoding service enabled.

46



with transcoding

End

System

(Server)

End

System

(Client)

Service

Controller

IOS
AXP(Service Node)

Video Transcoder

Switch Fabric

CISCO ISR

Control Plane

Data Plane

without transcoding

End

System

(Server)

End

System

(Client)

Service

Controller

IOS
AXP(Service Node)

Video Transcoder

Switch Fabric

CISCO ISR

Control Plane

Data Plane

Figure 6.7. Prototype Implementation of NSA on Cisco ISR with and without
transcoding service enabled. 47



scenarios, first with the transcoding service disabled and then with the transcoding

service enabled depending on the policy rules.

When the Network Service Policy Manager does not introduce a transcoding ser-

vice, which is based on the client requirements in the initial specification given, the

transcoding service is not applied and the packets are simply forwarded to the Client.

However, when the Network Service Policy Manager introduces a transcoding ser-

vice the packets are rerouted to the AXP, which runs the Videotranscoding service

and hence converts to a different resolution based on the resolution the client device

wanted. Therefore, as per the policy rules defined previously if the client requires

a Video of resolution 320x240, the video is transcoded to a resolution of 320x240, if

the client requires a Video of resolution 640x480, it is transcoded to a resolution of

640x480 and if the client requires the same resolution as with the server, the video

is streamed as it is without transcoding (i.e. without any change in the resolution).

The figure 6.8 shows the performance of these three scenarios.

Here, we have transcoded a video from a resolution of 1280x544 to 320x240 and

640x480. It is clearly evident from the figure that the data rate is significantly reduced

due to transcoder (i.e. in the case when transcoding service is introduced, the input

shows a higher data-rate and the output shows a lower data-rate while when there

is no transcoding the input and output data-rates are almost equal). Thus, the

transcoded video stream with a smaller resolution can be displayed on a low end

client. A noteworthy point here is that the sender is unaware of the transcoding

process as the transcoder service is only introduced based upon the policies defined

at the Network Service Policy Manager part of the Service Conroller (as explained

earlier).
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Figure 6.8. Data-rates when a video of resolution 1280x544 is transcoded to 320x240,
640x480 and then no transcoding
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CHAPTER 7

CONCLUSION AND SUMMARY

The main theme of this thesis was implementing the prototype of a network ser-

vice architecture with multi-party service composition and service placement based

on network policies. This was implemented using the semantics of the data sent by

the end-system along with the service request.In our prototype setup we have im-

plemented the Videotranscoding service on a Cisco AXP module. The multi-party

service specification framework introduced extends the service socket API [20]. We

have thus leveraged the use of semantics of data in multiparty service specifications.

Our multiparty service specification framework allows end-system applications to eas-

ily utilize network services without exposing them to the complexities of connection

setup and network policies. Furthermore, we believe that this approach represents an

important step towards making highly dynamic and flexible communication configu-

rations an integral part of the next-generation Internet.

7.1 Contribution

My contributions to this work can be summarized as:

• Extended the service specification framework and service sockets API [20] to

perform all the functionalities as shown in figure 5.1.

• Implemented the enforcement of the network policies based on the data se-

mantics sent by the end-system. This is done using W3C Web Ontology Lan-

guage(OWL) [3].
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• Implemented a repository of network rules that are based on policies in multi-

party service composition for the purpose of network management. This is done

using W3C Semantic Web Rule Language (SWRL) [1].

• Implemented the Videotranscoding application on Cisco AXP, which acts as a

service node in our prototype of Network Service Architecture. This service is

enabled based on the network rules matched.

7.2 Future Work

There is however still scope for improvements in the future. Here we have imple-

mented our prototype setup by considering only one service(Videotranscoding). This

can be further extended by introducing additional services for different types of data.

Correspondingly, we can also define a large number of rules to impose different kinds

of policies.
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